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PREFACE

The present thesis entitled ”A STUDY ON DIFFERENTIAL GEOMETRY OF RIE-

MANNIAN MANIFOLD AND ALMOST CONTACT MANIFOLDS” is an outcome of

the researcher carried out by the author under the supervision of Dr. Jay Prakash Singh,

Department of Mathematics & Computer science, Mizoram University, Aizawl, Mizoram

and Dr. Rajesh Kumar, Department of Mathematics, Pachhunga University College,

Aizawl, Mizoram.

This thesis has been divided into six chapters and each chapter is subdivided into a

number of articles. The first chapter is introductory in which we have defined Differen-

tiable manifolds, Tangent Vector, Tangent space and Vector field, Tensors, Lie-bracket,

Covarient derivatives, Lie derivative and Exterior derivatives, Connection, Riemannian

manifolds, Torsion tensor, Ricci tensor, Curvature tensors on Riemannian manifolds,

Almost contact manifold, Almost paracontact metric manifold, Lorentzian paracontact

manifold, Lorentzian α-Sasakian manifold Submanifold, Almost r-paracontact Submani-

fold.

The second chapter is related with the characterization of some curvature conditions

on LP -Sasakian manifold admitting a quarter symmetric non-metric connection. In this

chapter we have studied an LP -Sasakian manifold admitting a quarter symmetric non-

metric connection satisfying L · S = 0 is an η-Einstein manifold. We also prove that an

n-dimensional LP -Sasakian manifold is ξ-conharmonically flat with respect to the quar-

ter symmetric non-metric connection if and only if the manifold is also ξ-conharmonicaly

flat with respect to the Riemannian connection provided the vector fields X and Y are

horizontal vector fields. We also discussed Projective Ricci tensor with respect to quarter

symmetric non-metric connection ∇ in an LP -Sasakian manifold.

The third chapter deals with study of LP -Sasakian manifolds. In this chapter we

have studied certain curvature conditions on LP -Sasakian manifolds and obtained some

interesting results.

The fourth chapter we have discussed semi-generalized Concircularly andM -projectively

recurrent manifolds and obtained some interesting results. Semi-generalized recurrent

Lorentzian α-Sasakian manifolds and Semi-generalized , semi-generalized φ-recurrent Lorentzian

α-Sasakian manifolds and semi-generalized φ-recurrent P -Sasakian manifolds are also dis-

cussed in this chapter.

In the fifth chapter we studied the almost r-paracontact structure and obtained the

several results. We have shown that the Mn−1 be a submanifold tangent to the structure

vector field ξ̃α of an almost r-paracontact metric manifold Mn+1. If Mn−1 is totally um-

bilical then Mn−1 is totally geodesic.
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The last chapter is summary and conclusion.

In the end, the references of the papers of the authors have been given with surname

of the author and their years of the publication, which are decoded in chronological order

in the Bibliography.

A good portion of present thesis has been already published in National/International

journals. A brief account of published chapters is given in the list of publications.
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Chapter 1

Introduction

1.1 Differentiable Manifold

A topological space Mn is said to be a differentiable manifold of dimension n if it satisfies

the following:

(1) Mn is a Housdorff space,

(2) each point x ∈ Mn has a neighbourhood U which is homeomorphic to an open

subset V of Rn, i.e., Mn is locally Euclidean,

(3) Mn is a second countable space i.e., Mn has a countable basis of open sets,

(4) Mn is endowed with a collection {(Uα, φα) : α ∈ Λ} of coordinate charts such that

(i) ∪α∈ΛUα =Mn i.e., {Uα : α ∈ Λ} covers Mn,

(ii) the mapping φαoφ
−1
β or φβoφ

−1
α is C∞ for all α, β ∈ Λ and

(iii) if (U,φ) is any other coordinate charts for which φoφ−1
α and φαoφ

−1 are C∞, then

(U,φ) ∈ {(Uα, φα) : α ∈ Λ}.

The properties (1)-(3) are the conditions of a topological manifold while the property (4)

(with (i)-(iii)) is the condition of a differentiable structure. IfMn has a C∞- differentiable

structure, then Mn is called an analytic manifold.
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1.2 Tangent Vector, Tangent Space and Vector Field

Tangent Vector: Let Mn be an n-dimensional differentiable manifold and p ∈Mn and

C∞(p) be the set of all real valued C∞ function on some neighbourhood ∪ of p. Let us

consider a vector X at p such that

(i) X ∈Mn, f ∈ C∞(p) implies that Xf ∈ C∞(p),

(ii) X(f + g) = Xf +Xg , f, g ∈ C∞(p),

(iii) X(fg) = f(Xg) + (Xf)g, and

(iv) X(af) = a(Xf), a ∈ R,
then X is called a tangent vector to Mn at p.

Tangent Space: The set of all tangent vectors at p with operation addition ‘+’ satisfying

(X + Y )f = Xf + Y f (1.2.1)

and an operation of scalar multiplication ‘·′ satisfying

(f ·X)g = f · (Xg) (1.2.2)

is a vector space and this space is called the tangent space to Mn at the point p and

is denoted by T(p). The basis of T(p) with respect to coordinate system (x1, x2, .....xn) is

( ∂
∂xi ), i = 1, 2, .....n.

Let T ∗
(p) be the dual space of T(p) whose basis with respect to the basis ( ∂

∂xi ) is (dx
1, dx2, ......dxn).

We observe that the elements of T(p) are the contravariant vectors and elements of T ∗
(p)

are the covariant vectors with respect to the basis of T(p).

Vector Field: A vector field X on a set A is a mapping that assigns to each p ∈ A to a

vector Xp in T(p). A vector field X is C∞ on A, if

(i) A is open, and

(ii) The function Xf at p is C∞ on A ∩Mn, f being C∞ real valued function on Mn.

1.3 Tensors

We consider an n-dimensional C∞ manifold Mn. Let p be a point in Mn. A tensor of the

type (r, s) at p is (r + s)- linear real valued function on (T(p))
r ⊗ (T ∗

(p))
s and vector space

of these tensors is denoted by T r
(p)s.

2



A tensor Q of type (r, o) is said to be symmetric in the hth and kth places if

Sh,k(Q) = Q (1.3.1)

and skew-symmetric in the hth and kth places if

Sh,k(Q) = −Q (1.3.2)

where (1 ≤ h ≤ k ≤ r) and Sh,k is a linear mapping which interchanges the vectors at the

hth and kth places in the tensor product of the r-covariant vectors.

A tensor Q of type (r, o) is said to be symmetric if (1.3.1) hold, for all indices h and k

and it is said to be skew symmetric if (1.3.2) holds, for all indices h and k.

1.4 Contracted Tensors

The linear mapping

Ch
k : T r

s → T r−1
s−1 (i ≤ h ≤ r i ≤ k ≤ s)

such that

Ch
k (λ1 ⊗ λ2 ⊗ · · · ⊗ λr ⊗ α1 ⊗ · · · ⊗ αs) = αk(λ1 ⊗ · · ⊗λh−1 ⊗ λh+1 · · · ⊗λr

⊗α1 ⊗ α2 ⊗ · · αk−1 ⊗ λk+1 ⊗ · · αs).

where λ1, λ2...λr ∈ T(p) and α1, α2....αs ∈ T ∗
(p) and ⊗ denote tensor product, is called

contraction with respect to hth contravariant and kth covariant places. A tensor obtained

after contraction is called a contracted tensor.

1.5 Lie-Bracket and Covariant Derivative

Lie-Bracket: Let X and Y be arbitrary C∞ vector field of Mn, then their Lie-bracket

is a mapping [ , ] :Mn ×Mn →Mn such that

[X, Y ]f = X(Y f)− Y (Xf), (1.5.1)

where f is a C∞-function. The Lie-bracket has the following properties:

[X, Y ](f1 + f2) = [X, Y ]f1 + [X,Y ]f2, (1.5.2)

3



[X, Y ](f1 · f2) = f1[X, Y ]f2 + f2[X,Y ]f1, (1.5.3)

[X, Y ] + [Y,X] = 0, (skew-symmetry) (1.5.4)

[X + Y, Z] = [X,Z] + [Y, Z], (bilinear) (1.5.5)

[X, [Y + Z]] + [Y, [Z +X]] + [Z, [X,Y ]] = 0, (Jacobian identity) (1.5.6)

and

[f1X, f2Y ] = f1f2[X, Y ] + f1(Xf2)Y − f2(Y f1)X. (1.5.7)

Covariant Derivative: A linear affine connection on Mn is a function

∇ : Tp(M
n) ∗ Tp(Mn) → Tp(M

n) such that

∇fX+gYZ = f(∇XZ) + g(∇YZ), (1.5.8)

∇Xf = Xf, (1.5.9)

∇X(fY + gZ) = f(∇XY ) + g(∇XZ) + (Xf)Y + (Xg)Z, (1.5.10)

for arbitrary vector fields X, Y, Z and smooth function f, g onMn. ∇X is called covariant

derivative operator and ∇XY is called covariant derivative of Y with respect to X.

The covariant derivative of a 1-form w is given by

(∇Xw)(Y ) = X(w(Y ))− w(∇XY ).

1.6 Lie Derivative and Exterior Derivative

Lie Derivative: Let X be a C∞ vector field on an open set A of Mn. An operator LX

is called the Lie derivative along the vector field X if it is a type preserving mapping

4



LX : T r
s → T r

s , such that

LXf = Xf, f ∈ F, (1.6.1)

LXa = 0, a ∈ R, (1.6.2)

LXY = [X, Y ], X, Y ∈ T(p), (1.6.3)

(LXA)(Y ) = X(A(Y ))− A([X,Y ]), A ∈ T ∗
(p) (1.6.4)

and

(LXP )(A1, .......Ar, X1, .......Xs) = X(P (A1, .......Ar, X1, .......Xs))

− P (LXA1, .......Ar, X1, .......Xs)....

− P (A1, .....Ar, [X,X1], X2.....Xs).....

....................................................

− P (A1..........Xs−1, [X,Xs]), P ∈ T r
s , (1.6.5)

where f is a C∞ function, X1, .......Xs are vector fields, A1, .......Ar are 1-forms and P is a

tensor field of type (r, s), is called Lie differentiation with respect to X and LXP is called

Lie derivative of P with respect to X.

Exterior Derivative: Let Vp be the set of all C
∞ p-forms on an open set A. Then the

mapping d : Vp → Vp+1 given by

(df)(X) = Xf, X ∈ T(p), f ∈ F (1.6.6)

and

(dA)(X1, ......., Xp+1) = X1 (A(X2, ......, Xp+1))

− X2 (A(X1, X3, ...Xp+1))

+ X3 (A(X1, X2, X4, ......, Xp+1)) ....

− A([X1, X2], X3, ......, Xp+1)

5



+ A([X1, X3], X2, X4, ......, Xp+1)

− A([X2, X3], X1, X4, ......, Xp+1) + ...... (1.6.7)

for arbitrary C∞ vector fields X ′s ∈ V 1 and A ∈ Vp , is called the exterior derivative.

1.7 Connection

Let us consider a C∞-manifold Mn and p ∈Mn be a point of Mn. Let T(p) be a tangent

space to Mn at the point p. Let T r
(p)s be a vector space whose elements are the tensors of

the type (r, s). A connection ∇ is a type preserving mapping ∇ : T(p) ⊗ T r
s → T r

s , which

assigns to each pair of C∞-vector field (X,P ), X ∈ Tp, P ∈ T r
s , a C

∞-vector fields ∇XP ,

such that

∇Xf = Xf, f is C∞-function (1.7.1)

∇Xa = 0, a ∈ R, (1.7.2)

∇X(Y + Z) = ∇XY +∇XZ, (1.7.3)

∇X(fY ) = f(∇XY ) + (Xf)Y, (1.7.4)

∇X+YZ = ∇XZ +∇YZ, (1.7.5)

∇fXY = f(∇XY ), (1.7.6)

(∇XA)Y = X(A(Y ))− A(∇XY ), (1.7.7)

and

(∇XP )(A1, ......., Ar, X1, .....Xs) = X(P (A1, ......Ar, X1, ......Xs))

− P (∇XA1, A2, ......Ar, X1, .......Xs)...

− P (A1......Ar, X1, ......∇XXs). (1.7.8)

6



1.8 Riemannian Manifold

Let us consider a C∞ real valued, bilinear symmetric, non-singular positive definite func-

tion g on the ordered pair X,Y ∈ T(p) at a point p ∈Mn, such that

g(X, Y ) is a real number, (1.8.1)

g is symmetric ⇒ g(X,Y ) = g(Y,X),

g is non-singular i.e. g(X, Y ) = 0,∀Y ̸= 0 ⇒ X = 0.

g is positive definite i.e. g(X,Y ) > 0, ∀X ̸= 0.

and

g(X + Y, Z) = g(X,Z) + g(Y, Z),

g(aX,Z) = ag(X,Z), a ∈ R

then g is said to be Riemannian metric tensor.

The manifold Mn with a Riemannian metric is called a Riemannian manifold and its

geometry is called a Riemannian geometry.

1.9 Torsion Tensor

A vector valued, skew-symmetry, bilinear function T of the type (1, 2) defined by

T (X, Y )
def
= ∇XY −∇YX − [X, Y ] (1.9.1)

is called a torsion tensor of the connection ∇ in a C∞-manifold Mn.

If the torsion tensor of a connection ∇ vanishes, it is said to be symmetric or torsion free.

A connection ∇ is said to be Riemannian, if

T (X,Y ) = 0 (1.9.2)

and

∇Xg = 0. (1.9.3)
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1.10 Riemannian Connection

A connection D is said to be Riemannian connection if

(i) It is symmetric i.e. DXY −DYX = [X, Y ],

(ii) g is covariant constant with respect to D i.e.

Xg(Y, Z) = g(DXY, Z) + g(Y,DXZ). (1.10.1)

Hence, we can say that a linear connection is symmetric and metric if and only if it is the

Riemannian connection.

1.11 Quarter Symmetric Non-Metric Connection

Golab, (1975) defined and studied quarter symmetric connection in a differentiable man-

ifold with affine connection as a linear connection ∇ on an n-dimensional Riemannian

manifold (Mn, g) is called a quarter symmetric connection if its torsion tensor T of the

connection ∇

T (X,Y ) = ∇XY −∇YX − [X, Y ], (1.11.1)

satisfies

T (X, Y ) = η(Y )φX − η(X)φY, (1.11.2)

where η is 1-form and φ is a (1,1) tensor field. In particular, if φ(X) = X, then the

quarter symmetric connection reduces to a semi symmetric connection. Thus the notion

of quarter symmetric connection generalizes the notion of semi symmetric connection.

Moreover, if a quarter symmetric connection ∇ satisfies the condition

(∇Xg)(Y, Z) = 0, (1.11.3)

for all X, Y, Z ∈ Tp(M
n), where Tp(M

n) is the Lie algebra of vector fields of the manifold

Mn, then ∇ is said to be a quarter-symmetric metric connection, otherwise it is said to

be a quarter symmetric non-metric connection.
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1.12 Curvature Tensor

The curvature tensor R of type (1,3) with respect to the Riemannian connection ∇ is

defined by the mapping

R : Tp(M
n)× Tp(M

n)× Tp(M
n) −→ Tp(M

n)

given by

R(X,Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (1.12.1)

for all X,Y, Z ∈ Tp(M
n).

Let ′R be the associative curvature tensor of the type (0, 4) of the curvature tensor R.

Then

′R(X, Y, Z,W ) = g(R(X, Y, Z)W ), (1.12.2)

′R is called the Riemann-Christoffel curvature tensor of first kind.

The following identities are satisfied by associative curvature tensor ′R:
′R is skew-symmetric in first two slot

i.e., ′R(X,Y, Z,W ) = − ′R(Y,X,Z,W ) (1.12.3)

′R is skew-symmetric in last two slot

i.e., ′R(X,Y, Z,W ) = − ′R(X, Y,W,Z) (1.12.4)

′R is symmetric in two pair of slot

i.e., ′R(X, Y, Z,W ) = ′R(Z,W,X, Y ) (1.12.5)

′R satisfies Bianchi’s first identities

i.e., ′R(X,Y, Z,W ) + ′R(Y, Z,X,W ) + ′R(Z,X, Y,W ) = 0 (1.12.6)

and ′R satisfies Bianchi’s second identities

i.e., (∇X
′R)(Y, Z,W, V ) + (∇Y

′R)(Z,X,W, V ) + (∇Z
′R)(X, Y,W, V ) = 0. (1.12.7)
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1.13 Ricci-Tensor

Let Mn is a Riemannian manifold with a Riemannian connection ∇. Then the Ricci

tensor field S is the covariant tensor field of degree 2 defined as Ric(Y, Z) = S(Y, Z) =

Trace of the linear map X → R(X, Y )Z for all X, Y, Z ∈ Tp(M
n).

If {e1, ..., en} is an orthonormal basis of the tangent space Tp, p ∈ Mn and R is the

Riemannian curvature tensor of the Riemannian manifold (Mn, g), then

S(X, Y ) =
n∑

i=1

g(R(ei, X)Y, ei) (1.13.1)

=
n∑

i=1

R(ei, X, Y, ei) (1.13.2)

=
n∑

i=1

R(X, ei, ei, Y ) = g(R(X, ei)ei, Y ),

where R is the Riemannian curvature tensor of the manifold of type (0, 4). The linear

map Q of the type (1, 1) defined by

g(QX, Y )
def
= S(X, Y ) (1.13.3)

is called a Ricci-map. It is self-adjoint,

i.e., g(QX, Y ) = g(X,QY ). (1.13.4)

The scalar r defined by

r
def
= (C1

1R) (1.13.5)

is called the scalar curvature of Mn at the point p.

A Riemannian manifold Mn is said to be Einstein manifold, if

S(X, Y ) =
r

n
g(X,Y ). (1.13.6)
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A Riemannian manifold Mn is said to be η-Einstein manifold, if

S(X, Y ) = αg(X, Y ) + βη(X)η(Y ). (1.13.7)

where α and β are smooth functions.

A Riemannian manifold Mn is said to be flat manifold, if

R(X,Y, Z) = 0. (1.13.8)

1.14 Important Curvature Tensors on Riemannian

Manifold

The concircular curvature tensor ′L of type (0,4), is given by

′L(X, Y, Z,W ) = ′R(X, Y, Z,W )− r

n(n− 1)

{
g(Y, Z)g(X,W )

− g(X,Z)g(Y,W )
}

(1.14.1)

It satisfies the following algebraic properties

(a) ′L(X, Y, Z,W ) = −′L(Y,X,Z,W ),

(b) ′L(X, Y, Z,W ) = −′L(X,Y,W,Z),

(c) ′L(X, Y, Z,W ) = ′L(Z,W,X, Y ),

(d) ′L(X,Y, Z,W ) + ′L(Y, Z,X,W ) + ′L(Z,X, Y,W ) = 0,

where

′L(X,Y, Z,W ) = g(L(X,Y, Z),W ).

The conharmonic curvature tensor ′H of the type (0,4), is defined as follows

′H(X,Y, Z,W ) = ′R(X, Y, Z,W )− 1

n− 1

{
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ S(X,W )g(Y, Z)− S(Y,W )g(X,Z)
}

(1.14.2)

It satisfies the following properties

(a) ′H(X,Y, Z,W ) = − ′H(Y,X,Z,W ),

11



(b) ′H(X,Y, Z,W ) = ′H(X,Y,W,Z),

(c) ′H(X, Y, Z,W ) = ′H(Z,W,X, Y ),

(d) ′H(X, Y, Z,W ) + ′H(Y, Z,X,W ) + ′H(Z,X, Y,W ) = 0

where

′H(X,Y, Z,W ) = g(H(X, Y, Z),W ).

The projective curvature tensor ′P of the type (0, 4), is defined by

′P (X, Y, Z,W ) = ′R(X, Y, Z,W )− 1

n− 1

{
S(Y, Z)g(X,W )

− S(X,Z)g(Y,W )
}
. (1.14.3)

The projective curvature tensor ′P satisfies the following identities

(a) ′P (X,Y, Z,W ) = − ′P (Y,X,Z,W ),

(b) C1
1P = C1

2P = C1
3P = 0,

(c) ′P (X, Y, Z,W ) + ′P (Y, Z,X,W ) + ′P (Z,X, Y,W ) = 0,

where

′P (X,Y, Z,W ) = g(P (X, Y, Z),W ).

The M -projective curvature tensor ′W ∗ of the type (0, 4), is defined by

′W ∗(X, Y, Z,W ) = ′R(X,Y, Z,W )− 1

2(n− 1)

{
g(X,W )S(Y, Z)− g(Y,W )S(X,Z)

+ S(X,W )g(Y, Z)− S(Y,W )g(X,Z)
}
. (1.14.4)

It satisfies the following algebraic properties

(a) ′W ∗(X, Y, Z,W ) = ′W ∗(Z,W,X, Y ),

(b) ′W ∗(X, Y, Z,W ) = − ′W ∗(Y,X,W,Z),

(c) ′W ∗(X,Y, Z,W ) = − ′W ∗(X, Y,W,Z),

(d) ′W ∗(X, Y, Z,W ) + ′W ∗(Y, Z,X,W ) + ′W ∗(Z,X, Y,W ) = 0
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where

′W ∗(X,Y, Z,W ) = g(W ∗(X, Y, Z),W ).

The conformal curvature tensor C of the type (0,4), is defined as

′C(X, Y, Z,W ) = R(X, Y, Z,W )− 1

(n− 2)

[
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)S(X,W )− g(X,Z)S(Y,W )
]

+
r

(n− 1)(n− 2)

[
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
. (1.14.5)

It satisfies the following properties

(a) ′C(X, Y, Z,W ) = −′C(Y,X,Z,W ),

(b) ′C(X, Y, Z,W ) = −′C(X,Y,W,Z),

(c) ′C(X, Y, Z,W ) = ′C(Z,W,X, Y ),

(d) ′C(X,Y, Z,W ) + ′C(Y, Z,X,W ) + ′C(Z,X, Y,W ) = 0

where

′C(X,Y, Z,W ) = g(C(X,Y, Z),W ).

Finally the Quasi-conformal curvature tensor C of the type (0,4), is defined as

′C(X,Y, Z,W ) = a R(X,Y, Z,W ) + b
[
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)S(X,W )− g(X,Z)S(Y,W )
]

+
r

n

( a

n− 1
+ 2b

) [
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
. (1.14.6)

It satisfies the following identities

(a) ′C(X, Y, Z,W ) = −′C(Y,X,Z,W ),

(b) ′C(X, Y, Z,W ) = −′C(X,Y,W,Z),

(c) ′C(X, Y, Z,W ) = ′C(Z,W,X, Y ),

(d) ′C(X,Y, Z,W ) + ′C(Y, Z,X,W ) + ′C(Z,X, Y,W ) = 0
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where

′C(X,Y, Z,W ) = g(C(X,Y, Z),W ).

1.15 Almost Contact Metric Manifold

If Mn be an odd dimensional differentiable manifold on which there are defined a real

vector valued linear function φ, a 1-form η and a vector field ξ satisfying for arbitrary

vectors X, Y, Z, .....

φ2X = −X + η(X)ξ, (1.15.1)

η(ξ) = 1, (1.15.2)

φ(ξ) = 0, (1.15.3)

η(φX) = 0, (1.15.4)

and

rank(φ) = n− 1, (1.15.5)

is called an almost contact manifold (Sasaki, 1965) and the structure (φ, η, ξ) is called

an almost contact structure (Hatakeyama et al. (1963); Sasaki and Hatakeyama (1960,

1961)).

An almost contact manifold Mn on which a Riemannian metric tensor g satisfying

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (1.15.6)

and

g(X, ξ) = η(X), (1.15.7)

is called an almost contact metric manifold and the structure (φ, ξ, η, g) is called an almost

contact metric structure (Sasaki, 1960).
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The fundamental 2-form ′F of an almost contact metric manifold Mn is defined by

′F (X,Y ) = g(φX, Y ). (1.15.8)

From the equations (1.15.6) and (1.15.8), we have

′F (X, Y ) = − ′F (Y,X). (1.15.9)

If in an almost contact metric manifold

2 ′F (X,Y ) = (∇Xη)(Y )− (∇Y η)(X). (1.15.10)

then Mn is called an almost Sasakian manifold.

1.16 Lorentzian Paracontact Metric Manifold

Let Mn be an n-dimensional differentiable manifold endowed with a tensor field φ of the

type (1,1), a vector field ξ, a 1-form η and a Lorentzian metric g satisfying

φ2X = X + η(X)ξ, (1.16.1)

η(ξ) = −1, (1.16.2)

g(φX,φY ) = g(X, Y ) + η(X)η(Y ), (1.16.3)

g(X, ξ) = η(X), (1.16.4)

for arbitrary vector field X and Y , then Mn is called a Lorentzian paracontact (LP -

Contact) manifold and the structure (φ, ξ, η, g) is called the Lorentzian paracontact struc-

ture (Matsumoto, 1989).

LetMn be a Lorentzian paracontact manifold with stucture (φ, ξ, η, g). Then it satisfy

(a) φ(ξ) = 0, (b) η(φX) = 0, (c) rank(φ) = n− 1. (1.16.5)
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A Lorentzian paracontact manifold is called a Lorentzian Para-Sasakian manifold if (Mat-

sumoto and Mihai, 1988)

DXξ = φX, (1.16.6)

(DXφ)(Y ) = g(X,Y )ξ + η(Y )X + 2 η(X)η(Y )ξ, (1.16.7)

where D denotes the covariant differentiation with respect to g.

Let us put ′F (X,Y ) = g(φX, Y ). Then the tensor field ′F is symmetric.

i.e. ′F (X, Y ) = ′F (Y,X), (1.16.8)

and

′F (X,Y ) = (DXη)(Y ). (1.16.9)

Also, in an LP -Sasakian manifold the following relation holds

′R(X, Y, Z, ξ) = g(Y, Z)η(X)− g(X,Z)η(Y ), (1.16.10)

and

S(X, ξ) = (n− 1)η(X). (1.16.11)

A differentiable manifoldM of dimension n is said to be a Lorentzian α-Sasakian manifold

if it admits a (1,1)-tensor field φ, a vector field ξ, a one form η, and Lorentzian metric g

satisfy (Prakasha and Yildiz, 2010)

η(ξ) = −1, φξ = 0, η ◦ φ = 0, (1.16.12)

φ2 = I + η ⊗ ξ. (1.16.13)

g(φX,φY ) = g(X, Y ) + η(X)η(Y ), (1.16.14)

g(X, ξ) = η(X). (1.16.15)
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Lorentzian α-Sasakian manifold Mn satisfying the following:

(∇Xη)(Y ) = α g(φX, Y ), (1.16.16)

∇Xξ = α φX, (1.16.17)

where ∇ denotes the operator of covariant differentiation with respect to the Lorentzian

metric g and α is constant.

On Lorentzian α-Sasakian manifolds Mn the following relations hold:

η(R(X,Y )Z) = α2 [g(Y, Z)η(X)− g(X,Z)η(Y )], (1.16.18)

R(ξ,X)Y = α2 [g(X, Y )ξ − η(Y )X], (1.16.19)

R(X,Y )ξ = α2 [η(Y )X − η(X)Y ], (1.16.20)

R(ξ,X)ξ = α2 [η(X)ξ +X], (1.16.21)

S(X, ξ) = (n− 1) α2 η(X), (1.16.22)

Qξ = (n− 1) α2ξ, (1.16.23)

S(φX,φY ) = S(X,Y ) + (n− 1)α2 η(X)η(Y ), (1.16.24)

for all vector fields X, Y , Z where S is the Ricci tensor and Q is the Ricci operator given

by

S(X, Y ) = g(QX, Y ).

An Lorentzian α-Sasakian manifolds Mn is said to be Einstein if its Ricci tensor S is of

the form

S(X, Y ) = λ g(X, Y ), (1.16.25)
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for any vector fields X and Y , where λ is a function on Mn.

1.17 Almost Paracontact Metric Manifold

Let Mn be an n-dimensional C∞-manifold. If there exist in Mn a tensor field φ of the

type (1,1), consisting of a vector field ξ and 1-form η in Mn satisfying

φ2X = X − η(X)ξ, (1.17.1)

φ(ξ) = 0, η(ξ) = 1, (1.17.2)

then Mn is called an almost paracontact manifold.

Let g the Riemannian metric satisfying

η(X) = g(X, ξ), η(φX) = 0, (1.17.3)

g(φX,φY ) = g(X,Y )− η(X)η(Y ), (1.17.4)

then the structure (φ, ξ, η, g) satisfying (1.17.1) to (1.17.4) is called an almost paracontact

Riemannian structure. The manifold with such structure is called an almost paracontact

Riemannian manifold (Sato and Matsumoto, 1976).

If we define ′F (X,Y ) = g(φX, Y ), then the following relations are satisfied

′F (X, Y ) = ′F (Y,X), (1.17.5)

and

′F (φX,φY ) = ′F (X, Y ). (1.17.6)

If in Mn the relation

(∇Xη)(Y )− (∇Y η)(X) = 0, (1.17.7)

dη(X, Y ) = 0, i.e. η is closed. (1.17.8)
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(∇X
′F )(Y, Z) = −g(X,Z)η(Y )− g(X, Y )η(Z)

+ 2 η(X)η(Y )η(Z), (1.17.9)

(∇Xη)(Y ) + (∇Xη)(X) = 2 ′F (X, Y ), (1.17.10)

and

∇Xξ = φX, (1.17.11)

hold good then (Mn, g) is called Para-Sasakian manifold or briefly P -Sasakian manifold.

1.18 Recurrent Manifold

Let Mn be an n-dimensional smooth Riemannian manifold and Tp(M
n) denotes the set

of differentiable vector fields on Mn. Let X, Y ∈ Tp(M
n); ∇XY denotes the covariant

derivative of Y with respect to X and R(X, Y, Z) be the Riemannian curvature tensor of

type (1,3).

A Riemannian manifold Mn is said be recurrent (Kobayashi and Nomizu, 1963) if

(∇UR)(X, Y, Z) = α(U)R(X,Y, Z), (1.18.1)

where X, Y ∈ Tp(M
n) and α is a non-zero 1-form known as recurrence parameter. If the

1-form α is zero in (1.18.1), then the manifold reduces to symmetric manifold (Singh and

Khan, 1999).

A Riemannian manifold (Mn, g) is said to be semi-symmetric if it satisfies the relation

(Szabo, 1982)

(R(X,Y ).R)(U, V )W = 0, (1.18.2)

where R(X, Y ) is considered as the tensor algebra at each point of the manifold i.e.

R(X, Y ) is curvature transformation or curvature operator.

A Riemannian manifold (Mn, g) is said to be Ricci-recurrent if it satisfies the relation

(∇XS)(Y, Z) = A(X)S(Y, Z) (1.18.3)

for all X, Y, Z ∈ Tp(M
n), where ∇ denotes the Riemannian connection and A is a 1-form

on Mn. If the 1-form A vanishes identically on Mn, then a Ricci-recurrent manifold
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becomes a Ricci-symmetric manifold.

A Riemannian manifold (Mn, g) is called a generalized recurrent manifold (De and

Guha, 1991) if its curvature tensor R satisfies the condition:

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z]. (1.18.4)

where A and B are two 1-forms, B is non-zero and these are defined by

A(X) = g(X,P1), B(X) = g(X,P2), (1.18.5)

P1 and P2 are vector fields associated with 1-forms A and B, respectively.

A Riemannian manifold (Mn, g) is called a semi-generalized recurrent manifold (Prasad,

2000) if its curvature tensor R satisfies the condition:

(∇XR)(Y, Z)W = A(X)R(Y, Z)W +B(X)g(Z,W )Y, (1.18.6)

where A and B are two 1-forms, B is non-zero and these are given by the equation (1.18.5).

A Riemannian manifold (Mn, g) is said to be φ-recurrent manifold if there exists a

non zero 1-form A such that

φ2((∇XR)(Y, Z)W ) = A(X)R(Y, Z)W, (1.18.7)

for arbitrary vector fields X,Y, Z,W .

A Riemannian manifold (Mn, g) is called generalized φ-recurrent if its curvature tensor

R satisfies the condition

φ2((∇WR)(Y, Z)U) = A(W )R(Y, Z)U

+ B(W )[g(Z,U)Y − g(Y, U)Z] (1.18.8)

where A and B are two 1-forms, B is non-zero and these are defined by earlier.

1.19 Submanifold

let Mn be a C∞-Riemannian manifold. A C∞ manifold Mm(m ≤ n) is called a subman-

ifold of Mn, if for each point in Mn, there is a coordinate neighborhood U of Mn with

coordinate function {yα : α = 1, 2, ..., n} such that for the set

U = {p ∈ U : ym+1 = ...... = yn = 0 at p}
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is a coordinate neighborhood of P in Mm with coordinate functions

xi = yα|U, i = 1, 2, ...,m

Let

b :Mm −→Mn

be the inclusion map such that p ∈Mm ⇒ bp ∈Mn.

The map b induces a linear transformation B called the Jaccobian map such that

b : Tm
p −→ T n

p

where Tm
P is the tangent space to Mm at point p and T n

p is the tangent space to Mn at

bp, such that

X ∈Mn at p⇒ BX ∈Mn at bp

. Let G be the metric tensor at Mn and g the induced metric tensor of Mm at bp relative

to the metric tensor G of Mn at bp. Let X,Y be arbitrary vector fields to Mn. Then

g(X,Y ) = (G(BX,BY )) ◦ b. (1.19.1)

A C∞ vector field N of Mn satisfying

(a) G(N,BX) ◦ b = 0

(b) G(N,N) ◦ b = 1, (1.19.2)

for arbitrary vector field X is called field of normal.

Let N
x
, x = m + 1, ..., n. be a system of C∞-orthogonal unit normal vector fields to

Mm. Then

(a) (G(N
x
, BX)) ◦ b = 0

(b) G(N
x
, N

y
) = δxy. (1.19.3)
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Let D be the Riemannian connection in Mn and E be the induced connection in Mm.

Then the Gauss and the Weingarten equation can be written as

(a) DBXBY = BEXY + ′H
x
(X, Y )N

y
(Gauss Equation)

(b) DBXN
x
= −BH

x
X +

y

I
x
(X)N

y
(Weingarten Equation) (1.19.4)

where

(a) g(H
x
, Y ) = ′H

x
(X,Y ) = ′H

x
(Y,X)

(b)
y

I
x
+

x

I
y
= 0. (1.19.5)

′H is called second fundamental magnitudes in Mm.

1.20 Almost r-paracontact Riemannian manifold

Let Mn be an n-dimensional Riemannian manifold with a positive definite metric g. If

there exist a tensor field ψ of type (1, 1), r- vector fields ξ1, ξ2, ...ξr (n > r), r 1-forms

η1, η2, ...., ηr such that

(i) ηα(ξβ) = δαβ , α, βϵ(r) = 1, 2, .., r,

(ii) ψ2(X) = X − ηα(X)ξα,

(iii) ηα(X) = g(X, ξα), α ∈ (r),

(iv) g(ψX,ψY ) = g(X,Y )−
∑
α

ηα(X)ηα(Y ),

where X and Y are vector fields on Mn and aαbα
def
=

∑
α a

αbα, then the structure
∑

=

(ψ, ξα, η
α, g)α∈(r) is said to be an almost r-paracontact structure on Mn and Mn is an

almost r-paracontact Riemannian manifold (Ahmad et al., 2011).

1.21 Review of Literature

Friedman and Schouten (1924) introduced the idea of semi-symmetric linear connection

on a differentiable manifold. Hayden (1932) defined a semi-symmetric metric connec-

tion on a Riemannian manifold and this was further developed by Yano (1970). Agashe

and Chafle (1992) introduced a semi symmetric non-metric connection on a Riemannian
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manifold and this was further studied by Prasad (1994), Ojha and Prasad (1994), Sen-

gupta et al. (2000), Pandey and Ojha (2001), Tripathi and Kakar (2001a, b), Prasad and

Kumar (2002), Chaturvedi and Pandey (2008), Murathan and Özgür (2008), Chaubey

(2011), Singh (2014) and many others. Sharfuddin and Hussain (1976) defined a semi-

symmetric metric connection in an almost contact manifold. De and Sengupta (2001)

investigated the curvature tensor of an almost contact metric manifold that admit a type

of semi-symmetric metric connection and studied the curvature properties of conformal

curvature tensor and projective curvature tensor. It is also studied by many geometers like

as Hatakeyama (1963), Hatakeyama et al. (1963), Sato (1976), Sasaki and Hatakeyama

(1961), Oubina (1985) and Tripathi et al. (2008) the structure of some classes of contact

metric manifolds. Golab (1975) introduced and studied quarter symmetric connection

in a Riemannian manifold with an affine connection which generalizes the idea of semi-

symmetric metric connection. Mishra and Pandey (1980) studied quarter symmetric

metric connection on a Riemannian, Kahlerian and Sasakian manifolds. It is also studied

by many geometers like as Yano and Imai (1982), Rastogi (1987, 2012), Mukhopadhya

and Barua (1991), Biswas and De (1997), Pandey and Ojha (2001), Nivas and Verma

(2005), Mondal and De (2009), De and De (2011), Singh (2013) and many others.

Matsumoto (1989) introduced the notion of Lorentzian Para Sasakian manifold. Mihai

and Rosca (1992) already introduced the same notion independently and they obtained

several results on this manifold. Lorentzian Para-Sasakian manifolds have also been stud-

ied by Matsumoto and Mihai (1988), Mihai et al. (1999a, b), De et al. (1999), Shaikh and

De (2000), De and Sengupta (2002), Özgür (2003), Shaikh and Biswas (2004), Venkatesha

and Bagewadi (2008), Dhruwa et al. (2009), Perktas and Tripathi (2010), Taleshian and

Asghari (2010), Venkatesha et al. (2011), Prakash et al. (2011), Taleshian and Asghari

(2011) and Singh (2013, 2015) obtained some results on Lorentzian Para-Sasakian man-

ifolds.On the other hand an LP -Sasakian manifold and obtained some properties of this

connection.

Pokhariyal and Mishra (1971) have introduced new curvature tensor calledM -projective

curvature tensor in a Riemannian manifold and studied its properties. Ojha (1975) stud-

ied a note on the M -projective curvature tensor. Pokhariyal (1982) has studied some

properties of this curvature tensor in a Sasakian manifold. Ojha (1986), Chaubey (2012),

Singh (2009, 2012, 2016), Devi and Singh (2015) and many others geometers have studied

this curvature tensor.

The idea of recurrent manifolds was introduced by Walker (1950). On the other hand

De and Guha (1991) introduced generalized recurrent manifold with the non zero 1-form

A and another non-zero associated 1-form B. Such a manifold has been denoted by GKn.
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If the associated 1-form B becomes zero, then the manifold GKn reduces to a recurrent

manifold introduced by Ruse (1951) which is denoted by Kn. Prasad (2000) introduced

the idea of semi generalized recurrent manifold. Yildiz and Murathan (2005) studied

Lorentzian α-Sasakian manifolds and proved that conformally flat and quasi conformally

flat Lorentzian α-Sasakian manifolds are locally isometric with a sphere. Lorentzian α-

Sasakian manifolds have been studied by De and Tripathi (2003), Prakasha et al. (2008),

Yildiz and Turan (2009), Yildiz et al. (2009), Prakasha and Yildiz (2010), Lokesh, et

al. (2012), Teleshian and Asghari (2012), Yadav and Suthar (2012), Bhattacharya and

Patra (2014), Berman (2014), and many others. Adati and Matsumoto (1977) defined

P -Sasakian and Special Para Sasakian manifold, which are special classes of an almost

para-contact manifold introduced by Sato (1976). Para Sasakian manifolds have been

studied by Matsumoto (1977), Adati and Miyazawa (1979), Matsumoto et.al. (1986), De

and Pathak (1994), Özgür and Tripathi (2007), De and Sarkar (2009), Shukla and Shukla

(2010), Berman (2013), Singh (2014) and many others.

Takahashi (1977) introduced the notion of φ-symmetric Sasakian manifold and ob-

tained some interesting properties. Many authors like Shaikh and De (2000), De and

Pathak (2004) and Venkatesha and Bagewadi (2006) have extended this notion to 3-

dimensional LP-Sasakian manifold, 3-dimensional Kenmatsu manifold and 3-dimensional

trans-Sasakian manifolds respectively. De and Kamilya (1994) studied the generalized

concircular recurrent manifolds. and De et al. (1995) studied the generalized Ricci-

recurrent manifolds. Generalizing the notion of recurrency the author Khan (2004) intro-

duced the notion of generalized recurrent Sasakian manifold. Prasad (2000) introduced

the notion of semi-generalized recurrent manifold and obtained some interesting results.

Jaiswal and Ojha (2009) studied generalized φ-recurrent and generalized concircular φ-

recurrent LP-Sasakian manifolds. Sreenivasa et al. (2009) define φ-recurrent Lorentzian

β-Kenmatsu manifold and Prove that a concircular φ-recurrent Lorentzian β-Kenmatsu

manifold is an Einstein manifold. Singh (2012) introduced the M -projective recurrent

Riemannian manifold with interesting results. Debnath and Bhattacharya (2013) studied

the generalized φ-recurrent trans-Sasakian manifolds.

Bucki (1985) defined an almost r-paracontact structure and studied some properties

of invariant hypersurfaces of an almost r-paracontact structure. Bucki (1998) studied

product submanifolds of almost r-paracontact Riemannian manifolds of P -Sasakian type.

Ahmad et al. (2009, 2010) studied the properties of hypersurfaces and submanifold on

r-paracontact Riemannian manifold with connection. Al and Nivas (2000) studied on

submanifolds of a manifold with quarter-symmetric connection. Yano and Kon (1977)

studied anti invariant submanifold of Sasakian space forms.
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The present thesis is devoted to investigate the properties of Quarter symmetric non-

metric connection on LP-Sasakian manifolds. Some properties of quasi conformal curva-

ture tensor and M -projective curvature tensor on LP-Sasakian manifolds. The proper-

ties of concircular curvature tensor and M -projective curvature tensor are discussed in

a semi-generalized recurrent manifolds. Certain properties of the almost r-paracontact

submanifold are also discussed.
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Chapter 2

Quarter Symmetric Non-Metric

Connection on An LP -Sasakian

Manifold

2.1 Introduction

In an n-dimensional LP-Sasakian manifold with structure (φ, ξ, η, g) defined in (1.16.1-

1.16.11) also hold the following relations (Matsumoto, 1989; Mihai and Rosca, 1972)

R(X, Y )Z = g(Y, Z)X − g(X,Z)Y, (2.1.1)

R(X, Y )ξ = η(Y )X − η(X)Y, (2.1.2)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (2.1.3)

η(R(X, Y, Z)) = g(Y, Z)η(X)− g(X,Z)η(Y ), (2.1.4)

S(φX,φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (2.1.5)

(DXη)(Y ) = g(X,φY ) = g(φX, Y ), (2.1.6)
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for any vector fields X,Y, Z, where R is the curvature tensor, S is the Ricci tensor.

Here we consider a quarter symmetric non-metric connection ∇ on LP -Sasakian manifold

∇XY = DXY − η(X)φY (2.1.7)

given by (Mishra and Pandey, 1980) which satisfies

(∇Xg)(Y, Z) = 2 η(X) g(φY, Z). (2.1.8)

The curvature tensor with respect to a quarter symmetric non-metric connection ∇
and the curvature tensor R with respect to Riemannian connection D in an LP -Sasakian

manifold are related as

R(X, Y )Z = R(X,Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X. (2.1.9)

Contracting (2.1.9) with respect to X, we get

S(Y, Z) = S(Y, Z)− g(Y, Z)− n η(Y )η(Z), (2.1.10)

where S is the Ricci tensor of Mn with respect to quarter symmetric non-metric connec-

tion.

This gives

QY = Q Y − Y − n η(Y )ξ. (2.1.11)

Contracting the above equation, we get

r = r, (2.1.12)

where r and r are the scalar curvatures of the connection ∇ and D respectively.
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2.2 LocallyW ∗−φ− symmetric and ξ−W ∗−projectively

flat LP -Sasakian manifolds with respect to the

quarter symmetric non-metric connection

Definition 2.2.1 An n-dimensional LP -Sasakian manifoldMn is said to be locally W ∗−
φ-symmetric if

φ2
(
(DUW

∗)(X,Y )Z
)
= 0, (2.2.1)

for all vector fields X, Y, Z, U orthogonal to ξ. This notion was introduced by (Takahashi,

1977), for a Sasakian manifold. The W ∗ is M-projective curvature tensor (Pokhariyal

and Mishra, 1970) given as

W ∗(X,Y )Z = R(X, Y )Z − 1

2(n− 1)

{
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (2.2.2)

Analogous to the definition of locally W ∗ − φ-symmetric LP -Sasakian manifold with re-

spect to the Riemannian connection, we define a locally W ∗ − φ-symmetric LP -Sasakian

manifolds with respect to the quarter symmetric non-metric connection as

φ2
(
(∇UW ∗)(X,Y )Z

)
= 0, (2.2.3)

for all vector fields X,Y, Z, U orthogonal to ξ, where W ∗ is the M-projective curvature

tensor with respect to a quarter symmetric non-metric connection given by

W ∗(X,Y )Z = R(X, Y )Z − 1

2(n− 1)

{
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (2.2.4)

Definition 2.2.2 An n-dimensional LP -Sasakian manifold Mn is said to be ξ − W ∗-

projectively flat if

W ∗(X,Y )ξ = 0,

for all vector fields X, Y on Mn.

Analogous to the definition of ξ−W ∗−projectively flat LP -Sasakian manifold with respect
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to quarter symmetric non-metric connection by

W ∗(X,Y )ξ = 0,

for all vector fields X, Y on Mn.

Theorem 2.2.1 An n-dimensional LP -Sasakian manifoldMn is locallyW ∗−φ-symmetric

with respect to the quarter symmetric non-metric connection ∇ if and only if it is so with

respect to the Riemannian connection D.

Proof: From (2.1.7), we have

(∇UW ∗)(X, Y )Z = (DUW ∗)(X, Y )Z − η(U)φ(W ∗(X, Y )Z). (2.2.5)

Now, differentiating (2.2.4) covariantly with respect to U , we get

(DUW ∗)(X,Y )Z = (DUR)(X,Y )Z

− 1

2(n− 1)

{
(DUS)(Y, Z)X − (DUS)(X,Z)Y

+ g(Y, Z)(DUQ)X − g(X,Z)(DUQ)Y
}
.

Making use of (2.1.9), (2.1.10), (2.1.11) and (2.2.2) in the above equation, we obtain

(DUW ∗)(X,Y )Z = (DUW
∗)(X, Y )Z

+
3n− 2

2(n− 1)

[
{g(Y, Z)η(X)− g(X,Z)η(Y )}φ(U)

+ {g(Y, Z)g(φX,U)− g(X,Z)g(φY, U)}ξ

− {η(X)Y − η(Y )X}g(φZ,U)
]

+
n− 2

2(n− 1)

{
g(φX,U)Y − g(φY, U)X

}
η(Z). (2.2.6)

Now, using equation (2.2.6) in equation (2.2.5), we get

(∇UW ∗)(X,Y )Z = (DUW
∗)(X, Y )Z

+
3n− 2

2(n− 1)

[
{g(Y, Z)η(X)− g(X,Z)η(Y )}φ(U)

+ {g(Y, Z)g(φX,U)− g(X,Z)g(φY, U)}ξ
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− {η(X)Y − η(Y )X}g(φZ,U)
]

+
n− 2

2(n− 1)

{
g(φX,U)Y − g(φY, U)X

}
η(Z)

− η(U)φ(W ∗(X, Y )Z). (2.2.7)

Applying φ2 on both sides of the above equation and using the equation (1.16.1) and

(1.16.5), we get

φ2((∇UW ∗)(X, Y )Z) = φ2((DUW
∗)(X, Y )Z)

+
3n− 2

2(n− 1)

[
{g(Y, Z)η(X)− g(X,Z)η(Y )}φ2(φ(U))

+ {g(Y, Z)g(φX,U)− g(X,Z)g(φY, U)}φ2(ξ)

− {η(X)(φ2Y )− η(Y )(φ2X)}g(φZ,U)
]

+
n− 2

2(n− 1)

{
g(φX,U)(φ2Y )− g(φY, U)(φ2X)

}
η(Z)

− η(U)φ3(W ∗(X,Y )Z). (2.2.8)

Consider X, Y, Z and U are orthogonal to ξ, then equation (2.2.8) yields

φ2((∇UW ∗)(X, Y )Z) = φ2((DUW
∗)(X, Y )Z). (2.2.9)

This completes the proof.

Theorem 2.2.2 An n-dimensional LP -Sasakian manifold is ξ−W ∗-projectively flat with

respect to the quarter symmetric non-metric connection if and only if the manifold is

ξ−W ∗-projectively flat with respect to the Riemannian connection provided that the vector

fields X and Y are orthogonal to ξ.

Proof: Using (2.1.9) in (2.2.4), we get

W ∗(X, Y )Z = R(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X

− 1

2(n− 1)

{
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (2.2.10)
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In consequence of (2.1.10), (2.1.11) and (2.2.2) the above equation becomes

W ∗(X, Y )Z = W ∗(X, Y )Z

+
3n− 2

2(n− 1)

[
{g(Y, Z)η(X)− g(X,Z)η(Y )}ξ

+ {η(X)Y − η(Y )X} η(Z)
]

− 1

n− 1

{
g(X,Z)Y − g(Y, Z)X

}
. (2.2.11)

Putting Z = ξ in (2.2.11) and using (1.16.2) and (1.16.4), it follows that

W ∗(X, Y )ξ =W ∗(X, Y )ξ − 3 n

2(n− 1)

{
η(Y )X − η(X)Y

}
. (2.2.12)

Suppose X and Y are orthogonal to ξ, then from (2.2.12), we obtain

W ∗(X, Y )ξ =W ∗(X, Y )ξ. (2.2.13)

Hence, prove the theorem.

2.3 Locally W2−φ-symmetric and ξ−W2-projectively

flat LP -Sasakian manifold with respect to the

quarter symmetric non-metric connection

Definition 2.3.1 An n-dimensional LP -Sasakian manifold Mn is said to be locally W2−
φ-symmetric if

φ2((DUW2)(X, Y )Z) = 0, (2.3.1)

for all vector fields X,Y, Z and U orthogonal to ξ, where W2-projective curvature tensor

is given by (Pokhariyal and Mishra, 1971)

W2(X, Y )Z = R(X, Y )Z

− 1

n− 1

{
g(Y, Z)QX − g(X,Z)QY

}
. (2.3.2)

Analogous to the definition of locally φ-symmetric LP -Sasakian manifolds with respect to

the Riemannian connection, we define a locally W2−φ-symmetric LP -Sasakian manifolds
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with respect to the quarter symmetric non-metric connection by

φ2((∇UW2)(X,Y )Z) = 0, (2.3.3)

for all vector fields X, Y, Z and U orthogonal to ξ, where the W2-curvature tensor with

respect to the quarter symmetric non-metric connection given as

W2(X, Y )Z = R(X, Y )Z

− 1

n− 1

{
g(Y, Z)QX − g(X,Z)QY

}
. (2.3.4)

Definition 2.3.2 An n-dimensional LP -Sasakian manifold Mn is said to be ξ − W ∗-

projectively flat if

W2(X, Y )ξ = 0,

for all vector fields X, Y on Mn.

Analogous to the definition of ξ−W ∗−projectively flat LP -Sasakian manifold with respect

to quarter symmetric non-metric connection by

W2(X, Y )ξ = 0,

for all vector fields X, Y on Mn.

Theorem 2.3.1 An n-dimensional LP -Sasakian manifoldMn is locallyW2−φ-symmetric

with respect to the quarter symmetric non-metric connection ∇ if and only if it is locally

W2 − φ-symmetric with respect to the Riemannian connection D.

Proof: Using (2.1.7), we can write

(∇UW2(X, Y )Z) = (DUW2)(X, Y )Z − η(U)φ(W2(X, Y )Z). (2.3.5)

Now, differentiating (2.3.4) covariantly with respect to U , we obtain

(DUW2)(X, Y )Z = (DUR)(X, Y )Z − 1

n− 1

{
g(Y, Z)(DUQ)(X)

− g(X,Z)(DUQ)(Y )
}
. (2.3.6)
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In view of (2.1.9) and (2.1.11) the equation (2.3.6), takes the form

(DUW2)(X,Y )Z = (DUR)(X,Y )Z

− {η(X)Y − η(Y )X}g(φZ,U)

+ {g(φX,U)g(Y, Z)− g(φY, U)g(X,Z)}ξ

+ {η(X)g(Y, Z)− η(Y )g(X,Z)}φU

+ {g(φX,U)Y − g(φY, U)X}η(Z)

− 1

n− 1

[
{g(Y, Z)(DUQ)X − g(X,Z)(DUQ)Y }

− n g(Y, Z){g(φX,U)ξ + η(X)φU}

+ n g(X,Z){g(φY, U)ξ + η(Y )φU}
]
ξ. (2.3.7)

Taking account of (2.3.2) and (2.3.5) the above equation can be written as

(∇UW2)(X, Y )Z = (DUW2)(X, Y )Z

+ {g(φX,U)g(Y, Z)− g(φY, U)g(X,Z)}ξ

+ {η(X)g(Y, Z)− η(Y )g(X,Z)}φ(U)

+ {g(φX,U)Y − g(φY, U)X}η(Z)

− 1

n− 1

[
n g(X,Z){g(φY, U)ξ + η(Y )φU}

− n g(Y, Z){g(φX,U)ξ + η(X)φU}
]
ξ

− η(U)φ(W2(X, Y )Z). (2.3.8)

By operating φ2 both sides and using (1.16.1), (1.16.5) in above equation, we obtain

φ2((∇UW2)(X, Y )Z) = φ2((DUW2)(X, Y )Z)

− {η(X)g(Y, Z)− η(Y )g(X,Z)}φ2(φU)

+ {g(φX,U)(φ2Y )− g(φY, U)(φ2X)}η(Z)

− η(U)φ3(W2(X, Y )Z). (2.3.9)

If we consider X,Y, Z and U are orthogonal to ξ, then equation (2.3.9) reduces to

φ2((∇UW2)(X,Y )Z) = φ2((DUW2)(X, Y )Z). (2.3.10)

This completes the proof.

Theorem 2.3.2 An n-dimensional LP -Ssasakian manifold is ξ − W2-projectively flat
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with respect to the quarter symmetric non-metric connection if and only if the manifold

is ξ − W2-projectively flat with respect to the Riemannian connection provided that the

vector fields X and Y are orthogonal to ξ.

Proof: Using (2.1.9) in (2.3.4), we get

W2(X,Y )Z = R(X,Y )Z + {g(Y, Z)η(X)− g(X,Z)η(Y )}ξ

− 1

n− 1

{
g(Y, Z)QX − g(X,Z)QY

}
+ {η(X)Y − η(Y )X}η(Z). (2.3.11)

Again using (2.1.11) and (2.3.2) in (2.3.11), we get

W2(X, Y )Z = W2(X,Y )Z

+ {g(Y, Z)η(X)− g(X,Z)η(Y )}ξ

+ {η(X)Y − η(Y )X}η(Z)

− 1

n− 1

{
g(X,Z)Y − g(Y, Z)X

}
− n

n− 1

{
g(X,Z)η(Y )− g(Y, Z)η(X)

}
ξ. (2.3.12)

Putting Z = ξ in (2.3.12), and using (1.16.4), (1.16.2), it follows that

W2(X,Y )ξ =W2(X, Y )ξ − n

n− 1

{
η(X) Y − η(Y )X

}
. (2.3.13)

Suppose X and Y are orthogonal to ξ, then from (2.3.13), we obtain

W2(X, Y )ξ =W2(X,Y )ξ. (2.3.14)

This completes the proof.

2.4 Einstein manifold with respect to quarter sym-

metric non-metric connection ∇ in an LP -Sasakian

manifold

Theorem 2.4.1 In an LP -Sasakian manifolds Mn with quarter symmetric non-metric

connection if the relation

g(X, Y ) + n η(X) η(Y ) = 0.
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then the manifold is an Einstein manifold for the Riemannian connection if and only if

it is an Einstein manifold for the quarter symmetric non-metric connection ∇.

Proof: A Riemannian manifold Mn is called an Einstein manifold with respect to Rie-

mannian connection if

S(X, Y ) =
r

n
g(X,Y ). (2.4.1)

Analogous, to this definition, we define Einstein manifold with respect to quarter sym-

metric non-metric connection ∇ by

S(X, Y ) =
r

n
g(X,Y ). (2.4.2)

From (2.1.10), (2.1.12) and (2.4.2), we have

S(X, Y )− r

n
g(X,Y ) = S(X, Y )− r

n
g(X,Y )

− g(X, Y )− n η(X) η(Y ). (2.4.3)

If

g(X,Y ) + n η(X) η(Y ) = 0. (2.4.4)

Then from (2.4.3), we get

S(X,Y )− r

n
g(X, Y ) = S(X,Y )− r

n
g(X, Y ). (2.4.5)

This completes the proof.

2.5 Projective Ricci tensor with respect to quarter

symmetric non-metric connection ∇ in an LP -

Sasakian manifold

Theorem 2.5.1 If an LP -Sasakian manifold admits a skew symmetric with respect to

quarter symmetric non-metric connection ∇ then a necessary and sufficient condition for

the projective Ricci tensor of ∇ to be skew symmetric with respect to quarter symmetric
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non-metric is that the Ricci tensor of the Riemannian connection D is given by

S(X,Y ) =
(
1 +

r

n

)
g(X, Y ) + n η(X)η(Y ).

Proof: Projective Ricci tensor in a Riemannian manifold is defined by (Chaki and Saha,

1994) as follows

P ∗(X, Y ) =
n

n− 1

[
S(X,Y )− r

n
g(X, Y )

]
. (2.5.1)

Analogous to this definition, we define projective Ricci tensor with respect to quarter

symmetric non-metric connection ∇, given by

P
∗
(X, Y ) =

n

n− 1

[
S(X,Y )− r

n
g(X, Y )

]
. (2.5.2)

From (2.1.10), (2.1.12) and (2.5.2), we have

P
∗
(X, Y ) =

n

n− 1

[
S(X,Y )− g(X, Y )

− n η(X)η(Y )− r

n
g(X, Y )

]
. (2.5.3)

From (2.5.3) we have

P
∗
(Y,X) =

n

n− 1

[
S(Y,X)− g(Y,X)

− n η(Y ) η(X)− r

n
g(Y,X)

]
. (2.5.4)

From equation (2.5.3) and (2.5.4), we have

P
∗
(X,Y ) + P

∗
(Y,X) =

2n

n− 1

[
S(X,Y )− g(X, Y )

− n η(X) η(Y )− r

n
g(X, Y )

]
. (2.5.5)

If P
∗
(X, Y ) is skew symmetric with respect to quarter symmetric non-metric connection

∇ then the left hand side vanishes and we get

S(X,Y ) =
(
1 +

r

n

)
g(X,Y ) + n η(X)η(Y ). (2.5.6)

Moreover if S(X, Y ) is given by (2.5.6), then from (2.5.5), we get

P
∗
(X, Y ) + P

∗
(Y,X) = 0, (2.5.7)
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i.e. projective Ricci tensor of ∇ is skew symmetric with respect to quarter symmetric

non-metric connection ∇.

2.6 φ-Conharmonicaly flat LP -Sasakian manifolds with

respect to the quarter symmetric non-metric con-

nection

Definition 2.6.1 Conharmonic curvature tensor with respect to Riemannian connection

D is defined as

H(X, Y )Z = R(X, Y )Z − 1

n− 2

[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]

(2.6.1)

and the conharmonic curvature tensor with respect to quarter symmetric non-metric con-

nection ∇ is given as

H(X, Y )Z = R(X, Y )Z − 1

n− 2

[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]
. (2.6.2)

Definition 2.6.2 An n-dimensional LP -Sasakian manifold Mn satisfying the equation

φ2(H(φX,φY )φZ) = 0, (2.6.3)

is called φ-Conharmonicaly flat (Sharfuddin and Hussain, 1976).

Analogous to the above an n-dimensional LP -Sasakian manifolds is said to be φ-

conharmonicaly flat with respect to quarter-symmetric non-metric connection if it satisfies

φ2(H(φX,φY )φZ) = 0, (2.6.4)

where H is the conharmonic curvature tensor of the manifold with respect to quarter

symmetric non-metric connection.

Theorem 2.6.1 Let Mn be an n-dimensional φ-conharmonicaly flat LP -Sasakian man-

ifolds admitting a quarter-symmetric non-metric connection, then Mn is an η-Einstein

manifold with the scalar curvature r = −2(n−1)
n−2

with respect to the Riemannian connec-

tion.
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Proof: Suppose Mn is φ-conharmonicaly flat LP -Sasakian manifold with respect to

quarter symmetric non-metric connection. It is easy to see that φ2(H(φX,φY )φZ) = 0

holds if and only if

g(H(φX,φY )φZ, φW ) = 0, (2.6.5)

for any vector fields X,Y, Z,W . Taking account of above equation the equation (2.6.2)

assume the form as

g(R(φX,φY )φZ, φW ) =
1

(n− 2)

[
S(φY, φZ)g(φX,φW )

− S(φX,φZ)g(φY, φW ) + g(φY, φZ)S(φX,φW )

− g(φX,φZ)S(φY, φW )
]
. (2.6.6)

Let {e1, e2, ..., en−1, ξ} be a local orthonormal basis of the vector fields inMn. It is obvious

that {φe1, φe2, ..., φen−1, ξ} is also a local orthonormal basis.

Now, taking a frame field and contraction over X and W , we get

n−1∑
i=1

g(R(φei, φY )φZ, φei) =
n−1∑
i=1

1

(n− 2)

[
S(φY, φZ)g(φei, φei)

− S(φei, φZ)g(φY, φei) + g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei)
]
. (2.6.7)

Also, it can be seen that (Agashe and Chafle, 1992)

n−1∑
i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ) + g(φY, φZ), (2.6.8)

n−1∑
i=1

g(φei, φei) = n+ 1, (2.6.9)

n−1∑
i=1

S(φei, φei) = r + n− 1, (2.6.10)
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n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (2.6.11)

and

n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (2.6.12)

Hence by virtue of the equations (2.6.8) to (2.6.12) the equation (2.6.7) takes the form

S(φY, φZ) = (r + 1) g(φY, φZ). (2.6.13)

Now, using the equations (1.16.3) and (2.1.5) in above equation, we obtain

S(Y, Z) = (r + 1)g(Y, Z) + (r − n+ 2)η(Y )η(Z). (2.6.14)

Contracting the above equation, we obtain

r = −2(n− 1)

n− 2
,

which implies Mn is an η-Einstein manifold with the scalar curvature r = −2(n−1)
n−2

with

respect to the Riemannian connection.

Hence, proves the theorem.

2.7 ξ-Conharmonicaly flat and ξ-Concircularly flat

LP -Sasakian manifolds with respect to the quar-

ter symmetric non-metric connection

Theorem 2.7.1 An n-dimensional LP -Sasakian manifold is ξ-Conharmonicaly flat with

respect to the quarter symmetric non-metric connection if and only if the manifold is also

ξ-Conharmonicaly flat with respect to the Riemannian connection.

Proof: Using (2.6.2) and (2.1.9), we get

H(X, Y )Z = R(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X − 1

n− 2

[
g(Y, Z)QX

− g(X,Z)QY + S(Y, Z)X − S(X,Z)Y
]
. (2.7.1)
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Making use of (2.1.10), (2.1.11) and (2.6.1) in (2.7.1), we get

H(X,Y )Z = H(X, Y )Z − 2

n− 2

[
g(X,Z)Y − g(Y, Z)X

]
− 2

n− 2

[
η(X)η(Z)Y − η(Y )η(Z)X

]
+

2(n− 1)

n− 2

[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
ξ. (2.7.2)

Putting Z = ξ in (2.7.2) and using (1.16.2) and (1.16.4) it follows that

H(X, Y )ξ = H(X,Y )ξ.

This completes the proof.

Theorem 2.7.2 An n-dimensional LP -Sasakian manifold is ξ-Concircularly flat with

respect to the quarter symmetric non-metric connection if and only if the manifold is ξ-

Concircular flat with respect to the Riemannian connection provided that the vector fields

X and Y are orthogonal to ξ.

Proof: The Concircular curvature tensor is defined as

L(X, Y )Z = R(X, Y )Z − r

n(n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
, (2.7.3)

and the concircular curvature tensor with respect to quarter symmetric non-metric con-

nection is given as

L(X, Y )Z = R(X, Y )Z − r

n(n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
. (2.7.4)

In consequence of the equation (2.1.9) the equation (2.7.4) becomes

L(X, Y )Z = R(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ + η(X)η(Z)Y

− η(Y )η(Z)X − r

n(n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
. (2.7.5)

Again using (2.1.12) and (2.7.3) in the equation (2.7.5), we obtain

L(X, Y )Z = L(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X. (2.7.6)
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Putting Z = ξ in (2.7.6) and using (1.16.2) and (1.16.4) it follows that

L(X,Y )ξ = L(X,Y )ξ − [η(X)Y − η(Y )X]. (2.7.7)

Suppose X and Y are are orthogonal to ξ, then from (2.7.7), we obtain

L(X, Y )ξ = L(X,Y )ξ.

This completes the proof .

2.8 LP -Sasakian manifold admitting a quarter sym-

metric non-metric connection satisfying P ·S = 0,

R · S = 0 and L · S = 0

Theorem 2.8.1 An LP -Sasakian manifold admitting a quarter symmetric non-metric

connection satisfying P · S = 0 is an η-Einstein manifold.

Proof: The projective curvature tensor is defined as

P (X,Y )Z = R(X, Y )Z − 1

n− 1

[
S(Y, Z)X − S(X,Z)Y

]
, (2.8.1)

and the projective curvature tensor with respect to quarter symmetric non-metric con-

nection is given as

P (X,Y )Z = R(X, Y )Z − 1

n− 1

[
S(Y, Z)X − S(X,Z)Y

]
. (2.8.2)

Consider LP -Sasakian manifolds with respect to a quarter symmetric non-metric connec-

tion satisfying

(P (X, Y ) · S)(Z,U) = 0. (2.8.3)

Then, we have

S(P (X,Y )Z,U) + S(Z, P (X, Y )U) = 0. (2.8.4)

Putting X = ξ in the equation (2.8.4), we have

S(P (ξ, Y )Z,U) + S(Z, P (ξ, Y )U) = 0. (2.8.5)
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In view of the equation (2.8.2), we have

P (ξ, Y )Z = R(ξ, Y )Z − 1

n− 1

[
S(Y, Z)ξ − S(ξ, Z)Y

]
. (2.8.6)

By putting X = ξ in (2.1.9) and Y = ξ in (2.1.10), we get the following equations

R(ξ, Y )Z = R(ξ, Y )Z − 2η(Y )η(Z)ξ

− η(Z)Y − g(Y, Z)ξ, (2.8.7)

and

S(ξ, Z) = S(ξ, Z) + (n− 1)η(Z). (2.8.8)

By virtue of the equations (2.8.7), (2.8.8) and (2.1.10), the equation (2.8.6) yields

P (ξ, Y )Z =
1

n− 1

{
g(Y, Z)− S(Y, Z)

}
ξ

+
(n− 2

n− 1

)
η(Y )η(Z)ξ. (2.8.9)

Now using the equation (2.8.9) in the equation (2.8.5), we get

g(Y, Z)η(U) + g(Y, U)η(Z) + (n− 2)η(Y )η(Z)η(U)

− [S(Y, Z)η(U) + S(Y, U)η(Z)] = 0. (2.8.10)

Putting U = ξ in the above equation and using equations (1.16.2) and (1.16.11), we get

S(Y, Z) = g(Y, Z) + 2(n− 2) η(Y )η(Z). (2.8.11)

This show that LP -Sasakian manifolds is an η-Einstein manifold.

Theorem 2.8.2 An LP -Sasakian manifold admitting a quarter symmetric non-metric

connection satisfying R · S = 0 is an η-Einstein manifold.

Proof: Consider LP -Sasakian manifolds with respect to a quarter symmetric non-metric

connection satisfying

(R(X, Y ) · S)(Z,U) = 0. (2.8.12)
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Then we have

S(R(X,Y )Z,U) + S(Z,R(X, Y )U) = 0. (2.8.13)

Putting X = ξ in the equation (2.8.13), we have

S(R(ξ, Y )Z,U) + S(Z,R(ξ, Y )U) = 0. (2.8.14)

By virtue of the equations (1.16.2) and (1.16.4), the equation (2.1.9) yields

R(ξ, Y )Z = −2 {η(Y )η(Z)ξ + η(Z)Y }. (2.8.15)

By virtue of the equations (2.8.15) and (2.8.14), we get

3(n− 1) η(Y )η(Z)η(U) + S(Y, U)η(Z) + S(Y, Z)η(U)

−g(Y, U)η(Z)− g(Y, Z)η(U) = 0. (2.8.16)

Putting U = ξ in the above equation and using equations (1.16.2), (1.16.4) and (1.16.11),

we get

S(Y, Z) = g(Y, Z)− (2n− 1)η(Y )η(Z). (2.8.17)

This shows that LP -Sasakian manifolds is an η-Einstein manifold.

Theorem 2.8.3 An LP -Sasakian manifold admitting a quarter symmetric non-metric

connection satisfying L · S = 0 is an η-Einstein manifold.

Proof: Consider LP -Sasakian manifolds with respect to a quarter symmetric non-metric

connection satisfying

(L(X, Y ) · S)(Z,U) = 0. (2.8.18)

Then we have

S(L(X,Y )Z,U) + S(Z,L(X,Y )U) = 0. (2.8.19)

Putting X = ξ in the above equation (2.8.19), we have

S(L(ξ, Y )Z,U) + S(Z,L(ξ, Y )U) = 0. (2.8.20)
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In view of the equation (2.7.4), we have

L(ξ, Y )Z = R(ξ, Y )Z − r

n(n− 1)

[
g(Y, Z)ξ − g(ξ, Z)Y

]
. (2.8.21)

Using (2.1.9) and (2.1.12) in the equation (2.8.21), we obtain

L(ξ, Y )Z = −2 [η(Z)Y + η(Y )η(Z)ξ]

− r

n(n− 1)

[
g(Y, Z)ξ − η(Z)Y

]
. (2.8.22)

Now using the equation (2.8.22) in (2.8.20), we get

− 2η(Y )η(Z)S(ξ, U)− 2η(Z)S(Y, U)− r

n(n− 1)
g(Y, Z)S(ξ, U)

+
r

n(n− 1)
η(Z)S(Y, U)− 2 η(Y )η(U)S(Z, ξ)− 2η(U)S(Y, Z)

− r

n(n− 1)
g(Y, U)S(Z, ξ) +

r

n(n− 1)
η(U)S(Y, Z) = 0. (2.8.23)

Putting U = ξ in the above equation and using equations (1.16.2), (1.16.4) and (2.1.10),

we obtain

S(Y, Z) = [(2n− 1)r − 2n(n− 1)] g(Y, Z) + n [2n(n− 2) + 2 + r] η(Y )η(Z)

or

S(Y, Z) = a g(Y, Z) + b η(Y )η(Z),

where a =
[
r(2n− 1)− 2n(n− 1)

]
and b = n

[
2n(n− 2) + 2 + r

]
.

This shows that LP -Sasakian manifolds an η-Einstein manifold.

2.9 Skew symmetric condition of Ricci tensor of ∇ in

an LP -Sasakian manifold

Theorem 2.9.1 If an LP -Sasakian manifold admits a quarter symmetric non-metric

connection ∇ then a necessary and sufficient condition for the Ricci tensor of ∇ to be

skew symmetric is that the Ricci tensor of the Riemannian connection D is given by

S(Y,X) = g(Y,X) + n η(Y )η(X).
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Proof: Replacing Z by X in (2.1.10), we get

S(Y,X) = S(Y,X)− g(Y,X)− n η(Y )η(X). (2.9.1)

Interchanging X and Y in (2.9.1), we have

S(X, Y ) = S(X,Y )− g(X, Y )− n η(X)η(Y ). (2.9.2)

Adding the equations (2.9.1) and (2.9.2) we get

S(Y,X) + S(X,Y ) = 2 S(Y,X)− 2 g(Y,X)− 2 n η(Y )η(X). (2.9.3)

If S(Y,X) is skew symmetric then the left hand side of equation (2.9.3) vanishes, and we

get

S(Y,X) = g(Y,X) + n η(Y )η(X). (2.9.4)

Moreover of S(X,Y ) is given by equation (2.9.4), then from (2.9.3), we get

S(Y,X) + S(X, Y ) = 0,

This completes the proof of the theorem.

2.10 Curvature tensor of quarter symmetric non-metric

connection

Theorem 2.10.1 In an LP -Sasakian manifold if the curvature tensor with respect to

quarter symmetric non-metric connection ∇ is given by

R(X, Y )Z = g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ, (2.10.1)

then the manifold is projectively flat.

Proof: By the virtue of (2.1.9), (2.10.1) becomes

R(X, Y )Z = η(Y )η(Z)X − η(X)η(Z)Y. (2.10.2)
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Contracting (2.10.2) with respect to X we get

S(Y, Z) = (n− 1) η(Y )η(Z). (2.10.3)

From above equation we get

Q(Y ) = (n− 1)η(Y )ξ. (2.10.4)

Contracting the equation (2.10.4) with respect to Y and using (1.16.2), we get

r = −(n− 1). (2.10.5)

The Projective curvature tensor is given by

P (X,Y )Z = R(X, Y )Z − 1

n− 1

[
S(Y, Z)X − S(X,Z)Y

]
. (2.10.6)

Taking account of (2.10.2) and (2.10.3), the above equation yields

P (X,Y )Z = 0.

This completes the proof.

Theorem 2.10.2 For the associative curvature tensor of the quarter symmetric non-

metric connection, we have

(i) ′R(X,Y, Z, U) + ′R(Y,X,Z, U) = 0,

(ii) ′R(X,Y, Z, U) + ′R(X,Y, U, Z) = 2 [g(Y, Z)η(X)− g(X,Z)η(Y )]η(U)

+ 2 [g(Y, U)η(X)− g(X,U)η(Y )]η(Z),

(iii) ′R(X,Y, Z, U) + ′R(Y, Z,X, U) + ′R(Z,X, Y, U) = 0,

where ′R(X,Y, Z, U) = g(R(X, Y )Z,U).

Proof: (i) By the virtue of the equations (2.1.1) and (2.1.9). The associative curvature

tensor ′R with respect to quarter symmetric non-metric connection ∇ is given as

′R(X, Y, Z, U) = g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

+ g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U)

+ g(Y, U)η(X)η(Z)− g(X,U)η(Y )η(Z). (2.10.7)

46



Interchanging X and Y in (2.10.7) we obtain

′R(Y,X,Z, U) = g(X,Z)g(Y, U)− g(Y, Z)g(X,U)

+ g(X,Z)η(Y )η(U)− g(X,Z)η(X)η(U)

+ g(X,U)η(Y )η(Z)− g(Y, U)η(X)η(Z). (2.10.8)

Adding (2.10.7) and (2.10.8), we get

′R(X,Y, Z, U) + ′R(Y,X,Z, U) = 0.

(ii) Again, interchanging Z and U in the equation (2.10.7), we have

′R(X,Y, U, Z) = g(Y, U)g(X,Z)− g(X,U)g(Y, Z)

+ g(Y, U)η(X)η(Z)− g(X,U)η(Y )η(Z)

+ g(Y, Z)η(X)η(U)− g(X,Z)η(Y )η(U). (2.10.9)

Adding (2.10.7) and (2.10.9),we get

′R(X,Y, Z, U) + ′R(X, Y, U, Z) = 2 [g(Y, Z)η(X)− g(X,Z)η(Y )]η(U)

+ 2 [g(Y, U)η(X)− g(X,U)η(Y )]η(Z).

(iii) It is obvious that

′R(X, Y, Z, U) + ′R(Y, Z,X, U) + ′R(Z,X, Y, U) = 0.

This completes the proposition.

2.11 Some more results

Let D be Riemannian connection and ∇ be a quarter symmetric non-metric connection

in an LP -Sasakian manifold Mn. Let

∇XY = DXY +H(X,Y ), (2.11.1)

where H is a tensor of type (1,2). Using (2.1.7) and (2.11.1), we have

H(X,Y ) = −η(X)φY. (2.11.2)
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The torsion tensor T of Mn with respect to ∇ is defined as

T (X,Y ) = ∇XY −∇YX − [X, Y ]. (2.11.3)

By use of (2.11.1) and (2.11.2), we get

T (X, Y ) = η(Y )φX − η(X)φY. (2.11.4)

The nijenhuis tensor N is defined as

N(X, Y ) = (DφX
φ)(Y )− (DφY

φ)(X)

− φ(D
X
φ)(Y ) + φ(D

Y
φ)(X), (2.11.5)

and hence

′N(X,Y )Z = (DφX
Φ)(Y, Z)− (DφY

Φ)(X,Z)

− φ(D
X
Φ)(Y, Z) + φ(D

Y
Φ)(X,Z), (2.11.6)

where ′N(X,Y, Z) ⇒ g(N(X, Y )Z) and Φ(X,Y ) = g(φX, Y ).

Theorem 2.11.1 In an LP -Sasakian manifold with a quarter symmetric non-metric con-

nection, the following relations hold:

(i) ′H(X, Y, Z) = ′H(X,Z, Y ),

(ii) ′T (X, Y, Z) + ′T (Y, Z,X) + ′T (Z,X, Y ) = 0,

(iii) ′H(X, Y, Z)− ′H(Y,X,Z) = ′T (X,Y, Z) = 0,

(iv) ′T (X, Y, Z) + ′T (Y,X,Z) = 0,

(v) ′H(φX, Y, Z) + ′H(φY,X,Z) + ′H(φZ,X, Y ) = 0,

(vi) ′H(φ2X, Y, Z) + ′H(φX, Y, Z) = 0,

(vii) − ′H(X, Y, φ2Z) = ′H(φX,φY, Z)− ′H(X, Y, Z),

(viii) ′H(φX,φY, Z) + ′H(φX, Y, Z) = ′H(φ2X,Y, φ2Z),

(ix) ′H(φX, Y, φZ) = ′T (φX,φY, Z) = 0,

(x) ′H(φ2X, Y, φ2Z) = ′T (φ2X,φY, Z) = 0,

(xi) η(H(φX,φY ))− η(H(X, Y )) = 0,

(xii) ′T (φX, Y, Z) = ′T (φZ, Y,X), (2.11.7)
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where ′H(X, Y, Z) = g(H(X,Y )Z) and ′T (X, Y, Z) = g(T (X, Y )Z).

Proof: (i) By the virtue of the equation (2.11.2), we get

′H(X,Y, Z)− ′H(X,Z, Y ) = g(H(X, Y )Z) + g(H(X,Z)Y )

= g(−η(X)φY, Z) + g(−η(X)φZ, Y )

= −η(X)g(φY, Z) + η(X)g(φZ, Y )

= 0, (2.11.8)

From the equation (2.11.4), we have

′T (X, Y, Z) + ′T (Y, Z,X) + ′T (Z,X, Y )

= g(T (X,Y )Z) + g(T (Y, Z)X) + g(T (Z,X)Y )

= g[η(Y )φX − η(X)φY, Z] + g[η(Z)φY

− η(Y )φZ,X] + g[η(X)φZ − η(Z)φX, Y ]

= η(Y )g(φX,Z)− η(X)g(φY,Z) + η(Z)g(φY,X)

− η(Y )g(φZ,X) + η(X)g(φZ, Y )− η(Z)g(φX, Y ),

= η(Y )[g(φX,Z)− g(φZ,X)] + η(Z)[g(φY,X)

− g(φX, Y )] + η(X)[g(φZ, Y )− g(φY, Z)].

= 0. (2.11.9)

Similarly all the above relations follows by simple calculation and using the properties

previously obtained.

Theorem 2.11.2 Let ∇ be a quarter symmetric non-metric connection in an LP -Sasakian

manifold Mn with a Riemannian connection D. then

(∇XΦ)(Y, Z) = (DXφ)(Y, Z) + 2 η(X)g(φY, φZ). (2.11.10)

Proof: We know that

X · Φ(Y, Z) = (DXΦ)(Y, Z) + Φ(DXY, Z) + Φ(Y,DXZ), (2.11.11)

and

X · Φ(Y, Z) = (∇XΦ)(Y, Z) + Φ(∇XY, Z) + Φ(Y,∇XZ). (2.11.12)
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Subtracting (2.11.11) from (2.11.12) and using the equations (2.11.1) and (2.11.2), we

have

(DXΦ)(Y, Z)− (∇XΦ)(Y, Z) = Φ[(∇XY −DXY ), Z] + Φ[Y, (∇XZ −DXZ)]

= Φ[H(X, Y ), Z] + Φ[Y,H(X,Z)]

= g[H(X, Y ), φZ] + g[φY,H(X,Z)]

= g[−η(X)φY, φZ] + g[φY,−η(X)φZ]

= η(X)g(φY, φZ)− η(X)g(φY, φZ)

= −2 η(X)g(φY, φZ).

Hence we get (2.11.10).

Theorem 2.11.3 In an LP -Sasakian manifold with a quarter symmetric non-metric con-

nection ∇, the Nijenhuis tensor satisfies the following relations:

N(X,Y ) = (∇φXφ)(Y )− (∇φY φ)(X)− φ(∇XφY )

+ φ(∇Y φX) +∇XY −∇YX

+ η[∇XY −∇YX]. (2.11.13)

Proof: In consequence of (2.1.7) and the fact that

(DXφ)(Y ) = DXφY − φ(DXY ), (2.11.14)

the equation (2.11.5) assumes the form

N(X,Y ) = DφX
φY − φ(DφX

Y )−DφY
φX

+ φ(DφYX)− φ(DXφY ) + φ2(DXY )

+ φ(DY φX)− φ2(DYX).

Using (1.16.1), in the above equation we have

N(X,Y ) = (∇φXφ)(Y )− (∇φY φ)(X)− φ(∇XφY )

+ φ(∇Y φX) +∇XY −∇YX

+ η[∇XY −∇YX].

Hence we get (2.11.13).
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Chapter 3

Certain Curvature Conditions on

LP -Sasakian Manifolds

3.1 Introduction

In an n-dimensional LP-Sasakian manifold with structure (φ, ξ, η, g) defined in (1.16.1-

1.16.7) also hold the following relations (De et al., 1999)

R(X,Y, ξ) = η(Y )X − η(X)Y, (3.1.1)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (3.1.2)

R(ξ,X)ξ = X + η(X)ξ, (3.1.3)

g(R(X, Y )Z, ξ) = η(R(X,Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), (3.1.4)

S(φX,φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (3.1.5)

(∇Xη)(Y ) = g(X,φY ) = g(φX, Y ), (3.1.6)

S(X, ξ) = (n− 1) η(X), (3.1.7)
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for any vector fields X,Y, Z, where R is the curvature tensor, S is the Ricci tensor.

An LP -Sasakian manifold Mn is said to be Einstein manifold if its Ricci tensor S is of

the form

S(X,Y ) = kg(X, Y ), (3.1.8)

where k = n− 1.

An LP -Sasakian manifold Mn is said to be η-Einstein manifold if its Ricci tensor S is of

the form

S(X, Y ) = αg(X, Y ) + β η(X)η(Y ), (3.1.9)

for arbitrary vector fields X and Y , where α and β are smooth functions on Mn (Yano

and Kon 1984; Blair, 1976).

The notion of the quasi conformal curvature tensor C was introduced by (Yano and

Sawaki, 1968). They defined the quasi conformal curvature tensor by

C(X, Y )Z = aR(X,Y )Z + b[S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY ]

− r

n

( a

n− 1
+ 2b

)
[g(Y, Z)X − g(X,Z)Y ], (3.1.10)

where a and b are constants such that a, b ̸= 0, R is the Riemannian curvature tensor, S

is the Ricci tensor, Q is the Ricci operator and r is the scalar curvature of the manifold.

3.2 Quasi conformal curvature tensor of LP -Sasakian

manifolds

Theorem 3.2.1 If an LP -Sasakian manifold Mn satisfies the condition C(ξ,X) ·R = 0,

then

S(QX, Y ) =
1

b

[
{b(n− 1)− A}S(X,Y ) + A(n− 1)g(X, Y )

]
,

where,

A =
[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)]
.

52



Proof: Putting X = ξ in the equation (3.1.10) and using the equations (1.16.2), (1.16.4),

(3.1.2), (3.1.5) and (3.1.7), we get

C(ξ, Y )Z =
[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
g(Y, Z)ξ − η(Z)Y

]
+ b

[
S(Y, Z)ξ − η(Z)QY

]
. (3.2.1)

Again, putting Z = ξ in equation (3.1.10) and using (1.16.2), (3.1.1) and (3.1.7), we get

C(X,Y )ξ =
[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
η(Y )X − η(X)Y

]
+ b

[
η(Y )QX − η(X)QY

]
. (3.2.2)

Now, taking inner product of the equations (3.1.10), (3.2.1) and (3.2.2) with ξ and using

the equations (1.16.4), (1.16.2) and (3.1.7) we get

η(C(X, Y )Z) =

[
a+ b(n− 1)− r

n
(

a

n− 1
+ 2b)

] [
g(Y, Z)η(X)− g(X,Z)η(Y )

]
+ b

[
S(Y, Z)η(X)− S(X,Z)η(Y )

]
, (3.2.3)

η(C(ξ, Y )Z) = −η(C(Y, ξ)Z)

=
[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
− g(Y, Z)− η(Y )η(Z)

]
+ b

[
− S(Y, Z)− η(QY )η(Z)

]
, (3.2.4)

and

η(C(X, Y )ξ) = 0, (3.2.5)

respectively.

Let C(ξ,X) ·R(Y, Z)U = 0. Then we have

C(ξ,X)R(Y, Z)U −R(C(ξ,X)Y, Z)U

−R(Y,C(ξ,X)Z)U −R(Y, Z)C(ξ,X)U = 0, (3.2.6)
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which on using the equation (3.2.1), gives[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
g(X,R(Y, Z)U)ξ − η(R(Y, Z)U)X

−g(X, Y )R(ξ, Z)U + η(Y )R(X,Z)U − g(X,Z)R(Y, ξ)U + η(Z)R(Y,X)U

−g(X,U)R(Y, Z)ξ + η(U)R(Y, Z)X
]
+ b

[
S(X,R(Y, Z)U)ξ − η(R(Y, Z)U)QX

−S(X, Y )R(ξ, Z)U + η(Y )R(QX,Z)U − S(X,Z)R(Y, ξ)U + η(Z)R(Y,QX)U

−S(X,U)R(Y, Z)ξ + η(U)R(Y, Z)QX
]
= 0. (3.2.7)

Taking inner product of the above equation with ξ and using the equations (1.16.2) and

(1.16.4), we get[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
− g(X,R(Y, Z)U)− η(R(Y, Z)U)η(X)

−g(X, Y )η(R(ξ, Z)U) + η(Y )η(R(X,Z)U)− g(X,Z)η(R(Y, ξ)U)

+η(Z)η(R(Y,X)U)− g(X,U)η(R(Y, Z)ξ) + η(U)η(R(Y, Z)X)
]

+b
[
− ′R(Y, Z, U,QX)− η(R(Y, Z)U)η(QX)− S(X,Z)η(R(Y, ξ)U)

+η(Z)η(R(Y,QX)U)− S(X,U)η(R(Y, Z)ξ)

+η(U)η(R(Y, Z)QX)
]
= 0. (3.2.8)

Using the equations (3.1.1), (3.1.2), (3.1.3) and (3.1.4) in above equation, we get[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)][
−′ R(Y, Z, U,X) + g(Z,U)g(X,Y )

−g(Y, U)g(X,Z)
]
+ b

[
−′ R(Y, Z, U,QX) + S(X, Y )g(Z,U)

−S(X,Z)g(Y, U)
]
= 0. (3.2.9)

Putting Z = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

S(QX, Y ) =
1

b

[
{b(n− 1)− A}S(X,Y ) + A(n− 1)g(X, Y )

]
, (3.2.10)

where,

A =
[
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)]
.

This completes the proof.

Lemma 3.2.1 (Deszcz and Yapark, 1994) Let ρ be a symmetric (0,2)-tensor at point x

of an LP -Sasakian manifold (Mn, g), n > 2, and let T = g Z ρ be the Kulkarni-Nomizu
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product of g and ρ. Then, the relation

T.T = α Q(g, T ), αϵR,

is satisfied at x if and only if the condition

ρ2 = αρ+ λg, λϵR

holds at x.

From theorem (3.2.1) and lemma (3.2.1), we get the followings

Corollary 3.2.1 Let an LP -Sasakian manifold Mn satisfies the condition C(ξ,X) ·R =

0, then T.T = α Q(g, T ), where T = g Z S and α =
[
a+ b(n− 1)− r

n

(
a

n−1
+ 2b

)]
.

Remark 3.2.1 Here S is a symmetric (0,2) tensor at point x of an LP -Sasakian manifold

Mn and T = g Z ρ is the Kulkarni-Nomizu product of g and S. Hence

S2 = α S + λ g, α ∈ R,

where α =
[
a+ b(n− 1)− r

n

(
a

n−1
+ 2b

)]
and λ =

[
a+ b(n− 1)− r

n

(
a

n−1
+ 2b

)]
(n− 1).

3.3 An Einstein LP -Sasakian manifold satisfying

C(X, Y )Z = 0

Theorem 3.3.1 The scalar curvature r of quasi conformal flat LP -Sasakian manifold

Mn is constant, given by r = n(n− 1), provided a+ 2(n− 1)b ̸= 0.

Proof: We assume that C(X,Y )Z = 0, then from (3.1.10), we get

a ′R(X, Y, Z,W ) = −b
[
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)g(QX,W )− g(X,Z)g(QY,W )
]

+
r

n

(
a

n− 1
+ 2b

)[
g(Y, Z)X − g(X,Z)Y

]
, (3.3.1)

where
′R(X,Y, Z,W ) = g(R(X, Y )Z,W )
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. Putting X =W = ξ in (3.3.1), we get

a ′R(ξ, Y, Z, ξ) = −b
[
− S(Y, Z)− S(ξ, Z)η(Y ) + g(Y, Z)S(ξ, ξ)− η(Z)S(Y, ξ)

]
+

r

n

(
a

n− 1
+ 2b

)[
− g(Y, Z)− η(Y )η(Z)

]
. (3.3.2)

In view of equation (3.1.8), (3.1.9) and (3.3.2), we get

[a+ 2b(n− 1)][n(n− 1)− r]g(φY, φZ) = 0. (3.3.3)

Since g(φY, φZ) ̸= 0. Hence from (3.3.3), we get r = n(n−1), provided a+2b(n−1) ̸= 0.

Hence, prove the theorem.

Theorem 3.3.2 If in an LP -Sasakian manifold the relation (P 1
1C)(Y, Z) = 0

hold, then Mn is an Einstein manifold with scalar curvature r = n(n− 1),

provided a+ (n− 2)b ̸= 0.

Proof: Contracting (3.1.10) with respect to X, we get

(P 1
1C)(Y, Z) = aS(Y, Z) + b[(n− 1)S(Y, Z) + r g(Y, Z)− S(Y, Z)]

− r

n

( a

n− 1
+ 2b

)[
(n− 1)g(Y, Z)

]

(P 1
1C)(Y, Z) =

(
a+ (n− 2)b

) [
S(Y, Z)− r

n
g(Y, Z)

]
(3.3.4)

where contraction of C(X,Y )Z with respect to X is defined by (P 1
1C)(Y, Z).

Let us assume that in an LP -Sasakian manifold

(P 1
1C)(Y, Z) = 0. (3.3.5)

From (3.3.4) and (3.3.5), we get(
a+ (n− 2)b

) [
S(Y, Z)− r

n
g(Y, Z)

]
= 0. (3.3.6)

If a+ (n− 2)b ̸= 0, then from (3.3.6), we get

S(Y, Z) =
r

n
g(Y, Z), (3.3.7)
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which shows that Mn is an Einstein manifold.

Putting Z = ξ in (3.3.6), we get(
a+ (n− 2)b

)(
n(n− 1)− r

)
η(Y ) = 0. (3.3.8)

Since η(Y ) ̸= 0, so, we get r = n(n− 1), provided a+ (n− 2)b ̸= 0.

Hence, proves the theorem.

3.4 An Einstein LP -Sasakian manifold satisfying

R(X,Y ) · C = 0

Theorem 3.4.1 If in an Einstein LP -Sasakian manifold, the relation R(X, Y ) · C = 0

holds, then it is of constant curvature.

Proof: From equation (3.1.10), we have

′C(X, Y, Z,W ) = a ′R(X, Y, Z,W ) + b
[
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)S(X,W )− g(X,Z)S(Y,W )
]
− r

n

(
a

n− 1
+ 2b

)
[
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
, (3.4.1)

where ′C(X, Y, Z,W ) = g(C(X, Y )Z,W ) and ′R(X, Y, Z,W ) = g(R(X, Y )Z,W ).

Let the Riemannian manifold Mn be an Einstein manifold, then (3.4.1) gives

′C(X, Y, Z,W ) = a ′R(X,Y, Z,W )Z +
{
2 bk − r

n

( a

n− 1
+ 2b

)}
[
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
. (3.4.2)

Using (3.1.4) in (3.4.2), we get

η(C(X,Y )Z) =
{
a+ 2bk − r

n

( a

n− 1
+ 2b

)}[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
(3.4.3)

and

η(C(X, Y )ξ) = 0. (3.4.4)
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Now,

R(X, Y ) · C(U, V )W = R(X, Y )C(U, V )W − C(R(X,Y )U, V )W

− C(U,R(X,Y )V )W − C(U, V )R(X,Y )W. (3.4.5)

We assume that

R(X, Y ) · C(U, V )W = 0,

then from (3.4.5), we have

R(X, Y )C(U, V )W − C(R(X,Y )U, V )W

−C(U,R(X,Y )V )W − C(U, V )R(X,Y )W = 0. (3.4.6)

Therefore,

g(R(ξ, Y )C(U, V )W, ξ)− g(C(R(ξ, Y )U, V )W, ξ)

−g(C(U,R(ξ, Y )V )W )− g(C(U, V )R(ξ, Y )W, ξ) = 0. (3.4.7)

From this it follows that

−′C(U, V,W, Y )− η(Y )η(C(U, V )W )

+η(U)η(C(Y, V )W ) + η(V )η(C(U, Y )W )

+η(W )η(C(U, V )Y )− g(Y, U)η(C(ξ, V )W )

−g(Y, V )η(C(U, ξ)W )− g(Y,W )η(C(U, V )ξ) = 0. (3.4.8)

Putting Y = U in (3.4.8), we get

−′C(U, V,W,U) + η(V )η(C(U,U)W )

+η(W )η(C(U, V )U)− g(U,U)η(C(ξ, V )W )

−g(U, V )η(C(U, ξ)W )− g(U,W )η(C(U, V )ξ) = 0. (3.4.9)

Let {ei}, i = 1, 2, 3, ...n be an orthonormal basis of the tangent space at any point. Then

the sum for 1 ≤ i ≤ n of the relation (3.4.9), for U = ei, gives
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η(C(ξ, V )W ) =
{
a+ 2bk − r

n

( a

n− 1
+ 2b

)}
η(V )η(W )

+
1

n

[
− aS(V,W ) + (n− 1)

{
a+ 2bk − r

n

( a

n− 1
+ 2b

)}
g(V,W )

]
. (3.4.10)

Using (3.4.2) and (3.4.10), it follows from (3.4.9) that

C(U, V,W, Y ) = − 1

n
a
[
S(V,W )g(Y, U)− S(U,W )g(Y, V )

]
+

1

n

[
a+ (n− 1)

{
2bk − r

n

( a

n− 1
+ 2b

)}]
[
g(V,W )g(Y, U)− g(V, Y )g(U,W )

]
. (3.4.11)

Making use of (3.1.8), the equation (3.4.11) yields

C(U, V,W, Y ) = (n− 1)

[
−a
n
+ 2bk − r

n

( a

n− 1
+ 2b

)]
[
g(V,W )g(Y, U)− g(V, Y )g(U,W )

]
. (3.4.12)

From (3.4.2) and (3.4.12), we get

a ′R(U, V,W, Y ) =

(
n− 1

n

)
a
[
g(V,W )g(Y, U)− g(V, Y )g(U,W )

]
,

which gives
′R(U, V,W, Y ) = n−1

n

[
g(V,W )g(Y, U)− g(V, Y )g(U,W )

]
, provided that a ̸= 0.

This proves that it is of constant curvature tensor.

3.5 An Einstein LP -Sasakian manifold satisfying

(divC)(X, Y )Z = 0

Theorem 3.5.1 An Einstein LP -Sasakian manifold (Mn, g)(n > 2) is quasi conformally

conservative if and only if the scalar curvature is constant, provided [b(n−4)(n−1)−2a] ̸=
0.
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Proof: A manifold (Mn, g)(n > 2) is called quasi conformally conservative if divC = 0

(Hicks, 1969). In this section we assume that

divC = 0, (3.5.1)

where div denotes divergence. Now differentiating the equation (3.1.10) covariantly, we

get

(DUC)(X, Y )Z = a(DUR)(X,Y )Z

+ b
[
(DUS)(Y, Z)X − (DUS)(X,Z)Y

+ g(Y, Z)(DUQ)(X)− g(X,Z)(DUQ)(Y )
]

− (DUr)

n

( a

n− 1
+ 2b

)[
g(Y, Z)X − g(X,Z)Y

]
. (3.5.2)

Contraction of the equation (3.5.2) gives

(divC)(X,Y )Z = a(divR)(X, Y )Z

+ b
[
(DXS)(Y, Z)− (DY S)(X,Z)

+ g(Y, Z)(divQ)(X)− g(X,Z)(divQ)(Y )
]

− 1

n

( a

n− 1
+ 2b

)[
g(Y, Z)dr(X)− g(X,Z)dr(Y )

]
. (3.5.3)

But from (Eisenhart, 1926), we have

(divR)(X, Y )Z = (DXS)(Y, Z)− (DY S)(X,Z). (3.5.4)

If LP -Sasakian manifold is an Einstein manifolds, then from the equation (3.1.8) and

(3.5.4), we get

(divR)(X, Y )Z = (DXS)(Y, Z)− (DY S)(X,Z) = 0. (3.5.5)

From equation (3.5.3) and (3.5.5), we get

(divC)(X, Y )Z =
1

n

[b(n− 4)

2
− a

n− 1

][
g(Y, Z)dr(X)− g(X,Z)dr(Y )

]
. (3.5.6)

From equation (3.5.1) and (3.5.6), we get

g(Y, Z)dr(X)− g(X,Z)dr(Y ) = 0, (3.5.7)
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provided [b(n− 4)(n− 1)− 2a] ̸= 0 which shows that r is constant. Again if r is constant

then from equation (3.5.6) , we get

(divC)(X, Y )Z = 0. (3.5.8)

This completes the proof.

3.6 φ-Quasi conformally flat LP -Sasakian manifolds

Theorem 3.6.1 Let Mn be an n-dimensional (n > 2) φ-quasi conformally flat LP -

Sasakian manifold, then Mn is an η-Einstein manifold.

Proof: A differentiable manifold (Mn, g)(n > 2) satisfying the condition (Cabrerizo et

al., 1999)

φ2C(φX,φY )φZ = 0, (3.6.1)

is called φ-quasi conformal flat LP -Sasakian manifold.

Suppose that (Mn, g)(n > 2) is a φ quasi conformally flat LP -Sasakian manifold. It is

easy to see that φ2C(φX,φY )φZ = 0, holds if and only if g(C(φX,φY )φZ, φW ) = 0, for

any vector fields X, Y, Z,W .

By the use of equation (3.1.10), φ-quasi conformal flat LP -Sasakian manifold (3.6.1) gives

a′R(φX,φY, φZ, φW ) = −b
[
S(φY, φZ)g(φX,φW )− S(φX,φZ)g(φX,φW )

+ g(φY, φZ)S(φX,φW )− g(φX,φZ)S(φY, φW )
]

+
1

n

( a

n− 1
+ 2b

)[
g(φY, φZ)g(φX,φW )

− g(φX,φZ)g(φY, φW )
]
. (3.6.2)

where
′R(X, Y, Z,W ) = g(R(X,Y )Z,W ).

Let e1, e2, ...., en−1, ξ be a local orthonormal basis of vector fields in Mn by using the fact

that φe1, φe2, ....., φen−1, ξ is also a local orthonormal basis, if we put X = W = ei in
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equation (3.6.2) and sum up with respect to i, then we have

n−1∑
i=1

a ′R(φei, φY, φZ, φei) = −b
n−1∑
i=1

[
S(φY, φZ)g(φei, φei)− S(φei, φZ)g(φY, φei)

+ g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)
]

+
r

n

( a

n− 1
+ 2b

)[
g(φY, φZ)g(φei, φei)

− g(φei, φZ)g(φY, φei)
]
. (3.6.3)

On an LP -Sasakian manifold, we have (Özgür, 2003)

n−1∑
i=1

′R(φei, φY, φZ, φei) = S(φY, φZ) + g(φY, φZ), (3.6.4)

n−1∑
i=1

S(φei, φei) = r + (n− 1), (3.6.5)

n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (3.6.6)

n−1∑
i=1

g(φei, φei) = n+ 1, (3.6.7)

n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (3.6.8)

So by virtue of the equations (3.6.4)-(3.6.8), the equation (3.6.3) takes the form as

S(φY, φZ) =
( r

n− 1
− 1

)
g(φY, φZ). (3.6.9)

By making the use of (1.16.3) and (3.1.5) in the equation (3.6.10), we get

S(Y, Z) =
( r

n− 1
− 1

)
g(Y, Z) +

( r

n− 1
− n

)
η(Y )η(Z), (3.6.10)
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which shows that, Mn is an η-Einstein manifold.

Hence, proves the theorem.

3.7 M-projective Curvature Tensor of LP -Sasakian

manifolds

(Pokhariyal and Mishra, 1971) defined a tensor field W ∗ on a Riemannian manifold Mn

as

W ∗(X,Y )Z = R(X, Y )Z − 1

2(n− 1)

[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]
, (3.7.1)

for vector fields X, Y and Z, where S is the Ricci tensor of type (0,2), Q is the Ricci

operator and ′W ∗(X, Y, Z, U) = g(W ∗(X,Y )Z,U).

Putting X = ξ in equation (3.7.1) and using equations (1.16.2), (1.16.4), (3.1.2) and

(3.1.7) we get

W ∗(ξ, Y )Z = −W ∗(Y, ξ)Z

=
1

2

[
g(Y, Z)ξ − η(Z)Y

]
− 1

2(n− 1)

[
S(Y, Z)ξ − η(Z)QY

]
. (3.7.2)

Again, putting Z=ξ in equation (3.7.1) and using equations (1.16.4), (3.1.1) and (3.1.7),

we get

W ∗(X,Y )ξ =
1

2

[
η(Y )X − η(X)Y

]
− 1

2(n− 1)

[
η(Y )QX − η(X)QY

]
. (3.7.3)

Now, taking the inner product of equations (3.7.1), (3.7.2) and (3.7.3) with ξ and using

equations (1.16.2), (1.16.4) and (3.1.7), we get

η(W ∗(X, Y )Z) =
1

2

[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
− 1

2(n− 1)

[
S(Y, Z)η(X)− S(X,Z)η(Y )

]
, (3.7.4)
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η(W ∗(ξ, Y )Z) = −η(W ∗(Y, ξ)Z)

= −1

2
g(Y, Z) +

1

2(n− 1)
S(Y, Z), (3.7.5)

and

η(W ∗(X,Y )ξ) = 0, (3.7.6)

respectively.

Theorem 3.7.1 An LP - Sasakian manifold Mn satisfying the condition R(ξ,X) ·W ∗ =

0, is an Einstein manifold.

Proof: Let (R(ξ,X) ·W ∗)(Y, Z)U = 0. Then we have

R(ξ,X)W ∗(Y, Z)U −W ∗(R(ξ,X)Y, Z)U

−W ∗(Y,R(ξ,X)Z)U −W ∗(Y, Z)R(ξ,X)U = 0, (3.7.7)

which on using equation (3.1.2), gives

g(X,W ∗(Y, Z)U)ξ − η(W ∗(Y, Z)U)X − g(X, Y )W ∗(ξ, Z)U

−g(X,Z)W ∗(Y, ξ)U − g(X,U)W ∗(Y, Z)ξ + η(Y )W ∗(X,Z)U

+η(Z)W ∗(Y,X)U + η(U)W ∗(Y, Z)X = 0. (3.7.8)

Now, taking the inner product of above equation with ξ and using equations (1.16.2),

(1.16.4), (3.1.2), (3.7.1), (3.7.4), (3.7.5) and (3.7.6), we obtain

′R(Y, Z, U,X) = g(X,Y )g(Z,U)− g(X,Z)g(Y, U)

+
1

2

[
g(X,Z)η(Y )η(U)− g(X,Y )η(Z)η(U)

]
+

1

2(n− 1)

[
S(X,Y )η(Z)η(U)− S(X,Z)η(Y )η(U)

]
. (3.7.9)

Taking a frame field and contraction over Z and U , we get

S(X, Y ) = (n− 1)g(X,Y ).

This shows that Mn is an Einstein manifold.

Theorem 3.7.2 If an LP -Sasakian manifoldMn satisfies the conditionW ∗(ξ,X)·R = 0,
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then

S(QX, Y ) = (n− 1)2 g(X, Y ).

Proof: Let (W ∗(ξ,X) ·R)(Y, Z)U = 0. Then, we have

W ∗(ξ,X)R(Y, Z)U −R(W ∗(ξ,X)Y, Z)U

−R(Y,W ∗(ξ,X)Z)U −R(Y, Z)W ∗(ξ,X)U = 0, (3.7.10)

which on using equation (3.7.2), gives

g(X,R(Y, Z)U)ξ − η(R(Y, Z)U)X − g(X,Y )R(ξ, Z)U

+η(Y )R(X,Z)U − g(X,Z)R(Y, ξ)U + η(Z)R(Y,X)U

−g(X,U)R(Y, Z)ξ + η(U)R(Y, Z)X − 1

n− 1

[
S(X,R(Y, Z)U)ξ

−η(R(Y, Z)U)QX − S(X,Y )R(ξ, Z)U + η(Y )R(QX,Z)U

−S(X,Z)R(Y, ξ)U + η(Z)R(Y,QX)U − S(X,U)R(Y, Z)ξ

+η(U)R(Y, Z)QX
]
= 0. (3.7.11)

Now, taking the inner product of above equation with ξ and using equations (1.16.2),

(1.16.4), (3.1.2), (3.1.1) and (3.1.7), we obtain

g(X,R(Y, Z)U)− g(X,Y )η(R(ξ, Z)U) + η(Y )η(R(X,Z)U)

−g(X,Z)η(R(Y, ξ)U) + η(Z)η(R(Y,X)U)− g(X,U)η(R(Y, Z)ξ)

+η(U)η(R(Y, Z)X)− 1

n− 1

[
′R(Y, Z, U,QX)− S(X,Y )η(R(ξ, Z)U)

+η(Y )η(R(QX,Z)U)− S(X,Z)η(R(Y, ξ)U) + η(Z)η(R(Y,QX)U)

−S(X,U)η(R(Y, Z)ξ) + η(U)η(R(Y, Z)QX)
]
= 0. (3.7.12)

Taking a frame field and contraction over Z and U , we get

S(QX, Y ) = (n− 1)2 g(X,Y ).

This completes the proof.

Theorem 3.7.3 If an LP -Sasakian manifoldMn satisfies the conditionW ∗(ξ,X)·S = 0,

then

S(QX, Y ) = −(n− 1)2g(X, Y ) + 2(n− 1)S(X, Y ).
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Proof: Let W ∗(ξ,X) · S(Y, Z) = 0. Then, we have

S(W ∗(ξ,X)Y, Z) + S(Y,W ∗(ξ,X)Z) = 0, (3.7.13)

which on using equation (3.7.2), gives

(n− 1) [g(X,Y )η(Z) + g(X,Z)η(Y )]− S(X,Z)η(Y )− S(X,Y )η(Z)

+
1

(n− 1)

[
S(QX, Y )η(Z)− S(QX,Z)η(Y )

]
= 0. (3.7.14)

Now, putting Z = ξ in above equation and using equations (1.16.2), (1.16.4) and (3.1.7),

we get

S(QX, Y ) = −(n− 1)2g(X, Y ) + 2 (n− 1)S(X, Y ).

This completes the proof.

3.8 LP -Sasakian manifolds satisfying P (ξ,X) ·W ∗ = 0

and W ∗(ξ,X) · P = 0

Projective curvature tensor P of the manifold Mn is given by (Mishra, 1984)

P (X,Y )Z = R(X, Y )Z − 1

n− 1

[
S(Y, Z)X − S(X,Z)Y

]
. (3.8.1)

Putting X=ξ in above equation and using equation (3.1.2)and (3.1.7), we get

P (ξ, Y )Z = −P (Y, ξ)Z = g(Y, Z)ξ − 1

n− 1
S(Y, Z)ξ. (3.8.2)

Again, Putting Z=ξ in equation (3.8.1) and using equations (3.1.1) and (3.1.7), we get

P (X,Y )ξ = 0. (3.8.3)

Now, taking the inner product of equations (3.8.1), (3.8.2) and (3.8.3) with ξ, we get

η(P (X, Y )Z = g(Y, Z)η(X)− g(X,Z)η(Y )

− 1

n− 1

[
S(Y, Z)η(X)− S(X,Z)η(Y )

]
, (3.8.4)
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η(P (ξ, Y )Z) = −η(P (Y, ξ)Z) = −g(Y, Z) + 1

n− 1
S(Y, Z), (3.8.5)

and

η(P (X, Y )ξ = 0 (3.8.6)

respectively.

Theorem 3.8.1 If an LP -Sasakian manifold Mn satisfies the condition P (ξ,X) ·W ∗ = 0

then

S(QX, Y ) = 2(n− 1) [S(X,Y )− (n− 1)g(X,Y )].

Proof: Let (P (ξ,X) ·W ∗)(Y, Z)U = 0. Then, we have

P (ξ,X)W ∗(Y, Z)U −W ∗(P (ξ,X)Y, Z)U

−W ∗(Y, P (ξ,X)Z)U −W ∗(Y, Z)P (ξ,X)U = 0, (3.8.7)

which on using equation (3.8.2), gives

g(X,W ∗(Y, Z)U)ξ − g(X, Y )W ∗(ξ, Z)U − g(X,Z)W ∗(Y, ξ)U

−g(X,U)W ∗(Y, Z)ξ − 1

n− 1

[
S(X,W ∗(Y, Z)U)ξ − S(X, Y )W ∗(ξ, Z)U

−S(X,Z)W ∗(Y, ξ)U − S(X,U)W ∗(Y, Z)ξ
]
= 0. (3.8.8)

Now, taking the inner product of above equation with ξ and using equation (1.16.2),

(1.16.4), (3.7.1), (3.7.4), (3.7.5) and (3.7.6), we obtain

1

(n− 1)
′R(Y, Z, U,QX) = ′R(Y, Z, U,X) +

1

2

[
g(X,Z)g(Y, U)− g(X,Y )g(Z,U)

]
− 1

2(n− 1)2

[
g(Z,U)S(QX, Y )− g(Y, U)S(QX,Z)

]
.(3.8.9)

Taking a frame field and contraction over Z and U , we get

S(QX, Y ) = 2(n− 1) [S(X, Y )− (n− 1)g(X, Y )].

This completes the proof.

Theorem 3.8.2 If an LP -Sasakian manifold Mn satisfies the condition W ∗(ξ,X) ·P = 0
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then

S(QX, Y ) = −n(n− 1)2

n− 2
g(X, Y ) +

2n(n− 1)

n− 2
S(X, Y ).

Proof: Let (W ∗(ξ,X) · P )(Y, Z)U = 0. Then, we have

W ∗(ξ,X)P (Y, Z)U − P (W ∗(ξ,X)Y, Z)U

−P (Y,W ∗(ξ,X)Z)U − P (Y, Z)W ∗(ξ,X)U = 0, (3.8.10)

which on using equation (3.7.2), gives

g(X,P (Y, Z)U)ξ − η(P (Y, Z)U)X − g(X,Y )P (ξ, Z)U + η(Y )P (X,Z)U

−g(X,Z)P (Y, ξ)U + η(Z)P (Y,X)U − g(X,U)P (Y, Z)ξ + η(U)P (Y, Z)X

− 1

n− 1

[
S(X,P (Y, Z)U)ξ − η(P (Y, Z)U)QX − S(X,Y )P (ξ, Z)U

+η(Y )P (QX,Z)U − S(X,Z)P (Y, ξ)U + η(Z)P (Y,QX)U

−S(X,U)P (Y, Z)ξ + η(U)P (Y, Z)QX
]
= 0. (3.8.11)

Now, taking the inner product of above equation with ξ and using equations (1.16.2),

(1.16.4), (3.8.1) , (3.8.4), (3.8.5) and (3.8.6), we obtain

−′R(Y, Z, U,X) + g(X, Y )g(Z,U)− g(X,Z)g(Y, U) + g(X,Z)η(Y )η(U)

−g(X,Y )η(Z)η(U)− 1

(n− 1)

[
′R(Y, Z, U,QX) + 2S(X, Y )η(Z)η(U)

−2S(X,Z)η(Y )η(U) + S(X,Z)g(Y, U)− S(X, Y )g(Z,U)
]

+
1

(n− 1)2

[
S(QX,Z)η(Y )η(U)− S(QX, Y )η(Z)η(U)

]
= 0. (3.8.12)

Put Z = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

S(QX, Y ) = −n(n− 1)2

n− 2
g(X, Y ) +

2n(n− 1)

n− 2
S(X, Y ).

This completes the proof.
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3.9 LP -Sasakian manifolds Satisfying C(ξ,X) ·W ∗ = 0

and W ∗(ξ,X) · C = 0

Conformal curvature tensor C of the manifold Mn is given by (Mihai et al., 1999)

C(X, Y )Z = R(X, Y )Z − 1

(n− 2)

[
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY
]
+

r

(n− 1)(n− 2)

[
g(Y, Z)X − g(X,Z)Y

]
. (3.9.1)

Putting X = ξ in above equation and using equation (3.1.2) and (3.1.7), we get

C(ξ, Y )Z = −C(Y, ξ)Z

=
1 + r − n

(n− 1)(n− 2)

[
g(Y, Z)ξ − η(Z)Y

]
− 1

n− 2

[
S(Y, Z)ξ − η(Z)QY

]
. (3.9.2)

Again, Putting Z = ξ in equation (3.9.1) and using equations (3.1.1) and (3.1.7), we get

C(X, Y )ξ =
1 + r − n

(n− 1)(n− 2)

[
η(Y )X − η(X)Y

]
− 1

n− 2

[
η(Y )QX − η(X)QY

]
. (3.9.3)

Now, taking the inner product of equations (3.9.1), (3.9.2) and (3.9.3) with ξ, we get

η(C(X,Y )Z =
1 + r − n

(n− 1)(n− 2)

[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
− 1

n− 2

[
S(Y, Z)η(X)− S(X,Z)η(Y )

]
, (3.9.4)

η(C(ξ, Y )Z) = −η(C(Y, ξ)Z)

=
1 + r − n

(n− 1)(n− 2)

[
− g(Y, Z)− η(Y )η(Z)

]
− 1

n− 2

[
− S(Y, Z)− η(Z)η(QY )

]
(3.9.5)

and

η(C(X, Y )ξ = 0 (3.9.6)
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respectively.

Theorem 3.9.1 If an LP -Sasakian manifold Mn satisfies the condition W ∗(ξ,X) ·C = 0

then the manifold is an Einstein manifold.

Proof: Let (W ∗(ξ,X) · C)(Y, Z)U = 0. Then, we have

W ∗(ξ,X)C(Y, Z)U − C(W ∗(ξ,X)Y, Z)U

−C(Y,W ∗(ξ,X)Z)U − C(Y, Z)W ∗(ξ,X)U = 0, (3.9.7)

which on using equation (3.7.2), gives

g(X,C(Y, Z)U)− η(C(Y, Z)U)X − g(X, Y )C(ξ, Z)U

+η(Y )C(X,Z)U − g(X,Z)C(Y, ξ)U + η(Z)C(Y,X)U

−g(X,U)C(Y, Z)ξ + η(U)C(Y, Z)X − 1

n− 1

[
S(X,C(Y, Z)U)ξ

−η(C(Y, Z)U)QX − S(X,Y )C(ξ, Z)U + η(Y )C(QX,Z)U

−S(X,Z)C(Y, ξ)U + η(Z)C(Y,QX)U − S(X,U)C(Y, Z)ξ

+η(U)C(Y, Z)QX
]
= 0. (3.9.8)

Now, taking the inner product of above equation with ξ and using equations (1.16.2),

(1.16.4), (3.9.1), (3.9.4), (3.9.5) and (3.9.6), we obtain

− 1

(n− 1)
′R(Y, Z, U,QX) = − ′R(Y, Z, U,X) +

1

(n− 2)

[
S(X, Y )g(Z,U)

−S(X,Z)g(Y, U) + (n− 1){g(X,Z)η(Y )η(U)− g(X, Y )η(Z)η(U)}

+2{S(X, Y )η(Z)η(U)− S(X,Z)η(Y )η(U)}+ 1

(n− 1)
{S(QX,Z)g(Y, U)

−S(QX, Y )g(Z,U) + S(QX,Z)η(Y )η(U)− S(QX, Y )η(Z)η(U)}
]

− r

(n− 1)(n− 2)

[
g(Z,U)g(X, Y )− g(Y, U)g(X,Z) +

1

(n− 1)
{g(Z,U)S(X, Y )

−g(Y, U)S(X,Z)}
]
+

1 + r − n

(n− 1)(n− 2)

[
g(Z,U)g(X, Y )− g(Y, U)g(X,Z)

+
1

(n− 1)
{S(X,Z)g(Y, U)− S(X,Y )g(Z,U)}

]
. (3.9.9)

Put Z = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

S(X, Y ) = 2r g(X,Y ).
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This shows that the manifold is an Einstein manifold.

Theorem 3.9.2 If an LP -Sasakian manifold Mn satisfies the condition C(ξ,X) ·W ∗ = 0

then

S(QX, Y ) =
(n2 − 3n+ r + 2

n− 1

)
S(X, Y ) + (1 + r − n) g(X, Y ).

Proof: Let (C(ξ,X) ·W ∗)(Y, Z)U = 0. Then, we have

C(ξ,X)W ∗(Y, Z)U −W ∗(C(ξ,X)Y, Z)U

−W ∗(Y,C(ξ,X)Z)U −W ∗(Y, Z)C(ξ,X)U = 0, (3.9.10)

which on using equation (3.9.2), gives

1 + r − n

(n− 1)(n− 2)

[
g(X,W ∗(Y, Z)U)ξ − η(W ∗(Y, Z)U)X − g(X,Y )W ∗(ξ, Z)U

+η(Y )W ∗(X,Z)U − g(X,Z)W ∗(Y, ξ)U + η(Z)W ∗(Y,X)U

−g(X,U)W ∗(Y, Z)ξ + η(U)W ∗(Y, Z)X
]
− 1

n− 2

[
S(X,W ∗(Y, Z)U)ξ

−η(W ∗(Y, Z)U)QX − S(X, Y )W ∗(ξ, Z)U + η(Y )W ∗(QX,Z)U

−S(X,Z)W ∗(Y, ξ)U + η(Z)W ∗(Y,QX)U − S(X,U)W ∗(Y, Z)ξ

+η(U)W ∗(Y, Z)QX
]
= 0. (3.9.11)

Now, taking the inner product of above equation with ξ and using equations (1.16.2) and

(1.16.4), we get

1 + r − n

(n− 1)(n− 2)

[
− g(X,W ∗(Y, Z)U)− η(W ∗(Y, Z)U)η(X)− g(X,Y )η(W ∗(ξ, Z)U)

+η(Y )η(W ∗(X,Z)U)− g(X,Z)η(W ∗(Y, ξ)U) + η(Z)η(W ∗(Y,X)U)

−g(X,U)η(W ∗(Y, Z)ξ) + η(U)η(W ∗(Y, Z)X)
]
− 1

n− 2

[
− S(X,W ∗(Y, Z)U)

−η(W ∗(Y, Z)U)η(QX)− S(X, Y )η(W ∗(ξ, Z)U) + η(Y )η(W ∗(QX,Z)U)

−S(X,Z)η(W ∗(Y, ξ)U) + η(Z)η(W ∗(Y,QX)U)− S(X,U)η(W ∗(Y, Z)ξ)

+η(U)η(W ∗(Y, Z)QX)
]
= 0. (3.9.12)

Using the equations (3.7.1), (3.7.4), (3.7.5) and (3.7.6) in above equation, we obtain

1 + r − n

(n− 1)(n− 2)

[
− ′R(Y, Z, U,X) +

1

2(n− 1)

{
g(Z,U)S(X,Y )− g(Y, U)S(X,Z)}
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+
1

2
{g(X,Y )g(Z,U)− g(X,Z)g(Y, U) + g(X,Z)η(Y )η(U)− g(X, Y )η(Z)η(U)}

+
1

2(n− 1)
{S(X, Y )η(Z)η(U)− S(Z,X)η(Y )η(U)}

]
− 1

(n− 2)

[
− ′R(Y, Z, U,QX) +

1

2(n− 1)
{g(Z,U)S(QX, Y )− g(Y, U)S(QX,Z)}

+
1

2
{S(X,Y )g(Z,U)− S(X,Z)g(Y, U) + S(X,Z)η(Y )η(U)− S(X,Y )η(Z)η(U)}

+
1

2(n− 1)
{S(QX, Y )η(Z)η(U)− S(QX,Z)η(Y )η(U)}

]
= 0. (3.9.13)

Put Z = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

S(QX, Y ) =
(n2 − 3n+ r + 2

n− 1

)
S(X, Y ) + (1− n+ r) g(X,Y ).

This completes the proof.

3.10 LP -Sasakian manifolds Satisfying C(ξ,X).W ∗ = 0

The notion of the quasi-conformal curvature tensor C was introduced by (Yano and

Sawaki, 1968). They defined the quasi-conformal curvature tensor by

C(X, Y )Z = aR(X,Y )Z + b
[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]

− r

n

( a

n− 1
+ 2b

)[
g(Y, Z)X − g(X,Z)Y

]
, (3.10.1)

where a and b are constants such that ab ̸= 0. If a=1 and b = − 1
n−2

, then above equation

reduces to conformal curvature tensor given by (3.9.1). Thus the conformal curvature

tensor C is a particular case of the Quasi-conformal curvatue tensor C.

Putting X = ξ in equation (3.10.1) and using equations (3.1.2) and (3.1.7), we get

C(ξ, Y )Z = −C(Y, ξ)Z) =
{
a+ b(n− 1)− r

n
(

a

n− 1
+ 2b)

}
[
g(Y, Z)ξ − η(Z)Y

]
+ b

[
S(Y, Z)ξ − η(Z)QY

]
. (3.10.2)
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Again, Putting Z = ξ in equation (3.10.1) and using equations (3.1.1) and (3.1.7), we get

C(X, Y )ξ =
{
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)} [
η(Y )X − η(X)Y

]
+ b

[
η(Y )QX − η(X)QY

]
. (3.10.3)

Now, taking the inner product of equations (3.10.1), (3.10.2) and (3.10.3) with ξ, we get

η(C(X, Y )Z) =
{
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)} [
g(Y, Z)η(X)

− g(X,Z)η(Y )
]
+ b

[
η(Y )QX − η(X)QY

]
, (3.10.4)

η(C(ξ, Y )Z) = −η(C(Y, ξ)Z)

=
{
a+ b(n− 1)− r

n

( a

n− 1
+ 2b

)}[
− g(Y, Z)− η(Y )η(Z)

]
+ b [−S(Y, Z)− η(Z)η(QY )] (3.10.5)

and

η(C(X,Y )ξ) = 0 (3.10.6)

respectively.

Theorem 3.10.1 If an LP -Sasakian manifold Mn satisfies the condition C(ξ,X) ·W ∗ =

0 then

S(QX, Y ) =
[
(n− 1)− A

b

]
S(X, Y )−

[2(n− 1) + r

n

]A
b
η(X)η(Y )

+
[n(n− 1)− r

n

]A
b
g(X,Y ),

where A =
[
a+ b(n− 1)− r

n
( a
n−1

+ 2b)
]
.

Proof: Let (C(ξ,X) ·W ∗)(Y, Z)U = 0. Then, we have

C(ξ,X)W ∗(Y, Z)U −W ∗(C(ξ,X)Y, Z)U

−W ∗(Y,C(ξ,X)Z)U −W ∗(Y, Z)C(ξ,X)U = 0, (3.10.7)

which on using equation (3.10.2), gives

A
[
g(X,W ∗(Y, Z)U)ξ − η(W ∗(Y, Z)U)X − g(X, Y )W ∗(ξ, Z)U
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+η(Y )W ∗(X,Z)U − g(X,Z)W ∗(Y, ξ)U + η(Z)W ∗(Y,X)U

−g(X,U)W ∗(Y, Z)ξ + η(U)W ∗(Y, Z)X
]

+b
[
S(X,W ∗(Y, Z)U)ξ + η(W ∗(Y, Z)U)X − S(X,Y )W ∗(ξ, Z)U

+η(Y )W ∗(QX,Z)U − S(X,Z)W ∗(Y, ξ)U + η(Z)W ∗(Y,QX)U

−S(X,U)W ∗(Y, Z)ξ + η(U)W ∗(Y, Z)QX
]
= 0, (3.10.8)

Now, taking the inner product of above equation with ξ and using equations (1.16.2) and

(1.16.4), we get

A
[
− g(X,W ∗(Y, Z)U)− η(W ∗(Y, Z)U)η(X)− g(X, Y )η(W ∗(ξ, Z)U)

+η(Y )η(W ∗(X,Z)U)− g(X,Z)η(W ∗(Y, ξ)U) + η(Z)η(W ∗(Y,X)U)

−g(X,U)η(W ∗(Y, Z)ξ) + η(U)η(W ∗(Y, Z)X)
]

+b
[
− S(X,W ∗(Y, Z)U) + η(W ∗(Y, Z)U)η(X)− S(X,Y )η(W ∗(ξ, Z)U)

+η(Y )η(W ∗(QX,Z)U)− S(X,Z)η(W ∗(Y, ξ)U) + η(Z)η(W ∗(Y,QX)U)

−S(X,U)η(W ∗(Y, Z)ξ) + η(U)η(W ∗(Y, Z)QX)
]
= 0, (3.10.9)

using the equations (3.7.1), (3.7.4), (3.7.5) and (3.7.6) in above equation, we obtain

A
[
− ′R(Y, Z, U,X)− 1

2(n− 1)
{g(Z,U)S(X, Y )− g(Y, U)S(X,Z)

−2 S(Y, U)η(X)η(Z)− S(Z,U)g(X, Y )− S(Z,U)η(X)η(Y )− S(X,Z)η(Y )η(U)

+S(X, Y )η(Z)η(U)}+ 1

2
{g(Z,U)g(X,Y )− g(X,Z)g(Y, U)

+g(X,Z)η(Y )η(U)− g(X, Y )η(Z)η(U)}
]

+b
[
− ′R(Y, Z, U,QX) +

1

2(n− 1)
{g(Z,U)S(X,QY )− g(Y, U)S(X,QZ)

+S(QX, Y )η(Z)η(U)− S(QX,Z)η(Y )η(U)}+ 1

2
{g(Z,U)S(X, Y )

−g(Y, U)S(X,Z) + S(X,Z)η(Y )η(U)− S(X,Y )η(Z)η(U)}
]
. (3.10.10)

Put Z = U = ei in above equation and taking summation over i, 1 ≤ i ≤ n, we get

S(QX, Y ) =
[
(n− 1)− A

b

]
S(X, Y )−

[2(n− 1) + r

n

]A
b
η(X)η(Y )

+
[n(n− 1)− r

n

]A
b
g(X,Y ).
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Chapter 4

Concircularly and M-Projectively

Semi-Generalized Recurrent

Manifolds

4.1 Introduction

A Riemannian manifold (Mn, g) is called a semi-generalized recurrent manifold (Prasad,

2000) if its curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = A(X)R(Y, Z)W +B(X)g(Z,W )Y, (4.1.1)

where A and B are two 1-forms, B is non zero, P1 and P2 are two vector fields such that

g(X,P1) = A(X) g(X,P2) = B(X), (4.1.2)

for any vector field X and ∇ denotes the operator of covariant differentiation with respect

to the metric g. Such a manifold is called a semi-generalized recurrent manifold and the 1-

form B may be called its associated 1-form. An n-dimensional semi-generalized recurrent

manifold shall be denoted by (SGK)n. If the 1-form B in (4.1.1) becomes zero, then the

manifold reduces to a recurrent manifold (Walker, 1951).

In an n-dimensional differentiable manifold Mn a Para-Sasakian (briefly P -Sasakian)

manifold with structure (φ, ξ, η, g) defined in (1.17.1-1.17.4) also satisfy the following

relations (Sato, 1976; Aditi, 1977).

(∇Xφ)Y = −g(X,Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (4.1.3)
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∇Xξ = φX, (4.1.4)

(∇Xη)(Y ) = g(φX, Y ) = g(φY,X), (4.1.5)

rank(φ) = (n− 1), (4.1.6)

η(R(X,Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (4.1.7)

R(X, Y )ξ = η(X)Y − η(Y )X, (4.1.8)

R(ξ,X)Y = η(Y )X − g(X, Y )ξ, (4.1.9)

R(ξ,X)ξ = X − η(X)ξ, (4.1.10)

Qξ = −(n− 1)ξ, (4.1.11)

S(X, ξ) = −(n− 1)η(X), (4.1.12)

S(φX,φY ) = S(X,Y ) + (n− 1)η(X)η(Y ), (4.1.13)

for all vector fields X, Y , Z, where R and S are the Riemannian curvature tensor of the

manifold respectively.

4.2 Semi-generalized Ricci recurrent P -Sasakian man-

ifolds

Definition 4.2.1 A Riemannian manifold (Mn, g) is semi-generalized Ricci recurrent

manifold (De and Guha, 1991; Blair, 1976) if

(∇XS)(Y, Z) = A(X)S(Y, Z) + nB(X)g(Y, Z). (4.2.1)
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Theorem 4.2.1 The scalar curvature r of a semi-generalized recurrent P -Sasakian man-

ifold is related in terms of contact forms η(P1) and η(P2) as given by

r = − 1

η(P1)

[
(n2 + 2)η(P2) + 2(n− 1)η(P1)

]
.

Proof: Permutting equation (4.1.1) twice with respect to X,Y, Z; adding the three equa-

tions and using Bianchi’s second identity, we have

A(X)R(Y, Z)W +B(X)g(Z,W )Y + A(Y )R(Z,X)W

+B(Y )g(X,W )Z + A(Z)R(X,Y )W +B(Z)g(Y,W )X = 0. (4.2.2)

Contracting (4.2.2) with respect to Y , we get

A(X)S(Z,W ) + nB(X)g(Z,W )− g(R(Z,X)P1,W )

+B(Z)g(X,W )− A(Z)S(X,W ) +B(Z)g(X,W ) = 0. (4.2.3)

In view of S(Y, Z) = g(QY,Z), the equation (4.2.3) reduces to

A(X)g(QZ,W ) + nB(X)g(Z,W )− g(R(Z,X)P1),W )

+B(Z)g(X,W )− A(Z)g(QX,W ) + B(Z)g(X,W ) = 0. (4.2.4)

Factoring off W , we get from (4.2.4)

A(X)QZ + nB(X)Z −R(Z,X)P1

+B(Z)X − A(Z)QX +B(Z)X = 0. (4.2.5)

Contracting (4.2.5) with respect to Z, we get

A(X)r + (n2 + 2)B(X)− 2S(X,P1) = 0. (4.2.6)

Putting X = ξ in the equation (4.2.6) and using the equations (4.1.2) and (4.1.12), we

get

r = − 1

η(P1)

[
(n2 + 2)η(P2) + 2(n− 1)η(P1)

]
.

This completes the proof.

Theorem 4.2.2 In a semi-generalized Ricci-recurrent P -Sasakian manifold, the 1-forms
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A and B are related as

−(n− 1)A(X) + nB(X) = 0.

Proof: Taking Z = ξ in (4.2.1), we have

(∇XS)(Y, ξ) = A(X)S(Y, ξ) + nB(X)g(Y, ξ). (4.2.7)

The left hand side of (4.2.7) clearly can be written in the form

(∇XS)(Y, ξ) = ∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ)

which in view of (4.1.4), (4.1.5) and (4.1.12) gives

−(n− 1)g(Y, φX)− S(Y, φX).

While the right hand side of (4.2.7) equals

A(X)S(Y, ξ) + nB(X)g(Y, ξ) = −(n− 1)A(X)η(Y ) + nB(X)η(Y ).

Hence,

−(n− 1)g(Y, φX)− S(Y, φX) = −(n− 1)A(X)η(Y ) + nB(X)η(Y ). (4.2.8)

Putting Y = ξ in (4.2.8) and then using (1.17.2), (1.17.3) and (4.1.12), we get

−(n− 1)η(φX) + (n− 1)η(φX) = −(n− 1)A(X) + nB(X),

or,

−(n− 1)A(X) + nB(X) = 0. (4.2.9)

This completes the proof.

Theorem 4.2.3 If a semi-generalized Ricci-recurrent P -Sasakian manifold is an Einstein

manifold then 1-forms A and B are related as λA(Y ) + nB(Y ) = 0.

Proof: For an Einstein manifold, we have S(Y, Z) = λg(Y, Z) which gives (∇US) = 0,

where λ is constant.
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Hence from (4.2.1) we have

[λA(X) + nB(X)] g(Y, Z) + [λA(Y ) + nB(Y )] g(Z,X)

+ [λA(Z) + nB(Z)] g(X,Y ) = 0. (4.2.10)

Replacing Z by ξ in (4.2.10) and using (4.1.2), (1.17.2) and (1.17.3) we get

[λA(X) + nB(X)] η(Y ) + [λA(Y ) + nB(Y )] η(X)

+ [λη(P1) + nη(P2)] g(X, Y ) = 0. (4.2.11)

Again, taking X = Y = ξ in (4.2.11) and using (4.1.2), (1.17.2) and (1.17.3), we have

λη(P1) + nη(P2) = 0. (4.2.12)

Using (4.1.2), (1.17.2) and (1.17.3) in the above relation, it follows that

λA(Y ) + nB(Y ) = 0.

Hence, proves the theorem.

4.3 Semi-generalized Ricci recurrent Lorentzian α-

Sasakian manifolds

Lorentzian α-Sasakian manifold is defined by the equations (1.16.12-1.16.15) which further

satisfies the relations given in (1.16.16-1.16.24).

Theorem 4.3.1 The scalar curvature r of a semi-generalized recurrent Lorentzian α-

Sasakian manifolds is related in terms of contact forms η(P1) and η(P2) as given by

r =
1

η(P1)

[
2(n− 1)α2η(P1)− (n2 + 2)η(P2)

]
.

Proof: Permutting the equation (4.1.1) twice with respect to X,Y, Z; adding the three

equations and using Bianchi’s second identity, we have

A(X)R(Y, Z)W +B(X)g(Z,W )Y + A(Y )R(Z,X)W

+B(Y )g(X,W )Z + A(Z)R(X,Y )W +B(Z)g(Y,W )X = 0. (4.3.1)
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Contracting (4.3.1) with respect to Y , we get

A(X)S(Z,W ) + nB(X)g(Z,W )− g(R(Z,X)P1,W )

+B(Z)g(X,W )− A(Z)S(X,W ) +B(Z)g(X,W ) = 0. (4.3.2)

In view of S(Y, Z) = g(QY,Z), the equation (4.3.2) reduces to

A(X)g(QZ,W ) + nB(X)g(Z,W )− g(R(Z,X)P1,W )

+B(Z)g(X,W )− A(Z)g(QX,W ) + B(Z)g(X,W ) = 0. (4.3.3)

Factoring off W , we get from (4.3.3)

A(X)QZ + nB(X)Z −R(Z,X)P1

+B(Z)X − A(Z)QX +B(Z)X = 0. (4.3.4)

Contracting (4.3.4) with respect to Z, we get

A(X)r + (n2 + 2)B(X)− 2S(X,P1) = 0. (4.3.5)

Putting X = ξ in the equation (4.3.5) and using the equation (4.1.2) and (1.16.22), we

get

r =
1

η(P1)

[
2(n− 1)α2η(P1)− (n2 + 2)η(P2)

]
.

completes the proof of the theorem.

Theorem 4.3.2 In a semi-generalized Ricci-recurrent Lorentzian α-Sasakian manifolds,

the 1-forms A and B are related as

(n− 1)α2A(X) + nB(X) = 0.

Proof: Taking Z = ξ in (4.2.1), we have

(∇XS)(Y, ξ) = A(X)S(Y, ξ) + nB(X)g(Y, ξ). (4.3.6)

The left hand side of (4.3.6), clearly can be written in the form

(∇XS)(Y, ξ) = ∇XS(Y, ξ)− S(∇XY, ξ)− S(Y,∇Xξ),
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which in view of (1.16.16), (1.16.17) and (1.16.22) gives

−(n− 1)α3g(Y, φX)− αS(Y, φX).

While the right hand side of (4.3.6) equals

A(X)S(Y, ξ) + nB(X)g(Y, ξ) = (n− 1)α2A(X)η(Y ) + nB(X)η(Y ).

Hence,

(n− 1)α3g(Y, φX)− αS(Y, φX) = (n− 1)α2A(X)η(Y ) + nB(X)η(Y ). (4.3.7)

Putting Y = ξ in (4.3.7) and then using (1.16.12), (1.16.15) and (1.16.22) we get

(n− 1)α3η(φX)− (n− 1)α2η(φX) = −(n− 1)α2A(X)− nB(X),

or

(n− 1)α2A(X) + nB(X) = 0.

Hence, completes the proof.

Theorem 4.3.3 If a semi-generalized Ricci-recurrent Lorentzian α-Sasakian manifolds

is an Einstein manifold then 1-forms A and B are related as

λA(Y ) + nB(Y ) = 0.

Proof: For an Einstein manifold, we have S(Y, Z) = λg(Y, Z) which gives (∇US) = 0,

where λ is constant.

Hence from (4.2.1) we have

[λA(X) + nB(X)] g(Y, Z) + [λA(Y ) + nB(Y )] g(Z,X)

+ [λA(Z) + nB(Z)] g(X,Y ) = 0. (4.3.8)

Replacing Z by ξ in (4.3.8) and using (4.1.2) and (1.16.15), we have

[λA(X) + nB(X)] η(Y ) + [λA(Y ) + nB(Y )] η(X)

+ [λη(P1) + nη(P2)] g(X, Y ) = 0. (4.3.9)
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Again, taking X = Y = ξ in (4.3.9) and using (4.1.2), (1.16.12) and (1.16.15), we get

λη(P1) + nη(P2) = 0. (4.3.10)

Using (4.1.2) and (1.16.15) in the above equation, it follows that

λA(Y ) + nB(Y ) = 0.

This completes the proof.

4.4 Semi-generalized φ-recurrent P -Sasakian

manifolds

Definition 4.4.1 A P -Sasakian manifold (Mn, g) is called semi-generalized φ recurrent

if its curvature tensor R satisfies the condition

φ2
(
(∇WR)(X,Y )Z

)
= A(W )R(X,Y )Z +B(W )g(Y, Z)X, (4.4.1)

where A and B are two 1-forms, B is non-zero and these are defined by

A(W ) = g(W,P1), B(W ) = g(W,P2) (4.4.2)

and P1 and P2 are vector fields associated with 1-forms A and B, respectively.

Theorem 4.4.1 A semi generalized φ-recurrent P -Sasakian manifold (Mn, g) is an Ein-

stein manifold and moreover; the 1-forms A and B are related as

(n− 1)A(W ) = nB(W ).

Proof: Let us consider a semi-generalized φ-recurrent P -Sasakian manifold. Then by

virtue of (1.17.1) and (4.4.1) we have

(∇WR)(X,Y )Z − η
(
(∇WR)(X,Y )Z

)
ξ

= A(W )R(X, Y )Z +B(W )g(Y, Z)X. (4.4.3)
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From which it follows that

g((∇WR)(X, Y )Z,U)− η((∇WR)(X, Y )Z)η(U)

= A(W )g(R(X,Y )Z,U) +B(W )g(Y, Z)g(X,U). (4.4.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting X = U = ei in (4.4.4) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇WS)(Y, Z) −
n∑

i=1

η
(
(∇WR)(ei, Y )Z

)
η(ei)

= A(W )S(Y, Z) + nB(W )g(Y, Z). (4.4.5)

Putting Z = ξ in the above equation and using (1.17.3) and (4.1.12) we get

(∇WS)(Y, ξ) −
n∑

i=1

g((∇WR)(ei, Y )ξ, ξ)η(ei)

= −(n− 1)A(W )η(Y ) + nB(W )η(Y ). (4.4.6)

We know that

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(∇W ei, Y )ξ, ξ)

= −g(R(ei,∇WY )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ). (4.4.7)

at p ∈Mn. Since {ei} is an orthonormal basis, ∇Xei = 0 at p. Using (4.1.8) we find

g(R(ei,∇WY )ξ, ξ) = g
(
η(ei)∇WY − η(∇WY )ei, ξ

)
= η(ei)g(∇WY, ξ)− η(∇WY )g(ei, ξ)

= 0. (4.4.8)

Using (4.4.8) in (4.4.7) we have

g((∇WR)(ei, Y )ξ, ξ) = g(∇WR(ei, Y )ξ, ξ)− g(R(ei, Y )∇W ξ, ξ). (4.4.9)

Since

g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0,
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we get

g(∇WR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,∇W ξ) = 0. (4.4.10)

In consequence of (4.4.10), the equation (4.4.9) becomes

g((∇WR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,∇W ξ)− g(R(ei, Y )∇W ξ, ξ). (4.4.11)

Using (4.1.4) and (4.1.7) in the above equation, we get

g((∇WR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ, φW )− g(R(ei, Y )φW, ξ)

= −η(ei)g(Y, φW ) + η(Y )g(ei, φW )

− η(Y )g(ei, φW ) + g(Y, φW )η(ei)

= 0, (4.4.12)

i.e.,

g((∇WR)(ei, Y )ξ, ξ) = 0. (4.4.13)

By using (4.4.13) in the equation (4.4.6) we get

(∇WS)(Y, ξ) = −(n− 1)A(W )η(Y ) + nB(W )η(Y ). (4.4.14)

Further, we know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (4.1.4), (4.1.5) and (4.1.13) in the above relation, it follows

(∇WS)(Y, ξ) = −(n− 1)g(φW, Y )− S(φW, Y ). (4.4.15)

In consequence of (4.4.14) and (4.4.15) we obtain

−(n− 1)g(φW, Y )− S(φW, Y ) = −(n− 1)A(W )η(Y ) + nB(W )η(Y ). (4.4.16)

Replacing Y = ξ in (4.4.16) then using (1.17.2) and (1.17.3), we get

(n− 1)A(W ) = nB(W ). (4.4.17)
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Using (4.4.17) in (4.4.16), we obtain

S(Y, φW ) = −(n− 1)g(Y, φW ). (4.4.18)

Again, replacing Y by φY both sides in the above equation (4.4.18) and using the equa-

tions (1.17.4) and (4.1.13), we obtain

S(Y,W ) = −(n− 1)g(Y,W ),

i.e., the manifold is an Einstein manifold.

4.5 Semi-generalized φ-recurrent Lorentzian

α-Sasakian manifolds

Definition 4.5.1 A Lorentzian α-Sasakian manifolds (Mn, g) is called semi-generalized

φ recurrent if its curvature tensor R satisfies the condition

φ2
(
(∇WR)(X,Y )Z

)
= A(W )R(X,Y )Z +B(W )g(Y, Z)X, (4.5.1)

where A and B are two 1-forms, B is non-zero and these are defined by

A(W ) = g(W,P1), B(W ) = g(W,P2) (4.5.2)

and P1 and P2 are vector fields associated with 1-forms A and B, respectively.

Theorem 4.5.1 A semi generalized ϕ-recurrent Lorentzian α-Sasakian manifolds (Mn, g)

is an Einstein manifold and moreover the 1-forms A and B are related as

[
α2(n− 1)

]
A(W ) = nB(W ).

Proof: Let us consider a semi-generalized φ-recurrent Lorentzian α-Sasakian manifolds.

Then by virtue of (1.16.13) and (4.5.1) we have

(∇WR)(X, Y )Z + η((∇WR)(X, Y )Z)ξ

= A(W )R(X,Y )Z +B(W )g(Y, Z)X, (4.5.3)
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from which it follows that

g((∇WR)(X,Y )Z,U) + η((∇WR)(X, Y )Z)η(U)

= A(W )g(R(X,Y )Z,U) +B(W )g(Y, Z)g(X,U). (4.5.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting X = U = ei in (4.5.4) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇WS)(Y, Z) +
n∑

i=1

η
(
(∇WR)(ei, Y )Z

)
η(ei)

= A(W )S(Y, Z) + nB(W )g(Y, Z). (4.5.5)

The second term of left hand side of (4.5.5) by putting Z=ξ takes the form g((∇WR)(ei, Y )ξ, ξ)

which is zero in this case. So, by replacing Z by ξ in (4.5.5) and using (1.16.22), we get

(∇WS)(Y, ξ) = (n− 1)α2A(W )η(Y ) + nB(W )η(Y ). (4.5.6)

We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (1.16.16), (1.16.17) and (1.16.22) in the above relation, it follows

(∇WS)(Y, ξ) = (n− 1)α3g(φW, Y )− αS(φW, Y ). (4.5.7)

From (4.5.6) and (4.5.7) we obtain

(n− 1)α3g(φW, Y )− αS(φW, Y ) = α2(n− 1)A(W )η(Y )

+ nB(W )η(Y ). (4.5.8)

Replacing Y = ξ in (4.5.8) and using (1.16.15) and (1.16.22), we get

−α2(n− 1)A(W ) = nB(W ). (4.5.9)
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Using (4.5.9) in (4.5.8) we obtain

S(Y, φW ) = (n− 1)α2g(Y, φW ). (4.5.10)

Again, replacing Y by φY both sides in (4.5.10) and using (1.16.14) and (1.16.24), we

obtain

S(Y,W ) = (n− 1)α2g(Y,W ),

i.e., the manifold is an Einstein manifold.

4.6 Semi-generalized concircular φ-recurrent

P -Sasakian manifolds

Definition 4.6.1 A P -Sasakian manifold (Mn, g) is called semi-generalized concircu-

lar φ-recurrent if its concircular curvature tensor defined (Maralabhavi and Rathnamma,

1999)

L(X,Y )Z = R(X,Y )Z − r

n(n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
(4.6.1)

satisfies the condition

φ2
(
(∇WL)(X,Y )Z

)
= A(W )L(X, Y )Z +B(W )g(Y, Z)X (4.6.2)

where A and B are defined as (4.4.2) and r is the scalar curvature of the manifold (Mn, g).

Theorem 4.6.1 Let (Mn, g) be a semi-generalized concircular φ-recurrent P -Sasakian

manifold then [
−(n− 1)− r

n

]
A(W ) + nB(W ) = 0.

Proof: Let us consider a semi-generalized φ-recurrent P -Sasakian manifold. Then by

virtue of (1.17.1) and (4.6.2), we have

(∇WL)(X, Y )Z − η((∇WL)(X, Y )Z)ξ

= A(W )L(X,Y )Z +B(W )g(Y, Z)X, (4.6.3)
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from which it follows that

g((∇WL)(X, Y )Z,U)− η((∇WL)(X, Y )Z)η(U)

= A(W )g(L(X,Y )Z,U) + B(W )g(Y, Z)g(X,U). (4.6.4)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting Y = Z = ei in (4.6.4) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇WS)(X,U) =
W (r)

n
g(X,U)− W (r)

n
η(X)η(U)

+ (∇WS)(X, ξ)η(U) + nB(W )g(X,U)

+
[
S(X,U)− r

n
g(X,U)

]
A(W ). (4.6.5)

Replacing U by ξ in (4.6.5) and using (1.17.4), (4.1.12) and (1.17.3), we have[
−(n− 1)− r

n

]
A(W )η(X) + nB(W )η(X) = 0. (4.6.6)

Putting X = ξ in (4.6.6), we obtain[
−(n− 1)− r

n

]
A(W ) + nB(W ) = 0.

This completes the proof.

Theorem 4.6.2 A semi-generalized concircular φ-recurrent P -Sasakian manifold is an

Einstein manifold.

Proof: Putting X = U = ei in (4.6.4) and taking summation over i, 1 ≤ i ≤ n, we get

(∇WS)(Y, Z) =
n∑

i=1

g((∇WR)(ei, Y )Z, ξ)g(ei, ξ)

+
W (r)

n
g(Y, Z)− W (r)

n(n− 1)

[
g(Y, Z)− η(Y )η(Z)

]
+

[
S(Y, Z)− r

n
g(Y, Z)

]
A(W ) + nB(W )g(Y, Z). (4.6.7)

Replacing Z by ξ in (4.6.7) and using (4.6.6), we have

(∇WS)(Y, Z) =
W (r)

n
η(Y ). (4.6.8)
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We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (4.1.4), (4.1.5) and (4.1.12) in the above relation, it follows that

(∇WS)(Y, ξ) = −(n− 1)g(Y, φW )− S(Y, φW ). (4.6.9)

In view of (4.6.8) and (4.6.9), we obtain

S(Y, φW ) = −(n− 1)g(Y, φW )− W (r)

n
η(Y ). (4.6.10)

Replacing Y by φY in (4.6.10) then using (1.17.4), (1.17.3) and (4.1.13), we obtain

S(Y,W ) = −(n− 1)g(Y,W ).

4.7 Semi-generalized concircular φ-recurrent

Lorentzian α-Sasakian manifolds

Definition 4.7.1 A Lorentzian α-Sasakian manifolds (Mn, g) is called semi-generalized

concircular φ-recurrent if its concircular curvature tensor (Venkatesha and Bagewadi,

2006) defined in (4.6.1) satisfies the condition

φ2
(
(∇WL)(X,Y )Z

)
= A(W )L(X, Y )Z +B(W )g(Y, Z)X (4.7.1)

where A and B are defined as (4.4.2) and r is the scalar curvature of the manifold (Mn, g).

Theorem 4.7.1 Let (Mn, g) be a semi-generalized concircular φ-recurrent Lorentzian α-

Sasakian manifolds then[
(n− 1)α2 − r

n

]
A(W ) + n B(W ) = 0.

Proof: Let us consider a semi-generalized φ-recurrent Lorentzian α-Sasakian manifolds.

Then by virtue of (1.16.13) and (4.7.1), we have

(∇WL)(X, Y )Z + η((∇WL)(X,Y )Z)ξ

= A(W )L(X, Y )Z +B(W )g(Y, Z)X, (4.7.2)
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from which it follows that

g((∇WL)(X,Y )Z,U) + η((∇WL)(X, Y )Z)η(U)

= A(W )g(L(X,Y )Z,U) + B(W )g(Y, Z)g(X,U). (4.7.3)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting Y = Z = ei in (4.7.3) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇WS)(X,U) =
W (r)

n
g(X,U) +

W (r)

n
η(X)η(U)

− (∇WS)(X, ξ)η(U) + nB(W )g(X,U)

+
[
S(X,U − r

n
g(X,U)

]
A(W ). (4.7.4)

Replacing U by ξ in (4.7.4) and using (1.16.12), (1.16.15) and (1.16.22), we have[
(n− 1)α2 − r

n

]
A(W )η(X) + nB(W )η(X) = 0. (4.7.5)

Putting X = ξ in (4.7.5), we obtain[
(n− 1)α2 − r

n

]
A(W ) + nB(W ) = 0.

Hence, completes the proof.

Theorem 4.7.2 A semi-generalized concircular φ-recurrent Lorentzian α-Sasakian man-

ifolds is an Einstein manifold.

Proof: Putting X = U = ei in (4.7.3) and taking summation over i, 1 ≤ i ≤ n, we get

(∇WS)(Y, Z) =
n∑

i=1

g((∇WR)(ei, Y )Z, ξ)g(ei, ξ)

+
W (r)

n
g(Y, Z) +

W (r)

n(n− 1)

[
g(Y, Z)− η(Y )η(Z)

]
+

[
S(Y, Z)− r

n
g(Y, Z)

]
A(W ) + nB(W )g(Y, Z). (4.7.6)

Replacing Z by ξ in (4.7.6) and using (4.7.5), we have

(∇WS)(Y, ξ) =
n+ 1

n(n− 1)
W (r)η(Y ). (4.7.7)

90



We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).

Using (1.16.16), (1.16.17) and (1.16.22) in the above relation, it follows that

(∇WS)(Y, ξ) = (n− 1)α3g(Y, φW )− αS(Y, φW ). (4.7.8)

In view of (4.7.7) and (4.7.8), we obtain

S(Y, φW ) =
1

α

[
(n− 1)α3g(Y, φW )− n+ 1

n(n− 1)
W (r)η(Y )

]
. (4.7.9)

Replacing Y by φY in (4.7.9) then using (1.16.3), (1.16.12) and (1.16.22), we obtain

S(Y,W ) = (n− 1)α2g(Y,W ).

This completes the proof.

4.8 Semi-generalized M-Projective φ-recurrent

P -Sasakian manifolds

Definition 4.8.1 A P -Sasakian manifold (Mn, g) is called semi-generalizedM-projective

φ-recurrent if M-projective curvature defined in (Prasad, 2000) satisfies the condition

φ2((∇VW
∗)(X, Y )Z) = A(V )W ∗(X, Y )Z +B(V )g(Y, Z)X, (4.8.1)

where A and B are defined as (4.4.2).

Theorem 4.8.1 Let (Mn, g) be a semi-generalized M-Projective φ-recurrent P -Sasakian

manifold then

−
[
n2 − n+ r

2(n− 1)

]
A(V ) + nB(V ) = 0.

Proof: Let us consider a semi-generalized φ-recurrent P -Sasakian manifold. Then by

virtue of (1.17.1) and (4.8.1), we have

(∇VW
∗)(X, Y )Z − η((∇VW

∗)(X,Y )Z)ξ

= A(V )W ∗(X, Y )Z +B(V )g(Y, Z)X, (4.8.2)
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from which it follows that

g((∇VW
∗)(X,Y )Z,U)− η((∇VW

∗)(X,Y )Z))η(U)

= A(V )g(W ∗(X,Y )Z,U) + B(V )g(Y, Z)g(X,U). (4.8.3)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting Y = Z = ei in (4.8.3) and taking summation over i, 1 ≤ i ≤ n,

we get

n

2(n− 1)
(∇V S)(X,U)−

V (r)

2(n− 1)
g(X,U)

− n

2(n− 1)
(∇V S)(X, ξ)η(U) +

V (r)

2(n− 1)
η(X)η(U)

=

[
n

2(n− 1)
S(X,U)− r

2(n− 1)
g(X,U)

]
A(V )

+ nB(V )g(X,U). (4.8.4)

Replacing U by ξ in (4.8.4) and using (1.17.2) and (1.17.3), we have

−
[
n2 − n+ r

2(n− 1)

]
A(V )η(X) + nB(V )η(X) = 0. (4.8.5)

Putting X = ξ in (4.8.5), we obtain

−
[
n2 − n+ r

2(n− 1)

]
A(V ) + nB(V ) = 0.

This completes the proof.

Theorem 4.8.2 A semi-generalizedM-Projective φ-recurrent P -Sasakian manifold is an

Einstein manifold.

Proof: Putting X = U = ei in (4.8.3) and taking summation over i, 1 ≤ i ≤ n, we get

n

2(n− 1)
(∇V S)(Y, Z) =

n∑
i=1

g((∇VR)(ei, Y )Z, ξ)g(ei, ξ)

+
V (r)

2(n− 1)
g(Y, Z)

− 1

2(n− 1)

[
(∇V S)(Y, Z)g(ξ, ξ)− (∇V S)(ξ, Z)η(Y )

+ g(Y, Z)(∇V S)(ξ, ξ)− (∇V S)(Y, ξ)η(Z)
]
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+

[
n

2(n− 1)
S(Y, Z)− r

2(n− 1)
g(Y, Z)

]
A(V )

+ nB(V )g(Y, Z). (4.8.6)

Replacing Z by ξ in (4.8.6) and using (1.17.3) and (4.1.12), we have

(∇V S)(Y, ξ) = −V (r)

n
η(Y ). (4.8.7)

We know that

(∇V S)(Y, ξ) = ∇V S(Y, ξ)− S(∇V Y, ξ)− S(Y,∇V ξ).

Using (4.1.4), (4.1.5) and (4.1.12) in above the relation, it follows that

(∇V S)(Y, ξ) = −(n− 1)g(Y, φV )− S(Y, φV ). (4.8.8)

In view of (4.8.7) and (4.8.8)

S(Y, φV ) = −(n− 1)g(Y, φV ) +
V (r)

n
η(Y ). (4.8.9)

Replacing Y by φY in (4.8.9) then using (1.17.4) and (4.1.13), we get

S(Y, V ) = −(n− 1)g(Y, V ).

This completes the proof.

4.9 Semi-generalized M-Projective φ-recurrent

Lorentzian α-Sasakian manifolds

Definition 4.9.1 A Lorentzian α-Sasakian manifolds (Mn, g) is called semi-generalized

M-projective φ-recurrent if M-Projective curvature tensor defined in (Prasad, 2000) sat-

isfies the condition

φ2((∇VW
∗)(X, Y )Z) = A(V )W ∗(X, Y )Z +B(V )g(Y, Z)X, (4.9.1)

where A and B are defined as (4.4.2).

Theorem 4.9.1 Let (Mn, g) be a semi-generalized M-Projective φ-recurrent Lorentzian
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α-Sasakian manifolds then[
(nα2(n− 1)− r)

2(n− 1)

]
A(V ) + nB(V ) = 0.

Proof: Let us consider a semi-generalized φ-recurrent Lorentzian α-Sasakian manifolds.

Then by virtue of (1.16.13) and (4.9.1), we have

(∇VW
∗)(X,Y )Z + η((∇VW

∗)(X,Y )Z)ξ

= A(V )W ∗(X,Y )Z +B(V )g(Y, Z)X, (4.9.2)

from which it follows that

g((∇VW
∗)(X, Y )Z,U) + η((∇VW

∗)(X,Y )Z))η(U)

= A(V )g(W ∗(X, Y )Z,U) +B(V )g(Y, Z)g(X,U). (4.9.3)

Let {ei}, i = 1, 2, ...n be an orthonormal basis of the tangent space at any point of the

manifold. Then putting Y = Z = ei in (4.9.3) and taking summation over i, 1 ≤ i ≤ n,

we get

− n

2(n− 1)
(∇V S)(X,U)−

V (r)

2(n− 1)
g(X,U)

− n

2(n− 1)
(∇V S)(X, ξ)η(U)−

V (r)

2(n− 1)
η(X)η(U)

=

[
n

2(n− 1)
S(X,U)− r

2(n− 1)
g(X,U)

]
A(V )

+ nB(V )g(X,U). (4.9.4)

Replacing U by ξ in (4.9.4) and using (1.16.12), (1.16.15) and (1.16.22), we have

A(V )

[
(nα2(n− 1)− r)

2(n− 1)

]
η(X) + nB(V )η(X) = 0. (4.9.5)

Putting X = ξ in (4.9.5), we obtain[
(nα2(n− 1)− r)

2(n− 1)

]
A(V ) + nB(V ) = 0.

This completes the proof.

Theorem 4.9.2 A semi-generalizedM-Projective φ-recurrent Lorentzian α-Sasakian man-

ifold is an Einstein manifold.
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Proof: Putting X = U = ei in (4.9.3) and taking summation over i, 1 ≤ i ≤ n, we get

(∇V S)(Y, Z) =
2(n− 1)

n

[
−

n∑
i=1

g
(
(∇VR)(ei, Y )Z, ξ

)
g(ei, ξ)

+
V (r)

2(n− 1)
g(Y, Z)

+
1

2(n− 1)

{
− (∇V S)(Y, Z)− (∇V S)(ξ, Z)η(Y )

+ g(Y, Z)(∇V S)(ξ, ξ)− (∇V S)(Y, ξ)η(Z)
}

+
{ n

2(n− 1)
S(Y, Z)− r

2(n− 1)
g(Y, Z)

}
A(V )

+ nB(V )g(Y, Z)
]
. (4.9.6)

Replacing Z by ξ in (4.9.6) and using (1.16.12), (1.16.15) and (1.16.22), we have

(∇V S)(Y, ξ) =
V (r)

n
η(Y ). (4.9.7)

We know that

(∇V S)(Y, ξ) = ∇V S(Y, ξ)− S(∇V Y, ξ)− S(Y,∇V ξ).

Using (1.16.16), (1.16.17) and (1.16.22) in above relation, it follows that

(∇V S)(Y, ξ) = (n− 1)α3g(Y, φV )− αS(Y, φV ). (4.9.8)

In view of (4.9.7) and (4.9.8)

S(Y, φV ) =
1

α

[
−V (r)

n
η(Y ) + (n− 1)α3g(Y, φV )

]
. (4.9.9)

Replacing Y by φY in (4.9.9) then using (1.16.14), (1.16.12) and (1.16.24), we get

S(Y, V ) = (n− 1)α2g(Y, V ).

This completes the proof.

95



4.10 Three dimensional locally semi-generalized

φ-recurrent P -Sasakian manifolds

Theorem 4.10.1 The curvature tensor of three dimensional semi-generalized φ-recurrent

P -Sasakian manifold is given by

R(X,Y, Z) =

[
dr(ei)

2A(ei)
− B(ei)

A(ei)

]
g(Y, Z)X −

[ dr(ei)
2A(ei)

]
g(X,Z)Y.

Proof: In a three-dimensional Riemannian manifold (M3, g), we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y +
r

2

[
g(X,Z)Y − g(Y, Z)X

]
, (4.10.1)

where Q is the Ricci operator, i.e., S(X, Y ) = g(QX, Y ) and r is the scalar curvature of

the manifold. In 3-dimensional P -Sasakian manifolds the equations (4.1.11) and (4.1.12)

assume the following form

Q ξ = −2 ξ, (4.10.2)

and

S(X, ξ) = −2 η(X), (4.10.3)

respectively.

Now putting Z = ξ in (4.10.1) and using the equations (1.17.3) and (4.10.3), we get

R(X, Y )ξ = η(Y )QX − η(X)QY + 2 [η(X)Y − η(Y )X]

+
r

2

[
η(X)Y − η(Y )X

]
. (4.10.4)

Using (4.1.8) in (4.10.4), we have{
1 +

r

2

}[
η(X)Y − η(Y )X

]
= η(X)QY − η(Y )QX. (4.10.5)
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Putting Y = ξ in the equation (4.10.5) and using the equations (1.17.2) and (4.10.2), we

get

QX = −
{
3 +

r

2

}
η(X)ξ +

{
1 +

r

2

}
X. (4.10.6)

Therefore, it follows from (4.10.6) that

S(X, Y ) = −
{
3 +

r

2

}
η(X)η(Y ) +

{
1 +

r

2

}
g(X, Y ). (4.10.7)

Thus from (4.10.1), (4.10.6) and (4.10.7), we get

R(X, Y )Z = −
{
2 +

r

2

}[
g(X,Z)Y − g(Y, Z)X

]
−

{
3 +

r

2

}[
g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y
]
. (4.10.8)

Taking the covariant differentiation to the both sides of the equation (4.10.8), we get

(∇WR)(X, Y )Z =
dr(W )

2

[
g(X,Z)Y − g(Y, Z)X + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y
]

−
{
3 +

r

2

}[
g(Y, Z)η)(X)− g(X,Z)η)(Y )

]
(∇W ξ)

−
{
3 +

r

2

}[
g(Y, Z)ξ − η(Z)Y

]
(∇Wη)(X)

−
{
3 +

r

2

}[
η(Y )X − η(X)Y

]
(∇Wη)(Z)

+
{
3 +

r

2

}[
g(X,Z)ξ − η(Z)X

]
(∇Wη)(Y ). (4.10.9)

Noting, that we may assume that all vector fields X, Y, Z,W are orthogonal to ξ and

using (1.17.1), we get

(∇WR)(X,Y )Z =
dr(W )

2

[
g(X,Z)Y − g(Y, Z)X

]
−

{
3 +

r

2

} [
g(Y, Z)(∇Wη)(X)

− g(X,Z)(∇Wη)(Y )
]
ξ. (4.10.10)
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Applying φ2 to the both side of (4.10.10) and using (1.17.1) and (4.1.4), we get

φ2
(
(∇WR)(X,Y )Z

)
=
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y

]
. (4.10.11)

By (4.4.1), the equation (4.10.11) reduces to

A(W )R(X, Y )Z =
[dr(W )

2
−B(W )

]
g(Y, Z)X − dr(W )

2
g(X,Z)Y.

Putting W = {ei}, where i = 1, 2, 3 is an orthonormal basis of the tangent space at any

point of the manifold and taking summation over i, 1 ≤ i ≤ 3, we obtain

R(X, Y )Z =

[
dr(ei)

2A(ei)
− B(ei)

A(ei)

]
g(Y, Z)X −

[ dr(ei)
2A(ei)

]
g(X,Z)Y.

Hence, prove the theorem.

4.11 Three dimensional locally semi-generalized

φ-recurrent Lorentzian α-Sasakian manifolds

Theorem 4.11.1 The curvature tensor of three dimensional semi-generalized φ-recurrent

Lorentzian α-Sasakian manifold is given by

R(X,Y, Z) =

[
dr(ei)

2A(ei)
− B(ei)

A(ei)

]
g(Y, Z)X −

[ dr(ei)
2A(ei)

]
g(X,Z)Y.

Proof: In a three-dimensional Riemannian manifold (M3, g), we have

R(X,Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

− S(X,Z)Y +
r

2

[
g(X,Z)Y − g(Y, Z)X

]
, (4.11.1)

where Q is the Ricci operator, i.e., S(X, Y ) = g(QX, Y ) and r is the scalar curvature of

the manifold. In 3-dimensional Lorentzian α-Sasakian manifolds the equation (1.16.23)

and (1.16.22) assume the following form

Q ξ = 2α2 ξ, (4.11.2)

S(X, ξ) = 2α2 η(X), (4.11.3)
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respectively.

Now putting Z = ξ in (4.11.1) and using the equations (1.16.15) and (4.11.3), we get

R(X,Y )ξ = η(Y )QX − η(X)QY +
{
2 α2 − r

2

}[
η(Y )X − η(X)Y

]
. (4.11.4)

Using (1.16.20) in (4.11.4), we have{
− α2 +

r

2

}[
η(Y )X − η(X)Y

]
= η(Y )QX − η(X)QY. (4.11.5)

Putting Y = ξ in (4.11.5) and using the equations (1.16.12) and (4.11.2), we get

QX =
{
− α2 +

r

2

}
X +

{
− 3 α2 +

r

2

}
η(X)ξ. (4.11.6)

Therefore, it follows from (4.11.6) that

S(X, Y ) =
{
− α2 +

r

2

}
g(X,Y ) +

{
− 3α2 +

r

2

}
η(X)η(Y ). (4.11.7)

Thus from (4.11.1), (4.11.6) and (4.11.7), we get

R(X,Y )Z =
{
− 2α2 +

r

2

}[
g(Y, Z)X − g(X,Z)Y

]
+

{
− 3α2 +

r

2

}[
g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y
]
. (4.11.8)

Taking the covariant differentiation to the both sides of the equation (4.11.8), we get

(∇WR)(X, Y )Z =
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y + g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(Y )η(Z)X − η(X)η(Z)Y
]

+
{
− 3α2 +

r

2

}[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
(∇W ξ)

+
{
− 3α2 +

r

2

}[
g(Y, Z)ξ − η(Z)Y

]
(∇Wη)(X)

+
{
− 3α2 +

r

2

}[
η(Y )X − η(X)Y

]
(∇Wη)(Z)

−
{
− 3α2 +

r

2

}[
g(X,Z)ξ − η(Z)X

]
(∇Wη)(Y ). (4.11.9)
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Noting, that we may assume that all vector fields X, Y, Z,W are orthogonal to ξ and

using (1.16.12), we get

(∇WR)(X,Y )Z =
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y

]
+

{
− 3α2 +

r

2

} [
g(Y, Z)(∇Wη)(X)

− g(X,Z)(∇Wη)(Y )
]
ξ. (4.11.10)

Applying φ2 to the both side of (4.11.10) and using (1.16.12) and (1.16.13), we get

φ2
(
(∇WR)(X,Y )Z

)
=
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y

]
. (4.11.11)

By (4.4.1), the equation (4.11.11) reduces to

A(W )R(X, Y )Z =

[
dr(W )

2
−B(W )

]
g(Y, Z)X − dr(W )

2
g(X,Z)Y.

Putting W = {ei}, where i = 1, 2, 3 is an orthonormal basis of the tangent space at any

point of the manifold and taking summation over i, 1 ≤ i ≤ 3, we obtain

R(X,Y, Z) =

[
dr(ei)

2A(ei)
− B(ei)

A(ei)

]
g(Y, Z)X −

[ dr(ei)
2A(ei)

]
g(X,Z)Y.

Hence, prove the theorem.
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Chapter 5

On The Almost r-paracontact

Submanifold

5.1 Introduction

LetMn be an n-dimensional Riemannian manifold with a positive definite metric g. If on

Mn there exist a tensor field φ of type (1,1), r-vector fields ξ1, ξ2, .....ξr(r < n), r 1-form

η1, η2, .....ηr such that

ηα(ξβ) = δαβ , α, β ∈ (r) = 1, 2, ....., r (5.1.1)

φ2(X) = X − ηα(X)ξα, (5.1.2)

ηα(X) = g(X, ξα), α ∈ (r), (5.1.3)

g(φX,φY ) = g(X,Y )−
∑
α

ηα(X)ηα(Y ), (5.1.4)

where X and Y are vector fields on M and aαbα ⇒
∑

α a
αbα, then the structure

∑
=

(φ, ξα, η
α, g)αϵ(r) is said to be an almost r-paracontact Riemannian structure on Mn and

Mn is an almost r-paracontact Riemannian manifold (Bucki and Miernowski, 1985).

From the definitions of almost r-paracontact Riemannian structure, it follows that

φ(ξα) = 0, α ∈ (r), (5.1.5)
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and

ηα ◦ φ = 0, α ∈ (r). (5.1.6)

If

Φ(X, Y ) ⇒ g(φX, Y ) = g(X,φY ), (5.1.7)

then the tensor field Φ is symmetric

Φ(X, Y ) = Φ(Y,X), (5.1.8)

and

Φ(X,Y ) = (DXη
α)(Y ), (5.1.9)

5.2 Almost r-paracontact submanifold

Let Mn−1 be a submanifold of Mn+1 with the inclusion b : Mn−1 −→ Mn+1 map such

that p ∈Mn−1 to bp ∈Mn+1, the map b induces a linear transformation (Jacobian map)

B such that

B : T n−1 −→ T n+1,

where T n−1 is a tangent space to Mn−1 at a point p and T n+1 is the tangent space to

Mn+1 such that (X in Mn−1 at p) −→ (BX in Mn+1 at bp).

Agreement: In what follows the equation containing X,Y, Z hold for arbitrary vector

field X,Y, Z in Mn−1. Suppose that Mn+1 is an almost r-paracontact Riemannian man-

ifold with metric tensor g̃. Then the submanifold Mn−1 is also an almost r-paracontact

Riemannian manifold with metric tensor g such that

g(X, Y ) = g̃(BX,BY ). (5.2.1)

Let ∇̇ be the connection induced on the submanifold Mn−1 from the connection ˜̇∇ on

the enveloping manifold with respect to unit normal vectors N1 and N2, then we have the

Gauss Equation (Mishra, 1972).

˜̇∇BXBY = B(∇̇XY ) + h(X, Y )N1 + k(X, Y )N2, (5.2.2)
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for arbitrary vector fields X and Y in Mn−1, where h and k are the second fundamental

tensors of Mn−1.

The Weingarten equations are given by (Nivas and Verma, 2005)

˜̇∇BXN1 = −BHX + l(X)N2, (5.2.3)

˜̇∇BXN2 = −BKX − l(X)N1, (5.2.4)

where H and K are tensor of type (1, 1) such that

g(H(X), Y ) = h(X,Y ),

g(K(X), Y ) = k(X, Y ).

Theorem 5.2.1 The necessary and sufficient conditions thatMn−1 be an almost r-paracontact

metric submanifold with the structure (φ, ξα, η
α) in an almost r-paracontact metric man-

ifold Mn+1 are

η̃α(BX) ◦ b = ηα(X), r(X) = s(X) = 0, ρ = σ = 0,

φ̃(BX) = BX, ξ̃α = Bξα,

where X
def
= φX.

Proof: Let us consider

φ̃(BX) = BX + r(X)N1 + s(X)N2, (5.2.5)

ξ̃α = Bξα + ρN1 + σN2, (5.2.6)

φ̃(N1) = −Bp+ θN2, (5.2.7)

φ̃(N2) = −Bq + θN1. (5.2.8)
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On pre-multiplying in (5.2.5) by φ̃ and using (5.1.2), (5.2.6), (5.2.7) and (5.2.8), we

obtained

BX − η̃α(BX)Bξα + ρN1 + σN2 = BX −Bp α(X)−Bq r(X)

+ N1

{
r(X) + θs(X)

}
+ N2

{
s(X) + Θr(X)

}
. (5.2.9)

Substituting from (5.2.5) in

g̃ (φ̃BX, φ̃BY ) = g̃(BX,BY )−
∑
α

η̃α(BX) η̃α(BY ),

and using (5.2.1), we obtain

g(X, Y ) = g(X,Y )−
∑
α

{ηα(BX)} {ηα(BY )}

− r(X)r(Y )− s(X)s(Y ). (5.2.10)

Equation (5.2.9) and (5.2.10) imply

X = X − ηα(BX)ξα,

g(X, Y ) = g(X, Y )− Σαη
α(BX)ηα(BY ),

if and only if

η̃α(BX) ◦ b = ηα(X),

r(X)r(Y ) + s(X)s(Y ) = 0,

pr(X) + qs(X) = 0,

r(X) + θs(X) + ρηα(X) = 0,

s(X) + Θr(X) + σηα(X) = 0. (5.2.11)

The above equations are consistent if and only if

η̃α(BX) ◦ b = ηα(X), r(X) = s(X) = 0,

and ρ = σ = 0. (5.2.12)
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Substituting (5.2.4) and (5.2.12) in (5.2.5) and (5.2.6), we obtain

φ̃(BX) = BX, ξ̃α = Bξα. (5.2.13)

Thus (5.2.12) and (5.2.13) are necessary and sufficient condition.

Theorem 5.2.2 When Mn−1 is an almost r-paracontact manifold then the following re-

lations hold

(a) η̃α(N1) = 0, (b) η̃α(N2) = 0, (5.2.14)

(a) φ̃(N1) = N2, (b) φ̃(N2) = N1. (5.2.15)

Proof: We have

g̃ (φ̃N1, BX)− g̃(φ̃BX,N1) = 0. (5.2.16)

By virtue of (5.2.7) and (5.2.12), the equation (5.2.16) assume the form

g(p,X) = 0 ⇒ p = 0. (5.2.17)

Similarly

q = 0. (5.2.18)

Pre-multiplying (5.2.7) by φ̃ and using (5.1.2) and (5.2.8), we get

N1 − η̃α(N1)ξ̃α = θΘN1,

which yield (5.2.14(a)) and

Θθ = 1. (5.2.19)

The equation (5.2.14(b)) follows similarly. From (5.1.4), (5.2.14(a)) and (5.2.14(b)), we

have

g̃(φ̃N1, φ̃N1) = g̃(N1, N1) = 1.
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Substituting from (5.2.7) and using (5.2.17) in above equation, we get

Θ2 = 1.

On putting Θ = 1 in (5.2.19), we get

θ = 1.

Hence we have (5.2.15).

Theorem 5.2.3 If ν and N be Nijenhuis tensor in the almost r-paracontact submanifold

Mn−1 and almost r-paracontact manifold Mn+1 respectively then

N (BX,BY ) = Bν(X, Y ). (5.2.20)

Proof: In consequence of (5.2.2) and (5.2.12), we have

φ̃(φ̃ [BX,BY ]) = φ̃
(
φ̃
( ˜̇∇BXBY − ˜̇∇BYBX

))
= φ̃

(
φ̃
(
B ˜̇∇BXBY −B ˜̇∇BYBX

))
= B[X, Y ].

Hence,

N (BX,BY ) = B
(
[X, Y ] + [X, Y ]− [X, Y ]− [X, Y ]

)
= Bν(X, Y ).

Hence prove the theorem.

Definition 5.2.1 An almost r-paracontact manifold is said to be normal if and only if

(Bucki, 1998)

N (X, Y )− 2dη̃α(X, Y )ξ̃α = 0.

Theorem 5.2.4 If an almost r-paracontact manifold Mn+1 is normal then almost r-

paracontact submanifold Mn−1 is also normal.
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Proof: Let almost r-paracontact manifold Mn+1 is normal then

N (BX,BY )− 2dη̃α(BX,BY )ξ̃α = 0

⇒ N (BX,BY )− 2
[
( ˜̇∇BXη

α)(BY )− ( ˜̇∇BY η
α)(BX)

]
ξ̃α = 0. (5.2.21)

On using (5.2.2), (5.2.12), (5.2.13), (5.2.14) and (5.2.20) in (5.2.21), we get

ν(X,Y )− 2
[
(∇̇Xη

α)(Y )− (∇̇Y η
α)(X)

]
ξα = 0,

⇒ ν(X,Y )− 2dηα(X, Y )ξα = 0.

This shows that almost r-paracontact submanifold Mn−1 is also normal.

Definition 5.2.2 If the second fundamental form h and k of Mn−1 are of the form

h(X, Y ) = µ1g̃(X,Y ) and k(X,Y ) = µ2g̃(X,Y ) where µ1, µ2 = TrB
n1 then Mn−1 is called

totally umbilical. In our case, we take µ1 = µ2 = µ. If the second fundamental form

vanishes identically then Mn−1 is said to be totally geodesic (Yano and Kon, 1977).

Theorem 5.2.5 Let Mn−1 be a submanifold tangent to the structure vector field ξ̃α of an

almost r-paracontact metric manifold Mn+1. If Mn−1 is totally umbilical then Mn−1 is

totally geodesic.

Proof: From Gauss equation, we have

˜̇∇BX ξ̃α = B∇̇X ξ̃α + h(X, ξ̃α)N1 + k(X, ξ̃α)N2,

or

Bφ̃X = B∇̇X ξ̃α + h(X, ξ̃α)N1 + k(X, ξ̃α)N2.

Equating tangential and normal parts, we get

φ̃X = ∇̇X ξ̃α,

and

h(X, ξ̃α) = 0, k(X, ξ̃α) = 0.

Thus

h(ξ̃α, ξ̃α) = 0, and k(ξ̃α, ξ̃α) = 0.
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If Mn−1 is totally umblical, then h(X,Y ) = µg(X, Y ) = k(X, Y ).

Using ξ̃α for both X and Y , we get

h(ξ̃α, ξ̃α) = k(ξ̃αξ̃α) = 0,

⇒ µg(ξ̃α, ξ̃α) = 0,

⇒ µ = 0,

which implies that h(X,Y ) = k(X,Y ) = 0. Thus Mn−1 is totally geodesic.

If Mn−1 is totally geodesic then h(X, ξ)=0, that is φ̃X is tangent to Mn−1 and hence

Mn−1 is an invariant submanifold.

Theorem 5.2.6 LetMn−1 be an almost r-paracontact submanifold in the almost r-paracontact

metric manifoldMn+1. Let there exist affine connection inMn−1 andMn+1 be respectively

∇̇ and ˜̇∇ such that

(a) ˜̇∇λ ξ̃α = φ̃ λ,

(b) ˜̇∇λ(φ̃ µ) = ˜̇∇µ(φ̃ λ) + φ̃ [λ, µ] + λ(η̃α(µ))− µ(η̃α(λ)),

(c) ( ˜̇∇λη
α)(µ)− ( ˜̇∇µη

α)(λ) = 0. (5.2.22)

Then the condition that ∇̇ also satisfyies similar equations

(a) ∇̇X η = X,

(b) ∇̇XY = ∇YX + [X, Y ] +Xη(Y )− Y η(X),

(c) (∇̇X η)(Y )− (∇̇Y η)(X) = 0, (5.2.23)

are

h(X, Y )− h(X,Y ) = 0, and k(X, Y )− k(X,Y ) = 0

.

Proof: From (5.2.22(a)), we have

˜̇∇BXBξ̃α = φ̃BX

⇒ B(∇̇X ξα) + h(X, ξα)N1 + k(X, ξα)N2 = BX.

On equating tangential and normal part, we get
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(a) ∇̇Xξα = X

(b) h(X, ξα) = k(X, ξα) = 0. (5.2.24)

From (5.2.22(b)), we have

˜̇∇BX(φ̃BY ) = ˜̇∇BY (φ̃BX) + φ̃[BX,BY ]

+ BX(η̃α(BY ))−BY (η̃α(BX)). (5.2.25)

On using (5.2.13(a)) and (5.2.12(a)) in (5.2.25), we get

B(∇̇XY ) + h(X, Y )N1 + k(X, Y )N2 = B∇YX + h(Y,X)N1 + k(Y,X)N2

+ B[X,Y ] +BX(ηα(Y ))−BY (ηα(X)).

This gives

∇̇XY = ∇̇YX + [X, Y ] +Xηα(Y )− Y ηα(X),

if and only if

h(X, Y ) = h(Y,X) and k(X, Y ) = k(Y,X),

or

h(X, Y )− h(X,Y ) = 0 and k(X, Y )− k(X, Y ) = 0.

In consequence of (5.2.22(c)) and (5.2.12(a)), we have

( ˜̇∇λη̃
α) (µ)− ( ˜̇∇µη̃

α)(λ) = 0,

⇒ (∇̇X ηα)(Y )− (∇̇Y ηα)(X) = 0.

Hence prove the theorem.

Theorem 5.2.7 LetMn−1 be an almost r-paracontact submanifold in the almost r-paracontact

manifold Mn+1. Let there exist affine connection ˜̇∇ in Mn+1 be such that

( ˜̇∇λ φ̃)µ = 0 (5.2.26)
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then the condition that induced connection ∇̇ in Mn−1 also satisfies a similar condition

(∇̇X φ)(Y ) = 0 (5.2.27)

are

h(X, Y ) = k(X,Y ) and k(X, Y ) = h(X,Y ).

Proof: From (5.2.26), we have

( ˜̇∇BX φ̃)(BY ) = 0,

⇒ ˜̇∇BX φ̃(BY ) = φ̃( ˜̇∇BXBY ),

⇒ ˜̇∇BXBY = φ̃( ˜̇∇BXBY ).

Using (5.2.2), (5.2.13(a)) and (5.2.15) in above equation, we get

B∇̇XY + h(X, Y )N1 + k(X, Y )N2 = B∇̇XY + h(X,Y )N2 + k(X,Y )N1.

This implies that

∇̇XY − ∇̇XY = 0,

⇒ (∇̇Xφ)(Y ) = 0,

if and only if

h(X, Y ) = k(X,Y ) and k(X, Y ) = h(X,Y ).

Hence prove the theorem.

Theorem 5.2.8 Let Mn−1 be an almost r-paracontact metric submanifold in an almost

r-paracontact metric manifold Mn+1. Let there exist affine connection ˜̇∇ in Mn+1 be such

that

η̃α(µ) ˜̇∇λ ξ̃α + ξ̃α(
˜̇∇λ η̃

α)(µ) = 0 (5.2.28)
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then the condition that induced connection ∇̇ in Mn−1 also satisfies a similar condition

ηα(Y ) ∇̇X ξα + ξα(∇̇X ηα)(Y ) = 0, (5.2.29)

if and only if

h(X, ξα) = k(X, ξα).

Proof: From (5.2.28), we have

η̃α(BY ) ˜̇∇BX ξ̃α + ξ̃α(
˜̇∇BX η̃α)(BY ) = 0,

which by virtue of (5.2.13), (5.2.2), (5.2.12) and (5.2.14) implies that

ηα(Y ) [B∇̇X ξα + h(X, ξα)N1 + k(X, ξα)N2] +B ξα (∇̇X ηα)(Y ) = 0.

This gives

ηα(Y ) ∇̇X ξα + ξα(∇̇X ηα)(Y ) = 0,

and

h(X, ξα) = k(X, ξα) = 0.

Hence prove the theorem.
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Chapter 6

Summary and Conclusion

In Chapter 1, we have defined Differentiable manifold, Tangent vector, Tangent space

and Vector field, Tensor, Lie-bracket, Covarient derivatives, Lie derivative and Exterior

derivatives, Connection, Riemannian manifolds, Torsion tensor, Ricci tensor, Curvature

tensors on Riemannian manifold, Almost contact manifold, Almost paracontact metric

manifold, Lorentzian paracontact manifold, Lorentzian α-Sasakian manifold, Recurrent

manifold, Submanifold are also defined in introduction.

The chapter 2 is about the study of some properties of quarter symmetric non-metric

connection on an LP -Sasakian manifold. We prove that an n-dimensional LP -Sasakian

manifold Mn is Locally W ∗ − φ-symmetric with respect to the quarter symmetric non-

metric connection ∇ if and only if it is so with respect to the Riemannian connection

D. We show that an n-dimensional LP -Sasakian manifold is ξ − W ∗-projectively flat

with respect to the quarter symmetric non- metric connection if and only if the mani-

fold is ξ −W ∗-projectively flat with respect to the Riemannian connection provided that

the vector fields X and Y are orthogonal to ξ. Next, we prove that an n-dimensional

φ-conharmonicaly flat LP -Sasakian manifolds admitting a quarter-symmetric non-metric

connection, then Mn is an η-Einstein manifold with the scalar curvature r = −2(n−1)
n−2

with respect to the Riemannian connection. We also prove that a LP -Sasakian manifolds

admitting a quarter symmetric non-metric connection satisfying P · S = 0, R · S = 0 and

L ·S = 0 is an η-Einstein manifold. Finally, have shown that in an LP -Sasakian manifold

if the curvature tensor with respect to quarter symmetric non-metric connection ∇ is

given by R(X, Y )Z = g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ, then the manifold is projectively

flat.

The chapter 3 is devoted to the study of certain curvature conditions of Quasi con-

formal curvature tensor and M -projective curvature on LP -Sasakian manifolds. we have

shown that if in an LP -Sasakian manifold the relation (P 1
1C)(Y, Z) = 0 hold, then Mn is

112



an Einstein manifold with scalar curvature r = n(n− 1), provided a+ (n− 2)b ̸= 0. We

prove that an Einstein LP -Sasakian manifold (Mn, g)(n > 2) is quasi conformally conser-

vative if and only if the scalar curvature is constant, provided [b(n− 4) (n− 1)− 2a] ̸= 0.

Then we show that an n-dimensional (n > 2) φ-quasi conformally flat LP -Sasakian man-

ifold is an η-Einstein manifold. Next, it is proved that an LP -Sasakian manifold Mn

satisfying the condition R(ξ,X) ·W ∗ = 0 and W ∗(ξ,X) · C = 0, is an Einstein manifold.

Finally some curvature properties of M -projective curvature tensor are obtained in an

LP -Sasakian manifold.

In Chapter 4, we have discussed semi-generalized concircular recurrent manifolds and

semi-generalized M -projectively recurrent manifolds and obtained some interesting re-

sults. Semi-generalized recurrent Lorentzian α-Sasakian manifolds, semi-generalized re-

current P -Sasakian manifolds, semi-generalized φ-recurrent Lorentzian α-Sasakian mani-

folds and semi-generalized φ-recurrent P -Sasakian manifolds are discussed in this chapter.

We have shown that a semi-generalized M -Projective φ-recurrent P -Sasakian manifold

is an Einstein manifold. Then we show that a semi generalized ϕ-recurrent Lorentzian

α-Sasakian manifolds (Mn, g) is an Einstein manifold and moreover the 1-forms A and

B are related as − [α2(n− 1)]A(W ) = nB(W ). Finally, three dimensional locally semi-

generalized φ-recurrent P -Sasakian manifolds and three dimensional locally semi-generalized

φ-recurrent Lorentzian α-Sasakian manifolds are considered and the expression for the

curvature tensors are obtained.

Chapter 5 is devoted to the study of the almost r-paracontact submanifold. It is shown

that If ν and N be Nijenhuis tensor in the almost r-paracontact submanifold Mn−1 and

almost r-paracontact manifold Mn+1 respectively then N (BX,BY ) = Bν(X,Y ) and If

an almost r-paracontact manifold Mn+1 is normal then almost r-paracontact submani-

fold Mn−1 is also normal. Finally, we prove that if a submanifold Mn−1 tangent to the

structure vector field ξ̃α of an almost r-paracontact metric manifold Mn+1. If Mn−1 is

totally umbilical then Mn−1 is totally geodesic.

Finally we conclude that whole work of this thesis gives the properties and geometrical

structure of the vectors related with quarter symmetric non-metric connection equipped

with LP -Sasakian manifold, certain curvature conditions with LP -Sasakian manifolds,

semi-generalized recurrent Lorentzian α-Sasakian manifolds, semi-generalized recurrent

P -Sasakian manifolds and on the almost r-paracontact submanifold.

Future Scope of the Study:

Now a days the study of semi symmetric metric and non-metric connection is very pop-

ular in Indian modern differential geometry. The semi symmetric metric connection has
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important physical application such as the displacement on the earth surface following a

fixed point is metric and semi-symmetric. Golab (1975) introduced and studied quarter

symmetric connection in a Riemannian manifold with an affine connection which gener-

alizes the idea of semi symmetric connection.

In the present study we consider a quarter symmetric non-metric connection on an

LP -Sasakian manifold. This connection can also be study in other differentiable mani-

folds such as generalized Sasakian space form, Quasi Sasakian manifolds etc. The notion

of quarter symmetric non-metric connection further can be extended to the study of hy-

persurfaces and submanifolds of almost contact manifolds.

Semi-generalized recurrent manifold defined by Prasad (2000) can also be study in

generalized Sasakian space form, Quasi Sasakian manifolds, β-kenmotsu manifolds etc.

One can consider the curvature tensors like pseudo projective curvature tensor, Quasi

conformal curvature tensor, Conformal curvature tensor, W2-curvature tensor to obtain

certain geometrical properties of curvature tensors with respect to semi-generalized re-

current manifolds.
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