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PREFACE

The present thesis entitled “Scattering of elastic waves from a corrugated

interface” is an outcome of the research carried out by me under the supervision

of Dr. S. Sarat Singh, Department of Mathematics & Computer Science, Mizoram

University, Aizawl - 796 004, Mizoram, INDIA.

This thesis studies the reflection and transmission of elastic waves from a cor-

rugated interface using Rayleigh’s technique. The existence of regular and irregular

waves have been observed in our analysis. We have obtained the amplitude and en-

ergy ratios of the regularly and irregularly reflected and transmitted waves. These

ratios have been analyzed for a particular type of interface, z = d cos px and they are

computed numerically.

It consists of six chapters. The first chapter is the general introduction. It contains

basic definitions, different types of anisotropic symmetry, stress-strain relationship

with generalized Hooke’s law, conservation of linear momentum, Spectrum theorem,

Rayleigh’s method of approximation, importance of wave propagation and review of

literature.

In the second chapter, the problem of reflection and transmission of qSV/qP -wave

due to incident plane qSV -wave at a corrugated interface between two dissimilar

monoclinic elastic half-spaces has been investigated. The reflection and transmis-

sion coefficients of the reflected and transmitted waves are obtained using Rayleigh’s

method of approximation. These coefficients are computed numerically for a partic-

ular type of model, z = d cos py and results are represented graphically.

The third chapter deals with the problems of reflection and transmission of elastic

waves at a corrugated interface between two dissimilar nematic elastomer half-spaces,

separately for the incident qP and qSV -waves. We find the amplitude and energy

ratios of the reflected and transmitted waves using suitable boundary conditions.

In the fourth chapter, we have discussed the phenomena of reflection and transmis-

sion of qSH-wave at a corrugated interface between two different nematic elastomer

v



half-spaces. Here also we have analyzed the effects of corrugation and frequency

parameters on the amplitude and energy ratios. We come across that these ratios

are functions of the angle of incidence, elastic constants, coupling constants, the

characteristic time of rubber relaxation, the director rotation-times, frequency and

corrugation parameters.

In the fifth chapter, the problem of elastic waves at a corrugated interface be-

tween two different incompressible transversely isotropic fibre-reinforced half-spaces

has been investigated. There exist two reflected and transmitted quasi shear waves

in certain angular range of propagation, in which the outer slowness is re-entrant.

We have found the amplitude and energy ratios using Rayleigh’s technique.

Chapter six is summary and conclusions. A list of references has been given at

the end of the thesis.
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Chapter 1

Chapter 1

General Introduction

1.1 Basic definition

The theory of elastodynamic wave scattering is based on two foundations -

continuum mechanics of elastic media and the general principles of scattering the-

ory. Continuum Mechanics is a branch of mechanics that deals with kinematics and

mechanical behavior of materials modeled as continuous mass rather than discrete

particles. If a body contains a sufficiently large number of molecules, so that the

distances between two neighboring molecules are negligible in comparison with the

dimensions of the body, then the body is said to be a continuous body and it behaves

in accordance with the laws of mechanics. The study of deformation behavior of mat-

ter can be approached fundamentally by considering the bulk material as continuous

medium. In such a study, we assume that the matter in the body is continuously

distributed and fills the entire region of the space it occupies, without gaps or empty

spaces. Continuum mechanics also deals with the deformation of matter under the

action of forces and thermal effects. The treatment is given for all the forms of

matter, i.e., solids, liquids and gasses in a unified framework. The framework of

continuum mechanics is developed by assuming fundamental laws of mechanics and

thermodynamics as axioms. The theory is based upon the basic concept of stress,

motion and deformation, upon the laws of conservation of mass, linear momentum,

1



Chapter 1

moment of momentum and energy, and on the constitutive relations. The constitutive

relations characterize the mechanical and thermal response of a materials, while the

basic conservation laws abstract the common features of all mechanical phenomena

irrespective of constitutive relations. From the view of continuum mechanics the

body is idealized as a continuous medium and the physical phenomena are described

in mathematical terms by introducing appropriate mathematical abstractions, which

leads to a system of partial differential equations with boundary and initial condi-

tions. The system of differential equations will be solved by employing the techniques

of applied mathematics to obtain analytical expression for some of the field variables

in terms of position and time as well as in terms of the geometrical and material

parameters.

An elastic body is a continuum solid when subjected to external loads get de-

formed and return to its original shape and size after the removal of external forces.

If the external forces are applied on the continuous body, the relative positions of its

constituent particles get altered, then the continuous body is said to be strained body

and the change in the relative positions of the particles is known as deformation. At

this stage, the particles resist to change their positions but the external force makes

them to change their positions up to some extent and when the external forces are

withdrawn, these particles at once regain their original shape and size. The elastic

property of a continuum body depends on the strength of resistance, so greater the

resistance of a body to deform the more is the elasticity. The measure of intensity of

internal forces generated in a body is called stress, and the deformation of the body

due to application of stress is called strain, so the strain indicates local deformation

in a body. Stress and strain are simultaneously occurring, the strain set up in a body

in such a way that there is a change in volume but no change in shape, is called di-

latation. There are two kinds of dilatation, ‘compression’ and ‘rarefaction’, in which

volume is reduced and increased respectively. Another elastic deformation is called

shear if there is a change in shape and size but not in a volume (Love, 1892).

2



Chapter 1

If the elastic constants are same for all points of the medium, then the body is

called elastically homogeneous, but if they are functions of the position, then the

body is said to be elastically inhomogeneous. The material is elastically isotropic if

there are no preferred directions in the material and the elastic constants must be

the same whatever the orientation of the cartesian coordinate system in which the

components of stress (τij) and strain (eij) are evaluated. The isotropic material has

infinite number of axis of symmetry, that means the isotropic materials have identical

values of physical properties in all direction. In other words, a material is said to be

isotropic if the rotation of particle in the un-deformed state, has no influence on the

stress tensor. There are materials in which certain physical properties vary with di-

rection from which they are measured. For instance, the refractive index or density of

a material is different when measured along certain different axes, such materials are

said to be anisotropic materials. The general elastic constitutive model formulated to

describe the mechanical behavior of material is anisotropic model. This kind of mate-

rials has no material symmetry. Orthotropic materials are the subclass of anisotropic

materials, which has material properties that differ along three mutually-orthogonal

axes of rotational symmetry. Glass and metals are examples of isotropic materials

while wood and composites are the common examples of anisotropic materials. In

wood, we can define three mutually perpendicular directions at each point in which

the properties along axial direction, radial direction and circumferential direction are

different.

A wave can be described as a disturbance or variation that transfers energy pro-

gressively from point to point in a medium and that may take the form of an elastic

deformation or of a variation of pressure, electric or magnetic intensity, electric po-

tential, or temperature. The medium through which the wave travels may experience

some local oscillations as the wave passes, but the particles in the medium do not

necessarily travel with the wave. The disturbance may take any of a number of

shapes, from a finite width pulse to an infinitely long sine wave. Mainly there are

3



Chapter 1

two types of waves -Mechanical and Electromagnetic waves. Mechanical waves propa-

gates through medium, deforming the substance of the medium and are characterized

by the transport of energy through motions of particles about an equilibrium position.

Deformability and inertia are essential properties of a medium for the transmission

of mechanical wave motions. All real materials are of course deformable and possess

mass and thus all real materials transmit mechanical waves. While electromagnetic

waves do not require a medium to propagate and can travel through vacuum, such as

light waves traveling from sun to the earth. A wave propagated by a medium having

inertia and elasticity, in which displaced particles transfer momentum to adjoining

particles, and are themselves restored to their original position is known as elastic

wave.

When elastic waves propagate, the energy of elastic deformation is transferred in

the absence of a flow of matter, which occurs only in special cases, such as during an

acoustic wind. A special feature of elastic wave is that their phase and group veloci-

ties are independent of the wave amplitude and the wave geometry. An elastic wave

may be a plane, spherical or cylindrical wave. They are longitudinal and shear waves.

Only longitudinal/compressional waves can propagate in liquids and gases, which are

elastic with respect to volume but not with respect to shape. The phase velocity of

waves in fluids and gases is given by c =
√

K/ρ, where K is the bulk modulus and ρ

is the density of the medium. In longitudinal waves, the particle motion is parallel to

the direction of wave propagation, and the deformation is a combination of uniform

compression or extension and pure shear. In shear waves, the particle motion is per-

pendicular to the direction of wave propagation and the deformation is pure shear.

For isotropic solids in bulk form, the phase velocity of longitudinal and shear waves

in isotropic medium are respectively given by
√
(K + 4/3G)/ρ and

√
G/ρ, where G

is the modulus of elasticity.

Seismic waves, sound waves and ultrasonic waves in liquids and gases are good

examples of elastic waves. Seismic waves are of two types - Body waves and Surface
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waves. Body waves travel through the interior of the medium and these waves are

known as Primary waves (P -waves) and Secondary waves (S-waves). The P -waves

are compressional waves and longitudinal in nature, and S-waves are shear waves and

transverse in nature which can be polarized into vertical (SV -waves) and horizontal

(SH-waves) directions. Surface waves travel along the surface of the medium, the

amplitude or strength of these waves fades exponentially from the boundary surface

of the medium. Rayleigh waves, Love waves, Stoneley waves, Lamb waves etc. are

examples of surface waves. Rayleigh waves can propagate at the boundary between a

solid half space and a vacuum, liquid or gas and such waves are taken as a combination

of non-uniform longitudinal and shear waves whose amplitudes decrease exponentially

with distance from the free boundary surface. Propagating disturbances confined to

the neighborhood of a surface occur not only in the vicinity of a free surface but also

at the interface of two half-spaces filled with different materials. Thus, there can be

surface waves at the interface of a solid and a fluid and also at the interface of two

solids. Such waves are called Stoneley waves. Love waves are horizontally polarized

surface waves and it is a result of the interference of many shear waves (S-waves)

guided by an elastic layer, which is welded to an elastic half-space on one side while

bordering a vacuum on the other side. Love and Rayleigh waves are guided by the

free surface of the Earth. They follow along after the P and S-waves have passed

through the body of the medium. Both Love and Rayleigh waves involve horizontal

particle motion, but only the latter type has vertical ground displacements. As Love

and Rayleigh waves travel, they disperse into long wave trains and cause much of the

shaking felt during earthquakes at substantial distances from the source. Lamb waves

are a specific case of surface-guided waves that propagate in solid plates or spheres and

their particle motion lies in the plane that contains the direction of wave propagation

and the plane normal. An infinite medium supports just two wave modes traveling

at unique velocities, but plates support two infinite sets of Lamb wave modes, whose

velocities depend on the relationship between wavelength and plate thickness.

5



Chapter 1

1.2 Stress and Strain

Let us consider, in a continuous medium, a region of volume V surrounded by

a closed surface ∆S, in such away that there is matter on both sides of the surface

with unit normal vector, n̂. The force acting on this surface per unit surface area is

called the traction and is given by (Pike and Sabatier, 2002)

T = τ · n̂, (1.1)

where τ is the stress.

Figure 1.1: The stress, strain and displacement in an elastic medium

For each point inside V , we define elastic stresses, strains and displacements as

a continuous functions of the spacial coordinates and time (Fig. 1.1). Stresses at a

point inside V are the limits of the quotients of the forces that act at this point per

unit surface through a plane with a certain orientation. The stress through a plane

with unit normal n̂ represented by a vector Tn is given by

Tn(xi, n) = lim
∆S→0

F

∆S
, (1.2)

where F is the force acting on ∆S.
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Stress is represented by a second order tensor τ with nine quantities, τij (Sokol-

nikoff, 1956; Udias, 2000) which are the stresses through three orthogonal planes. In

Cartesian co-ordinates system, the stress vectors (Tn), unit normal (n̂) and stress

tensors (τij) are shown in Figs. 1.2 and 1.3.

Figure 1.2: The stress tensors, τij and stress vector, Tn in a tetrahedron.

Figure 1.3: The stress tensors, τij and the stress vector, Tn in a rectangular parallelepiped.

7
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The state of stress at any point of a medium is completely characterized by these

nine quantities. If Tn be the stress vector acting at a point of a surface to which n̂

is normal, then the stress tensor is represented by

Tn = τijnj, (i, j = 1, 2, 3) (1.3)

where τij is the jth components of stress vector acting on a surface element to which

xi-axis is normal.

The strain tensor, eij in terms of the components of displacement vector, u =

(u1, u2, u3) is given by (Sokolnikoff, 1956)

eij =
1

2
(ui,j + uj,i), (i, j = 1, 2, 3) (1.4)

The relationship between the stress tensor (τij) and the strain components (eij)

for an elastic continuum is given by generalized Hooke’s Law which states that for

sufficiently small strain, each component of stress tensor is a linear combination of

the components of strain tensor as

τij = Cijklekl, (i, j, k, l = 1, 2, 3) (1.5)

In matrix notation, it may be represented by

τ11

τ12

τ13

τ21

τ22

τ23

τ31

τ32

τ33



=



C1111 C1112 C1113 C1121 C1122 C1123 C1131 C1132 C1133

C1211 C1212 C1213 C1221 C1222 C1223 C1231 C1232 C1233

C1311 C1312 C1313 C1321 C1322 C1323 C1331 C1332 C1333

C2111 C2112 C2113 C2121 C2122 C2123 C2131 C2132 C2133

C2211 C2212 C2213 C2221 C2222 C2223 C2231 C2232 C2233

C2311 C2312 C2313 C2321 C2322 C2323 C2331 C2332 C2333

C3111 C3112 C3113 C3121 C3122 C3123 C3131 C3132 C3133

C3211 C3212 C3213 C3221 C3222 C3223 C3231 C3232 C3233

C3311 C3312 C3313 C3321 C3322 C3323 C3331 C3332 C3333





e11

e12

e13

e21

e22

e23

e31

e32

e33


where Cijkl are the elastic coefficients. We know that Cijkl is a fourth order tensor
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and they are 81 in total. These coefficients are independent of eij but may vary from

point to point of the body. The number of these constants may be reduced due to

the symmetry and nature of the material body, i.e., general anisotropy, monoclinic,

orthotropic, transversely isotropic, cubic and isotropic materials.

(i) Stress symmetry

Since the stress tensors are symmetric, τij = τji and we have six independent

stress tensors, viz. τ11, τ22, τ33, τ12, τ13 and τ23.

We have

τij = Cijklekl, and τji = Cjiklekl. (1.6)

On subtracting these two equations, we get Cijkl = Cjikl.

Now there are six independent choices to express i and j together and still nine

independent ways to express k and l taken together. Thus with this symmetry, the

number of independent elastic constants reduce to 6× 9 = 54.

(ii) Strain symmetry

There are six independent strain components, i.e., e11, e22, e33, e12, e13 and e23 due

to eij = eji.

From Eq. (1.5), we have

τij = Cijklekl and τij = Cijlkelk, (1.7)

which give Cijkl = Cijlk. With this symmetry, there are six independent choices

to express both i and j as well as k and l taken together. Thus, the number of

independent elastic coefficients reduce to 6 × 6 = 36. Thus, the Hooke’s law takes

the form

τij = Cijklekl, (i, j, k, l = 1, 2, 3) (1.8)

where Cijkl = Cjikl = Cjilk = Cijlk.

This Hooke’s law may also be expressed in a compact form of equation as

τi = Cijej, i, j = 1, 2, 3, 4, 5, 6. (1.9)
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(iii) Strain energy function

The strain energy density function (W ) is a quadratic function of strain given as

W =
1

2
Cijeiej, (1.10)

with the property

∂W

∂ei
= τi, i = 1, 2, 3, 4, 5, 6. (1.11)

On differentiating Eq. (1.10) with respect to ek, we get

∂W

∂ek
=

1

2
Cikei +

1

2
Ckjej. (1.12)

Since i and j are the dummy suffixes, the above equations give

τk =
1

2
(Cik + Cki)ei, (1.13)

and resulting Cij = Cji ∀ i, j.

Thus, the number of elastic coefficients reduce to 21. These 21 independent

constants represent the characteristics for a general anisotropic or aelotropic material.

(iv) Symmetry with respect to a plane

Consider an elastic solid having symmetry with x1x2-plane. We have transformed

the axis of the Cartesian co-ordinate as x1 → x′
1, x2 → x′

2, x3 → −x′
3 and Cij’s are

invariant under this transformation. The direction cosines for this transformation is

x1 x2 x3

x′
1 1 0 0

x′
2 0 1 0

x′
3 0 0 -1

Table 1.1: Direction cosines

We know that

τ ′αβ = lαilβjτij, and e′αβ = lαilβjeij, (1.14)

where lij is the direction cosine.
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We have

τ ′1 = τ1, τ
′
2 = τ2, τ

′
3 = τ3, τ

′
4 = −τ4, τ

′
5 = −τ5, τ

′
6 = τ6

and e′1 = e1, e
′
2 = e2, e

′
3 = e3, e

′
4 = −e4, e

′
5 = −e5, e6 = e6.

(1.15)

Hence, we have

τ1 = C11e1 + C12e2 + C13e3 − C14e4 − C15e5 + C16e6. (1.16)

Using Eqs.(1.15) and (1.16), we get C14 = C15 = 0.

Similarly, we get

C24 = C25 = C34 = C35 = C64 = C65 = C41 = C42

= C43 = C46 = C51 = C52 = C53 = C56 = 0.

Thus, the number of elastic constants reduce to 13 and such anisotropic materials

are known as monoclinic medium. Lithium tantalate, Lithium neobate, Beta-sulfur,

gypsum, borax, orthoclase, kaolin, muscovite, clinoamphibole, clinopyroxene, jadeite,

azurite, and spodumene crystallize show the monoclinic symmetry.

Similarly by considering the symmetry with respect to x2x3-plane, we can get

C16 = C26 = C36 = C45 = C54 = C61 = C62 = C63 = 0.

In this case, the number of independent elastic coefficients reduce to 9 and such

anisotropic materials are known as orthotropic elastics. Unidirectional fibrous com-

posites and woods are an example of orthotropic materials. We may note that if we

consider elastic symmetry with respect to x1x3-plane, there is no further reduction

in the number of elastic coefficients. Thus, if there are two orthogonal planes of

elastic symmetry, then the third orthogonal plane is automatically a plane of elastic

symmetry.

(v) Symmetry with respect to axis

We transform the Cartesian co-ordinates by rotating x1, x2 and x3-axes through

a right angle about x1-axis. The table of direction cosines for this transformation is
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x1 x2 x3

x′
1 1 0 0

x′
2 0 0 1

x′
3 0 −1 0

Table 1.2: Direction cosines

Using these direction cosines into Eq. (1.14), we obtain

C12 = C13, C33 = C22, C55 = C66.

Thus, the number of elastic coefficients reduce to 6.

Next, we consider the rotation of axes through a right angle about x3−axis and we

obtain

C13 = C23, C11 = C22, C44 = C55.

In this symmetry, the number of elastic coefficients reduce to 3 and such anisotropic

materials are said to be cubic symmetry.

If we transform the Cartesian co-ordinates by rotating x1, x2 and x3-axes through

an angle θ about x3-axis. The direction cosines for this transformation is

x1 x2 x3

x′
1 cos θ sin θ 0

x′
2 − sin θ cos θ 0

x′
3 0 0 1

Table 1.3: Direction cosines

Using these direction cosines into Eq. (1.14), one may obtain

C44 =
1

2
(C11 − C12) = µ and C12 = λ

as the only two elastic constants. Such materials are said to be isotropic elastic body
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and Hooke’s law, in this case, is given by

τij = λδijΘ+ 2µeij, i, j = 1, 2, 3 (1.17)

where Θ = eii, i = 1, 2, 3. The strain components (eij) may be represented as

eij =
−λδij

2µ(3λ+ 2µ)
ν +

1

2µ
τij, (1.18)

where ν = (3λ+ 2µ)Θ with λ and µ as Lamé parameters.

1.3 Linear momentum and the stress tensor

Consider a continuum body with volume V and boundary S. This boundary

surface is subjected to the distribution of surface traction T(x, t) per unit area acting

on every point and each mass element of the body may be acted with a body force,

F(x, t) per unit volume. The principle of balance of linear momentum states that

the instantaneous rate of change of the linear momentum of a body is equal to the

resultant external force acting on the body at the particular instant of time which

may be written as ∫
S

T(x, t)ds+

∫
V

ρF(x, t)dv =

∫
V

ρüdv. (1.19)

Inserting Eq. (1.3) into Eq. (1.19), we have∫
S

τijnjds+

∫
V

ρFidv =

∫
V

ρüidv. (1.20)

Using Gauss’s divergence theorem, the surface integral can be transformed into a

volume integral as ∫
S

τijnjds =

∫
V

τij,jdv. (1.21)

Using Eqs. (1.21) and (1.20), we get∫
V

(τij,j + ρFi − ρüi)dv = 0. (1.22)
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Since the integrand is continuous and V is arbitrary, we can take

τij,j + ρFi = ρüi, (i, j = 1, 2, 3). (1.23)

This equation is also known as Cauchy’s first equation of motion.

1.4 Spectrum theorem

Let AB and CD be two incident plane waves with wave front BF on a periodic

surface whose wavelength BD is 2π/np. SupposeBF andDG are the reflected waves.

The incident and reflected waves make angles α and αn respectively with the vertical

on the periodic surface as shown in Figure 1.4.

Figure 1.4: Incident and reflected plane waves.

The wave front meets the surface at B and that point starts radiating reflected

waves before the wave front of the incident wave arrives at the point D of the surface.

Hence, there is a difference between the length of the paths of two reflected waves.

Let BE and DF be normal to CD and BF respectively. The wave emerging from B
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covers a distance which exceeds that covered by the wave emerging from D by

|BF | − |DE| = 2π

np
(sinαn − sinα)

Thus, the phase difference between the two waves is 2πk
np

(sinαn − sinα), where k

is wavenumber. For the constructive interference, the phase difference between these

waves must be a multiple of 2π. Hence, we have

sinαn − sinα = ±|np|
k

. (1.24)

This equation may be written as

sinα+
n = sinα+

|np|
k

, sinα−
n = sinα− |np|

k
, (1.25)

where α+
n and α−

n are respectively angles of the scattered waves to the right and left

sides of the plane wave as shown in Figure 1.5.

Figure 1.5: The angles of reflected waves α+
n and α−

n with incident angle, α.
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1.5 Rayleigh’s method of approximation

Rayleigh (1907) was the first who had studied the problem on the scattering of

light or sound waves. In his method, the function defining the corrugated interface

in the boundary condition is expanded in Fourier series and the unknown coefficients

in the solutions are determined in terms of small parameter up to any given order of

approximation, which is the characteristics of the corrugated interface.

In order to explain this method, let us take a corrugated interface given by z =

ζ(x) separating two media. This function is periodic in x and independent of y whose

mean value is zero. The Fourier series expansion of ζ(x) is

ζ(x) =
∞∑
n=1

(ζ+ne
ınpx + ζ−ne

−ınpx) (1.26)

= c1 cos px+ c2 cos 2px+ s2 sin 2px+ ...+ cn cosnpx+ sn sinnpx+ ....,

where ζ+1 = ζ−1 = c1/2, ζ±n = (cn ∓ ιsn)/2.

The direction cosines of the normal, ν to z = ζ(x) are< 1/
√
1 + ζ ′2, 0, ζ ′2/

√
1 + ζ ′2 >

and those of tangent, t are < −ζ ′2/
√

1 + ζ ′2, 0, 1/
√

1 + ζ ′2 >, where ζ ′ = dζ/dx. The

normal (Nν) and tangential stresses (Tν , Yν) in the νyt-system are connected to those

Xx, Zx, Zz in the xyz-system by the following relation as

Nν = [(Zz −Xx)ζ
′ + Zx(1− ζ ′2)]/(1 + ζ ′2),

Tν = [Zz + ζ ′2Xx − 2ζ ′Zx]/(1 + ζ ′2), Yν = [Yz − ζ ′Yx]/
√

(1 + ζ ′2). (1.27)

The total displacements for SH-waves in the two half-spaces after dropping the

common factor (eiωt) are given by (Assano, 1960)

v = ei
√
σ1h1x sinα[A0e

i
√
σ1h1z cosα + A1e

−i
√
σ1h1z cosα +

∞∑
n=1

A±
n e

i(±npx−
√
σ1h1z cosα

±
n )],

v′ = ei
√
σ1h1x sinα[B1e

i
√
σ2h2z cosβ +

∞∑
n=1

B±
n e

i(±npx+
√
σ2h2z cosβ

±
n )], (1.28)

where Ai and Bi are amplitude constants, h2
i = ρiω

2/(λi + 2µi), ω is the angular

frequency, ρi is the density and σi = (λi + 2µi)/µi.
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There are continuity of displacements and tangential stress at z = ζ(x). These

conditions are given by

A0e
i
√
σ1h1ζ cosα + A1e

−i
√
σ1h1ζ cosα +

∞∑
n=1

A±
n e

i(±npx−
√
σ1h1ζ cosα

±
n )

= B1e
i
√
σ2h2ζ cosβ +

∞∑
n=1

B±
n e

i(±npx+
√
σ2h2ζ cosβ

±
n ), (1.29)

µ[A0

√
σ1h1(cosα− ζ ′ sinα)ei

√
σ1h1ζ cosα − A1

√
σ1h1(cosα + ζ ′ sinα)e−i

√
σ1h1ζ cosα

−
∞∑
n=1

A±
n e

±inpx{
√
σ1h1 cosα

±
n + (

√
σ1h1 sinα± np)ζ ′}e−i

√
σ1h1ζ cosα

±
n ]

= µ′[B1(
√
σ2h2 cos β −

√
σ1h1ζ

′ sinα)ei
√
σ2h2ζ cosβ

+
∞∑
n=1

B±
n e

±inpx{
√
σ2h2 cos β

±
n − (

√
σ1h1 sinα± np)ζ ′}ei

√
σ2h2ζ cosβ

±
n ]. (1.30)

Note that slope and amplitude of the corrugated interface are small enough so that

e±i
√
σ1h1ζ cosα = 1± i

√
σ1h1ζ cosα− σ1h

2
1ζ

2 cos2 α± ...... etc. (1.31)

Using Eq.(1.31) into Eqs.(1.29) and (1.30), we may find the amplitude ratios

corresponding to regular and irregular waves of any order (n) of approximations.

Homma (1940) used this method for the first time in the Seismic waves. Sato (1955)

solved the problem of the reflected waves at a corrugated free surface by Rayleigh’s

technique.

1.6 Importance of wave propagation

Wave propagation and their phenomena of reflection and transmission from a

boundary surface is an elegant and fascinating subject that deals with numerous

problems in various fields, i.e., Seismology, geophysics, Earthquake engineering, tele-

communication, medicines (echography), metallurgy (non-destructive testing) and

signal processing. These waves are useful in detection of notches and faults in different

types of materials such as in railway tracks, buried land-mines, etc. Seismic waves
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are useful tool for investigating the internal structure of the earth and also used for

exploration of valuable materials such as minerals, crystals, fluids (oils, water) etc.

beneath the earth surface.

The nature of the composition of matters in the Earth’s crust plays an important

role in changing the characteristics of the seismic signals recorded on the surface of

the Earth. These seismic signals carry a lot of information with them about the

internal structures of the Earth’s interior and their dynamic characteristics can be

carried out up to a large extent. The surface waves are very helpful for the study

of crustal and upper mantle structures. The knowledge about the upper structure

of the Earth helps the seismologists in studying the nature of the possible sources of

Earthquakes and which, in turn, further help in the prediction.

The Earth is approximated by various models in the study of Seismic waves.

These models are mathematical frameworks within which observed seismograms are

related to the Earth’s interior via model parameters. To achieve a better study of

Earth’s structures, especially for deep interior, the studies of wave propagation in

Earth’s models become more important. It is proved that S-waves can not travel

through the interior of the core. This leads to the conclusion that the Earth core is

composed of material which is non-viscous liquid like and is believed to be in liquid

form at high temperature and harder than the solid. Earth’s strata has different

layers and there are many experimental evidences that the discontinuities/interfaces

between these layers are not perfectly plane, but they are of corrugated and hence

irregular in nature. These irregular natures of the interfaces affect in the reflection

and transmission phenomena of the elastic waves. Thus, it is important to take into

account the problems related with the effects of irregular interfaces. If the structure

of the earth were simple enough like uniform and homogeneous, it would be easy to

grasp the nature of the Earthquake motion. The geophysical exploration methods

such as seismic, gravity and other prospecting and also geodesic measurement have

revealed the existence of roughness/corrugation in many parts of the world. Thus,
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it is necessary to study the effect of the undulation of the boundary surface on the

propagation of elastic waves.

1.7 Review of literatures

The theory of wave propagation is an interesting area of research since long.

Lamb (1881) examined into the nature of the fundamental modes of vibration of an

elastic sphere and discussed the vibrations of an elastic solid having finite dimensions.

Rayleigh (1885) investigated the behavior of waves on the plane free surface of an infi-

nite homogeneous isotropic elastic solid, their character are such that the disturbance

confined to a superficial region of thickness comparable with the wave-length. Love

(1892) discussed the general Mathematical theory of the elastic properties of the first

class of bodies. Cosserat and Cosserat (1909) explained the statics and dynamics of

deformable media. Aki and Richards (1930) explored the propagation of seismic waves

in realistic Earth models including the theories of fracture and rupture propagation.

Christie (1955) showed that an incident dilatation wave on a free surface produces

reflected dilatation and distortion waves. Brekhoviskikh (1960) presented a system-

atic exposition on the theory of propagation of elastic and electromagnetic waves in

layered media. Mindlin (1964) formulated a linear theory of a three-dimensional elas-

tic continuum which has some of the properties of a crystal lattice. Fedorov (1968)

adopted the theory of elastic waves in crystals.

Gurtin (1981) introduced the linear and nonlinear theories of elasticity in the con-

tinuum mechanics for an ideal compressible viscous fluids. Spencer (1984) studied

numerous problems related with deformation and stress of fibre-reinforced compos-

ite anisotropic materials. Chadwick (1985) investigated the basic characteristics of

surface waves in an anisotropic elastic body which depend crucially on the transonic

states defined by the sets of parallel tangents to a centered section of the slowness

surface. Kielczynski and Pajewski (1987) analyzed the validity of an approximate

reflection coefficient for an obliquely incident SH-wave at a plane interface between
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an elastic solid and a viscoelastic liquid. Doyle (1989, 1997) discussed the subject

of wave propagation in structures using the fast Fourier transform (FFT ) and dis-

crete Fourier transform (DFT ) based spectral analysis methodology. Golubovic and

Lubensky (1989) analyzed the structural phase transitions in amorphous solids associ-

ated with vanishing bulk and shear modulus. Dowaikh and Ogden (1990) investigated

the propagation of surface waves on the half-space of incompressible isotropic elas-

tic material. Hosten (1991) discussed a method of characterizing orthotropic and

viscoelastic behavior of some composite materials. Chattopadhyay and Choudhury

(1995b) studied the problem of reflection/transmission of magneto-elastic shear waves

in two infinite self-reinforced elastic half-spaces. Ogden and Sotiropoulos (1997) il-

lustrated the influence of pre-stress and finite strain on the reflection of plane waves

from the surface free boundary of an incompressible isotropic elastic solid. Anderson

et al. (1999) developed a continuum theory for the mechanical behavior of rubber-

like solids that are formed by the cross-linking of polymeric fluids containing nematic

molecules as elements of their main-chains or as pendant side-groups. Gebretsad-

kan and Karla (2002) investigated the propagation of linear waves in relativistic

anisotropic magneto-hydrodynamics and plotted the Fresnal ray surface. Singh and

Singh (2004) studied the problem of plane waves in fibre-reinforced elastic media and

showed that the phase velocities of quasi P and SV -waves depend on the angle of

propagation.

Zhu and Tsvankin (2006) developed a consistent analytic treatment of plane wave

for transversely isotropic media. Chattopadhyay and Venkateswarlu (2007) obtained

the phase velocities of quasi P and quasi SV -waves in terms of propagation vector

of plane waves in the fibre reinforced medium. Ota (2009) examined the singularities

of the scattering kernel for incident transverse wave. Vinh and Giang (2011) derived

the velocity of Stoneley waves propagating along the loosely bonded interface of two

isotropic elastic half-spaces using the complex function method. Singh (2011a) stud-

ied the effect of initial stresses on incident qSV -waves at a plane interface of two
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dissimilar pre-stressed elastic half-spaces and derived the reflection and refraction

coefficients. Singh (2017) investigated the problem of plane waves propagation in

anisotropic nematic elastomers and obtained the phase velocity and attenuation co-

efficients for the plane harmonic waves. The problems based on waves and vibrations

have been analyzed by many researchers with different elastic models and they are

in several books and research papers such as Lamb (1917a, 1917b), Love (1911),

Carlson and Heins (1946), Sokolnikof (1956), Ewing et al. (1957), Toupin, (1962),

Scott (1975), Achenbach (1976), Ben-Menahem and Singh (1981), Sobczyk (1985),

Bullen and Bolt (1985), Abeyaratne (1988), Bowen (1989), Graff (1991), Lai et al.

(1993), Sheriff and Geldart (1995), Chattopadhyay et al. (1997), Xia et al. (1999),

Udias (1999), Singh (1999), Singh and Khurana (2002), Pujol (2003), Zarutskii and

Podilchuk (2006), Muller (2007), Reddy (2008), Nair (2009), Shearer (2009), Wilman-

ski (2010), Blum et al. (2011), Clive and Irving (2013), Rose (2014), Zhang et al.

(2019), Malla et al. (2019), Saed and Terentjev (2020) and Ohzono et al. (2019,

2020).

Chattopadhyay and Choudhury (1995a) discussed the reflection of P -waves at the

free and rigid boundaries in a medium of monoclinic type and obtained phase velocity

of Rayleigh wave and reflection coefficients of the reflected waves. Chattopadhyay

and Saha (1996) investigated the phenomena of reflection and refraction of incident

P -waves at a plane interface between two monoclinic half-spaces. Chattopadhyay et

al. (1996) discussed the problem of incident SV -wave in the monoclinic elastic half-

space and derived the reflection coefficients for P and SV -waves. Chattopadhyay

and Saha (1999) investigated the problem of reflection/refraction of incident quasi

SV -wave at a plane interface of two monoclinic half-spaces. Sotiropoulos and Nair

(1999) examined the reflection of plane elastic waves from a free surface of mono-

clinic incompressible materials under plane strain conditions. Singh and Khurana

(2001, 2002) studied the problems of reflected and transmitted P and SV -waves at

an interface of two monoclinic elastic half-spaces and obtained the reflection and
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transmission coefficients using suitable boundary conditions. Singh et al. (2003)

obtained the closed form analytical expression for the horizontal displacement due

to a long inclined strike-slip fault situated in a monoclinic elastic half-space. Chat-

topadhyay and Rajneesh (2006) derived the reflection and refraction coefficients of the

plane waves at an interface between isotropic and anisotropic triclinic crystalline half-

spaces. Singh (2010) discussed the reflected waves from a thermally insulated stress

free thermoelastic solid of monoclinic type and observed the effects of anisotropy and

thermal relaxation times. Chattopadhyay et al. (2013) obtained the closed form

expressions for the amplitude ratios of qP , qSV and qSH-waves from the interface

between two distinct generally anisotropic half-spaces. Kumari et al. (2014) studied

the phenomena of reflection and refraction of incident quasi (P/SV )-waves in dissim-

ilar monoclinic media separated by an isotropic layer of finite thickness.

Liquid-crystalline elastomers (LCEs) represent a novel and exciting physical sys-

tem that combines the local orientational symmetry breaking and the entropic rubber

elasticity. Nematic elastomers (NEs) are soft materials, rubbery solids made up of

cross-linking of nematic crystalline molecules called mesogens either incorporated into

the main chain or pendant from them (Finkelmann et al., 1981). The mesogens are

rigid rod-like molecules attached to the polymeric backbone. They are randomly

oriented at high temperature but upon cooling through the isotropic-nematic tran-

sition temperature, they align along a common direction described by the nematic

director (Warner and Terentjev, 1996). One of the characteristic property of NEs

is the presence of long macromolecules with rare intermolecular transversal bonds.

There is an interplay between elastic and orientational order which is responsible for

many fascinating properties that are different from elastic solids and liquid crystals

(de Gennes and Prost, 1993). It’s soft matter properties lead to growing interest

in the field of microelectronics, biomechanics, nanomechanics and device applicable

in mechanical damping, optics or acoustics, where there are possibility of accoustic

polarization. These materials also display many unusual mechanical properties in-
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cluding the formation of fine-scale microstructures and fine-scale wrinkles (Xie and

Zhang, 2005; Ohm et al., 2012).

Mitchell et al. (1987) described the preparation of a range of acrylate-based

side-chain liquid crystal elastomers and showed that materials containing upto 13

mol percent of cross-linking units exhibit a nematic-isotropic transition. Semenov

and Kokhlov (1988) studied the conditions for phase equilibrium of liquid-crystalline

polymers. Kupfer and Finkelmann (1991) introduced an approach for alignment of

elastomers and liquid crystal polymers with more permanent and macroscopically

uniform. Kupfer et al. (1993) synthesized a series of liquid single-crystal elas-

tomers with different cross-linking densities. Terentjev (1993) derived the general

phenomenological free energy for a liquid crystalline elastomer under arbitrary strain

and orientational distortions. Using the group representations method, he obtained

all invariants describing the coupling of translational and orientational deformations

and/or external electric field. Bladon et al. (1994) showed that monodomain nematic

networks formed by cross-linking polymer liquid crystals in ordered states retain a

memory of their anisotropic cross-linking conditions. Kundler and Finkelmann (1995)

investigated the strain-induced director reorientation process in nematic liquid single

crystal elastomers for the case of an arbitrary angle between the original director and

the external stress axis. Verwey et al. (1996) studied the elastic and orientational re-

sponse of a uniform nematic elastomer subjected to an extension perpendicular to its

director. Finkelmann et al. (1997) presented an experimental and theoretical investi-

gation of the critical formation of stripe domains in monodomain nematic elastomers.

Clarke and Terentjev (1998) discussed the dynamics of stress relaxation before, during

and after the polydomain-monodomain transition. Teixeira and Warner (1999) stud-

ied analytically and numerically the dynamics of ‘how does an anisotropic nematic

elastomer respond elastically and orientationally to an imposed strain?’. Terentjev

(1999) examined the unusual mechanical properties of nematic and smectic rubbers,

their randomly disordered equilibrium textures, some aspects of dynamics and me-
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chanical relaxation.

Uchida (2000) investigated the properties of disordered nematic elastomers and

gels emphasizing on the roles of nonlocal elastic interactions and cross-linking condi-

tions. Long and Morse (2000) described the linear viscoelastic response of mon-

odomains of unentangled nematic liquid crystalline polymers using a generalized

Rouse model. Clarke et al. (2001) presented a combine theoretical and experimen-

tal study of linear viscoelastic response in oriented monodomain nematic elastomers.

Selinger et al. (2002a) showed that the molecules in a nematic liquid-crystal cell can

be realigned by an ultrasonic wave leading to the change in the optical transmission

through a cell. Fradkin et al. (2003) investigated the problem of viscoelastic the-

ory of nematic elastomers in the low-frequency limit and discussed the spectral and

polarization properties of acoustic waves. Cermelli et al. (2004) derived a supple-

mental evolution equation for an interface between the nematic and isotropic phases

of a liquid crystal neglecting the liquid flow. Brand et al. (2006) analyzed the se-

lected macroscopic properties of side chain liquid crystalline elastomers focusing on

the influence of relative rotations between the director and the strain field. DeSimone

and Teresi (2009) discussed several elastic energies for nematic elastomers with small

strain expansions both for the cases of large director rotations and small director

changes. Ericksen (1960), Leslie (1966), Mitchell et al. (1993), Bladon et al. (1993),

Brand and Plenier (1994), Alexe-Ionescu et al. (1994), Verwey et al. (1996), Ander-

son et al. (1999), Everaers (1999), DeSimone and Dolzmann (2000), Schmidtke et al.

(2000), Schonstein et al. (2001), Finkelmann et al. (2001), Terentjev and Warner,

(2001), Fried and Todres (2002), Conti et al. (2002), Selinger et al. (2002b), Warner

and Terentjev, (2003), Ohm et al. (2011), Wim (2012), Guin et al. (2018), Gattinger

et al. (2019) and Ditter et al. (2020) also discussed different problems related with

nematic elastomers.

Othman and Song (2008) established the equations of motion for the generalized

magneto-thermoelastic materials with two relaxation times and discussed the effects
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of reference temperature, the applied magnetic field and thermal coupling on the

reflection coefficient of the reflected waves. Zakharov (2011) investigated the local-

ized waves near the stress-free surface or the free edge of a solid with a thin nematic

coating. Matteis (2012) introduced and analyzed a variational theory proposed on

the interaction of acoustic fields and the nematic texture of a liquid crystal. Yang et

al. (2014) studied the characteristic equations for Rayleigh wave propagation in NEs

based on viscoelastic theory at low frequency limit and obtained the dispersion equa-

tion. Plucinsky and Bhattacharya (2017) showed analytically and numerically that

nematic elastomer sheets can suppress wrinkling by modifying the expected state of

stress through the formation of microstructures. Urbanski et al. (2017) investigated

the liquid crystals in micron-scale droplets and documented their extraordinary re-

sponsiveness and large diversity of self-assembled structures of liquid crystals. Zhao

and Liu (2018) studied the problem of transverse wave dispersion in an NE beam by

considering anisotropy and viscoelasticity in the low frequency limit.

Green (1982) obtained the phase velocity of flexural waves (Lamb waves) in a

plate of transversely isotropic material with the axis of transverse isotropy lying in

the plane of the plate. Belfield et al. (1983) revealed about the anisotropic behavior

of fibre-reinforced elastic plates in such away that the reinforcement are continu-

ously distributed in concentric circles. Baylis and Green (1986) used a continuum

model to explain the mechanical properties of flexural waves in fibre-reinforced lam-

inated plates. Rogerson (1991) investigated various dynamic properties of trans-

versely isotropic incompressible elastic medium and obtained the wave speeds in

explicit form. Dowaik and Ogden (1991) examined the propagation of an interfa-

cial (Stoneley) waves along the boundary between two half-spaces of pre-stressed

incompressible isotropic elastic materials. Payton (1992) developed a model on a

transversely isotropic elastic solid whose slowness surface has two conical points on

the symmetry axis. Rogerson (1992) examined the dynamic response of a six-ply

fibre-reinforced laminated plate to an impulsive line load acting on the upper sur-

25



Chapter 1

face. Chadwick (1993) concluded that exceptional transonic states arise only when

the direction of transverse isotropy is either in the reference plane or at right angles

to the reference vector. Nair and Sotiropoulos (1997) examined the propagation of

elastic plane waves in orthotropic incompressible materials under plane strain condi-

tions. Rogerson and Sandiford (2000) derived the dispersion relation associated with

small amplitude waves propagating along a common principal direction in a two layer

perfectly bonded elastic structure. Destrade (2001) obtained the secular equation for

surface acoustic waves traveling in an orthotropic incompressible half-space using the

first integral method. Chattopadhyay and Rogerson (2001) studied the problem of

reflection of plane waves from a traction-free boundary of incompressible elastic ma-

terial. Itskov and Aksel (2002) studied elastic constants and their admissible values

for incompressible and slightly compressible anisotropic materials.

Kossovich et al. (2002) derived the dispersion relation associated with harmonic

waves in an incompressible transversely isotropic elastic plate. Ogden and Vinh

(2004) obtained the characteristic equation for the Rayleigh wave in an incompress-

ible orthotropic material. Prikazchikov and Rogerson (2004) investigated the problem

of surface wave propagation in the transversely isotropic incompressible pre-stressed

half-space. Spencer and Soldatos (2007) showed that the stress and couple stress

are direct and successive functions of first and second dimensional differentials of the

displacement. Singh (2007b) assumed a suitable boundary conditions to obtain the

amplitude ratios at free surface of transversely isotropic incompressible elastic half-

space. There are many other papers on fibre-reinforced and transversely isotropic

materials such as Pipkin (1979), Payton (1983), Lauke and Schultrich (1983), Chad-

wick (1989a,1989b), Chattopadhyay and Choudhury (1990), Tomar et al. (2002),

Rouison et al. (2004), Kumar and Hundal (2007), Munch et al. (2011), Chen et al.

(2011), Komijani et al. (2013), Chabaud et al. (2013), Mohammed et al. (2015),

Koniuszewska and Kaczmar (2016), Abhemanyu et al. (2019), Sanjay et al. (2019)

and Mahanty et al. (2020).
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Ogden and Singh (2011) derived the general constitutive equation for a trans-

versely isotropic hyper-elastic solid in the presence of initial stress based on the the-

ory of invariants. Abd-Alla et al. (2013) investigated the propagation of surface

waves in fibre-reinforced anisotropic elastic medium subjected to gravity field. They

derived the frequency equations of Stoneley waves, Rayleigh waves and Love waves.

Singh et al. (2014) analyzed reflection and refraction patterns of elastic waves due

to incident plane wave at an interface of two dissimilar incompressible transversely

isotropic fibre-reinforced elastic half-spaces. Chatterjee and Chattopadhyay (2015)

investigated the propagation of SH-waves in slightly compressible finitely deformed

elastic half-spaces. Zak and Krawczuk (2018) analyzed certain aspects related to the

dynamic behavior of isotropic shell-like structures by using an approach known as the

time-domain spectral finite element method (TD − SFEM). Kumari et al. (2019)

investigated SH-wave propagating in a visco-elastic fibre-reinforced layer resting over

a porous half-space and obtained the displacement components using method of sep-

aration of variable. Verma et al. (2019) examined the issue of versatile plastic change

in transversely isotropic spherical shell with the condition of uniform internal pres-

sure.

The study of scattering waves from a rough or corrugated surface is interesting

and useful in a number of fields. Blake (1950) applied probability theory to study the

reflected radio waves from a rough sea. Rice (1951) dealt with the reflection of plane

electromagnetic waves from a surface z = f(x, y) using the perturbation method.

Miles (1954) examined the reflection of a plane wave at a rough interface separating

two fluid media. Kuo and Nafe (1962) investigated the problem of Rayleigh wave

propagation in a solid layer overlying a solid half-space separated by a sinusoidal in-

terface. Abubakar (1962a) obtained an approximate solution of the two-dimensional

problem of reflection of plane harmonic P and SV -waves at an irregular boundary by

using modified Rice’s perturbation method. Dunkin and Eringen (1963) showed that

27



Chapter 1

the magnetic field has been much more effective than the electric field in the cou-

plings between the elastic and electromagnetic waves. Levy and Deresiewicz (1967)

studied the behavior of the reflected and transmitted waves from a layered medium

whose internal interfaces are irregular. Kennet (1972) discussed the scattering of seis-

mic waves using the first-order perturbation theory. Gupta (1978) studied the two

dimensional model of reflection and refraction phenomena of waves from the curved

surface. Gupta (1987) studied reflection and transmission coefficients of plane SH-

waves at a corrugated interface between two laterally and vertically heterogeneous

media by using Rayleighs method of approximation. Paul and Campillo (1988) an-

alyzed the problem of the effect of small scale irregularities on the reflected elastic

waves using a discretized form of boundary integral equations.

Nayfeh (1991) derived analytical expressions for the reflection and transmission

coefficients of the elastic waves from the interface of liquid/anisotropic half-spaces.

Korneev and Johnson (1993) described the complete and exact solution for the prob-

lem of an incident P -wave scattered by an elastic spherical inclusion. Zhang and Shi-

nozuka (1996) investigated the effects of irregular boundaries on the propagation of

seismic waves in a layered half-space. Kumar et al. (2003) investigated the problem of

reflection and transmission of SH-waves at a corrugated interface between two differ-

ent transversely isotropic and vertically heterogeneous elastic solid half-spaces. Kaur

and Tomar (2004) investigated the problem of reflection and transmission of shear

wave incident upon a corrugated interface between two monoclinic elastic half-spaces

using Rayleigh’s technique. Kaur et al. (2005) obtained the reflection and transmis-

sion coefficients due to incident plane SH-waves at a corrugated interface between two

isotropic, laterally and vertically heterogeneous viscoelastic solid half-spaces. Tomar

and Singh (2006) derived the expressions of reflection and refraction coefficients for

first and second order approximation of the corrugation due to incident plane har-

monic SH-wave at a corrugated interface between two different perfectly conducting

self-reinforced elastic half-spaces. Dravinsky (2007) analyzed anti-plane strain and
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plane strain models for scattering of harmonic waves by a sedimentary basin with cor-

rugated interface using an indirect boundary integral equation method. Singh and

Tomar (2007a, 2008a) investigated the problem of qP -waves at a corrugated inter-

face between two dissimilar monoclinic elastic half-spaces and obtained the reflection

and transmission coefficients of the irregular waves. Tomar and Kaur (2007b) ob-

tained the reflection and transmission coefficients due to incident plane SH-wave at

a corrugated interface between a laterally and vertically inhomogeneous anisotropic

and isotropic viscoelastic solid half-space. Singh and Tomar (2008b) studied a plane

qP -wave incident at a corrugated interface between two dissimilar pre-stressed elastic

solid half-spaces and obtained the reflection and transmission coefficients correspond-

ing to regular and irregular waves.

Yu and Dravinsky (2009) investigated the scattering of plane harmonic P , SV

or Rayleigh waves from corrugated cavity completely embedded in an isotropic half-

space or full-space by using a direct method of boundary integral equation. Chat-

topadhyay et al. (2009) investigated the problem of reflection and transmission of

plane quasi P -waves at a corrugated interface between distinct triclinic elastic half-

spaces. They obtained the closed form expressions for reflection and transmission

coefficients using Rayleigh’s method of approximation. Singh and Singh (2013) ex-

plained the effect of corrugation for incident qSV -wave in pre-stressed elastic half-

spaces with the help of Rayleigh’s method and obtained the reflection and trans-

mission coefficients of the regularly and irregularly reflected and transmitted waves.

Singh et al. (2016) investigated the effect of sandiness, heterogeneity and gravity on

phase velocity and attenuation of SH-waves propagating in a corrugated interface

of heterogeneous elastic and viscoelastic half-spaces. Kumhar et al. (2019) investi-

gated the traversal of torsional wave at a corrugated interface between viscoelastic

sandy medium and inhomogeneous half-space. They employed the variable separation

method to obtain analytical solution of displacement components. The scattering of

acoustic and electromagnetic waves from irregular surface has been dealt by several
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investigators, notably Rayleigh (1877, 1893), Feinberg (1944), Brekhovskikh (1952),

Elliott (1954), Asano (1960, 1961, 1966), Dunkin and Eringen (1962), Abubakar

(1962b, 1962c), Deresiewicz and Wolf (1964), Gupta (1987), Lakhtakia et al. (1993),

Voronovich (1994), Tomar and Saini (1997), Tomar and Kaur (2003, 2007a), Benerjee

and Kundu (2006), Singh and Tomar (2007b, 2007c), Tong and Chew (2009), Singh

(2011b, 2013), Singh et al. (2015), Kumar et al. (2016).
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Chapter 2

Response of corrugated interface

on incident qSV -wave in

monoclinic elastic half-spaces1

2.1 Introduction

The propagation of elastic waves and their reflection and transmission from dis-

continuities and interfaces are great concerned of many researchers. Chattopadhyay

and Saha (1996, 1999) obtained the reflection and transmission coefficients of P and

qSV -waves at a plane interface between two different monoclinic media. Singh and

Khurana (2001) also investigated the reflection and transmission of P and SV -waves

at the interface between two monoclinic elastic half-spaces. Singh (2013) studied

the problem on reflection and transmission of plane waves at an imperfect interface

between two dissimilar monoclinic elastic half-spaces.

This chapter is concerned with the problem of reflection and transmission of elastic

qSV and qP -waves due to incident plane qSV -wave at a corrugated interface between

two dissimilar monoclinic elastic half-spaces. There exist regularly and irregularly re-

flected and transmitted elastic waves due to corrugated interface. Using Rayleigh’s

method of approximation, the expressions of the reflection and transmission coeffi-

cients of regular and irregular waves are obtained for the first order of approximation.

1International Journal of Applied Mechanics and Engineering, 23(3), 727-750 (2018)
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These coefficients are derived and computed numerically for a special type of inter-

face, z = d cos py and discussed the effects of corrugation and frequency parameter.

We come to know that these coefficients are functions of elastic constants, angle of

propagation, frequency and corrugation parameters.

2.2 Basic equations

The constitutive relation in a homogeneous monoclinic elastic material with

yz-plane as the plane of symmetry are given by Singh and Khurana (2001)

τ11 = c11e11 + c12e22 + c13e33 + 2c14e23,τ22 = c12e11 + c22e22 + c23e33 + 2c24e23,

τ23 = c14e11 + c24e22 + c34e33 + 2c44e23,τ33 = c13e11 + c23e22 + c33e33 + 2c34e23,

τ12 = 2(c55e13 + c56e12),τ13 = 2(c56e13 + c66e12), (2.1)

where u = (u1, u2, u3) are components of displacement, τij are stress tensor, cij (i, j =

1, 2, 3, ..., 6) are elastic constants and eij is the strain tensor given by

eij =
1

2
(
∂ui

∂xj

+
∂uj

∂xi

).

The equations of motion in such anisotropic materials without body forces are given

by

∂τij
∂xj

= ρ
∂2ui

∂t2
, (i, j = 1, 2, 3) (2.2)

where ρ is density of the medium.

Let us consider two-dimensional wave propagation in yz-plane so that

u1 = 0,
∂

∂x1

≡ ∂

∂x
≡ 0,

∂

∂x2

≡ ∂

∂y
and

∂

∂x3

≡ ∂

∂z
.

The equations of motion in terms of displacements components can be written as

c22
∂2u2
∂y2

+ c44
∂2u2
∂z2

+ c24
∂2u3
∂y2

+ c34
∂2u3
∂z2

+ 2c24
∂2u2
∂y∂z

+ (c23 + c44)
∂2u3
∂y∂z

= ρ
∂2u2
∂t2

, (2.3)

c24
∂2u2
∂y2

+ c34
∂2u2
∂z2

+ c44
∂2u3
∂y2

+ c33
∂2u3
∂z2

+ 2c34
∂2u3
∂y∂z

+ (c23 + c44)
∂2u2
∂y∂z

= ρ
∂2u3
∂t2

. (2.4)
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It may be noted that Eqs. (2.3) and (2.4) are the equations of motion for the coupled

qSV and qP -waves. The solution of these equations may be taken in the form

< u2, u3 >= A(d2, d3) exp{ık(ct− p2y − p3z)}, (2.5)

where c is the phase velocity, k the wavenumber, p = (0, p2, p3) is the unit propagation

vector, d = (0, d2, d3) is the unit displacement vector.

Using these expressions of u2 and u3 into Eqs. (2.3) and (2.4), we have

(X − ρc2)d2 + Y d3 = 0, Y d2 + (W − ρc2)d3 = 0, (2.6)

where

X = c22p
2
2 + c44p

2
3 + 2c24p2p3, Y = c24p

2
2 + c34p

2
3 + (c23 + c44)p2p3,

W = c44p
2
2 + c33p

2
3 + 2c34p2p3. (2.7)

Using Eq. (2.6), we get

2ρc22,1 = X +W ∓
√
(X −W )2 + 4Y 2, (2.8)

where (−ve) sign represents for the phase velocity of qSV -waves (c2) and (+ve) sign

represents for that of qP -waves (c1).

2.3 Problem formulation

Consider the cartesian coordinates with x and y-axis lying horizontal and z-

axis as vertical with positive direction pointing downward. Suppose two dissimilar

homogeneous monoclinic half-spaces, given by M = {(y, z) : y ∈ R, z ∈ [ζ,∞)} and

M ′ = {(y, z) : y ∈ R, z ∈ (−∞, ζ)} are separated by z = ζ(y), which is a periodic

function of y independent of x whose mean value is zero. We will denote all elastic

constants, stress tensors and displacement components in medium, M without prime

and those of M ′ with primes. The complete geometry of the problem is given in

Figure 2.1.
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Figure 2.1: Geometry of the problem.

The Fourier series expansion of ζ(y) is given as

ζ(y) =
∞∑
n=1

(ζ+ne
ınpy + ζ−ne

−ınpy), (2.9)

where ζ+n and ζ−n are the coefficients of series expansion of order n, p is the wavenum-

ber and ı =
√
−1.

Introduce constants d, cn, and sn as

ζ±1 =
d

2
, ζ±n =

cn ∓ ısn
2

, (n = 2, 3, 4, ....)

so that

ζ(y) = d cos(py) +
∞∑
n=2

[cn cos(npy) + sn sin(npy)]. (2.10)

If the interface is represented by only one cosine term, i.e. ζ(y) = d cos(py), then the

wavelength of corrugation is 2π/p and d is the amplitude of corrugation.

We shall now discuss the reflection and transmission of elastic waves due to inci-

dent plane qSV -wave at the corrugated interface, z = ζ(y). Suppose a plane qSV -

wave propagating in the half-space, M with an angle θ0 and amplitude constant A0
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be incident at the corrugated interface. This incident wave give rises regularly and

irregularly reflected and transmitted qSV and qP -waves (Asano, 1961).

The full structures of reflected and transmitted waves are given by:

(for the half-space, M)

u2 = A0e
P ′
0 + AeP +BeQ +

∞∑
n=1

{A±
n e

P±
n +B±

n e
Q±

n }, (2.11)

u3 = D0e
P ′
0 +DeP + EeQ +

∞∑
n=1

{D±
n e

P±
n + E±

n e
Q±

n }, (2.12)

where (A, D) are amplitude constants of the regularly reflected qSV -wave at angle

θ, (A±
n , D

±
n ) are amplitude constants of the irregularly reflected qSV -waves at angles

θ±n , (B, E) are amplitude constants of the regularly reflected qP -wave at angle ϕ,

(B±
n , E

±
n ) are amplitude constants of the irregularly reflected qP -waves at angles

ϕ±
n and the expressions of P ′

0, P, P
±
n , Q,Q±

n are given by P ′
0 = ıω{t − y sinθ0−z cos θ0

c0
},

P = ıω{t − y sinθ+z cos θ
c2

}, P±
n = ıω{t − y sinθ±n +z cos θ±n

c2
}, Q = ıω{t − y sinϕ+z cosϕ

c1
}

and Q±
n = ıω{t− y sinϕ±

n+z cosϕ±
n

c1
}.

These amplitude constants satisfy the following relations (Singh and Khurana, 2001)

A0 = F0D0, A = FD, B = F10E, A±
n = F±

n D±
n , B±

n = F±
1nE

±
n , (2.13)

where

F0 =
Y0

ρc20 −X0

, F =
Y10

ρc22 −X10

, F10 =
Y20

ρc21 −X20

, F±
n =

Y ±
1n

ρc22 −X±
1n

,

F±
1n =

Y ±
2n

ρc21 −X±
2n

, 2ρc20 = X0 +W0 −
√

(X0 −W0)2 + 4Y 2
0 ,

2ρc22 = X10 +W10 −
√
(X10 −W10)2 + 4Y 2

10,

2ρc21 = X20 +W20 +
√
(X20 −W20)2 + 4Y 2

20.
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(for the half-space, M ′)

u′
2 = GeR +HeS +

∞∑
n=1

{G±
n e

R±
n +H±

n e
S±
n }, (2.14)

u′
3 = IeR + JeS +

∞∑
n=1

{I±n eR
±
n + J±

n e
S±
n }, (2.15)

where (G, I) are amplitude constants of the regularly transmitted qSV -wave at

angle α, (G±
n , I

±
n ) are amplitude constants of the irregularly transmitted qSV -waves

at angles α±
n , (H, J) are amplitude constants of the regularly transmitted qP -wave at

angle β, (H±
n , J

±
n ) are amplitude constants of the irregularly transmitted qP -waves

at angles β±
n and the expressions of R,R±

n , S, S
±
n are given by

R = ıω{t− y sinα− z cosα

c′2
}, R±

n = ıω{t− y sinα±
n − z cosα±

n

c′2
},

S = ıω{t− y sinβ − z cos β

c′1
} and S±

n = ıω{t− y sinβ±
n − z cos β±

n

c′1
}.

These amplitude constants also satisfy the following relations

G = F20I, H = F30J, G±
n = F±

2nI
+
n , H±

n = F±
3nJ

±
n , (2.16)

where

F20 =
Y30

ρ′c′22 −X30

, F30 =
Y40

ρ′c′21 −X40

, F±
2n =

Y ±
3n

ρ′c′22 −X±
3n

, F±
3n =

Y ±
4n

ρ′c′21 −X±
4n

,

2ρ′c′22 = X30 +W30 −
√

(X30 −W30)2 + 4Y 2
30,

2ρ′c′21 = X40 +W40 +
√
(X40 −W40)2 + 4Y 2

40.

The expressions of X, Y and W with corresponding suffixes are obtained from

Eq.(2.7) by inserting (p2, p3); for incident qSV -wave : (sin θ0,− cos θ0), for regularly

reflected qSV -wave : (sin θ, cos θ), for irregularly reflected qSV -wave : (sin θ±n , cos θ
±
n ),

for regularly reflected qP -wave : (sinϕ, cosϕ), for irregularly reflected qP -wave :

(sinϕ±
n , cosϕ

±
n ), for regular transmitted qSV -wave : (sinα,− cosα), for irregularly

transmitted qSV -wave : (sinα±
n ,− cosα±

n ), for regularly transmitted qP -wave : (sin β,

− cos β), for irregularly transmitted qP -wave : (sin β±
n , − cos β±

n ).
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The Snell’s law of this problem is given by Asano (1960)

sin θ0
c0(θ0)

=
sin θ

c2(θ)
=

sinϕ

c1(ϕ)
=

sinα

c′2(α)
=

sin β

c′1(β)
=

1

ca
, (2.17)

where ca is apparent velocity.

Moreover, Spectrum theorem gives the relations between the angle of regular wave

and those of irregular waves (Abubakar, 1962a)

sin



θ±n

ϕ±
n

α±
n

β±
n


− sin



θ

ϕ

α

β


= ±np

ω



c2

c1

c′2

c′1


, n = 1, 2, .... (2.18)

where (+ve) signs of the right hand side correspond to (+ve) signs of the left hand

side, while (−ve) signs of the right hand side correspond to (−ve) signs of the left

hand side of the equation.

2.4 Boundary conditions

The component of displacements and tractions (normal and shear) are continuous

at the corrugated interface. Mathematically, these conditions at z = ζ(y) can be

written as

u2 = u′
2, u3 = u′

3, (2.19)

τ32 + (τ33 − τ22)ζ
′ − τ23ζ

′2 = τ ′32 + (τ ′33 − τ ′22)ζ
′ − τ ′23ζ

′2, (2.20)

τ33 − 2τ23ζ
′ + τ22ζ

′2 = τ ′33 − 2τ ′23ζ
′ + τ ′22ζ

′2, (2.21)

where ζ ′ is the derivative of ζ with respect to y.

Inserting Eq. (2.1) into (2.20) and (2.21), we get

{(c23 − c22)ζ
′ + c24(1− ζ ′2)}∂u2

∂y
+ {(c33 − c23)ζ

′ + c34(1− ζ ′2)}∂u3

∂z
+ {(c34 − c24ζ

′
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+ c44(1− ζ ′2)}(∂u2

∂z
+

∂u3

∂y
) = {(c′23 − c′22)ζ

′ + c′24(1− ζ ′2)}∂u
′
2

∂y
+ {(c′33 − c′23)ζ

′

+ c′34(1− ζ ′2)}∂u
′
3

∂z
+ {(c′34 − c′24ζ

′ + c′44(1− ζ ′2)}(∂u
′
2

∂z
+

∂u′
3

∂y
), (2.22)

{c23 + c22ζ
′2 − 2c24ζ

′}∂u2

∂y
+ {c33 + c23ζ

′2 − 2c34ζ
′}∂u3

∂z
+ {c34 + c24ζ

′2 − 2c44ζ
′}

× (
∂u2

∂z
+

∂u3

∂y
) = {c′23 + c′22ζ

′2 − 2c′24ζ
′}∂u

′
2

∂y
+ {c′33 + c′23ζ

′2 − 2c′34ζ
′}∂u

′
3

∂z

+ {c′34 + c′24ζ
′2 − 2c′44ζ

′}(∂u
′
2

∂z
+

∂u′
3

∂y
). (2.23)

Using Eqs.(2.11), (2.12), (2.14), (2.15), (2.17) and (2.18) into Eqs.(2.19), (2.22) and

(2.23), we get

D0e
ıζK0 +De−ıζK + Ee−ıζL +

∞∑
n=1

{D±
n e

∓ınpy−ıζK±
n + E±

n e
∓ınpy−ıζL±

n }

= IeıζM + JeıζN +
∞∑
n=1

{I±n e∓ınpy+ıζM±
n + J±

n e
∓ınpy+ıζN±

n }, (2.24)

A0e
ıζK0 + Ae−ıζK +Be−ıζL +

∞∑
n=1

{A±
n e

∓ınpy−ıζK±
n +B±

n e
∓ınpy−ıζL±

n }

= GeıζM +HeıζN +
∞∑
n=1

{G±
n e

∓ınpy+ıζM±
n +H±

n e
∓ınpy+ıζN±

n }, (2.25)

[(c23 − c22)ζ
′ + c24(1− ζ ′2)][P0A0e

ıζK0 + P0Ae
−ıζK + P0Be−ıζL +

∞∑
n=1

{(P0±np)A±
n

× e∓ınpy−ıζK±
n + (P0±np)B±

n e
∓ınpy−ıζL±

n }] + [(c33 − c23)ζ
′ + c34(1− ζ ′2)][−K0D0

× eıζK0 +KDe−ıζK + LEe−ıζL +
∞∑
n=1

{K±
n D

±
n e

∓ınpy−ıζK±
n + L±

nE
±
n e

∓ınpy−ıζL±
n }]

+ [(c34 − c24)ζ
′ + c44(1− ζ ′2)][−K0A0e

ıζK0 +KAe−ıζK + LBe−ıζL + P0D0e
ıζK0

+ P0De−ıζK + P0Ee−ıζL +
∞∑
n=1

{K±
n A

±
n e

∓ınpy−ıζK±
n + L±

nB
±
n e

∓ınpy−ıζL±
n + (P0±np)

×D±
n e

∓ınpy−ıζK±
n + (P0±np)E±

n e
∓ınpy−ıζL±

n }] = [(c′23 − c′22)ζ
′ + c′24(1− ζ ′2)][P0G

38



Chapter 2

× eıζM + P0HeıζN +
∞∑
n=1

{(P0±np)G±
n e

∓ınpy+ıζM±
n + (P0±np)H±

n e
∓ınpy+ıζN±

n }]

− [(c′33 − c′23)ζ
′ + c′34(1− ζ ′2)][MIeıζM +NJeıζN +

∞∑
n=1

{M±
n I

±
n e

∓ınpy+ıζM±
n

+N±
n J

±
n e

∓ınpy+ıζN±
n }]− [(c′34 − c′24)ζ

′ + c′44(1− ζ ′2)][MGeıζM +NHeıζN

− P0Ie
ıζM − P0Je

ıζN +
∞∑
n=1

{M±
n G

±
n e

−ınpy+ıζM±
n +N±

n H
±
n e

∓ınpy+ıζN±
n

− (P0±np)I±n e
∓ınpy+ıζM±

n − (P0±np)J±
n e

∓ınpy+ıζN±
n }], (2.26)

[c23 + c22ζ
′2 − 2c24ζ

′][P0A0e
ıζK0 + P0Ae

−ıζK + P0Be−ıζL +
∞∑
n=1

{(P0±np)A±
n

e∓ınpy−ıζK±
n + (P0±np)B±

n e
∓ınpy−ıζL±

n }] + [c33 + c23ζ
′2 − 2c34ζ

′][−K0D0e
ıζK0

+KDe−ıζK + LEe−ıζL +
∞∑
n=1

{K±
n D

±
n e

∓ınpy−ıζK±
n + L±

nE
±
n e

∓ınpy−ıζL±
n }]

+ [c34 + c24ζ
′2 − 2c44ζ

′][−K0A0e
ıζK0 +KAe−ıζK + LBe−ıζL + P0D0e

ıζK0

+ P0De−ıζK + P0Ee−ıζL +
∞∑
n=1

{K±
n A

±
n e

∓ınpy−ıζK±
n + L±

nB
±
n e

∓ınpy−ıζL±
n

+ (P0±np)D±
n e

∓ınpy−ıζK±
n + (P0±np)E±

n e
∓ınpy−ıζL±

n }] = [c′23 + c′22ζ
′2 − 2c′24ζ

′]

[P0GeıζM + P0HeıζN +
∞∑
n=1

{(P0±np)G±
n e

∓ınpy+ıζM±
n + (P0±np)H±

n e
∓ınpy+ıζN±

n }]

− [c′33 + c′23ζ
′2 − 2c′34ζ

′][MIeıζM +NJeıζN +
∞∑
n=1

{M±
n I

±
n e

∓ınpy+ıζM±
n +N±

n J
±
n

× e∓ınpy+ıζN±
n }]− [c′34 + c′24ζ

′2 − 2c′44ζ
′][MGeıζM +NHeıζN − P0Ie

ıζM − P0Je
ıζN

+
∞∑
n=1

{M±
n G

±
n e

∓ınpy+ıζM±
n +N±

n H
±
n e

∓ınpy+ıζN±
n − (P0±np)I±n e

∓ınpy+ıζM±
n

− (P0±np)J±
n e

∓ınpy+ıζN±
n }], (2.27)

where

P0 =
ω sin θ0

c0
, K0 =

ω cos θ0
c0

, K =
ω cos θ

c2
, K±

n =
ω cos θ±n

c2
, L =

ω cosϕ

c1
,

L±
n =

ω cosϕ±
n

c1
, M =

ω cosα

c′2
, M±

n =
ω cosα±

n

c′2
, N =

ω cos β

c′1
, N±

n =
ω cos β±

n

c′1
.

39



Chapter 2

2.5 Solution of first order approximation

We assume that the amplitude of the corrugated interface is very small so that

higher powers of ζ are neglected such that

e±ıζK0 = 1± ıζK0 − 0(ζ2), e±ıζK = 1± ıζK − 0(ζ2). (2.28)

Using Eqs. (2.9), (2.13), (2.16) and (2.28) into Eqs.(2.24)-(2.27) and collecting terms

independent of ζ and y, we obtain a set of equations

RS = T, (2.29)

where

R =



1 1 −1 −1

F F10 −F20 −F30

l1 l2 −l3 −l4

m1 m2 −m3 −m4


, S =



D/D0

E/D0

I/D0

J/D0


, T =



−1

−F0

−l0

−m0


,

l0 = (F0c24 + c44)P0 − (F0c44 + c34)K0, l1 = (Fc24 + c44)P0 + (Fc44 + c34)K,

l2 = (F10c24 + c44)P0 + (F10c44 + c34)L, l3 = (F20c
′
24 + c′44)P0 − (F20c

′
44 + c′34)M,

l4 = (F30c
′
24 + c′44)P0 − (F30c

′
44 + c′34)N, m0 = (F0c23 + c34)P0 − (F0c34 + c33)K0,

m1 = (Fc23 + c34)P0 + (Fc34 + c33)K, m2 = (F10c23 + c34)P0 + (F10c34 + c33)L,

m3 = (F20c
′
23 + c′34)P0 − (F20c

′
34 + c′33)M, m4 = (F30c

′
23 + c′34)P0 − (F30c

′
34 + c′33)N.

On solving Eq.(2.29), we get

D

D0

=
∆D

∆
,

E

D0

=
∆E

∆
,

I

D0

=
∆I

∆
,

J

D0

=
∆J

∆
, (2.30)
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where

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 −1 −1

F F10 −F20 −F30

l1 l2 −l3 −l4

m1 m2 −m3 −m4

∣∣∣∣∣∣∣∣∣∣∣∣∣
and the values of ∆D, ∆E, ∆I and ∆J are obtained by replacing first, second, third

and fourth column of ∆ with column matrix, T respectively. This equation gives the

ratios of the amplitude constants corresponding to the vertical components of the

displacement.

The ratios of the amplitude constants corresponding to horizontal components of

displacement is obtained with the help of Eqs. (2.13), (2.16) and (2.30) as

A

A0

=
F

F0

∆D

∆
,

B

A0

=
F10

F0

∆E

∆
,

G

A0

=
F20

F0

∆I

∆
,

H

A0

=
F30

F0

∆J

∆
. (2.31)

Now, the amplitude of incident qSV -wave is given by
√
A2

0 +D2
0 =

√
1 + F 2

0D0.

Similarly, we find the amplitudes of reflected and transmitted qSV and qP -waves.

Thus, the reflection and transmission coefficients of reflected and transmitted qSV

and qP -waves for the incident qSV -wave are given by

rsv =

√
1 + F 2

1 + F 2
0

∆D

∆
, rp =

√
1 + F 2

10

1 + F 2
0

∆E

∆
. (2.32)

tsv =

√
1 + F 2

20

1 + F 2
0

∆I

∆
, tp =

√
1 + F 2

30

1 + F 2
0

∆J

∆
. (2.33)

We come to know that these coefficients depend on elastic constants and angle of

incidence.

Next, comparing coefficients of e∓ınpy on both the sides of those equations, we get

R∓S∓ = T∓, (2.34)
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where

R∓ =



1 1 −1 −1

F±
n F±

1n −F±
2n −F±

3n

g∓5 g∓6 −g∓7 −g∓8

h∓
5 h∓

6 −h∓
7 −h∓

8


, S∓ =



D±
n /D0

E±
n /D0

I±n /D0

J±
n /D0


, T∓ =



f∓
1

f∓
2

f∓
3

f∓
4


,

f∓
1 = ıζ∓n[−K0 +K

D

D0

+ L
E

D0

+M
I

D0

+N
J

D0

],

f∓
2 = ıζ∓n[−F0K0 + FK

D

D0

+ F10L
E

D0

+ F20M
I

D0

+ F30N
J

D0

],

f∓
3 = ı[g∓0 + g∓1

D

D0

+ g∓2
E

D0

− g∓3
I

D0

− g∓4
J

D0

],

f∓
4 = ı[h∓

0 + h∓
1

D

D0

+ h∓
2

E

D0

− h∓
3

I

D0

− h∓
4

J

D0

],

g∓0 = [{∓(c23 − c22)npP0 + c24P0K0 ± (c34 − c24)npK0 − c44K
2
0}F0 ± (c33 − c23)npK0

− c34K
2
0 ∓ (c34 − c24)npP0 + c44P0K0]ζ∓n,

g∓1 = [{∓(c23 − c22)npP0 − c24P0K ∓ (c34 − c24)npK − c44K
2}F ∓ (c33 − c23)npK

− c34K
2 ∓ (c34 − c24)npP0 − c44P0K]ζ∓n,

g∓2 = [{∓(c23 − c22)npP0 − c24P0L∓ (c34 − c24)npL− c44L
2}F10 ∓ (c33 − c23)npL

− c34L
2 ∓ (c34 − c24)npP0 − c44P0L]ζ∓n,

g∓3 = [{∓(c′23 − c′22)npP0 + c′24P0M ± (c′34 − c′24)npM − c′44M
2}F20 ± (c′33 − c′23)npM

− c′34M
2 ∓ (c′34 − c′24)npP0 + c′44P0M ]ζ∓n,

g∓4 = [{∓(c′23 − c′22)npP0 + c′24P0N ± (c′34c
′
24)npN − c′44N

2}F30 ± (c′33 − c′23)npN

− c′34N
2mp(c′34 − c′24)npP0 + c′44P0N ]ζ∓n,

g∓5 = −[{c44K±
n + c24(P0 ± np)}F±

n + c34K
±
n + c44(P0 ± np)],

g∓6 = −[{c44L±
n + c24(P0 ± np)}F±

1n + c34L
±
n + c44(P0 ± np)],

g∓7 = {c′44M±
n − c′24(P0 ± np)}F±

2n + c′34M
±
n − c′44(P0 ± np),

g∓8 = {c′44N±
n − c′24(P0 ± np)}F±

3n + c′34N
±
n − c′44(P0 ± np),
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h∓
0 = {(c23P0K0 ± 2c24npP0 − c34K

2
0 − 2c44npK0)F0 − c33K

2
0 ∓ 2c34npK0

+ c34P0K0 ± 2c44npP0}ζ∓n,

h∓
1 = {(−c23P0K ± 2c24npP0 − c34K

2 ± 2c44npK)F − c33K
2 ± 2c34npK

− c34P0K ± 2c44npP0}ζ∓n,

h∓
2 = [{−c23P0L± 2c24npP0 − c34L

2 ± 2c44npL}F10 − c33L
2 ± 2c34npL

− c34P0L± 2c44npP0]ζ∓n,

h∓
3 = [{c′23P0M ± 2c′24npP0 − c′34M

2 ∓ 2c′44npM}F20 − c′33M
2 ∓ 2c′34npM

+ c′34P0M ± 2c′44npP0]ζ∓n,

h∓
4 = [{c′23P0N ± 2c′24npP0 − c′34N

2 ∓ 2c′44npN}F30 − c′33N
2 ∓ 2c′34npN

+ c′34P0N ± 2c′44npP0]ζ∓n,

h∓
5 = −[{c23(P0 ± np) + c34K

±
n }F±

n + c33K
±
n + c34(P0 ± np)],

h∓
6 = −[{c23(P0 ± np) + c34L

±
n }F±

1n + c33L
±
n + c34(P0 ± np)],

h∓
7 = {−c′23(P0 ± np) + c′34M

±
n }F±

2n + c′33M
±
n − c′34(P0 ± np),

h∓
8 = {−c′23(P0 ± np) + c′34N

±
n }F±

3n + c′33N
±
n − c′34(P0 ± np).

Solving Eq. (2.34), we get

D±
n

D0

=
∆D±

n

∆± ,
E±

n

D0

=
∆E±

n

∆± ,
I±n
D0

=
∆I±n

∆± ,
J±
n

D0

=
∆J±

n

∆± , (2.35)

where

∆± =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 −1 −1

F±
n F±

1n −F±
2n −F±

3n

g∓5 g∓6 −g∓7 −g∓8

h∓
5 h∓

6 −h∓
7 −h∓

8

∣∣∣∣∣∣∣∣∣∣∣∣∣
and the values of ∆D±

n
, ∆E±

n
, ∆I±n

and ∆J±
n
are obtained by replacing first, second,

third and fourth column of ∆± with column matrix, T∓ respectively. This equation

gives the ratios of the amplitude constants of irregular waves corresponding to the

vertical components of the displacement.
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The ratios of the amplitude constants of irregular waves corresponding to hori-

zontal components of displacement are obtained with the help of Eqs. (2.13), (2.16)

and (2.35) as

A±
n

A0

=
F±
n

F0

∆D±
n

∆± ,
B±

n

A0

=
F±
1n

F0

∆E±
n

∆± ,
G±

n

A0

=
F±
2n

F0

∆I±n

∆± ,
H±

n

A0

=
F±
3n

F0

∆J±
n

∆± . (2.36)

The reflection and transmission coefficients of the first order of approximation for

irregularly reflected and transmitted qSV and qP -waves are

rnsv± =

√
1 + F±

n
2

1 + F 2
0

∆D±
n

∆± , rnp± =

√
1 + F±

1n
2

1 + F 2
0

∆E±
n

∆± ,

tnsv± =

√
1 + F±

2n
2

1 + F 2
0

∆I±n

∆± , tnp± =

√
1 + F±

3n
2

1 + F 2
0

∆J±
n

∆± . (2.37)

We come to know from Equation (2.37) that the coefficients corresponding to the

irregularly reflected and transmitted qSV and qP -waves are functions of the elastic

constants, angle of incidence, corrugation and frequency parameters.

2.6 Special case: An interface of z = d cos py

When the interface is represented by only one cosine term, z = d cos py, with d

as the amplitude of corrugation. In this case

ζ−n = ζ+n =

 0 if n ̸= 1,

d

2
if n = 1.

(2.38)

Thus, using these values, the reflection and transmission coefficients for the first order

approximation of the corrugation are given by

r1sv± =

√
1 + F±

1
2

1 + F 2
0

∆D±
1

∆± , r1p± =

√
1 + F±

11
2

1 + F 2
0

∆E±
1

∆± ,

t1sv± =

√
1 + F±

21
2

1 + F 2
0

∆I±1

∆± , t1p± =

√
1 + F±

31
2

1 + F 2
0

∆J±
1

∆± , (2.39)
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where values of F±
1 , F±

11, F±
21, F±

31, ∆±, ∆D±
1
, ∆E±

1
, ∆I±1

and ∆J±
1

are obtained

from Eq.(2.37) by using Eq.(2.38). We will compute these coefficients for a particular

model.

2.7 Particular case

(a) When the two monoclinic half-spaces, M and M ′ reduce to transversely

isotropic half-spaces with the axis of symmetry coinciding with the x-axis, we have

c12 = c13, c22 = c33, c55 = c66, c23 = c22 − 2c44, c14 = c24 = c34 = c56 = 0,

c′12 = c′13, c′22 = c′33, c′55 = c′66, c′23 = c′22 − 2c′44, c′14 = c′24 = c′34 = c′56 = 0.

Using these values in Eqs.(2.32), (2.33) and (2.37), we may obtain the reflection and

transmission coefficients corresponding to the regular and irregular waves.

(b) If the corrugation of the interface is neglected, i.e., d = 0, the problem

reduces to the reflection and transmission of elastic waves at a plane interface between

two monoclinic elastic half-space. The reflection and transmission coefficients of the

reflected and transmitted qSV and qP -waves are given by Eqs.(2.32) and (2.33).

These results exactly match with those of Singh and Khurana (2001).

(c) If the half-space, M ′ is absent, then the problem reduces to the reflection of

qSV and qP -waves for the incident qSV -wave. The reflection coefficients are given

by Eq.(2.32) with the following modified values

∆ = l1m2 − l2m1, ∆D = m0l2 − l0m2, ∆E = m1l0 −m0l1.

These results exactly match with those of Singh and Khurana (2002).

2.8 Numerical results and discussion

We will compute the angles of reflected and transmitted waves through Snell’s

law given by Eq.(2.17) in which the apparent velocity ca is related with dimensionless
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velocity by c̄ = ca
λ
. Let us find out the angles of reflected qSV and qP -waves in the

half-space, M . Eq.(2.8) can be written as

c̄4 − (W̄ + X̄)c̄2 + (W̄ X̄ − Ȳ 2) = 0, (2.40)

where X̄ = X
p22c44

, Ȳ = Y
p22c44

, W̄ = W
p22c44

, λ =
√

c44
ρ
, c̄ij =

cij
c44

.

There are two roots of c̄2 corresponding to qSV and qP -waves for a given p =
p3
p2
,

and for a given value of c̄, there are two roots of p corresponding to the angles of

reflected qSV and qP -waves (Singh and Tomar, 2007a). Substituting the values of

X̄, Ȳ , and W̄ into Eq.(2.40), we get

d0p
4 + d1p

3 + d2p
2 + d3p+ d4 = 0 (2.41)

where

d0 = c̄33− c̄234, d1 = 2(c̄24c̄33− c̄23c̄34), d2 = 1+ c̄22c̄33+2c̄24c̄34−(1+ c̄23)
2−(1+ c̄33)c̄

2,

d3 = 2
{
c̄22c̄34 − c̄23c̄24 − (c̄24 + c̄34)c̄

2
}
, d4 = c̄4−(1+c̄22)c̄

2+c̄22−c̄224.

We transform this equation with q =
1

p
=

p2
p3

so that

d4q
4 + d3q

3 + d2q
2 + d1q + d0 = 0. (2.42)

This equation has two positive roots, i.e., the smaller positive root (q1) and the

larger positive root (q2) which represent the directions of reflected qSV and qP -waves

respectively. Thus, θ = tan−1(q1) and ϕ = tan−1(q2). Similarly, in the half-space M ′,

the angles of transmitted qSV and qP -waves are obtained as α = tan−1(q′1) and

β = tan−1(q′2).

For the numerical computation, the following relevant values of elastic constants

are taken (Singh and Tomar, 2008):

(for half-space, M -Lithium tantalate)

c24 = 0.11 × 1011N/m2, c23 = 0.80 × 1011N/m2, c34 = 0, c44 = 0.94 × 1011N/m2,

c33 = 2.75× 1011N/m2, c22 = 2.33× 1011N/m2, ρ = 7400Kg/m3.
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(for half-space, M ′-Lithium neobate)

c′24 = −0.09 × 1011N/m2, c′23 = 0.75 × 1011N/m2, c′34 = 0, c′44 = 1.06 × 1011N/m2,

c′33 = 2.45× 1011N/m2, c′22 = 2.03× 1011N/m2, ρ′ = 4700Kg/m3, with corrugation

parameter, cor(pd) = 0.0001 and frequency parameter, fr(ω/pc0) = 100 are taken

unless and otherwise mentioned.

We developed a program on MATLAB for the computation of amplitude and en-

ergy ratios of reflected and transmitted waves due to incident qSV -waves. Figures

2.4-2.11 represent the variation of reflection and transmission coefficients with the

angle of incidence for different values of corrugation and frequency parameters. Fig-

ures 2.12-2.14 represent the variation of reflection and transmission coefficients with

corrugation parameter and Figures 2.15-2.17 represent the variation of reflection and

transmission coefficients with frequency parameter at θ0 = 200.

In Fig. 2.2, all angles (θ, ϕ, α, β) of the regularly reflected and transmitted waves

increase with the increase of angle of incidence (θ0). It is observed that the angles of

reflection and transmission for qSV -waves are less than that of the qP -waves.
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Figure 2.2: Variation of the angle of reflection and transmission with angle of incidence.

Curve I in Fig. 2.3 shows that rsv starts from certain value which decreases to
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zero at θ0 = 150 and then increases up to θ0 = 510 with the increase of θ0. Thereafter,

it decreases, touching zero value at θ0 = 870.
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Figure 2.3: Variation of reflection and transmission coefficients with angle of incidence.

In the same figure, Curve II shows that rp is parabolic in the region 0 ≤ θ0 ≤ 350

and then, it increases with the increase of θ0. Curve III shows the decreasing nature

of tsv up to θ0 = 810 and then increases with the increase of θ0, while Curve IV shows

that tp increases with the increase of the angle of incidence θ0.

2.8.1 Effect of corrugation and frequency parameters

We are interested to see the effect of corrugation and frequency parameters on

the reflection and transmission coefficients. In Fig. 2.4, the reflection coefficient, r1sv+

corresponding to the irregularly reflected qSV -wave starts from certain value and

decreases to zero at θ0 = 140 making a parabolic region in 140 ≤ θ0 ≤ 810, which

then increases with the increase of θ0. It is observed that r1sv+ increases with the

increase of corrugation (cor) and frequency (fr) parameters.
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Figure 2.4: Variation of r1sv+ with θ0 for different values of pd and ω/pc0.
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Figure 2.5: Variation of r1p+ with θ0 for different values of pd and ω/pc0.

In Figure 2.5, r1p+ makes two parabolic regions in 00 ≤ θ0 ≤ 340 and 340 ≤ θ0 ≤ 900

with the increase of θ0. The values of this coefficient also increase with the increase

of cor and fr. We have observed similar nature of r1sv− and r1p− with r1sv+ and r1p+

respectively in Figures 2.6 and 2.7.
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Figure 2.6: Variation of r1sv− with θ0 for different values of pd and ω/pc0.
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Figure 2.7: Variation of r1p− with θ0 for different values of pd and ω/pc0.
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Figure 2.8: Variation of t1sv+ with θ0 for different values of pd and ω/pc0.

The coefficient, t1sv+ in Figure 2.8 decreases initially making a parabolic region in

370 ≤ θ0 ≤ 670 and then increases with the increase of θ0. It is observed that the

values of t1sv+ increase with the increase of cor and fr.
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Figure 2.9: Variation of t1p+ with θ0 for different values of pd and ω/pc0.
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We see in Figure 2.9 that t1p+ makes a parabolic region in 20 ≤ θ0 ≤ 640 and

then increases with the increase of θ0. The value of this coefficient increase with the

increase of cor and fr. Similar natures of t1sv− and t1p− with t1sv+ and t1p+ respectively

are observed in Figures 2.10 and 2.11.
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Figure 2.10: Variation of t1sv− with θ0 for different values of pd and ω/pc0.
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Figure 2.11: Variation of t1p− with θ0 for different values of pd and ω/pc0.
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We have seen from Figures 2.12 and 2.15 that the coefficients corresponding to

the regularly reflected and transmitted waves are independent of cor and fr.
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Figure 2.12: Variation of reflection and transmission coefficients of the regular qSV and
qP -waves with pd.
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In Figures 2.13, 2.14, 2.16 and 2.17, the coefficients corresponding to the irreg-

ularly reflected and transmitted waves are linearly proportional to corrugation and

frequency parameters, but at different rates.
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Figure 2.14: Variation of transmission coefficients of the irregularly transmitted qSV and
qP -waves with pd.
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Figure 2.15: Variation of reflection and transmission coefficients of the regular qSV and
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Figure 2.16: Variation of reflection and transmission coefficients of the irregular qSV and
qP -waves with ω/pc0.
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Figure 2.17: Variation of transmission coefficients of the irregularly transmitted qSV and
qP -waves with ω/pc0.
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2.9 Conclusions

The problem of incident qSV -wave at a corrugated interface between two dissimilar

monoclinic elastic half-spaces has been investigated. We have obtained the reflection

and transmission coefficients for the first order of approximation corresponding to

regularly and irregularly reflected and transmitted qSV and qP -waves with the help

of Rayleigh’s method of approximation. These coefficients are computed numerically

for a specific model and the effect of corrugation and frequency parameters on these

coefficients are discussed. We may conclude with the following remarks:

(i) All coefficients corresponding to regular waves are functions of angle of incidence

and elastic constants, while those of irregular waves are found to be functions of angle

of incidence, elastic constants, corrugation and frequency parameters.

(ii) Theoretically and numerically, the reflection and transmission coefficients of the

regular waves are independent of corrugation and frequency parameters.

(iii) The coefficients corresponding to irregular waves are found to be linearly pro-

portional to corrugation and frequency parameters.

(iv) It is found that the values of coefficients corresponding to irregular waves increase

with increase of pd and ω/pc0.

(v) The values of coefficients corresponding to irregular waves are found to be small.
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Chapter 3

Effect of corrugation on incident

qP/qSV -waves between two

dissimilar nematic elastomers2

3.1 Introduction

Nematic elastomers (NEs) are soft materials that combine the hyper-elasticity

of elastomers with anisotropy of liquid crystals, and they are synthesized by cross-

linking of liquid crystal polymers. Such materials have the properties of elastic de-

grees of freedom of ordinary rubber and orientational degree of freedom of liquid

crystals. Terentjev et al. (2002) developed a theory of elastic waves in oriented

monodomain nematic elastomers and discussed the effect of soft elasticity combined

with the Leslie-Ericksen version of dissipation function. Singh (2007a) discussed the

problem of elastic waves propagation in the linear viscoelastic theory of nematic elas-

tomer and obtained the reflection coefficients of the reflected waves. Singh (2015)

investigated the problem of reflection and refraction of elastic waves due to an in-

cident quasi-primary (qP )-wave at a plane interface between two dissimilar nematic

elastomer half-spaces.

In this chapter, the problem of reflection and transmission of elastic waves at a

corrugated interface between two dissimilar nematic elastomer half-spaces has been

2Acta Mechanica, 230(9), 3317-3338 (2019)
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investigated separately for the incident qP and qSV -waves. The expressions of the

phase velocities corresponding to qP and qSV -waves are obtained. The closed form

expression of the amplitude ratios corresponding to the reflected and transmitted

waves for the incident qP and qSV -waves are derived by using appropriate boundary

conditions. The energy partitions due to the corrugated interface are also obtained.

The amplitude and energy ratios of the regular and irregular waves are computed

numerically for a particular model, d cos px1 at different values of corrugation param-

eter. The results of Singh (2007a), Singh (2015) and similar results of Asano (1961)

for the relevant problems are recovered from the present work.

3.2 Basic equation

The elastic potential energy density in nematic solid is (de Gennes 1980; Warner

and Terentjev, 1996)

F = C1(n · ϵ · n)2 + 2C2tr[e](n · ϵ · n) + C3(tr[e])
2 + 2C4(n× ϵ× n)2

+ 4C5(n× (ϵ · n))2 + 1

2
D1(n×Θ)2 +D2n · ϵ·(n×Θ), (3.1)

Here, the Frank elastic energy is restricted only for uniform director rotations of the

NEs. The director rotations are represented by (n× δn), δn is small variation in

the undistorted nematic director, n ·Ω = (curl u)/2 is the local rotation vector,

Θ = Ω − (n× δn) is an independent rotational variable, ϵij = eij − tr[e]δij/3 is the

traceless part of linear symmetric strain, eij = (ui,j + uj,i)/2 and Ci are elastic con-

stants with D1 and D2 are coupling constants.

The Rayleigh dissipation function in the quadratic form can be written as (Erick-

sen, 1960; Leslie, 1966)

T ṡ = A1(n · ϵ̇ · n)2 + 2A2tr[ė](n · ϵ̇ · n) + A3(tr[ė])
2 + 2A4(n× ϵ̇× n)2

+ 4A5(n× (ϵ̇ · n))2 + 1

2
γ1(n×Θ̇)2 + γ2n · ϵ̇ · (n×Θ̇), (3.2)
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where Ai are viscous coefficients and superimposed dots denote derivative with re-

spect to time. This equation describes two types of dissipation - by shear flow and

by rotation of the director.

Neglecting the effects due to Frank elasticity on the director gradient, the equa-

tions of motion of viscous nematic solid are represented by (Fradkin et al., 2003)

∇ · τ = ρü,

n× [(D1 + γ1∂t)n×Θ+ (D2 + γ2∂t)n · ϵ] = 0. (3.3)

The viscoelastic symmetric stress tensors of NEs with the choice of the co-ordinate

axis x3 lies in the direction of the undistorted director n are

τ11 = (1 + τR∂t)(c11ϵ11 + c12ϵ22 + c13ϵ33), τ22 = (1 + τR∂t)(c12ϵ11 + c11ϵ22 + c13ϵ33),

τ33 = (1 + τR∂t)(c13ϵ11 + c13ϵ22 + c33ϵ33), τ12 = τ21 = 2(1 + τR∂t)c66ϵ12,

τ13 = 2(1 + τR∂t)c44ϵ13 −
1

2
D2(1 + τ2∂t)Θ2,

τ23 = 2(1 + τR∂t)c44ϵ23 +
1

2
D2(1 + τ2∂t)Θ1, (3.4)

where τR is the characteristic time of rubber relaxation with τ1 and τ2 as director

rotation times. The director rotation time has been experimentally measured as

10−1 − 10−2s (Schmidtke et al., 2000; Schonstein et al., 2001). On the other hand

τR is expected to be much shorter, which can be as low as 10−5 − 10−6s. The

relations among the viscous coefficients, elastic constants and relaxation times satisfy

(Terentjev et al., 2002)

Ai = CiτR, γ1 = D1τ1, τ2 = D2τ2. (3.5)

It may be noted that the Rayleigh dissipation function is positive for

τ 22 ≤ 8C5D1

D2
2

τRτ1,
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where C5 is the shear modulus.

Using Equations (3.3) and (3.4), we get the components of rotational variable Θ as Θ1

Θ2

 =
D2

D1

1 + ıωτ2
1 + ıωτ1

 −ϵ23

ϵ13

 ,

where ω is angular frequency.

3.3 Problem formulation

Let us consider two-dimensional wave propagation in x1x3-plane with x1 and

x2-axis lying horizontally and x3-axis vertically downward. Suppose two dissimilar

anisotropic nematic elastomer half-spaces, M : ζ(x1) ≤ x3 < ∞ and M ′ : −∞ < x3 ≤

ζ(x1), are separated by x3 = ζ(x1), which is a periodic function of x1 independent

of x2 whose mean value is zero. It may be noted that all parameters in M will be

denoted without prime, while those ofM ′ with prime to the corresponding parameters

of M . The Fourier series expansion of ζ(x1) is given by (Asano, 1961)

ζ(x1) =
∞∑
n=1

(
ζ+ne

ınpx1 + ζ−ne
−ınpx1

)
, (3.6)

where ζ±n are the coefficients of series expansion of order n, p is the wavenumber and

ı =
√
−1.

We introduce constants d, cn and sn as

ζ±1 =
d

2
, ζ±n =

cn ∓ ısn
2

, (n = 2, 3, 4, ....)

so that

ζ(x1) = d cos(px1) +
∞∑
n=2

{cn cos(npx1) + sn sin(npx1)}. (3.7)

If the interface is ζ(x1) = d cos(px1), then 2π/p is the wavelength of corrugation and

d is the amplitude of corrugation.

The general equations of motion in the nematic elastomer half-spaces, M and M ′ are
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respectively given by

ρü1 = (1 + ıωτR){c11u1,11 + (c13 + cR44)u3,13 + cR44u1,33}, (3.8)

ρü3 = (1 + ıωτR){c33u3,33 + (c13 + cR44)u1,13 + cR44u3,11}, (3.9)

and

ρü′
1 = (1 + ıωτ ′R){c′11u′

1,11 + (c′13 + c′R44)u
′
3,13 + c′R44u

′
1,33}, (3.10)

ρü′
3 = (1 + ıωτ ′R){c′33u′

3,33 + (c′13 + c′R44)u
′
1,13 + c′R44u

′
3,11}, (3.11)

where

cR44 = 2C5 −
D2

2(1 + ıωτ2)
2

4D1(1 + ıωτ1)(1 + ıωτR)
, c′R44 = 2C ′

5 −
D′2

2 (1 + ıωτ ′2)
2

4D′
1(1 + ıωτ ′1)(1 + ıωτ ′R)

.

Suppose a plane wave (P/SV ) propagating in the half-space, M be incident

obliquely with an angle α0 at the corrugated interface x3 = ζ(x1). Due to undulated

nature of the interface, there are regularly and irregularly reflected and transmitted

waves (Asano, 1961). The geometry of the problem is given in Figure 3.1.

Figure 3.1: Geometry of the problem

61



Chapter 3

The total displacement in the half-space, M is the sum of displacement compo-

nents due to incident, regularly and irregularly reflected waves as

u1 =
2∑

m=0

Amd
(m)
1 exp(Pm) +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)

1± exp(Qm), (3.12)

u3 =
2∑

m=0

Amd
(m)
3 exp(Pm) +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)

3± exp(Qm), (3.13)

where Pm = ı(ωt − k
(m)
1 x1 − k

(m)
3 x3), Qm = ı(ωt − k

(mn)

1± x1 − k
(mn)

3± x3), A0 is the

amplitude constant for the incident wave, Am and A±
mn denotes amplitude con-

stants, (d
(m)
1 , d

(m)
3 ) and (d

(mn)

1± , d
(mn)

3± ) are unit displacement vectors, (k
(m)
1 , k

(m)
3 ) and

(k
(mn)

1± , k
(mn)

3± ) are propagation factors corresponding to regularly and irregularly re-

flected waves respectively.

Similarly, the total displacement in half-space, M ′ is the sum of the displacement

components due to regularly and irregularly transmitted waves

u′
1 =

4∑
m=3

∞∑
n=1

(
Amd

(m)
1 exp(Pm) + A±

mnd
(mn)

1± exp(Qm)
)
, (3.14)

u′
3 =

4∑
m=3

∞∑
n=1

(
Amd

(m)
3 exp(Pm) + A±

mnd
(mn)

3± exp(Qm)
)
. (3.15)

It may be noted that m = 1 and mn = 1n correspond to regularly and irregularly

reflected qP -waves at angles α1 and α±
1n, m = 2 and mn = 2n correspond for the

regularly and irregularly reflected qSV -waves at angles α2 and α±
2n, m = 3 and

mn = 3n for regularly and irregularly transmitted qP -waves at angles α3 and α±
3n

and m = 4 and mn = 4n correspond for regularly and irregularly transmitted qSV -

waves at angles α4 and α±
4n respectively.

The Snell’s law for this problem is (Singh, 2015)

k0 sinα0 = k1 sinα1 = k2 sinα2 = k3 sinα3 = k4 sinα4. (3.16)

The angles of irregular waves are related with those of regular waves through the
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Spectrum theorem (Abubakar, 1962b)

sinα±
mn = sinαm ± np

km
, m = 1, 2, 3, 4 and n = 1, 2, 3, 4, ... (3.17)

where km are the wavenumbers. The phase velocity (Singh, 2017) of the incident

waves, regularly reflected and transmitted waves are given by (plus for qP -waves and

minus for qSV -waves)

c2i (αi) =


B(αi)+E(αi)±

√
{B(αi)−E(αi)}2+4D2(αi)

2ρ
, i = 0, 1, 2

B(αi)+E(αi)±
√

{B(αi)−E(αi)}2+4D2(αi)

2ρ′
, i = 3, 4

(3.18)

where

B(αi) = (1 + ıωτR){c11p(i),21 + cR44p
(i),2
3 }, E(αi) = (1 + ıωτR){cR44p

(i),2
1 + c33p

(i),2
3 },

D(αi) = (1 + ıωτR)(c13 + cR44)p
(i)
1 p

(i)
3 , for i =0, 1, 2,

B(αi) = (1 + ıωτ ′R){c′11p
(i),2
1 + c′R44p

(i),2
3 }, E(αi) = (1 + ıωτ ′R){c′R44p

(i),2
1 + c′33p

(i),2
3 },

D(αi) = (1 + ıωτ ′R)(c
′
13 + c′R44)p

(i)
1 p

(i)
3 , for i = 3, 4.

It may be noted that c0 is the phase velocity of the incident qP or qSV -wave, c1 is

the phase velocity of regularly reflected qP -wave, c2 is the phase velocity of regularly

reflected qSV -wave, c3 is the phase velocity of regularly transmitted qP -wave and c4

is the phase velocity of regularly transmitted qSV -wave.

3.4 Boundary conditions

The component of displacements and traction (normal and shear) are continuous at

the corrugated interface, x3 = ζ(x1) (Asano, 1961). Mathematically, these conditions

can be written as

(i) Continuity of displacements

u1 = u′
1, u3 = u′

3, (3.19)
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(ii) Continuity of shear traction

τ13 + (τ33 − τ11)ζ
′ − τ13ζ

′2 = τ ′13 + (τ ′33 − τ ′11)ζ
′ − τ ′13ζ

′2, (3.20)

(iii) Continuity of normal traction

τ33 − 2τ13ζ
′ + τ11ζ

′2 = τ ′33 − 2τ ′13ζ
′ + τ ′11ζ

′2. (3.21)

Using Eq. (3.4) into (3.20) and (3.21), we have

(1− ζ ′2)cR44(u1,3 + u3,1) + ζ ′(τ3u1,1 + τ4u3,3)

= τ0(1− ζ ′2)c′R44(u
′
1,3 + u′

3,1) + ζ ′(τ ′3u
′
1,1 + τ ′4u

′
3,3), (3.22)

(c13 + ζ ′2c11)u1,1 + (c33 + ζ ′2c13)u3,3 − 2ζ ′cR44(u1,3 + u3,1)

= τ0{(c′13 + ζ ′2c′11)u
′
1,1 + (c′33 + ζ ′2c′13)u

′
3,3 − 2ζ ′c′R44(u

′
1,3 + u′

3,1)}. (3.23)

where

τ3 = c13 − c11, τ4 = c33 − c13, τ ′3 = τ0(c
′
13 − c′11), τ ′4 = τ0(c

′
33 − c′13),

τ0 = (1 + ıωτ ′R)/(1 + ıωτR), ζ ′ =
∞∑
n=1

ınp
(
ζ+ne

ınpx1 − ζ−ne
−ınpx1

)
.

Using Eqs.(3.12)-(3.17) into (3.19), Eqs.(3.22) and (3.23), we get

2∑
m=0

Amd
(m)
1 eıζk

(m)
3 +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)
1± e∓ınpx1eıζk

(mn)
3±

=
4∑

m=3

∞∑
n=1

(
Amd

(m)
1 eıζk

(m)
3 + A±

mnd
(mn)
1± e∓ınpx1eıζk

(mn)
3±

)
, (3.24)

2∑
m=0

Amd
(m)
3 eıζk

(m)
3 +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)
3± e∓ınpx1eıζk

(mn)
3±

=
4∑

m=3

∞∑
n=1

(
Amd

(m)
3 eıζk

(m)
3 ζ + A±

mnd
(mn)
3± e∓ınpx1eıζk

(mn)
3±

)
, (3.25)

2∑
m=0

Am

(
(1− ζ ′2)µmc

R
44 + ζ ′(τ3d

(m)
1 k

(m)
1 + τ4d

(m)
3 k

(m)
3 )

)
eıζk

(m)
3 +
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2∑
m=1

∞∑
n=1

A±
mn

(
(1− ζ ′2)λmnc

R
44 + ζ ′(τ3d

(mn)
1± kmn

1± + τ4d
(mn)
3± kmn

3± )
)
e∓ınpx1eıζk

(mn)
3±

=
4∑

m=3

Am

(
(1− ζ ′2)τ ′0µm + ζ ′(τ ′3d

(m)
1 k

(m)
1 + τ ′4d

(m)
3 k

(m)
3 )

)
eıζk

(m)
3 +

4∑
m=3

∞∑
n=1

A±
mn

(
(1− ζ ′2)τ ′0λmn + ζ ′(τ ′3d

(mn)
1± kmn

1± + τ ′4d
(mn)
3± kmn

3± )
)
e∓ınpx1eıζk

(mn)
3± , (3.26)

2∑
m=0

Am

(
(c13 + c11ζ

′2)d
(m)
1 k

(m)
1 + (c33 + c13ζ

′2)d
(m)
3 k

(m)
3 − 2cR44ζ

′µm

)
eıζk

(m)
3

+
2∑

m=1

∞∑
n=1

A±
mn

(
(c13 + c11ζ

′2)d
(mn)
1± k

(mn)
1± + (c33 + c13ζ

′2)d
(mn)
3± k

(mn)
3± − 2cR44ζ

′λmn

)
× e∓ınpx1eıζk

(mn)
3± =

4∑
m=3

Am{τ0(c′13 + c′11ζ
′2)(d

(m)
1 k

(m)
1 + τ0(c

′
33 + c′13ζ

′2)d
(m)
3 k

(m)
3

− 2τ ′0ζ
′µm}eıζk

(m)
3 +

4∑
m=3

∞∑
n=1

A±
mn × {τ0(c′13 + c′11ζ

′2)d
(mn)
1± k

(mn)
1±

+ τ0(c
′
33 + c′13ζ

′2)d
(mn)
3± k

(mn)
3± − 2τ ′0ζ

′λmn}e∓ınpx1eıζk
(mn)
3± , (3.27)

where

τ ′0 = τ0c
′R
44, µm = d

(m)
1 k

(m)
3 + d

(m)
3 k

(m)
1 , λmn = d

(mn)
1± k

(mn)
3± + d

(mn)
3± k

(mn)
1± .

These equations will help to find out the amplitude ratios corresponding to the

regularly and irregularly reflected and transmitted waves.

3.5 Solution of first order approximation

If we assume that slope and amplitude of the corrugated interface are small

enough to neglect the higher powers of ζ, then

e∓ıζk
(0)
3 = 1∓ ıζk

(0)
3 , e∓ıζk

(1)
3 = 1∓ ıζk

(1)
3 , etc. (3.28)

65



Chapter 3

Using Eqs.(3.6) and (3.28) into Eqs.(3.24)-(3.27) and collecting terms independent

of ζ and x1, we get a system of simultaneous equations as

[aij]x = b, i, j = 1, 2, 3, 4 (3.29)

where

[aij] =



d
(1)
1 d

(2)
1 −d

(3)
1 −d

(4)
1

d
(1)
3 d

(2)
3 −d

(3)
3 −d

(4)
3

l1 l2 −l3 −l4

m1 m2 −m3 −m4


, x =



A1/A0

A2/A0

A3/A0

A4/A0


, b =



b1

b2

b3

b4



b1 = −d
(0)
1 , b2 = −d

(0)
3 , b3 = −{d(0)1 k

(0)
3 + d

(0)
3 k

(0)
1 },

b4 = −{c13d(0)1 k
(0)
1 + c33d

(0)
3 k

(0)
3 }, l1 = d

(1)
1 k

(1)
3 + d

(1)
3 k

(1)
1 ,

l2 = d
(2)
1 k

(2)
3 + d

(2)
3 k

(2)
1 , l3 = τ ′0(d

(3)
1 k

(3)
3 + d

(3)
3 k

(3)
1 ), l4 = τ ′0(d

(4)
1 k

(4)
3 + d

(4)
3 k

(4)
1 ),

m1 = c13d
(1)
1 k

(1)
1 + c33d

(1)
3 k

(1)
3 , m2 = c13d

(2)
1 k

(2)
1 + c33d

(2)
3 k

(2)
3 ,

m3 = τ0(c
′
13d

(3)
1 k

(3)
1 + c′33d

(3)
3 k

(3)
3 ), m4 = τ0(c

′
13d

(4)
1 k

(4)
1 + c′33d

(4)
3 k

(4)
3 ).

It may be noted that d
(0)
1 = sinα0 and d

(0)
3 = − cosα0 for the case of incident qP -

wave, while d
(0)
1 = cosα0 and d

(0)
3 = sinα0 for the incident qSV -wave.

On solving Eq.(3.29), we get the amplitude ratios of the regularly reflected and

transmitted qP and qSV -waves as

rpp or rsvp =
|aij|1
|aij|

, rpsv or rsvsv =
|aij|2
|aij|

, (3.30)

tpp or tsvp =
|aij|3
|aij|

, tpsv or tsvsv =
|aij|4
|aij|

, (3.31)

where rpp and rpsv are the amplitude ratios of the regularly reflected waves due

to incident qP -wave, while rsvp and rsvsv are the amplitude ratios of the regularly

reflected waves due to incident qSV -wave. Similarly tpp and tpsv are the amplitude

ratios of the regularly transmitted waves due to incident P -waves, while tsvp and tsvsv

are the amplitude ratios of the regularly transmitted waves due to incident qSV -wave.
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The values of |aij|1, |aij|2, |aij|3 and |aij|4 are obtained by replacing first, second,

third and fourth column of |aij| with column matrix, b respectively.

Next, comparing coefficients of e±ınpx1 on both sides of these equations, we get

[a∓ij]x
∓ = b±, i, j = 1, 2, 3, 4 (3.32)

where

[a∓ij]n =



d
(1n)

1∓ d
(2n)

1∓ −d
(3n)

1∓ −d
(4n)

1∓

d
(1n)
3∓ d

(2n)
3∓ −d

(3n)
3∓ −d

(4n)
3∓

l∓1 l∓2 −l∓3 −l∓4

m∓
1 m∓

2 −m∓
3 −m∓

4


, x∓ =



A∓
1n/A0

A∓
2n/A0

A∓
3n/A0

A∓
4n/A0


, b± =



b±1

b±2

b±3

b±4


,

l∓1 = d
(1n)

1∓ k
(1n)

3∓ + d
(1n)

3∓ k
(1n)

1∓ , l∓2 = d
(2n)

1∓ k
(2n)

3∓ + d
(2n)

3∓ k
(2n)

1∓ ,

l∓3 = τ ′0(d
(3n)

1∓ k
(3n)

3∓ + d
(3n)

3∓ k
(3)

1∓ ), l∓4 = τ ′0(d
(4n)

1∓ k
(4n)

3∓ + d
(4n)

3∓ k
(4n)

1∓ ),

m∓
1 = c13d

(1n)

1∓ k
(1n)

1∓ + c33d
(1n)

3∓ k
(1n)

3∓ , m∓
2 = c13d

(2n)

1∓ k
(2n)

1∓ + c33d
(2n)

3∓ k
(2)

3∓ ,

m∓
3 = τ0(c

′
13d

(3n)

1∓ k
(3n)

1∓ + c′33d
(3n)

3∓ k
(3n)

3∓ ), m∓
4 = τ0(c

′
13d

(4n)

1∓ k
(4n)

1∓ + c′33d
(4n)
3 k

(4n)

3∓ ),

b±1 = ıζ±n[−d
(0)
1 k

(0)
3 − A1

A0

d
(1)
1 k

(1)
3 − A2

A0

d
(2)
1 k

(2)
3 +

A3

A0

d
(3)
1 k

(3)
3 +

A4

A0

d
(4)
1 k

(4)
3 ],

b±2 = ıζ±n[−d
(0)
3 k

(0)
3 − A1

A0

d
(1)
3 k

(1)
3 − A2

A0

d
(2)
3 k

(2)
3 +

A3

A0

d
(3)
3 k

(3)
3 +

A4

A0

d
(4)
3 k

(4)
3 ],

b±3 = ıζ±n[−g±0 − A1

A0

g±1 − A2

A0

g±2 +
A3

A0

g±3 +
A4

A0

g±4 ],

b±4 = ıζ±n[−h±
0 − A1

A0

h±
1 − A2

A0

h±
2 +

A3

A0

h±
3 +

A4

A0

h±
4 ],

g±0 = d
(0)
1 k

(0)
3 k

(0)
3 + d

(0)
3 k

(0)
1 k

(0)
3 ± np(τ3d

(0)
1 k

(0)
1 + τ4d

(0)
3 k

(0)
3 ),

g±1 = d
(1)
1 k

(1)
3 k

(1)
3 + d

(1)
3 k

(1)
1 k

(1)
3 ± np(τ3d

(1)
1 k

(1)
1 + τ4d

(1)
3 k

(1)
3 ),

g±2 = d
(2)
1 k

(2)
3 k

(2)
3 + d

(2)
3 k

(2)
1 k

(2)
3 ± np(τ3d

(2)
1 k

(2)
1 + τ4d

(2)
3 k

(2)
3 ),

g±3 = τ ′0(d
(3)
1 k

(3)
3 k

(3)
3 + d

(3)
3 k

(3)
1 k

(3)
3 )± np(τ ′3d

(3)
1 k

(3)
1 + τ ′4d

(3)
3 k

(3)
3 ),

g±4 = τ ′0(d
(4)
1 k

(4)
3 k

(4)
3 + d

(4)
3 k

(4)
1 k

(4)
3 )± np(τ ′3d

(4)
1 k

(4)
1 + τ ′4d

(4)
3 k

(4)
3 ),

h±
0 = c13d

(0)
1 k

(0)
1 k

(0)
3 + c33d

(0)
3 k

(0)
3 k

(0)
3 ∓ 2cR44np(d

(0)
1 k

(0)
3 + d

(0)
3 k

(0)
1 ),
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h±
1 = c13d

(1)
1 k

(1)
1 k

(1)
3 + c33d

(1)
3 k

(1)
3 k

(1)
3 ∓ 2cR44np(d

(1)
1 k

(1)
3 + d

(1)
3 k

(1)
1 ),

h±
2 = c13d

(2)
1 k

(2)
1 k

(2)
3 + c33d

(2)
3 k

(2)
3 k

(2)
3 ∓ 2c44np(d

(2)
1 k

(2)
3 + d

(2)
3 k

(2)
1 ),

h±
3 = τ0{c′13d

(3)
1 k

(3)
1 k

(3)
3 + c′33d

(3)
3 k

(3)
3 k

(3)
3 ∓ 2c′R44np(d

(3)
1 k

(3)
3 + d

(3)
3 k

(3)
1 )},

h±
4 = τ0{c′13d

(4)
1 k

(4)
1 k

(4)
3 + c′33d

(4)
3 k

(4)
3 k

(4)
3 ∓ 2c′R44np(d

(4)
1 k

(4)
3 + d

(4)
3 k

(4)
1 )}.

On solving Eq.(3.32), we get the amplitude ratios corresponding to the irregularly

reflected and transmitted qP and qSV -waves as

rpp∓n or rsvp∓n =
|a∓ij|1n
|a∓ij|n

, rpsv∓n or rsvsv∓n =
|a∓ij|2n
|a∓ij|n

,

tpp∓n or tsvp∓n =
|a∓ij|3n
|a∓ij|n

, tpsv∓n or tsvsv∓n =
|a∓ij|4n
|a∓ij|n

, (3.33)

and the values of |a∓ij|1n, |a∓ij|2n, |a∓ij|3n and |a∓ij|4n are obtained by replacing first,

second, third and fourth column of |a∓ij|n with column matrix, b± respectively. We

come to know that the amplitude ratios corresponding to the irregularly reflected and

transmitted qP and qSV -waves are functions of characteristic time of rubber relax-

ation, director rotation times, the elastic constants, angle of incidence, corrugation

and frequency parameters.

3.6 Energy partition

The energy due to the incident qP and qSV -waves are distributed to regularly

and irregularly reflected and transmitted waves. The rate of transmission of energy

per unit area is given by Achenbach (1976)

℘∗ =< τ3i · u̇i > . (3.34)

The energy of the incident wave, qP/qSV -wave is given by

E = e0ωA
2
0 exp

[
2ı{ωt+ k

(0)
1 x1 + k

(0)
3 x3}

]
, (3.35)
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where

e0 = (1 + ıωτR){(c13d(0)1 k
(0)
1 + c33d

(0)
3 k

(0)
3 )d

(0)
3 + cR44(d

(0)
1 k

(0)
3 + d

(0)
3 k

(0)
1 )d

(0)
1 }.

Similarly, the energy due to reflected and transmitted qP and qSV -waves are

given by

Em = emωA
2
m exp{2ı(ωt+ k

(m)
1 x1 + k

(m)
3 x3)}+

∞∑
n=1

e±mnω(A
±
mn)

2 exp{2ı(ωt+ k
(mn)
1± x1 + k

(mn)
3± x3)}, m = 1, 2, 3, 4. (3.36)

The expressions of em and e±mn are given by

(for m=1, 2)

em = (1 + ıωτR){(c13d(m)
1 k

(m)
1 + c33d

(m)
3 k

(m)
3 )d

(m)
3 + cR44(d

(m)
1 k

(m)
3 + d

(m)
3 k

(m)
1 )d

(m)
1 },

e±mn = (1 + ıωτR){(c13d(mn)
1± k

(mn)
1± + c33d

(mn)
3± k

(mn)
3± )d

(mn)
3± + cR44(d

(mn)
1± k

(mn)
3±

+ d
(mn)
3± k

(mn)
1± )d

(mn)
1± },

(for m=3, 4)

em = (1 + ıωτ ′R){(c′13d
(m)
1 k

(m)
1 + c′33d

(m)
3 k

(m)
3 )d

(m)
3 + c′R44(d

(m)
1 k

(m)
3 + d

(m)
3 k

(m)
1 )d

(m)
1 },

e±mn = (1 + ıωτ ′R){(c′13d
(mn)
1± k

(mn)
1± + c′33d

(mn)
3± k

(mn)
3± )d

(mn)
3± + c′R44(d

(mn)
1± k

(mn)
3±

+ d
(mn)
3± k

(mn)
1± )d

(mn)
1± }.

Energy ratios are defined as the ratios of the energy corresponding to the reflected

and transmitted waves to that of the incident wave. These ratios of the regularly and

irregularly reflected and transmitted waves for incident qP/qSV -wave are given as

Epp
m or Esvp

m =
∣∣em
e0

∣∣∣∣Am

A0

∣∣2, (3.37)

Epp±
mn or Esvp±

mn =
∣∣e±mn

e0

∣∣∣∣A±
mn

A0

∣∣2, (3.38)

where (Epp
1 , Epsv

2 ) and (Epp±
1n , Epsv±

2n ) are the energy ratios corresponding to the reg-

ularly and irregularly reflected waves respectively due to incident qP -wave, while

(Esvp
1 , Esvsv

2 ) and (Esvp±
1n , Esvsv±

2n ) correspond to the energy ratios for regularly and ir-
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regularly reflected waves respectively due to incident qSV -wave. Similarly, (Epp
3 , Epsv

4 )

and (Epp±
3n , Epsv±

4n ) are energy ratios of the transmitted waves for incident qP -wave

and (Esvp
3 , Esvsv

4 ) and (Esvp±
3n , Esvsv±

4n ) correspond to the energy ratios of transmit-

ted waves for incident qSV -wave. These energy ratios depend on elastic constants,

coupling constants, characteristic time of rubber relaxation, director rotation times,

angle of incidence, corrugation and frequency parameters.

3.7 Special case: ζ = d cos px1

If the corrugated interface is represented by only ζ(x1) = d cos px1 with d as the

amplitude of corrugation, then the coefficient of Fourier series are given by

ζ±n =

 0 if n ̸= 1,

d

2
if n = 1.

(3.39)

Using these values into Eq.(3.33), the amplitude ratios of the reflected and transmit-

ted waves for the first order approximation of corrugation are given by

rpp∓1 or rsvp∓1 =
|a∓ij|11
|a∓ij|1

, rpsv∓1 or rsvsv∓1 =
|a∓ij|21
|a∓ij|1

,

tpp∓1 or tsvp∓1 =
|a∓ij|31
|a∓ij|1

, tpsv∓1 or tsvsv∓1 =
|a∓ij|41
|a∓ij|1

. (3.40)

The energy ratios, in this case, are obtained from Eq.(3.38) by putting n = 1. The

amplitude and energy ratios of the regularly and irregularly reflected and transmitted

waves obtained in this section will be computed for a particular model.

70



Chapter 3

3.8 Particular case

(a) When the two nematic elastomers, M and M ′ reduce to isotropic half-spaces,

we have

D1 = D2 = 0, c11 = c33 = λ+ 2µ, c13 = λ, c44 = cR44 = µ, C5 =
1

2
µ,

D′
1 = D′

2 = 0, c′11 = c′33 = λ′ + 2µ′, c′13 = λ′, c′44 = c′R44 = µ′, C ′
5 =

1

2
µ′.

In this case, the phase velocity corresponding to the longitudinal and transverse

waves are given by c20 = c21 = λ+2µ
ρ

, c22 = µ
ρ
, c23 = λ′+2µ′

ρ′
and c24 = µ′

ρ′
. This is the

result of classical elasticity (Achenbach, 1976).

The amplitude ratios of the reflected and transmitted waves are given by Eqs. (3.30),

(3.31) and (3.33) with the following modified values

m1 = λd
(1)
1 k

(1)
1 + (λ+ 2µ)d

(1)
3 k

(1)
3 , m2 = λd

(2)
1 k

(2)
1 + (λ+ 2µ)d

(2)
3 k

(2)
3 ,

m3 = τ0{λ′d
(3)
1 k

(3)
1 + (λ′ + 2µ′)d

(3)
3 k

(3)
3 }, m4 = τ0{λ′d

(4)
1 k

(4)
1 + (λ′ + 2µ′)d

(4)
3 k

(4)
3 },

b4 = λd
(0)
1 k

(0)
1 + (λ+ 2µ)d

(0)
3 k

(0)
3 , m∓

1 = λd
(1n)

1∓ k
(1n)

1∓ + (λ+ 2µ)d
(1n)

3∓ k
(1n)

3∓ ,

m∓
2 = λd

(2n)

1∓ k
(2n)

1∓ + (λ+ 2µ)d
(2n)

3∓ k
(2)

3∓ , m∓
3 = τ0{λ′d

(3n)

1∓ k
(3n)

1∓ + (λ′ + 2µ′)d
(3n)

3∓ k
(3n)

3∓ },

m∓
4 = τ0{λ′d

(4n)

1∓ k
(4n)

1∓ + (λ′ + 2µ′)d
(4n)
3 k

(4n)

3∓ }

g±0 = d
(0)
1 k

(0)
3 k

(0)
3 + d

(0)
3 k

(0)
1 k

(0)
3 ∓ 2µnp(d

(0)
1 k

(0)
1 − d

(0)
3 k

(0)
3 ),

g±1 = d
(1)
1 k

(1)
3 k

(1)
3 + d

(1)
3 k

(1)
1 k

(1)
3 ∓ 2µnp(d

(1)
1 k

(1)
1 − d

(1)
3 k

(1)
3 ),

g±2 = d
(2)
1 k

(2)
3 k

(2)
3 + d

(2)
3 k

(2)
1 k

(2)
3 ∓ 2µnp(d

(2)
1 k

(2)
1 − d

(2)
3 k

(2)
3 ),

g±3 = τ ′0(d
(3)
1 k

(3)
3 k

(3)
3 + d

(3)
3 k

(3)
1 k

(3)
3 )∓ 2µ′np(d

(3)
1 k

(3)
1 − d

(3)
3 k

(3)
3 ),

g±4 = τ ′0(d
(4)
1 k

(4)
3 k

(4)
3 + d

(4)
3 k

(4)
1 k

(4)
3 )∓ 2µ′np(d

(4)
1 k

(4)
1 − d

(4)
3 k

(4)
3 ),

h±
0 = λd

(0)
1 k

(0)
1 k

(0)
3 + (λ+ 2µ)d

(0)
3 k

(0)
3 k

(0)
3 ∓ 2µnp(d

(0)
1 k

(0)
3 + d

(0)
3 k

(0)
1 ),

h±
1 = λd

(1)
1 k

(1)
1 k

(1)
3 + (λ+ 2µ)d

(1)
3 k

(1)
3 k

(1)
3 ∓ 2µnp(d

(1)
1 k

(1)
3 + d

(1)
3 k

(1)
1 ),

h±
2 = λd

(2)
1 k

(2)
1 k

(2)
3 + (λ+ 2µ)d

(2)
3 k

(2)
3 k

(2)
3 ∓ 2µnp(d

(2)
1 k

(2)
3 + d

(2)
3 k

(2)
1 ),

h±
3 = τ0{λ′d

(3)
1 k

(3)
1 k

(3)
3 + (λ′ + 2µ′)d

(3)
3 k

(3)
3 k

(3)
3 ∓ 2µ′np(d

(3)
1 k

(3)
3 + d

(3)
3 k

(3)
1 )},
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h±
4 = τ0{λ′d

(4)
1 k

(4)
1 k

(4)
3 + (λ′ + 2µ′)d

(4)
3 k

(4)
3 k

(4)
3 ∓ 2µ′np(d

(4)
1 k

(4)
3 + d

(4)
3 k

(4)
1 )}.

These results are similar with those of Asano (1961) for the relevant problem. The

energy ratios corresponding to the regularly and irregularly reflected and transmitted

waves are given by Eq. (3.37) and (3.38) with the modified values given by

e0 = (1 + ıωτR)[{λd(0)1 k
(0)
1 + (λ+ 2µ)d

(0)
3 k

(0)
3 }d(0)3 + µ(d

(0)
1 k

(0)
3 + d

(0)
3 k

(0)
1 )d

(0)
1 ],

for j = 1, 2;

ej = (1 + ıωτR)[{λd(j)1 k
(j)
1 + (λ+ 2µ)d

(j)
3 k

(j)
3 }d(j)3 + µ(d

(j)
1 k

(j)
3 + d

(j)
3 k

(j)
1 )d

(j)
1 ],

e±jn = (1 + ıωτR)[{λd(jn)1± k
(jn)
1± + (λ+ 2µ)d

(jn)
3± k

(jn)
3± }d(jn)3± + µ(d

(jn)
1± k

(jn)
3± + d

(jn)
3± k

(jn)
1± )d

(jn)
1± ],

for j = 3, 4;

ej = (1 + ıωτ ′R)[{λ′d
(j)
1 k

(j)
1 + (λ′ + µ′)d

(j)
3 k

(j)
3 }d(j)3 + µ′(d

(j)
1 k

(j)
3 + d

(j)
3 k

(j)
1 )d

(j)
1 ],

e±jn = (1 + ıωτ ′R)[{λ′d
(jn)
1± k

(jn)
1± + (λ′ + 2µ′)d

(jn)
3± k

(jn)
3± }d(jn)3± + µ′(d

(jn)
1± k

(jn)
3± + d

(jn)
3± k

(jn)
1± )d

(jn)
1± ].

(b) If the corrugation of the interface is neglected, i.e., d = 0, the problem reduces

to the reflection and transmission of qP and qSV -waves at the plane interface between

two dissimilar half-spaces of nematic elastomers. So, we are left with the amplitude

and energy ratios corresponding to the regularly reflected and transmitted waves,

which are given by Eqs. (3.30), (3.31) and (3.37). These results exactly match with

those of Singh (2015).

(c) If the half-space M ′ is absent, then the problem reduces to the reflection of

elastic waves at the plane free boundary. The reflection coefficients are given by Eq.

(3.30) with the following modified values

|aij| = l1m2 − l2m1, |aij|1 = l2b4 −m2b3, |aij|2 = m1b3 − l1b4.

These results exactly match with those of Singh (2007a).
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3.9 Numerical results and discussion

We will compute the angles of reflected and transmitted waves by introducing

an apparent velocity, ca so that c̄ = ca
β

= c
p1β

, where c̄ is non-dimensional velocity.

Equation (3.18) can be written as

c̄4 − (B̄ + Ē)c̄2 + (B̄Ē − D̄2) = 0, (3.41)

where

B̄ =
B

p21c44
, Ē =

E

p21c44
, D̄ =

D

p21c44
, β =

√
c44
ρ
, c̄ij =

cij
c44

.

There are two roots of c̄2 corresponding to qP and qSV -waves for a given p = p3/p1,

and for a given value of c̄, there are two roots of p corresponding to the angles of

reflected qP and qSV -waves. Substituting the values of B̄, Ē, and D̄ into Eq.(3.41),

we get

t0p
4 + t1p

2 + t2 = 0, (3.42)

where

t0 = (1 + ıωτR)
2c̄33c̄

R
44, t1 = (1 + ıωτR){(c̄11c̄33 − c̄213 − 2c̄13c̄

R
44)(1 + ıωτR)

− (c̄33 + c̄R44)c̄
2}, t2 = c̄4 + (1 + ıωτR){(c̄11c̄R44(1 + ıωτR)− (c̄11 + c̄R44)c̄

2}.

Transforming this equation with q =
1

p
=

p1
p3
, we have

t2q
4 + t1q

2 + t0 = 0. (3.43)

For a given angle of incidence, there are two positive roots of q. The larger

root say α1 = tan−1(q1) corresponds to reflected qP -wave, while the smaller root,

α2 = tan−1(q2) corresponds to reflected qSV -waves. Similarly, we can set up for

the transmitted qP and qSV -waves and obtained α3 = tan−1(q3) for qP -wave and

α4 = tan−1(q4) for qSV -wave.

73



Chapter 3

For the numerical computation, the following relevant values are taken (Singh, 2015):

(for half-space, M)

C1 = 1.42× 105N/m2, C2 = 2.25× 105N/m2, C3 = 4.88× 105N/m2,

C4 = 2.15× 105N/m2, C5 = 1.06× 105N/m2, D1 = 0.12, D2 = 0.05,

ρ = 1.66× 103Kg/m3, τ1 = 0.02, τ2 = 0.05, τR = 0.000002

(for half-space, M ′)

C ′
1 = 3.52× 105N/m2, C ′

2 = 2.28× 105N/m2, C ′
3 = 1.65× 105N/m2,

C ′
4 = 1.60× 105N/m2, C ′

5 = 4.34× 105N/m2, D′
1 = 0.15, D′

2 = 0.17,

ρ′ = 1.26× 103Kg/m3, τ ′1 = 0.04, τ ′2 = 0.06, τ ′R = 0.000003

with pd = 0.000001 and ω/pc0 = 80 are taken whenever not mentioned.
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Figure 3.2: Variation of angles of reflection/transmission with angle of incidence. (Curves
I-IV for incident qSV -wave and Curves V-VIII for incident qP -wave).

It is Figure 3.2 which shows the increase of the angles of reflected and transmit-

ted qP and qSV -waves with the increase of angle of incidence α0 except the angle

of transmitted qSV -wave for the incident qSV -wave. In this figure, Curves I-IV cor-

respond for the incident qSV -wave and Curves V-VIII correspond for the incident
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qP -wave. Only Curve II is magnified by multiplying with 0.75. Furthermore, we

have seen that there are critical angles for the reflected and transmitted qP -waves

at α1 = 260 and α3 = 390 respectively, in the case of incident qSV -wave. It may

be noted that Figures 3.3-3.12 correspond for the incident qP -waves, while Figures

3.13-3.22 correspond for the incident qSV -waves.

3.9.1 For the incident qP -wave

In Figure 3.3, rpp corresponding to regularly reflected qP -wave starts from certain

value which increases with the increase of α0. In the same figure, rpsv and tpsv

corresponding to regularly reflected and transmitted qSV -wave are parabolic in the

region 0 ≤ θ0 ≤ 900, while tpp corresponding to regularly transmitted qP -wave starts

from a certain value and then decreases with the increase of α0 touching zero at

grazing angle of incidence.
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Figure 3.3: Variation of amplitude ratios for regular waves with α0.

In Figures 3.4 and 3.5, the amplitude ratios rpp+1 and rpp−1 corresponding to irreg-

ularly reflected qP -waves increase from certain value which then decrease to zero at

α0 = 850 and α0 = 790 respectively and thereafter they increases with the increase of
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α0. While rpsv+1 and rpsv−1 corresponding to irregularly reflected qSV -wave increase

to the maximum value at α0 = 230 and α0 = 240 respectively and then they decrease

to the minimum value at the grazing angle of incidence. The amplitude ratios corre-

sponding to irregularly transmitted qP -wave, tpp+1 and tpp−1 start from a certain value

which decrease with the increase of α0 touching zero at α0 = 490 and α0 = 440 res-
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Figure 3.4: Variation of amplitude ratios for irregular waves at α+
11 with α0.
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pectively and then they make a parabolic region. Amplitude ratios tpsv+1 and tpsv−1

corresponding to irregularly transmitted qSV -wave increase and decrease with the

increase α0 thereby making parabolic regions at 810 ≤ θ0 ≤ 900 and 760 ≤ θ0 ≤ 900

respectively.
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Figure 3.6: Variation of energy ratios for regular waves with α0.
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Figure 3.7: Variation of energy ratio for irregular waves at α+
11 with α0.
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In Figure 3.6, energy ratios Epp
1 and Epp

3 corresponding to regularly reflected and

transmitted qP -waves increase and decrease respectively with the increase of α0. In

the same figure, Epsv
2 corresponding to regularly reflected qSV -wave shows a very

small rate of increase and decrease with the increase of α0 and Epsv
4 corresponding to

regularly transmitted qSV -wave increases and decreases with the minimum values at

normal and grazing angle of incidence.

The energy ratios (Epp+
11 , Epp−

11 ) in Figures 3.7 and 3.8 corresponding to irregularly

reflected qP -waves start from a certain point which increase up to some extents

and then decrease with the increase of α0 touching zero at α0 = 750 and α0 = 790

respectively. In the same figures, (Epsv+
21 , Epsv−

21 ) corresponding to irregularly reflected

qSV -waves increase to maximum values at α0 = 250 which then decrease to the

minimum value with the increase of α0.
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Figure 3.8: Variation of energy ratio for irregular waves at α−
11 with α0.

The energy ratios (Epp+
31 , Epp−

31 ) corresponding to irregularly transmitted qP -waves

start from a certain point which decrease to the minimum value at α0 = 420 and

α0 = 470 respectively, while (Epsv+
41 , Epsv−

41 ) corresponding to irregularly transmitted

qSV -waves make parabolic regions at 00 ≤ θ0 ≤ 730 and 00 ≤ θ0 ≤ 750 respectively.
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Figure 3.9: Variation of amplitude ratios of irregular waves at α+
11 with corrugation

parameter (pd).

Figures 3.9-3.12 show the variation of amplitude and energy ratios corresponding

to irregularly reflected and transmitted waves with the corrugation parameter (pd).
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Figure 3.10: Variation of amplitude ratios of irregular waves at α−
11 with corrugation

parameter (pd).

All the amplitude ratios, rpp+1 , rpp−1 , rpsv+1 , rpsv−1 , tpp+1 , tpp−1 , tpsv+1 and tpsv−1 in Fig-

ures 3.9 and 3.10 are linearly increasing with the increase of corrugation parameter

but at different rates.
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Figure 3.11: Variation of energy ratios of irregular waves at α+
11 with corrugation param-

eter (pd).
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Figure 3.12: Variation of energy ratios at α−
11 with corrugation parameter (pd).

In Figures 3.11 and 3.12, we have noted that Epp+
11 , Epp−

11 , Epsv+
21 , Epsv−

21 , Epp+
31 , Epp−

31 ,

Epsv+
41 and Epsv−

41 increase with the increase of pd, but the modes are non-linear.

Thus, the amplitude and energy ratios corresponding to irregular waves depend on

the corrugation parameters.
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3.9.2 For the incident qSV -wave

In Figure 3.13, the amplitude ratios rsvp, tsvp and tsvsv corresponding to regular

waves increase with the increase of α0, while r
svsv corresponding to regularly reflected

qSV -wave is decreasing at very small rate with the increase of angle of incidence.
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Figure 3.13: Variation of amplitude ratios of regular waves with α0.
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Figure 3.14: Variation of amplitude ratios of irregular waves at α+
11 with α0.

The amplitude ratios rsvp+1 , tsvp+1 and tsvsv+1 in Figure 3.14 increase with the increase
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of α0, while rsvsv+1 corresponding to the irregularly reflected qSV -wave decreases to

zero at α0 = 90 which then increases with the increase of α0.
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Figure 3.15: Variation of amplitude ratios of irregular waves at α−
11 with α0.

The amplitude ratios rsvsv−1 and tsvp−1 in Figure 3.15 increase, while tsvsv−1 decreases

with the increase of α0. But the amplitude ratio rsvp−1 corresponding to irregularly

reflected qP -wave increases and decreases with the increase of α0.
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Figure 3.16: Variation of energy ratios for regular waves with α0.
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In Figure 3.16, the energy ratios, Esvp
1 and Esvsv

2 corresponding to regularly re-

flected waves for the incident qSV increase initially and then decrease with the in-

crease of α0. In the same figure, Esvp
3 increases with the increase of α0, while Esvsv

4

decreases and increases at a very small rate.
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Figure 3.17: Variation of energy ratio for irregular waves at α+
11 with α0.

In Figures 3.17 and 3.18, the energy ratios, namely Esvp+
11 , Esvp−

11 , Esvp+
31 , and Esvp−

31

corresponding to irregular qP -waves increase to the maximum value at α0 = 160,

α0 = 180, α0 = 240 and α0 = 180 respectively and then they decrease. In these figures,

Esvsv+
21 increases with the increase of α0, while Esvsv−

21 decreases to zero at α0 = 90

which then increases with the increase of α0. But Esvsv+
41 and Esvsv−

41 corresponding

to irregularly transmitted qSV -waves decreases and increases respectively with the

increase of α0.
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Figure 3.18: Variation of energy ratio for irregular waves at α−
11 with α0.
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Figure 3.19: Variation of amplitude ratio of irregular waves at α+
11 with corrugation

parameter (pd).

All the amplitude ratios (rsvp+1 , rsvp−1 , rsvsv+1 , rsvsv−1 , tsvp+1 , tsvp−1 , tsvsv+1 , tsvsv−1 ) in

Figures 3.19 and 3.20 are linearly increasing with the increase of pd but at different

rates.

84



Chapter 3

0 0.5 1 1.5 2

pd 10-4

0

0.05

0.1

0.15

0.2

0.25

0.3

A
m

pl
itu

de
 ra

tio
s

I:rpp-
1

II:rpsv-
1

III:tpp-
1

IV:tpsv-
1

II

III

IV

I

Figure 3.20: Variation of amplitude ratio of irregular waves at α−
11 with corrugation

parameter (pd).
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Figure 3.21: Variation of energy ratios at α+
11 with corrugation parameter (pd).

In Figures 3.21 and 3.22, we have observed that the energy ratios (Esvp+
11 , Esvp−

11 ,

Esvsv+
21 , Esvsv−

21 , Esvp+
31 , Esvp−

31 , Esvsv+
41 , Esvsv−

41 ) are non-linearly increasing with the

increase of pd.
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Figure 3.22: Variation of energy ratios at α−
11 with corrugation parameter (pd).

3.10 Conclusions

The problem of incident qP and qSV -waves at a corrugated interface between two

dissimilar nematic elastomer half-spaces have been investigated separately. We have

obtained the amplitude and energy ratios corresponding to regularly and irregularly

reflected and transmitted qP and qSV -waves with the help of Rayleigh’s method of

approximation. These amplitude and energy ratios are computed numerically for a

specific model, ζ = d cos px1 and the effect of corrugation parameters on these ampli-

tude and energy ratios are discussed. We may conclude with the following remarks:

(i) All amplitude ratios corresponding to irregular waves are functions of the angle

of incidence, elastic constants, coupling constants, characteristic time of rubber re-

laxation, director rotation times, frequency and corrugation parameter.

(ii) The amplitude and the energy ratios corresponding to the regular waves are in-

dependent of pd and ω/pc0.

(iii) The amplitude and energy ratios corresponding to the regular qP -waves are

greater than those ratios corresponding to regular qSV -waves for the incident qP -
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wave, but it is reversed in the case of incident qSV -wave.

(iv) The amplitude and energy ratios corresponding to the regularly reflected and

transmitted waves are greater in magnitude than those of irregular waves. Those

ratios corresponding to irregular waves are very small.

(v) The ratios rpp, rsvp, tsvp, tsvsv, rsvp+1 , tsvsv+1 , rsvsv−1 , tsvp−1 , Epp
1 , Esvp

3 , Esvsv+
21 , Esvsv−

21

and Esvsv−
41 increase with the increase of α0, while t

pp, tsvsv−1 , Epp
3 and Esvsv+

41 decrease

with the increase of α0.

(vi) The amplitude ratios corresponding to irregular waves increase linearly with the

increase of pd, but at different rates.

(vii) The energy ratios corresponding to irregular waves increase non-linearly with

the increase of pd.

(viii) The sum of the energy ratio is close to unity at each angle of incidence at the

corrugated boundary.

87



Chapter 4

Chapter 4

Scattering of qSH-waves from a

corrugated interface between two

dissimilar nematic elastomers3

4.1 Introduction

Nematic elastomers(NEs) have many mechanical properties including the for-

mation of fine-scale microstructures and fine-scale wrinkles due to the presence of

considerable long macromolecules with rare intermolecular transversal bonds. An in-

ternal relaxation of the nematic director is responsible for its dynamic soft elasticity

(de Gennes, 1980). The soft matter property makes a subject of numerous studies in

the fields such as microelectronics, biomechanics, nanomechanics and device applica-

ble in mechanical damping, optics or acoustics. Chattopadhyay (2004) obtained the

expressions for reflection and refraction coefficients of qP, qSV and qSH-waves at an

interface of two triclinic crystalline half-spaces and presented numerical results for

different types of anisotropic media. Zhao and Liu (2018) studied the transverse wave

dispersion in a nematic elastomer beam by considering anisotropy and viscoelasticity

of NEs in the low frequency limit.

This chapter aims to investigate the reflection and transmission phenomena of

elastic waves due to incident qSH-wave at a corrugated interface between two dif-

3Waves in Random and Complex Media (2020)
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ferent nematic elastomer half-spaces. The expression of the phase velocity for shear

harmonic wave is derived and observed that this phase velocity depends on the angle

of propagation of the elastic waves. The amplitude ratios for various reflected and

transmitted waves are derived using boundary conditions. The energy distribution,

and hence the energy ratios due to various reflected and transmitted waves are also

obtained. A particular case, z = d cos px has been performed to validate the present

study for the amplitude and energy ratios.

4.2 Problem formulation

Consider the cartesian co-ordinates in which y and x-axis lying horizontal and

z-axis vertical with positive direction pointing downward. Suppose two dissimilar

anisotropic nematic elastomer half-spaces, M = {(x, z) : x ∈ R, z ∈ [ζ,∞)} and

M ′ = {(x, z) : x ∈ R, z ∈ (−∞, ζ)}, are separated by z = ζ(x) which is a periodic

function of x independent of y whose mean value is zero. The geometry of the problem

is given by Figure 4.1.

Figure 4.1: Geometry of the problem.
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The Fourier series expansion of ζ(x) is given by

ζ(x) =
∞∑
n=1

(ζ+ne
ınpx + ζ−ne

−ınpx), (4.1)

where ζ±n are the coefficients of series expansion of order n, p is the wavenumber and

ı =
√
−1. We introduce constants d, cn and sn as

ζ±1 =
d

2
, ζ±n =

cn ∓ ısn
2

, (n = 2, 3, 4, ....)

so that

ζ(x) = d cos(px) +
∞∑
n=2

{cn cos(npx) + sn sin(npx)}. (4.2)

If the interface is ζ(x) = d cos(px), then 2π/p is the wavelength of corrugation and d

is the amplitude of corrugation.

Consider two-dimensional problem of wave propagation in xz-plane. The equa-

tions of motion for qSH-waves for the half-spaces, M and M ′ are respectively given

by

ρ
∂2u2

∂t2
= (1 + ıωτR)(c66

∂2u2

∂x2
+ cR44

∂2u2

∂z2
) (4.3)

and

ρ′
∂2u′

2

∂t2
= (1 + ıωτ ′R)(c

′
66

∂2u′
2

∂x2
+ c′R44

∂2u′
2

∂z2
) (4.4)

where

cR44 = 2C5 −
D2

2(1 + ıωτ2)
2

4D1(1 + ıωτ1)(1 + ıωτR)
, c′R44 = 2C ′

5 −
D′2

2 (1 + ıωτ ′2)
2

4D′
1(1 + ıωτ ′1)(1 + ıωτ ′R)

ρ being the density of the medium, u = (u1, u2, u3) is the displacement potential, ω is

angular frequency, ci are elastic constants with D1 and D2 are coupling constants, C5

is the shear modulus, τR is the characteristic time of rubber relaxation and τ1 and τ2

are director rotation times. Note that all parameters in M will be denoted without

prime, while those of M ′ with prime to the corresponding parameters of M .
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Suppose a plane qSH-wave propagating in the half-space M with angle α0 and

amplitude constant A0 be incident at the corrugated interface z = ζ(x), then the

phenomena of reflection of qSH-waves in the half-space, M and transmission of qSH-

waves in the half-space, M ′ take place. Due to undulated nature of the interface, this

incident wave give rise to regularly and irregularly reflected and transmitted qSH-

waves (Asano, 1960). These irregular waves propagate with the same speed as the

regular waves and appear on both sides of the regular waves. The full structures of

wave field in the half spaces, M and M ′ are given by

u =
1∑

m=0

Am exp(Pm) +
∞∑
n=1

A±
1n exp(P

±
1n), (4.5)

u′ = A2 exp(P2) +
∞∑
n=1

A±
2n exp(P

±
2n), (4.6)

where Pm = ı(ωt + xk
(m)
1 + zk

(m)
3 ), P±

mn = ı(ωt + xk
(mn)

1± + zk
(mn)

3± ), (Am, A
±
mn) are

the amplitude constants at angles (αm, α
±
mn), (k

(m)
1 , k

(m)
3 ) and (k

(mn)
1± , k

(mn)
3± ) are the

propagation factors. The phase velocity of the incident, reflected and transmitted

qSH-waves are given by (Singh, 2017)

c2i =
(1 + ıωτR)(c66p

2
1 + cR44p

2
3)

ρ
, i = 0, 2; c′22 =

(1 + ıωτ ′R)(c
′
66p

′2
1 + c′R44p

′2
3 )

ρ′
. (4.7)

Note that the angles of propagation (p1, 0, p3) for the incident, regularly reflected

and transmitted waves are respectively (− sinα0, 0, cosα0), (− sinα1, 0,− cosα1) and

(− sinα2, 0, cosα2).

The Snell’s law, for this problem, is

k0 sinα0 = k2 sinα1 = k′
2 sinα2, (4.8)

The relations between the angles of irregular waves to those of regular waves are given

through the Spectrum theorem (Abubakar, 1962c)

sinα±
1n = sinα1 ±

np

k2
, sinα±

2n = sinα2 ±
np

k′
2

, n = 1, 2, ... (4.9)
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4.3 Boundary conditions

The component of displacement and traction are continuous at z = ζ(x). These

conditions are

u = u′, (4.10)

τ23 − τ21ζ
′ = τ ′23 − τ ′21ζ

′, (4.11)

which can be written as

(1 + ıωτR)(c
R
44

∂u

∂z
− ζ ′c66

∂u

∂x
) = (1 + ıωτ ′R)(c

′R
44

∂u′

∂z
− ζ ′c′66

∂u′

∂x
), (4.12)

where

ζ ′ =
∞∑
n=1

ınp(ζ+ne
ınpx − ζ−ne

−ınpx).

Using Eqs.(4.5), (4.6), (4.8) and (4.9) into Eqs.(4.10) and (4.12), we get

1∑
m=0

Ame
ıζk

(m)
3 +

∞∑
n=1

A±
1ne

∓ınpxeıζk
(1n)
3± = A2e

ıζk
(2)
3 +

∞∑
n=1

A±
2ne

∓ınpxeıζk
(2n)
3± , (4.13)

1∑
m=0

Am(cR44k
(m)
3 − c66k

(m)
1 ζ ′)eıζk

(m)
3 +

∞∑
n=1

A±
1n(c

R
44k

(1n)
3± − c66k

(1n)
1± ζ ′)e∓ınpxeıζk

(1n)
3±

= τ0{A2(c
′R
44k

(2)
3 − c′66k

(2)
1 ζ ′)eıζk

(2)
3 +

∞∑
n=1

A±
2n(c

′R
44k

(2n)
3± − c′66k

(2n)
1± ζ ′)e∓ınpxeıζk

(2n)
3± }, (4.14)

where

τ0 = (1 + ıωτ ′R)/(1 + ıωτR).

These equations will help to find out the amplitude ratios corresponding to the

regularly and irregularly reflected and transmitted waves.
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4.4 Solution of first order approximation

We assume that the slope and amplitude of the corrugated interface are very

small so that higher powers of ζ are neglected, then

e±ıζk
(0)
1 = 1± ıζk

(0)
1 , e±ıζk

(0)
3 = 1± ıζk

(0)
3 , etc. (4.15)

Using Eqs.(4.1) and (4.15) into Eqs.(4.13) and (4.14) and collecting the terms inde-

pendent of ζ and x, we obtain

A1

A0

− A2

A0

= −1,

k
(1)
3

A1

A0

− τ ′0k
(2)
3

A2

A0

= −k
(0)
3 , (4.16)

where

τ ′0 = τ0c
′R
44/c

R
44.

Solving the above equations, we get the amplitude ratios corresponding to regularly

reflected and transmitted qSH-waves as

r =
τ ′0k

(2)
3 − k

(0)
3

k
(1)
3 − τ ′0k

(2)
3

, (4.17)

t =
k
(1)
3 − k

(0)
3

k
(1)
3 − τ ′0k

(2)
3

. (4.18)

Next, comparing the coefficients of e±ınpx on both sides of the equations, we get

A∓
1n

A0

− A∓
2n

A0

= b±1 ,

cR44k
(1n)

3∓
A∓

1n

A0

− τ0c
′R
44k

(2n)

3∓
A∓

2n

A0

= b±2 , (4.19)

with

b±1 = ıζ±n[−k
(0)
3 − A1

A0

k
(1)
3 +

A2

A0

k
(2)
3 ], b±2 = ıζ±n[−g±0 − A1

A0

g±1 +
A2

A0

g±2 ],

g±0 = cR44k
(0)
3 k

(0)
3 ∓ c66npk

(0)
1 , g±1 = cR44k

(1)
3 k

(1)
3 ∓ c66npk

(1)
1 ,

g±2 = τ0(c
′R
44k

(2)
3 k

(2)
3 ∓ c′66npk

(2)
1 ).
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We get the amplitude ratios corresponding to irregularly reflected and transmitted

waves by solving Equation (4.19) as

r±n =
b±2 − τ0c

′R
44k

(2n)

3∓ b±1

cR44k
(1n)

3∓ − τ0c′R44k
(2n)

3∓

, t±n =
b±2 − cR44k

(1n)

3∓ b±1

cR44k
(1n)

3∓ − τ0c′R44k
(2n)

3∓

. (4.20)

Here, the sign (+ve) to the amplitude ratio represents for the irregular waves lying

on the right side of the regular waves and (−ve) sign represents for the irregular waves

lying on the left side of the regular waves. It is clearly observed that these ratios are

functions of the elastic parameters, angle of incidence, characteristic time of rubber

relaxation, director rotation times, corrugation parameter and frequency of incident

qSH-wave.

4.5 Energy partition

The energy due to the incident qSH-wave is distributed to regularly and irregularly

reflected and transmitted waves. The rate of transmission of energy per unit area is

given by Achenbach (1976)

℘∗ =< τ23 · u̇ > . (4.21)

The energy of the incident qSH-wave is given by

Einc = f0ωA
2
0 exp{2ı(ωt+ k

(0)
1 x+ k

(0)
3 z)}, (4.22)

where f0 = (1 + ıωτR)c
R
44k

(0)
3 .

Similarly, the energy due to reflected and transmitted qSH-waves are given by

Em = fmωA
2
m exp{2ı(ωt+ k

(m)
1 x+ k

(m)
3 z)}

+
∞∑
n=1

f±
mnω(A

±
mn)

2 exp{2ı(ωt+ k
(mn)
1± x+ k

(mn)
3± z)}, m = 1, 2. (4.23)

The expressions of fm and f±
mn are given by

fm = (1 + ıωτR)c
R
44k

(m)
3 , f±

mn = (1 + ıωτR)c
R
44k

(mn)
3± .
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The energy ratios of the regularly and irregularly reflected and transmitted qSH-

waves are given as

Em =
∣∣fm
f0

∣∣∣∣Am

A0

∣∣2, (4.24)

E±
mn =

∞∑
n=1

∣∣f±
mn

f0

∣∣∣∣A±
mn

A0

∣∣2, (4.25)

where E1 and E2 are the energy ratios of the regularly reflected and transmitted

waves, E±
1n and E±

2n are the energy ratios of the irregularly reflected and transmitted

waves for nth spectrum. These ratios depend on elastic constants, the coupling con-

stants, the characteristics time of rubber relaxation, director rotation times, angle

of incidence, corrugation and frequency parameters. It may be noted that sum of

energy ratios is equal to one.

4.6 Special case

If the corrugated interface is represented by only one cosine term, i.e., ζ(x) =

d cos px, then

ζ±n =


0 if n ̸= 1,

d
2

if n = 1.

(4.26)

Then, the amplitude ratios corresponding to the irregularly reflected and transmitted

waves for the first order of approximation are given by

r±1 =
b±2 − τ0c

′R
44k

(21)

3∓ b±1

cR44k
(11)

3∓ − τ0c′R44k
(21)

3∓

, t±1 =
b±2 − cR44k

(11)

3∓ b±1

cR44k
(11)

3∓ − τ0c′R44k
(21)

3∓

, (4.27)

where

b±1 = ı
d

2
{−k

(0)
3 − A1

A0
k
(1)
3 +

A2

A0
k
(2)
3 }, b±2 = ı

d

2
{−g±0 − A1

A0
g±1 +

A2

A0
g±2 },

g±0 = cR44k
(0)
3 k

(0)
3 ∓ c66pk

(0)
1 , g±1 = cR44k

(1)
3 k

(1)
3 ∓ c66pk

(1)
1 , g±2 = τ0(c

′R
44k

(2)
3 k

(2)
3 ∓ c′66pk

(2)
1 ).
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In the normal incidence, α0 = 0o, we obtain that cosα+
11 = cosα−

11 and cosα+
21 =

cosα−
21 due to Equations (4.8) and (4.9). Hence the amplitude ratios of the irregular

waves are related as r+1 = r−1 , t+1 = t−1 . These are the result of Asano (1960) for the

relevant problem.

In the grazing angle of incidence, α0 = π
2
, the amplitude ratios are given by

Eq.(4.27) with the following modifications

b±1 =
ıd

2
{A1

A0

√
k2
2 − k2

0 +
A2

A0

√
k′2
2 − k2

0}, g±0 = ±c66pk0,

g±1 = cR44(k
2
2 − k2

0)± c66pk0, g±2 = τ0{c′R44(k′2
2 − k2

0)± c′66pk0}.

The energy ratios are obtained from Eq.(4.25) by inserting n = 1.

4.7 Particular case

(a) When the two nematic half-spaces, M and M ′ reduce to isotropic half-spaces,

we have

D1 = D2 = 0, c11 = c33 = λ+ 2µ, c13 = λ, c44 = cR44 = c66 = µ, C1 = C4 = C5 =
1

2
µ,

D′
1 = D′

2 = 0, c′11 = c′33 = λ′ + 2µ′, c′13 = λ′, c′44 = c′R44 = c′66 = µ′, C ′
1 = C ′

4 = C ′
5 =

1

2
µ′.

The phase velocity corresponding to the SH-waves become c22 = µ
ρ
and c′22 = µ′

ρ′

which are the results of classical elasticity (Achenbach, 1976).

The amplitude ratios of the reflected and transmitted waves are given by Eqs.

(4.17), (4.18) and (4.20) with the following modified values

τ ′0 = µ′/µ, g±0 = k
(0)
3 k

(0)
3 ∓npk

(0)
1 , g±1 = k

(1)
3 k

(1)
3 ∓npk

(1)
1 , g±2 = µ′(k

(2)
3 k

(2)
3 ∓npk

(2)
1 )/µ.

These results are similar with those of Asano (1960) for the relevant problem. The

energy ratios corresponding to the regularly and irregularly reflected and transmitted

waves are given by Eqs. (4.24) and (4.25) with the following modified values

f0 = k
(0)
3 , f1 = k

(1)
3 , f2 = µ′k

(2)
3 /µ, f±

1n = k
(1n)
3± , f±

2n = µ′k
(2n)
3± /µ.
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(b) If the amplitude of corrugated interface is neglected, i.e., d = 0, the problem

reduces to the reflection/transmission of elastic waves at a plane interface between

two dissimilar nematic half-spaces. The amplitude and energy ratios corresponding

to the regularly reflected and transmitted qSH-waves are given by Eqs. (4.17), (4.18)

and (4.24). These results exactly match with those of Singh (2015).

(c) If the half-space M ′ is absent, then the problem reduces to the reflection of

elastic waves at the plane free surface. The amplitude ratio given by Eq. (4.17) will

be modified as

r = −k
(0)
3 /k

(1)
3 .

This is the result of Kielczynski and Pajewski (1987) for the relevant problem.

4.8 Numerical results and discussion

We will compute the angles of reflected and transmitted waves through Snell’s

law. Introducing dimensionless velocity c̄ such that c̄ = ca
β
= c

p1β
into Equation (4.7),

we have

c̄2 = (1 + ıωτR)(c̄66 + c̄R44p
2), (4.28)

where ca is an apparent velocity and

p =
p3
p1
, β =

√
c44
ρ
, c̄ij =

cij
c44

.

Transforming this equation with q = 1
p
= p1

p3
, we have

q2 =
(1 + iωτR)c̄

R
44

c̄2 − (1 + iωτR)c̄66
(4.29)

The Eq. (4.29) give rise to the reflected angle α1 = tan−1(q) for a given α0.

Similarly, we obtained the angle of transmitted qSH-wave, α2 = tan−1(q′) in the

half-space M ′.

97



Chapter 4

For the numerical computation, the following relevant values are considered

(Singh, 2015)

Half-space, M Value Half-space, M ′ Value Units

C1 1.42× 105 C ′
1 3.52× 105 Nm−2

C2 2.25× 105 C ′
2 2.28× 105 Nm−2

C3 4.88× 105 C ′
3 1.65× 105 Nm−2

C4 2.15× 105 C ′
4 1.60× 105 Nm−2

C5 1.06× 105 C ′5 3.34× 105 Nm−2

ρ 1.66× 103 ρ′ 1.26× 103 kgm−3

D1 0.12 D′
1 0.15× 106

D2 0.05 D′
2 0.17× 106

τ1 0.02 τ ′1 0.04

τ2 0.05 τ ′2 0.06

τR 0.000002 τ ′R 0.000003

Table 1: Values of the parameters

and (pd, ω/pc0) = (0.00001, 60) are taken whenever not mentioned.
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Figure 4.2: Variation of angles of regularly reflected and transmitted waves with α0.
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We notice in Figure 4.2 that angles of reflected and transmitted qSH-waves are

increasing with the increase of angle of incidence, α0. In Figure 4.3, amplitude ratios

corresponding to the reflected and transmitted qSH-waves meet at α0 = 630, while

E1 increases and E2 decreases with the increase of α0.
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Figure 4.3: Variation of amplitude and energy ratios of the regular waves with α0.

0 10 20 30 40 50 60 70 80 90

Angle of incidence

0

0.5

1

1.5

2

2.5

3

A
m

p
lit

u
d

e 
ra

ti
o

10-3

I:r+
1

II:t+
1

III:r-
1

IV:t-
1

IV

III

I

II

Figure 4.4: Variation of amplitude ratios of the irregular waves with α0.

99



Chapter 4

In Figure 4.4, the amplitude ratios (r−1 , t
−
1 ) corresponding to irregularly reflected

and transmitted waves decrease to zero at (α0 = 260, α0 = 290) and then increase with

the increase of α0 attaining maximum values at (α0 = 600, α0 = 620) respectively.

Thereafter, they decrease with the increase of α0. In the same figure, the amplitude

ratios (r+1 , t
+
1 ) decrease to zero at (α0 = 250, α0 = 280) and then increase with the

increase of α0 attaining maximum values at (α0 = 620, α0 = 640) respectively. They

show irregular patterns making a peak at α0 = 830 and then decrease with the

increase of α0.
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Figure 4.5: Variation of energy ratios of irregular waves with α0.

The variation of energy ratios of the irregular waves with angle of incidence are

shown in Figure 4.5. In this figure, E−
11, E

−
21, E

+
11 and E+

21 start from certain values

which decrease to zero at α0 = 260, α0 = 280, α0 = 250 and α0 = 270 respectively

which increase with α0 attaining maximum values at α0 = 610, α0 = 650, α0 = 610

and α0 = 670 respectively. Then, Curves I and II show decreasing and increasing

natures with peaks at α0 = 830 and α0 = 800 respectively, while Curves III and IV

show the decreasing natures of E−
11 and E−

21 respectively.
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The irregularities in the Curves I and II in the Figures 4.4 and 4.5 for (r+1 , t+1 )

and (E+
11, E+

21) respectively in between the angles 750 and 850 are due to existence

of critical angles for α+
11 = sin−1(sinα1 + p/k2) and α+

21 = sin−1(sinα2 + p/k′
2) at

α0 = 830. The sum of energy ratios is very close to unity.

4.8.1 Effect of corrugation and frequency parameters

We are interested to see the effect of corrugation and frequency parameters on the

amplitude and energy ratios. Figures 4.6 and 4.7 show the variation of amplitude and

energy ratios with corrugation parameter pd. It is seen that amplitude and energy

ratios increase with the increase of pd. We noted that these increases are linear at

different rates for amplitude ratios and non-linear in the case of energy ratios.
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The variation of amplitude and energy ratios with angle of incidence, α0 at differ-

ent values of pd and ω/pc0 are depicted through Figures 4.8-4.11 and Figures 4.12-4.15

respectively.
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In Figures 4.8 and 4.9, r−1 and t−1 start from certain value and decrease to zero

at α0 = 260 and α0 = 290 which then increase with the increase of α0 attaining

maximum values at α0 = 600 and α0 = 620 respectively. They decrease again with

the increase of α0.
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Figure 4.9: Variation of t−1 with α0 for different values of pd and ω/pc0.
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The amplitude ratios, r+1 and t+1 in Figures 4.10 and 4.11 start from certain value
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which decrease to zero at α0 = 250 and α0 = 280 which then increase with the increase

of α0 attaining maximum values at α0 = 630 and α0 = 640 respectively. Thereafter,

they show irregular natures with α0.
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Figure 4.11: Variation of t+1 with α0 for different values of pd and ω/pc0.
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Figure 4.12: Variation of E+
11 with α0 for different values of pd and ω/pc0.

Similar natures of (E+
11, E

+
21) with (r+1 , t

+
1 ) and (E−

11, E
−
21) with (r−1 , t

−
1 ) are observed

in Figures 4.12-4.15. We come to know that the values of amplitude and energy ratios
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increase upto certain extend with the increase of pd and ω/pc0. It has been observed

that there are irregularities in the figures corresponding to r+1 , t
+
1 , E

+
11, E

+
21 between

the angles 750 and 850, while regular for r−1 , t−1 , E
−
11, E−

21.
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Figure 4.13: Variation of E+
21 with α0 for different values of pd and ω/pc0.
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The existence of critical angles for (α+
11, α+

21) and no critical angles for (α−
11,

α−
21) through the Spectrum theorem make these differences. These irregularities and

critical angles depend on the corrugation and frequency parameter. No irregularities

and no irregular waves exist if the corrugation parameter is equal to zero. With the

increase of ω/pc0, the critical angles also increase. We also see that the amplitude

and energy ratios corresponding to the regularly reflected and transmitted waves are

independent of corrugation and frequency parameters.
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Figure 4.15: Variation of E−
21 with α0 for different values of pd and ω/pc0.

4.8.2 Effect of relaxation parameters

We have seen the effects of the characteristic time of rubber relaxation (τR, τ
′
R) on

the amplitude and energy ratios through the Figures 4.16-4.21. The minimum effect

of (τR, τ
′
R) on reflection and transmission coefficients (r, t) as well as energy ratios

E1 and E2 due to regular waves have been observed near α0 = 600.
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′
R).

The relaxation times (τR, τ
′
R) on E+

11, E
+
21, r

+
1 and t+1 has minimum and maximum

effects near 300 and 640 respectively. It is also noticed that the minimum effect of

(τR, τ
′
R) on E−

11, E−
21, r−1 and t−1 is observed near α0 = 300 and grazing angle of

incidence.

108



Chapter 4

0 10 20 30 40 50 60 70 80 90

Angle of incidence

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

E
ne

rg
y 

ra
tio

10-5

V

I-E+
11

 & IV-E+
21

: (
R

, '
R

)=(0.02,0.03)

II-E+
11

 & V-E+
21

: (
R

, '
R

)=(0.2,0.3)

III-E+
11

 & VI-E+
21

: (
R

, '
R

)=(2.0,3.0)

VIII

I

III

IV

Figure 4.20: Variation of E+
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21 with α0 for different values of (τR, τ
′
R).
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4.9 Conclusions

The problem of incident qSH-wave at a corrugated interface between two different

nematic elastomer half-spaces has been investigated. We have obtained the amplitude

and energy ratios corresponding to regularly and irregularly reflected and transmitted

waves with the help of Rayleigh’s method of approximation. These amplitude and

energy ratios are computed numerically for a specific model, z = d cos px and the

effect of corrugation and frequency parameters on these amplitude and energy ratios

are discussed. We may conclude with the following remarks:

(i) The angles corresponding to the reflected and transmitted waves increase with the

increase of the angle of incidence.

(ii) All amplitude and energy ratios corresponding to irregular waves are functions of

the angle of incidence, elastic constants, coupling constants, the characteristic time of

rubber relaxation, the director rotation-times, frequency and corrugation parameters.

(iii) The amplitude ratios corresponding to the regularly reflected and transmitted

waves are greater in magnitude than those due to irregular waves.

(iv) The values of energy ratio corresponding to irregular waves are found to be sig-

nificantly small in comparison to those due to regular waves.

(v) Theoretically and numerically, the amplitude and the energy ratios corresponding

to the regular waves are independent of corrugation and frequency parameters.

(vi) The values of amplitude and energy ratios corresponding to irregular waves show

linearly and non-linearly increase, respectively, with the increase of corrugation pa-

rameters.

(vii) The sum of all energy ratio is approximately unity at each value of incident

angle which ensures the law of conservation of energy.

(viii) The results of Ben-Menahem and Singh (1981), Singh (2015) and Asano (1960)

of the relevant problems are recovered from the present work.
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Chapter 5

Waves due to corrugated interface

between two dissimilar

incompressible transversely

isotropic fibre-reinforced elastic

half-spaces4

5.1 Introduction

A composite material is a material made from two or more constituent materials

with significantly different physical or chemical properties but when combined pro-

duce a material with characteristics different from the individual components. The

constituent materials are of two main categories - matrix and reinforcement. The

matrix material surrounds and supports the reinforcement materials by maintaining

their relative positions. The reinforcements impart their special mechanical and phys-

ical properties to enhance the matrix properties. Reinforcement usually adds rigidity

and greatly impedes crack propagation. Fibre-reinforced composites are materials

in which a fibre made of one material is embedded in another material. They are

widely used in many structural engineering for they possess high stiffness, strength

and toughness often comparable with structural metal alloys. The strength and the

4Mechanics of Advanced Materials and Structures (2020)
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unbendingness of the material rely on the mechanical properties of the constituents

and the process of stress transfer occurring at the fibre/matrix interface. In na-

ture, composite materials are not generally isotropic rather anisotropic and hence

the rigidness of the materials largely depend on the direction of the forces and mo-

ments applied (Spencer, 1984).

A transversely isotropic material is one with physical properties which are sym-

metric about an axis that is normal to a plane of isotropy. This transverse plane has

infinite planes of symmetry and thus within this plane the material properties are

the same in all directions. This type of material exhibits hexagonal symmetry, so

the number of independent constants in the linear constitutive relations reduced to

5. Further the presence of incompressibility constraint on the transversely isotropic

theory results in the stress-strain relationship having only three material constants.

Transverse isotropy is observed in sedimentary rocks at long wavelengths. Each layer

has approximately the same properties in-plane but different properties through the

thickness. The plane of each layer is the plane of isotropy and the vertical axis is

the axis of symmetry. At present, despite their high cost, these materials are more

and more popular in high-performance material products owing to its superiority in

strength and durability, lightweight yet strong enough to take harsh loading condi-

tions such as aerospace components, boat and scull hulls, bicycle frames and racing

car bodies. Its applicability increased in the realm of orthopaedic surgery as well

(Reid, 2018).

In this chapter, we have attempted the problem of elastic wave incident at an

irregular interface between two different incompressible transversely isotropic fibre-

reinforced medium using Rayleigh method. There can exist two reflected and trans-

mitted quasi shear waves in certain limit of propagation, the existence of which

depends on the formation of the associated slowness and in such angular range, the

outer slowness is re-entrant. The usual stress-strain relations are modified to take

into account the incompressibility constraint with pressure (Singh et al., 2014). The
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closed form expressions for modulus of coefficients due to reflection and transmis-

sion as well as the energy distribution to various waves at the irregular interface are

obtained. Numerically, these energy ratios and coefficients are computed and are

plotted in the form of graphs using MATLAB programming. The results of Singh

(2007b) and Singh et al. (2014) are obtained from this work.

5.2 Governing equation

The constitutive equation showing stress-strain relationship which is appropriate

for small deformation of an incompressible transversely isotropic elastic material has

been derived by Baylis and Green (1986)

σ = −p∗I + 2µT ϵ+ 2(µL − µT ){e⊗ (ϵe) + (ϵe)⊗ e}+ 4(µE − µL){e(ϵe)}e⊗ e, (5.1)

where p∗ is the pressure such that tr ϵ = 0, ϵ is an infinitesimal strain tensor, σ is

the stress tensor, e is an unit vector for the transversely isotropic axis, µL, µT and

µE are longitudinal, transverse and weighted shear moduli respectively related by

µE =
EL

ET

µT , (5.2)

where the longitudinal and transverse Young’s muduli are represented by EL and ET

respectively. If the material is highly anisotropic, it is observed that EL ≫ ET so

that Eq. (5.2) implied that the order of magnitude of µE would be larger than µT .

Consider a cartesian system Ox1x2x3 in which Ox1 is parallel to the fibre direction

of the transverse isotropy. The stress-strain relationships given by Eq.(5.1) reduces

to the form

σij = −p∗δij + 2µT ϵij + 2(µL − µT )(δi1ϵj1 + ϵi1δj1) + 4(µE − µL)ϵ11δi1δj1 (5.3)

The stress tensor in terms of displacement component (u1, u2, u3) can be written as

σ11 = 2(2µE − µT )u1,1 − p∗, σ22 = 2µTu2,2 − p∗, σ33 = 2µTu3,3 − p∗,
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σ12 = µL(u1,2 + u2,1), σ13 = µL(u1,3 + u3,1), σ23 = µT (u2,3 + u3,2). (5.4)

The general equation of motion for the elastic waves in an incompressible elastic

medium without the body force is

σij,j = ρüi, (i, j = 1, 2, 3) (5.5)

where ρ is the density of the medium and superimposed dot is derivative with respect

to time.

Inserting Equation (5.4) into (5.5), we get

2(2µE − µT )u1,11 + µL(u1,22 + u2,12) + µL(u1,33 + u3,13)− p∗,1 = ρü1, (5.6)

µL(u1,12 + u2,11) + 2µTu2,22 + µT (u2,33 + u3,23)− p∗,2 = ρü2, (5.7)

µL(u1,13 + u3,11) + µT (u2,23 + u3,22) + 2µTu3,33 − p∗,3 = ρü3. (5.8)

The incompressibility condition in the linearized form may be represented by the

relation

u1,1 + u2,2 + u3,3 = 0 (5.9)

5.3 Wave propagation

Consider wave propagation in x1x2-plane such that the x1 and x3-axis lies hori-

zontal while the x2-axis is vertical. Suppose two different half-spaces, Ω = {(x1, x2) :

x1 ∈ R, x2 ∈ [ζ,∞)} and Ω′ = {(x1, x2) : x1 ∈ R, x2 ∈ (−∞, ζ)}, are separated by

x2 = ζ(x1) which is periodic in x1 and does not dependent on x3 whose mean value

being zero. The parameters in Ω are labelled without dashes, while the parameters

in Ω′ are labelled with dashes. The function ζ(x1) is expanded by using Fourier series

as

ζ(x1) =
∞∑
n=1

(
ζ+ne

ınpx1 + ζ−ne
−ınpx1

)
, (5.10)
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where the coefficients of Fourier series expansion ζ±n is of order n, the wavenumber

is represented by p and ı =
√
−1.

If we insert d, cn and sn such that

ζ±1 =
d

2
, ζ±n =

cn ∓ ısn
2

, (n = 2, 3, 4, ....)

then

ζ(x1) = d cos(px1) +
∞∑
n=2

{cn cos(npx1) + sn sin(npx1)}. (5.11)

If the interface of the wave takes only one term ζ(x1) = d cos(px1), then the wave-

length and amplitude of corrugation will be 2π/p and d respectively.

The equations of motion in an incompressible transversely isotropic fibre-reinforced

elastic half-space Ω in the absence of body force reduces to

2(2µE − µT )u1,11 + µL(u1,22 + u2,12)− p∗,1 = ρü1, (5.12)

µL(u1,12 + u2,11) + 2µTu2,22 − p∗,2 = ρü2, (5.13)

Similarly, in half-space Ω′ we have

2(2µ′
E − µ′

T )u
′
1,11 + µ′

L(u
′
1,22 + u′

2,12)− p′∗,1 = ρü′
1, (5.14)

µ′
L(u

′
1,12 + u′

2,11) + 2µ′
Tu

′
2,22 − p′∗,2 = ρü′

2. (5.15)

Suppose an elastic wave be incident with an angle α at x2 = ζ(x1). There exists

regular and irregular waves due to undulated nature of the interface (Asano, 1961).

The total displacement components in the half-spaces {Ω,Ω′} with pressure fields are

given by

< u1, u2, p
∗ >=

2∑
m=0

< Amd
(m)
1 , Amd

(m)
2 , kmBm > exp(iPm)

+
2∑

m=1

∞∑
n=1

< A±
mnd

(mn)

1± , A±
mnd

(mn)

2± , kmB
±
mn > exp(iP±

mn), (5.16)
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< u′
1, u

′
2, p

′∗ >=
4∑

m=3

< Amd
(m)
1 , Amd

(m)
2 , kmB

′
m > exp(iPm)

+
4∑

m=3

∞∑
n=1

< A±
mnd

(mn)

1± , A±
mnd

(mn)

2± , kmB
′±
mn > exp(iP±

mn), (5.17)

where Pm = km(x1p
(m)
1 + x2p

(m)
2 − cmt), P

±
mn = km(x1p

(mn)

1± + x2p
(mn)

2± − cmt), Am and

A±
mn denote amplitude constants with phase speed cm, km denotes the wavenum-

ber, (d
(m)
1 , d

(m)
2 ) and (d

(mn)

1± , d
(mn)

2± ) are unit displacement vectors, (p
(m)
1 , p

(m)
2 ) and

(p
(mn)

1± , p
(mn)

2± ) are unit propagation vectors. Noted that m = 0, m = 1, 2 and m = 3, 4

denote for the wave incidence, regularly reflected and transmitted waves respectively,

while mn = 1n, 2n and mn = 3n, 4n denote for the irregularly reflected and trans-

mitted waves respectively.

The Snell’s law (Singh, 2007b) may be represented by

k0p
(0)
1 = kqp

(q)
1 , q = 1(1)4. (5.18)

The angles of irregular waves and those of regular ones are related through spec-

trum theorem given by Abubakar (1962c)

sinα±
mn = sinαm ± np

km
, m = 1(1)4 and n = 1, 2, 3, ... (5.19)

Using Eqs. (5.16) and (5.17) into Eqs. (5.12)-(5.15), the expressions of propagation

velocity due to the incident wave, regularly reflected and transmitted waves at p =

(p
(m)
1 , 0, p

(m)
3 ) and p′ = (p

′(m)
1 , 0, p

′(m)
3 ) are obtained as

c2m =


µL−4(µL−µE)(p

(m)
1 )2(p

(m)
2 )2

ρ
, m = 0, 1, 2

µ′
L−4(µ′

L−µ′
E)(p

′(m)
1 )2(p

′(m)
2 )2

ρ′
, m = 3, 4.

(5.20)

Notice that these velocities depend on the angle of propagation and hence, these

waves are quasi-nature.

116



Chapter 5

5.4 Boundary conditions

The suitable boundary conditions for this problem at x2 = ζ(x1) are

(i) the displacements components are continuous,

(ii) the shear tractions are continuous,

(iii) the normal tractions are continuous.

These boundary conditions can be written as

u1 = u′
1, u2 = u′

2, (5.21)

σ12(1− ζ ′2) + (σ22 − σ11)ζ
′ = σ′

12(1− ζ ′2) + (σ′
22 − σ′

11)ζ
′, (5.22)

σ22 − 2σ12ζ
′ + σ11ζ

′2 = σ′
22 − 2σ′

12ζ
′ + σ′

11ζ
′2. (5.23)

Using Eq. (5.4) into Eqs.(5.22) and (5.23), we have

µL(u1,2 + u2,1)(1− ζ ′2) + {2µT (u1,1 + u2,2)− 4µEu1,1}ζ ′

= µ′
L(u

′
1,2 + u′

2,1)(1− ζ ′2) + {2µ′
T (u

′
1,1 + u′

2,2)− 4µ′
Eu

′
1,1}ζ ′, (5.24)

2µTu2,2 − p∗ − 2µL(u1,2 + u2,1)ζ
′ + {2(2µE − µT )u1,1 − p∗)}ζ ′2

= 2µ′
Tu

′
2,2 − p∗ − 2µ′

L(u
′
1,2 + u′

2,1)ζ
′ + {2(2µ′

E − µ′
T )u

′
1,1 − p∗)}ζ ′2. (5.25)

where

ζ ′ = ±
∞∑
n=1

ınpζ±ne
±ınpx1 .

Using Eqs.(5.16)-(5.19) into (5.21), (5.24) and (5.25), we get

2∑
m=0

Amd
(m)
1 eıζkmp

(m)
2 +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)
1± e±ınpx1eıζkmp

(mn)
2±

=
4∑

m=3

∞∑
n=1

(
Amd

(m)
1 eıζkmp

(m)
2 + A±

mnd
(mn)
1± e±ınpx1eıζkmp

(mn)
2±

)
, (5.26)

2∑
m=0

Amd
(m)
2 eıζkmp

(m)
2 +

2∑
m=1

∞∑
n=1

A±
mnd

(mn)
2± e±ınpx1eıζkmp

(mn)
2±

=
4∑

m=3

∞∑
n=1

(
Amd

(m)
2 eıζkmp

(m)
2 + A±

mnd
(mn)
2± e±ınpx1eıζkmp

(mn)
2±

)
, (5.27)
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2∑
m=0

Am{(1− ζ ′2)µLλm + ζ ′γm}kmeıζkmp
(m)
2 +

2∑
m=1

∞∑
n=1

A±
mn{(1− ζ ′2)µLλmn

+ ζ ′γmn}kme±ınpx1eıζkmp
(mn)
2± =

4∑
m=3

Am{(1− ζ ′2)µ′
Lλm + ζ ′γ′

m}kmeıζkmp
(m)
2

+
4∑

m=3

∞∑
n=1

A±
mn{(1− ζ ′2)µ′

Lλmn + ζ ′γ′
mn}kme±ınpx1eıζkmp

(mn)
2± , (5.28)

2∑
m=0

Am[2µTd
(m)
2 p

(m)
2 − F (m) − 2µLλmζ

′ + {(4µE − 2µT )d
(m)
1 p

(m)
1 − F (m)}ζ ′2]km

× eıζkmp
(m)
2 +

2∑
m=1

∞∑
n=1

A±
mn[2µTd

(mn)
2± p

(mn)
2± − F (mn) − 2µLλmnζ

′ + {(4µE − 2µT )d
(mn)
1±

× p
(mn)
1± − F (mn))ζ ′2]kme

±ınpx1eıζkmp
(mn)
2± =

4∑
m=3

Am[2µ
′
Td

(m)
2 p

(m)
2 − F ′(m) − 2µ′

Lλmζ
′

+ {(4µ′
E − 2µ′

T )d
(m)
1 p

(m)
1 − F ′(m)}ζ ′2}kmeıζkmp

(m)
2 +

4∑
m=3

∞∑
n=1

A±
mn[2µ

′
Td

(mn)
2± p

(mn)
2±

− F ′(mn) − 2µ′
Lλmnζ

′ + {(4µ′
E − 2µ′

T )d
(mn)
1± p

(mn)
1± − F ′(mn)}ζ ′2]kme±ınpx1eıζkmp

(mn)
2± ,

(5.29)

where

λm = d
(m)
1 p

(m)
2 + d

(m)
2 p

(m)
1 , λmn = d

(mn)
1± p

(mn)
2± + d

(mn)
2± p

(mn)
1± , γm = −4µEd

(m)
2 p

(m)
2 ,

γ′m = −4µ′
Ed

(m)
2 p

(m)
2 , γmn = −4µEd

(mn)
2± p

(mn)
2± , γ′mn = −4µ′

Ed
(mn)
2± p

(mn)
2± ,

F (m) = 2(2µE − µT )d
(m)
1 p

(m)3

1 + 2µLp
(m)
1 p

(m)
2 (d

(m)
1 p

(m)
2 + d

(m)
2 p

(m)
1 ) + 2µTd

(m)
2 p

(m)3

2 ,

F (mn) = 2(2µE − µT )d
(mn)
1± p

(mn)3

1± + 2µLp
(mn)
1± p

(mn)
2± (d

(mn)
1± p

(mn)
2± + d

(mn)
2± p

(mn)
1± ) + 2µTd

(mn)
2± p

(mn)3

2± ,

F ′(m) = 2(2µ′
E − µ′

T )d
(m)
1 p

(m)3

1 + 2µ′
Lp

(m)
1 p

(m)
2 (d

(m)
1 p

(m)
2 + d

(m)
2 p

(m)
1 ) + 2µ′

Td
(m)
2 p

(m)3

2 ,

F ′(mn) = 2(2µ′
E − µ′

T )d
(mn)
1± p

(mn)3

1± + 2µ′
Lp

(mn)
1± p

(mn)
2± (d

(mn)
1± p

(mn)
2± + d

(mn)
2± p

(mn)
1± ) + 2µ′

Td
(mn)
2± p

(mn)3

2± ,

The reflection and transmission coefficients corresponding to the regular and

irregular waves will be obtained using these equations.
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5.5 Reflection and transmission coefficients

Following Rayleigh’s method of approximation, we assume that the amplitude

and slope of the irregular interfaces are small enough such that

e±ıζp
(0)
2 = 1± ıζp

(0)
2 , e±ıζp

(1n)

2± = 1± ıζp
(1n)

2± , etc. (5.30)

5.5.1 For regular waves

Using the Fourier series expansion given by Eq.(5.10) and Eq.(5.30) into Eqs.(5.26)-

(5.29) and picking the terms not containing ζ and x1, we get a system of four non-

homogeneous equations as

[Adp]X = F, d, p = 1, 2, 3, 4 (5.31)

where

[Adp] =



d
(1)
1 d

(2)
1 −d

(3)
1 −d

(4)
1

d
(1)
2 d

(2)
2 −d

(3)
2 −d

(4)
2

l1 l2 −l3 −l4

m1 m2 −m3 −m4


, X =



X1/X0

X2/X0

X3/X0

X4/X0


, F =



f1

f2

f3

f4


,

f1 = −d
(0)
1 , f2 = −d

(0)
2 , f3 = −µL(d

(0)
1 p

(0)
2 + d

(0)
2 p

(0)
1 ), f4 = −(2µTd

(0)
2 p

(0)
2 − F (0)),

l1 =
k1
k0

µL(d
(1)
1 p

(1)
2 + d

(1)
2 p

(1)
1 ), l2 =

k2
k0

µL(d
(2)
1 p

(2)
2 + d

(2)
2 p

(2)
1 ),

l3 = −k3
k0

µ′
L(d

(3)
1 p

(3)
2 + d

(3)
2 p

(3)
1 ), l4 = −k4

k0
µ′
L(d

(4)
1 p

(4)
2 + d

(4)
2 p

(4)
1 ),

m1 =
k1
k0

(2µTd
(1)
2 p

(1)
2 − F (1)), m2 =

k2
k0

(2µTd
(2)
2 p

(2)
2 − F (2)),

m3 = −k3
k0

(2µ′
Td

(3)
2 p

(3)
2 − F ′(3)), m4 = −k4

k0
(2µ′

Td
(4)
2 p

(4)
2 − F ′(4)).

It may be noted that,

d
(0)
1 = p

(0)
2 = cosα, d

(0)
2 = −p

(0)
1 = sinα; d

(1)
1 = p

(1)
2 , d

(1)
2 = −p

(1)
1 ; d

(2)
1 = p

(2)
2 ,

d
(2)
2 = −p

(2)
1 ; d

(3)
1 = p

(3)
2 , d

(3)
2 = −p

(3)
1 ; d

(4)
1 = p

(4)
2 , d

(4)
2 = −p

(4)
1 . (5.32)
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On solving Eq.(5.31), we get the reflection and transmission coefficients for the regular

shear-waves as

r1 =
|Adp|1
|Adp|

, r2 =
|Adp|2
|Adp|

, (5.33)

t3 =
|Adp|3
|Adp|

, t4 =
|Adp|4
|Adp|

. (5.34)

The values of the determinant |Adp|1, |Adp|2, |Adp|3, |Adp|4 respectively are obtained

from |Adp| by replacement of its 1st, 2nd, 3rd, 4th column with F .

5.5.2 For irregular waves

Comparing the coefficients of e±ınpx1 , we have a system of four non-homogeneous

equations as

[A±
dp]X

± = F±, d, p = 1, 2, 3, 4 (5.35)

where

[A±
dp]n =



d
(1n)

1± d
(2n)

1± −d
(3n)

1± −d
(4n)

1±

d
(1n)
2± d

(2n)
2± −d

(3n)
2± −d

(4n)
2±

l±1 l±2 −l±3 −l±4

m±
1 m±

2 −m±
3 −m±

4


, X± =



X±
1n/X0

X±
2n/X0

X±
3n/X0

X±
4n/X0


, F± =



f±
1

f±
2

f±
3

f±
4


,

l±1 =
k1
k0

µL(d
(1n)

1± p
(1n)

2± + d
(1n)

2± p
(1n)

1± ), l±2 =
k2
k0

µL(d
(2n)

1± p
(2n)

2± + d
(2n)

2± p
(2n)

1± ),

l±3 = −k3
k0

µ′
L(d

(3n)

1± p
(3n)

2± + d
(3n)

2± p
(3n)

1± ), l±4 = −k4
k0

µ′
L(d

(4n)

1± p
(4n)

2± + d
(4n)

2± p
(4n)

1± ),

m±
1 =

k1
k0

(2µTd
(1n)

2± p
(1n)

2± − F (1n)), m±
2 =

k2
k0

(2µTd
(2n)

2± p
(2n)

2± − F (2n)),

m±
3 = −k3

k0
(2µ′

Td
(3n)

2± p
(3n)

2± − F ′(3n)), m±
4 = −k4

k0
(2µ′

Td
(4n)

2± p
(4n)

2± − F ′(4n)),

f±
1 = ıζ±n{−d

(0)
1 p

(0)
2 − k1

k0
d
(1)
1 p

(1)
2

X1

X0

− k2
k0

d
(2)
1 p

(2)
2

X2

X0

+
k3
k0

d
(3)
1 p

(3)
2

X3

X0

+
k4
k0

d
(4)
1 p

(4)
2

X4

X0

},
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f±
2 = ıζ±n{−d

(0)
2 p

(0)
2 − k1

k0
d
(1)
2 p

(1)
2

X1

X0

− k2
k0

d
(2)
2 p

(2)
2

X2

X0

+
k3
k0

d
(3)
2 p

(3)
2

X3

X0

+
k4
k0

d
(4)
2 p

(4)
2

X4

X0

},

f±
3 = ıζ±n{−g±0 − g±1

X1

X0

− g±2
X2

X0

+ g±3
X3

X0

+ g±4
X4

X0

},

f±
4 = ıζ±n{−h±

0 − h±
1

X1

X0

− h±
2

X2

X0

+ h±
3

X3

X0

+ h±
4

X4

X0

},

g±0 = µL(d
(0)
1 p

(0)
2 + d

(0)
2 p

(0)
1 )p

(0)
2 k2

0 ∓ npk04µEd
(0)
1 p

(0)
1 ,

g±1 = µL(d
(1)
1 p

(1)
2 + d

(1)
2 p

(1)
1 )p

(1)
2 k2

1 ∓ npk14µEd
(1)
1 p

(1)
1 ,

g±2 = µL(d
(2)
1 p

(2)
2 + d

(2)
2 p

(2)
1 )p

(2)
2 k2

2 ∓ npk24µEd
(2)
1 p

(2)
1 ,

g±3 = µ′
L(d

(3)
1 p

(3)
2 + d

(3)
2 p

(3)
1 )p

(3)
2 k2

3 ∓ npk34µ
′
Ed

(3)
1 p

(3)
1 ,

g±4 = µ′
L(d

(4)
1 p

(4)
2 + d

(4)
2 p

(4)
1 )p

(4)
2 k2

4 ∓ npk44µ
′
Ed

(4)
1 p

(4)
1 ,

h±
0 = (2µTd

(0)
2 p

(0)
2 − F (0))p

(0)
2 k2

0 ∓ 2µLnpk0(d
(0)
1 p

(0)
2 + d

(0)
2 p

(0)
1 ),

h±
1 = (2µTd

(1)
2 p

(1)
2 − F (1))p

(1)
2 k2

1 ∓ 2µLnpk1(d
(1)
1 p

(1)
2 + d

(1)
2 p

(1)
1 ),

h±
2 = (2µTd

(2)
2 p

(2)
2 − F (2))p

(2)
2 k2

2 ∓ 2µLnpk2(d
(2)
1 p

(2)
2 + d

(2)
2 p

(2)
1 ),

h±
3 = (2µ′

Td
(3)
2 p

(3)
2 − F ′(3))p

(3)
2 k2

3 ∓ 2µ′
Lnpk3(d

(3)
1 p

(3)
2 + d

(3)
2 p

(3)
1 ),

h±
4 = (2µ′

Td
(4)
2 p

(4)
2 − F ′(4))p

(4)
2 k2

4 ∓ 2µ′
Lnpk4(d

(4)
1 p

(4)
2 + d

(4)
2 p

(4)
1 ).

On solving Eq.(5.35), we get the reflection and transmission coefficients for the

irregular shear-waves as

r±1n =
|A±

dp|1n
|A±

dp|n
, r±2n =

|A±
dp|2n

|A±
dp|n

, (5.36)

t±3n =
|A±

dp|3n
|A±

dp|n
, t±4n =

|A±
dp|4n

|A±
dp|n

, (5.37)

where |A±
dp|mn and |A±

dp|n are similar representation as in Eq.(5.33) and Eq.(5.34).

We have observed that these coefficients are functions of the corrugation parameters,

frequency parameters, angles of propagation, unit displacement vectors, slowness

vectors and elastic constants of the media.
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5.6 Distribution of energy

Following Achenbach (1976), the energy due to incident wave is distributed to

regular and irregular waves. The energy distribution rate can be written as

℘∗ =< σ2i · u̇i > + < σ′
2i · u̇′

i > . (5.38)

The energy of incident wave is given by

E0 = e0ωX
2
0e

2ık0{x1p
(0)
1 +x2p

(0)
2 −c0t}, (5.39)

where e0 = µL(d
(0)
1 p

(0)
2 + d

(0)
2 p

(0)
1 )d

(0)
1 k0 + 2µT (d

(0)
2 p

(0)
2 − F (0))d

(0)
2 k0.

The energy of the reflected and transmitted wave are given by

E = emωX
2
me

2ıkm(x1p
(m)
1 +x2p

(m)
2 −cmt)

+
∞∑
n=1

e±mnω(X
±
mn)

2e2ıkm(x1p
(mn)
1± +x2p

(mn)
2± −cmt), m = 1, 2, 3, 4 (5.40)

where

(for m=1, 2) em = µL(d
(m)
1 p

(m)
2 + d

(m)
2 p

(m)
1 )d

(m)
1 km + 2µT (d

(m)
2 p

(m)
2 − F (m))d

(m)
2 km,

e±mn = µL(d
(mn)
1± p

(mn)
2± + d

(mn)
2± p

(mn)
1± )d

(mn)
1± km + 2µT (d

(mn)
2± p

(mn)
2± − F (mn))d

(mn)
2± km,

(for m=3, 4) em = µ′
L(d

(m)
1 p

(m)
2 + d

(m)
2 p

(m)
1 )d

(m)
1 km + 2µ′

T (d
(m)
2 p

(m)
2 − F ′(m))d

(m)
2 km,

e±mn = µ′
L(d

(mn)
1± p

(mn)
2± + d

(mn)
2± p

(mn)
1± )d

(mn)
1± km + 2µ′

T (d
(mn)
2± p

(mn)
2± − F ′(mn))d

(mn)
2± km.

When each corresponding energy is divided by the incident energy, we obtain the

energy ratios for the regular and irregular waves given by

Em =
∣∣em
e0

∣∣∣∣Xm

X0

∣∣2, (5.41)

E±
mn =

∣∣e±mn

e0

∣∣∣∣X±
mn

X0

∣∣2. (5.42)

These energy ratios depend on unit displacement components, elastic constants of

the incompressible fibre-reinforced medium, angle of propagation, slowness vectors,

corrugation and frequency parameters.
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5.7 Special case, ζ = d cos px1

If the corrugated interface is represented by ζ(x1) = d cos px1, d being the

amplitude of corrugation. Then the coefficient ζ±n become

ζ±n =


d
2

if n = 1,

0 if n ̸= 1.
(5.43)

Using these values into Eqs.(5.36) and (5.37), the reflection and transmission coeffi-

cients become

r±11 =
|A±

pq|11
|A±

pq|1
, r±21 =

|A±
pq|21

|A±
pq|1

, t±31 =
|A±

pq|31
|A±

pq|1
, t±41 =

|A±
pq|41

|A±
pq|1

. (5.44)

The energy ratios for this special case are obtained by assigning n = 1 in Eq.(5.42).

These coefficients and the energy ratios obtained in this section will be calculated for

a specific model and plotted in graphs.

5.8 Particular case

(a) If the corrugation of the interface is neglected, then d = 0. In this case, we

now deal with the reflection and transmission at the plane interface of two different

incompressible transversely isotropic fibre-reinforced medium. Here, the coefficients

as well as the energy ratios exists only for the regular waves, which are given by

Eqs.(5.33), (5.34) and (5.41) respectively. The results obtained, in this case, exactly

match with the results of Singh et al. (2014) for the relevant problem.

(b) If the upper half-space Ω′ is absent, then we are left with only the reflection

from the plane free boundary. The reflection coefficients are given by Eq.(5.33) with

the following modified values

|Adp| = l1m2 − l2m1, |Adp|1 = m2b3 − l2b4, |Adp|2 = l1b4 −m1b3.

These are the same results as obtained by Singh (2007b) for the relevant problem.
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5.9 Slowness section

To study the nature of reflected and transmitted wave, we consider the slowness

section associated with the reflected and transmitted waves in the x1x2-plane. For

this, we seek the solution corresponding to equations of motion (5.12) and (5.13) in

the form

< u1, u2 >=< U, V > exp{ıω(x1s1 + x2s2 − t)}, (5.45)

where the slowness vector s = (s1, s2) is defined by sn = pn/c, n = 1, 2.

Inserting Eq.(5.45) into the Eqs.(5.12) and (5.13), the associated equation of slowness

section is obtained as

a(s41 + s42) + cs21s
2
2 − (s21 + s22) = 0, (5.46)

where

a =
µL

ρ
, c =

4µE − 2µL

ρ
.

We differentiate Eq.(5.46) with respect to s1 and take ds2
ds1

→ ∞ provided s2 ̸= 0 for

the outer section is re-entrant and obtain

s2 =

√
1− cs21
2a

. (5.47)

With the help of Eq.(5.47), (5.46) can be expressed as a quadratic function in s21 as

(4a3 − ac2)s41 + (2ac− 4a2)s21 − a = 0 (5.48)

which has a real root for

2a ≥ c (5.49)

Notice that when s2 = 0, then Eq.(5.46) gives s1 =
1√
a
. Thus Eq.(5.46) will have

two real roots of s22 provided 0 ≤ s1 ≤ 1√
a
.
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Similarly, for the transmitted waves in the half-space Ω′, we have

a′(s′41 + s′42 ) + c′s′21 s
′2
2 − (s′21 + s′22 ) = 0, (5.50)

where a′ = µ′
L/ρ

′, c′ = (4µ′
E − 2µ′

L)/ρ
′.

The range of angle of incidence for two reflected and transmitted quasi-shear waves

is

0 ≤ α ≤ tan−1

[√
µT − µL

(2µE − µL − µT )

]
or tan−1

[√
µ′
T − µ′

L

(2µ′
E − µ′

L − µ′
T )

]
. (5.51)

5.10 Numerical computations

In this section, numerical illustrations for coefficients and energy ratios are

presented. We concentrate our analysis only to the possibility of having two quasi-

shear waves. There are two choices for this and they are (Singh, 2007b)

s
(0)
1 > 0, s

(1)
2 < 0, s

(2)
2 > 0 or s

(0)
1 < 0, s

(1)
2 > 0, s

(2)
2 < 0

and

s
′(3)
2 < 0, s

′(4)
2 > 0 or s

′(3)
2 > 0, s

′(4)
2 < 0.

The following values of parameters are considered (Singh, 2007b):

(for lower half-space, Ω)

µL = 1.05GPa, µT = 0.84GPa, µE = 0.63GPa, ρ = 2.1gm/cm3,

s
(1)
2 = −0.36, s

(2)
2 = 0.05

(for upper half-space, Ω′)

µ′
L = 1.092GPa, µ′

T = 0.882GPa, µ′
E = 0.672GPa, ρ′ = 7.80gm/cm3,

s
′(3)
2 = −0.52, s

′(4)
2 = 0.60

with pd = 0.000001 and ω/pc0 = 60.
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Figure 5.1: Slowness diagram for the half-space, Ω′.

The slowness diagram for the half-space Ω′ is shown in Figure 5.1. There are two

reflected and transmitted quasi shear waves within the range 0 ≤ α ≤ 300 due to

Equation (5.51). The variation of the modulus of reflection and transmission coef-

ficients are depicted in Figures 5.2-5.4, while Figures 5.5-5.7 depict the variation of

energy ratios with incidence angle, α. Figures 5.8-5.11 show the variation of coeffi-

cients and energy ratios for irregular waves with the corrugation parameter, pd.

In Figure 5.2, the coefficient r2 due to regularly reflected quasi-shear wave starts

from a certain point at the normal angle of incidence which decreases to minimum

value at α = 17.50 and then increases with the increase of α. In the same figure,

the coefficients r1 and t3 due to regularly reflected and transmitted quasi-shear waves

start from certain point and then decrease with the increase of α while t4 increases

with the increase of α.

In Figure 5.3, the reflection coefficients r+11, r
+
21, r

−
11 and r−21 due to irregular waves

start from certain value at the normal angle, increase initially and then decrease with

the increase of the angle of incidence.
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Figure 5.2: Variation of reflection and transmission coefficients for regular waves with α.
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Figure 5.3: Variation of reflection coefficients for irregular waves with α.

In Figure 5.4, the transmitted coefficients t+41 and t−41 of the irregular waves de-

crease from certain point with the increase of angle of incidence, α. In the same

figure, t+31 and t−31 increase at a slow rate with α, attaining their highest value at

α = 190 and α = 200 respectively which then decrease with α.
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Figure 5.4: Variation of transmission coefficients for irregular waves with α.
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Figure 5.5: Variation of energy ratios for regular waves with α.

In Figure 5.5, the energy ratio E3 of the regular wave starts from certain value at

the normal angle of incidence and decreases while the energy ratio E4 increases with

the increase of angle of incidence, α. In the same figure, the energy ratios E1 and E2

decrease with the angle of incidence to zero at α = 200 and α = 150 respectively.
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Figure 5.6: Variation of energy ratios E±
11 and E±

21 for irregular waves with α.

In Figure 5.6, the energy ratios E+
11, E

−
11 of the irregularly reflected waves decrease

from certain point with the increase of α. The energy ratios E+
21 and E−

21 increase

from a certain value attaining maximum value at α = 110 and α = 80 respectively

and then decrease with α.
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Figure 5.7: Variation of energy ratios E±
31 and E±

41 for irregular waves with α.
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In Figure 5.7, the energy ratios E−
31, E

+
31, E

−
41 and E+

41 of the irregularly transmitted

quasi-shear waves decrease from a certain value at normal angle of incidence with the

increase of α.
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Figure 5.8: Variation of reflection coefficients r±11 and r±21 for irregular waves with pd.

All the reflection coefficients (r+11, r
+
21, r

−
11, r

−
21) in Figure 5.8 and the transmission

coefficients (t+31, t
+
41, t

−
31, t

−
41) in Figure 5.9 are increasing linearly with the increase of

pd.
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Figure 5.9: Variation of transmission coefficients t±31 and t±41 for irregular waves with pd.
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Figure 5.10: Variation of energy ratios E±
11 and E±

21 for irregular waves with pd.

0 0.5 1 1.5 2 2.5 3

Corrugation parameter (pd) 10-5

0

0.5

1

1.5

2

2.5

E
ne

rg
y 

ra
tio

s

10-3

I:E+
31

II:E+
41

III:E-
31

IV:E-
41

IV
II

III

I

Figure 5.11: Variation of energy ratios E±
31 and E±

41 for irregular waves with pd.

In Figures 5.10 and 5.11, we observed that E+
11, E

+
21, E

+
31, E

+
41, E

−
11, E

−
21, E

−
31 and E−

41

increase with the increase of pd, but the mode of increase are non-linear. Thus, we

have noted that the coefficients as well as energy ratios due to irregular waves depend

on the corrugation parameter, but they are independent of pd for regular waves.
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5.11 Concluding remarks

The propagation of elastic wave at the corrugated interface between two dis-

similar incompressible transversely isotropic fibre-reinforced half-spaces has been in-

vestigated. The reflection and transmission coefficients due to regular and irregular

quasi-shear waves and their energy ratios are obtained. They are computed numeri-

cally for a specific model, ζ = d cos px1 and graphs are presented. We have following

remark points:

(i) All the coefficients and energy ratios of the irregularly reflected and transmitted

quasi-shear waves depend on the angle of propagation, unit displacement vectors,

slowness vectors, elastic constants, corrugation and frequency parameters.

(ii) The modulus of coefficients and energy ratios of the regular waves do not depend

on pd and ω/pc0.

(iii) The values of the coefficients and energy ratios due to the irregular waves are

very small in comparison to those of the regular waves.

(iv) The reflection and transmission coefficients of the irregular waves increase lin-

early but the energy ratios increase non-linearly with the increase of pd.

(v) The sum of energy ratios is close to one.
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Chapter 6

Summary and Conclusions

In the present thesis, the problems of elastic wave propagation at a corrugated

interface between two dissimilar elastic half-spaces have been investigated. The ex-

pression for phase velocities of the incident wave, reflected and transmitted waves are

obtained which are dependent on the angle of propagation. The phenomena of reflec-

tion and transmission of longitudinal and shear waves are discussed with the help of

appropriate boundary conditions using Rayleigh method of approximation. Ampli-

tude and energy ratios of reflected and transmitted waves are obtained analytically

and numerically for a particular model. We also discuss the effects of corrugation

and frequency parameters on these ratios.

Chapter 1 is the general introduction. It includes basic definitions, different types

of anisotropic symmetry, stress-strain relationship with generalized Hooke’s law, con-

servation of linear momentum, Spectrum theorem, Rayleigh’s method of approxima-

tion, importance of wave propagation and review of literature.

In Chapter 2, the problem of reflection and transmission phenomena of elastic

qSV and qP -wave due to incident plane qSV -wave at a corrugated interface between

two dissimilar monoclinic elastic half-spaces has been investigated. We have no-

ticed that both qSV and qP -waves are reflected and transmitted for the incidence of

qP/qSV -wave. We have obtained the reflection and transmission coefficients for the

regularly and irregularly reflected and transmitted waves using Rayleigh’s method
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of approximation. These coefficients are computed numerically for a special type of

interface, z = d cos py and discussed the effects of corrugation (pd) and frequency

parameter (ω/pc0). We have the following concluding remarks:

(i) All coefficients corresponding to regular waves are functions of angle of inci-

dence and elastic constants, while those of irregular waves are found to be functions

of angle of incidence, elastic constants, corrugation and frequency parameters.

(ii) Theoretically and numerically, those reflection and transmission coefficients

corresponding to regular waves are independent of corrugation and frequency param-

eters.

(iii) The coefficients corresponding to irregular waves are found to be linearly

proportional to corrugation and frequency parameters.

(iv) It is found that the values of coefficients corresponding to irregular waves

increase with increase of pd and ω/pc0.

(v) The values of coefficients corresponding to irregular waves are smaller than

those of regular waves.

In Chapter 3, the problem of reflection and transmission of elastic waves at a

corrugated interface between two dissimilar nematic elastomer half-spaces has been

studied separately for the incident qP and qSV -waves. The expressions of the phase

velocities corresponding to qP and qSV -waves are obtained. The closed form expres-

sion of the amplitude ratios corresponding to the reflected and transmitted waves

for the incident qP and qSV -waves are derived by using appropriate boundary con-

ditions. The energy partitions due to the corrugated interface are also discussed.

The amplitude and energy ratios of the regular and irregular waves are computed

numerically for a particular model, x3 = d cos px1 for different values of corrugation

parameter. We conclude the following points:

(i) All amplitude ratios corresponding to irregular waves are functions of the an-

gle of incidence, elastic constants, coupling constants, characteristic time of rubber

relaxation, director rotation times, frequency and corrugation parameter.
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(ii) The amplitude and the energy ratios corresponding to the regular waves are

independent of pd and ω/pc0.

(iii) The amplitude and energy ratios corresponding to the regular qP -waves are

greater than those ratios corresponding to regular qSV -waves for the incident qP -

wave, but it is reversed in the case of incident qSV -wave.

(iv) The amplitude and energy ratios corresponding to the regularly reflected and

transmitted waves are greater in magnitude than those of irregular waves. Those

ratios corresponding to irregular waves are small.

(v) The ratios rpp, rsvp, tsvp, tsvsv, rsvp+1 , tsvsv+1 , rsvsv−1 , tsvp−1 , Epp
1 , Esvp

3 , Esvsv+
21 ,

Esvsv−
21 and Esvsv−

41 increase with the increase of the angle of incidence (α0), while t
pp,

tsvsv−1 , Epp
3 and Esvsv+

41 decrease with the increase of α0.

(vi) The amplitude ratios corresponding to irregular waves increase linearly with

the increase of pd, but at different rates.

(vii) The energy ratios corresponding to irregular waves increase non-linearly with

the increase of pd.

(viii) The sum of the energy ratios is close to unity at each angle of incidence.

In Chapter 4, the reflection and refraction phenomena of elastic waves due to in-

cident qSH-wave at a corrugated interface between two different nematic elastomer

half-spaces have been studied. The expression of the phase velocity for shear har-

monic wave is derived and observed that this phase velocity depends on the angle of

propagation. The first order approximation of amplitude ratios corresponding to re-

flected and transmitted waves are obtained using Rayleigh’s technique. There exists

a critical angle at α0 = 830. The energy distribution, and hence the energy ratios

due to various reflected and transmitted waves are also obtained. A particular case,

z = d cos px has been performed to validate the present study for the amplitude and

energy ratios. We conclude with the following points:

(i) The angles corresponding to the reflected and transmitted waves increase with

the increase of the angle of incidence.
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(ii) All amplitude and energy ratios corresponding to irregular waves are functions

of the angle of incidence, elastic constants, coupling constants, the characteristic time

of rubber relaxation, the director rotation-times, frequency and corrugation parame-

ters.

(iii) The amplitude ratios corresponding to the regularly reflected and transmitted

waves are greater in magnitude than those due to irregular waves.

(iv) The values of energy ratio corresponding to irregular waves are found to be

significantly small in comparison to those due to regular waves.

(v) Theoretically and numerically, the amplitude and the energy ratios corre-

sponding to the regular waves are independent of corrugation and frequency param-

eters.

(vi) The values of amplitude and energy ratios corresponding to irregular waves

show a linear and non-linear increase respectively with increase of corrugation pa-

rameters.

(vii) The sum of all energy ratio is approximately unity at each value of incident

angle which ensures the law of conservation of energy.

In Chapter 5, the reflection and transmission phenomena of elastic waves at an

irregular interface between two dissimilar incompressible transversely isotropic fibre-

reinforced half-spaces have been discussed. There exist two reflected and transmitted

quasi-shear waves within the range 0 ≤ α ≤ 300 when the outer slowness is re-

entrant. The expressions of propagation velocity are obtained for both the reflected

and transmitted waves. The reflection and transmission coefficients due to regular

and irregular quasi-shear waves and their energy ratios are obtained. They are com-

puted numerically for a specific model, ζ = d cos px1 and graphs are presented. We

have the following remarks:

(i) All the coefficients and energy ratios of the irregularly reflected and transmit-

ted quasi-shear waves depend on the angle of propagation, unit displacement vectors,

slowness vectors, elastic constants, corrugation and frequency parameters.
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(ii) The coefficients and energy ratios of the regular waves do not depend on pd

and ω/pc0.

(iii) The values of the coefficients and energy ratios due to the irregular waves are

small in comparison to those due to the regular waves.

(iv) The reflection and transmission coefficients of the irregular waves increase

linearly but the energy ratios increase non-linearly with the increase of pd.

(v) The sum of energy ratios is close to one.

FUTURE SCOPE

We could suggest some interesting problems related with the works in this thesis.

1. Energy distribution at a corrugated interface between two dissimilar monoclinic

elastic half-spaces.

2. Scattering of elastic waves at an irregular interface between two dissimilar incom-

pressible transversely isotropic fibre-reinforced half-spaces due to incident qP/qSV -

waves.

3. Scholars may also look for the extension of the present problems by finding the

reflection and transmission coefficients for second order of approximation.
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ABSTRACT

The subject of wave propagation is an interesting area of research that deals with

numerous problems in the fields of Seismology, geophysics, Earthquake engineering,

tele-communication, medicines (echography), metallurgy and signal processing. It

is useful to detect the notches and faults in different types of materials such as in

railway tracks, buried land-mines, etc. The technique of wave propagation is used

in exploration of valuable materials such as minerals, crystals, hydrocarbons, fluids

(oils, water) etc. beneath the earth surface. The following objectives are taken up in

the thesis:

1. Elastic waves at a corrugated interface between two dissimilar monoclinic elastic

half spaces.

2. Elastic waves at a corrugated interface in nematic elastomers half-spaces.

3. Elastic waves at a corrugated interface between two dissimilar incompressible

transversely isotropic fibre-reinforced elastic half-spaces.

Chapter 1 is the general introduction which includes basic definitions, different

types of anisotropic symmetry, stress-strain relationship with generalized Hooke’s

law, conservation of linear momentum, Spectrum theorem, Rayleigh’s method of ap-

proximation, importance of wave propagation and review of literatures.

Chapter 2 discusses the problem of reflection and transmission phenomena of

elastic qSV and qP -wave due to incident plane qSV -wave at a corrugated interface

between two dissimilar monoclinic elastic half-spaces. We have obtained the reflec-

tion and transmission coefficients for those regularly and irregularly reflected and

transmitted waves using Rayleigh’s method of approximation. These coefficients are

computed numerically for a special type of interface, z = d cos py and discussed the

effects of corrugation (pd) and frequency parameter (ω/pc0).

Chapter 3 investigates the problem of reflection and transmission of elastic waves

at a corrugated interface between two dissimilar nematic elastomer half-spaces due
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to incident qP and qSV -waves. The expressions of the phase velocities corresponding

to qP and qSV -waves depend on the angle of propagation. The amplitude and en-

ergy ratios corresponding to the reflected and transmitted waves for the incident qP

and qSV -waves are derived by using appropriate boundary conditions. These ratios

of the regular and irregular waves are computed numerically for a particular model,

x3 = d cos px1 for different values of corrugation and frequency parameters.

Chapter 4 studies the problem of scattering of elastic waves due to incident qSH-

wave at a corrugated interface between two different nematic elastomer half-spaces.

The phase velocity for shear harmonic wave is obtained and it is observed that this

phase velocity depends on the angle of propagation. The first order approximation

of amplitude ratios corresponding to reflected and transmitted qSH-waves are ob-

tained using Rayleigh’s technique. The energy ratios due to various reflected and

transmitted waves are also presented. A particular case of the corrugated interface,

i.e., z = d cos px has been investigated to validate the present study. The effects of

corrugation, frequency and relaxation parameters on the amplitude and energy ratios

have been discussed.

The problem of elastic waves at an irregular interface between two dissimilar in-

compressible transversely isotropic fibre-reinforced half-spaces has been discussed in

Chapter 5. We come across the existence of two reflected and transmitted qSH-waves

in an angular range, 0 ≤ α ≤ 300. The reflection and transmission coefficients due to

regular and irregular qSH-waves are obtained using Rayleigh’s method of approxima-

tion. Energy ratios at the corrugated interface are also presented. These coefficients

and energy ratios are computed numerically for a specific model, ζ = d cos px1.

Chapter 6 is summary and conclusion.

Finally, a list of references is given at the end.
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