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Preface 

Litter decomposition is an important processes that improved soil fertility. This study is an 

effort to compare the level of soil fertility in two common practices (abandoned land 

following shifting cultivation and settled SALT farm) in Aizawl and Lunglei districts of 

Mizoram where no information is available. This study compared the level of soil fertility 

(organic C and total N), rates of organic matter and C and N release pattern, and quantitative 

and qualitative changes in water stable soil aggregates in different abandoned land following 

(fallow lands) shifting cultivation and two ages of settled SALT systems.  

This study provides information on the rate of decomposition and mineralization of 

C and N of different parts of plant litters (green leaf, branch, fine root, coarse root litters) 

and soil physic-chemical characteristics in settled farm and different ages of fallow land in 

Aizawl and Lunglei districts of Mizoram.  

This thesis emphasised the soil characteristics and litter decomposition, and C and N 

release and soil aggregates in different fallow and settled SALT farm of different shifting 

cultivation site and settled farm.  



1 

 

Chapter 1 
INTRODUCTION 

 

1.1. Global food production and demand 

Exponential expansion in human population, particularly in the developing countries, 

has led to the extension of agricultural practices for increasing food production to satisfy 

dietary demand. This has resulted in the reduction of area under natural ecosystems like the 

forests, savannas and grasslands.  Agriculture is the world’s largest land use system occupying 

~38% of the Earth’s terrestrial surface. Over the past five decades, the farming community has 

had excellent successes in a substantial increase in the world food production to make food 

more affordable for the majority of the world’s population, in spite of a doubling in population. 

(Dobermann and Nelson, 2013).  

Rice is the staple food of the people of South-east Asia and about half of the world 

population subsist on this crop for their dietary demand (Manzoor et al., 2006). In the next two 

decades world’s population is expected to increase by ~2 billion and half of this increase in the 

population will occur in Asia where rice is the staple food (Gregory et al., 2000). In the 

developing countries, there has been a strong trend in increasing productivity, particularly for 

cereals such as rice in Asia, wheat in irrigated and favourable production environments 

worldwide and maize in Mesoamerica and selected parts of Africa and Asia (Pingali and 

Heisey, 2001). 

Generally, the crop yield is responsive to climates such as changes in temperature and 

rainfall patterns (Stern, 2007) and nutrients especially nitrogen (N), phosphorus (P) and 

potassium (K) (Seetraraman, 1980). The inflow of inorganic source of nutrients especially N 

has to be managed judiciously. Biofertilizers are carrier based inoculants containing cells of 
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proficient strains of particular micro-organisms used by farmers for enhancing the yield of soil 

either by fixing atmospheric N or by stimulating plant growth through the synthesis of growth 

promoting substances as secondary metabolites (Chaudhury and Rai, 2007). 

Rice is cultivated in 148 million hectares of land worldwide which accounts for nearly 

10 percent of the world’s arable land. In India, rice crop is cultivated in about 42.3 million ha 

of land which produces hardly 87 million tons grain per year, which is extremely low in 

comparison to rice production in other countries like Taiwan etc. The idea of intercropping rice 

with other crops in a rain-fed rice field has been proposed by Kar and Verma (2002). In this 

proposal emphasize was given on the other crops as an assured income source rather than the 

main crop. 

 

1.2. Clearing of forest for agriculture 

 In general farming practices is an extension on forest land as a result of deforestation 

that contributes around 60% of total tropical deforestation (Wilkie et al., 2000; Amor, 2008; 

Amor and Pfaff, 2008). Though rising farming yields has been the most important mode for 

increased food production for the last few decades, the intensification leads to more 

deforestation in some circumstances (Rudel et al., 2009; Boucher et al., 2011). Causes of 

deforestation including logging, land conversion to agriculture, wildfires, cutting down trees 

for firewood, and conflict over land rights tend to be caused by increased population growth 

and a need for more land mostly for agricultural production (Johnson and Chenje, 2008). 

Therefore, solutions to deforestation must comprise and advantage local people. Thus, 

solutions to deforestation must include and benefit local communities. The central goal of 

community forestry is to involve a group of local people in the sustainable management of 

forests for social and economic benefits. Intensification of small-scale agriculture can also 
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reduce agricultural expansion into forested areas if the correct incentives are in place (Palm et 

al., 2010). 

Land-use change such as forest clearing, conversion from natural ecosystem to 

agricultural use and intensive cultivation depletes soil organic C (Balesdent et al., 1998; 

Spaccini et al., 2001; Emadi et al., 2008) and enhances greenhouse gas emission (Lal, 2004). 

Cultivation practices disturb soil physical properties and release physically protected soil 

organic matter to result in oxidation of soil organic matter (Plante and McGill, 2002; Shang 

and Tiessen, 2003).  

 

1.3. Shifting cultivation (Jhum farming) in the world 

Jhum farming has been a common practice of cultivation in tropical, hilly areas of 

Southeast Asia, the Pacific, Latin America, the Caribbean, and Africa for millennia (Craswell 

et al., 1997; Ramakrishnan, 1992; Thomaz, 2009). This practice supports about half a billion 

people around the world for their livelihood (Craswell et al., 1997), particularly, in Central 

Africa, South America, Oceania, and Southeast Asia. It is practiced on about 30% of all arable 

land but providing food to only 8% of the world population indicating wide land to man ratio 

(Kumar, 2008). Jhum cultivation is practiced in the sloping uplands of Southeast Asia because 

of the widespread partition of such landscape in this region (Garrity, 1993). Every year, Jhum 

farming is reported to account for 60% forest loss worldwide Lele et al., 2008). This practice 

of cultivation has a different term in different regions of the world, for example, swidden 

agriculture, shifting cultivation, slash-and-burn farming. This has been considered as an old-

age method of farming system and considered to be a prevailing subsistence farming practice 

in the tropical regions across the world (Brady, 1996; Inoue et al., 2010; Comte et al., 2012).  

The ever-increasing population has created tremendous pressure on land to provide a basic 

requirement for survival of local inhabitants. Therefore, to meet these requirements, the limited 



4 

 

natural resources are being over-exploited resulting in widespread ecosystem degradation 

(Grogan et al., 2012). Van Vliet et al., (2012) in a meta-analysis observed that Jhum farming is 

being practiced typically in the steep and hilly parts of Latin America, Central Africa and 

Southeast Asia and happens to be the leading cultivation system. 

Each year, the farming community cut the vegetation on a particular area in winter, left 

it to dry, and then bur it in situ before planting a variety of annual crops to correspond with the 

return of the rains (Toky and Ramakrishnan, 1981a). Following a few years of cultivation, the 

land is abandoned for the recovery of vegetation and return of soil fertility by natural 

regeneration for few years while the villagers select other sites for agriculture during this 

period. Some cultural operations are involved in Jhum farming, for example, clearance of 

forest biomass by cutting, the release of nutrients accumulated in plants over time by flaming 

of slashed biomass that suppresses weeds, pests and diseases by soil sterilization, etc. (Tripathi 

and Barik, 2003; Thakuria and Sharma, 2014). 

It is reported that following the land abandonment, the Jhum soils bring back its fertility 

(Ramakrishnan and Toky, 1981; Silva-Forsberg and Fearnside, 1997). Land degradation may 

increase as a result of cultivation on fragile lands, reduced use of fallow, increased tillage, 

mining of soil nutrients, and other potential results of intensification. On the other hand, 

investments in land improvements and more intensive soil fertility management practices may 

improve land conditions (Pender, 2001). 

On the other hand, to build up a new method may be more difficult that make sure 

small cultivators and shifting cultivators to retain their livelihoods without additional 

deforestation (Shearman et al., 2009). Soil management systems can have a great effect on soil 

physical, chemical, and biological properties. Conversion of forest to grassland and cropland 

can alter C and N dynamics. Shifting cultivation is probably one of the most misunderstood 

and controversial forms of land use system. In 1957, the FAO declared shifting cultivation the 
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most serious land use problem in the tropical world (FAO, 1957). It is a conventional land 

utilizes arrangement that involves alternation of fields rather than crops and relies on the use of 

fallow to maintain the production of food. 

 

1.4. Shifting cultivation scenario in India 

               Indigenous peoples particularly from Adivasis in Central and South India, Eastern 

Himalayas (e.g. Eastern Nepal, Northeast India, and the Chittagong Hill Tracts of Bangladesh 

and the adjacent areas across the border in Myanmar) practiced Jhum farming. The net 

decrease in forest covers due to Jhuming in northeast India was estimated to be 387 km
2
 

between 1989 and 1991, 448 km
2
 between 1991 and 1993, and 175 km

2
 between 1993 and 

1995 (Shankar, 2001). Jhum cultivation is a distinctive aspect of farming in the hilly region of 

NE India. The biological diversity of ecosystems are worn and conserved by traditional 

communities through a variety of informal institutions and using traditional ecological 

knowledge in northeast India. Although, this practice is criticized due to low output and 

ecological disbalances; continuation of Jhum cultivation is intimately linked to ecological, 

socio-economic, cultural identity and land tenure systems of tribal communities (Deka and 

Sarmah, 2010). About 100 tribal communities consisting of more than 620,000 families in the 

region depend on Jhuming for their livelihood (Ramakrishnan, 1992). Each year, hill farmer 

slash vegetation on selected sites during winter months (January-February) and planting a 

variety of annual crops together to coincide with monsoon showers following the burning of 

the stand (Ramakrishnan and Toky, 1981), and to exploit available soil nutrients following 

burning. In India, people of eastern and north-eastern region practice shifting cultivation on hill 

slopes and 85% of the total cultivation is under Jhum cultivation (Singh and Singh, 1992). 
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                The low productivity of shifting cultivation is associated with a number of problems 

viz. prevalence of Jhum cultivation, hilly terrain, unpredictable climate changes, low levels of 

modern input, poor infrastructure etc. (Karmakar, 2008; Barah, 2006; Grogan et al., 2012). ). 

The continuance of Jhum in the north-east states is closely linked to ecological, socio-

economic, and cultural and land tenure systems of tribal communities. Since the community 

owns the lands, the village council or elders divide the Jhum land among families for their 

subsistence on a rotational basis (Rao and Ramakrishnan, 1989). Jhum cultivation in its more 

traditional and cultural integrated form is an ecologically and economically practicable system 

of agriculture as long as population densities are low and Jhum cycles are long enough to 

maintain soil fertility (Tawnenga et al., 1996).  

                 Jhum farming on sloping land may lead to enlarge soil run-off loss and crop variety. 

Soil erosion is a permanent phenomenon causing land degradation and deterioration of surface 

water quality. The Jhum farming harmfully affects the eco-restoration and ecological practice 

of forests and this leads to degradation of land causing soil erosion and finally converting 

forests into wastelands (Dwivedi, 2001). This cultivation practices cause tremendous loss of 

soil nutrients (Shahlace et al., 1991) and degradation of natural vegetation. Shifting cultivation 

causes large-scale damage to the forests and has resulted in deforestation and denudation of hill 

slopes, exposure of rocks due to soil erosion, heavy silt loading on riverbeds and drying of 

perennial water resources (Goswami, 1968). Short Jhum farming cycle makes the land 

incompatible for agriculture and leads to substantial loss of soil nutrients through run-off and 

leaching (Borthakur et al., 1979).  

                   Jhum cultivation has been reported as an ideal form of agriculture in humid tropics 

in early days as long as the human population density is low and fallow periods are long 

enough to restore soil fertility (Watters, 1971; Grogan et al., 2012). Rice is the major crop of 

the North-eastern region of India accounting for about 89% of the area and 92% of the total 
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food grains production (Misra and Misra, 2006). The average productivity of the northeast 

region is very low as compared to the national productivity of rice in the country. With the 

rapid increase in the population, it is highly essential to increase the production of this staple 

diet of the people to be able to self-sufficient. Therefore, strengthening and improvement in 

Jhum cultivation are recommended rather than its replacement (Yadav, 2013).  

 

1.5. Shifting cultivation in Mizoram 

             Shifting cultivation is the most important and predominant mode of raising food for 

forest farmers in Mizoram, north-eastern India. The agriculture is mainly done on hill slopes by 

Jhum cultivation method under rainfed condition (Vishwakarma et al., 2006). A piece of land 

is slashed, burnt and cropped with no tilling the soil, and the cropped land is subsequently 

fallowed to control pre-slashed forest status through the natural sequence in Jhum farming (Uhl 

et al., 1983; Ramakrishnan, 1993). A total of about 2 lakh hectares of land is under Jhum 

farming practice with approximately 63,000 ha being cultivated in a known year by 50,000 

families (Anonymous, 1987). Agriculture land, housing supplies, firewood, medicine and food 

products are the forest products (Anonymous, 2006). 

Cropping on Jhum lands in Mizoram is mainly practiced for one year. The second-year 

cropping is rare and mainly sustained on old Jhum fallows. Even in other parts of north-eastern 

India, the land is frequently fallowed after the first year of cropping, and second-year cropping 

is occasionally experienced with plantations of banana and pineapple. (Kushwaha and 

Ramakrishnan, 1987). The practice of Jhum has an integral method of nourishment and 

management. However, due to anthropogenic force, require of more food have cleared greater 

chunks of forests and fallow phase between two following cropping phases has come down to 

even 2 to 3 years (Grogan et al., 2012; Xu et al., 2009). This has led to the loss of soil nutrients 

and reduce harvest yield.   
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1.6. Plant litter decomposition and nutrient release 

Nutrients availability and soil fertility in natural forest ecosystems are determined by 

the amount and seasonal patterns of litterfall and litter decomposition (Upadhyay and Singh, 

1989; Tripathi and Singh, 1992a and b; 1995; Singh et al., 1999; Fioretto et al., 2003; Hobbie 

and Vitousek, 2000; Chen et al., 2014). The amount of litter has a significant role on the rates 

of litter decomposition by maintaining microclimate, number and dynamics of decomposer 

organisms and nutrient availability in forest ground and mineral soil (Chen et al., 2014; Sayer 

et al., 2006). However, widespread deforestation may have a result on litter and fine root 

dynamics during many potential factors and processes, like changes in vegetation composition, 

which decreased litter inputs in the system (Holmes et al., 2006). Few litters decompose fast 

due to the presence of more labile C whereas other may have higher concentrations of lignin or 

recalcitrant C which decompose slowly (Gessner et al., 2010). Mortality of these fine root 

transfers a considerable amount of organic matter and nutrients into the soil and through rapid 

turnover rates, these fine roots regenerate available soil nutrients to support plant growth (Vogt 

et al., 1986; Tripathi and Singh, 1994; 1996). Tree species with different substrate quality of 

litter exhibits different mineralization potential and decomposition behavior (Matambanengwe 

and Kirchman, 1995). Litter chemical quality has been found to critically affect decomposition 

rates of tree species that determines the soil fertility of the forest floor (Singh et al., 1999; 

Fioretto et al., 2003). 

Crop productivity is strongly influenced by nutrient availability in soil, and the nutrient 

supply rate (e.g., N mineralization) is a crucial process of nutrient dynamics (Binkely and 

Votousek, 1989). Decomposition is the breakdown of litter materials (i.e., dead plant, animal 

and microbial materials) into inorganic nutrients and CO2 (Swift et al., 1979). Leaching, 

fragmentation and chemical alteration of the dead organic matter by decomposition process 
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produces CO2 and mineral nutrients and a remnant pool of complex organic compounds (Berg 

and Staaf, 1981). The soil organic matter is classified on the basis of its turnover time into 

active, slow and passive fractions (Parton et al., 1983). It has been reported that in the forest 

ecosystem, almost all the above-ground biomass (> 90% of the total net aboveground primary 

production) returns to the forest floor as litter-fall which constitutes the major substrate for 

plant species and soil decomposers (Swift et al., 1979). Therefore, any change in the active soil 

organic matter component will also change nutrient availability (Roy and Singh, 1994). 

 

1.7. Soil fertility and aggregation 

The soil organic C cycle is important for the functioning of natural and agricultural 

ecosystems. The storage of organic C provides a nutrient resource and plays a critical role in 

nutrient cycling in terrestrial ecosystems (Campbell, 1978). Besides nutrient sources, the 

increases of soil organic matter and soil productivity partially mitigate C emission (Post et al., 

2004) and climate change (Hao et al., 2002). Soil organic C in an ecosystem is controlled by 

soil management systems and environmental factors such as soil temperature and precipitation 

(Plante et al., 2006). 

Soil aggregates are the group of soil particles of different sizes joined by organic and 

inorganic materials, and their stability can be used as an index of soil structure. The structure 

of soil protects the soil organic matter and influences organic matter turnover and soil fertility.  

            Soil aggregation can be measured by wet and dry sieving procedure and provide useful 

information on soil aggregate stability that reflects the carbon sequestration potential of the 

soil. Water-stable aggregation is usually formed by macroaggregates (>250 μm) and 

microaggregates (<250 μm). Macroaggregation is very sensitive to changes in land use and 

cultivation practices, whereas microaggregation is comparatively stable. Soil aggregation 
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varies according to climatic and management factors and is difficult to measure because of 

irregular shapes and sizes of soil aggregates. 

  The influences of soil organic carbon (SOC) contents on aggregate formation and 

stabilization have been widely reported (Six et al., 2002). Tripathi et al., (2008) have reported 

changes in the size of micro- and macro-aggregates in different land use systems from forests 

to savanna. Further, they reported that the changes in the proportion of micro- and macro-

aggregates differ due to application N and P additions. The arrangement of soil protects the soil 

organic substance turnover and soil fertility (Elliot, 1986). The interactions of physical, 

chemical and biological processes in soils influence aggregate formation and stabilization 

(Jastrow and Miller, 1998; Six et al., 2004; McCarthy et al., 2008). Soil C losses are resulting 

from cultivation of natural ecosystem range from 10 to 55 percent (Noellemeyer et al., 2008). 

As an indicator of soil susceptibility to runoff and erosion, soil aggregate stability is considered 

one of the main soil characteristics regulating soil erodibility (Barthes and Roose, 2002), and is 

related to soil organic matter contents and compositions (Bronick and Lal, 2005). Although soil 

aggregate stability is a highly complex indicator assessed by a wide range of soil properties, 

land management and vegetation recovery are among the very important influencing factors 

(Duffkova et al., 2005; Shrestha et al., 2007). 

  Cultivation can alter aggregation and aggregate size distribution (Beare et al., 1994; 

Balesdent et al., 2000; Paustian et al., 2000; Six et al., 2000). Soil fauna and their activities can 

affect soil aggregate, aggregate stabilization and C dynamics (Oades and Waters, 1991; 

Jastrow and Miller, 1998; Six et al., 2004; Bronick and Lal, 2005). The stability of soil organic 

C in aggregates is related to its physical and chemical protection from the microbial action 

(Oades and Waters, 1991; Jastrow and Miller, 1998; Six et al., 2004; Bronick and Lal, 2005). 

The understanding of soil C dynamics depends on the partitioning of soil C fractions into 

biological (Ajwa et al., 1998) and size fractions of aggregates (Schulten and Leinweber, 1995). 
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Soil organic matter, microbial biomass and mineralizable C changes under different 

management systems. Some studies indicate that microbial biomass C significantly decreases 

with cultivation, but the conversion from cropland to pasture significantly increases soil 

microbial biomass (Haynes and Swift, 1990; Haynes et al., 1991). 

 

1.8. The Scope of the Study 

 Previously, jhum farming was sustainable because of the extensive fallow period 

(about 20-30 years), which provided adequate time for the soil to recover soil fertility and 

maintain farming production for a few years. In recent years, due to incredible raise in human 

inhabitants, the fallow period has significantly reduced to about 2-3 years, which is not 

allowing the soil to reinstate fertility to maintain new crops. This has resulted in large-scale 

forest degradation, decreasing soil fertility, and growing invasion by weeds species, which 

leads to degrading the atmosphere and disturbance of the ecological stability of this region. 

Considering the above disadvantages and constraints of the shifting cultivation system, a new 

profitable and sustainable agriculture system like permanent agriculture farming system is 

being tested in Lunglei district of Mizoram. 

This study aims to understand the effect of different fallow lands after shifting 

cultivation practice and various crop cultivation periods under permanent agriculture system on 

soil fertility in Aizawl and Lunglei districts of Mizoram. This study was a step towards finding 

out an optimum level of soil fertility by using the principles of natural ecosystems to 

synchronize soil nutrients with that of crop nutrient demand for a profitable and sustainable 

farming system.  
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1.9. Major objectives 

      This study is designed to achieve the following major objectives in two agricultural               

practices of Mizoram. 

1. To compare the level of soil fertility (organic C and total N) in different fallow periods 

in shifting cultivation and in varying ages of settled agriculture systems.  

2. To determine the rate of litter decomposition and nutrient release pattern in shifting 

cultivation and settled agriculture systems. 

3. To assess quantitative and qualitative changes in water stable soil aggregates in these 

farming systems.  
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Chapter 2 

REVIEW OF LITERATURE 

 

2.1. Shifting cultivation 

The tropical dry forest ecosystem has been subjected to higher rates of deforestation 

and conversion into cropland and pasture than many other ecosystems (Houghton et al., 1991). 

Forest to cropland conversion generally leads to reduce soil organic carbon stock (Davidson 

and Ackerman, 1993; Detwiler, 1986; Murty et al., 2002; Nye and Greenland, 1964; Tripathi et 

al., 2008). The stability of Jhum agro-ecosystem primarily depends upon the length of the 

fallow phase that allows re-growth of secondary forest. Thus, the varying length of the fallow 

phase directly affects the quantum of secondary forest biomass build-up leading to quantitative 

differences in subsequent slash load and ash release during burning (Ramakhishnan, 1998). 

Fire does not only burn out the slashed biomass but also the litter layer, and the uppermost 

humus layer which is a major part of the resources and habitats for soil organisms (DeBano et 

al., 1998). In tropical agriculture systems, especially slash-and-burn situation farmers do not 

apply fertilizer to upland rice but have traditionally relied on fallowing their land to restore soil 

fertility and to reduce problems from insects and weeds (Nye and Greenland, 1960). In 

Bangladesh, extensive shifting agriculture practice due to increasing demand for food and 

fodder is the main driver of drastic deforestation and land degradation (Rasul et al., 2004). 

The overuse of natural resources by the local population results in the depletion of the 

biodiversity of forest communities, which is accompanied by species extinction and decreased 

in primary productivity (Ramakrishnan, 2003). Disturbances in ecological systems promote 

characteristics pattern of environmental heterogeneity and regulate ecosystem processes, 
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population dynamics, species interactions and diversity (Davies, 2001). The decrease in the 

fallow period has led to the deterioration of faunal and microbial organisms, topsoil loss, and 

erosion during periods of heavy rainfall (Gafur, 2001). 

Slashing and burning remained to be the easiest way not only to sanitize the soil, 

minimizing the weeds and soil pathogens but also to release the locked nutrients within the 

biomass as ash load which is considered to be more readily available nutrients forms (Juo and 

Manu, 1996). It has been reported that fire leads to changes in the chemical properties of soil 

with regard to the changes in quantity and quality of organic matter, soil moisture, availability 

of nutrients, exchange capacity, and base saturation (Certini, 2005). It is believed that 

following the land rejuvenate the Jhum soil and bring back its fertility (Ramakrishnan and 

Tokky, 1981; Silva-Forsberg and Fearnside, 1997).  In one hand, burning of biomass imposes 

stress on soil biota community and its functioning (Malmstrom, 2012), while on the other hand 

burning of biomass enhances nutrient availability in soil (Nye and Greenland, 1960; Fritze et 

al., 1994; Khanna et al., 1994; Giardina et al., 2000). In order to manage a burnt agriculture 

land more effectively, one must rely on the detailed knowledge of the fluxes and losses of 

nutrients incurred during and after the burning of slashed biomass (Raison, 1979). 

Extensive landscape transformations from natural forests to a multitude of vegetation 

types in Indian tropical regions are associated with various structural and functional changes in 

these ecosystems including fine roots (Tripathi and Singh, 1996; Upadhaya et al., 2005; 

Tripathi et al., 1999; Tripathi et al., 2008). The plant litter production and decomposition are 

the two important processes which provide the main input of organic matter in soil and regulate 

the patterns of nutrient cycling in forest ecosystems (Facelli and Pickett, 1991; Singh et al., 

1999; Weltzin et al., 2005). The chemical composition of forest floor litter seems to vary 

greatly depending on the length of the fallow phase (Cornwell et al., 2008). Decomposition of 

organic detritus provides 70–90% of nutrients annually needed for forest growth (Vogt et al., 
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1986) and is a complex microbe fauna mediated process, which is accelerated by favorable 

environmental conditions that enhance faunal and microbial activity (Swift et al., 1979). 

The biological inputs like litter falls and root exudates of the above-ground vegetations 

are thought to be the modulators of the diversity and activity of soil biota communities. 

According to Brunn et al., (2006), the amount of nutrients accumulated depends primarily on 

the nutrient content in the biomass, the temperature threshold of respective nutrient elements 

and the quality of burning. In a tropical environment, the climatic seasonality characterized by 

alternating wet and dry periods plays a vital role in regulating the rates of litter decomposition 

(Tripathi and Singh, 1992a) by changing the population of microbial community on the 

decomposing organic matter (Arunachalam et al., 1997). Further, the initial substrate quality of 

litter such as concentrations of cellulose, hemicelluloses and lignin, and nitrogen (N), 

phosphorus (P) and potassium (K) have been found to play a major role in litter decomposition 

in different ecosystems (Tripathi and Singh, 1992a; b; Osono and Takeda, 2004). 

Land use change is among the important global change drivers forcing changes in the 

organization of terrestrial vegetation over the world (Balmford and Bond, 2005). The 

Intergovernmental Panel on Climate Change (IPCC) estimated global anthropogenic carbon 

emissions (IPCC 2007) of about 20% are due to land use change. In Southeast Asia during the 

1990’s annual contribution of CO2 from land use  changes are in the range of 0.3 to 0.5 Gt C 

year
−1

 (Achard et al., 2002). These CO2 emissions arise from changes in the pool of organic C 

in the aboveground biomass and in the pool of soil organic C following land use transitions. 

The soil is regarded as a nutrient pool of micro- and macro-nutrients. Trees increase the soil 

nutrients content under its canopy (Verinumbe, 1991). The soil under the trees was slightly 

richer in terms of organic matter content, Mg and K then the soil from the adjacent tree-less 

sites (Kater et al., 1992).  
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2.2. Soil structure and properties 

Development of soil structure and aggregation is a dynamic property of soil that 

depends upon parent material, climate, and management factors (Strudley et al., 2008). Soil 

aggregation has been reported as an important process controlling plant growth and carbon (C) 

sequestration (Blanco-Canqui and Lal, 2004). Soil organic matter has been regarded as the 

single most important indicator of soil productivity (Haynes, 2005). The Structure of soil 

protects the soil organic matter and influences organic matter turnover and soil fertility (Elloitt, 

1986). The organic matter in the soil is associated with the three types of physical units: the 

free primary particles (i.e., sand, slit and clay); macroaggregates; and microaggregates (Tisdall 

and Oades, 1982; Oedes, 1984). Soil organic matter is an important factor that controls the 

pools and fluxes of available nutrients and is protected by soil aggregates (Aoyama et al., 

1999). 

The stability of soil aggregates varies due to agricultural management practices 

(Pirmoradian et al., 2005), land use, and nutrient inputs (Tripathi et al., 2008). Aggregate size 

is important in determining the dimension of pore space in the soil. The loss of organic matter 

reduces the proportion of macroaggregates in cultivated soil (Tisdall and Oades, 1980).  Soil 

aggregation (formation of micro- and macro-aggregates), an important process controlling 

plant growth, protects soil against water erosion and helps in C sequestration (Blanco-Canqui 

and Lal, 2004; Roldan et al., 2006). 

The organic matter content of macroaggregates is reported to decrease, and the 

proportion of small aggregates increase with cultivation. Elloitt (1986) hypothesized that the 

loss of organic matter caused by cultivation is chiefly a loss of the organic material that binds 

individual microaggregates and not a loss of organic matter within microaggregates. Micro-

aggregates (<0.3mm) consist of separate particles, especially clay, often coated with fine 

inorganic and organic materials. In contrast, macro-aggregates (>0.3mm) are the result of the 
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binding up of micro-aggregates (Elliott, 1986; Monreal and Kodama, 1997). Macroaggregates 

are reported to contain significantly greater total C, and a residue derived C compared with 

whole soil (Bossuyt et al., 2005). Microaggregates can unite to form macroaggregates through 

the action of temporary and transient binding agents (Elloitt, 1986). Oades (1984) postulated 

that microaggregates are formed at the center of macroaggregates. 

The centre of Macroaggregates can be anaerobically leading to (1) increased solubility 

of cation like Fe and Mn, and hence greater stability of the soil organic matter through the 

bonding mechanism, (2) increased humification of the end product of the decomposition, and 

(3) an increased of weathering, which may result in the formation of amorphous 

aluminosilicates and, eventually, secondary fine clay particles (Tiedje et al., 1984). The 

amount of macro-aggregates in soil is directly related to the microbial activity, stability and 

fertility of the soil (Lynch and Bragg, 1985). The agents responsible for soil aggregate stability 

are mainly organic in nature and are either present in free-living organisms in soil or associated 

with plant roots (Roldan et al., 1994). In addition to mechanical entanglement by hyphae, 

extracellular polysaccharides of fungi and bacteria provide a cementing agent for soil 

aggregates (Chenu, 1993). Arbuscular mycorrhizal fungi (AMF) play a significant role in the 

stabilization of macroaggregates by depositing organic substances (Piotrowski et al., 2004; 

Roldan et al., 2006). N and phosphorous (P) additions in natural and modified ecosystems have 

been reported to affect the AMF infection in plant roots (Fransson et al., 2000; Leuschner et 

al., 2003). 

By accumulating labile and more refractory soil organic matter fractions, macro-

aggregates show great potential for sequestering C and retaining N in ecosystems (Blanco- 

Canqui and Lal, 2004; Billings, 2006). Soil quality is the capacity of the soil to support plant 

growth without causing degradation of the soil or the environment (Carter et al., 1997; Doran 

and Parkin, 1994).  Soil quality is closely linked to soil resilience which refers to the ability of 
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the soil to restore soil functions following disturbance-resilient soils have a high soil quality 

and vice versa (Lal, 1997; Lal and Bruce, 1999). The production of enzymes by the microbes 

followed an economic theory where more enzymes were produced in abundance of the 

complex nutrient organic substrate and when the simple nutrient organic sources are scarce 

(Allison and Vitousek, 2005). 

Roots are a major source supplying C to soil organic matter, the largest reservoir of the 

terrestrial C cycle (Mendez-Millan et al., 2010; Rasse et al., 2005; Schlesinger, 1997). More 

than half of the total soil organic C is found in sub-soils (Jobbagy and Jackson, 2000). 

However, Giregon et al., (2010) found concentrated soil organic carbon in the topsoil where 

the highest root biomass is located. Some soil properties relating to soil acidity improve when 

soil organic matter (SOM) increases in the late stages of the fallow phase. The litter input may 

be supplying bases that are obtained via tree roots from further down the soil profile to the 

surface soil (Funakawa et al., 2006). 

In tropical soils, roots less than 1 or 2 mm in diameter commonly comprise a 

considerable proportion of the root biomass (Gower, 1987; Klinge, 1973; Stark and Spratt, 

1977; Srivastava et al., 1986). Fine root biomass, as well as production, turnover rates and 

nutrient content, depend strongly on both climatic and site variables, as concluded by Yuan and 

Chen (2010) based on a large data set for boreal forest ecosystems. Fine roots are the main 

source of soil organic carbon as they turnover more easily to soil than aboveground litter 

(Ruess et al., 1996). Higher soil temperature increased the root production and mortality 

associated with soil nitrogen (N) availability (King et al., 1999; Majdi and Ohrvik, 2004). As it 

is the top layer of soil, it is more sensitive to temperature and moisture fluctuations and to 

disturbances than the mineral soil below (Khomik et al., 2006). It has been found that fine 

roots of trees and understory vegetation play an important role in the C and nutrient dynamics 

of forest soils, not enough quantitative data exist about their contribution to the C and nutrient 
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budgets (Gower et al., 1994; Bartelink, 1998; Matamala et al., 2003). The plant community is a 

dynamic component which changes as a function of time; however, altitude, slope, aspect and 

rainfall play a key role in the formation of plant communities and their composition (Kharkwal 

et al., 2005). 

 

2.3. Litter decomposition 

Tree biomass can increase soil fertility due to decomposition of litter or plant parts. The 

decomposed litter is humus, which increases soil fertility. The biochemical reactions involved 

in litter decomposition and nutrient cycling processes can be judged by measurement of soil 

enzymatic activities and availability of soil nutrients. Due to increase in soil organic matter, 

there is an improvement in soil physical properties. The decomposed litters provide sufficient 

available nutrient, which is utilized by crop plants. Intercropping improved soil aeration status 

compared with pure stands or mono-crop (Anihara et al., 1991). 

Most studies on litter decomposition was carried out on leaf materials decay while less 

attention was paid to woody debris decomposition (Kaarik, 1974; Harmon et al., 1986), which 

significantly contributes to nutrient dynamics and carbon turnover of forest (Swift et al., 1979; 

Vogt et al., 1986; Harmon et al., 1995). The main factor responsible for the decay rate of 

woody debris beside temperature and moisture content is nitrogen and lignin contents (Berg et 

al., 1984). Hayes (1979) has reported that the nutrient content of non-leaf parts is generally 

much lower than that of the leaves and therefore, the speed of recycling of mineral nutrients 

largely depends upon the rate at which the leaf litter decomposes on the forest floor. The 

chemical composition of forest floor litter seems to vary greatly depending on the length of the 

fallow phase (Cornwell et al., 2008). 

The rate of litter decomposition is largely regulated by the prevailing climatic factors, 

organic-chemical nature (substrate quality) and the soil physicochemical and biological 
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properties (Swift et al., 1979; Virzo De Santo et al., 1993; Berg et al., 1995; Fioretto et al., 

1998). Litter decomposition in the terrestrial ecosystems is mainly regulated by two factors; 

climatic conditions and initial substrate quality of the litter (Tripathi and Singh, 1992; Swift et 

al., 1979). The chemical litter quality and decomposition rates of tree species determined the 

soil fertility of the forest floor (Singh et al., 1999; Fioretto et al., 2003). Tree species with 

different substrate quality of litter exhibits different mineralization potential and decomposition 

behavior (Matambanengwe and Kirchman, 1995). Some types of litters have more easily 

decomposable labile C while other may have higher concentrations of lignin or recalcitrant C 

which is not easily decomposable (Gessner et al., 2010). 

The decomposition is also influenced by the physical environment in which decay takes 

place (Facelli and Pickett, 1991; Heal et al., 1997; Sariyildiz et al., 2005). Some studies found 

that among the climatic factors temperature is the most obvious of the factors that influence 

decomposition. Metabolic rates generally increase exponentially with temperature (Brown et 

al., 2004) which suggests that decomposition should be highly sensitive to even small changes 

in temperature (Davidson et al., 2006; Boyero et al., 2011; Irons et al., 1994). The production 

and decomposition of above- (such as leaf, branch) and belowground litter mainly fine root, 

Steinaker and Wilson (2005) are key processes linking plant and soil in the terrestrial 

ecosystem (Cusack et al., 2009; Schindler and Gessner, 2009).  Favorable climatic conditions 

promote microbial activity during decomposition whereas the initial chemical composition of 

labile material provides an available source of energy for the decomposers (Tripathi and Singh, 

1992; Facelli and Pickett, 1991; Heal et al., 1997; Boyero et al., 2014). ). The leaf litter and 

fine root are considered as fast C pools (Meier and Leuschner, 2010). 

Tropical forest plays an important role in the global cycles of Carbon (C) and nutrients 

by storing significant fractions in the world’s vegetation and soil pools (Brown and Lugo, 

1982; Brown et al., 1993). Conversion of natural forest into different land use affects 
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fundamental ecosystem functions such as C and the process of nutrient cycling (Lawrence, 

2005; Jandl et al., 2007)  In most tropical countries, the largest source of CO2 emissions is 

deforestation and land-use change (Gibbs et al., 2007). Microbial inoculation is also an 

important strategy in eco-restoration processes of a degraded ecosystem (Harris, 2009). 
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Chapter 3 

MATERIAL AND METHODS 

 

3.1. Description of the study sites and climate 

3.1.1. About Mizoram state  

Mizoram is a hilly state located in the extreme part of North East India, covering an 

area of 21,081 km² which is situated at 21°56'-24°31' N latitude and 92°16'-93°26' E longitude 

exhibiting-moist tropical to sub-tropical climate. The state is bordered by Myanmar, 

Bangladesh, Assam, Manipur, and Tripura. Mizoram meaning land of highlanders has 

undulating topography with several troughs and peaks that range from 800 m to 2000 m amsl 

near the Myanmar border. The capital of the state is Aizawl with a mean elevation of 1132 m. 

The tropic of cancer, i.e., 23°30'N latitude cuts across the region in the undivided Aizawl 

district. This imaginary line divides the region into two almost equal parts (Pachuau, 1994). 

The forest vegetation in the state of Mizoram falls under three major categories i.e., 

tropical wet evergreen forest, tropical semi-evergreen forest and sub-tropical pine forest 

(Champion and Seth, 1968). The Tropic of Cancer passes through the middle of the State. 

As per 2011 census, Mizoram has recorded a population of 1,091,014 consisting of 

552,339 males and 538,675 females. Mizoram falls under temperate zone having a sub-tropical 

climatic condition with short and dry winter. Rainfall was evenly distributed over the years 

with a total of 3,000 mm.  In Aizawl town rainfall was 2,380 mm and Lunglei 3,178 mm. In 

the state, temperature varied from about 12
o
 C in winter (November to February) to about 30

o
C 

in summer.  There is generally no rain or very little rain during the winter months. Spring starts 

at the end of February and continues till the middle of April after that storms are prevalent with 
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the onset of summer.  In April and May, temperature goes up to 30
o
C. The hills are covered by 

a haze. Heavy rains start in June and continue up to August. September and October are the 

autumn months when the rains cease and the temperature is usually between 19
o
C and 25

o
C. 

 

Table 3.1. Weather parameters of the study areas (Aizawl district), Mizoram during 2012 and 

2013. 

Month 

 

Maximum 

temperature 

(°C) 

Minimum 

temperature 

(°C) 

Average mean 

temperature 

(°C) 

Relative 

humidity  

(%) 

Rainfall  

(mm) 

2012 2013 2012 2013 2012 2013 2012 2013 2012 2013 

January 26.3 27.3 5.6 5.6 15.95 16.45 74.77 68.16 20.3 0 

February 30.05 31.4 10.4 10.7 20.225 21.05 62.7 78.89 7.3 3.3 

March 33 32.7 11.3 14.2 22.15 23.45 65.41 68.61 46.9 5.6 

April 33.3 34.5 12.1 12 22.7 23.25 81.26 77.26 264.7 61.4 

May 30.5 32.9 15.4 12.7 22.95 22.8 84.25 90.61 175.6 448.4 

June 30.7 32.9 16.3 18.7 23.5 25.8 92.6 90.96 474 301.8 

July 29.8 30.7 19.2 19 24.5 24.85 91.7 92.7 252.4 290.8 

August 31.2 28.9 18.3 18.1 24.75 23.5 90.22 94.45 465.9 363.4 

September 30.9 30.7 18.5 18 24.7 24.35 91.6 93.13 363.9 268.6 

October 29.5 31.3 16.1 16.5 22.8 23.9 87.25 83.22 215.1 82.4 

November 26.6 31.4 11 13.8 18.8 22.6 86.3 67.45 121 0 

December 28.1 27.6 8.8 10.7 18.45 19.15 71.29 68.77 0 0 

Source: Meteorological Observation Station, Department of Environmental Studies, Mizoram 

University. 

 

3.1.2. Study sites 

3.1.2.1. Settled agriculture (Sloping Agriculture Land Technology, SALT trial farm) 

           The study site is located at Pukpui area, Lunglei district of Mizoram (22
0 

53’ 30’’ N- 92
0 

50’ 00’’ E). Pukpui is located in northern side of the Lunglei town which is away from 10 km. 
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Pukpui is located 10 Km away from the northern part of Lunglei town. Lunglei has 186 

villages and an area of 4,538 km
2
 with a population of 154,094 (as per census 2011). 

Sloping agriculture land technology (SALT) is practiced in the farm. The farm was 

started on the year 2002 with 1-hectare area of land increasing every year successively up to 

2010 down the hill slope. The crops planted on the farm are banana, maize, turmeric, citrus 

fruits, passion fruits, mangoes and pineapple. Nitrogen-fixing shrubs (Flemingia macrophylla 

and Tephrosia candida) are planted as dense hedgerows along slope contour, and a diverse 

range of crops are cultivated in the inter-row areas. A dense row of Flemingia macrophylla has 

been planted because the stems are strong to resist wind damage and litter and soil erosion. 

Tephrosia candida is planted throughout the farm because it produces large number of seeds 

and the seedlings that suppress weeds. The hedgerows are trimmed back to 1 m height every 

year for the availability of the sun light to the crops and other nitrogen-fixing trees are allowed 

to grow relatively tall to provide a nursing environment for young citrus plants. All dead 

branches of Tephrosia are placed on the ground to provide organic matter and nutrients to the 

plants. To maintain soil fertility, all dead and pruned leaf, twig and branch wood materials are 

scattered on the ground to suppress weeds and to add soil organic matter and nutrients to the 

soil through decomposition. 

3.1.2.2. Shifting cultivation sites 

Shifting cultivation sites were selected in Lengpui are about 30 km away from Aizawl 

city. The geographical area of Aizawl district is 3,576 km
2
 and as per the 2011 census the 

population of the city 404,054. The climate of the area is typically monsoon with distinct 

seasons. The annual mean average rainfall of the area is ca. 2350 mm. The ambient air 

temperature ranges from 20 to 30°C in summer and 11 to 21°C in winter (Laltlanchhuanga, 

2006). The entire area is under the regular influence of monsoon. It rains heavily from May to 
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September and the average rainfall is 254 cm, per annum. The average annual rainfall in 

Aizawl and Lunglei are 208 centimeters and 350 centimeters, respectively. Winter in Mizoram 

is normally rain-free. The forest vegetation falls under three major categories i.e., tropical wet 

evergreen forest, tropical semi-evergreen forest and sub-tropical pine forest (Champion and 

Seth, 1968). The practice of shifting cultivation, uncontrolled fire, falling of trees, agricultural 

expansion and road building has resulted in deforestation. 

3.2. Agricultural practices in Mizoram 

Fire is an integral part of the Mizo culture. Fire clears the land, temporarily nourishes 

the soil, and restricts weeds, plant pests and pathogens. The Mizo term for February (‘Ramtuk 

Thla’) literally means the ‘time for preparing the land for burning’. Slash and burn agricultural 

practice is common and widespread in Mizoram resulting in a landscape dominated by mixed 

species of bamboo forests in various stages of post-fire succession. Mature sub-tropical wet hill 

and tropical wet evergreen forests that are the natural climax vegetation in the higher and lower 

altitudes of this region, respectively, (Champion and Seth, 1968) cover just 20% of the land 

area (Singh et al., 2010). 

Typical shifting cultivation crops include upland rice (Oryza sativa), sugarcane 

(Saccharum officinarum), maize (Zea mays), chillies (Capsicum annuum), eggplant or‘brinjal’ 

(Solanum melongena), lady’s fingers/okra (Abelmoschus esculentus), squash (Sechium edule), 

pineapple (Ananas comosus), Cassava (Manihot esculentum) and herbs such as Mustard 

(Brassica juncea). In addition, ginger (Zingiber officinalis) and turmeric (Curcuma longa) are 

frequently planted in recently burned sites because they grow well on steep slopes are high 

value crops that store and transport well (unlike bananas for example). 

However, harvesting these subterranean crops involves opening up the soil and 

exposing it to erosional losses. Annual crops including wetland rice are continuously cultivated 
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on Mizoram’s more gentle slopes and valley bottoms. Localized special initiatives such as 

horticulture (e.g., Anthurium flowers), viticulture (wine grapes) and citrus fruit and oil palm 

plantations have been established, but require substantial government investment assistance 

that will only be a feasible option for a very small proportion of farmers. Poultry and piggery 

are the primary focus of animal husbandry. Cattles are rare although dairy farmers that have 

ready access to a milk market, and that make optimal use of farmyard manure seem to be 

successful on gentle slopes and terraces (Grogan et al., 2012). Nevertheless, these farms rely 

heavily on a much larger neighboring area of surrounding post-fire successional vegetation for 

manual fodder collection. The availability of commercial (industrially manufactured) fertilizer 

was severely restricted by the Mizoram government in 2005 in a bid to achieve ‘organic’ 

agricultural production status within India and to avoid eutrophication of watersheds. 

Nevertheless, some farmers are acquiring and using small amounts of commercial fertilizer 

(e.g., diammonium phosphate, urea) especially on continuously cultivated slopes and terraces. 

 

3.3. Experimental design   

3.3.1. Soil sampling  

            Different Jhum fallow land of various ages (5, 10 and 14 years) and a reference forest 

was selected in Aizawl districts of Mizoram. In each fallow land and reference forest, a sample 

area of about 1 hectare was randomly demarcated.  Within each sample area, 5 randomly 

located permanent plots measuring 20mx20m was marked. Soil samples were collected from 

these permanent plots periodically. 

Similarly, five representative sample area of about 0.5 to 1 ha having different ages of 

cultivation (between 2 and 10 years) was marked in alternate years in the permanent farming 

system (SALT) located at Pukpui in Lunglei district of Mizoram where organic farming is 
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practiced since 2002. Within each sample area 3-6 randomly located permanent plots 

measuring 5mx5m was marked for periodical soil sampling.  

 

3.3.2. Measurement of litter decomposition 

Decomposition kinetics of leaf and root components of two dominant tree species was 

recorded at different fallow lands following shifting agriculture and a reference forest in 

Lengpui area. Whereas, decomposition kinetics of different litter components (green leaves, 

branch, fine root, coarse root) of T. candida and F. Macrophylla was studied at two SALT 

farm in Pukpui. The rate of decomposition was studied using a nylon net bag technique 

(Bocock et al., 1960). Air-dried litter samples different components (green leaves, leaves litter, 

branch, fine root and coarse root) equivalent to 7 g were enclosed in nylon net bags (1 mm 

mesh; 15 cm x 15 cm). These bags were placed on the ground and the roots litters were buried 

up to 10 cm soil depth for decomposition. Four bags per litter category were retrieved at 90 

days interval. After recovery, the bags were placed in individual polythene bags and brought to 

the laboratory. The samples collected from bags were cleaned to remove soil particles and 

oven-dried at 105°C for 24 hours and weighed to know the mass remaining (decomposition 

rate). The dried collected material was ground separately in a Willeymill and passed through a 

0.5 mm sieve to get powder for chemical analyses. Litter total C and N were determined by 

CNH auto analyzer. 

 

3.3.2.1. Litter decomposition in settled agriculture (SALT) 

Two different species of nitrogen-fixing shrubs viz. Flemingia macrophylla and 

Tephrosia candida were selected from two different sites (10yrs and 2yrs) in the same 

permanent farm. For determination of plant litter decomposition rate, different part of the plant 
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i.e. mature senesced leaves attached to the plant, freshly fallen leaf litter samples and recently 

dead wood branches still attached to the plants were collected during June 2012. At the same 

time, fine roots (<2mm in diameter) and coarse roots (<5-10mm in diameter) were collected by 

digging out soil monoliths and then dried in an oven at 35°C for three days to a constant 

weight. After adjusting for the initial moisture content, all litter samples (equivalent to 7 g dry 

weight) were enclosed in a nylon net bags (mesh size: 2mm, 15 X 15cm). 

A total of 200 bags were prepared for different litter categories, 20 bags each for 

different litter categories. Nylon net bags (15x15cm, 2mm mesh) containing 7 g air-dried leaf 

and wood litter were randomly placed on the plantation floors just above the soil surface and 

bags containing roots were buried in the soil to a depth of 10 cm in July 2012. Five bags 

containing decomposing litter were randomly recovered at three months intervals from each 

plantation site. The recovered litter materials were air dried, brushed to remove adhering soil 

particles, and finally dried at 80°C for 24 h and weighed.  

Collected litter material was ground in a Willeymill and passed through a 0.5 mm sieve 

for chemical analyze. Total N and organic carbon were analyzed by CHN Auto-analyzer at 

Central Instrumental Laboratory, Mizoram University. 

 

3.3.2.2. Shifting cultivation site  

Two different dominant species were selected from each fallow land in Lengpui. Leaf 

and fine roots of Makaranga indica and Schima wallichii were collected from reference forest, 

14 years and 10 years old fallow land and leaf and the fine root of Bidens pilosa and A. 

puliginosa were collected from 5 years old fallow land. All samples were collected during June 

2012 and then dried in an oven at 35°C for three days to a constant weight. After adjusting for 
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the initial moisture content, all litter samples (equivalent to 7 g dry weight) were enclosed in a 

nylon net bags (mesh size: 2mm, 15 X 15cm). A total of 160 bags were prepared for different 

litter categories, 20 bags each for different litter categories. Nylon net bags (15x15cm, 2mm 

mesh) containing 7 g air-dried leaf and wood litter was randomly placed on the plantation 

floors just above the soil surface, and bags containing roots were buried in the soil to a depth of 

10 cm in July 2012. Five bags containing decomposing litter were randomly recovered at three 

months intervals from each plantation site. The recovered litter materials were air dried, 

brushed to remove adhering soil particles, and finally dried at 80°C for 24 h and weighed.  

Collected litter material was ground in a Willeymill and passed through a 0.5 mm sieve 

for chemical analyse. Total N and organic carbon were analysed by CHN Auto-analyzer at 

Central Instrumental Laboratory, Mizoram University. 

The daily instantaneous decay rate (k) of litter and root materials was calculated 

through the negative exponential decay model of Olson (1963): Wt/W0 = exp
(-kt)

 

where W0 = initial weight and Wt = weight remaining after time t. As suggested by 

Olson (1963), time required for 50% and 95% weight loss was calculated as t50 = 0.693/k, t95 = 

3/k. 

3.4. Soil sampling and analysis 

Soil samples (0–10 cm depth) were collected from the randomly marked permanent 

plots (20m x 20m) for physic-chemical characterization. At each location, the soil was 

collected from three pits, composited and pooled as one replicate. These 3 random composite 

soil samples were used for detail soil physicochemical and biochemical properties. Each 

composite soil sample was divided into two parts; one part was stored at 4°C immediately after 

collection and used later for biochemical and microbiological analyses. Just before analysis, 
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soil samples were incubated at 28±1°C for overnight and then passed through 1 mm sieve. Soil 

sampling was done periodically. After carefully removing the surface organic materials and 

fine roots, each composited moist field soil sample was air-dried and was sieved through a 2 

mm mesh screen and transported to the laboratory for the determination of soil organic carbon 

and total nitrogen content. Soil pH was measured by using a glass electrode (1:5, soil: water). 

Organic C was analyzed by dichromate oxidation in a reflux system and titration with ferrous 

ammonium sulphate (Kalembasa and Jenkinson, 1973). Total N was estimated by the micro-

Kjeldahl method (Jackson, 1958).  

 

3.4.1 Soil aggregate analysis 

 Soil aggregates were analyzed by wet sieving method of Elliott (1986). Five soil 

samples were collected from permanent plots of each site randomly. Samples were collected as 

soil monoliths measuring (15x15x30cm) from 0-10cm soil layer. All sites were sampled at the 

end of the rainy season. The samples were allowed to air dry then gently passed through a 

sieve (<8 mm) in air-dried state to remove root material. Each sample was thoroughly mixed. 

Samples were stored until further analysis in polyethylene bags in a refrigerator at 5°C. Five 

sub-samples (50g each) were wet sieved by hand through a series of five sieves to obtain six 

soil aggregate size fractions: (i) >4.75 mm (ii) 2.0-4.75 mm (iii) 0.5-2.0mm (iv) 0.3-0.5mm (v) 

0.053-0.3mm and (vi) <0.053mm. Before wet sieving, the soil samples had been vapour-wetted 

(misted); (Kemper and Rosenau, 1986), and then submerge in the water on the largest screen 

for 5 minutes before the sieving commenced. The soils were sieved underwater by gently 

moving the sieve 3 cm vertically 50 times over a period of 2 minutes through water contained 

in a shallow pan (Elliott, 1986). 
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Material remaining on the sieve was transferred to an aluminum container and dried at 

60° C in a forced air oven. Soil passing a particular sieve remaining in the shallow pan was 

then transferred to the next finer sieve and the process repeated. For each sample, the aggregate 

>0.3mm were bulked as macroaggregates and those <0.3mm as microaggregates (Elliott, 

1986). 

Soil aggregates (micro- and macro) were further analysed for nutrient content. One 

subsample from each sample was air-dried and analysed for total C and total N using Heraeus 

CHN-O-S Rapid Auto-analyser. 

3.4.2. Soil moisture content 

 Soil moisture content was determined through the gravimetrical method by drying the 

known amount of fresh soil in the oven and calculating the moisture content as the difference 

between fresh and dry soils as described by Anderson and Ingram (1993). 

3.4.3. Soil pH 

          Soil samples were analyzed for pH (1:2.5 soil/water suspension) using a standard pH 

meter (Mettler Toledo, Switzerland).  

3.4.4. Soil total carbon (C) and Nitrogen (N) 

Finely grinded (1 mm) air-dried soil was used to determine total soil C and N by using 

a Hereaus CHN-O-S Rapid Auto-analyser at Central Instrument Laboratory, Mizoram 

University. 
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Chapter 4 

RESULT 

4.1. Changes in soil characteristics  

4.1.1. Changes in soil total carbon (C) in different fallow lands after shifting cultivation  

Significant seasonal variations (P<0.001) in soil total carbon (C) was observed in all 

fallow lands at Lengpui. C increased significantly across the fallow ages (e.g. from 5 yrs, 10 

yrs, 14 yrs old fallow land) and reached highest in the Reference forest in all seasons. Soil C 

content was comparatively lower during the winter season and an increasing trend was 

observed towards post-monsoon season (Fig 4.1A). Significant variations (P<0.001) was 

observed in soil C content among the different sites of Lengpui. Among the four site (5, 10, 14 

years old fallow land and reference forest) the lowest soil carbon was observed during winter 

season and highest was observed during monsoon and post-monsoon season (Table 4.1). 

During winter season C content was lowest in 5 years old fallow land (2.01%), which increased 

to 2.12% in 10 years old fallow land and 2.23% in 14 years old fallow land, and reached to 

maximum in reference forest (2.55%).  

Total C in summer followed a similar trend with lowest in 5 years old fallow land 

(2.71%) followed by 10 years old fallow (2.72%), 14 years old fallow (2.95%) and maximum 

in reference forest (3.03%). Corresponding values of soil C in monsoon and post-monsoon 

were: 2.78% in 5 years, 2.89% in 10 years, 3.07% in 14 years and 3.17% in reference forest; 

and 2.79% in 5 years 2.83% in 10 years, 3% in 14 years and 3.15% in reference forest.  

Among different fallow sites at Lengpui, seasonal changes in C was more marked in 5 

yrs fallow and less marked reference forest.  
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Table 4.1. Seasonal changes in soil carbon (%) in different fallow land at Lengpui site.  

                  Values are SE means ±1.  

 

Sites Winter Summer Monsoon Post monsoon 

     5 years 2.0±0.0 2.7±0.0 2.7±0.0 2.7±0.0 

 10 years fallow 2.1±0.0 2.7±0.0 2.8±0.0 2.8±0.0 

 14 years fallow 2.2±0.0 2.9±0.0 3.0±0.0 3.0±0.0 

 Reference forest  2.5±0.1 3.0±0.0 3.1±0.0 3.1±0.0 

             

 

4.1.2. Changes in soil organic carbon (C) in SALT farm (2 years and 10 years old)  

Among the two sites of different ages with respect to time of their establishment at 

SALT farm at Pukpui. One site was established in the year 2002 and the other in 2010 so at the 

time of the start of this study in 2012, the age of one site was 2 years and the other site 10 years 

since the farming was started there. Small variations in the amount of soil C was noted in two 

sites (Table 4.2). However the site wise differences were not significant. Seasonal variations in 

the amount of soil C was noted in SALT farm (Fig. 4.1 B) as was observed in shifting fallow 

lands.  

Table 4.2. Seasonal changes in soil organic carbon (C) in Pukpui site.  

                 Values are means ±1 SE.  

Sites Winter Summer Monsoon Post monsoon 

Age 10 2.7±0.0 2.7±0.0 2.8±0.0 2.8±0.0 

 Age 2 2.6±0.0 2.7±0.0 2.7±0.0 2.8±0.0 
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Figure 4.1. Seasonal changes in soil organic carbon (C) in different fallow lands; (A) Lengpui 

and settled farm; pukpui (B). Vertical lines indicate a standard error, n=3  

  
    4.1.3. Changes in soil total nitrogen (N) in different fallow lands (at Lengpui) 

Soil total nitrogen showed comparatively lower seasonal variation in all the four sites at 

Lengpui. Soil total nitrogen content showed similar seasonal variations as reflected by soil C in 

these sites with lowest values during winter season and highest values during monsoon and 

post-monsoon seasons (Table 4.3). Lesser but significant difference was observed among the 

four sites with lowest total N content in 5 yrs fallow and highest in Reference forest (Fig 4.2 

A).  

Table 4.3. Seasonal changes in soil nitrogen (%) in different fallow lands. 

                   Values are means ±1 SE.  

Fallow age Winter Summer Monsoon Post monsoon 

5 years 0.3±0.0 0.3±0.0 0.3±0.0 0.3±0.0 

10 years 0.3±0.0 0.3±0.0 0.3±0.0 0.4±0.0 

14 years 0.3±0.0 0.3±0.0 0.3±0.0 0.4±0.0 

Ref. Forest 0.3±0.0 0.3±0.0 0.4±0.0 0.4±0.0 
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4.1.4. Changes in soil total nitrogen (N) in the settled farm (2 years and 10 years) 

Among the two sites at Pukpui, recently established site (2 years old) showed lowest soil total 

nitrogen (0.29%) in winter and highest (0.39%) in the previously established site (10 years old) 

in post monsoon season (Table 4.4).  Seasonal variations were shown in Fig 4.2 B.  

 

Table 4.4. Seasonal changes in soil nitrogen (%) in SALT farm site. 

                   Values are means ±1 SE.  

Sites Winter Summer Monsoon Post monsoon 

  Age 10 0.3±0.0 0.3±0.0 0.3±0.0 0.3±0.0 

   Age 2 0.2±0.0 0.3±0.0 0.3±0.0 0.3±0.1 

  

 

  

Figure 4.2.Seasonal changes in soil total nitrogen (N) in different fallow lands (A) at Lengpui 

and settled (SALT) farm at Pukpui (B). Vertical lines indicate standard error, n=3  
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4.1.5. Soil pH value in different sites 

Soil pH showed significant variations among the sites. The pH of the soil of all the sites 

in Lengpui and Pukpui varied from (4.6 to 5.6) and the increase in the pH scale with a degree 

of disturbance was noted. The highest soil pH value was observed at 5 yrs fallow land with pH 

5.6 followed by 10 yrs fallow, 14 years fallow and reference forest respectively among the 

Lengpui sites. Soil pH was strongly acidic (<5.0) in 14 yrs fallow, reference forest site at 

Lengpui and two ages of SALT farm sites at Pukpui (Fig 4.3).  

 

 

Figure 4.3. Soil pH in different fallow lands at Lengpui (5 yrs, 10 yrs, 14 yrs and Reference 

forest) and SALT farm at Pukpui (2 and 10 yrs).  Vertical lines indicate a standard error, n=3  

 

4.1.6. Soil moisture content in different sites 

Soil moisture content showed significant seasonal variations in all sites. Highest soil 

moisture content was recorded in monsoon and post-monsoon seasons ranging from 36% ( in 5 
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yrs fallow) to 48% (in Reference forest) in monsoon season and 33% (5 yrs fallow) and 45% 

(Reference forest) in post monsoon season. Lowest soil moisture content was observed during 

the dry winter season in all sites. Soil moisture content in monsoon and post monsoon seasons 

was highest in Reference forest and lowest in 5 yrs fallow (Fig 4.4). 

 

 

Figure 4.4. Seasonal changes in soil moisture content (%) in different fallow lands at Lengpui (5 yrs, 10 

yrs, 14 yrs and Reference forest) and SALT farm Pukpui (2 years and 10 years old). The vertical line 

indicates a standard error, n=3  

 

4.2. Litter decomposition and nutrient release  

4.2.1. Mass loss during decomposition: SALT farm Pukpui 

The highest mass loss was observed during the first recovery at 90 days after the 

placement of litter in all sites for all litter components (Fig 4.5).  
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Figure 4.5. Mass remaining (%) of initial at 4 different stages (R1, R2, R3 and R4) of recovery 

of different components of both F. macrophylla and T. candida litter in the two study sites. 

Vertical lines indicate standard errors (± 1SE). GL=Green leaf, LT=Leaf litter, 

BR=Branch/Wood, FR=Fine root, CR=Coarse root. R1, R2, R3, and R4 are the stages of 

recovery (time since the placement of bag) i.e. 90, 180, 270 and 360 days, respectively.  

 

  The maximum mass loss was observed in fine root litter and minimum in wood litter of 

both T. candida and F. macrophylla in both the sites. In both species (T. candida and F. 

macrophylla), highest mass loss (59%) rate occurred during initial recovery (90 days of litter 

placement) and lowest (28%-32%) in wood litter in 10 yrs old farm. However, in 2 years old 
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site, mass loss rates were about 51-52% in fine root litter and 30% in wood litter of these 

species during the first recovery (Figure 4.5).  

The percentage mass of litter material remaining at two sites at the end of the study 

ranged: 2-7% for fine roots (<2mm), 4-11% for coarse roots (5-10 mm), 14-28% for branch, 

10-21% for leaf of both species.  The instantaneous annual decay rates (k) for different litter 

categories were: 2.6-3.5 for fine root and 1-2.6 for other categories. On the basis of k values, 

the time projections for 50% weight loss varied from 65-88 days for fine roots, 88-155 days for 

coarse roots and other components (Table 4.5). At the end of the study mass remaining of the 

different components were: about 3-7% for fine roots, 6.5-11% for coarse root, 14-28% for 

branch, 10-20% for leaves litter and 17-22% for green leaves (Table 4.5).  
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Table 4.5. Decomposition parameters for mass loss and time required for 50% and 95% decay 

    (t50 and t95). 

Sites 

 

 

Litter components 

 

 

Mass 

remaining 

(% 

initial) 

365 days 

Annual 

decay 

rate (k) 

 

t50 (days) 

 

t95 (days) 

 

2002 

T. candida 

Green leaf 17.5 1.74 133.81 628.23 

Leaf  litter 10.71 2.23 104.42 490.24 

Branch 21.42 1.54 151.40 710.83 

Fine root 4.85 3.02 77.10 362.01 

Coarse root 7.24 2.03 89.37 414.92 

F. macrophylla 

Green leaf 21.42 1.54 155.4 710.83 

Leaf  litter 20.42 1.54 151.40 710.83 

Branch 14.28 1.94 119.8 562.71 

Fine root 7.14 2.63 88.37 414.92 

Coarse root 6.57 2.33 99.99 328.61 

2010 

T. candida 

Green leaf 18.9 1.66 150.12 657.85 

Leaf  litter 17.92 1.66 140.12 657.85 

Branch 28.21 1.26 184.32 865.37 

Fine root 2.85 3.5 65.60 307.98 

Coarse root 7.14 2.63 88.37 414.92 

F. macrophylla 

Green leaf 18.92 1.66 140.12 657.85 

Leaf  litter 17.5 1.74 133.81 628.23 

Branch 16.28 1.94 119.8 562.71 

Fine root 3.57 3.33 69.99 328.61 

Coarse root 10.71 2.23 104.42 490.24 

 

4.2.2. Nutrient release pattern in SALT farm 

Considerable loss of C and N occurred during the initial 90 days of decomposition for all 

litter categories. About 30-50% C and N remained at the end of recovery for all litter types. 
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Highest release of C and N was recorded in the fine root category of both species in both sites 

(Fig 4.6) and (Table 4.6 - 4.13). 
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Figure 4.6. Temporal changes in carbon and nitrogen stocks in different litter components 

during the course of decomposition. GL=Green leaf, LT=Leaf litter, BR=Branch/Wood, 

FR=Fine root, CR=Coarse root. R1, R2, R3, and R4 are the stages of recovery (time since the 

placement of bag) i.e. 90, 180, 270 and 360 days, respectively. 

 

Table 4.6. Changes in N stock remaining at different time point in different litter components 

of T.candida during the course of decomposition in 10 years old SALT farm. 

Parts of 

T.candida  

Percent N mass remaining (days) 

0  90  180  270  365  

Green leaves 100 79.5±1.8 69.8±0.8 58.7±1.4 49.7±2.0 

Leaf litter 100 79.0±1.6 66.5±1.8 57.7±1.8 50.3±1.5 

Branch 100 78.8±2.4 66.5±2.3 57.5±1.8 50.5±1.9 

Fine root 100 73.8±1.1 64.5±1.0 45.7±1.1 32.5±1.8 

Coarse root 100 79.5±0.6 61.7±1.3 56.5±1.5 49.7±1.2 
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Table 4.7. Changes in N stock remaining at different time point in different litter components 

of F. macrophylla during the course of decomposition in 10 years old SALT farm.  

Parts of 

F.macrophylla  

Percent N mass remaining (days) 

 

 0  90  180  270  

 

365  

Green leaves  100 79.3±1.1 69.2±0.4 58.7±0.7 

 

50.0±0.9 

Leaf Litter  100 71.5±3.7 66.5±1.5 56.5±1.4 

 

46.3±0.8 

Branch  100 78.7±2.3 67.7±1.6 55.5±1.7 

 

50.7±0.8 

Fine root  100 72.2±1.1 63.7±1.1 52.2±0.7 

 

35.2±1.4 

Coarse root  100 79.0±0.7 61.2±0.9 56.5±1.3 

 

50.2±0.8 

 

 

   

 

 

 

 

Table 4.8. Changes in N stock remaining at different time point in different litter components 

of T.candida during the course of decomposition in 2 years old SALT farm. 

Parts of 

T.candida 

Percent N mass remaining (days) 

 

 0 90 180 270 

 

365 

Green leaves  100 78.2±1.5 69.7±1.3 59.0±1.2 

 

49.7±1.2 

Leaf Litter  100 79.0±1.5 66.5±1.7 57.7±1.7 

 

50.3±1.5 

Branch  100 78.0±1.6 67.0±1.4 57.5±1.4 

 

51.2±1.7 

Fine root  100 71.5±1.3 61.0±1.4 47.7±1.7 

 

36.9±1.0 

Coarse root  100 79.0±1.0 63.2±2.2 59.2±0.8 

 

49.9±1.2 
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Table 4.9. Changes in N stock remaining at different time point in different litter components 

of F. macrophylla during the course of decomposition in 2 years old SALT farm.  

Parts of 

F.macrophylla 

Percent N mass remaining (days) 

0 

 

90 180 270 

 

365 

Green leaves 100 

 

77.9±1.8 69.1±0.4 58.3±0.8 

 

49.6±0.6 

Leaf Litter 100 

 

71.7±3.2 67.3±1.4 57.4±1.5 

 

47.4±0.8 

Branch 100 

 

78.2±1.5 68.6±0.9 55.9±1.3 

 

51.1±0.9 

Fine root 100 

 

69.5±1.7 57.4±1.9 47.8±2.8 

 

35.8±1.4 

Coarse root 100 

 

78.7±0.5 63.5±1.0 59.0±2.5 

 

50.4±2.5 

 

 

Table 4.10. Changes in C stock remaining at a different time point in different litter 

components of T.candida during the course of decomposition in 10 years old SALT farm. 

Parts of  

T.candida 

 

Percent C mass remaining (days) 

0 

 

90 180 270 365 

Green leaf 

 

100 

 

74.8±3.4 67.2±1.5 63.5±1.4 47.2±1.6 

Leaf Litter 

 

100 

 

72.9±3.4 67.8±1.7 59.7±1.8 46.5±1.2 

Branch 

 

100 

 

72.2±1.4 66.0±1.12 58.1±1.3 46.2±0.7 

Fine root 

 

100 

 

69.4±1.1 58.7±0.8 49.6±0.4 34.1±0.5 

Coarse root 

 

100 

 

79.0±0.8 68.6±0.9 58.1±1.5 47.5±0.7 
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Table 4.11. Changes in C stock remaining at different time point in different litter components 

of F. macrophylla during the course of decomposition in 10 years old SALT farm.  

Parts of 

F.macrophylla 

 

Percent C mass remaining (days) 

0 

 

90 180 270 365 

Green leaf 

 

100 

 

76.06±2.273 65.617±1.01 59.472±1.04 46.346±0.776 

Leaf Litter 

 

100 

 

70.486±5.132 65.703±3.904 58.257±3.56 45.593±2.683 

Branch 

 

100 

 

74.057±4.828 59.971±1.57 55.732±1.962 44.011±1.554 

Fine root 

 

100 

 

64.837±3.866 56.465±2.694 50.558±2.6 30.143±1.277 

Coarse root 

 

100 

 

79.316±0.669 69.879±0.919 58.332±1.516 47.804±0.863 

 

 

Table 4.12. Changes in C stock remaining at different time point in different litter components 

of T.candida during the course of decomposition in 2 years old SALT farm. 

Parts of 

T.candida 

 

Percent C mass remaining (days) 

0 

 

90 180 

 

270 365 

Green leaf 

 

100 

 

72.7±4.4         66.9±3.2 

 

61.4±2.7 42.5±4.0 

Leaf Litter 

 

100 

 

73.4±3.8 69.2±2.6 

 

61.4±3.0 45.8±1.6 

Branch 

 

100 

 

72.0±1.7 65.6±0.3 

 

59.2±0.9 47.3±0.3 

Fine root 

 

100 

 

72.0±0.6 64.7±1.2 

 

55.0±1.4 37.3±0.4 

Coarse root 

 

100 

 

79.9±0.6 69.7±2.3 

 

57.6±1.9 47.4±1.3 
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Table 4.13. Changes in C stock remaining at different time point in different litter components 

of F. macrophylla during the course of decomposition in 2 years old SALT farm.  

Parts of 

F.macrophylla 

 

Percent C mass remaining (days) 

0 90 180 270 365 

Green leaf 

 

100 76.1±2.5 67.1±1.3 61.1±0.9 46.1±0.6 

Leaf Litter 

 

100 72.3±4.4 67.6±3.7 62.8±2.7 45.7±2.1 

Branch 

 

100 72.2±3.4 60.9±2.0 57.3±3.1 46.3±1.4 

Fine root 

 

100 72.9±2.1 63.1±1.0 56.2±1.1 32.5±0.3 

Coarse root 

 

100 77.1±1.6 72.3±1.8 57.9±0.8 46.4±0.2 

 

N release was faster in fine roots compared to the other litter categories (Tables 4.6-

4.9). The fine root of F. macrophylla showed a greater amount of C release than T. candida in 

both the study sites (Table 4.10-4.13), although differences were not significant between the 

pattern of C and N release.   

4.2.3. Mass loss during decomposition in fallow lands and reference forest 

The highest rate of decomposition was recorded during the period between the 

placement of litter bags and the first recovery in all sites. Fine root decomposes faster than leaf 

litter in all fallow lands.  After one year <20% mass of fine root component was remaining at 

all site.  

4.2.3.1. Reference forest 

                Generally, fine root of two species (M. indica and S. wallichii) at reference forest site 

decomposes faster than leaf  litter category of these species (Table 4.14, Fig 4.7). However, at 

the end of the percent mass remaining was almost equal for both components of these species 

(i.e. 28-30%).   
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4.2.3.2. Fallow land following shifting cultivation (14 years old) 

M. indica decomposes slowly during initial 270 days of decomposition and roots of M. 

indica and leaf and root of S. wallichii decomposes faster (Table 4.15, Fig 4.7 b). However, the 

mass remaining at the end of the one year was almost equal.  

4.2.3.3. Fallow land following shifting cultivation (10 years old) 

Leaves and roots of S.wallichii decompose faster than the leaves and roots of M.indica 

during initial 270 days (Table 4.16, Fig. 4.7 c). At the end of the study mass remaining of leaf 

and roots did not differ significantly. 

4.2.3.4. Fallow land following shifting cultivation (5 years old) 

Leaf and roots of two species (A. puliginosa and B. pilosa) decompose almost similarly 

during the course of the study (Table 4.17, Fig. 4.7 d). Considerable mass loss of these 

components was recorded during first 90 days of litter decomposition followed by a consistent 

weight loss.   

Table 4.14. Mass remaining (%) to initial at 4 different stages (90days, 180days, 270days and 

365days) of recovery on different components of both M.indica and S.wallichi in reference 

forest sites. 

Ref forest 

           Percent  mass remaining (days) 

0 90 180 270 365 

M.indica leaves 100 73.21 63.57 55.89 30.53 

M.indica root 100 58.92 52.85 45.71 27.85 

S.wallichii leaves 100 69.64 67.42 61.60 31.07 

S.wallichii root 100 57.85 52.5 43.57 29.28 
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Table 4.15. Mass remaining (%) to initial at 4 different stages (90days, 180days, 270days and 

365days) of recovery on different components of both M.indica and S.wallichi in 14 years old 

fallow land sites. 

14 years old fallow 

land 

           Percent  mass remaining (days) 

0 90 180  270  365 

M.indica leaves 100 72.85 68.57  62.85  33.75 

M.indica root 100 58.57 52.82  46.60  27.85 

S.wallichii leave 100 57.50 52.14  47.67  29.28 

S.wallichii root 100 55.17 47.85  45.00  28.57 

 

Table 4.16. Mass remaining (%) to initial at 4 different stages (90days, 180days, 270daya and 

365days) of recovery on different components of both M.indica and S.wallichi in 10 years old 

fallow land sites. 

10 years fallow land 

           Percent  mass remaining (days) 

0 90 180 270 365 

M.indica leaves 100 73.21 64.28 58.21 33.03 

M.indica root 100 68.25 64.46 56.42 28.57 

S.wallichii leave 100 59.67 54.46 48.92 27.50 

S.wallichii root 100 55.60 52.21 44.64 26.78 

 

Table 4.17. Mass remaining (%) to initial at 4 different stages (90days, 180days, 270days and 

365days) of recovery on different components of both B.pilosa and A.puliginosa in 5 years old 

fallow land sites. 

5 years old fallow 

land 

 

           Percent  mass remaining (days) 

0 90 180 270 365 

B.pilosa leaves 

 

100 57.50 46.35 38.57 26.07 

B.pilosa root 

 

100 54.92 45.35 40.17 23.39 

A.puliginosa Leave 

 

100 55.35 47.67 42.50 26.78 

A.puliginosa Root 

 

100 52.14 46.25 39.46 23.21 
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a b 

 
c d 

 

Figure 4.7. Litter decomposition at Lengpui site: Reference (a), 14 years fallow (b), 10 years 

fallow (c) and 5 years fallow (d). 
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4.2.4. N stock remaining in different fallow lands 

4.2.4.1. Fallow land following shifting cultivation (5 years old) 

The pattern of N release in fine root and leaf components of B.pilosa and A.puliginosa 

was almost similar in 5 years old fallow following shifting cultivation (Table 4.18, Fig. 4.8 a). 

N release was faster during initial 90 days and in the last phase of decomposition (during 270-

360 days).  

4.2.4.2. Fallow land following shifting cultivation (10 years old)  

The pattern of N release did not vary between components and species. However, the 

rate of release was faster during initial 90 days and last 90 days during an annual cycle in 10 

years old fallow following shifting cultivation (Table 4.19, Fig. 4.8 b).  

4.2.4.3. Fallow land following shifting cultivation (14 years old)  

N loss was almost similar in all the components of the two species (Table 4.20, Fig. 4.8 

c) in 14 years old fallow following shifting cultivation. Considerably decrease in N 

concentration occurred in initial 90 days during decomposition followed by a slow release 

during 90-180 days and there was consistent release noted during the 180-360 days of 

decomposition.   

4.2.4.4. Reference forest  

In general, the pattern of N release of all components was almost similar without any 

significant difference either among the components or species (Table 4.21, Fig. 4.8 d).  N 

release followed a pattern similar to that of the 14 years old fallow, for example, showing fast 

release during initial 90 days and 180-360 days but slow release during 90-180 days.  
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Table 4.18. Changes in N stock remaining at different time point in different litter components 

of B.pilosa and A.puliginosa during the course of decomposition in 5 yrs old fallow land. 

  

5 yrs old fallow 

land  

 

           Percent N mass remaining (days) 

0 90  180 270 365 

B. pilosa leaves 

 

100 73.4±2.0  67.7±1.2 60.5±0.7 49.0±0.7 

B. pilosa root 

 

100 74.0±1.5  63.3±0.8 60.8±0.8 44.9±0.3 

A. Puliginosa leaf 

 

100 76.5±0.8  71.1±1.2 57.0±1.4 47.3±0.7 

A. Puliginosa root 

 

100 74.6±1.3  68.8±0.9 58.1±0.6 46.2±0.5 

 

 

  

Table 4.19. Changes in N stock remaining at different time point in different litter components 

of M. indica and S. wallichii during the course of decomposition in 10 yrs old fallow land.  

10 yrs old fallow 

land 

           Percent N mass remaining (days) 

    0 90  180 270 365 

M. indica leaves 100 72.0±2.8  69.8±0.6 59.5±0.9 49.9±0.6 

M. indica root 100 75.4±1.4  69.2±1.3 55.1±0.5 49.5±0.9 

S. wallichii leaves 100 75.6±1.3  68.5±1.3 58.3±1.6 49.8±0.9 

S. wallichii  root 100 70.0±2.3  67.6±1.2 57.5±0.6 46.4±0.5 
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Table 4.20. Changes in N stock remaining at different time point in different litter components 

of M. indica and S. wallichii during the course of decomposition in 14 yrs old fallow land.  

14 yrs fallow land 

           Percent N mass remaining (days) 

0 90 180 270 365 

M.indica leaves 100 74.9±1.2 70.5±0.4 60.2±0.2 50.4±0.3 

M.indica root 100 73.5±1.2 69.6±0.6 60.5±0.6 49.8±0.3 

S.wallichii leaves 100 74.3±1.3 70.6±0.4 59.9±1.0 49.6±1.8 

S.wallichii  root 100 72.2±0.9 70.6±0.6 60.4±0.7 48.8±0.5 

 

 

Table 4.21. Changes in N stock remaining at different time point in different litter components 

of M. indica and S. wallichii during the course of decomposition in reference forest.  

Reference forest 

 

                Percent N mass remaining (days) 

0 90 180 270 365 

M.indica leaves 

 

100 75.5±0.7 67.5±1.7 59.7±0.9 48.4±0.8 

M.indica root 

 

100 73.5±2.0 69.8±0.6 60.8±0.5 49.4±0.3 

S.wallichii leaves 

 

100 73.7±1.0 70.6±0.5 61.4±0.5 50.9±0.3 

S.wallichii  root 

 

100 73.1±1.3 70.6±0.5 60.7±0.7 48.1±1.3 
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a b 

  
c d 

Figure 4.8.Changes in nitrogen stocks during the course of decomposition in different litter 

categories in Fallow lands and Forest (Lengpui Site). R1=90 days, R2=180 days, R3=270 days, 

R4=365 days  

 

4.2.5. Carbon mass remaining in fallow lands  

4.2.5.1. Fallow land following shifting cultivation (5 years old) 

 In 5 years old fallow, C release was almost similar for all components of the two 

species (Table 4.22, Fig. 4.9 a). However, the C release pattern was highly seasonal showing 

about 30% release during first 90 days with marginal change during 90-180 days followed by 

about 20% release during the last phase (180-360 days). 
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4.2.5.2. Fallow land following shifting cultivation (10 years old) 

 C release in root and leaf components of M. indica and S. wallichii did not vary 

significantly during the initial 90 days except S. wallichii root, but it varied during the later 

phase of decomposition (Table 4.23, Fig. 4.9 b). C release in S. wallichii root was faster in the 

initial phase of decomposition, whereas, C release was more pronounced during the later phase 

of decomposition of S. wallichii of leaf. Release of C from M. indica root was slowest among 

all components during the later phase of the decomposition.  

4.2.5.3. Fallow land following shifting cultivation (14 years old) 

 C release did not vary between two species and components (leaf and roots) during the 

course of decomposition (Table 4.24, Fig 4.9 c). C release in all components of the two species 

was faster in first 90 days of decomposition and last 180 days of decomposition (from 180-360 

days).  

4.2.5.4. Reference forest 

 In reference forest, carbon release was slowest in M. indica root and fastest in M. indica 

leaf (Table 4.25, Fig. 4.9 d). C release from S. wallichii leaf and root was in between C release 

from M. indica leaf and roots.  
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Table 4.22. Changes in C stock remaining at different time point in different litter components 

of B.pilosa and A.puliginosa during the course of decomposition in 5 years old fallow land site. 

5 yrs old 

fallow land 

carbon 

                          Percent  C mass remaining (days) 

0 90 180 270 365 

      B.pilosa 

leaves 

100 72.6±1.0 70.1±0.3 61.0±0.4 50.9±0.3 

B.pilosa root 100 70.9±0.6 68.7±0.6 60.7±0.6 49.0±1.8 

A.puliginosa 

leaf 

100 72.4±0.8 69.6±0.5 61.9±0.9 49.2±0.8 

A.puliginosa 

root 

100 69.0±2.9 68.8±0.7 60.6±1.1 49.9±0.3 

  

 

Table 4.23. Changes in C stock remaining at different time point in different litter components 

of  M. indica and S. wallichii  during the course of decomposition in 10 years old fallow land 

site. 

10 yrs old 

fallow 

land 

 Percent C mass remaining (days)  

 

 

0  90 180  270 365   

           

M.indica 

leaves 

 

 

100  76.6±1.3 69.1±0.9  62.2±0.8 49.7±0.6   

M.indica 

root 

 

 

100  74.4±0.9 71.1±0.7  64.8±0.8 55.1±0.4   

S.wallichii 

leaves 

 

 

100  77.1±0.7 70.2±0.5  56.6±0.2 47.6±0.5   

S.wallichii  

root 

 

 

100  69.6±0.8 66.6±0.7  57.3±0.5 52.5±0.5  
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Table 4.24. Changes in C stock remaining at different time point in different litter components 

of M. indica and S. wallichii  during the course of decomposition in 14 years old fallow land 

site. 

14 years 

fallow land 

 Percent C mass remaining (days) 

 

 

0 90  180 270 365 

        

M.indica 

leaves 

 

 

100 76.6±1.2  68.5±0.6 60.0±0.6 51.4±0.3  

M.indica 

root 

 

 

100 76.6±1.2  68.5±0.6 60.0±0.6 51.4±0.3  

S.wallichii 

leaves 

 

 

100 74.1±0.8  69.6±0.8 60.5±0.2 50.4±0.5  

S.wallichii  

root 

 

 

100 76.7±1.1  70.7±0.7 60.8±0.7 51.7±0.6  

  

 

Table 4.25. Changes in C stock remaining at different time point in different litter components 

of M. indica and S. wallichii  during the course of decomposition in reference forest site.  

reference 

forest 

                   Percent C mass remaining (days) 

0 90 180 270 365 

M.indica 

leaves 

100 76.7±1.6 69.9±0.4 63.4±0.5 50.0±0.8 

M.indica root 100 81.1±1.7 73.5±0.6 67.5±0.8 61.8±0.7 

S.wallichii 

leaves 

100 81.5±0.5 74.0±0.5 59.7±0.3 48.9±0.4 

S.wallichii  

root 

100 79.7±0.5 69.1±0.7 59.5±0.5 49.6±0.2 
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a b 

  
c d 

Figure 4.9.Changes in Carbon stocks during the course of decomposition in different litter 

categories in Fallow lands and Forest (Lengpui Site) R1=90 days, R2=180 days, R3=270 days, 

R4=365 days  

 

4.3. Changes soil aggregate characteristics 

4.3.1. Soil Aggregates 

Among all the sites in fallow lands following shifting cultivation at Lengpui and SALT 

farm at Pukpui, soil macroaggregates fractions (>4.75 mm) was in order of reference forest 

(34.2%)> SALT farm of 10 years at Pukpui (26.7%)> 14 years old fallow land (18.6%)> SALT 

farm of 2 years old (18.1%)>10 years old fallow land (14.5%)> 5 years old land (6.3%) (Table 

4.26). Smaller soil particle sizes (2-4.75 mm and 0.5-2.0 mm) showed a reverse trend which 
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were in order: 5 fallow land>10 years fallow land>14 years fallow land>SALT farm 10 years 

old>Refrence forest> SALT farm 2 years old (Table 4.26). Soil fraction size (0.3-0.5 mm) 

showed an almost haphazard trend. Overall macroaggregates in the fallow land were 

significantly maximum in Reference forest (65%) and minimum in 5 years old fallow land 

(54%). In SALT farm it was maximum in 10 years and minimum in 2 years old (Table 4.26).  

The fractions size of soil macroaggregates (0.053-0.3 mm) was highest in SALT farm 2 

years old (44.9%) followed by fallow land 14 years old (31.5%), 10 years old fallow (27.5%), 

reference forest (25.2), SALT farm 10 years old (24.9%) and 5 years old fallow land (21.7%). 

Soil microaggregates (<0.053 mm) was highest in 5 years old fallow land (23.8%) followed by 

13.0% in SALT farm 2 years old, 12.6% in 10 years old fallow land, 11.9% in SALT farm 10 

years old, 10.8% in 14 years old fallow and minimum in reference forest (10.3%). 

 In general soil microaggregates showed an almost opposite trend of macroaggregate 

size distribution in these sites (Table 4.26).  
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Table 4.26. Proportions of aggregates in size fractions (%) in different sites. Values are means 

of five replicates (±SE). Values within the same column followed by the same letter are not 

significantly different.  

                                     Macroaggregates (mm)  

Total  

Micro-

aggregates 

(mm)  Total  

Sites  >     4.75  2.0-4.75  0.5-2.0  0.3-0.5  0.053-0.3  <0.053  
 

Reference 

forest  34.2±2.4b  11.0±1.2a  12.6±0.6b  7.0±0.3b  64.9±0.9b  25.2±0.5b  10.3±0.2a  35.1±0.9b  

14 yrs  18.6±3.4a  10.4±2.2a  10.2±0.2dc  18.5±0.8d  57.7±0.5c  31.5±0.5c  10.8±0.7a  42.3±0.5c  

10 yrs  14.5±0.7a  12.4±0.8a  22.6±2.6a  10.4±1.0a  59.9±0.9a  27.5±0.9a  12.6±0.1ab  40.1±0.9ac  

5 yrs  6.3±0.7d  16.5±0.4b  24.9±1.8a  6.8±0.2b  54.6±1.6c  21.7±1.0b  23.8±0.6c  45.4±1.6c  

Settled farm (SALT)  

2 yrs  18.1±1.2a  3.0±0.3c  7.1±0.4d  13.8±0.7c  42.1±1.9d  44.9±1.8d  13.0±1.5b  57.9±1.9d  

10 yrs  26.7±0.7c  10.2±1.0a  12.0±1.3bc  14.2±0.9c  63.2±0.7a  24.9±0.6b  11.9±0.9b  36.8±0.7ab  

 

 

4.3.2. (g. kg
-1

. Organic carbon) in different sites and soil aggregate size fractions 

Among all the sites of fallow lands at Lengpui and SALT farm at Pukpui, level of soil 

carbon (g. kg
-1

) was highest in reference forest (26.19) in the fractions size >4.75mm followed 

by age 10 SALT farm (25.75), 14 years old fallow land (21.88), 10 years old fallow land 

(11.30), 2 years old SALT farm (7.05) and the lowest (6.93) in 5 years old fallow (Table 4.27). 

The level of soil carbon (g. kg
-1

) of the fractions size (2.0-4.75 mm) was highest in 14 years old 

fallow land (27.61) followed by reference forest (24.22), 10 years old SALT farm (24.21), 10 
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years old fallow land (11.90), 2 years old SALT farm (11.70), and the lowest (7.05) in 5 years 

old fallow land (Table 4.27) 

Level of soil carbon (g. kg
-1

) of the fractions size 0.5-2.0mm was highest in reference 

forest (33.05) followed by age 10 settled SALT farm at Pukpui (30.79), 14 years old fallow 

land (28.79), 2 years old settled farm at Pukpui (12.30), 10 years old fallow (9.98) and the 

lowest in 5 years old fallow land (8.84). Similarly, the level of soil carbon (g. kg
-1

) of the 

fractions size 0.3-0.5 mm was highest in reference forest (34.98) followed by 10 years old 

settled SALT farm (31.45), 14 years old fallow land (16.56), 10 years old fallow (12.97), 2 

years old SALT farm (9.11) and the lowest (3.25) in 5 years old fallow land (Table 4.27).  

 The level of soil carbon (g. kg
-1

) in one of the microaggregates (fractions size 0.053-

0.3 mm) was also highest in reference forest (21.22) followed by age 10 settled SALT farm 

(20.27), 14 years old fallow land (19.83), 10 years old fallow (9.38), 2 years old settled SALT 

farm at Pukpui (5.95) and the lowest in 5 years old fallow land (5.92). Level of Soil total C  (g. 

kg
-1

) of smaller microaggregate fraction (<0.053mm) was highest in reference forest (23.01) 

followed by age 10 settled SALT farm Pukpui (19.29), 14 years old fallow land (18.88), 10 

years old fallow (9.78), 5 years old fallow land (9.51) and the lowest in 2 years old settled farm 

(8.75). 

 Among all the sites in fallow lands at Lengpui and SALT farm at Pukpui, level of 

carbon (g. kg
-1

) in soil macroaggregates was highest in reference forest (29.56) followed by 10 

years old settled SALT farm at Pukpui (27.98), which decreased to 23.71 in 14 years old fallow 

land in Lengpui, followed by 11.54 in 10 years old fallow land, 10.04 in 2 years old settle 

SALT farm at Pukpui and 6.52 in 5 years old fallow land (Table 4.27). Comparing all fallow 

and SALT farm sites, level of carbon (g. kg
-1

) in microaggregates was highest in reference 

forest (22.11), followed by 19.68 in age 10 settled SALT farm at Pukpui site, 19.35 in 14 years 
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old fallow land in Lengpui, 9.58 in 10 years old fallow land, 7.71 in 5 years old fallow land and 

lowest (7.35) in 2 years old settle SALT farm at Pukpui. Significantly (P<0.05)) higher C 

content was observed in microaggregates than macroaggregates (Table 4.27). 

Table 4.27. Carbon (g. kg
-1

) content in different soil aggregate size fractions. Different small 

letters indicates significant differences among sites. Different small letters indicates significant 

differences among sites. Values are ±1 SE. 

 

Sites

Macroaggregates (mm)

Mean

Microaggregates (mm)

Mean>4.75 2.0-4.75 0.5-2.0 0.3-0.5 0.053-0.3 <0.053

Reference 

forest 26.19a±0.33 24.22a±0.24 33.05b±0.18 34.98b±0.48 29.56b±0.19 21.22a±0.24 23.01b±0.35 22.11b±0.22

14 yrs 21.88b±0.57 27.61b±0.83 28.79c±0.35 16.56c±0.61 23.71c±0.43 19.83a±0.07 18.88a±0.44 19.35a±0.25

10 yrs 11.30e±0.98 11.90d±0.78 9.98d±0.12 12.97e0.35 11.54e±0.49 9.38c±0.12 9.78cd±0.31 9.58d±0.15

5 yrs 6.93cd±0.24 7.05c±0.33 8.84d±0.29 3.26d±0.24 6.52d±0.17 5.92b±0.29 9.51c±0.18 7.71c±0.19

Settled farm (SALT)

2 yrs 7.05d±0.13 11.70d±0.48 12.30c±0.52 9.11f±0.37 10.04f±0.32 5.95d±0.23 8.75df±0.13 7.35c±0.13

10 yrs 25.75a±0.29 24.21a±0.24 30.79a±0.44 31.45a±1.03 27.98a±0.43 20.27a±0.18 19.29a±0.78 19.68a±0.48
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4.3.3. Total nitrogen (g. kg
-1

) in different soil aggregate size fractions  

Among all the sites of fallow lands at Lengpui and SALT farm at Pukpui, level of total 

nitrogen (g. kg
-1

) of the fractions size >4.75mm was highest in reference forest (2.78) followed 

by 10 years old settled SALT farm at Pukpui (2.06), 14 years old fallow land (1.47), 10 years 

old fallow land (1.45), 2 years old settled SALT farm at Pukpui (1.15)and the lowest (0.63) in 

5 years old fallow land (Table 4.28). Total nitrogen (g. kg
-1

) of lower fractions size (2.0-4.75 

mm) was highest in reference forest (2.14), followed by 10 years old settled farm (2.03), 14 

years old fallow land (1.63), 2 years old settled farm (1.04), 10 years old fallow land (1.03) and 

the lowest (0.55) in 5 years old fallow land (Table 4.28). 

Total nitrogen (g. kg
-1

) in soil aggregate fraction size (0.5-2.0 mm) was highest in 

reference forest (2.33), 10 old settled SALT farm (2.20), 14 years old fallow land (1.84), 10 

years old fallow (0.95), 2 years old settled SALT farm (0.94) and the lowest in 5 years old 

fallow land (0.75). However, total nitrogen (g. kg
-1

) in 0.3-0.5 mm size fraction was highest in 

reference forest (2.53) followed by 10 old settled SALT farm at Pukpui (2.30), 10 years old 

fallow land (1.48), 14 years old fallow (1.28), 2 years old settled SALT farm (0.89) and the 

lowest (0.55) in 5 years old fallow land (Table 4.28). 

Total nitrogen (g. kg
-1

) in one of the microaggregate fractions size (0.053-0.3 mm) was 

highest in reference forest (1.85) followed by 10 years old settled SALT farm in Pukpui (1.80), 

14 years old fallow land (1.48), 10 years old fallow (0.96), 5 years old fallow land (0.35)and 

the lowest in 2 years old settled SALT farm in Pukpui (0.35). Similarly, total nitrogen (g. kg
-1

) 

in fractions size (<0.053 mm) was highest in reference forest (2.17) followed by age 10 settled 

SALT farm in Pukpui(2.07), 14 years old fallow land (1.57), followed by 10 years old fallow 
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(1.14), 5 years old fallow land (0.95) and the lowest in age 2 settled SALT farm in Pukpui 

(0.47) (Table 4.28). 

Among all the sites, total nitrogen (g. kg
-1

) in soil macroaggregates was highest in 

reference forest (2.44) followed by 10 years old settled SALT farm at Pukpui site (2.15), 14 

years old fallow land in Lengpui (1.56), 10 years old fallow land (1.23), 2 years old settle 

SALT farm at Pukpui (1.0) and lowest in 5 years old fallow land (0.62). However, total 

nitrogen (g. kg
-1

) in soil microaggregates was highest in reference forest (22.11) followed by 

10 years old settled SALT farm at Pukpui site, 14 years old fallow land at Lengpui (19.35), 10 

years old fallow land (9.58), 5 years old fallow land (7.71) and  lowest in 2 years old settle 

farm at Pukpui site ( 7.35) (Table 4.28). 

Table 4.28. Total nitrogen (g. kg
-1

) in different soil aggregate size fractions. Different small 

letters indicate significant differences among sites. Values are ±1SE. 

 

 

 

 

Sites

Macroaggregates (mm)

Mean

Microaggregates (mm)

Mean>4.75 2.0-4.75 0.5-2.0 0.3-0.5 0.053-0.3 <0.053

Reference 

forest 2.78b±0.07 2.14a±0.09 2.33a±0.07 2.53b±0.03 2.44b±0.01 1.85a±0.11 2.17a±0.12 2.01b±0.03

14 yrs 1.47c±0.01 1.63b±0.02 1.84b±0.04 1.28c±0.02 1.56c±0.09 1.48b±0.04 1.59b±0.06 1.53c±0.01

10 yrs 1.45c±0.02 1.03d±0.08 0.95d±0.02 1.48c±0.01 1.23e±0.03 0.96d±0.03 1.14d±0.05 1.05e±0.03

5 yrs 0.63d±0.03 0.55c±0.09 0.75c±0.03 0.55d±0.02 0.62d±0.02 0.37c±0.04 0.95c±0.04 0.66d±0.03

Settled farm (SALT)

2 yrs 1.15e±0.03 1.04d±0.03 0.94ed±0.02 0.89e±0.04 1.00f±0.01 0.35c±0.05 0.47e±0.05 0.45f±0.06

10 yrs 2.06a±0.07 2.03a±0.06 2.20a±0.08 2.30a±0.21 2.15a±0.05 1.80a±0.02 2.07a±0.06 1.94a±0.03
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Chapter 5 

DISCUSSIONS 

The state of Mizoram has ~89% forest cover, but the majority of them are a secondary 

forest. Shifting cultivation is widely practiced in the state which is carried out by the majority 

of the population for their livelihood. This practice involves slashing and burning of a piece of 

forest land followed by cropping for one or two years depending on the soil fertility status of 

the  fallowed land and abandonment for few years (5-20 years) to recover soil fertility. Due to 

increased population, the fallow length has drastically decreased to <5 years which has posed 

serious economic and social constraints because of decrease in soil fertility. To overcome this 

problem, there are initiatives from the Government of Mizoram and public to convert this 

practice into settle farm. Among such initiatives, SALT farms are practiced by many farmers in 

Lunglei and Aizawl districts of Mizoram. This study is an effort to compare the level of soil 

fertility in these two common practices (abandoned land following shifting cultivation and 

settled SALT farm) of the state where no information is available.  

Therefore, this study compared the level of soil fertility (organic C and total N), rates of 

organic matter and C and N release pattern, and quantitative and qualitative changes in water 

stable soil aggregates in different abandoned land following (fallow lands) shifting cultivation 

and two ages of settled SALT systems. The effect of forest degradation has been well reported 

for changes in plant diversity and aboveground plant biomass (Singh et al., 2014).  The 

experimental findings of the present work are discussed as follows: 
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5.1. Soil characteristics of different shifting and settled farm  

The findings of the present study showed that there is a drastic change in the 

physicochemical and biochemical properties of soil in 0-10 cm depth among the different sites 

in Lengpui and Pukpui. Some other studies found that soil nutrients content in many 

ecosystems increases with forest age (Werner, 1984; Silver et al., 1996). Clearing and 

cultivation of forested lands resulted in deterioration of soil properties compared to soils under 

well-stocked natural forest. Among the four sites at Lengpui, significant seasonal variations 

(P<0.001) soil organic carbon (SOC) was observed at all sites. Soil organic C content was 

comparatively lower during the winter season and an increasing trend was observed towards 

post-monsoon season. This may be due to the high litter input and the deposits of mineralized 

C of the preceding rainy season during dry winter season as low soil temperature and low 

moisture reduces the microbial enzymatic activity of litter decomposing enzymes because most 

of the enzymes are hydrolytic in nature.  

Soil moisture content in monsoon and post-monsoon seasons was highest in Reference 

forest and lowest in 5 yrs fallow land. This may be attributed to the thick canopy of the 

reference forest which reduces evaporation and increased high water retention by soil organic 

matter. On the other hand, the low soil moisture content at 5 yrs fallow may be due to direct 

exposure of forest ground to sunlight because of sparse vegetation and low soil organic 

content. The soil moisture content decreases as a function of increasing degree of disturbance, 

which is maximum in monsoon season and minimum in dry seasons in all sites. The higher 

moisture content during monsoon seasons is related to high and regular rainfall.  

Soil moisture may also be responsible for the seasonal variations in MBC in different 

forest stands, as soil water content was significantly related to MBC concentrations (Chen et 

al., 2003; Bohlen et al., 2001). Litter accumulation on the forest floor is positively linked with 
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litter decomposition and plays a significant role in the maintenance of soil moisture content 

and other microclimatic conditions (Ramakrishnan and Toky, 1981; Arunachalam et al., 1996; 

Reddy, 2010; Mishra, 2010; Tripathi et al., 2012). Nayak and Srivastava (1995) have also 

reported a similar trend from the humid sub tropical soils in north east India. Higher 

mineralization rates in the wet season might also be due to elevated soil temperature and 

moisture content during this period in the forest ecosystems (Cassman and Munns, 1980; 

Eghball, 2000; Numan et al., 2000). 

            Significant variations (P<0.001) was observed in soil organic content among the 

different sites of Lengpui. Short fallow (5 yrs old) showed lowest soil organic carbon content 

followed by 10 yrs old fallow land, 14 yrs old fallow land and highest in Reference forest in all 

seasons. Compared to the four shifting fallow sites at Lengpui, the two sites aged 10 years after 

cultivation and aged 2 years after cultivation at Pukpui showed lower seasonal variations. A 

similar trend as that of Lengpui was observed in the two sites of Pukpui with the lowest value 

during the winter season and increasing towards post-monsoon season. This reflects that the 

amount of C accumulates during the process of stand development in fallow land and time 

since the cultivation in SALT farm due to significant litter input every year. Seasonal 

variations in soil C content in the four fallow lands at Lengpui was higher than that of the two 

settled SALT farms at Pukpui. It may be due to the land use systems adopted at Pukpui where 

continuos addition of C by Tephrosia candida and Flemingia macrophylla hedgerow and 

occasional exogenous input in the form of dung by the farmers.  

The similar seasonal pattern has been observed for soil N in all these sites where in 

addition to above inputs N fixation by two species growing in the hedgerows has been found to 

play an important role in the N dynamics. Soil total N is either derived from the organic matter 

or eventually added to the soil organic matter through fixation by microbes and become 
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available to the plants. The rate of total N was recorded highest during the rainy season in all 

the study sites in Lengpui and Pukpui. Higher mineralization rates in the wet season might also 

be due to elevated soil temperature and moisture content during this period in the forest 

ecosystems (Cassman and Munns, 1980; Eghball, 2000; Numan et  al, 2000). Minimum 

mineralization rates during the winter period could be associated with the low decomposition 

rates because of low microbial activities and greater immobilization of inorganic N (Bhuyan et 

al., 2014).  

Soil pH is mostly related to the nature of the parent material, climate, organic matter 

and topographic situation (Tamirat, 1992). The pH of the soil of all the sites in Lengpui and 

Pukpui varied from (4.6 to 5.6) and the increase in the pH scale with a degree of disturbance 

was noted. Among all the sites, lower values of soil pH in the reference forest and 14 years old 

fallow land in Lengpui could be a result of the greater accumulation of partially decomposed 

organic matter on the sites. Intense runoff and leaching of basic cations during the monsoons 

may also be likely contributing factors to lower pH levels in these soils (Hassan and 

Majumder, 1990).  

5.2. Litter decomposition, and C and N release 

Among all litter categories in shifting fallow lands at Lengpui and settled farm at 

Pukpui sites, the decomposition rate of root was highest which was possibly because of lower 

lignin to nutrient ratios in the root material than other litter category. Lignin has been reported 

to significantly affected litter decomposition and C and N release pattern in different 

ecosystems (Tripathi and Singh 1992 a, b; Tripathi et al., 2006; Pandey et al., 2007). Roots 

differed from leaves and woody parts of plants in their nutrient release patterns, which is in 

accordance with Tripathi and Singh (1992 a, b). The decomposing roots were buried and thus 

experienced different moisture conditions, different microbial communities, and closer 



68 

 

proximity to mineralized nutrients than other category of litters. Decomposition rate may be 

influenced by a characteristic such as leaves type, sclerophylla and root diameter class (Berg, 

1984; McClaugherty et al., 1984; Fahey et al., 1988); Metrosideros is fairy sclerophyllous leaf 

(Cordell et al., 1998). Parton et al., (2007) observed that leaf and root decomposition were 

slowest in cold dry regions such as tundra and boreal forests and fastest in tropical regions. 

This may be due to the low litter decomposition rate during dry winter as low temperature 

reduces microbial activity and also low moisture content reduces the enzymatic activity of litter 

decomposing enzymes. 

Rapid litter decomposition during the first phase are mainly due to easy 

decomposability od molecules rich in energy and the period of incubation is monsoon season 

which was influenced by the rainfall. Therefore, enhanced microbial activity of decomposer 

organisms coupled with favourable climatic variables increases the rate of decomposition in 

the early stage. However, slower decomposition in the later stage of decomposition was   

because of the breakdown of lignin consists of very large and complex molecules in the post 

monsoon period i.e. (winter and summer) along with low precipitation. Root having low 

cellulose contents decomposed faster rate (Tripathi and Singh, 1992 a, b). 

Fine roots and leaf litter showed a higher rate of decomposition of organic C and total 

N than other litter components in all the study sites. Knorr et al., (2005) reported that litter 

decomposition is inhibited by N additions when fertilization rates exceed by 2 to 20 times the 

atmospheric N deposition level. The decomposition rates and initial chemical characteristics of 

roots were also consistent with the range of values reported in the limited number of root 

decomposition studies conducted in forests (e.g., Berg, 1984; McClaugherty, et al., 1984; 

Fahey et al., 1988; Aber et al., 1990; Bloomfield et al., 1993; Camire et al., 1991; Burke and 

Raynal, 1994; Lohmus and Ivask, 1995). Other studies on leaves have also suggested that soil 

environment did not influence decomposition rates as strongly as tissue chemistry. For 
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example, in Wisconsin hardwood forests in which leaf litter (Acer saccharum) was 

decomposed along a natural fertility gradient (McClaugherty et al., 1985), site effects were 

found to be negligible. 

The highest litter decomposition rates in the wet season reflect the favorable effect of 

rainfall and associated variables on the decomposition of different sizes of all litter components 

in all the sites. However, lower soil moisture and temperature during winter reduced the 

activity of microorganisms (decomposers) in the soil which therefore reduced the rates of 

decomposition (Tripathi and Singh, 1992 a, b). In the present study rainfall and its associated 

variables (soil moisture, humidity) are considered to play a vital role in the process of 

decomposition as compared to air temperature. Direct influences of moisture contents on fine 

root respiration; have been previously observed by Chen et al., (2000) for unsaturated soils. 

Higher organic C and total N were found in the all litter component of Pukpui site because 

Tephrosia candida and Flemingia macrophylla are nitrogen fixing plants. 

 

5.3. Soil aggregates in different fallow and settled SALT farm 

The depth of sampling of soil is an important factor for evaluating soil stability. The 

averages of all the size ranges in macro and micro aggregates showed high organic content in 

Reference forest and 14 yrs fallow of Lengpui and 2002 site of Pukpui. There was considerable 

site to site variability in the amount of microbial C and N associated with macro and micro-

aggregates. Wardle (1992) concluded that different cover plants grown on similar soil types 

often support different amounts of microbial biomass and that this reflects both the amount and 

quality of organic matter returned to the soil. Sites which were poorer in total soil C and N 

exhibited greater C and N immobilization. The microbial C and N limitation declines as more 

C and N becomes available (Wardle, 1992). Several studies suggested plant roots were 
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important binding agents at the scale of macro-aggregates (e.g. Thomas et al., 1993). The 

direct effect of roots on aggregation was the greatest with perennial vegetation species due to 

the enhancement of their extensive fine root systems with soil. 

Among all the sites in Lengpui and Pukpui, organic carbon (g. kg
-1

) in soil macro-

aggregates and micro-aggregates were highest in reference forest i.e 29.56 and 22.11 in 

reference forest. Corresponding values of total nitrogen (g. kg
-1

) in macro-aggregates and 

micro-aggregates in reference forest were: 2.44 and 2.21. There are reports that fungi dominate 

in macro-aggregates and bacteria dominate in micro-aggregates (Tisdall and Oades, 1982). The 

presence of bacteria within micro-aggregates has been demonstrated by electron microscopy 

(Foster, 1988; Gupta and Germida, 1988). Soil management systems such as cultivation and 

irrigation can alter soil particle distribution through the soil profile (Jaiyeoba, 2003). Cote et 

al., (2000) found soil carbon and nitrogen mineralization are related to forest type and age. Jia 

et al., 2005 suggested soil organic carbon and total nitrogen increased quickly with secondary 

forest succession. The proportion of silt-plus-clay in aggregates is negatively related to the 

SOC content as it plays an important role in the protection and stabilization of soil C. Six et  

al., (2002) suggested that silt- and clay-protected soil organic matter (SOM) is one of the three 

protected SOM pools. The C in this smallest fraction size is more stabilized than the other size 

classes (Wilson et al., 2009; Six et al., 2002; 1998). The stabilization of soil organic C by 

association with silt- and clay-sized particles is directly related to the silt-plus-clay content of 

the soil (Six et al., 2002). 

The duration of cultivation has a significant effect on soil particle distribution. Jaiyeoba 

(2003) reported that clay contents of deeper samples increase with the length of cultivation due 

to clay translocation from the surface horizon. However, Paz- Gonzalez et al., (2000) found 

that particle size fractions were not significantly different under contrasting management 

practices (natural vegetation and cultivated field). 
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Cultivation practices disturb soil aggregates releasing C from physical protection and 

proportionally increases mineralizable organic C (Kocyigit and Rice, 2004). Some studies 

report a significant reduction of macroaggregates in agricultural lands (Janzen et al., 1992; 

Cambardella and Elliott, 1992). Cultivation generally decreases macroaggregate stability and 

results to increase of relatively stable microaggregates (Six et al., 1999; 2000). Generally, 

water-stable aggregates provide physical protection for C and reduce soil erodibility, which is 

enhanced by root and faunal activity. Penetration of root in the soil decreases the proportion of 

relatively unstable macroaggregates and increases the proportion of relatively stable 

microaggregates (Six et al., 2004). In the study site, the fine root biomass increased with the 

forest age and with age of the settled SALT farming practices. This report is in conformity with 

the report of Wen et al., (1999). Fine roots probably influenced the soil structure around the 

roots and induced the formation of microaggregates through colonization of microorganisms.  

Zheng et al., (2011b) reported that the conversion of cropland to forest land improved 

soil structure and nutrient content. After the vegetation recovery, soil physical structure 

degradation was limited, thus the soil was likely to have low infiltration rates and prone to 

erosion. The size of the aggregates influences the metabolic activity and type of soil organisms, 

and the pore space and hydric regime of soils (Robert & Chenu, 1995; Monreal and Kodama, 

1997). Along with variation in aggregate size, the nutrient addition may change the quality of 

soil aggregate because of varying association of organic compound. Higher contents of total N 

in soil macro- and microaggregates was found in settled SALT farm at Pukpui site which may 

be because of nitrogen fixing shrubs (Tephrosia candida and Flemingia macrophylla) planted 

as as hedgerow. 
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Chapter 6 

Summary and conclusions 

Mizoram has very high forest cover (~89%) but majority are secondary forests as 

abandoned fallow lands following shifting cultivation practiced by the majority of population 

for their livelihood. Increased population pressure in recent years has led to decrease in the 

length of fallow (<5 years), which consequently posed serious economic and social problems 

as a result of decreased soil fertility. Therefore, the Government of Mizoram and public are 

trying to convert this practice into the settled farm, e.g. SALT farms. This study compared the 

level of soil fertility in these two common practices (abandoned land following shifting 

cultivation and settled SALT farm) of the state where information is scanty.  

Therefore, this study compared the levels of soil fertility (organic C and total N), rates 

of organic matter and C and N release pattern, and quantitative and qualitative changes in 

water stable soil aggregates in different abandoned land following (fallow lands) shifting 

cultivation and two ages of settled SALT systems. The effect of forest degradation has been 

well reported for changes in plant diversity and aboveground plant biomass (Singh et al., 

2014). Soil management systems such as cultivation and irrigation can alter soil particle 

distribution through the soil profile (Jaiyeoba, 2003). Land use change from forest to a 

multitude of ecosystem types and in addition of N and P have been reported to significantly 

alter quantitative and qualitative changes in soil aggregates in dry tropical ecosystems (Tripathi 

et al., 2008). The duration of cultivation has a significant effect on soil particle distribution and 

levels of soil fertility in different ecosystems.  
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A total of four sites 3 fallow lands of different ages and natural forest in Lengpui and 

two sites of different ages (since they have been cultivated) of SALT farms were selected in 

Pukpui, Lunglei district. The two groups of land use systems have different ecological 

characteristics because of changes in the litter input rates due to fallow ages and establishment 

of hedgerows of two N fixing shrubs Flemingia macrophylla and Tephrosia candida.   

The aims of this experiment were to compare the level of soil fertility (organic C and 

total N) and to assess quantitative and qualitative changes in water stable soil aggregates in 

different fallow periods in shifting cultivation and in varying ages of settled agriculture 

systems. Soil total N and organic C were studied from 10 cm soil depth from all the selected 

sites in Pukpui and Lengpui. 

This study has shown that among all the different sites in Lengpui and Pukpui, highest 

(38.80%) seasonal change in  soil total C occurred in 5 years old fallow land at Lengpui (2.01-

2.79%) and lowest (4.9%) in 2 years old SALT farm at Pukpui site (2.67 - 2.80%). Seasonal 

changes in soil total nitrogen followed the pattern similar to total C. Among all the sites in 

Lengpui and Pukpui total C (g. kg
-1

) in soil macroaggregates were highest in reference forest 

(29.56) and lowest in 5 years old fallow land (6.52). Total C (g. kg
-1

) in microaggregates was 

highest in reference forest (22.1) and lowest in 2 years settled SALT farm at Pukpui (7.35). 

Total nitrogen (g. kg
-1

) in soil macroaggregates was highest in reference forest (2.44) and 

lowest in 5 years old fallow land (0.62). Total nitrogen (g. kg
-1

) in soil microaggregates was 

highest in reference forest (22.11) and lowest in age 2 settled SALT farm Pukpui site (7.35). 

The difference in soil C and soil moisture contents in soil geomorphological units may explain 

the unequal soil aggregate distribution. This result indicates that land use change strongly 

modified soil properties and soil aggregation in different ages of fallow land and in the settled 

farm. Most of the soil C was stored in macroaggregates and the greatest quantities of this were 

found in the reference forest. Therefore, macroaggregates play a critical role in C sequestration 
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in natural forest ecosystems, and are more sensitive to changes of soil management. Thus 

conversion of natural forest to cropland resulted in a significant reduction in the proportions of 

soil aggregates and soil C and N in aggregates and this may significantly contribute to global 

warming. 

  The rate of litter decomposition and C and N release pattern of common tree litter from 

fallow lands following shifting cultivation and Tephrosia candida and Flamingia macrophylla 

from settled SALT farm were determined. Different category of litter; aboveground litter 

(mature senesced leaves attached to the plant, freshly fallen leaf litter samples and recently 

dead wood branches still attached to the culm) and below ground (coarse root <5-10mm in 

diameter and fine root <2mm in diameter) were selected from all the sites to analysed the rate 

of litter decomposition and C and N release by using litter bag technique. The major findings 

are summarized below: 

Litter decomposition rates were highest in the reference forest compared to other sites. 

Decomposition during the first stage was rapid because the period of incubation is monsoon 

season and the rainfall influenced the rate of decomposition and the molecules are easy to 

breakdown and rich in energy. However, the later stage of litter decomposition rate was lower. 

Decomposition rate was slowest during the dry season. 

Among all different litter components, fine root litter showed highest rates of 

decomposition and branches of nitrogen fixing shrub shows lowest rate of decomposition in all 

the study sites. High reduction C and N release occurred at the first recovery for all litters. 

About 30-50% of C and N remained at the end of recovery for all litter types. Among the litter 

component fine root of F. macrophylla shows comparatively greater amount of C release 

pattern than T. candida in both the study sites. In conclusion, settled SALT farm is aggrading 

soil fertility during the course of farming practice and it is recommended as the sustainable 
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farming system in the region. Abandoned fallow lands following shifting cultivation work well 

after about decade so needs proper time to sustain soil fertility.   

Table 6.1. Comparative accounts of soil fertility levels of two ecosystems studied. 

Soil fertility parameters 

Settled agriculture Shifting fallow land Ref 

forest 2yrs 10yrs Mean 5yrs 10yrs 14yrs Mean 

1) Seasonal changes in soil organic carbon (%) 

Winter 2.67 2.74 2.7 2.01 2.12 2.23 2.12 2.55 

 

±0.017 ±0.013 

 

±0.051 ±0.025 ±0.006 

 

±0.104 

Summer 2.73 2.79 2.7 2.71 2.72 2.95 2.79 3.05 

 

±0.045 ±0.017 

 

±0.045 ±0.048 ±0.064 

 

±0.064 

Monsoon 2.79 2 .81 2.8 2.78 2.89 3.07 2.91 3.17 

 

±0.065 ±0.030 

 

±0.010 ±0.007 ±0.050 

 

±0.085 

Post monsoon 2.8 2.89 2.8 2.79 2.83 3 2.87 3.15 

 

±0.025 ±0.012 

 

±0.006 ±0.022 ±0.040 

 

±0.064 

2) Seasonal changes in soil nitrogen (%) 

Winter 0.29 0.35 0.32 0.3 0.33 0.34 0.32 0.35 

 

±0.006 ±0.014 

 

±0.006 ±0.004 ±0.017 

 

±0.006 

Summer 0.3 0.36 0.33 0.32 0.33 0.35 0.35 0.36 

 

±0.003 ±0.012 

 

±0.008 ±0.006 ±0.006 

 

±0.004 

Monsoon 0.3 0.36 0.33 0.37 0.38 0.39 0.38 0.4 

 

±0.004 ±0.013 

 

±0.006 ±0.004 ±0.004 

 

±0.004 

Post monsoon 0.32 0.39 0.35 0.39 0.4 0.4 0.39 0.41 

 

±0.11 ±0.002 

 

±0.004 ±0.004 ±0.004 

 

±0.006 

3) Seasonal changes in soil moisture content (%) 

Winter 22 24 23 20 23 21 21.3 24 

Summer 32 33 32.5 25 27 29 27 35 

Monsoon 44 48 46 36 37 41 38 49 

Post monsoon 41 45 43 34 35 37 35.3 46 

4) Soil pH value 

 

4.7 4.6 4.7 5.6 5.1 4.93 5.24 4.7 
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