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PREFACE

The present thesis entitled “An Analytical Study of Certain Almost Contact Man-

ifolds” is an outcome of the research carried out by the author under the supervision

of Dr. Jay Prakash Singh, Associate professor, Department of Mathematics and Com-

puter science, Mizoram University, Aizawl, Mizoram.

This thesis has been divided into six chapters and each chapter is subdivided into

a smaller sections. The first chapter is introductory in which we have defined topolog-

ical manifolds, differentiable manifolds, vector fields and tangent spaces, Lie-bracket,

Covariant derivatives, Lie derivative and exterior derivatives, connection, Riemannian

manifolds, Torsion tensor, Ricci tensor and curvature tensors on Riemannian mani-

folds. We also gives some mathematical tools necessary for the studies.

The second chapter is related with the characterization of Ricci solitons in almost

contact manifolds. In this chapter we studied the Ricci solitons and gradient Ricci

solitons and we have given the cases in which the Ricci solitons is shrinking, steady or

expanding. The studies also includes η-Ricci soliton which is generalization of Ricci

soliton. We considered certain geometric condition in Sasakian manifolds for the study

of η-Ricci soliton.

The third chapter deals with a study of generalized Sasakian-space-form. In this

chapter we studied τ -curvature tensor in generalized Sasakian-spaceform. We obtain

results for each particular case of the curvature tensor. We also studied the cases

in which the generalized Sasakian-spaceform admits generalized Tanaka-Webster con-

nection. We considered symmetric properties with respect to the generalized Tanaka-

Webster connection.
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The fourth chapter deals with the study of generalized recurrent manifolds. We con-

sidered a manifold which is generalized recurrent with respect to the pseudo-projective

curvature tensor. Some curvature condition are considered to obtain various results.

We have also given two examples to support the results.

In the fifth chapter we studied quarter-symmetric non-metric connection in trans-

Sasakian manifolds. In this chapter we considered weakly symmetries, local symme-

tries, semisymmetries and recurrency with respect to the quarter-symmetric non-metric

connection. All studies in the chapter is considered in trans-Sasakian manifolds.

Chapter 6 is the last chapter. In this chapter we gave the summary of the whole

work and we concluded the thesis.

In the end, the references of the papers of the authors have been given with surname

of the author and their years of the publication, which are decoded in chronological

order in the Bibliography.
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Chapter 1

INTRODUCTION

1.1 Topological Space

A topology on a set S is a collection T of subsets containing both the empty set

∅ and the set S such that T is closed under arbitrary unions and finite intersections:

i.e., if Uα ∈ T for all α in an index set A, then
⋃
α∈A Uα ∈ T and if U1, ..., Un ∈ T ,

then
⋂
i
nUi ∈ T .

The elements of T are called open sets and the pair (S, T ) is called a topological

space. A topological space is second countable if it has a countable basis. A neighbor-

hood of a point p in S is an open set U containing p.

A topological space M is locally Euclidean of dimension n if every point p in M

has a neighborhood U such that there is a homeomorphism φ from U onto an open

subset of IRn. We call the pair (U, φ : U → IRn) a chart, U a coordinate neighborhood

or a coordinate open set, and φ a coordinate map or a coordinate system on U . We

say that a chart (U, φ) is centered at p ∈ U if φ(p) = 0.

1.2 Topological Manifolds

A topological manifold is a Hausdorff, second countable, locally Euclidean space.

It is said to be of dimension n if it is locally Euclidean of dimension n.

Definition 1.2.1 The Charts (U, φ : U → IRn) and (V, ψ : V → IRn) are said to be

C∞-compatible if φ ◦ ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) and ψ ◦ φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are C∞-mappings.

Definition 1.2.2 A C∞ atlas or simply an atlas on a locally Euclidean space M is a

collection U =
{

(Uα, φα)
}

of pairwise C∞-compatible charts that cover M , i.e., such
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that M =
⋃
α Uα.

Definition 1.2.3 An atlas M on a locally Euclidean space is said to be maximal if it

is not contained in a larger atlas; in other words, if U is any other atlas containing M,

then U = M.

1.3 Differentiable Manifolds

Definition 1.3.1 A differentiable or C∞ manifold is a topological manifold Mn to-

gether with a maximal atlas.

The maximal atlas is also called a differentiable structure on Mn. A manifold is

said to have dimension n if all of its connected components have dimension n. A

1-dimensional manifold is also called a curve, a 2-dimensional manifold a surface.

1.4 Tangent Spaces

Let Mn be an n-dimensional differentiable manifold and p ∈Mn and C∞(p) be the

set of all real valued C∞ function on some neighbourhood ∪ of p. Let us consider a

vector X at p such that

(i) X ∈Mn, f ∈ C∞(p) implies that Xf ∈ C∞(p),

(ii) X(f + g) = Xf +Xg , f, g ∈ C∞(p),

(iii) X(fg) = f(Xg) + (Xf)g, and

(iv) X(af) = a(Xf), a ∈ R,

then X is called a tangent vector to Mn at p.

The collection of all tangent vectors through the point p forms a tangent space of

a manifold Mn to the point p and is denoted by Tp(M) and its elements are called

tangent vectors to the manifold at p.

1.5 Connection

Let us consider a C∞-manifold Mn. Let p ∈ Mn be a point of Mn. Let T(p) be a

tangent space to Mn at the point p. Let T rs be a vector space whose elements are the

tensors of the type (r, s).A connection ∇ is a type preserving mapping ∇ : T(p)⊗T rs →
T rs , which assigns to each pair of C∞-vector field (X,P ), X ∈ Xp, P ∈ T rs , a C∞-vector

fields ∇XP , such that

2



∇Xf = Xf, f is C∞-function

∇Xa = 0, a ∈ R,

∇X(Y + Z) = ∇XY +∇XZ,

∇X(fY ) = f(∇XY ) + (Xf)Y,

∇X+YZ = ∇XZ +∇YZ,

∇fXY = f∇XY,

(∇XA)Y = X(A(Y ))− A(∇XY ),

and

(∇XP )(A1, ......., Ar, X1, .....Xs) = X(P (A1, ......Ar, X1, ......Xs))

− P (∇XA1, A2, ......Ar, X1, .......Xs).........

− P (A1......Ar, X1, ......∇XXs).

1.6 Lie Brackets And Lie Derivative

Lie Brackets: Let X and Y be arbitrary C∞ vector field of Mn. Then a mapping

[ , ] : Mn ×Mn →Mn such that

[X, Y ]f = X(Y f)− Y (Xf),

where f is a C∞-function on Mn is called the Lie-bracket of C∞ vector fields X and

Y .

The Lie-bracket has the following properties:

[X, Y ](f + g) = [X, Y ]f + [X, Y ]g,

3



[X, Y ](f.g) = f [X, Y ]g + g[X, Y ]f,

[X, Y ] + [Y,X] = 0, (skew-symmetry)

[X + Y, Z] = [X,Z] + [Y, Z], (bilinear)

[X, [Y + Z]] + [Y, [Z +X]] + [Z, [X, Y ]] = 0, (Jacobian identity)

and

[fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X.

Lie Derivative: Let X be a C∞ vector field on an open set of Mn. An operator LX

is called the Lie derivative along the vector field X if it is a type preserving mapping

LX : T rs → T rs such that

LXf = Xf,

LXa = 0, a ∈ IR,

LXY = [X, Y ], Y ∈ Tp,

(LXA)(Y ) = X(A(Y ))− A([X, Y ]), where A is a 1− form

and

(LXP )(A1, ...Ar, X1, ...Xs) = X(P (A1, ...Ar, X1, ...Xs))

− P (LX , (A1, ...Ar, X1, ...Xs)...

− P ((A1, ...Ar, [X,X1], X2...Xs)...

..............................................

− P (A1...Xs−1, [X,Xs]), P ∈ T rs ,

where f is a C∞ function, X1, .......Xs are vector fields, A1, .......Ar are 1-forms and P

is a tensor field of type (r, s) is called Lie differentiation with respect to X and LXP

4



is called Lie derivative of P with respect to X.

COVARIANT DERIVATIVE: A linear affine connection on M is a function

∇ : ψ(M) ∗ ψ(M)→ ψ(M) such that

∇fX+gYZ = f(∇XZ) + g(∇YZ),

∇Xf = Xf,

∇X(fY + gZ) = f(∇XY ) + g(∇XZ) + (Xf)Y + (Xg)Z,

for arbitrary vector fields X, Y, Z and smooth function f, g on M . ∇X is called covari-

ant derivative operator and ∇XY is called covariant derivative of Y with respect to X.

The covariant derivative of a 1-form w is given by

(∇Xw)(Y ) = X(w(Y ))− w(∇XY ).

1.7 Contraction

The linear mapping

Ch
k : T rs → T r−1

s−1 ; (i ≤ h ≤ r) , (i ≤ k ≤ s)

such that

Ch
k (λ1 ⊗ λ2 ⊗ ...⊗ λr ⊗ α1 ⊗ ...αs) = αk(λ1 ⊗ ..⊗ λh−1 ⊗ λh+1...

⊗λr ⊗ α1 ⊗ α2 ⊗ ..αk−1 ⊗ αk+1 ⊗ αs)

where λ1, λ2...λr ∈ TpM
n and α1, α2...αs ∈ ¯TpMn and ⊗ denote tensor product, is

called contraction with respect to hth contravariant and kth covariant places.

1.8 Riemannian Manifold

Let us consider an n-dimensional C∞ with the tangent space Tp at p ∈Mn. A real

valued, bilinear, symmetric, non-singular positive definite function g on the ordered

pair X, Y of tangent vectors T(p) at each point p, such that

(1) g(X, Y ) is a real number,

5



(2) g is symmetric ⇒ g(X, Y ) = g(Y,X),

(3) g is non-singular i.e. g(X, Y ) = 0, for all Y 6= 0⇒ X = 0,

(4) g is positive definite i.e. g(X,X) > 0, for all X ∈ C∞ and g(X,X) = 0 if and

only if X = 0,

and

(5) g(aX + bY, Z) = ag(X,Z) + bg(Y, Z); a, b ∈ R,

then g is said to be Riemannian metric tensor or fundamental tensor of type (0,2).

Then, the manifold Mn with a Riemannian metric g is called a Riemannian manifold

and its geometry is called a Riemannian geometry denoted by (Mn, g) or (M, g) or

simply by M .

1.9 Torsion Tensor

A vector valued, skew-symmetry, bilinear function T of the type (1, 2) defined by

T (X, Y )
def
= ∇XY −∇YX − [X, Y ] (1.9.1)

is called a torsion tensor of the connection ∇ in a C∞-manifold Mn.

If the torsion tensor of a connection ∇ vanishes, it is said to be symmetric or torsion

free.

A connection ∇ is said to be Riemannian, if

T (X, Y ) = 0 (1.9.2)

and

∇Xg = 0. (1.9.3)

1.10 Semi Symmetric and Quarter Symmetric Con-

nection

A linear connection ∇̃ in a Riemannian manifold is said to be a quarter-symmetric

connection (Golab, 1975) if the torsion tensor T of ∇̃ satisfies

T (X, Y ) = η(Y )φX − η(X)φY, (1.10.1)

6



where η is a 1-form and φ is a (1, 1) tensor field. In particular if φX = X for all X ∈
χ(M), then the quarter-symmetric connection reduces to a semi-symmetric connection.

Moreover if a quarter-symmetric linear connection satisfies the condition

(∇̃Xg)(Y, Z) = 0, (1.10.2)

for all X, Y, Z ∈ χ(M), then is said to be a quarter-symmetric metric connection.

1.11 Generalized TanakaWebster connection

The generalized TanakaWebster connection ∇̃ for contact metric manifolds is given

by (Tanno, 1989)

∇̃XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φ(Y ) (1.11.1)

where X, Y ∈ χM , and ∇ is the Riemannian connection.

1.12 Curvature Tensors

The curvature tensor R with respect to the Riemannian connection ∇ is given by

R(X, Y, Z)
def
= ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z (1.12.1)

is called Riemann-Christoffel curvature tensor of the second kind i.e. of the type (1, 3).

Let ′R be the associate curvature tensor of the type (0, 4) of the curvature tensor

R. Then

′R(X, Y, Z,W ) = g(R(X, Y, Z),W ), (1.12.2)

′R is called the Riemann-Christoffel curvature tensor of first kind.

The following identities are satisfied by associate curvature tensor ′R:
′R is skew-symmetric in first two slot

i.e., ′R(X, Y, Z,W ) = −′R(Y,X,Z,W ) (1.12.3)

′R is skew-symmetric in last two slot

i.e., ′R(X, Y, Z,W ) = −′R(X, Y,W,Z) (1.12.4)
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′R is symmetric in two pair of slot

i.e., ′R(X, Y, Z,W ) =′ R(Z,W,X, Y ) (1.12.5)

′R satisfies Bianchi’s first identities

i.e., ′R(X, Y, Z,W ) +′ R(Y, Z,X,W ) +′ R(Z,X, Y,W ) = 0 (1.12.6)

and ′R satisfies Bianchi’s second identities

i.e., (∇X
′R)(Y, Z,W, V ) + (∇Y

′R)(Z,X,W, V )

+ (∇Z
′R)(X, Y,W, V ) = 0. (1.12.7)

1.13 Ricci-Tensor

The tensor defined by

S(Y, Z)
def
= (C1

1R)(Y, Z) = −(C1
2R)(Z, Y ) (1.13.1)

is called the Ricci-tensor of type (0, 2) where C1
1 and C1

2 denote respective contractions.

It is symmetric tensor,

i.e., S(X, Y ) = S(Y,X). (1.13.2)

The linear map Q of the type (1, 1) defined by

g(QX, Y )
def
= S(X, Y ) (1.13.3)

is called a Ricci-map. It is self-adjoint,

i.e., g(QX, Y ) = g(X,QY ). (1.13.4)

The scalar r defined by

r
def
= (C1

1R) (1.13.5)

is called the scalar curvature of Mn at the point p.

A Riemannian manifold Mn is said to be Einstein manifold if

S(X, Y ) =
r

n
g(X, Y ). (1.13.6)
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A Riemannian manifold Mn is said to be flat manifold if

R(X, Y, Z) = 0. (1.13.7)

1.14 Z-tensor

The Z-tensor in Riemannian manifolds is given by (Mantica and Suh, 2012)

Z̃(X, Y ) = S(X, Y ) + φ1g(X, Y ), (1.14.1)

where φ1 is an arbitrary scalar function and S and g denotes the Ricci tensor and

metric tensor respectively.

1.15 Ricci Soliton

Ricci soliton generalized the Einstein metric and is defined as a triple (g, V, λ) with

g a Riemannian metric, V a vector field, and λ a real scalar such that

£V g + 2S + 2λg = 0, (1.15.1)

where S is a Ricci tensor and £ denotes the Lie derivative operator along the vector

field V (Ivey, 1993). The Ricci soliton is said to be shrinking, steady and expanding

accordingly as λ is negative, zero and positive respectively (Chow et al., 2006). If the

vector field V is the gradient of a potential function −f , then g is called a gradient

Ricci soliton and equation (1.15.1) assumes the form

∇∇f = S + λg. (1.15.2)

An η-Ricci soliton is a tuple (g, V, λ, µ), where V is a vector field on M , λ and µ

are constants, and g is a Riemannian (or pseudo-Riemannian) metric satisfying the

equation

£V g + 2S + 2λg + 2µη ⊗ η = 0. (1.15.3)
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1.16 Important Curvature Tensors On Riemannian

Manifolds

The concircular curvature tensor ′Ċ of type (0, 4), (n > 3) is given by (Yano, 1940)

′Ċ(X, Y, Z,W ) = ′R(X, Y, Z,W )− r

n(n− 1)
{g(Y, Z)g(X,W )

− g(X,Z)g(Y,W )}. (1.16.1)

It satisfies the following algebraic properties

(a) ′Ċ(X, Y, Z,W ) = −′Ċ(Y,X,Z,W ),

(b) ′Ċ(X, Y, Z,W ) = −′Ċ(X, Y,W,Z),

(c) ′Ċ(X, Y, Z,W ) = ′Ċ(Z,W,X, Y ),

(d) ′Ċ(X, Y, Z,W ) +′ Ċ(Y, Z,X,W ) +′ Ċ(Z,X, Y,W ) = 0,

where

′Ċ(X, Y, Z,W ) = g(Ċ(X, Y, Z),W ).

The conharmonic curvature tensor ′Ĉ of the type (0, 4), (n > 3) is defined as follows

(Ishii, 1957)

′Ĉ(X, Y, Z,W ) =′ R(X, Y, Z,W )− 1

n− 1
{S(Y, Z)g(X,W )

− S(X,Z)g(Y,W ) + S(X,W )g(Y, Z)− S(Y,W )g(X,Z)}. (1.16.2)

It satisfies the following properties

(a) ′Ĉ(X, Y, Z,W ) = −′Ĉ(Y,X,Z,W ),

(b) ′Ĉ(X, Y, Z,W ) = ′Ĉ(X, Y,W,Z),

(c) ′Ĉ(X, Y, Z,W ) = ′Ĉ(Z,W,X, Y ),

(d) ′Ĉ(X, Y, Z,W ) +′ Ĉ(Y, Z,X,W ) +′ Ĉ(Z,X, Y,W ) = 0

where

′Ĉ(X, Y, Z,W ) = g(Ĉ(X, Y, Z),W ).

The pseudo-projective curvature tensor in an n-dimensional Riemannian manifold
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(Mn, g), denoted by P̂ and is defined by (Prasad, 2002)

P (Y, Z)U = aR(Y, Z)U + b[S(Z,U)Y − S(Y, U)Z]

− r

n

( a

n− 1
+ b
)
[g(Z,U)Y − g(Y, U)Z], (1.16.3)

where a and b are non-zero constants. Such a tensor P is known as pseudo-projective

curvature tensor. The pseudo-projective curvature tensor P satisfies the following

identities

(i) ′P (Y, Z, U, V ) = −′P (Z, Y, U, V ),

(ii) ′P (Y, Z, U, V ) 6= ∓′P (Y, Z, V, U).

The projective curvature tensor ′P̃ of the type (0, 4), (n > 2) is defined by

′P̃ (X, Y, Z,W ) = ′R(X, Y, Z,W )− 1

n− 1
{S(Y, Z)g(X,W )

− S(X,Z)g(Y,W )}. (1.16.4)

The projective curvature tensor ′P satisfies the following identities

(a) ′P̃ (X, Y, Z,W ) = −′P̃ (Y,X,Z,W ),

(b) C1
1P = C1

2P = C1
3P = 0,

(c) ′P̃ (X, Y, Z,W ) +′ P̃ (Y, Z,X,W ) +′ P̃ (Z,X, Y,W ) = 0,

where

′P̃ (X, Y, Z,W ) = g(P̃ (X, Y, Z),W ).

The M-projective curvature tensor ′M of the type (0, 4), (n > 2) is defined by

′M(X, Y, Z,W ) =′ R(X, Y, Z,W )− 1

2(n− 1)
{g(X,W )S(Y, Z)

− g(Y,W )S(X,Z) + S(X,W )g(Y, Z)− S(Y,W )g(X,Z)}. (1.16.5)
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The M -procective curvature tensor ′M satisfies the following identities

(c) ′M(X, Y, Z,W ) = ′M(Z,W,X, Y ),

(a) ′M(X, Y, Z,W ) = −′M(Y,X,Z,W ),

(b) ′M(X, Y, Z,W ) = −′M(X, Y,W,Z),

(d) ′M(X, Y, Z,W ) +′M(Y, Z,X,W ) +′M(Z,X, Y,W ) = 0

where

′M(X, Y, Z,W ) = g(M(X, Y, Z),W ).

The Quasi-conformal curvature tensor ′C of the type (0, 4), (n > 3) is defined as

′C(X, Y, Z,W ) = a′R(X, Y, Z,W ) + b[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)S(X,W )− g(X,Z)S(Y,W )]

+
r

n
(

a

n− 1
+ 2b)[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]. (1.16.6)

It satisfies the following identities

(a) ′C(X, Y, Z,W ) = −′C(Y,X,Z,W ),

(b) ′C(X, Y, Z,W ) = −′C(X, Y,W,Z),

(c) ′C(X, Y, Z,W ) = ′C(Z,W,X, Y ),

(d) ′C(X, Y, Z,W ) +′ C(Y, Z,X,W ) +′ C(Z,X, Y,W ) = 0

where

′C(X, Y, Z,W ) = g(C(X, Y, Z),W ).

Finally the Weyl conformal curvature tensor ′C̃ of type (0, 4) which is defined as

′C̃(X, Y, Z,W ) = ′R(X, Y, Z,W )− 1

n− 2

[
g(Y, Z)S(X,W )

− g(X,Z)S(Y,W ) + S(Y, Z)g(X,W )− S(X,Z)g(Y,W )
]

+
r

(n− 1)(n− 2)
[g(Y, Z)g(X,W )− g(X,Z)g(Y,W )]. (1.16.7)
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1.17 τ-curvature Tensor

In an n-dimensional semi-Riemannian manifold, a τ -curvature tensor is a tensor of

type (1, 3), which is defined by (Tripathi and Gupta, 2011)

τ(X, Y )Z = a0R(X, Y )Z + a1S(Y, Z)X + a2S(X,Z)Y

+a3S(X, Y )Z + a4g(Y, Z)QX + a5g(X,Z)QY

+a6g(X, Y )QZ + a7r[g(Y, Z)X − g(X,Z)Y ]. (1.17.1)

Particularly the τ -curvature tensor reduces to

1. Riemannian curvature tensor R if

a0 = 1, a1 = a2 = a3 = a4 = a5 = a6 = a7 = 0,

2. Quasi conformal curvature tensor C if

a1 = −a2 = a4 = −a5, a3 = a6 = 0, a7 = − 1

n

( a0

(n− 1)
+ 2a1

)
,

3. Conformal curvature tensor C̃ if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

n− 2
, a3 = a6 = 0, a7 =

1

(n− 1(n− 2))
,

4. Conharmonic curvature tensor Ĉ if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

n− 2
, a3 = a6 = a7 = 0,

5. Concircular curvature tensor Ċ if

a0 = 1, a1 = a2 = a3 = a4 = a5 = a6 = 0, a7 = − 1

n(n− 1)
,

6. Pseudo-projective curvature tensor P if

a1 = −a2, a3 = a4 = a5 = a6 = 0, a7 = − 1

n

( a0

(n− 1)
+ a1

)
,

7. Projective curvature tensor P̃ if

a0 = 1, a1 = −a2 = − 1

(n− 1)
, a3 = a4 = a5 = a6 = a7 = 0,
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8. m-rojective curvature tensor M if

a0 = 1, a1 = −a2 = a4 = −a5 = − 1

2(n− 1)
, a3 = a6 = a7 = 0,

9. W0 curvature tensor if

a0 = 1, a1 = −a5 = − 1

n− 1
, a2 = a3 = a4 = a6 = a7 = 0,

10. W ∗
0 curvature tensor if

a0 = 1, a1 = −a5 =
1

n− 1
, a2 = a3 = a4 = a6 = a7 = 0,

11. W1 curvature tensor if

a0 = 1, a1 = −a2 =
1

n− 1
, a3 = a4 = a5 = a6 = a7 = 0,

12. W ∗
1 curvature tensor if

a0 = 1, a1 = −a2 = − 1

n− 1
, a3 = a4 = a5 = a6 = a7 = 0,

13. W2 curvature tensor if

a0 = 1, a4 = −a5 = − 1

n− 1
, a1 = a2 = a3 = a6 = a7 = 0,

14. W3 curvature tensor if

a0 = 1, a2 = −a4 = − 1

n− 1
, a1 = a3 = a5 = a6 = a7 = 0,

15. W4 curvature tensor if

a0 = 1, a5 = −a6 =
1

n− 1
, a1 = a2 = a3 = a4 = a7 = 0,

16. W5 curvature tensor if

a0 = 1, a2 = −a5 =
1

n− 1
, a1 = a3 = a4 = a6 = a7 = 0,

17. W6 curvature tensor if

a0 = 1, a1 = −a6 = − 1

n− 1
, a2 = a3 = a4 = a5 = a7 = 0,

18. W7 curvature tensor if

a0 = 1, a1 = −a4 = − 1

n− 1
, a2 = a3 = a5 = a6 = a7 = 0,
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19. W8 curvature tensor if

a0 = 1, a1 = −a3 = − 1

n− 1
, a2 = a4 = a5 = a6 = a7 = 0,

20. W9 curvature tensor if

a0 = 1, a3 = −a4 =
1

n− 1
, a1 = a2 = a5 = a6 = a7 = 0.

1.18 Almost Contact Metric Manifolds

If Mn be an odd dimensional differentiable manifold on which there are defined

a real vector valued linear function ϕ, a 1-form η and a vector field ξ satisfying for

arbitrary vectors X, Y, Z, .....

ϕ2X = −X + η(X)ξ, (1.18.1)

η(ξ) = 1, (1.18.2)

ϕ(ξ) = 0, (1.18.3)

η(ϕX) = 0, (1.18.4)

and

rank(ϕ) = n− 1, (1.18.5)

is called an almost contact manifold (Sasaki, 1965) and the structure (ϕ, η, ξ) is called

an almost contact structure (Hatakeyama et al., 1963; Sasaki and Hatakeyama, 1960,

61).

An almost contact manifold Mn on which a Riemannian metric tensor g satisfying

g(ϕX,ϕY ) = g(X, Y )− η(X)η(Y ), (1.18.6)

and

g(X, ξ) = η(X), (1.18.7)

is called an almost contact metric manifold and the structure (ϕ, ξ, η, g) is called an

almost contact metric structure (Sasaki,1960).
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The fundamental 2-form ′F of an almost contact metric manifold Mn is defined by

′F (X, Y ) = g(ϕX, Y ). (1.18.8)

We have

′F (X, Y ) =′ F (ϕX,ϕY ), (1.18.9)

and

′F (X, Y ) = −′F (Y,X). (1.18.10)

If in an almost contact metric manifold

2′F (X, Y ) = (∇Xη)(Y )− (∇Y η)(X). (1.18.11)

then Mn is called an almost Sasakian manifold.

An almost contact metric manifold is said to be Sasakian manifold if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X (1.18.12)

and

∇Xξ = −φX. (1.18.13)

An almost contact metric manifold is called a Kenmotsu manifold if (Kenmotsu,

1972)

(∇Xϕ)(Y ) = g(ϕX, Y )ξ − η(Y )ϕ(X) (1.18.14)

and

∇Xξ = X − η(X)ξ. (1.18.15)

An almost contact metric manifold manifoldMn is trans-Sasakian Manifold (Oubina,

1985) if
(
Mn ×R, J, G

)
belong to the class ω4 of the Hermitian manifolds, where G is

the product metric on
(
Mn ×R

)
and J is the almost complex structure on

(
Mn ×R

)
defined by

J
(
U, f

d

dt

)
= (φZ − fξ, η(U)

d

dt
)
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for any U ∈ χ(M). This may be stated by the relation (Oubina, 1985)

(∇Xϕ)(Y ) = αλ{g(X, Y )ξ − η(Y )X}

+ β{−η(Y )ϕX + g(Y, ϕX)ξ}. (1.18.16)

From the above relations we have (Blair, 1990)

∇Xξ = −αϕX + β{X − η(X)ξ}, (1.18.17)

and

(∇Xη)(Y ) = −αg(φX, Y ) + βg(φX, φY ), (1.18.18)

where α and β are non zero constants.

1.19 α-Cosymplectic Manifolds

An almost contact metric manifold (M,φ, ξ, η, g) is said to be almost cosymplectic

(Goldberg and Yano, 1969) if dη = 0 and dΦ = 0, where d is the exterior differential

operator. The manifold defined by M = N × R, where N is an almost Kählerian

manifold and R is the real line is the simplest example of almost cosymplectic manifold

(Olszak, 1981). An almost contact manifold (M,φ, ξ, η) is said to be normal if the

Nijenhuis torsion

Nφ(X, Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2(X, Y ) + 2dη(X, Y )ξ

vanishes for any vector fields X and Y . A normal almost cosymplectic manifold is

cosymplectic manifold.

An almost contact metric manifold M is said to be almost α-Kenmotsu if dη = 0

and dΦ = 2αη ∧ Φ, α being a non-zero real constant.

If these two classes are joined, we obtain a new notion of an almost α-cosymplectic

manifold, which is defined by the following formula

dη = 0, dΦ = 2αη ∧ Φ,

for any real number α. A normal almost α-cosymplectic manifold is called an α-

cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic under the

condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR.
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On such an α-cosymplectic manifold, we have

(∇Xφ)Y = α
[
g(φX, Y )ξ − η(Y )φX

]
(1.19.1)

and

∇Xξ = −αφ2X = α[X − η(X)ξ]. (1.19.2)

1.20 Generalized Sasakian-space-form

A Sasakian manifold with constant φ-sectional curvature c is called a Sasakian-

space-form and its curvature tensor R is given by

R(X, Y )Z =
c+ 3

4

[
g(Y, Z)X − g(X,Z)Y

]
+

c− 1

4

[
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

]
+

c− 1

4

[
η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ
]
. (1.20.1)

In 2004, Alegre et al. generalized the Sasakian-space-form by replacing the con-

stant quantities
c+ 3

4
and

c− 1

4
with differentiable functions. Such space is called

generalized Sasakian-space-form (Alegre et al., 2004).

1.21 Weakly Symmetric Manifolds

A non-flat Riemannian manifold (Mn, g), (n > 2) is called weakly symmetric if the

curvature tensor R of type (1,3) satisfies the condition

∇XR(Y, Z)V = A(X)R(Y, Z)V +B(Y )R(X,Z)V + C(Z) R(Y,X)V

+D(V )R(Y, Z)X + g(R(Y, Z)V,X)P, (1.21.1)

for all X, Y, Z, V ∈ χ(M), where ∇ denotes the Levi-Civita connection on (Mn, g)

and A, B, C, D and P are 1-forms and a vector field respectively which are non-zero

simultaneously.

A non-flat Riemannian manifold (Mn, g), (n > 2) is called weakly Ricci symmetric

if the Ricci tensor S satisfies the condition

(∇X)S(Y, Z) = α1(X)S(Y, Z) + β1(Y )S(X,Z) + γ1(Z)S(Y,X), (1.21.2)
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where α1, β1 and γ1 are non-zero simultaneously.

1.22 Recurrent Manifolds

Let Mn be an n-dimensional smooth Riemannian manifold and χ(M) denotes the

set of differentiable vector fields on Mn. Let X, Y ∈ χ(M); ∇XY denotes the covariant

derivative of Y with respect to X and R(X, Y, Z) be the Riemannian curvature tensor

of type (1, 3). A Riemannian manifold Mn is said be recurrent (Ruse, 1946) if

(∇UR)(X, Y, Z) = α(U)R(X, Y, Z), (1.22.1)

where α is a non-zero 1-form known as recurrence parameter. If the 1-form α is zero

in (1.22.1), then the manifold reduces to symmetric manifold (Singh and Khan,1999).

A Riemannian manifold (Mn, g) is said to be Ricci-recurent if it satisfies the relation

(Patterson, 1952)

(∇XS)(Y, Z) = A(X)S(Y, Z) (1.22.2)

for all X, Y, Z ∈ χ(M), where ∇ denotes the Levi-Civita connection and A is a 1-form

on Mn. If the 1-form A vanishes identically on Mn, then a Ricci-recurrent manifold

becomes a Ricci-symmetric manifold.

A Riemannian manifold (Mn, g) is a called generalized recurrent Riemannian man-

ifold (De and Guha, 1991) if its curvature tensor R satisfies the condition:

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z], (1.22.3)

where A and B are two 1-forms, B is non-zero and these are defined by

A(X) = g(X, ρ1), B(X) = g(X, ρ2), (1.22.4)

ρ1 and ρ2 are vector fields associated with 1-forms A and B, respectively.

A Riemannian manifold (Mn, g) is said to be ϕ-recurrent manifold if there exists a

non -zero 1-form A such that

ϕ2((∇XR)(Y, Z)W ) = A(X)R(Y, Z)W (1.22.5)

for arbitrary vector fields X, Y, Z,W .
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A Riemannian manifold (Mn, g) is called generalized ϕ-recurrent if its curvature

tensor R satisfies the condition

ϕ2((∇WR)(Y, Z)U) = A(W )R(Y, Z)U

+ B(W )[g(Z,U)Y − g(Y, U)Z], (1.22.6)

where A and B are two 1-forms, B is non-zero and these are defined by earlier.

1.23 Semi-symmetric Manifolds

A manifold is said to be semi-symmetric and Ricci semi-symmetric (Cartan, 1946)

if the Riemannian curvature tensor R and Ricci tensor S satisfies R.R = 0 and R.S = 0

respectively. That is

R(X, Y ).R(U, V )W = 0 (1.23.1)

and

R(X, Y ).S(U, V ) = 0 (1.23.2)

for all X, Y, U, V, ,W ∈ χ(M).

1.24 Pseudosymmetric manifolds

An n-dimensional Riemannian manifold M , n > 2, is called pseudosymmetric man-

ifolds (Deszez, 1992) if R.R and Q(g,R) are linearly dependent, i.e.,

R.R = FQ(g,R), (1.24.1)

holds on the set UR =
{
x ∈M : Q(g,R) 6= 0 at x

}
, where F is some function on UR.

And the manifold is called Ricci pseudosymmetric and Ricci-generalized pseudosym-

metric manifold if

R.S = f ′Q(g, S) (1.24.2)

and

R.R = fQ(S,R) (1.24.3)

holds on the set US =
{
x ∈ M : Q(g, S) 6= 0 at x

}
and UR =

{
x ∈ M : Q(g,R) 6=
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0 at x
}

respectively, where f ′ and f are some functions on US and UR.

1.25 Group Manifolds

A Riemannian manifold is a group manifold with respect to the quarter-symmetric

connection if (Eisenhart, 1933)

R̃(U, V )Z = 0

and

(∇̃X T̃ )(U, V ) = 0 (1.25.1)

for all U, V, Z ∈ χ(M).

1.26 Review of Literature

Hamilton (1982) studied 3-dimensional manifold with positive Ricci tensor. In the

paper, he used the evolution equation

∂

∂t
gij = −2Rij.

Hamilton (1988) later used this equation for the expression of the Ricci flow , where gij

denotes the metric tensor and Rij denotes the associated Ricci tensor. In 1992, Ivey

studied soliton for the Ricci flow to introduce the concept of Ricci soliton.

In 2008, Sinha and Sharma started the study of Ricci soliton in contact manifolds .

Later Ricci soliton in contact and almost contact manifolds have been studied by many

authors such as: Ricci solitons in contact metric manifolds by Tripathi (2008), Ricci

solitons in manifolds with quasi-constant curvature by Bejan (2011), Ricci solitons in

Lorentzian α-Sasakian manifolds by Bagewadi (2012), Ricci solitons and gradient Ricci

solitons in three-dimensional trans-Sasakian manifolds by Turan et. al. (2012), Ricci

solitons in Kenmotsu manifolds by Nagaraja and Premalatha (2012), etc.

η-Ricci soliton was introduced by Cho and Kimura (2009) while studying Ricci

solitons of real hypersurfaces in a non-flat complex space form.

In 1967 Blair defined a cosymplectic manifold as a quasi-Sasakian structures satis-

fying dη = 0. This is to be noted that the notion of cosymplectic manifold introduced

by Libermann (1959) is different from that of Blair (1967). An almost contact metric

manifold (M,φ, ξ, η, g) is said to be almost cosymplectic (Goldberg, 1969) if dη = 0

and dΦ = 0, where d is the exterior differential operator. The manifold defined by
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M = N ×R, where N is an almost Kahlerian manifold and R is a real line is the sim-

plest examples of almost cosymplectic manifolds (Olszak, 1981). An almost contact

manifold (M,φ, ξ, η) is said to be normal if the Nijenhuis torsion

Nφ(X, Y ) = [φX, φY ]− φ[φX, Y ]− φ[X,φY ] + φ2(X, Y ) + 2dη(X, Y )ξ.

vanishes for any vector fields X and Y . A normal almost cosymplectic manifolds is

cosymplectic manifold.

An almost contact metric manifold M is said to be almost α-Kenmotsu if dη = 0

and dΦ = 2αη ∧ Φ, α being a non-zero real constant.

Kim and Pak (2005) combined almost α-Kenmotsu and almost cosymplectic man-

ifolds into a new class which is called almost α-cosymplectic manifolds, where α is a

scalar. If we join these two classes, we obtain a new notion of an almost α-cosymplectic

manifold, which is defined by the following formula

dη = 0, dΦ = 2αη ∧ Φ.

for any real number α. A normal almost α-cosymplectic manifold is called an α-

cosymplectic manifold. An α-cosymplectic manifold is either cosymplectic under the

condition α = 0 or α-Kenmotsu under the condition α 6= 0 for α ∈ IR.

In a Riemannian manifold, a curvature tensor given by K(X, Y ) = R(X, Y, Y,X)

for an orthonormal pair of vectors (X, Y ), is known as the sectional curvature. A

Riemannian manifold with constant sectional curvature c is called a real-space-form,

and its curvature tensor R satisfies

R(X, Y )Z = c
{
g(Y, Z)X − g(X,Z)Y

}
.

A Sasakian manifold with constant φ-sectional curvature c is called a Sasakian-

space-form and its curvature tensor R is given by

R(X, Y )Z =
c+ 3

4

[
g(Y, Z)X − g(X,Z)Y

]
+

c− 1

4

[
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

]
+

c− 1

4

[
η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ
]
.

In 2004, Alegre et al. generalized the Sasakian-space-form by replacing the con-

stant quantities
c+ 3

4
and

c− 1

4
with differentiable functions. Such space is called
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generalized Sasakian-space-form.

The generalized Sasakian-space-form have been studied by many authors such as

Sarkar and De (2010, 2012), De et al. (2012), Singh (2016a, 2016b), De and Majhi

(2013, 2015, 2019), Kishor et al. (2017), Alegre and Carriazo (2008, 2018), Akbar and

Sarkar (2015), Sular and Ozgur (2011,2014) and many others.

In 2008, Alegre and Carriazo studied structures on generalized Sasakian-space-

form and studied generalized Sasakian-space-form admitting trans-Sasakian structure.

In 1989, Tanno defined the generalized TanakaWebster connection for contact met-

ric manifolds, which generalized the connection given by Tanaka (1976) and Webster

(1978). The generalized TanakaWebster connection have been studied by De de Dios

Prez (2015), De (2016) and others.

In 2012 Mantica and Suh defined the Z-tensor which is given by

Z̃(X, Y ) = S(X, Y ) + φ1g(X, Y ),

where φ1 is an arbitrary scalar function and S and g denotes the Ricci tensor and

metric tensor respectively. Particularly if φ1 = 0, the Z-tensor reduces to the Ricci

tensor. Later the Z-tensor have been studied by Mallick and De (2016), De and Pal

(2014), Mantica et al. (2012a, 2012b), Chaubey (2018) and many others.

The notion of (locally) symmetric manifolds was introduced by Cartan (1926) as a

generalization of the notion of a space of constant curvature. An n-dimensional Rie-

mannian manifold M is said to be locally symmetric due to Cartan if its curvature

tensor R satisfies ∇R = 0, where ∇ denotes the Levi-Civita connection. Locally sym-

metric manifolds and recurrent manifolds have been studied by many authors in several

ways and to various extent such as weakly symmetric manifolds by Tamssy and Binh

(1989), conformally symmetric Ricci-recurrent spaces by Roter (1974), conformally re-

current Ricci-recurrent manifolds by Roter (1982), conformally symmetric manifolds

by Chaki and Gupta (1963), pseudo symmetric manifolds introduced by Chaki (1987),
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According to De et al. (1995), a non-flat Riemannian manifold (Mn, g), n > 2 is
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condition

Rij,l = λlRij + µlgij,

where λl and µl are non-zero vectors. It is denoted by GRn. If µl = 0, then the manifold

GRn become a Ricci-recurrent manifold Rn. Also De and Guha (1991) introduced a

non-flat Riemannian manifold (Mn, g), n > 2 called a generalized recurrent manifold.

Such a manifold has been denoted by GKn. If the associated vector µl becomes zero,

then the manifold GKn reduces to a recurrent manifold introduced by walker (1950)

which is denoted by Kn.

The generalized recurrent and generalized Ricci-recurrent manifolds have been stud-

ied by several authors such as Ozgur (2007, 2008a, 2008b), Mallick et. al. (2013),

Arslan et. al. (2009) and many others.

Golab (1975) introduced a quarter-symmetric linear connection on a differentiable

manifold. A quarter-symmetric metric connection generalized a semi-symmetric con-

nection which is introduced by Friedman and Schouten (Friedman and Schouten, 1924)

in 1924. A quarter-symmetric connection is further studied by many authors such as:

Barman (Barman, 2015), Prakasha and Vikas (Prakasha, 2015), Singh (2014, 2015a,

2015b), Prasad and Haseeb (Prasad and Haseeb, 2016), Dey et al. (2015, 2017) etc.
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Chapter 2

CHARACTERIZATION OF RICCI

SOLITONS

In this chapter we studied Ricci soliton and η-Ricci soliton which is a generalization

of Ricci soliton in α-cosymplectic manifolds and Sasakian manifolds respectively. We

have given the condition for which the Ricci soliton is shrinking, steady or expanding.

We also discussed geometrical propertues of η-Ricci soliton.

2.1 Introduction

The notion of Ricci soliton and η-Ricci soliton is given in the equation (1.15.1) and

(1.15.3) respectively. Sinha and Sharma (2008) studied K-Contact and (k, µ)-Contact

Manifolds which is the first time Ricci soliton is studied in contact manifolds. In

this chapter we studied Ricci soliton in α-cosymplectic manifold and η-Ricci soliton in

Sasakian manifolds.

Definition 2.1.1 An almost contact metric manifold is called a Sasakian manifold if

and only if (Yano, 1984)

(∇Zφ)W = g(Z,W )ξ − η(W )Z, ∇Zξ = −φZ. (2.1.1)

On a Sasakian manifold, we have (Yano, 1984)

R(Z,W )ξ = η(W )Z − η(Z)W, (2.1.2)

Singh, J. P. and Lalmalsawma, C. (2018). Ricci solitons in α-cosymplectic manifolds, Facta
Universitatis 33(3), 375-387.
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R(Z, ξ)X = η(X)Z − g(Z,X)ξ, (2.1.3)

η
(
R(Z,W )X

)
= g(W,X)η(Z)− g(Z,X)η(W ), (2.1.4)

g
(
R(Z,W )ξ, ξ

)
= 0, (2.1.5)

S(W, ξ) = (n− 1)η(W ), (2.1.6)

Qξ = (n− 1)ξ. (2.1.7)

Now, using the property of Lie derivative we have

(£ξg)(Z,W ) = 0. (2.1.8)

From equations (1.15.3) and (2.1.8) we get

S(Z,W ) = −µη(Z)η(W )− λg(Z,W ). (2.1.9)

Putting W = ξ in equation (2.1.9) we get

S(Z, ξ) = −(λ+ µ)η(Z), (2.1.10)

and

Qξ = −(λ+ µ)ξ. (2.1.11)

Comparing equation (2.1.7) and equation (2.1.11) we get

−(λ+ µ) = (n− 1). (2.1.12)

On an α-cosymplectic manifold Mn, the following relations are held (Ozturk,2010;

Ozturk, 2013)

R(ξ,X)Y = α2
[
η(Y )X − g(X, Y )ξ

]
, (2.1.13)

R(X, Y )ξ = α2
[
η(X)Y − η(Y )X

]
, (2.1.14)

S(ξ,X) = −α2(n− 1)η(X), (2.1.15)
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η
(
R(X, Y )Z

)
= α2

[
η(Y )g(X,Z)− η(X)g(Y, Z)

]
. (2.1.16)

Using equation (1.19.2) we have

£ξg(X, Y ) = 2αg(X, Y )− 2αη(X)η(Y ). (2.1.17)

From equations (1.15.1) and (2.1.17) we get

S(X, Y ) = αη(X)η(Y )− (λ+ α)g(X, Y ). (2.1.18)

Equation equation (2.1.18) yields

QX = αη(X)ξ − (λ+ α)X, (2.1.19)

S(X, ξ) = −λη(X), (2.1.20)

r = (1− n)α− λn. (2.1.21)

Comparing equation (2.1.16) and equation (2.1.20) we get

λ = α2(n− 1). (2.1.22)

Since α2 ≥ 0, for α ∈ IR, from equation (2.1.22) we get λ ≥ 0, for all n ≥ 2. Thus

we can state the following:

Lemma 2.1.1 A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,

is eitheir steady or expanding.

We have already stated that an α-cosymplectic manifold is either cosymplectic

under the condition α = 0 or α-Kenmotsu under the condition α 6= 0, for α ∈ IR. Thus

we can state the following lemmas:

Lemma 2.1.2 A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,

is steady if and only if it is a cosymplectic manifold.

Lemma 2.1.3 A Ricci soliton in an n-dimensional α-cosymplectic manifold, n ≥ 2,

is expanding if and only if it is an α-Kenmotsu manifold.
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2.2 Ricci semi-symmetric α-cosymplectic manifolds,

n ≥ 2

Theorem 2.2.1 A Ricci semi-symmetric α-cosymplectic manifold, n ≥ 2, admitting

Ricci soliton is cosymplectic manifold.

Proof: Consider an α-cosymplectic manifold which is Ricci semi-symmetric. Then we

have the equation (1.23.2) i.e.

R(ξ,X) · S(Y, Z) = 0 (2.2.1)

holds in Mn.

From equation (2.2.1) it follows that

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0. (2.2.2)

Using equations (2.1.13), (2.1.18) and (2.1.20), we get from equation (2.2.2)

α2
[
2αη(X)η(Y )η(Z)− αη(Y )g(X,Z)− αη(Z)g(X, Y )

]
= 0,

or

α3
[
2η(X)η(Y )η(Z)− η(Y )g(X,Z)− η(Z)g(X, Y )

]
= 0. (2.2.3)

Contracting equation (2.2.3) over X and Y we get

α3(n− 1)η(Z) = 0. (2.2.4)

In general η(Z) 6= 0. Therefore α = 0.

Hence it is Cosymplectic manifold.

Corollary 2.2.1 A Ricci soliton in a Ricci semi-symmetric α-cosymplectic manifold,

n ≥ 2, is steady.

Proof: By virtue of Lemma 2.1.2 and the above theorem, it is obvious that the Ricci

solitons is steady.
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2.3 Pseudo projective semi-symmetric α-cosymplectic

manifolds, n ≥ 2

From the equation (1.16.3) a (0, 4) type pseudo-projective curvature tensor ′P is

′P (X, Y, Z,W ) = a′R(X, Y, Z,W ) + b[S(Y, Z)g(X,W )− S(X,Z)g(Y,W )]

− r

n

( a

n− 1
+ b
)
[g(Y, Z)g(X,W )− g(Y, U)g(Y,W )]. (2.3.1)

where ′R is a Riemannian curvature tensor of type (0, 4), from (2.3.1) it follows that

n∑
i=1

′P (ei, Y, Z, ei) = [a+ (n− 1)b]
[
S(Y, Z)− r

n
g(Y, Z)

]
. (2.3.2)

Again from equation (2.3.1) we obtain

η
(
P (X, Y )Z

)
=
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]
×
[
η(Y )g(X,Z)− η(X)g(Y, Z)

]
,

or

η
(
P (X, Y )Z

)
= β[η(Y )g(X,Z)− η(X)g(Y, Z)], (2.3.3)

where β =
[
aα2 + r

n

(
a

n−1
+ b
)

+ (λ+ α)b
]
.

Theorem 2.3.1 A peudo projective semi-symmetric α-Kenmotsu manifold, n ≥ 2,

admitting Ricci soliton is an Einstein manifold.

Proof: Now we assume that the condition

R(ξ,X) · P (Y, Z)W = 0 (2.3.4)

holds in M .

From equation (2.3.4) it follows that

R(ξ,X)P (Y, Z)W − P (R(ξ,X)Y, Z)W − P (Y,R(ξ,X)Z)W

−P (Y, Z)R(ξ,X)W = 0. (2.3.5)

Using equation (2.1.13) in equation (2.3.5) we find

α2
[
η
(
P (Y, Z)W

)
X − P̂ (Y, Z,W,X)ξ − η(Y )P (X,Z)W

+g(X, Y )P (ξ, Z)W − η(Z)P (Y,X)W + g(X,Z)P (Y, ξ)W

−η(W )P (Y, Z)X + g(X,W )P (Y, Z)ξ
]

= 0, (2.3.6)
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where P̂ (Y, Z,W,X) = g
(
X,P (Y, Z)W

)
.

Taking the inner product of equation (2.3.5) with ξ we get

α2
[
η
(
P (Y, Z)W

)
η(X)− P̂ (Y, Z,W,X)− η(Y )η

(
P (X,Z)W

)
+g(X, Y )η

(
P (ξ, Z)W

)
− η(Z)η

(
P (Y,X)W

)
+ g(X,Z)η

(
P (Y, ξ)W

)
−η(W )η

(
P (Y, Z)X

)
+ g(X,W )η

(
P (Y, Z)ξ

)]
= 0. (2.3.7)

By virtue of equation (2.3.3), equation (2.3.7) yields

α2
[
P̂ (Y, Z,W,X) + β

{
g(X, Y )g(Z,W )− g(X,Z)g(Y,W )

}]
= 0. (2.3.8)

Contracting equation (2.3.8) over X and Y and using equation (2.3.2) we get

α2
[
[a+ (n− 1)b]

{
S(Z,W )− r

n
g(Z,W )

}
+ β(n− 1)g(Z,W )

]
= 0. (2.3.9)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e., α 6=
0. Thus equation (2.3.9) can be written as

S(Z,W ) =
[ r
n
− β(n− 1)

a+ (n− 1)b

]
g(Z,W ),

or

S(Z,W ) = ρg(Z,W ), (2.3.10)

where ρ =
[
r
n
− β(n−1)

a+(n−1)b

]
.

Theorem 2.3.2 A projective semi-symmetric α-cosymplectic manifold, n ≥ 2, admit-

ting Ricci soliton is a cosymplectic manifold.

Proof: Contracting equation (2.3.9) over Z and W we get

n(n− 1)α2β = 0. (2.3.11)

From equation (2.3.11) it follows that

α2β = 0,

or

α2
[
aα2 +

r

n

( a

n− 1
+ b
)

+ (λ+ α)b
]

= 0. (2.3.12)
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If we put a = 1 and b = − 1
(n−1)

then equation (2.3.1) takes the form

P (X, Y )Z = R(X, Y )Z − 1

(n− 1)
[S(Y, Z)X − S(X,Z)Y ]

= P̃ (X, Y )Z, (2.3.13)

where P̃ (X, Y )Z is the projective curvature tensor and is a particular case of P .

Now putting a = 1 and b = − 1
(n−1)

in equation (2.3.12) and making use of (2.1.22)

we get

α3 = 0,

or

α = 0. (2.3.14)

Corollary 2.3.1 A Ricci soliton in a projective semi-symmetric α-cosymplectic man-

ifold, n ≥ 2, is steady.

Proof: By virtue of the Lemma 2.1.2, it is obvious that Ricci-solitons is steady.

2.4 Weyl semi-symmetric α-cosymplectic manifolds,

n > 2
We consider the Weyl conformal curvature tensor C̃ of type (1, 3) which is defined

by

C̃(X, Y )Z = R(X, Y )Z − 1

n− 2

[
g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X

−S(X,Z)Y
]

+
r

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ], (2.4.1)

where R is a Riemannian curvature tensot of type (1, 3).

From which it follows that

n∑
i=1

′C̃(ei, Y, Z, ei) = 0. (2.4.2)
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Again from equation (2.4.1) we obtain

η
(
C̃(X, Y )Z

)
= 0. (2.4.3)

Theorem 2.4.1 A Weyl semi-symmetric α-Kenmotsu manifold, n > 2, admitting

Ricci soliton is conformally flat.

Proof: Now we assume that the condition

R(ξ,X) · C̃(Y, Z)W = 0 (2.4.4)

holds in Mn.

From equation (2.4.4) it follows that

R(ξ,X)C̃(Y, Z)W − C̃(R(ξ,X)Y, Z)W − C̃(Y,R(ξ,X)Z)W

−C̃(Y, Z)R(ξ,X)W = 0. (2.4.5)

Using equation (2.1.13) in equation (2.4.5) we find

α2
[
η
(
C̃(Y, Z)W

)
X −′ C̃(Y, Z,W,X)ξ − η(Y )C̃(X,Z)W

+g(X, Y )C̃(ξ, Z)W − η(Z)C̃(Y,X)W + g(X,Z)C̃(Y, ξ)W

−η(W )C̃(Y, Z)X + g(X,W )C̃(Y, Z)ξ
]

= 0, (2.4.6)

where ′C̃(Y, Z,W,X) = g
(
X, C̃(Y, Z)W

)
.

Taking the inner product of equation (2.4.6) with ξ we get

α2
[
η
(
C̃(Y, Z)W

)
η(X)−′ C̃(Y, Z,W,X)− η(Y )η

(
C̃(X,Z)W

)
+g(X, Y )η

(
C̃(ξ, Z)W

)
− η(Z)η

(
C̃(Y,X)W

)
+ g(X,Z)η

(
C̃(Y, ξ)W

)
−η(W )η

(
C̃(Y, Z)X

)
+ g(X,W )η

(
C̃(Y, Z)ξ

)]
= 0. (2.4.7)

By virtue of equation equation (2.4.3), equation (2.4.7) yields

α2′C̃(Y, Z,W,X) = 0. (2.4.8)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e., α 6=
0. Then we have

′C̃(Y, Z,W,X) = 0. (2.4.9)
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2.5 α-cosymplectic manifolds, n ≥ 2 satisfying P (ξ,X)·
S = 0

Making use of equations (2.1.13), (2.1.18) and (2.1.20) in equation (2.3.1) we get

P (ξ, Y )Z =
[
α2a+

r

n

( a

n− 1
+ b
)

+ λb
]
[η(Z)Y − g(Y, Z)ξ]

+αb[η(Y )η(Z)ξ − g(Y, Z)ξ],

or

P (ξ, Y )Z = β[η(Z)Y − g(Y, Z)ξ] + γ[η(Y )η(Z)ξ − g(Y, Z)ξ], (2.5.1)

where β =
[
α2a+ r

n

(
a

n−1
+ b
)

+ λb
]

and γ = αb.

Theorem 2.5.1 If an α-cosymplectic manifold, n ≥ 2, admitting Ricci soliton and

satisfying P (ξ,X) ·S = 0 is an α-Kenmotsu manifold, then it satisfies α2 = − r
n

(
1

n−1
+

b
a

)
.

Proof: Now we consider that the given manifold satisfies

P (ξ,X) · S(Y, Z) = 0.

From the above equation it follows that

S(P
(
ξ,X)Y, Z

)
+ S

(
Y, P (ξ,X)Z

)
= 0. (2.5.2)

Using equation (2.5.1) in equation (2.5.2) yields

βη(Y )S(X,Z)− βg(X, Y )S(ξ, Z) + γη(X)η(Y )S(ξ, Z)

−γg(X, Y )S(ξ, Z) + βη(Z)S(X, Y )− βg(X,Z)S(ξ, Y )

+γη(X)η(Z)S(ξ, Y )− γg(X,Z)S(ξ, Y ) = 0. (2.5.3)

Making use of equations (2.1.18) and (2.1.20) in equation (2.5.3) we get(
αβ − λγ

)
[2η(X)η(Y )η(Z)− g(X,Z)η(Y )

−g(X, Y )η(Z)] = 0. (2.5.4)

Contracting equation (2.5.4) over X and Y we get(
αβ − λγ

)
(1− n)η(Z) = 0. (2.5.5)

33



Putting Z = ξ in equation (2.5.5) yields(
αβ − λγ

)
(1− n) = 0. (2.5.6)

From which it follows that (
αβ − λγ

)
= 0,

or

α
[
α2a+

r

n

( a

n− 1
+ b
)]

= 0. (2.5.7)

We suppose that the α-cosymplectic manifold is an α-Kenmotsu manifold i.e., α 6=
0. Then equation (2.5.7) yields[

α2a+
r

n

( a

n− 1
+ b
)]

= 0,

or

α2 = − r
n

( 1

n− 1
+
b

a

)
. (2.5.8)

Corollary 2.5.1 If a Ricci soliton in an α-cosymplectic manifold, n ≥ 2, satisfying

P (ξ,X) · S = 0 is expanding, then α2 = − r
n

(
1

n−1
+ b

a

)
.

Proof: By virtue of Lemma 2.1.3, the Ricci solitons is expanding.

Theorem 2.5.2 An α-cosymplectic manifold, n ≥ 2, admitting Ricci soliton and sat-

isfying P̃ (ξ,X) · S = 0 is a cosymplectic manifold.

Proof: Putting a = 1 and b = − 1
(n−1)

in equation (2.5.6)

α3 = 0,

or

α = 0. (2.5.9)

Corollary 2.5.2 A Ricci solitons in an α-cosymplectic manifold, n ≥ 2, satisfying

P̃ (ξ,X) · S = 0 is steady.

Proof: By virtue of the Lemma 2.1.3, it is obvious that the Ricci solitons is steady.
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2.6 Gradient Ricci soliton in α-cosymplectic mani-

folds

Theorem 2.6.1 If an α-cosymplectic manifold, n ≥ 2, admitting gradient Ricci soliton

is an α-Ketmotsu manifold, then it is an η-Einstein manifold.

Proof: From equation (1.15.2) we have

∇∇f = S + λg. (2.6.1)

This can be written as

∇YDf = QY + λY, (2.6.2)

where D is the gradient operator of g. Using equation (2.6.2) we can obtain

R(X, Y )Df = (∇XQ)Y + (∇YQ)X. (2.6.3)

Taking the inner product of equation (2.6.3) with ξ we get

g
(
R(X, Y )Df, ξ

)
= g
(
(∇XQ)Y, ξ

)
+ g
(
(∇YQ)X, ξ

)
. (2.6.4)

Using equation (1.19.2) and equation (2.1.19) we have

g
(
(∇ξQ)Y, ξ

)
= 0, (2.6.5)

and

g
(
(∇YQ)ξ, ξ

)
= 0. (2.6.6)

By virtue of equations (2.6.5) and (2.6.6), equation (2.6.4) yields

g
(
R(ξ, Y )Df, ξ

)
= 0. (2.6.7)

Again using equation (2.1.13) in equation (2.6.7) we get

g
(
R(ξ, Y )Df, ξ

)
= α2

[
η(Y )η(Df)− g(Y,Df)

]
. (2.6.8)

From equation (2.6.7) and equation (2.6.8) we have

α2
[
η(Y )η(Df)− g(Y,Df)

]
= 0. (2.6.9)
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Now we suppose that α 6= 0, i.e., the given manifold is α-Kenmotsu manifold.

Equation (2.6.9) yields

η(Y )η(Df) = g(Y,Df). (2.6.10)

From equation (2.6.10) we obtain

Df = (ξf)ξ. (2.6.11)

Using equation (2.6.11) in equation (2.6.2)

Y (ξf)ξ + α(ξf)
[
Y − η(Y )ξ

]
= QY + λY. (2.6.12)

Taking the inner product of equation (2.6.12) with X, we obtain

Y (ξf)η(X) + α(ξf)
[
g(X, Y )− η(X)η(Y )

]
= S(X, Y ) + λg(X, Y ). (2.6.13)

Putting X = ξ and using equation (2.1.20) in equation (2.6.13) we get

Y (ξf) = S(ξ, Y ) + λη(Y ) = 0. (2.6.14)

From equation (2.6.14) it is clear that ξf is constant. Thus using equation (2.6.13)

in equation (2.6.14) yields

α(ξf)
[
g(X, Y )− η(X)η(Y )

]
= S(X, Y ) + λg(X, Y ),

or

S(X, Y ) =
[
α(ξf)− λ

]
g(X, Y )− α(ξf)η(X)η(Y ). (2.6.15)

Corollary 2.6.1 If a gradient Ricci soliton in an α-cosymplectic manifold, n ≥ 2, is

expanding, then it is an η-Einstein manifold.

Proof: By virtue of Lemma 2.1.2 we have and the above theorem, we get the corollary.

2.7 Parallel symmetric tensor field of type (0, 2)

Theorem 2.7.1 In a Sasakian manifold, any symmetric tensor field h of type (0, 2)

which is parallel with respect to ∇ is a constant multiple of the metric.
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Proof: Consider a symmetric tensor field h of type (0, 2) which is parallel with respect

to ∇. Then using Ricci commutation identity we can obtain (Sharma, 1989)

h
(
R(U, V )Z,W

)
+ h
(
R(U, V )W,Z

)
= 0. (2.7.1)

Setting Z = W = ξ in equation (2.7.1) and by symmetric property of h we obtain

h
(
R(U, V )ξ, ξ

)
= 0. (2.7.2)

Putting U = ξ in equation (2.7.2) and using equation (2.1.2) we obtain

h(V, ξ)− η(V )h(ξ, ξ) = 0,

or

h(V, ξ) = η(V )h(ξ, ξ). (2.7.3)

Again putting Z = U = ξ in equation (2.7.1) we get

η(V )h(ξ,W )− h(V,W ) + g(V,W )h(ξ, ξ)− η(W )h(ξ, V ) = 0. (2.7.4)

Using (2.2.3) in equation (2.7.4) we obtain

h(V,W ) = h(ξ, ξ)g(V,W ). (2.7.5)

Theorem 2.7.2 If the symmetric tensor field in a Sasakian manifold is given by h =

£V g + 2S + 2µη ⊗ η, then the manifold admits an η-Ricci soliton.

Proof: We consider a paticular case for the symmetric tensor field h, where h is given

by the expression

h = £V g + 2S + 2µη ⊗ η.

Then from the above equation we have

h(ξ, ξ) = (£V )g(ξ, ξ) + 2S(ξ, ξ) + 2µη(ξ)η(ξ). (2.7.6)

Using equations (2.1.8) and (2.1.9) in equation (2.7.6)

h(ξ, ξ) = −2λ. (2.7.7)

Using equation (2.7.7) in equation (2.7.5) we obtain

h(V,W ) = −2λg(V,W ), (2.7.8)
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for all X and Y . Therefore −2λg = £V g + 2S + 2µη ⊗ η defines an η-Ricci soliton.

2.8 Non existence of Ricci semi-symmetric Sasakian

manifolds

Theorem 2.8.1 A Sasakian manifold admitting η-Ricci soliton can not be Ricci semi-

symmetric.

Proof: Consider a Sasakian which is Ricci semi-symmetric. Then we have the equation

(1.23.2) i.e.

R(X, Y ) · S = 0.

Now we assume that the condition

R(ξ,X) · S(Y, Z) = 0 (2.8.1)

holds in Mn.

From equation (2.8.1) we have

S(R(ξ,X)Y, Z) + S(Y,R(ξ,X)Z) = 0. (2.8.2)

Using equations (2.1.3), (2.1.9) and (2.1.10), we get from equation (2.8.2)

µ
[
η(Y )g(X,Z) + η(Z)g(X, Y )− 2η(X)η(Y )η(Z)

]
= 0. (2.8.3)

Putting Z = ξ in equation (2.8.3) we get

µ
[
g(X, Y )− 2η(X)η(Y )

]
= 0,

or

µ
[
g(φX, φY )

]
= 0. (2.8.4)

In general g(φX, φY ) 6= 0. Therefore µ = 0 which is not possible.
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2.9 Torse forming vector field in Sasakian mani-

folds

Definition 2.9.1 A vector field T on Riemannian manifold is said to be a torse-

forming vector field if its covariant derivative satisfies satisfies (Yano, 1944)

∇XT = fX + A(X)T,

for all vector field X, where f is a smooth function and A is a 1-form.

Theorem 2.9.1 A Sasakian manifold admitting η-Ricci soliton with a torse-forming

vector field is Einstein.

Proof: Now we suppose that T = ξ in a Sasakian manifold admitting η-Ricci soliton.

Thus we have

∇Xξ = fX + A(X)ξ. (2.9.1)

From equation (2.9.1) we obtain

g(∇Xξ, ξ) = fη(X) + A(X). (2.9.2)

Using equations (1.18.6) and (2.1.1) we have

g(∇Xξ, ξ) = 0.

Using the above equation in equation (2.9.2) we obtain

A(X) = fη(X). (2.9.3)

From equation (1.15.3) we have

g(∇Xξ, Z) + g(X,∇Zξ) + 2S(X,Z) + 2λg(X,Z) + 2µη(X)η(Z) = 0. (2.9.4)

Making use of equations (2.9.1) and (2.9.3) in equation (2.9.4) we get

S(X,Z) + (λ+ f)g(X,Z) + (µ− f)η(X)η(Z) = 0. (2.9.5)

Using equation (2.1.9) in equation (2.9.5) we get

fg(X,Z) = fη(X)η(Z).
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Thus we have

g(X, Y ) = η(X)η(Z), (2.9.6)

provided f 6= 0.

Putting g(X,Z) = η(X)η(Z) in equation (2.1.9) we get

S(X,Z) = −(λ+ µ)g(X,Z). (2.9.7)

Again Using equation (2.1.12) in equation (2.9.7) we get

S(X,Z) = (n− 1)g(X, Y ). (2.9.8)

2.10 m-projectively flat Sasakian manifolds

Theorem 2.10.1 An m-projectively flat Sasakian manifold admitting η-Ricci soliton

is (ψB)n .

Proof: We suppose that the given manifold is m-projectively flat, we have

M(X, Y, Z,W ) = 0. (2.10.1)

Combining equation (1.16.5) and equation (2.10.1) and using equation (2.1.9) we

get

R̂(X, Y, Z,W ) =
λ

n− 1
[g(X,Z)g(Y,W )− g(Y, Z)g(X,W )]

+
µ

n− 1
[η(X)η(Z)g(Y,W )− η(Y )η(Z)g(X,W )

+η(Y )η(W )g(X,Z)− η(X)η(W )g(Y, Z)]. (2.10.2)

Equation (2.10.2) can be written as

R̂(X, Y, Z,W ) = H(Y,W )H(X,Z)−H(Z,W )H(Y, Z), (2.10.3)

where H(X, Y ) =

√
λ

n− 1
g(X, Y ) − µ

n− 1

√
n− 1

λ
η(X)η(Y ). By virue of the above

equation, the manifold is (ψB)n (Chern, 1955).

Theorem 2.10.2 An m-projectively flat Sasakian manifold admitting η-Ricci soliton

is a manifold of quasi-constant curvature.
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Proof: By putting a =
λ

n− 1
and b =

µ

n− 1
in (2.10.2) it is clear that an m-

projectively flat Sasakian manifold, n > 2 admitting η-Ricci soliton is of quasi-constant

curvature (Bejan, 2011).

2.11 Pseudo projective Ricci semi-symmetric Sasakian

manifolds

Definition 2.11.1 Pseudo projective curvature tensor P of type (1, 3) is given by

(1.16.3)

P (X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y ]

− r

n

( a

n− 1
+ b
)
[g(Y, Z)X − g(X,Z)Y ], (2.11.1)

where R is a Riemannian curvature tensot of type (1, 3).

Making use of equations (2.1.3), (2.1.9) and (2.1.10) in equation (2.11.1) we get

P (ξ, Y )Z = β[g(Y, Z)ξ − η(Z)Y ] + µb[η(Z)Y − η(Y )η(Z)ξ], (2.11.2)

where β =
[
a− r

n

(
a

n−1
+ b
)
− λb

]
.

Theorem 2.11.1 A Sasakian manifold admitting η-Ricci soliton can not be pseudo

projective Ricci semi-symmetric if b 6= a
(
n
r
− 1

n−1

)
.

Proof: Now we consider a pseudo projective Ricci semi-symmetric manifold. Then we

have

S(P
(
ξ,X)Y, Z

)
+ S

(
Y, P (ξ,X)Z

)
= 0. (2.11.3)

Using equation (2.11.2) in equation (2.11.3) yields

βg(X, Y )S(ξ, Z)− βη(Y )S(X,Z) + µbη(Y )S(X,Z)

−µbη(X)η(Y )S(ξ, Z) + βg(X,Z)S(ξ, Y )− βη(Z)S(X, Y )

+µbη(Z)S(X, Y )− µbη(X)η(Z)S(ξ, Y ) = 0. (2.11.4)

Making use of equations (2.1.9) and (2.1.10) in equation (2.11.4) we get

−µ
(
β + λb

)
[g(X, Y )η(Z) + g(X,Z)η(Y )

−2η(X)η(Y )η(Z)] = 0. (2.11.5)
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Contracting equation (2.11.5) over X and Y we get

−µ
(
β + λb

)
(n− 1)η(Z) = 0. (2.11.6)

Putting Z = ξ in equation (2.11.6) yields

−µ
(
β + λb

)
= 0,

or

−µ
(
a− r

n

( a

n− 1
+ b
))

= 0. (2.11.7)

From which it follows that

a− r

n

( a

n− 1
+ b
)

= 0,

or

b = a
(n
r
− 1

n− 1

)
. (2.11.8)

Theorem 2.11.2 A Sasakian manifold admitting η-Ricci soliton can not be projective

Ricci semi-symmetric.

Proof: Again we suppose that P is a projective curvature tensor. Then we have a = 1

and b = − 1
(n−1)

. Thus from (2.11.7)

−µ = 0,

or

µ = 0, (2.11.9)

which is not possible for η-Ricci soliton.
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Chapter 3

GENERALIZED

SASAKIAN-SPACE-FORM

In this chapter we considered a generalized Sasakian-space-form admitting Sasakian

structure, and we called it Sasakian generalized Sasakian-space-form. We studied

certain symmetric property of τ -curvature tensor in generalized Sasakian-space-form.

Later we considered Generalized Tanaka-Webster connection in the generalized Sasakian-

space-form. Certain symmetries of the manifold with respect to the Generalized

Tanaka-Webster connection are discussed.

3.1 Introduction

In a generalized Sasakian-space-form
c+ 3

4
and

c− 1

4
from the equation (1.20.1) is

replaced by differentiable functions. Thus the equation become

R(X, Y )Z = f1

[
g(Y, Z)X − g(X,Z)Y

]
+ f2

[
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

]
+ f3

[
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ
]
.

An almost contact metric manifold is called a Sasakian manifold if and only if (Yano

and Kon, 1985)

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, ∇Xξ = −φX. (3.1.1)
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On a Sasakian manifold Mn, the following relations are held (Yano and Kon, 1985)

R(X, Y )ξ = η(Y )X − η(X)Y, (3.1.2)

R(X, ξ)Y = η(Y )X − g(X, Y )ξ, (3.1.3)

η
(
R(X, Y )Z

)
= η(X)g(Y, Z)− η(Y )g(X,Z), (3.1.4)

η
(
R(X, Y )ξ

)
= 0, (3.1.5)

S(X, ξ) = (n− 1)η(X), (3.1.6)

Qξ = (n− 1)ξ, (3.1.7)

(∇Xη) = g(X,φY ). (3.1.8)

In a generalized Sasakian-space-form the following properties holds (Alegre, et. al,,

20014)

R(X, Y )Z = f1

[
g(Y, Z)X − g(X,Z)Y

]
+ f2

[
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

]
+ f3

[
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ
]
, (3.1.9)

S(X, Y ) =
[
(n− 1)f1 + 3f2 − f3

]
g(X, Y )

−
[
3f2 + (n− 2)f3

]
η(X)η(Y ), (3.1.10)

QX =
[
(n− 1)f1 + 3f2 − f3

]
X −

[
3f2 + (n− 2)f3

]
η(X)ξ, (3.1.11)

S(X, ξ) = (n− 1)(f1 − f3)η(X), (3.1.12)
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Qξ = (n− 1)(f1 − f3)ξ, (3.1.13)

R(X, Y )ξ = (f1 − f3)
{
η(Y )X − η(X)Y

}
, (3.1.14)

R(ξ, Y )Z = (f1 − f3)
{
g(Y, Z)ξ − η(Z)Y

}
, (3.1.15)

R(ξ, Y )ξ = (f1 − f3)
{
η(Y )ξ − Y

}
. (3.1.16)

r = n(n− 1)f1 + 3(n− 1)f2 − 2(n− 1)f3, (3.1.17)

where r =
n∑
i=1

S(ei, ei) is the scalar curvature.

3.2 On φ-τ semisymmetric generalized Sasakian-space-

form

Definition 3.2.1 A generalized Sasakian-space-form is φ-τ semisymmetric if the τ -

curvature tensor satisfies (
τ(X, Y ).φZ

)
= 0.

Theorem 3.2.1 In a φ-τ semisymmetric generalized Sasakian-space-form, we have

a0(f1 − f3) + a1(n− 1)(f1 − f3) + a4

{
(n− 1)f1 + 3f2 − f3

}
+ a7r = 0.

Proof: We know that(
τ(X, Y ).φZ

)
= τ(X, Y )φZ − φ

(
τ(X, Y )Z

)
. (3.2.1)
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Now

τ(X, Y )φZ = a0R(X, Y )φZ + a1S(Y, φZ)X + a2S(X,φZ)Y

+ a3S(X, Y )φZ + a4g(Y, φZ)QX + a5g(X,φZ)QY

+ a6g(X, Y )QφZ + a7r[g(Y, φZ)X + g(X,φZ)Y ]. (3.2.2)

Using equations (3.1.9), (3.1.10) and (3.1.11) in the above equation we get

τ(X, Y )φZ = a0

[
f1

{
g(Y, φZ)X − g(X,φZ)Y

}
+f2

{
g(X,φ2Z)φY − g(Y, φ2Z)φX + 2g(X,φY )φ2Z

}
+f3

{
g(X,φZ)η(Y )ξ − g(Y, φZ)η(X)ξ

}]
+a1

[
(n− 1)f1 + 3f2 − f3

]
g(Y, φZ)X

+a2

[
(n− 1)f1 + 3f2 − f3

]
g(X,φZ)Y

+a3

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}]
φZ

+a4g(Y, φZ)
[{

(n− 1)f1 + 3f2 − f3

}
X −

{
3f2 + (n− 2)f3

}
η(X)ξ

]
+a5g(X,φZ)

[{
(n− 1)f1 + 3f2 − f3

}
Y −

{
3f2 + (n− 2)f3

}
η(Y )ξ

]
+a6g(X, Y )

[{
(n− 1)f1 + 3f2 − f3

}
φZ
]

+a7r[g(Y, φZ)X − g(X,φZ)Y ]. (3.2.3)

Also

φ
(
τ(X, Y )Z

)
= φ

(
a0R(X, Y )Z + a1S(Y, Z)X + a2S(X,Z)Y

+ a3S(X, Y )Z + a4g(Y, Z)QX + a5g(X,Z)QY

+ a6g(X, Y )QZ + a7r[g(Y, Z)X + g(X,Z)Y ]
)
. (3.2.4)
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Using equations (3.1.9), (3.1.10) and (3.1.11) in equation(3.2.4) we get

φ
(
τ(X, Y )Z

)
= a0

[
f1

{
g(Y, Z)φX − g(X,Z)φY

}
+f2

{
g(X,φZ)φ2Y − g(Y, φZ)φ2X + 2g(X,φY )φ2Z

}
+f3

{
η(X)η(Z)φY − η(Y )η(Z)φX

}]
+a1

[{
(n− 1)f1 + 3f2 − f3

}
g(Y, Z)

−
{

3f2 + (n− 2)f3

]
η(Y )η(Z)

}]
φX

+a2

[{
(n− 1)f1 + 3f2 − f3

}
g(X,Z)

−
{

3f2 + (n− 2)f3

]
η(X)η(Z)

}]
φY

+a3

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}
φZ

+a4g(Y, Z)
{

(n− 1)f1 + 3f2 − f3

}
φX

+a5g(X,Z)
{

(n− 1)f1 + 3f2 − f3

}
φY

+a6g(X, Y )
[{

(n− 1)f1 + 3f2 − f3

}
φZ
]

+a7r[g(Y, Z)φX − g(X,Z)φY ]. (3.2.5)

Using equations (3.2.3) and (3.2.5) in equation (3.2.1) we get(
τ(X, Y ).φZ

)
= a0

[
f1

{
g(Y, φZ)X − g(X,φZ)Y − g(Y, Z)φX

+g(X,Z)φY
}

+ f2

{
g(X,φ2Z)φY − g(Y, φ2Z)φX + g(X,φZ)φ2Y +

g(Y, φZ)φ2X
}

+f3

{
g(X,φZ)η(Y )ξ − g(Y, φZ)η(X)ξ − η(X)η(Z)φY

+η(Y )η(Z)φX
}]

+a1

[{
(n− 1)f1 + 3f2 − f3

}{
g(Y, φZ)X − g(Y, Z)φX

}
+
{

3f2 + (n− 2)f3

}
η(Y )η(Z)φX

]
+a2

[{
(n− 1)f1 + 3f2 − f3

}{
g(X,φZ)Y − g(X,Z)φY

}
+
{

3f2 + (n− 2)f3

}
η(X)η(Z)φY

]
+a4

[{
(n− 1)f1 + 3f2 − f3

}{
g(Y, φZ)X − g(Y, Z)φX

}
−
{

3f2 + (n− 2)f3

}
g(Y, φZ)η(X)ξ

]
+a5

[{
(n− 1)f1 + 3f2 − f3

}{
g(X,φZ)Y − g(X,Z)φY

}
−
{

3f2 + (n− 2)f3

}
g(X,φZ)η(Y )ξ

]
+a7r[g(Y, φZ)X − g(X,φZ)Y − g(Y, Z)φX + g(X,Z)φY ]. (3.2.6)
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Putting Y = ξ in equation (3.2.6) we get(
τ(X, ξ).φZ

)
= −a0(f1 − f3)[g(X,φZ)ξ + η(Z)φX]

− a1(n− 1)(f1 − f3)η(Z)φX

+ a2[(n− 1)f1 + 3f2 − f3)]g(X,φZ)ξ

− a4

{
(n− 1)f1 + 3f2 − f3

}
η(Z)φX

+ a5(n− 1)(f1 − f3)g(X,φZ)ξ

− a7r[g(X,φZ)ξ + η(Z)φX]. (3.2.7)

Again putting Z = ξ in equation (3.2.7) we get(
τ(X, ξ).φξ

)
=
[
− a0(f1 − f3)− a1(n− 1)(f1 − f3)

−a4

{
(n− 1)f1 + 3f2 − f3

}
− a7r

]
φX. (3.2.8)

For φ-τ semisymmetry we have[
a0(f1 − f3) + a1(n− 1)(f1 − f3)

+a4

{
(n− 1)f1 + 3f2 − f3

}
+ a7r

]
= 0. (3.2.9)

Corollary 3.2.1 In a generalized Sasakian-space-form, we have the following condi-

tions and results
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Conditions Results

φ semisymmetric f1 = f3

φ-W ∗
0 semisymmetric f1 = f3

φ-W1 semisymmetric f1 = f3

φ-W4 semisymmetric f1 = f3

φ-W5 semisymmetric f1 = f3

φ-Ċ semisymmetric f3 =
3f2

2− n
φ-W2 semisymmetric f3 =

3f2

2− n
φ-W9 semisymmetric f3 =

3f2

2− n
φ-M semisymmetric nf1 + 3f2 − 2f3 = 0

φ-Ĉ semisymmetric nf1 + 3f2 − 2f3 = 0

φ-P semisymmetric f3 =
3f2

2− n
or a0 = (2− n)a2

φ-C semisymmetric f3 =
3f2

2− n
or a0 = (1− n)a2

φ-W3 semisymmetric 2(n− 1)f1 + 3f2 − nf3 = 0

φ-W7 semisymmetric (n− 1)f1 + 3f2 − f3 = 0

.

Proof: Using the particular cases of equation (1.17.1) in the equation (3.2.8) we have

the following results (
R(X, ξ).φξ

)
= −(f1 − f3)φX, (3.2.10)

(
C(X, ξ).φξ

)
=

3f2 + (n− 2)f3

n

[
a0 + (n− 2)a1

]
φX, (3.2.11)

(
C̃(X, ξ).φξ

)
= 0, (3.2.12)

(
Ĉ(X, ξ).φξ

)
=
nf1 + 3f2 − 2f3

(n− 2)
φX, (3.2.13)

(
Ċ(X, ξ).φξ

)
=

3f2 + (n− 2)f3

n
φX, (3.2.14)
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(
P (X, ξ).φξ

)
=

3f2 + (n− 2)f3

n

[
a0 + (n− 1)a1

]
φX, (3.2.15)

(
P̃ (X, ξ).φξ

)
= 0, (3.2.16)

(
M(X, ξ).φξ

)
=
nf1 + 3f2 − 2f3

2(n− 1)
φX, (3.2.17)

(
W0(X, ξ).φξ

)
= 0, (3.2.18)

(
W ∗

0 (X, ξ).φξ
)

= −2(f1 − f3)φX, (3.2.19)

(
(W1, ξ).φξ

)
= −2(f1 − f3)φX, (3.2.20)

(
W ∗

1 (X, ξ).φξ
)

= 0, (3.2.21)

(
W2(X, ξ).φξ

)
=

3f2 + (n− 2)f3

(n− 1)
φX, (3.2.22)

(
W3(X, ξ).φξ

)
=

{
− 2(n− 1)f1 − 3f2 + nf3

}
(n− 1)

φX, (3.2.23)

(
W4(X, ξ).φξ

)
= −(f1 − f3)φX, (3.2.24)

(
W5(X, ξ).φξ

)
= −(f1 − f3)φX, (3.2.25)
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(
W6(X, ξ).φξ

)
= 0, (3.2.26)

(
W7(X, ξ).φξ

)
= −

{
(n− 1)f1 + 3f2 − f3

}
(n− 1)

φX, (3.2.27)

(
W8(X, ξ).φξ

)
= 0, (3.2.28)

(
W9(X, ξ).φξ

)
=

3f2 + (n− 2)f3

(n− 1)
φX. (3.2.29)

Also we have

Corollary 3.2.2 In a generalized Sasakian-space-form, we have
(
C̃(X, ξ).φξ

)
= 0,(

P̃ (X, ξ).φξ
)

= 0,
(
W0(X, ξ).φξ

)
= 0,

(
W ∗

1 (X, ξ).φξ
)

= 0,
(
W6(X, ξ).φξ

)
= 0 and(

W8(X, ξ).φξ
)

= 0.

Proof: From the equations (3.2.12, 3.2.16, 3.2.18, 3.2.21), 3.2.26), 3.2.28) we get the

corollary.

De and Sarkar (De and Sarkar, 2010) studied the projective curvature tensor in gen-

eralized Sasakian-space-form and proved the theorem “An n-dimensional generalized

Sasakian-space-form is projectively semisymmetric if and only if f1 = f3”.

Corollary 3.2.3 An n-dimensional φ-semisymmetric, φ-W ∗
0 semisymmetric, φ-W1

semisymmetric, φ-W4 semisymmetric and φ-W5 semisymmetric generalized Sasakian-

Space-form are projectively semisymmetric.

Proof: By using the above theorems and corollary 3.2.1, we get the results.

3.3 Generalized Sasakian-space-form satisfying τ.Z̃ =

0

In this section we consider generalized Sasakian-space-form satisfying(
τ(X, Y ).Z̃

)
(U, V ) = 0, (3.3.1)
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where Z̃ denote the Z-tensor given by equation (1.14.1).

Theorem 3.3.1 In a generalized Sasakian-space-form satisfying τ.Z̃ = 0, one of the

following is true,

1. (a1 + a2 + a3 + a4 + a5 + a6) = 0,

2. f1 = f3,

3.
{

(n− 1)(f1 − f3) + φ1

}
= 0.

Proof: Equation (3.3.1) implies(
τ(ξ,X).Z̃

)
(Y, ξ) = 0.

Now (
τ(ξ,X).Z̃

)
(Y, ξ) = Z̃

(
τ(ξ,X)Y, ξ

)
+ Z̃

(
Y, τ(ξ,X)ξ

)
. (3.3.2)

Then using the value of Z̃ in equation (3.3.2) we obtain(
τ(ξ,X).Z̃

)
(Y, ξ) = S

(
τ(ξ,X)Y, ξ

)
+ φ1η

(
τ(ξ,X)Y

)
+S
(
Y, τ(ξ,X)ξ

)
+ φ1g

(
Y, τ(ξ,X)ξ

)
. (3.3.3)

From equation (1.17.1) we have

τ(ξ,X)Y = a0R(ξ,X)Y + a1S(X, Y )ξ + a2S(ξ, Y )X

+ a3S(ξ,X)Y + a4g(X, Y )Qξ + a5g(ξ, Y )QX

+ a6g(ξ,X)QY + a7r[g(X, Y )ξ − g(ξ, Y )X]. (3.3.4)
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Using equations (3.1.10), (3.1.11), (3.1.12), (3.1.13) and (3.1.15) in the above equa-

tion we get

τ(ξ,X)Y = a0(f1 − f3)
[
g(X, Y )ξ − η(Y )X

]
+ a1

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}]
ξ

+ a2(n− 1)(f1 − f3)η(Y )X

+ a3(n− 1)(f1 − f3)η(X)Y

+ a4(n− 1)(f1 − f3)g(X, Y )ξ

+ a5

[{
(n− 1)f1 + 3f2 − f3

}
X

−
[
3f2 + (n− 2)f3

}
η(X)ξ

]
η(Y )

+ a6

[{
(n− 1)f1 + 3f2 − f3

}
Y

−
{

3f2 + (n− 2)f3

}
η(Y )ξ

]
η(X)

+ a7r[g(X, Y )ξ − η(Y )X]. (3.3.5)

Using the above equation we obtain

S
(
τ(ξ,X)Y, ξ

)
= a0(f1 − f3)

[
g(X, Y )S(ξ, ξ)− η(Y )S(X, ξ)

]
+ a1

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}]
S(ξ, ξ)

+ a2(n− 1)(f1 − f3)η(Y )S(X, ξ)

+ a3(n− 1)(f1 − f3)η(X)S(Y, ξ)

+ a4(n− 1)(f1 − f3)g(X, Y )S(ξ, ξ)

+ a5

[{
(n− 1)f1 + 3f2 − f3

}
(X, ξ)

−
[
3f2 + (n− 2)f3

}
η(X)S(ξ, ξ)

]
η(Y )

+ a6

[{
(n− 1)f1 + 3f2 − f3

}
S(Y, ξ)

−
{

3f2 + (n− 2)f3

}
η(Y )S(ξ, ξ)

]
η(X)

+ a7r[g(X, Y )S(ξ, ξ)− η(Y )S(X, ξ)]. (3.3.6)
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Using equation (3.1.12) in equation (3.3.6) we obtain

S
(
τ(ξ,X)Y, ξ

)
= a0(n− 1)(f1 − f3)2

[
g(X, Y )− η(X)η(Y )

]
+a1(n− 1)(f1 − f3)

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}]
+(a2 + a3 + a5 + a6)(n− 1)2(f1 − f3)2η(X)η(Y )

+a4(n− 1)2(f1 − f3)2g(X, Y )

+a7(n− 1)(f1 − f3)r[g(X, Y )− η(X)η(Y )]. (3.3.7)

From equation (3.3.5) we have

η
(
τ(ξ,X)Y

)
= a0(f1 − f3)

[
g(X, Y )− η(X)η(Y )

]
+a1

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )−

{
3f2 + (n− 2)f3

]
η(X)η(Y )

}]
+(a2 + a3 + a5 + a6)(n− 1)(f1 − f3)η(X)η(Y )

+a4(n− 1)(f1 − f3)g(X, Y ) + a7r[g(X, Y )− η(X)η(Y )]. (3.3.8)

Again from equation (3.3.5) we have

τ(ξ,X)ξ = a0(f1 − f3)
[
η(X)ξ −X

]
+ a2(n− 1)(f1 − f3))X

+(a1 + a3 + a4 + a6)(n− 1)(f1 − f3)η(X)ξ

+a5

[{
(n− 1)f1 + 3f2 − f3

}
X −

[
3f2 + (n− 2)f3

}
η(X)ξ

]
+a7r[η(X)ξ −X]. (3.3.9)

From the above equation we obtain

S
(
Y, τ(ξ,X)ξ

)
= a0(f1 − f3)

[
η(X)S(Y, ξ)− S(Y,X)

]
+a2(n− 1)(f1 − f3))S(Y,X)

+(a1 + a3 + a4 + a6)(n− 1)(f1 − f3)η(X)S(Y, ξ)

+a5

[{
(n− 1)f1 + 3f2 − f3

}
S(Y,X)

−
[
3f2 + (n− 2)f3

}
η(X)S(Y, ξ)

]
+a7r[η(X)S(Y, ξ)− S(Y,X)]. (3.3.10)
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Using equations (3.1.10) and (3.1.12) in the above equation we get

S
(
Y, τ(ξ,X)ξ

)
= a0(f1 − f3)

{
(n− 1)f1 + 3f2 − f3

}
×{

η(X)η(Y )− g(X, Y )
}

+a2(n− 1)(f1 − f3)
[{

(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

}
η(X)η(Y )

]
+(a1 + a3 + a4 + a6)(n− 1)2(f1 − f3)2η(X)η(Y )

+a5

[{
(n− 1)f1 + 3f2 − f3

}[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

}
η(X)η(Y )

]
−(n− 1)(f1 − f3)

{
3f2 + (n− 2)f3

}
η(X)η(Y )

]
+a7r

[{
(n− 1)f1 + 3f2 − f3

}{
η(X)η(Y )− g(X, Y )

}]
. (3.3.11)

Also from equation (3.3.9) we get

g
(
Y, τ(ξ,X)ξ

)
= a0(f1 − f3)

[
η(X)η(Y )− g(Y,X)

]
+a2(n− 1)(f1 − f3)g(Y,X)

+(a1 + a3 + a4 + a6)(n− 1)(f1 − f3)η(X)η(Y )

+a5

[{
(n− 1)f1 + 3f2 − f3

}
g(Y,X)−

[
3f2 + (n− 2)f3

}
η(X)η(Y )

]
+a7r[η(X)η(Y )− g(Y,X)]. (3.3.12)
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Using equations (3.3.7), (3.3.8), (3.3.11) and (3.3.12) in equation (3.3.3) we get(
τ(ξ,X).Z̃

)
(Y, ξ) = a0(f1 − f3)

{
3f2 + (n− 2)f3

}
×{

η(X)η(Y )− g(X, Y )
}

+(a1 + a2)(n− 1)(f1 − f3)
[{

(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

}
η(X)η(Y )

}]
+(a1 + a2 + 2a3 + a4 + a5 + 2a6)(n− 1)2(f1 − f3)2η(X)η(Y )

+a4(n− 1)2(f1 − f3)2g(X, Y )

+a5

[{
(n− 1)f1 + 3f2 − f3

}[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

}
η(X)η(Y )

]
−(n− 1)(f1 − f3)

{
3f2 + (n− 2)f3

}
η(X)η(Y )

]
+a7r

{
3f2 + (n− 2)f3

}{
η(X)η(Y )− g(X, Y )

}
+φ1

[
a1

[{
(n− 1)f1 + 3f2 − f3

}
g(X, Y )

−
{

3f2 + (n− 2)f3

]
η(X)η(Y )

}]
+(a1 + a2 + 2a3 + a4 + a5 + 2a6)(n− 1)(f1 − f3)η(X)η(Y )

+(a2 + a4)(n− 1)(f1 − f3)g(X, Y )

+a5

[{
(n− 1)f1 + 3f2 − f3

}
g(Y,X)

−
[
3f2 + (n− 2)f3

}
η(X)η(Y )

]]
. (3.3.13)

Putting Y = ξ in equation (3.3.13) we get(
τ(ξ,X).Z̃

)
(ξ, ξ) = 2(a1 + a2 + a3 + a4 + a5 + a6)(n− 1)2(f1 − f3)2η(X)

+φ1

[
2(a1 + a2 + a3 + a4 + a5 + a6)(n− 1)(f1 − f3)η(X)

]
,

or (
τ(ξ,X).Z̃

)
(ξ, ξ) = 2(a1 + a2 + a3 + a4 + a5 + a6)(n− 1)(f1 − f3)

×η(X)
{

(n− 1)(f1 − f3) + φ1

}
. (3.3.14)

For Sasakian Spaceform Satisfying τ.Z̃ = 0 we have

2(a1 + a2 + a3 + a4 + a5 + a6)(n− 1)(f1 − f3)η(X)

×
{

(n− 1)(f1 − f3) + φ1

}
= 0,
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or

(a1 + a2 + a3 + a4 + a5 + a6)(f1 − f3)
{

(n− 1)(f1 − f3) + φ1

}
= 0. (3.3.15)

Thus, eitheir a1 + a2 + a3 + a4 + a5 + a6 = 0, f1 − f3 = 0 or (n− 1)(f1 − f3) + φ1 = 0.

Theorem 3.3.2 In a generalized Sasakian spaceform satisfying τ.S = 0, either (a1 +

a2 + a3 + a4 + a5 + a6) = 0 or projectively semisymmetric.

Proof: It is known that when φ1 = 0, Z̃ = S. Now putting φ1 = 0 in equation (3.3.14)

we get (
τ(ξ,X).S

)
(ξ, ξ) = 2(a1 + a2 + a3 + a4 + a5 + a6)

×(n− 1)2(f1 − f3)2η(X). (3.3.16)

Therefore τ.S = 0 implies

(a1 + a2 + a3 + a4 + a5 + a6)(f1 − f3)2 = 0. (3.3.17)

Thus, eitheir a1 + a2 + a3 + a4 + a5 + a6 = 0 or f1− f3 = 0. We have mentioned before

that “An n-dimensional generalized Sasakian-space-form is projectively semisymmetric

if and only if f1 = f3”. And hence the theorem is proved.

Using the particular cases of equation (1.17.1) in equation (3.3.14) we have the

following

Corollary 3.3.1 In a generalized Sasakian-space-form,(
R(ξ,X).Z̃

)
(ξ, ξ),

(
C(ξ,X).Z̃

)
(ξ, ξ),

(
C̃(ξ,X).Z̃

)
(ξ, ξ),(

Ĉ(ξ,X).Z̃
)
(ξ, ξ),

(
Ċ(ξ,X).Z̃

)
(ξ, ξ),

(
P (ξ,X).Z̃

)
(ξ, ξ),(

P̃ (ξ,X).Z̃
)
(ξ, ξ), and

(
M(ξ,X).Z̃

)
(ξ, ξ), all vanishes.

3.4 Generalized Tanaka-Webster connection

The generalized Tanaka-Webster connection ∇̃ for contact metric manifolds is given

by (Tanno, 1989)

∇̃XY = ∇XY + (∇Xη)(Y )ξ − η(Y )∇Xξ − η(X)φ(Y ) (3.4.1)

for all X, Y ∈ χM , and ∇ is the Riemannian connection.

Let R and R̃ denotes the Riemannian curvature tensors of Sasakian manifold with

respect to ∇ and ∇̃ respectively. A relation between R and R̃ is given by (De and

Ghosh,2016)
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R̃(X, Y )Z = R(X, Y )Z +
[
g(X,Z)η(Y )− g(Y, Z)η(X)

]
ξ

− g(Y, φZ)φX + g(X,φZ)φY + 2g(Y, φX)φZ

− η(Y )η(Z)X + η(X)η(Z)Y. (3.4.2)

Contracting equation (3.4.2) we obtain

S̃(Y, Z) = S(Y, Z)− g(Y, Z)− (n− 3)η(X)η(Y ). (3.4.3)

Using equations (3.1.9) and (3.1.10) in the above equations we have

R̃(X, Y )Z = (f1 − 1)
[
g(Y, Z)X − g(X,Z)Y

]
+ f2

[
g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ

]
+ f3

[
η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ
]
− g(Y, φZ)φX + g(X,φZ)φY

+ 2g(Y, φX)φZ − η(Y )η(Z)X + η(X)η(Z)Y, (3.4.4)

and

S̃(Y, Z) =
[
(n− 1)f1 + 3f2 − f3

]
g(X, Y )

−
[
3f2 + (n− 2)f3

]
η(X)η(Y )

− g(Y, Z)− (n− 3)η(X)η(Y ). (3.4.5)

Now we have

R̃(X, Y )ξ = (f1 − f3 − 1)
{
η(Y )X − η(X)Y

}
, (3.4.6)

R̃(ξ,X)Y = (f1 − f3 − 1)
{
g(Y, Z)ξ − η(Z)Y

}
, (3.4.7)

R̃(ξ,X)ξ = (f1 − f3)
{
η(Y )ξ − Y

}
, (3.4.8)

S̃(X, ξ) = (n− 1)(f1 − f3 − 1)η(X), (3.4.9)

S̃(ξ, ξ) = (n− 1)(f1 − f3 − 1). (3.4.10)
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3.5 Semi-symmetric and Ricci semi-symmetric

Theorem 3.5.1 If a Sasakian generalized Sasakian-space-form is semi-symmetric with

respect to generalized Tanaka-Webster connection, we have

R̃(Y, V )W = (f1 − f3 − 1){g(V,W )Y − g(Y,W )V },

provided f1 − f3 − 1 6= 0.

Proof: Suppose that the Sasakian generalized Sasakian-space-form is semi-symmetric

with respect to generalized Tanaka-Webster connection, then from (1.23.1) we get

R̃(X, Y ).R̃(U, V )W = 0. (3.5.1)

It is well known that

R̃(X, Y ).R̃(U, V )W = R̃(X, Y ).R̃(U, V )W − R̃(R̃(X, Y )U, V )W

− R̃(U, R̃(X, Y )V )W − R̃(U, V )R̃(X, Y )W. (3.5.2)

Now setting X = U = ξ in equation (3.5.1) and using equation (3.5.2) we get

(f1 − f3 − 1)2{g(Y,W )V − g(V,W )Y }+ (f1 − f3 − 1)R̃(Y, V )W = 0,

which can be written as

R̃(Y, V )W = (f1 − f3 − 1){g(V,W )Y − g(Y,W )V }, (3.5.3)

provided f1 − f3 − 1 6= 0.

Theorem 3.5.2 In a semi-symmetric Sasakian generalized Sasakian-space-form with

respect to generalized Tanaka-Webster connection the Riemannian curvature tensor is

given by

R(Y, V )W = (f1 − f3 − 1){g(V,W )Y − g(Y,W )V }

−
[
g(X,Z)η(Y )− g(Y, Z)η(X)

]
ξ + g(Y, φZ)φX

− g(X,φZ)φY − 2g(Y, φX)φZ

+ η(Y )η(Z)X − η(X)η(Z)Y },

provided f1 − f3 − 1 6= 0.
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Proof: Now using equation (3.4.2) in equation (3.5.3) we get

R(Y, V )W = (f1 − f3 − 1){g(V,W )Y − g(Y,W )V }

−
[
g(Y,W )η(V )− g(V,W )η(Y )

]
ξ + g(V, φW )φY

− g(Y, φW )φV − 2g(V, φY )φW

+ η(V )η(W )Y − η(Y )η(W )V, (3.5.4)

provided f1 − f3 − 1 6= 0.

Theorem 3.5.3 A semi-symmetric Sasakian generalized Sasakian-space-form with re-

spect to generalized Tanaka-Webster connection is Einstein manifold provided f1−f3−
1 6= 0.

Proof: Suppose that the Sasakian generalized Sasakian-space-form is Ricci semi-

symmetric with respect to generalized Tanaka-Webster connection, then from (1.23.2)

we get

R̃(X, Y ).S̃(U, V ) = 0. (3.5.5)

It implies

S̃(R̃(X, Y ).U, V ) + S̃(U, R̃(X, Y )V ) = 0. (3.5.6)

Setting X = U = ξ in equation (3.5.6) we get

(f1 − f3 − 1){(n− 1)(f1 − f3 − 1)g(Y, V )− S(Y, V )} = 0.

Which implies

S(Y, V ) = (n− 1)(f1 − f3 − 1)g(Y, V ), (3.5.7)

provided f1 − f3 − 1 6= 0.

3.6 Ricci-generalized pseudosymmetric manifold

Theorem 3.6.1 A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-

space-form with respect to generalized Tanaka-Webster connection is Ricci flat provided

f 6= 0 and f1 − f3 − 1 6= 1.

Proof: Suppose that the Sasakian generalized Sasakian-space-form is Ricci-generalized

pseudosymmetric with respect to generalized Tanaka-Webster connection, then from

60



(1.24.3)

R̃(X, Y ).R̃(U, V )W = fQ(S̃, R̃)(U, V,W ;X, Y ).

This is equivalent to

R̃(X, Y ).R̃(U, V )W = f{
(
(X ∧S̃ Y ).S̃

)
(U, V )}, (3.6.1)

where
(
(X ∧S̃ Y )Z

)
= S̃(Y, Z)X − S̃(X,Z)Y for all X, Y, Z.

Thus we get

R̃(X, Y ).R̃(U, V )W − R̃(R̃(U, V )X, Y )W − R̃(X, R̃(U, V )Y )W

−R̃(X, Y )R̃(U, V )W = f{(X ∧S̃ Y )R̃(U, V )W − R̃((X ∧S̃ Y )U, V )W

− R̃(U, (X ∧S̃ Y )V )W − R̃(U, V )(X ∧S̃ Y )W )},

or

R̃(X, Y ).R̃(U, V )W − R̃(R̃(U, V )X, Y )W − R̃(X, R̃(U, V )Y )W

−R̃(X, Y )R̃(U, V )W = f{S̃(Y, R̃(U, V )W )X − S̃(X, R̃(U, V )W )Y

− S̃(Y, U)R̃(X, V )W + S̃(X,U)R̃(Y, V )W

− S̃(Y, V )R̃(U,X)W + S̃(X, V )R̃(U, Y )W

− S̃(Y,W )R̃(U, V )X + S̃(X,W )R̃(U, V )Y. (3.6.2)

Setting X = U = ξ in equation (3.6.2) we get

(f1 − f3 − 1)2 { g(Y,W )V − g(V,W )Y }+ (f1 − f3 − 1)R̃(Y, V )W

= f
[
(n− 1)(f1 − f3 − 1)

{
R̃(Y, V )W − g(V,W )Y

+ g(Y,W )η(V )ξ + g(V, Y )η(W )ξ
}

− S̃(Y, V )η(W )ξ − S̃(Y,W )
{
η(V )ξ − V

}]
. (3.6.3)

Again setting V = ξ in equation (3.6.3) we get

f(f1 − f3 − 1)
[
g(Y,W )ξ − η(W )Y

]
= f(f1 − f3 − 1)2

[
g(Y,W )ξ − η(W )Y

]
. (3.6.4)

We have either

f1 − f3 − 1 = 0, (3.6.5)
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or

f1 − f3 − 1 = 1, (3.6.6)

provided f 6= 0.

Setting W = ξ in equation (3.6.3) and using equation (3.6.5) we get

S(Y, V ) = 0, (3.6.7)

for all Y, V ∈ χM , provided f 6= 0 and f1 − f3 − 1 6= 1.

Theorem 3.6.2 A Ricci-generalized pseudosymmetric Sasakian generalized Sasakian-

space-form with respect to generalized Tanaka-Webster connection is Einstein manifold

provided f 6= 0 and f1 − f3 − 1 6= 0.

Proof: Setting W = ξ in equation (3.6.3) and using equation (3.6.6) we get

S(Y, V ) = (n− 1)g(V, Y ), (3.6.8)

for all Y, V ∈ χM , provided f 6= 0 and f1 − f3 − 1 6= 0.

3.7 Ricci-pseudosymmetric manifold

Theorem 3.7.1 A Ricci-pseudosymmetric Sasakian generalized Sasakian-space-form

with respect to generalized Tanaka-Webster connection is Einstein manifold provided

f1 − f3 − f ′ − 1 6= 0.

Proof: Suppose that the Sasakian generalized Sasakian-space-form is Ricci-pseudosymmetric

with respect to generalized Tanaka-Webster connection, then from equation (1.24.2)

R̃(X, Y ).S̃(U, V ) = f ′Q(g, R̃)(U, V ;X, Y ).

This is equivalent to

R̃(X, Y ).S̃(U, V ) = f ′{
(
(X ∧g Y ).S̃

)
(U, V )}, (3.7.1)

where
(
(X ∧g Y )Z

)
= g(Y, Z)X − g(X,Z)Y for all X, Y, Z.

Thus we get

S̃(R̃(X, Y ).U, V ) + S̃(U, R̃(X, Y )V ) = f ′{S̃
(
(X ∧g Y )U, V

)
+ S̃

(
U, (X ∧g Y )V

)
},
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or

S̃(R̃(X, Y ).U, V ) + S̃(U, R̃(X, Y )V ) = f ′{g(Y, U)S̃(X, V )− g(X,U)S̃(Y, V )

+g(Y, V )S̃(U,X)− g(X, V )S̃(U, Y )}. (3.7.2)

Setting X = U = ξ in equation (3.7.2) we get

(f1 − f3 − f ′ − 1){S(Y, V )− (n− 1)(f1 − f3 − 1)g(Y, V )} = 0.

Which implies

S(Y, V ) = (n− 1)(f1 − f3 − 1)g(Y, V ), (3.7.3)

for all Y, V ∈ χM , provided f1 − f3 − f ′ − 1 6= 0.

Now using the theorem 4.2 from the article, “structures on generalized-Sasakian-

space-form” (Alegre and Carriazo, 2008) and the equation (3.7.3) we get the following

corollary

Corollary 3.7.1 An n-dimensional connected Sasakian generalized Sasakian-space-

form, (n ≥ 5), which is Ricci-pseudosymmetric with respect to generalized Tanaka-

Webster connection is Ricci flat provided f ′ 6= 0.
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Chapter 4

GENERALIZED

PSEUDO-PROJECTIVE

RECURRENT MANIFOLDS

In this chapter we considered a semi-Riemannian manifold which is generalized

recurrent with respect to the pseudo-projective curvature tensor. We studied a manifold

with certain geometrical properties like constant scalar curvature, Ricci-symmetric,

conformally flat, Einstein and quasi Einstein manifolds. We also considered the case

where the manifold is decomposable. At the end of the chapter examples are given to

support the results.

4.1 Introduction

From equation (1.16.3) it follows that the pseudo projective curvature tensor satisfy

Singh, J. P. and Lalmalsawma, C. (2018). On generalized pseudo-projectively recurrent manifolds,
Journal of the Indian Math. Soc. 85(3-4), 449-469.
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(i)
n∑
i=1

ε′iP (Y, Z, ei, ei) = 0 =
n∑
i=1

ε′iP (ei, ei, U, V ),

(ii)
n∑
i=1

ε′iP (ei, Z, U, ei) = [a+ (n− 1)b]
[
S(Z,U)− r

n
g(Z,U)

]
,

(iii)
n∑
i=1

ε′iP (ei, Z, ei, V ) = (b− a)
[
S(Z, V )− r

n
g(Z, V )

]
,

(iv)
n∑
i=1

ε′iP (Y, ei, U, ei) = −[a+ (n− 1)b]
[
S(Y, U)− r

n
g(Y, U)

]
,

(v)
n∑
i=1

ε′iP (Y, ei, ei, V ) = (a− b)
[
S(Y, V )− r

n
g(Y, V )

]
, (4.1.1)

where r =
n∑
i=1

εiS(ei, ei) is the scalar curvature, {ei} are an orthonormal basis of the

tangent space at each point of the semi-Riemannian manifold, where 1 ≤ i ≤ n such

that g(ei, ej) = 0 for i 6= j and g(ei, ei) = εi, εi = ±1.

4.2 Constant Scalar Curvature

Definition 4.2.1 A semi-Riemannian manifold (Mn, g) is called generalized pseudo-

projectively recurrent manifold if the pseudo-projective curvature tensor of type (0,4),

satisfies the condition:

(∇XP )(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z] (4.2.1)

where A and B are two 1-forms, and B is non-zero. It is denoted by G{PP (Kn)}.

Theorem 4.2.1 The scalar curvature r of a generalized pseudo-projectively recurrent

manifold is constant if and only if

rA(X) = nA(LX)− n(n2 − 3n+ 2)

2a+ (n− 2)b
B(X)

holds for all vector fields, provided b− a 6= a+ (n− 1)b.

Proof: From equation (1.16.3) we have,

(∇′XP )(Y, Z, U, V ) = a(∇XR)(Y, Z, U, V )

+ b[(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )].
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Making use of equation (4.2.1) in the above equation,

(∇′XR)(Y, Z, U, V ) =
1

a
A(X)′P (Y, Z, U, V )

+
1

a
B(X)

[
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

]
− b
a

[
(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

]
. (4.2.2)

Using second Bianchi’s identity in the above equation we get

[
A(X)′P (Y, Z, U, V ) + A(Y )′P (Z,X,U, V ) + A(Z)′P (X, Y, U, V )

]
+

[
B(X)

{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

}
+ B(Y )

{
g(X,U)g(Z, V )− g(Z,U)g(X, V )

}
+ B(Z)

{
g(Y, U)g(X, V )− g(X,U)g(Y, V )

}]
− b

[{
(∇XS)(Z,U)g(Y, V )− (∇XS)(Y, U)g(Z, V )

}
+

{
(∇Y S)(X,U)g(Z, V )− (∇Y S)(Z,U)g(X, V )

}
+

{
(∇ZS)(Y, U)g(X, V )− (∇ZS)(X,U)g(Y, V )

}]
= 0. (4.2.3)

Putting Y = V = ei in equation (4.2.3), where ei, 1 ≤ i ≤ n is an orthonormal basis of

the tangent space at each point of the manifold and taking summation over i, we get

{a+ (n− 1)b}A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+ A(P̃ (Z,X)U)

− {a+ (n− 1)b}A(Z)
[
S(X,U)− r

n
g(X,U)

]
+ (n− 2)[B(X)g(Z,U)−B(Z)g(X,U)]

− (n− 2)b[(∇XS)(Z,U)− (∇ZS)(X,U)] = 0. (4.2.4)

Again putting Z = U = ei in equation (4.2.4), where ei, 1 ≤ i ≤ n is an orthonormal

basis of the tangent space at each point of the manifold and taking summation over i,

we get

− [2a+ (n− 2)b][A(LX)− r

n
A(X)] + (n2 − 3n+ 2)B(X)

− (n− 2)b

2
dr(X) = 0.
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From the equation (1.16.3) it is obvious that a+ (n− 1)b = 0 if and only if the pseudo

projective curvature tensor is a scalar multiple of the projective curvature tensor. In

this study, we consider the case of pseudo projective curvature tensor where a + (n−
1)b 6= 0. Thus

rA(X) = nA(LX)− n(n2 − 3n+ 2)

2a+ (n− 2)b
B(X)

+
n(n− 2)b

2[2a+ (n− 2)b]
dr(X), (4.2.5)

provided b− a 6= a+ (n− 1)b.

Theorem 4.2.2 A generalized pseudo-projectively recurrent manifold with constant

scalar curvature is a generalized Ricci recurrent manifold or Ricci recurrent manifold,

provided b− a 6= a+ (n− 1)b.

Proof: Now we suppose that the scalar curvature r is constant in a G{PP (Kn)}, that

is dr = 0. Then from equation (4.2.5) we get

rA(X) = nA(LX)− n(n− 1)(n− 2)

2a+ (n− 2)b
B(X), (4.2.6)

provided b− a 6= a+ (n− 1)b.

Putting Y = V = ei in equation (4.2.2), where ei, 1 ≤ i ≤ n is an orthonormal

basis of the tangent space at each point of the manifold and taking summation over i,

we get

(∇XS)(Z,U) =
1

a
[a+ (n− 1)b]A(X)[S(Z,U)− r

n
g(Z,U)]

+
1

a
(n− 1)B(X)g(Z,U)

− b

a
[n(∇XS)(Z,U)− (∇XS)(Z,U)].

Which implies

(∇XS)(Z,U) = A(X)[S(Z,U)− r

n
g(Z,U)]

+
n− 1)

a+ (n− 1)b
B(X)g(Z,U). (4.2.7)

Since r is constant. so using equation (4.2.6) in equation (4.2.7) yields

67



(∇XS)(Z,U) = A(X)S(Z,U)

+
[
− A(LX) +

n(n− 1)[a+ (n− 2)b]

{2a+ (n− 2)b}{a+ (n− 1)b}
B(X)

]
g(Z,U),

provided b− a 6= a+ (n− 1)b.

The above expression can be written as

(∇XS)(Z,U) = A(X)S(Z,U) +D(X)g(Z,U),

where

D(X) =
[
− A(LX) +

n(n− 1)[a+ (n− 2)b]

{2a+ (n− 2)b}{a+ (n− 1)b}
B(X)

]
.

Hence the manifold is a generalized Ricci recurrent manifold for D(X) 6= 0 and

Ricci recurrent manifold for D(X) = 0.

4.3 Ricci-Symmetric Manifolds

If G{PP (Kn)} is Ricci-symmetric, then ∇S = 0, that is, ∇L = 0. Then the scalar

curvature r is constant and dr = 0.

Theorem 4.3.1 A Ricci-symmetric G{PP (Kn)} is an Einstein manifold, provided it

is not locally symmetric.

Proof:

Now suppose that G{PP (Kn)} is Ricci-symmetric. So we have from equation

(4.2.7)

A(X)
[
S(Z,U)− r

n
g(Z,U)

]
+

n− 1

a+ (n− 1)b
B(X)g(Z,U) = 0. (4.3.1)

Again, since r is constant using the value of B(X) from equation (4.2.6) in equation

(4.3.1) we get

S(Z,U) =
1

(n− 2){a+ (n− 1)b}

×
[
{a+ (n− 2)b}r − {2a+ (n− 2)b}A(LX)

A(X)

]
g(Z,U).
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This can bee written as

S(Z,U) = λg(Z,U),

where λ =
1

(n− 2){a+ (n− 1)b}

[
{a + (n − 2)b}r − {2a + (n − 2)b}A(LX)

A(X)

]
is a

scalar.

4.4 Einstein Manifolds

Theorem 4.4.1 An Einstein G{PP (Kn)}, n > 2 is a GKn, provided

Q

a
6= r

n(n− 1)
P,

where A(X) = g(X,P ) and B(X) = g(X,Q).

Proof: If a G{PP (Kn)} is Einstein then the Ricci tensor satisfies

S(Z,U) =
r

n
g(Z,U), (4.4.1)

which imply

dr(X) = 0

and

(∇XS)(Y, Z) = 0, (4.4.2)

for all X, Y , Z.

Using equations (4.4.1) and (4.4.2) we get from equation (1.16.3)

(∇′XP )(Y, Z, U, V ) = a(∇′XR)(Y, Z, U, V ). (4.4.3)

Now using equation (4.4.3) in equation (4.2.1) we have

a(∇′XR)(Y, Z, U, V )

= A(X)′P (Y, Z, U, V ) +B(X)
[
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

]
. (4.4.4)
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Again using equation (1.16.3) in equation (4.4.4) ,we get

a(∇′XR)(Y, Z, U, V )

= A(X)
[
a′R(Y, Z, U, V ) + b

{
S(Z,U)g(Y, V )− S(Y, U)g(Z, V )

}
− r

n
(

a

n− 1
+ b)

{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

}]
+ B(X)

{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

}
. (4.4.5)

Since the manifold is Einstein, so using equation (4.4.1) in equation (4.4.5) we

obtain

(∇′XR)(Y, Z, U, V ) = A(X)′R(Y, Z, U, V )

+
{B(X)

a
− r

n(n− 1)
A(X)

}
×

{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

}
,

which can be written as

(∇′XR)(Y, Z, U, V ) = A(X)′R(Y, Z, U, V )

+ E(X)
{

(Z,U)g(Y, V )− g(Y, U)g(Z, V )
}
, (4.4.6)

where E(X) =
B(X)

a
− r

n(n− 1)
A(X). Let the 1-forms A and B be metrically equiv-

alent to the vector fields P and Q, respectively.

From equation (4.4.6) we conclude that an Einstein G{PP (Kn)} is a GKn, provided
Q

a
6= r

n(n− 1)
P .

4.5 Conformally flat Manifolds, n > 3

Theorem 4.5.1 A conformally flat G{PP (Kn)}, n > 3, with constant scalar curva-

ture is a PP (Kn).

Proof: In this section we assume that the manifold G{PP (Kn)}, n > 3 is conformally

flat. Then divC̃ = 0, where C̃ denotes the Weyl’s conformal curvature tensor and ‘div’

denotes divergence. Hence we have (Eisenhart, 1949)

(∇XS)(Y, Z)− (∇ZS)(X, Y ) =
1

2(n− 1)

{
g(Y, Z)dr(X)− g(X, Y )dr(Z)

}
. (4.5.1)

From equation (4.2.7), we have
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(∇XS)(Y, Z) = A(X)
{
S(Y, Z)− r

n
g(Y, Z)

}
+

n− 1

a+ (n− 1)b
B(X)g(Y, Z). (4.5.2)

Using equation (4.5.2) in equation (4.5.1) we obtain

A(X)
{
S(Y, Z)− r

n
g(Y, Z)

}
+

(n− 1)

a+ (n− 1)b
B(X)g(Y, Z)

− A(Z)
{
S(X, Y )− r

n
g(X, Y )

}
+

(n− 1)

a+ (n− 1)b
B(Z)g(X, Y )

=
1

2(n− 1)

{
g(Y, Z)dr(X)− g(X, Y )dr(Z)

}
. (4.5.3)

Now taking a frame field over X and Z, we have from equation (4.5.2) that

1

2
dr(Y ) = A(LY )− r

n
A(Y ) +

(n− 1)

a+ (n− 1)b
B(Y ). (4.5.4)

Replacing Y by X in equation (4.5.4)we obtain

1

2
dr(X) = A(LX)− r

n
A(X) +

(n− 1)

a+ (n− 1)b
B(X). (4.5.5)

Again taking contraction over Y and Z in equation (4.5.3)

1

2
dr(X) = −A(LX) +

r

n
A(X)− (n− 1)2

a+ (n− 1)b
B(X). (4.5.6)

Adding equation (4.5.5) and equation (4.5.6) we get

dr(X) = −(n− 1)(n− 2)

a+ (n− 1)b
B(X). (4.5.7)

Now we suppose that the scalar curvature r is constant in a G{PP (Kn)}, that is

dr = 0. Then from the above equation we get

B(X) = 0.

Then the G{PP (Kn)},n > 3 is reduced to PP (Kn).
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4.6 Quasi Einstein Manifolds

Theorem 4.6.1 If in a G{PP (Kn)} with constant scalar curvature the associated unit

vector field P is a unit concircular vector field whose associated scalar is a non-zero

constant, then the manifold reduces to a quasi Einstein manifold.

Proof: From equation (4.5.2), we have

(∇XS)(Y, Z) = A(X)
{
S(Y, Z)− r

n
g(Y, Z)

}
+

n− 1

a+ (n− 1)b
B(X)g(Y, Z). (4.6.1)

A vector field P on a manifold with a linear connection ∇ is said to be concircular

if

∇XP = αX + ω(X)P

for every vector field X, where α is a scalar function and ω is a closed 1-form. If

the manifold is a semi-Riemannian manifolds and a concircular P satisfies additional

assumption that g(P, P ) ≡ 1, then g(∇XP, P ) = 0. Consequently we have (De and

Pal, 2014)

A(LX) = −(n− 1)α2A(X), (4.6.2)

where L is the Ricci operator defined by

g(LX, Y ) = S(X, Y ).

The above equation implies

S(X,P ) = −(n− 1)α2A(X), (4.6.3)

Also we have,

(∇XS)(Y, P ) = − (n− 1)α3[g(X, Y )− A(X)A(Y )]

− α[S(X, Y )− A(X)S(Y, P )]. (4.6.4)

Putting Z = P in equation (4.6.1) we have

(∇XS)(Y, P ) = A(X)[S(Y, P )− r

n
g(Y, P )]

+
(n− 1)

a+ (n− 1)b
B(X)g(Y, P ). (4.6.5)
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Now using equations (4.6.4) and (4.6.3) in equation (4.6.5)

−(n− 1)α3g(X, Y ) − αS(X, Y ) = −(n− 1)α2A(X)A(Y )− r

n
A(X)A(Y )

− (n− 1)

a+ (n− 1)b
B(X)A(Y ) +

b

a− b
dr(X)A(Y ). (4.6.6)

Also we assume that the scalar curvature r is constant in the G{PP (Kn)}. Hence

using equation (4.6.2) in equation (4.2.6)we get

B(X) = − 2a+ (n− 2)b

n(n− 1)(n− 2)
[r + n(n− 1)α2]A(X). (4.6.7)

Using equation (4.6.7) in equation (4.6.6) we get

S(X, Y ) = −(n− 1)α2g(X, Y )

+
r + n(n− 1)α2

α(n− 2)

[a+ (n− 2)b

a+ (n− 1)b

]
A(X)A(Y ). (4.6.8)

Since α is a non-zero constant, equation (4.6.8) can be written as

S(X, Y ) = pg(X, Y ) + qA(X)A(Y ).

where p = −(n − 1)α2 and q =
r + n(n− 1)α2

α(n− 2)

[a+ (n− 2)b

a+ (n− 1)b

]
are two non-zero con-

stants as α is non-zero constant. Hence the manifold is a quasi Einstein manifold.

4.7 Decomposable Manifolds

A semi-Riemannian manifold (Mn, g) is said to be decomposable or a product man-

ifold (Schouten, 1954) if it can be expressed as Mp
1 ×M

n−p
2 for some p in the range

2 ≤ p ≤ (n − 2), that is, in some coodinate neighbourhood of the semi-Riemannian

manifold (Mn, g), the metric can be expressed as

ds2 = gijdx
idxj = ḡabdx

adxb + g′αβdx
αdxβ, (4.7.1)

where ḡab are functions of x1, x2, ..., xp denoted by x̄ and g′αβ are functions of xp+1, xp+2, ..., xn

denoted by x′. Here a, b, c, ... run from 1 to p and α, β, γ, ... run from p+ 1 to n.

The two parts of equation (4.7.1) are the metrics of Mp
1 , p ≥ 2 and Mn−p

2 , p ≥ 2

which are called the components of the decomposable manifold Mn = Mp
1 ×M

n−p
2 .
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Let (Mn, g) be a semi-Riemannian decomposable manifold such that Mp
1 , p ≥ 2

and Mn−p
2 , p ≥ 2 are components of this manifold.

In this section each object denoted by a bar (¯) is assumed to come from M1 and

each object denoted by (’) is assumed to come from M2.

Let X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(M1) and X ′, Y ′, Z ′, U ′, V ′ ∈ χ(M2). Then in a decomposable

semi-Riemannian manifold Mn = Mp
1 ×M

n−p
2 , 2 ≤ p ≤ n − 2, the following relations

hold (Kruckovic,1957):

′R(X ′, Ȳ , Z̄, Ū) = 0 =′ R(X̄, Y ′, Z̄, U ′) =′ R(X̄, Y ′, Z ′, U ′),

(∇′X′R)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇′X̄R)(Ȳ , Z ′, Ū , V ′) = (∇′X′R)(Ȳ , Z ′, Ū , V ′),

′R(X̄, Ȳ , Z̄, Ū) =′ R̄(X̄, Ȳ , Z̄, Ū),

′R(X ′, Y ′, Z ′, U ′) =′ R′(X ′, Y ′, Z ′, U ′),

S(X̄, Ȳ ) = S̄(X̄, Ȳ ); S(X ′, Y ′) = S ′(X ′, Y ′),

(∇X̄S)(Ȳ , Z̄) = (∇̄X̄ S̄)(Ȳ , Z̄); (∇X′S)(Y ′, Z ′) = (∇′X′S ′)(Y ′, Z ′),

where the meaning of X̄, Ȳ , Z̄ is different on each side, that is, the left hand side of

S(X̄, Ȳ ) = S̄(X̄, Ȳ ) means the value of the Ricci tenso S onM for X̄, Ȳ , Z̄ ∈ χ(M1) and

the right hand side means the value of the Ricci rensor S̄ on M1 for X̄, Ȳ , Z̄ ∈ χ(M1).

Similarly for X ′, Y ′, Z ′, and r = r̄ + r′, where, r, r̄ and r′ are scalar curvatures of M ,

M1 and M2 respectively.

Theorem 4.7.1 Let (Mn, g) be a semi-Riemannian manifold which is not pseudo-

projectively flat, such that M = Mp
1×M

n−p
2 , 2 ≤ p ≤ n−2. If (Mn, g) is a G{PP (Kn)}

and B(X ′) = 0 for all X ′ ∈ χM2, (resp. AX̄) = 0 for all X̄ ∈ χM1), them either (i)

or (ii) holds.

(i) B(X ′) = 0 for all X ′ ∈ χM2, (resp. AX̄) = 0 for all X̄ ∈ χM1), and hence M2

(resp. M1) is Ricci symmetric as well as locally symmetric.

(ii) M1 (resp. M2 is pseudo-projectively flat.

Proof: Let us consider a semi-Riemannian manifold (Mn, g), which is a decomposable

G{PP (Kn)}. Then Mn = Mp
1 ×M

n−p
2 , 2 ≤ p ≤ n− 2.
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Now from equation (1.16.3), we get

′P (X̄, Ȳ , Z̄, Ū) =′ P̄ (X̄, Ȳ , Z̄, Ū), (4.7.2)

′P (X ′, Y ′, Z ′, U ′) =′ P ′(X ′, Y ′, Z ′, U ′),

′P (Y ′, Z̄, Ū , V̄ ) = 0 =′ P (Ȳ , Z ′, U ′, V ′) =′ P (Ȳ , Z ′, Ū , V̄ ) =′ P (Ȳ , Z̄, U ′, V̄ ),

′P (Ȳ , Z ′, U ′, V̄ ) = bS(Z ′, U ′)g(Ȳ , V̄ )− r

n

( a

n− 1
+ b
)
g(Z ′, U ′)g(Ȳ , V̄ ), (4.7.3)

′P (Y ′, Z̄, Ū , V ′) = bS(Z̄, Ū)g(Y ′, V ′)− r

n

( a

n− 1
+ b
)
g(Z̄, Ū)g(Y ′, V ′), (4.7.4)

′P (Y ′, Z̄, U ′, V̄ ) = −bS(Y ′, U ′)g(Z̄, V̄ ) +
r

n

( a

n− 1
+ b
)
g(Y ′, U ′)g(Z̄, V̄ ),

′P (Ȳ , Z ′, Ū , V ′) = −bS(Ȳ , Ū)g(Z ′, V ′) +
r

n

( a

n− 1
+ b
)
g(Ȳ , Ū)g(Z ′, V ′),

(∇′X′P )(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇′X̄P )(Y ′, Z ′, U ′, V ′),

Again from equation (4.2.1), we get

(∇′X̄P )(Ȳ , Z̄, Ū , V̄ ) = AX̄)′P (Ȳ , Z̄, Ū , V̄ )

+ B(X̄)[g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )],

A(X ′)′P (Ȳ , Z̄, Ū , V̄ ) +B(X ′)[g(Z̄, Ū)g(Ȳ , V̄ )− g(Ȳ , Ū)g(Z̄, V̄ )] = 0, (4.7.5)

and

B(p̄,p′)(0⊕ v) = 0

for every p̄ ∈ M1, p′ ∈ M2 and v ∈ Tp′M2. Also for every (p̄, p′) ∈ M from (4.2.1) we

obtain

(∇′X′P )(p̄,p′)(Y
′, Z ′, U ′, V ′) = (∇′X′

′P )(p̄,p′)(Y
′, Z ′, U ′, V ′), (4.7.6)
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and the value of (∇X′P )(p̄,p′)(Y
′, Z ′, U ′, V ′) does not depend on p̄ ∈M1 for every p̄ ∈M1

and p′ ∈M2.

If possible let B(X ′) = 0 for all X ′ ∈ χ(M2), then from equation (4.7.5) we get

A(X ′)′P (Ȳ , Z̄, Ū , V̄ ) = 0. (4.7.7)

Using equation (4.7.2) in equation (4.7.7) we get

A(X ′)′P̄ (Ȳ , Z̄, Ū , V̄ ) = 0. (4.7.8)

If M1 is not pseudo-projectively flat, that is, P̄p̄0 6= 0 for some p̄0 ∈ M1, then from

equations (4.7.7) and (4.7.8) it follows that

A(p̄,p′)(0⊕ v) = 0 (4.7.9)

for every p̄ ∈M1 and p′ ∈M2 and for every v ∈ Tp′M2. Hence equation (4.2.1) yield

(∇′X′P )(p̄,p′)(Y
′, Z ′, U ′, V ′) = 0

for every p̄ ∈M1 and p′ ∈M2. It follows that if M1 is not pseudo-projectively flat,then

A(p̄,p′)(X
′)′P ′p′(Y

′, Z ′, U ′, V ′) = 0 (4.7.10)

for all p̄ ∈M1 and p′ ∈M2.

Now we assume that

(∇′XP )(Y, Z, U, V ) = Ā(X)′P (Y, Z, U, V )

+ B̄(X)
{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )

}
, (4.7.11)

where Ā and B̄ are 1-forms. Putting equation (4.7.11) in equation (4.2.1) we get{
A(X)− Ā(X)

}′
P (Y, Z, U, V )

+
{
B(X)− B̄(X)

}{
g(Z,U)g(Y, V )− g(Y, U)g(Z, V )]

}
= 0. (4.7.12)

Contracting equation (4.7.12) over Y and V , and using equation (4.1.1) we obtain

{a+ (n− 1)b}
{
A(X) − Ā(X)

}{
S(Z,U)− r

n
g(Z,U)

}
+ (n− 1)

{
B(X)− B̄(X)

}
g(Z,U) = 0. (4.7.13)
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Again contracting equation (4.7.13) over Z and U we get

B(X) = B̄(X) (4.7.14)

for all X ∈M . Using equation (4.7.14) in equation (4.7.12) we get

A(X) = Ā(X)

for all X ∈ M , provided P (Y, Z, U, V ) 6= 0, that is, if the manifold is not pseudo-

projectively flat manifold. Thus the 1-forms A and B in equation (4.2.1) are uniquely

determined, provided that the manifold is not pseudo-projectively flat manifold. Hence

from equation (4.7.10) we obtain

A(p̄,p′)(X
′) = 0 (4.7.15)

for all p̄ ∈M1 and p′ ∈M2.

From (4.7.8) we conclude that either

(i) A(X ′) = 0 for all X ′ ∈ χM2, or

(ii) M1 is pseudo-projectively flat.

Also from equation equation (4.2.1) we obtain

(∇′X′P )(Ȳ , Z ′, U ′, V̄ ) = A(X ′)′P (Ȳ , Z ′, U ′, V̄ ) +B(X ′)
{
g(Z ′, U ′)g(Ȳ , V̄ )

−g(Ȳ , U ′)g(Z ′, V̄ )
}
. (4.7.16)

Now we consider the case (i). From equation (4.7.16), it follows that

(∇′X′P )(Ȳ , Z ′, U ′, V̄ ) = 0,

which implies by virtue of equation (4.7.3) that,

(∇X′S)(Z ′, U ′) = 0. (4.7.17)

Hence the component M2 is Ricci symmetric. Using equations (4.7.3), (4.7.6),

(4.7.9), (4.7.10) and (4.7.15) and A(X ′) = 0, B(X ′) = 0 for all X ′ ∈ χM2, from

equation (4.2.1), we have

(∇′X′P )(Y ′, Z ′, U ′, V ′) = 0,
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and hence

a(∇′X′R)(Y ′, Z ′, U ′, V ′) + b
{

(∇X′S)(Z ′, U ′)g(Y ′, V ′)

− (∇X′S)(Y ′, U ′)g(Z ′, V ′)
}

= 0,

which yield by virtue of equation (4.7.17) that

(∇′X′R)(Y ′, Z ′, U ′, V ′) = 0,

that is, the component M2 is locally symmetric. Similar result can be proved forM1.

Theorem 4.7.2 Let (Mn, g) be a semi-Riemannian manifold such that M = Mp
1 ×

Mn−p
2 , 2 ≤ p ≤ n − 2. If (Mn, g) is a G{PP (Kn)}, then M1 and M2 are generalized

Ricci-recurrent manifolds.

Proof:

Also from equation (4.2.1) we get

(∇′X̄P )(Y ′, Z̄, Ū , V ′) = A(X̄)′P (Y ′, Z̄, Ū , V ′)

+B(X̄)
{
g(Z̄, Ū)g(Y ′, V ′) − g(Y ′, Ū)g(Z̄, V ′)

}
. (4.7.18)

Using equation (4.7.4) in equation (4.7.18) we get

b(∇X̄S)(Z̄, Ū)g(Y ′, V ′) = A(X̄)
{
bS(Z̄, Ū)g(Y ′, V ′)

− r

n
(

a

n− 1
+ b)g(Z̄, Ū)g(Y ′, V ′)

}
+ B(X̄)g(Z̄, Ū)g(Y ′, V ′). (4.7.19)

Now assume that g(Y ′, V ′) 6= 0. Then from equation (4.7.19) we get

(∇X̄S)(Z̄, Ū) = A(X̄)S(Z̄, Ū)

+
1

b

{
B(X̄)− r

n
(

a

n− 1
+ b)A(X̄)

}
g(Z̄, Ū),

which implies

(∇X̄S)(Z̄, Ū) = A(X̄)S(Z̄, Ū) + C(X̄)g(Z̄, Ū),

where A(X̄) and C(X̄) =
{
B(X̄) − r

n

( a

n− 1
+ b
)
A(X̄)

}
are two non zero 1-forms.

Thus M1 is a generalized Ricci-recurrent manifold. Similar result can be proved for

M2.
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4.8 Examples

Example 4.8.1

Let us consider a Lorentzian metric g on R4 by

ds2 = gijdx
idxj = x1(dx1)2 + x1(dx2)2 + x1(dx3)2 − (dx4)2, (4.8.1)

where i, j = 1, 2, 3, 4. Then the only non-vanishing components of the Christoffel

symbols, the Riemannian curvature tensor and the Ricci tensor are:

Γ1
22 = Γ1

33 = − 1

2x1
, Γ1

11 = Γ2
12 = Γ3

13 =
1

2x1
,

R1221 = R1331 = − 1

2x1
, R2332 =

1

4x1
,

and

S22 = S33 = − 1

4(x1)2
, S11 = − 1

(x1)2
, S44 = 0.

And the scalar curvature of the resulting manifold (R4, g) is

r = − 3

2(x1)3
.

Now, the non vanishing components of pseudo-projective curvature tensor and their

covariant derivatives are:

P1212 = P1313 =
3a

8x1
+

5b

8x1
, P1331 = P1221 = − 3a

8x1
+

b

8x1
,

P2332 = −P2323 =
3a

8x1
+

b

8x1
,

P1221,1 = − 3a

8(x1)2
− 5b

8(x1)2
, P2332,1 =

3a

8(x1)2
− b

8(x1)2
,

P2332,1 = − 3a

8(x1)2
− b

8(x1)2
,

where ‘,’ denotes the covariant derivative with respect to the metric tensor.
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Let us choose the associated 1-forms as follows:

Ai(x) =

−
1

x1
, for i = 1

0, otherwise,

(4.8.2)

Bi(x) = 0, for i = 1, 2, 3, 4 (4.8.3)

at any point x ∈ R4. To verify the relation (4.2.1), it is sufficient to check the following

equations:

P1212,1 = A1P1212 +B1(g22g11 − g12g21), (4.8.4)

P1221,1 = A1P1221 +B1(g33g22 − g23g32), (4.8.5)

P2332,1 = A1P2332 +B1(g33g11 − g13g31), (4.8.6)

since for the other cases equation (4.2.1) holds trivially. From equations (4.8.2) and

(4.8.3) we get

R.H.S. of (4.8.4) = A1P1212 +B1(g22g11 − g12g21)

= {− 1

x2
}{− 3a

8x2
− 5b

8x2
}+ 0

=
3a

8(x2)2
+

5b

8(x2)2

= P1212,1

= L.H.S. of (4.8.4).

By similar argument it can be shown that equation (4.8.5) and equation (4.8.6) are

also true. So (R4, g) is a PP (Kn).

Example 4.8.2

Consider a Riemannian space Vn which metric is given by

ds2 = φ(dx1)2 +Kαβdx
αdxβ + 2dx1dxn, (n ≥ 4), (4.8.7)

where [Kαβ] is a symmetric and non singular matrix consisting of constants and φ is

a function of x1, x2, ..., xn−1 and independent of xn, and each Latin index runs over
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1, 2, ..., n and each Greek index over 2, 3, ..., n − 1. In the metric considered, the only

non-vanishing components of Christoffel symbols, Riemannian curvature tensor and

Ricci tensor are [?]

Γβ11 = −1

2
Kαβφ.α, Γn11 =

1

2
φ.1, ,Γn1α =

1

2
φ.α,

R1αβ1 =
1

2
φ.αβ, S11 =

1

2
Kαβφ.αβ, (4.8.8)

where ’.’ denotes the partial differentiation with respect to the coordinates and Kαβ

are the elements of the matrix inverse to [Kαβ]. Here we consider Kαβ as Kronecker

symbol δαβ and

φ = (Mαβ + δαβ)xαxβe(x1)2 ,

where Mαβ are constant and satisfy the relations

Mαβ =

0, for α 6= β

6= 0, for α = β,

n−1∑
α=1

Mαα = 0.

This is to be noted that the metric with this form of φ was considered by De and Gazi

[?]. Thus we have

φαβ = 2(Mαβ + δαβ)e(x1)2 , δαβδ
αβ = n− 2,

δαβMαβ =
n−1∑
α=1

Mαα = 0.

Therefore

δαβφαβ = 2(δαβMαβ + δαβδαβ)e(x1)2 = 2(n− 2)e(x1)2 .

Since φαβ vanishes for α 6= β, the only non-zero components of the Riemannian curva-

ture tensor and Ricci tensor by virtue of equation (4.8.8) are

R1αα1 =
1

2
φ.αα =

(
1 +Mαα

)
e(x1)2 ,

S11 =
1

2
φ.αβδ

αβ = (n− 2)e(x1)2 ,
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Also, the scalar curvature r = 0. Hence the only non-zero components of the pseudo-

projective curvature tensor, and their covariant derivatives are

Pα11α = a
(
1 +M

αα
)e(x1)2 + b(n− 2)e(x1)2 ,

Pα11α,1 = 2ax1
(
1 +M

αα
)e(x1)2 + 2bx1(n− 2)e(x1)2 .

where ‘,’ denotes the covariant derivative with respect to the metric tensor. Let us

choose the associated 1-forms as follows:

Ai(x) =

2x1, for i = 1

0, otherwise,

(4.8.9)

Bi(x) = 0, for i = 1, 2, 3, 4 (4.8.10)

at any point x ∈ Vn. To verify the relation equation (4.2.1), it is sufficient to check the

following equation:

Pα11α,1 = A1Pα11α +B1(g11gαα − gα1g1α), (4.8.11)

R.H.S. of equation (4.8.11) = A1Pα11α +B1(g11gαα − gα1g1α)

= 2x1
[
a
(
1 +M

αα
)e(x1)2 + b(n− 2)e(x1)2

]
= 2ax1

(
1 +M

αα
)e(x1)2 + 2bx1(n− 2)e(x1)2

= Pα11α,1

= L.H.S. of equation (4.8.11).

So Vn is a PP (Kn).
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Chapter 5

QUARTER SYMMETRIC

NON-METRIC CONNECTION IN

TRANS-SASAKIAN MANIFOLD

A trans-Sasakian manifold which admits a quarter symmetric non-metric connection

is considered in this chapter. The relation between curvature tensor and Ricci tensor

with respect to the Riemannian connection and the quarter symmetric non-metric

connection are given. Weakly symmetries, locally symmetries, semi-symmetries and

recurrency of the manifold are studied in this chapter

5.1 Introduction

In trans-Sasakian manifolds the curvature tensor and Ricci tensor satisfy (De and

Mukut, 2003)

R(U, V )ξ = (α2 − β2){η(V )U − η(U)V }+ 2αβ{η(V )φU − η(U)φV }

−(Uα)φV + (V α)φU − (Uβ)φ2V + (V β)φ2U, (5.1.1)

R(ξ, V )Z = (α2 − β2){g(V, Z)ξ − η(Z)V }+ 2αβ{g(φZ, V )ξ + η(Z)φV }

+(Zα)φV + (Zβ){V − η(V )ξ}+ g(φZ, V )(gradα)− g(φZ, φV )(gradβ), (5.1.2)

Lalmalsawma C. and Singh J. P. (2019). Some curvature properties of trans-Sasakian manifolds
admitting a quarter-symmetric non-metric connection, Bulletin of the Transilvania University of Braov
Series III: Mathematics, Informatics, Physics, 12(61), 65-76.
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R(ξ, V )ξ = (α2 − β2 − ξβ){η(V )ξ − V },

2αβ + (ξα) = 0, (5.1.3)

S(U, ξ) = {(n− 1)(α2 − β2)− (ξβ)}η(U)− (n− 2)(Uβ)−
(
(φU)α

)
, (5.1.4)

Qξ = {(n− 1)(α2 − β2)− (ξβ)}ξ − (n− 2)(gradβ) + φ(gradα). (5.1.5)

5.2 Quarter symmetric non-metric connection in

trans-Sasakian manifold

We consider a linear connection ∇̃ on a trans-Sasakian manifold which is given by

∇̃XU = ∇XU + η(U)φ(X). (5.2.1)

Thus ∇̃ is a quarter-symmetric conection on the manifold. Also using equation (5.2.1)

we obtain (
∇̃Xg

)
(U, V ) = −g(φX, V )η(U)− g(φX,U)η(V ),

which shows that ∇̃ is a non-metric connection.

The relation between the Riemannian curvature tensor R and the curvature tensor

R̃ with respect to ∇̃ is given by (Patra and Battacharyya, 2013)

R̃(U, V )Z = R(U, V )Z + α{g(φV, Z)φU − g(φU,Z)φV + η(U)η(Z)V

−η(V )η(Z)U}+ β{g(U,Z)φV − g(V, Z)φU + 2η(Z)g(φU, V )ξ}. (5.2.2)

From equation (5.2.2), it follows that

R̃(ξ, V )Z = (α2 − β2){g(V, Z)ξ − η(Z)V }+ 2αβ{g(φZ, V )ξ + η(Z)φV }

+(Zα)φV + g(φZ, V )gradα + (Zβ){V − η(V )ξ}

−g(φZ, φV )gradβ + αη(Z){V − η(V )ξ}+ βη(Z)φV, (5.2.3)

R̃(U, V )ξ = (α2 − β2 − α){η(V )U − η(U)V } − (Uα)φV + (V α)φU

+(2αβ − β){η(V )φU − η(U)φV } − (Uβ)φ2V + (V β)φ2U + 2βg(φU, V )ξ, (5.2.4)
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R̃(ξ, V )ξ = (α2 − β2 − α− ξβ){η(U)ξ − U}+ βφU. (5.2.5)

Contracting equation (5.2.2) we obtain (Patra and Battacharyya, 2013)

S̃(U, V ) = S(U, V ) + α{g(φU, φV )− (n− 1)η(U)η(V )}+ βg(φU, V ). (5.2.6)

Again from equation (5.2.2), we have

S̃(U, ξ) = {(n− 1)(α2 − β2 − α)− ξβ}η(U)− (n− 2)(Uβ)−
(
(φU)α

)
= S̃(ξ, U), (5.2.7)

S̃(ξ, ξ) = (n− 1)(α2 − β2 − α− ξβ). (5.2.8)

Also from equation (1.18.17) we obtain

∇̃Xξ = −(α− 1)φX + β{X − η(X)ξ}. (5.2.9)

Again from equation (5.2.6) we obtain

r̃ = r, (5.2.10)

where r̃ =
n∑
i=1

S̃(ei, ei) and r =
n∑
i=1

S(ei, ei) are the scalar curvatures.

5.3 Weakly symmetric trans-Sasakian manifolds

Let Mn be a trans-Sasakian manifolds admitting ∇̃. Suppose that Mn is weakly

symmetric, then we have equation (1.21.1)

(∇̃XR̃)(U, V )Z = A(X)R̃(U, V )Z +B(U)R̃(X, V )Z + C(V )R̃(U,X)Z

+D(Z)R̃(U, V )X + g(R̃(U, V )Z,X)P. (5.3.1)

Theorem 5.3.1 In the given manifolds Mn, the sum of 1-forms A, C and D is given
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by [
A(X) + C(X) +D(X)

]
=

2
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

(n− 1)(α2 − β2 − α− ξβ)

+
{2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

(α2 − β2 − α− ξβ)

+
2(α− 1){(Xα)− η(X)(ξα)− (n− 2)(φX)β}

(n− 1)(α2 − β2 − α− ξβ)

+
2β
[(

(φX)α + (n− 2){(Xβ)− η(X)(ξβ)}
]

(n− 1)(α2 − β2 − α− ξβ)

−
2(n− 2)

(
X(ξβ)

)
− 2
(
(φX)(ξα)

)
(n− 1)(α2 − β2 − α− ξβ)

−R× 2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

(n− 1)(α2 − β2 − α− ξβ)2
.

Proof: Contracting equation (5.3.1) we get

(∇̃X S̃)(V, Z) = A(X)S̃(V, Z)) +B(R̃(X, V )Z) + C(V )S̃(X,Z)

+D(Z)S̃(V,X) + E(R̃(X,Z)V ), (5.3.2)

where E is 1-form defined by E(X) = g(X,P ). Setting Z = ξ in equation (5.3.2) and

making use of equations (5.2.3), (5.2.4), (5.2.6) and (5.2.7), we obtain

(∇̃X S̃)(V, ξ) = A(X)
[
(n− 1)(α2 − β2 − α)− ξβ

]
η(V )

−
[
(n− 2)(V β) +

(
(φV )α

)]
+ (α2 − β2 − α){η(V )B(X)− η(X)B(V )}

+(2αβ − β){η(V )B(φX)− η(X)B(φV )} − (Xα)B(φV ) + (V α)B(φX)

−(Xβ)B(φ2V ) + (V β)B(φ2X) + 2βg(φX, V )B(ξ) +D(ξ)S̃(X, V )

+C(V )
[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
−(α2 − β2){g(V,X)E(ξ)− η(V )E(X)} − (V α)E(φX)

−2αβ{g(φV,X)E(ξ) + η(V )E(φX)} − g(φV,X)E(gradα)

−(V β){E(X)− η(X)E(ξ)}+ g(φV, φX)E(gradβ)

−αη(V ){E(X)− η(X)E(ξ)} − βη(V )E(φX). (5.3.3)

By properties of linear connection we have

(∇̃X S̃)(V, ξ) = ∇̃X S̃(Z, ξ)− S̃(∇̃XV, ξ)− S̃(V, ∇̃Xξ). (5.3.4)
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Combining the equations (5.3.3) and (5.3.4), it follows that

∇̃X S̃(V, ξ)− S̃(∇̃XV, ξ)− S̃(V, ∇̃Xξ) = −A(X)
[
(n− 2)(V β) +

(
(φV )α

)]
+A(X)

[
(n− 1)(α2 − β2 − α)− ξβ

]
η(V )− (Xα)B(φV )

+(V α)B(φX) + (2αβ − β){η(V )B(φX)− η(X)B(φV )}

−(Xβ)B(φ2V ) + (V β)B(φ2X) + 2βg(φX, V )B(ξ)

+(α2 − β2 − α){η(V )B(X)− η(X)B(V )}+D(ξ)S̃(X, V )

+C(V )
[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
−(α2 − β2){g(V,X)E(ξ)− η(V )E(X)} − (V β){E(X)− η(X)E(ξ)}

−2αβ{g(φV,X)E(ξ) + η(V )E(φX)}

−(V α)E(φX)− g(φV,X)E(gradα) + g(φV, φX)E(gradβ)

−αη(V ){E(X)− η(X)E(ξ)} − βη(V )E(φX). (5.3.5)

By setting X = V = ξ in equation (5.3.5) and using equations (1.18.1), (1.18.2),

(1.18.3), (5.1.5), (5.2.1) and (5.2.8), we obtain the following equation

(n− 1)(α2 − β2 − α− ξβ)
[
A(ξ) + C(ξ) +D(ξ)

]
= (n− 1){2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)}. (5.3.6)

Since n > 2, the above equation can be written as

A(ξ) + C(ξ) +D(ξ) =
2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ
, (5.3.7)

provided α2 − β2 − α− ξβ 6= 0.
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Again setting V = ξ in equation (5.3.2) and combining with equation (5.3.4) we

get

∇̃X S̃(ξ, Z)− S̃(∇̃Xξ, Z)− S̃(ξ, ∇̃XZ) = A(X)(n− 1)(α2 − β2 − α)η(Z)

−A(X)(ξβ)η(Z)− A(X)
[
(n− 2)(Zβ) +

(
(φZ)α

)]
−(α2 − β2){g(Z,X)B(ξ)− η(Z)B(X)}

−2αβ{g(φZ,X)B(ξ) + η(Z)B(φX)} − (Zα)B(φX)

−(Zβ){B(X)− η(X)B(ξ)} − g(φZ,X)B(gradα)

+g(φZ, φX)B(gradβ)− αη(Z){B(X)− η(X)B(ξ)} − βη(Z)B(φX)

+C(ξ)S̃(X,Z) +D(Z)
[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)

−(n− 2)(Xβ)−
(
(φX)α

)]
+ (α2 − β2 − α){η(Z)E(X)

−η(X)E(Z)}+ (2αβ − β){η(Z)E(φX)− η(X)E(φZ)}

−(Xα)E(φZ) + (Zα)E(φX)− (Xβ)E(φ2Z) + (Zβ)E(φ2X)

+2βg(φX,Z)E(ξ). (5.3.8)

Putting Z = ξ in equation (5.3.8) we get

A(X)(n− 1)(α2 − β2 − α− ξβ)− βB(φX)

+(α2 − β2 − α− ξβ){B(X)− η(X)B(ξ)}

+
[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×[

C(ξ) +D(ξ)
]

+ (α2 − β2 − α− ξβ){E(X)− η(X)E(ξ)}

= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}. (5.3.9)

Again putting X = ξ in equation (5.3.8) we get[
{(n− 1)(α2 − β2 − α)− ξβ}η(Z)− (n− 2)(Zβ)−

(
(φZ)α

)]
×

{A(ξ) + C(ξ)}+D(Z)(n− 1)(α2 − β2 − α− ξβ)

+βE(φZ)− (α2 − β2 − α− ξβ){E(Z)− η(Z)E(ξ)}

=
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(Z)

−(n− 2)
(
Z(ξβ)

)
−
(
(φZ)(ξα)

)
. (5.3.10)
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By replacing Z by X, the equation equation (5.3.10) becomes[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×

{A(ξ) + C(ξ)}+D(X)(n− 1)(α2 − β2 − α− ξβ)

+βE(φX)− (α2 − β2 − α− ξβ){E(X)− η(X)E(ξ)}

=
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

−(n− 2)
(
X(ξβ)

)
−
(
(φX)(ξα)

)
. (5.3.11)

Adding the equations equation (5.3.9) and equation (5.3.11) we obtain[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×

{A(ξ) + 2C(ξ) +D(ξ)}+ (n− 1)(α2 − β2 − α− ξβ){A(X) +D(X)}

+(α2 − β2 − α− ξβ){B(X)− η(X)B(ξ)} − βB(φX)

= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β + 2β
(
(φX)α

)[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X) + 2(α− 1){(Xα)

−η(X)(ξα)} − (n− 2)
(
X(ξβ)

)
−
(
(φX)(ξα)

)
. (5.3.12)

Now putting X = ξ in equation (5.3.5) we get[
{(n− 1)(α2 − β2 − α)− ξβ}η(V )− (n− 2)(V β)−

(
(φV )α

)]
×

{A(ξ) +D(ξ)}+ C(V )(n− 1)(α2 − β2 − α− ξβ) + βB(φV )

−(α2 − β2 − α− ξβ){B(V )− η(V )B(ξ)}

=
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(V )

−(n− 2)
(
V (ξβ)

)
−
(
(φV )(ξα)

)
. (5.3.13)

By replacing V by X the equation (5.3.13) becomes[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×

{A(ξ) +D(ξ)}+ C(X)(n− 1)(α2 − β2 − α− ξβ) + βB(φX)

−(α2 − β2 − α− ξβ){B(X)− η(X)B(ξ)}

=
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

−(n− 2)
(
X(ξβ)

)
−
(
(φX)(ξα)

)
. (5.3.14)
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Adding the equations (5.3.12) and (5.3.14) and making use of equation (5.3.7) we

obtain

(n− 1)(α2 − β2 − α− ξβ)
[
A(X) + C(X) +D(X)

]
= 2
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

+(n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(α− 1){(Xα)− η(X)(ξα)− (n− 2)(φX)β}

+2β
[(

(φX)α + (n− 2){(Xβ)− η(X)(ξβ)}
]

−2(n− 2)
(
X(ξβ)

)
− 2
(
(φX)(ξα)

)
−R× 2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ
, (5.3.15)

where R =
[
{(n − 1)(α2 − β2 − α) − ξβ}η(X) − (n − 2)(Xβ) −

(
(φX)α

)]
, provided

α2 − β2 − α− ξβ 6= 0. Since n > 2, the above equation yields[
A(X) + C(X) +D(X)

]
=

2
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

(n− 1)(α2 − β2 − α− ξβ)

+
{2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

(α2 − β2 − α− ξβ)

+
2(α− 1){(Xα)− η(X)(ξα)− (n− 2)(φX)β}

(n− 1)(α2 − β2 − α− ξβ)

+
2β
[(

(φX)α + (n− 2){(Xβ)− η(X)(ξβ)}
]

(n− 1)(α2 − β2 − α− ξβ)

−
2(n− 2)

(
X(ξβ)

)
− 2
(
(φX)(ξα)

)
(n− 1)(α2 − β2 − α− ξβ)

−R× 2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

(n− 1)(α2 − β2 − α− ξβ)2
, (5.3.16)

where R =
[
{(n − 1)(α2 − β2 − α) − ξβ}η(X) − (n − 2)(Xβ) −

(
(φX)α

)]
, provided

α2 − β2 − α− ξβ 6= 0.

90



5.4 Weakly Ricci-symmetric trans-Sasakian mani-

folds

Let Mn be a weakly Ricci symmetric trans-Sasakian manifolds admitting ∇̃. Then

from equation (1.21.2) we have

(∇̃X S̃)(U, V ) = B1(X)S̃(U, V ) +B2(U)S̃(X, V ) +B3(V )S̃(U,X). (5.4.1)

Theorem 5.4.1 In the given manifold Mn the 1-forms Mn B1, B2, B3 are given by

B1(X) =
(n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

S

+
2(n− 2)β{(Xβ)− η(X)(ξβ)}

S
− 2(n− 2)(α− 1)(φX)β

S

+
2β
(
(φX)α

)
S

+
2(α− 1){(Xα)− η(X)(ξα)}

S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)
S × T

+
(n− 2)

{
(σ2β) + (σ3β)

}
+
(
(φσ2)α

)
+
(
(φσ3)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
,

B2(X) =

[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

S

−
(n− 2)

(
X(ξβ)

)
S

−
(
(φX)(ξα)

)
S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)

2× S × T
+

(n− 2)
{

(σ1β) + (σ3β)
}

+
(
(φσ1)α

)
+
(
(φσ3)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
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and

B3(X) =

[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

S

−
(n− 2)

(
X(ξβ)

)
S

−
(
(φX)(ξα)

)
S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)

2× S × T
+

(n− 2)
{

(σ1β) + (σ2β)
}

+
(
(φσ1)α

)
+
(
(φσ2)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]

respectively.

Proof: Setting V = ξ in the expression (5.4.1) we get

(∇̃X S̃)(U, ξ) = B1(X)S̃(U, ξ) +B2(U)S̃(X, ξ) +B3(ξ)S̃(U,X). (5.4.2)

Using equation (5.2.7) in equation (5.4.2) and combining with equation (5.2.4) we

get

∇̃X S̃(U, ξ)− S̃(∇̃XU, ξ)− S̃(U, ∇̃Xξ)

= B1(X)
[
{(n− 1)(α2 − β2 − α)− ξβ}η(U)− (n− 2)(Uβ)−

(
(φU)α

)]
+B2(U)

[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
+B3(ξ)S̃(U,X). (5.4.3)

Setting X = U = ξ in equation (5.4.3) yields

(n− 1)(α2 − β2 − α− ξβ)
[
(ξ)B1(ξ) +B2(ξ) +B3(ξ)

]
= (n− 1){2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)}. (5.4.4)

Since n > 2, the above equation can be written as

B1(ξ) +B2(ξ) +B3(ξ) =
2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ
, (5.4.5)

provided α2 − β2 − α− ξβ 6= 0.

From equation (5.4.3) we have

(∇̃X S̃)(U, ξ) = B3(ξ)S̃(U,X)

+B1(X)
[
{(n− 1)(α2 − β2 − α)− ξβ}η(U)− (n− 2)(Uβ)−

(
(φU)α

)]
+B2(U)

[
{(n− 1)(α2 − β2 − α)− ξβ}η(X)− (n− 2)(Xβ)−

(
(φX)α

)
. (5.4.6)
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Contracting equation (5.4.6) over X and U and using equation (5.2.10) we get

1

2
dr(ξ) =

[
B1(ξ) +B2(ξ)

]
{(n− 1)(α2 − β2 − α)− ξβ}

−(n− 2)(σ1β)−
(
(φσ1)α

)
− (n− 2)(σ2β)−

(
(φσ2)α

)
+ rB3(ξ), (5.4.7)

wher σ1,σ2 and σ3 are the vector fields associated with 1-forms B1, B2 and B3 respec-

tively.

Using equation (5.4.5) in equation (5.4.7) we obtain

1

2
dr(ξ) =

[
B1(ξ) +B2(ξ)

]
{(n− 1)(α2 − β2 − α)− ξβ}

−(n− 2)(σ1β)−
(
(φσ1)α

)
− (n− 2)(σ2β)−

(
(φσ2)α

)
+r
[2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ
−B1(ξ)−B2(ξ)

]
,

or [
B1(ξ) +B2(ξ)

]
{(n− 1)(α2 − β2 − α)− ξβ − r} =

1

2
dr(ξ)

+(n− 2)
{

(σ1β) + (σ2β)
}

+
(
(φσ1)α

)
+
(
(φσ2)α

)
−r
[2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ

]
, (5.4.8)

provided α2 − β2 − α− ξβ 6= 0.

Similarly we obtain[
B1(ξ) +B3(ξ)

]
{(n− 1)(α2 − β2 − α)− ξβ − r} =

1

2
dr(ξ)

+(n− 2)
{

(σ1β) + (σ3β)
}

+
(
(φσ1)α

)
+
(
(φσ3)α

)
−r
[2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ

]
, (5.4.9)

and [
B2(ξ) +B3(ξ)

]
{(n− 1)(α2 − β2 − α)− ξβ − r} = dr(ξ)

+(n− 2)
{

(σ2β) + (σ3β)
}

+
(
(φσ2)α

)
+
(
(φσ3)α

)
−r
[2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

α2 − β2 − α− ξβ

]
, (5.4.10)

provided α2 − β2 − α− ξβ 6= 0.
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Setting U = V = ξ in equation (5.4.1) and using equation (5.4.5) we get

B1(X)S̃(ξ, ξ) +
[
B2(ξ) +B3(ξ)

]
S̃(X, ξ)

= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}. (5.4.11)

Using equations (5.1.4) and (5.4.10) in the equation (5.4.11) we get

B1(X) =
(n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

S

+
2(n− 2)β{(Xβ)− η(X)(ξβ)}

S
− 2(n− 2)(α− 1)(φX)β

S

+
2β
(
(φX)α

)
S

+
2(α− 1){(Xα)− η(X)(ξα)}

S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)
S × T

+
(n− 2)

{
(σ2β) + (σ3β)

}
+
(
(φσ2)α

)
+
(
(φσ3)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
, (5.4.12)

where S = (n − 1)(α2 − β2 − α − ξβ), T = (n − 1)(α2 − β2 − α) − ξβ − r provided

S, T 6= 0.

By following the same step we calculate

B2(X) =

[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

S

−
(n− 2)

(
X(ξβ)

)
S

−
(
(φX)(ξα)

)
S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)

2× S × T
+

(n− 2)
{

(σ1β) + (σ3β)
}

+
(
(φσ1)α

)
+
(
(φσ3)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
, (5.4.13)
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and

B3(X) =

[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

S

−
(n− 2)

(
X(ξβ)

)
S

−
(
(φX)(ξα)

)
S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[ dr(ξ)

2× S × T
+

(n− 2)
{

(σ1β) + (σ2β)
}

+
(
(φσ1)α

)
+
(
(φσ2)α

)
S × T

−r(n− 1)

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
, (5.4.14)

where S = (n − 1)(α2 − β2 − α − ξβ), T = (n − 1)(α2 − β2 − α) − ξβ − r provided

S, T 6= 0.

Adding equation (5.4.12), equation (5.4.13) and equation (5.4.14) we get

B1(X) +B2(X) +B3(X) =
(n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

S

+
2(n− 2)β{(Xβ)− η(X)(ξβ)}

S
− 2(n− 2)(α− 1)(φX)β

S

+
2β
(
(φX)α

)
S

+
2(α− 1){(Xα)− η(X)(ξα)}

S
2
[
(n− 1){2α(ξα)− 2β(ξβ)− ξα} − ξ(ξβ)

]
η(X)

S

−
2(n− 2)

(
X(ξβ)

)
S

−
2
(
(φX)(ξα)

)
S

−
[
{(n− 1)(α2 − β2)− (ξβ)}η(X)− (n− 2)(Xβ)−

(
(φX)α

)]
×
[2dr(ξ)

S × T
+

2(n− 2)
{

(σ1β) + (σ2β) + (σ3β)
}

S × T

+
2
{(

(φσ1)α
)

+
(
(φσ2)α

)
+
(
(φσ3)α

)}
S × T

−3(n− 1)r

S2 × T
{

2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)
}]
. (5.4.15)

Corollary 5.4.1 In the given Symmetric manifold Mn, the sum of the 1-forms B1,

B2, B3 is given by (5.1.5).

5.5 Locally symmetric trans-Sasakian manifolds

Definition 5.5.1 (Cartan, 1926) A Riemannian manifold is said to be (locally) sym-

metric if the Riemannian curvature tensor R satisfies ∇R = 0.
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Theorem 5.5.1 If β is a non-zero constant in a locally symmetric trans Sasakian

manifold with respect to ∇̃, then it is locally symmetric with respect to ∇ provided

α 6= 0, 1
2
.

Proof: Consider a trans-Sasakian manifold which is symmetric with respect to ∇̃.

Then we have

(∇̃XR̃)(U, V )Z = 0 (5.5.1)

for all X,U, V, Z ∈ χ(M).

By properties of ∇̃ we have

(∇̃XR̃)(U, V )Z = ∇̃XR̃(U, V )Z − R̃(∇̃XU, V )Z

−R̃(U, ∇̃XV )Z − R̃(U, V )∇̃XZ. (5.5.2)

Using equation (5.2.2) in equation (5.5.2) we obtain

(∇̃XR̃)(U, V )Z = (∇̃XR)(U, V )Z + (Xα)
[
g(φV, Z)φU − g(φU,Z)φV

+η(U)η(Z)V − η(V )η(Z)U
]

+ (Xβ)
[
g(U,Z)φV − g(V, Z)φU

+2η(Z)g(φU, V )ξ
]

+ α
[{

(∇̃Xg)(φV, Z) + g(
(
∇̃Xφ)V, Z

)}
φU

+g(φV, Z)(∇̃Xφ)U −
{

(∇̃Xg)(φU,Z)− g(
(
∇̃Xφ)U,Z

)}
φV

−g(φU,Z)(∇̃Xφ)V + (∇̃Xη)(Z)
{
η(U)V − η(V )U

}
+η(Z)

{
(∇̃Xη)(U)V − (∇̃Xη)(V )U

}]
+ β

[
(∇̃Xg)(U,Z)φV − (∇̃Xg)(V, Z)φU

+g(U,Z)(∇̃Xφ)V − g(V, Z)(∇̃Xφ)U + 2(∇̃Xη)(Z)g(φU, V )ξ

+2η(Z){(∇̃Xg)(φU, V ) + g
(
(∇̃Xφ)U, V

)
}ξ
]
.(5.5.3)
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Again using equation (5.2.1) in equation (5.5.3) we obtain

(∇̃XR̃)(U, V )Z = (∇XR)(U, V )Z + (Xα)
[
g(φV, Z)φU − g(φU,Z)φV

+η(U)η(Z)V − η(V )η(Z)U
]

+ (Xβ)
[
g(U,Z)φV − g(V, Z)φU

+2η(Z)g(φU, V )ξ
]

+ α
[{

(∇̃Xg)(φV, Z) + g(
(
∇̃Xφ)V, Z

)}
φU

+g(φV, Z)(∇̃Xφ)U −
{

(∇̃Xg)(φU,Z)− g(
(
∇̃Xφ)U,Z

)}
φV

−g(φU,Z)(∇̃Xφ)V + (∇̃Xη)(Z)
{
η(U)V − η(V )U

}
+η(Z)

{
(∇̃Xη)(U)V − (∇̃Xη)(V )U

}]
+ β

[
(∇̃Xg)(U,Z)φV − (∇̃Xg)(V, Z)φU

+g(U,Z)(∇̃Xφ)V − g(V, Z)(∇̃Xφ)U + 2(∇̃Xη)(Z)g(φU, V )ξ

+2η(Z){(∇̃Xg)(φU, V ) + g
(
(∇̃Xφ)U, V

)
}ξ
]

+ η
(
R(U, V )Z

)
φX

−η(U)R(φX, V )Z − η(V )R(U, φX)Z − η(Z)R(U, V )φX.(5.5.4)

Combining equation (5.5.1) and equation (5.5.4)

(∇XR)(U, V )Z + (Xα)
[
g(φV, Z)φU − g(φU,Z)φV

+η(U)η(Z)V − η(V )η(Z)U
]

+ (Xβ)
[
g(U,Z)φV − g(V, Z)φU

+2η(Z)g(φU, V )ξ
]

+ α
[{

(∇̃Xg)(φV, Z) + g(
(
∇̃Xφ)V, Z

)}
φU

+g(φV, Z)(∇̃Xφ)U −
{

(∇̃Xg)(φU,Z)− g(
(
∇̃Xφ)U,Z

)}
φV

−g(φU,Z)(∇̃Xφ)V + (∇̃Xη)(Z)
{
η(U)V − η(V )U

}
+η(Z)

{
(∇̃Xη)(U)V − (∇̃Xη)(V )U

}]
+ β

[
(∇̃Xg)(U,Z)φV − (∇̃Xg)(V, Z)φU

+g(U,Z)(∇̃Xφ)V − g(V, Z)(∇̃Xφ)U + 2(∇̃Xη)(Z)g(φU, V )ξ

+2η(Z){(∇̃Xg)(φU, V ) + g
(
(∇̃Xφ)U, V

)
}ξ
]

+ η
(
R(U, V )Z

)
φX

−η(U)R(φX, V )Z − η(V )R(U, φX)Z − η(Z)R(U, V )φX = 0.(5.5.5)

Setting X = U = Z = ξ in equation (5.5.5) and using equations (5.1.3), (5.2.1),

(5.2.5) and (5.2.9), we obtain the following equation(
2α(ξα)− 2β(ξβ)− ξα− ξ(ξβ)

)(
η(V )ξ − V

)
+ (ξβ)φV = 0. (5.5.6)

If β is a non-zero constant, then equation (5.5.6) become

(2α− 1)(ξα)
(
η(V )ξ − V

)
= 0,

or

2αβ(1− 2α)
(
η(V )ξ − V

)
= 0.
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From the above equation we have

η(V )ξ − V = 0 (5.5.7)

for all V ∈ χ(M), provided α 6= 0, 1
2
.

Now from equation (5.5.7) we obtain

φV = 0 (5.5.8)

for all V ∈ χ(M), provided α 6= 0, 1
2
.

Using equations (5.5.7) and (5.5.8) in equation (5.5.4) we get

(∇̃XR̃)(U, V )Z = (∇XR)(U, V )Z. (5.5.9)

Thus

(∇̃XR̃)(U, V )Z = 0⇒ (∇XR)(U, V )Z = 0.

Theorem 5.5.2 If a trans Sasakian manifold is locally symmetric with respect to ∇̃,

then ∇̃ = ∇ if and only if β is a non-zero constant, provided α 6= 0, 1
2
.

Proof: Again using equation (5.5.8) in equation (5.2.1) we get

∇̃XU = ∇XU, (5.5.10)

provided α 6= 0, 1
2
.

5.6 Ricci semi-symmetric trans-Sasakian manifolds

Theorem 5.6.1 In a Ricci semi-symmetric trans Sasakian manifold with respect to

∇̃, β = 0 if and only if α is constant, provided α 6= 0, 1.

Proof: Let Mn be a Ricci semi-symmetric trans-Sasakian manifold with respect to ∇̃,

we have

R̃(U, V ).S̃(Z,W ) = 0 (5.6.1)

for all U, V, Z,W ∈ χ(M).

From equation (5.6.2) we have

S̃(R̃(U, V )Z,W ) + S̃(Z, R̃(U, V )W ) = 0. (5.6.2)
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Using equation (5.2.2) in equation (5.6.2 we get

S̃(R(U, V )Z,W ) + S̃(Z,R(U, V )W ) + α{g(φV, Z)S(φU,W )

−g(φU,Z)S(φV,W ) + η(U)η(Z)S(V,W )− η(V )η(Z)S(U,W )}

+β{g(U,Z)S(φV,W )− g(V, Z)S(φU,W ) + 2η(Z)g(φU, V )S(ξ,W )}

+α{g(φV,W )S(Z, φU)− g(φU,W )S(Z, φV ) + η(U)η(W )S(Z, V )

−η(V )η(W )S(Z,U)}+ β{g(U,W )S(Z, φV )− g(V,W )S(Z, φU)

+2η(W )g(φU, V )S(Z, ξ)} = 0. (5.6.3)

Setting U = Z = W = ξ in equation (5.6.3) yields

(α2 − β2 − α− ξβ)
[
(n− 2)

{
(V β)− (ξβ)η(V )

}
+
(
(φV )α

)]
−β
[
(n− 2)

(
(φV )β

)
− (V α) + η(V )(ξβ)} = 0. (5.6.4)

For β = 0 we have

(α2 − α)
(
(φV )α

)
= 0,

or (
(φV )α

)
= 0 (5.6.5)

for all V ∈M , provided α 6= 0, 1. That is if β = 0 then α is constant.

Conversely we suppose that α is a non zero constant. From equation (5.1.3) we

have

β = 0. (5.6.6)

We know that a tran Sasakian manifold of type (α, 0) is α-Sasakian manifold. Thus

we have

Corollary 5.6.1 A Ricci semi-symmetric trans Sasakian manifold with respect to ∇̃
is α-Sasakian manifold if and only if α is constant.
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5.7 Generalized recurrent trans-Sasakian manifolds

Theorem 5.7.1 In a G{(Kn)TS} the relation between the 1-forms A and B is given

by

A(X)(n− 1)(α2 − β2 − α− ξβ) +B(X)(n− 1)

= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}.

Proof: We consider a generalized recurrent trans Sasakian manifold with respect to

∇̃ and we denote the manifold by G{(Kn)TS}

(∇̃XR̃)(U, V )Z = A(X)R̃(U, V )Z +B(X)
[
g(V, Z)U − g(U,Z)V

]
. (5.7.1)

Contracting equation (5.7.1) we get

(∇̃X S̃)(V, Z) = A(X)S̃(V, Z) +B(X)(n− 1)g(V, Z). (5.7.2)

It is well known that

(∇̃X S̃)(V, Z) = ∇̃X S̃(V, Z)− S̃(∇̃XV, Z)− S̃(V, ∇̃XZ). (5.7.3)

Setting V = Z = ξ in the above equation and using equations (5.2.7), (5.2.8),

(5.2.9) we get

(∇̃X S̃)(ξ, ξ) = (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}. (5.7.4)

Again setting V = Z = ξ in equation (5.7.2) and using equations (5.7.4) and (5.2.8)

we get

A(X)(n− 1)(α2 − β2 − α− ξβ) +B(X)(n− 1)

= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}. (5.7.5)

100



Theorem 5.7.2 In a G{(Kn)TS} the expression for A and B is given by equations

A(X)
[
(n− 1)(α2 − β2 − α− ξβ)− r

n

]
+
dr(X)

n
= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}

and

B(X)
[
(n− 1)− n(n− 1)2(α2 − β2 − α− ξβ)

r

]
= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}β

−dr(X)

r
(n− 1)(α2 − β2 − α− ξβ)

respectively.

Proof: Now contracting equation (5.7.2) over V and Z we get

dr(X) = rA(X) + n(n− 1)B(X). (5.7.6)

Using equation (5.7.5) from equation (5.7.6) to eliminate B we have

A(X)
[
(n− 1)(α2 − β2 − α− ξβ)− r

n

]
+
dr(X)

n
= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}. (5.7.7)

Using equation (5.7.6) in equation (5.7.7) we get

B(X)
[
(n− 1)− n(n− 1)2(α2 − β2 − α− ξβ)

r

]
= (n− 1){2α(Xα)− 2β(Xβ)−Xα−X(ξβ)}

+2(n− 2)β{(Xβ)− η(X)(ξβ)} − 2(n− 2)(α− 1)(φX)β

+2β
(
(φX)α

)
+ 2(α− 1){(Xα)− η(X)(ξα)}β

−dr(X)

r
(n− 1)(α2 − β2 − α− ξβ). (5.7.8)

Theorem 5.7.3 If in a G{(Kn)TS} the scalar curvature is constant, then the 1-forms
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A satisfies

A(Q̃X) =
r

n
A(X).

Proof: Again contracting equation (5.7.2) over X and Z we get

1

2
dr(V ) = A(Q̃V ) + (n− 1)B(V ), (5.7.9)

where Q̃ is the Ricci operator with respect ∇̃.

Replacing V by X in equation (5.7.9)

dr(X) = 2A(Q̃X) + 2(n− 1)B(X). (5.7.10)

Again from equations (5.7.10) and (5.7.6) we obtain

A(Q̃X) =
r

n
A(X) +

n− 2

2n
dr(X). (5.7.11)

If the scalar curvature is constant i.e dr(X) = 0, equation (5.7.11) become

A(Q̃X) =
r

n
A(X). (5.7.12)

5.8 Group manifolds

Theorem 5.8.1 A trans Sasakian manifold is group manifold with respect to the quar-

ter symmetric connection if and only if R̃(U, V )Z = 0, provided β 6= 0.

Proof: Now we suppose that the curvature satisfies

R̃(U, V )Z = 0 (5.8.1)

for all U, V, Z ∈ χ(M). From the above equation it is clear that

S̃(V, Z) = 0 (5.8.2)

for all V, Z ∈ χ(M).

Setting U = Z = ξ in equation (5.8.1) we get

(α2 − β2 − α− ξβ){η(V )ξ − V }+ βφV = 0. (5.8.3)

Again setting V = Z = ξ in equation (5.8.2) we get

(n− 1)(α2 − β2 − α− ξβ) = 0. (5.8.4)
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Since n ≥ 3, the above equation becomes

(α2 − β2 − α− ξβ) = 0. (5.8.5)

Using equation (5.8.5) in equation (5.8.3) we get

βφV = 0 (5.8.6)

for all V ∈ χ(M).

From equation (5.8.6) we have

φV = 0 (5.8.7)

for all V ∈ χ(M), provided β 6= 0.

Using equation (5.2.1) we obtain the torsion tensor with respect to the quarter

symmetric connection as

T̃ (U, V ) = η(V )φU − η(U)φV, (5.8.8)

for all V ∈ χ(M).

Using equation (5.8.7) in equation (5.8.8) we obtain

(∇̃X T̃ )(U, V ) = 0 (5.8.9)

for all U, V ∈ χ(M), provided β 6= 0.

By virtue of equations (5.2.1) and (5.8.7) we have

Corollary 5.8.1 If a trans Sasakian manifold is a group manifold with respect to ∇̃,

then ∇̃ = ∇, provided β 6= 0 .

Moreover we obtain

R̃(U, V )Z = R(U, V )Z (5.8.10)

and

T̃ (U, V ) = T (U, V ) (5.8.11)

for all U, V, Z ∈ χ(M). Thus we have

Corollary 5.8.2 If a trans Sasakian manifold is a group manifold with respect to ∇̃,

then it is a group manifold with respect to ∇, provided β 6= 0 .
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Chapter 6

SUMMARY AND CONCLUSION

In the present thesis, we studied analytic properties of some almost contact mani-

folds. Using appropriate curvature conditions, we developed theorem for the manifolds

under the given conditions.

Chapter 1 gives the basic definitions and formula of differential geometry. It is

the general introduction of the studies. It Includes definitions of different curvature

tensors, contact manifolds, symmetric connection, symmetries of manifold, recurrence

manifolds, Ricci Solitons and Generalized Sasakian-space-form which are used in the

studies. Literature reviews is also included in this chapter.

Chapter 2 is dedicated to the studies of Ricci solitons. We studied Ricci soliton

in α-cosymplectic manifolds and η-Ricci soliton in Sasakian manifolds. We gives the

conditions for which the Ricci soliton is steady or expanding in α-cosymplectic mani-

folds. We also studied Ricci semi-symmetric, pseudo projective semi-symmetric, weyl

semi-symmetric, pseudo projective Ricci semi-symmetric, gradient Ricci soliton in α-

cosymplectic manifolds and obtain some important geometrical properties. We have

proved that Ricci solitons in Ricci semi-symmetric Sasakian manifolds can not exist.

Also we studied η-Ricci soliton in torse forming vector field, m-projectively flat and

Pseudo projective Ricci semi-symmetric Sasakian manifold.

In Chapter 3, we studied some properties of generalized Sasakian-space-form. We

studied τ -curvature tensor in generalized Sasakian-space-form and obtained particu-

lar cases of the τ -curvature tensor. Using relation between the Riemannian curvature

tensor and the curvature tensor with respect to the Generalized Tanaka-Webster con-

nection in generalized Sasakian-space-form, we obtain necessary condition for Semi-

symmetric and Ricci semi-symmetric, Ricci-generalized pseudosymmetric and Ricci
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pseudosymmetric manifolds.

We studied generalized recurrent manifolds in chaper 4. We studied generalized

pseudo-projective recurrent manifolds and obtained the necessary and sufficient con-

dition for the scalar curvature to be a constant. We proved that a Ricci symmetric

generalized pseudo-projective recurrent manifolds is an Einstein manifold provided it is

not locally symmetric. We also proved that an Einstein generalized pseudo-projective

recurrent manifolds is a pseudo-projective recurrent manifolds provided it satisfy some

condition. Again we proved that a conformally flat with constant scalar curvature is

a pseudo-projective recurrent manifolds. Also we obtained some geometric properties

for decomposable generalized pseudo-projective recurrent manifolds. Finally we given

two examples to support our results.

In chapter 5, we studied quarter-symmetric non-metric connection in trans-Sasakian

manifolds. We obtained the relations between the 1-forms in the weakly Ricci-symmetric,

weakly Ricci-symmetric and generalized recurrent trans-Sasakian manifolds. We ob-

tained the necessary condition for locally symmetric trans-Sasakian manifolds. Also

we obtained the necessary and sufficient condition for Ricci semi-symmetric and group

trans-Sasakian manifolds.

Finally, we concluded that the whole work of this thesis give some geometrical

properties of manifolds, which are symmetric properties of contact manifolds, certain

connection in contact manifolds, properties of certain curvature tensors in contact

manifold and recurrent properties in both contact and semi-Riemannian manifold. In

particular, the studies of Ricci solitons and Generalized Sasakian-space-forms have

wide range of applications in the theory of relativity.
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ABSTRACT 

Contact geometry is the study of contact structure on smooth manifolds.The root of 

contact geometry can be traced back to the 19th century as a tool to study a system of 

differential equation. Mostly focused on the study of almost contact manifold, the thesis is 

divided in to six chapters which are 

1.Introduction. 

2.Characterization of Ricci solitons. 

3.Generalized Sasakian-space-form. 

4. Generalized pseudo-projective recurrent manifolds. 

5. Quarter symmetric non-metric connection in trans-Sasakian manifolds. 

6. Summary and conclusion. 

Chapter 1 is the General Introduction of the problems which includes basic definitions, 

some mathematical tools like contraction and covariant derivative, different curvature 

tensors, certain curvature conditionof manifolds and review of literatures.  

In Chapter 2, we studied Ricci soliton which is a generalizatio of we consider α-

cosymplectic and Sasakian manifolds which admit Ricci soliton and η-Ricci soliton 

respectively. We have shown that the Ricci soliton in α-cosymplectic cannot be shrinking. 

We showed how the curvature properties of the manifolds are related to the status of the 

Ricci solitoni.e, steady or shrinking. We have also proved that Sasakian manifolds admitting 

Ricci soliton cannot be Ricci semi-symmetric. 

In Chapter 3, Generalized Sasakian-space-form with τ-curvature tensor and generalized 

Sasakian-space-form admitting Generalized Tanaka-Webster connection is studied. In the 

latter case we considered generalized Sasakian-space-form admitting a Sasakian structure 

and we called it a Sasakian generalized Sasakian-space-form. Some curvature conditions are 

considered and we obtained results for different curvature tensor by putting particular 

values of the τ-curvature tensor. We have proved that Ricci-pseudosymmetric and Ricci-

generalized pseudosymmetricSasakian generalized Sasakian-space-formwith respect to 

generalized Tanaka-Webster connection are Einstein manifolds with conditions. 



In Chapter 4, generalized recurrent manifolds with respect to the pseudo-projective 

curvature tensor has been studied. Manifolds with constant scalar curvature, Ricci-

symmetric manifolds, Einstein manifolds, conformally flat manifolds, quasi Einstein 

manifolds and Decomposable manifolds with generalized pseudo-projective recurrence have 

been considered. Finally examples are given to support results. 

In Chapter 5, we studied quarter-symmetric non-metric connection in trans-Sasakian 

manifold. The relation between 1-forms in weakly symmetric, weakly Ricci-symmetric and 

generalized recurrenttrans-Sasakian manifold admitting quarter-symmetric non-metric 

connection have been obtained. We have proved that with a given condition, a locally 

symmetric trans-Sasakian manifold the Riemannian connection and the quarter-symmetric 

non-metric connection are equal. We have also proved that in the given manifold, the 

Riemannian connection and the quarter-symmetric non-metric connection are equal for 

non-zero β. 

In Chapter 6, we summarized the problem and results of the research work in the 

Conclusion.  
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