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CHAPTER 1 

INTRODUCTION 

Most people learn to read and write during their first few years of education. 

By the time they have grown out of childhood, they have already acquired very good 

reading and writing skills, including the ability to read most texts, whether they are 

printed in different fonts and styles, or handwritten neatly or sloppily. Most people have 

no problem in reading the following: light prints or heavy prints; upside down prints; 

advertisements in fancy font styles; characters with flowery ornaments and missing parts; 

and even characters with funny decorations, stray marks, broken, or fragmented parts; 

misspelled words; and artistic and figurative designs. At times, the characters and words 

may appear rather distorted and yet, by experience and by context, most people can still 

figure them out. On the contrary, despite more than five decades of intensive research, 

the reading skill of the computer is still way behind that of human beings (Cheriet et al., 

2007).  

The Pattern Recognition is still an ongoing wide research study, which tries 

to make machine as intelligent as human being for recognizing patterns. Pattern 

recognition (PR) is the most important trait of cognitive ability, be it of humans or 

animals. The ability to recognize patterns is central to intelligent behavior. We receive 

signals from environment through our sensory organs which are processed by the brain 

to generate suitable responses. The whole process involves extraction of information 

from the sensory signals, processing it using the information stored in the brain to reach 

a decision that induces some action. All these information we work with are represented 

as patterns. We recognize voices, known faces, scenes, type and written letters and a 
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multitude of other objects in our everyday life (Mayank et al., 2011). 

The character recognition is one of the most successful applications of 

technology in the field of pattern recognition and artificial intelligence. The character 

recognition system offer potential advantages by providing an interface that facilitates 

interaction between human and machine.  Machine replication of human functions, like 

reading, is an ancient dream. For the past few decades, intensive research has been done 

to solve this problem in related areas such as image processing, pattern recognition, 

cognitive science, etc. Various approaches, system architectures and methodologies have 

been proposed to deal with application diversity. To date, challenging problems are 

being encountered and solutions to these are broadly targeted to improve accuracy and 

efficiency. However, trade-off between efficiency and accuracy is inevitable when a 

system targeted for real application is designed. With this motivation, a computationally 

efficient solution to the problem of recognition of characters based on Artificial Neural 

Network classifier that has some similarities to the human cognitive process is proposed. 

1.1 MIZO LANGUAGE AND ALPHABETS 

Mizo is a member of the Kukish branch of the Tibeto-Burman language 

family spoken by about 15 million people mainly in Mizoram state in India, and also in 

Chin State in Burma, and in the Chittagong Hill Tracts in Bangladesh. Mizo used to be 

known as Lushai, Lusei or Lushei, named after the most common dialect of the language, 

which serves as a lingua franca among the Kuki people. 

Mizo is the most developed tribal language of the North-East India and is 

taught in many schools and colleges. Mizo alphabets were made by British Christian 

Missionaries who came to Mizoram in the late 1800‟s and early 1900‟s (Henderson, 
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1948). During that time, Mizos were not having any kind of text writing system. So, 

when British came, they felt that it was necessary to make alphabet system for the people 

of Mizoram and the alphabets were prepared based on the pronunciation of Mizo 

language (Burling, 1957). Before making alphabet system for Mizo people, extensive 

comparisons were carried out to make a choice between Indian scripts like Hindi, 

Bengali etc and Roman scripts, which is used by English. Then the missionaries opined 

that Roman Script was most convenient for the people of Mizoram. 

The 25 letters used for writing in Mizo language are: 

Letter 

a aw b ch d e f g ng h i j k 

l m n o p r s t ṭ u v z  

Here a special character with lower circumflex i.e. “ṭ” and a compound 

character i.e. “aw”, “ch” and “ng” have found which are not available in Roman script or 

English alphabets. In mizo language, the compound characters are treated as a single 

character. Out of these 25 letters, there are six vowels such as “â”, “âw”, “ê”, “î”, “ô” 

and “û”. A circumflex ^ was later added to the vowels to indicate long vowels, viz., â, 

âw, ê, î, ô, û, which were insufficient to fully express Mizo tone. So, the word “zam” is 

different from “zâm” in which the latter is pronounced like “zaam” and it has different 

meaning. Another different alphabet which is not used in normal English alphabet, the 

alphabet is “ṭ”, pronounced as „tree‟ while “t” is pronounced as „tee‟. Since ASCII 

keyboard is being used everywhere, there is difficulty in typing the extended type of 

vowels which are not readily available in the keyboard even when they are supposed to 

be used, they are sometimes neglected when typing in computer and also when the 

meaning can still be understood. But in handwritten form and in publications, the correct 

http://en.wikipedia.org/wiki/Circumflex
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form of writing is usually followed.  

The combination of characters like „aw‟, „ch‟ and „ng‟ can be considered as a 

combination of two English alphabets as: 

aw  = a + w 

ch  = c + h 

ng  = n + g 

So, in the matter of recognition of characters, the Mizo alphabets which 

composed of two English alphabets will be considered as two different alphabets. There 

is no grammatical gender in Mizo language, although some animals, birds etc. have 

names which contain one of the suffixes -nu, which means female, or -pa which means 

male. Examples include chingpirinu (a type of big owl), kawrnu (a type of 

cicada), thangfênpa (a nocturnal bird). Mizo is an agglutinative language in which it is 

rare to find morphologically simple, non-derived nouns. However, common everyday 

objects and domestic animals tend to fall in this category, that is, the category of 

morphologically simple, non-derived nouns (Chhangte, 1986). 

1.2 MOTIVATION FOR THE PRESENT WORK 

Though there are many OCRs available in major Indian languages, none of 

them are capable of recognizing mizo language due to different fonts type and style. The 

English character pattern is closely similar to mizo character but there are special 

characters incorporated in mizo language. Therefore, the existing English OCR cannot be 

used for data digitization of mizo languages as the accuracy is only 80-90%.  While 

carrying out of research, it was found that the same technique which is implemented in 

other languages character recognition is not suitable for recognizing Mizo characters. 

Therefore, it is very much important to design and develop a separate OCR for those 

http://en.wikipedia.org/wiki/Agglutinative_language
http://en.wikipedia.org/wiki/Domestic_animal
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who speak, read and write in Mizo language.  

Apart from character recognition, recognizing the font of a printed document 

is not even attempted on Indian language documents; while some successful studies are 

made in English. Typographically, a font is a particular instantiation of a typeface 

design, often in a particular size, weight and style (Felici, 2011). A number of OCR 

systems have been developed for different languages across the globe, with reasonable 

accuracy, but the performance of these recognizers is fair as long as the same font is 

maintained. Since this requirement is not practical, often we get poor results. In many 

occasions, printed documents may contain words in various font faces and sizes. For 

Indian and many other oriental languages, OCR systems are not yet able to successfully 

recognize printed document images of varying scripts, quality, size, style and font 

(Rawat et al., 2006). 

Mizo optical character recognition system is so far not been into 

consideration for the purpose of research and development unlike the other languages 

which make it a challenging factor. There are many Mizo people living in Mizoram, 

Manipur, Nagaland and Myanmar using the same Mizo language. Due to all the above 

factors, an attempt is made to carry out research and development of mizo OCR to 

enable to recognize all the mizo characters and used for data digitization and 

preservation of historical documents into digital form. 

1.3 OBJECTIVES 

 The primary objective of this research work is to design and develop 

pre-printed Mizo character recognition system using Artificial Neural 

Network.  
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 To provide robust system for digitization of innumerable old 

documents available both on single sheet paper and books.  

 To develop an efficient recognition system with multi font and multi 

size Mizo characters and put it in public domain for general uses of the 

people speaking, reading and writing Mizo language.  

 To provide standard Unicode encoding system for further interfacing 

with other language. 

1.4 HISTORY OF OCR  

It is always fascinating to be able to find ways of enabling a computer to 

mimic human functions, like the ability to read, to write, to see things, and so on. To 

replicate the human functions by machines, making the machine able to perform tasks 

like reading is an ancient dream. The origins of character recognition can actually be 

found back in 1870. This was the year that C. R. Carey of Boston Massachusetts 

invented the retina scanner which was an image transmission system using a mosaic of 

photocells. Two decades later the Polish P. Nipkow invented the sequential scanner 

which was a major breakthrough both for modern television and reading machines. 

During the first decades of the 19
th

 century several attempts were made to develop 

devices to aid the blind through experiments with OCR. However, the modern version of 

OCR did not appear until the middle of the 1940‟s with the development of the digital 

computer. The motivation for development from then on, was the possible applications 

within the business world. 

By 1950 the technological revolution was moving forward at a high speed, 

and electronic data processing was becoming an important field. Data entry was 

performed through punched cards and a cost-effective way of handling the increasing 
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amount of data was needed. At the same time the technology for machine reading was 

becoming sufficiently mature for application, and by the middle of the 1950‟s OCR 

machines became commercially available. The first true OCR reading machine was 

installed at Reader‟s Digest in 1954. This equipment was used to convert typewritten 

sales reports into punched cards for input to the computer. To understand the evolution 

of OCR systems from their challenges, and to appreciate the present state of the OCRs, a 

brief historical survey of OCR is carried out. Depending on the versatility, robustness 

and efficiency, commercial OCR system may be divided into the following four 

generations (Pal and Chaudhuri, 2004). It is to be noted that this categorization refers 

specifically to OCRs of English languages. 

1.4.1 FIRST GENERATION OCR 

The commercial OCR systems appearing in the period from 1960 to 1965 

may be called the first generation of OCR. These generations of OCR machines were 

mainly characterized by the constrained letter shapes read. The symbols were specially 

designed for machine reading, and the first ones did not even look very natural. With 

time multi-font machines started to appear, which could read up to ten different fonts. 

The number of fonts were limited by the pattern recognition method applied, template 

matching, which compares the character image with a library of prototype images for 

each character of each font. 

1.4.2 SECOND GENERATION OCR 

The reading machines of the second generation appeared in the middle of the 

1960‟s and early 1970‟s. These systems were able to recognize regular machine printed 

characters and also had hand-printed character recognition capabilities. When hand-

printed characters were considered, the character set was constrained to numerals and a 
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few letters and symbols. The first and famous system of this kind was the IBM 1287, 

which was exhibited at the World Fair in New York in 1965. Also, in this period Toshiba 

developed the first automatic letter sorting machine for postal code numbers and Hitachi 

made the first OCR machine for high performance and low cost. 

In this period significant work was done in the area of standardization. In 

1966, a thorough study of OCR requirements was completed and an American standard 

OCR character set was defined; OCR-A font was defined as shown in the figure below, 

which was designed to facilitate OCR, although still readable to humans. A European 

font, OCR-B, was also designed which had more natural fonts than the American 

standard. Some attempts were made to merge the two fonts into one standard, but instead 

machines being able to read both standards appeared. 

 

Figure 1.1: OCR-A font 

 

Figure 1.2: OCR-B fonts 
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1.4.3 THIRD GENERATION OCR 

For the third generation of OCR systems appearing in the middle of the 

1970‟s, the challenge was documents of poor quality and large printed and hand-written 

character sets. Low cost and high performance were also important objectives, which 

were helped by the dramatic advances in hardware technology. 

Although more sophisticated OCR-machines started to appear at the market 

simple OCR devices were still very useful. In the period before the personal computers 

and laser printers started to dominate the area of text production, typing was a special 

niche for OCR. The uniform print spacing and small number of fonts made simply 

designed OCR devices very useful. Rough drafts could be created on ordinary 

typewriters and fed into the computer through an OCR device for final editing. In these 

way word processors, which were an expensive resource at this time, could support 

several people and the costs for equipment could be cut. 

1.4.4 FOURTH GENERATION OCR (TODAY’s OCR) 

The fourth generation can be characterized by the OCR of complex 

documents intermixing with text, graphics, tables and mathematical symbols, 

unconstrained handwritten characters, color documents, low-quality noisy documents, 

etc. Among the commercial products, postal address readers, and reading aids for the 

blind are available in the market. 

Nowadays, there is much motivation to provide computerized document 

analysis systems. OCR contributes to this progress by providing techniques to convert 

large volumes of data automatically. A large number of papers and patents advertise 

recognition rates as high as 99 %; this gives the impression that automation problems 
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seem to have been solved. Failure of some real applications show that performance 

problems still exist on composite and degraded documents (i.e., noisy characters, tilt, 

mixing of fonts, etc.) and that there is still room for progress. 

Various methods have been proposed to increase the accuracy of optical 

character recognizers. In fact, at various research laboratories, the challenge is to develop 

robust methods that remove as much as possible the typographical and noise restrictions 

while maintaining rates similar to those provide by limited-font commercial machines. 

 

1.5 CLASSIFICATION OF CHARACTER RECOGNITION 

SYSTEM 

The Character Recognition Systems are generally classified into online 

character recognition system and off-line character recognition system. These types of 

Character Recognition Systems are shown in the figure below: 

Character Recognition

Off-line Character 

Recognition

Online Character 

Recognition

Printed Character Handwritten Character

 

Figure 1.3: Types of Character Recognition System 

1.5.1 ONLINE CHARACTER RECOGNITION SYSTEM  

On-line recognition refers to methods and a technique dealing with the 

automatic processing of a message as it is written using a digitizer or an instrumental 
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stylus that captures information about the pen-tip, generally its position, velocity, or 

acceleration as a function of time (Plamondon and Srihari, 2000). The digitizers are 

mostly electromagnetic-electrostatic tablets, which send the coordinates of the pen tip to 

the host computer at regular intervals. Some digitizers use pressure-sensitive tablets, 

which have layers of conductive and resistive material with a mechanical spacing 

between the layers. The on-line handwriting recognition problem has a number of 

distinguishing features, which must be exploited to get more accurate results than the 

off-line recognition problem. 

Advantages of on-line character recognition system: 

1. It is a real time process. While the digitizer captures the data during the 

writing, the CR system with or without a lag makes the recognition. 

2. It is adaptive in real time. The writer gives immediate feedback to the 

recognizer for improving the recognition rate, as (s)he keeps drawing the 

symbols on the tablet and observes the results. 

3. It captures the temporal and dynamic information of the pen trajectory. 

This information consists of the number and order of pen-strokes, the 

direction of the writing for each pen-stroke and the speed of the writing 

within each pen stroke. 

4. Very little pre-processing is required. The operations, such as smoothing, 

de-slanting, de-skewing, detection of line orientations, corners, loop and 

cusps are easier and faster with the pen trajectory data than on pixel images. 

5. Segmentation is easy. Segmentation operations are facilitated by using 

temporal and pen-lift information, particularly, for hand-printed characters.  
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Disadvantages of on-line character recognition system: 

1. The writer requires special equipment, which is not as comfortable as pen 

and paper. 

2. It cannot be applied to documents printed or written on papers. 

3. Punching is much faster and easier than handwriting for small size alphabet 

such as English. 

4. The available systems are slow and recognition rates are low for handwriting 

that is not neat. 

Applications of on-line character recognition systems include small hand-

held devices, which call for a pen-only computer interface and complex multimedia 

systems, which use multiple input modalities including scanned documents, speech, 

keyboard and electronic pen. They provide an efficient alternative for the large alphabets 

where the keyboard is cumbersome. Pen based computers, educational software for 

teaching handwriting and signature verifiers are the examples of popular tools utilizing 

the on-line character recognition techniques.  

1.5.2 OFF-LINE CHARACTER RECOGNITION SYSTEMS:  

Off-line character recognition is known as Optical Character Recognition 

(OCR), because the image of writing is converted into bit pattern by an optically 

digitizing device such as optical scanner or camera. The recognition is done on this bit 

pattern data for machine-printed or hand-written text. The research and development is 

well progressed for the recognition of the machine-printed documents. In recent years, 

the focus of attention is shifted towards the recognition of hand-written script.  

The major advantage of the off-line recognizers is to allow the previously 
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written and printed texts to be processed and recognized. The drawbacks of the off-line 

recognizers, compared to on-line recognizers are summarized as follows: 

1. Off-line conversion usually requires costly and imperfect pre-processing 

techniques prior to feature extraction and recognition stages. 

2. The lack of temporal or dynamic information results in lower recognition 

rates compared to on-line recognition. 

Some applications of the off-line recognition are large-scale data processing 

such as postal address reading; check sorting, office automation for text entry, automatic 

inspection and identification (Said, 2000). Off-line character recognition is a very 

important tool for creation of the electronic libraries. It provides a great compression and 

efficiency by converting the document image from any image file format into more 

useful formats like HTML or various word processor formats. Recently, content based 

image or video database systems make use of off-line character recognition for indexing 

and retrieval, extracting the writings in complex images. Also, the wide spread use of 

web necessitates the utilization of off-line recognition systems for content based Internet 

access to paper documents. 

The off-line character recognition generally divided into machine-printed and 

hand-written.  Machine-printed text includes the materials such as books, newspapers, 

magazines, documents and various writing units in the video or still image. The problems 

for fixed-font, multifont and omni-font character recognition is relatively well 

understood and solved with little constraint (Peng et al., 2010).  

On the other hand, hand-written character recognition systems have still 

limited capabilities even for recognition of the Latin characters. The problem can be 
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divided into two categories: cursive and hand-printed script. In practice, however, it is 

difficult to draw a clear distinction between them. A good source of references in hand-

written character recognition can be found in Mori et al. (1999).. 

1.6 COMPONENT OF CHARACTER RECOGNITION 

SYSTEM 

 

The major components of Character recognition system suggested by 

Annadurai and Shanmugalakshmi (2007) are shown in the figure below. 

 

Figure 1.4: General Architecture of Character Recognition System 

1.6.1 PREPROCESSING 

 

The preprocessing is a series of operation performed on scanned input image. 

The image should have specific format such as jpeg, bmp, tiff, etc. This image is 

acquired through a scanner, digital camera or any other suitable digital input devices. 

The role of pre-processing is to segment the interesting pattern from the background 

image. Typical preprocessing includes binarization, smoothing & noise removal, skew 

detection and correction, slant correction and thinning.  

1.6.1.1 BINARIZATION:  

Binarization is a technique by which the gray scale images are converted into 

binary images. Binarization separates the foreground (text) and background information 
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(Alam and Kashem, 2010). The most common method for binarization is to select a 

proper threshold for the intensity of the image and then convert all the intensity values 

above the threshold to one intensity value (“white”), and all intensity values below the 

threshold to the other chosen intensity (“black”). Otsu‟s thresholding technique (Otsu, 

1979) is one of the most popular thresholding technique frequently used today (Leedham 

et al., 2002). 

1.6.1.2 SMOOTHING AND NOISE REMOVAL:  

Scanned documents often contain noise that arises due to printer, scanner, 

print quality, age of the document, etc.  While scanning the document images, the device 

introduce some noises like, disconnected line segments, bumps and gaps in lines, filled 

loops etc. It is necessary to remove all these noise elements prior to the character 

recognition. Noise removal is the process of removing or reducing unwanted noise.  

Smoothing operations are generally used to reduce the noise or to straighten the edges of 

the characters. There are different types of noises such as Gaussian noise, Salt and 

pepper noise and shot noise (Vithlani, 2014). These noises can be removed by filtering 

approaches – Linear filter and Non-linear filter (Cheriet et al., 2007).  

1.6.1.3 SKEW DETECTION AND CORRECTION: 

Skew detection and correction of scanned document images is one of the 

most important stages of preprocessing. The skew of the scanned document image 

specifies the deviation of its text lines from horizontal or vertical axis. The skew of the 

document image can be a global (all document‟s blocks have the same orientation), 

multiple (document‟s blocks have a different orientation) or non-uniform (multiple 

orientation in a text line). Skew correction aligns an image before processing because 

text segmentation and recognition methods require properly aligned text lines. A number 

of methods have previously been proposed in the literature for identifying document 
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image skew angles. Mainly, they can be categorized into the following groups (Lu and 

Tan, 2003): (i) methods based on projection profile analysis; (ii) methods based on 

nearest- neighbor clustering; (iii) methods based on Hough transform; (iv) methods 

based on cross-correlation; and (v) methods based on morphological 

1.6.1.4 SLANT CORRECTION: 

The character inclination that is normally found in cursive writing is called 

slant. The figure below shows some samples of slanted handwritten numeral string. Slant 

correction is an important step in the preprocessing stage of both handwritten words and 

numeral strings recognition. The general purpose of slant correction is to reduce the 

variation of the script and specifically to improve the quality of the segmentation 

candidates of the words or numerals in a string, which in turn can yield higher 

recognition accuracy.  

Bertolami et al. (2007) explains the use of non-uniform slant correction 

technique in offline recognition of handwritten lines of text. It is used for additional 

preprocessing task. The work is motivated by the fact that many handwriting styles 

exhibit a variety of different slant angles within a single line of text or even within 

individual words. The non-uniform slant correction is formulated as a constrained 

optimization problem where the local slant angles represent the variables to be 

optimized. They have used a dynamic programming based algorithm to solve this 

optimization problem. 

1.6.1.5 THINNING 

Thinning is the process of peeling off a pattern as many pixels as possible 

without affecting the general shape of the pattern. In other words, after pixels have been 

peeled off, the pattern can still be recognized. Hence, the skeleton obtained must have 
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the following properties: 

- Must be as thin as possible; 

- Connected; 

- Centered. 

Jubair and Banik (2012) proposed morphological thinning operation in which 

the selected foreground pixels is removed from binary images. It can be used for several 

applications, but is particularly useful for skeletonization. This method is commonly 

used to tidy up the output of edge detectors by reducing all lines to single pixel thickness. 

Thinning is normally only applied to binary images, and produces another binary image 

as output. 

1.6.2 SEGMENTATION 

Once the document image is binarized and skew corrected, it will passes to 

the segmentation phase, where the image will be decomposed into line, word and 

individual character. This may be termed as „Character Segmentation‟. The Character 

segmentation is the critical area of the Optical Character Recognition process. In the 

literature, for achieving high recognition accuracy, several segmentation techniques are 

proposed that can be broadly classified into four categories, namely explicit 

segmentation (classical Segmentation), implicit segmentation (recognition Based 

segmentation), holistic (segmentation free), and hybrid segmentation (a combination of 

classical and recognition segmentation). The figure below shows the character 

segmentation methods:  

http://homepages.inf.ed.ac.uk/rbf/HIPR2/binimage.htm
http://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm
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Figure 1.5: Character Segmentation Techniques 

1.6.2.1 EXPLICIT SEGMENTATION:  

The explicit segmentation is also known as Classical Segmentation. In this 

classical approach, input word image of sequence of characters is partitioned into sub 

images of individual characters.  The process of cutting up the word images into 

classifiable character sub images is termed as Dissection. Many researchers in the 

literature adopted this dissection based segmentation techniques (Saba et al., 2011). The 

criterion for good segmentation using the dissection approach is the agreement of 

character properties in the segmented sub image and the expected symbol. The dissection 

method makes use of the character properties like height, width, space, separation from 

neighboring components, disposition along the baseline, etc. This method is suitable for 

printed image documents in which each character image is well spaced. 

1.6.2.2 IMPLICIT SEGMENTATION: 

Implicit segmentation is also known as Recognition based segmentation.  

In this approach, the system searches the image for components that match classes in its 

alphabet. However, implicit segmentation-based methods are employed as an alternative 

to integrate segmentation and recognition processes. Accordingly, Hidden Markov 

Models (HMM) based approaches are emerged. Actually, this approach is developed for 

speech recognition where it brought fruitful results (Gales and Young, 2008). Therefore, 

Segmentation 
Techniques

Explicit Segmentation
(Classical/Dissection 

Approach)

Implicit Segmentation
(Recognition based 

Approach)

Holistic Approach
(Segmentation Free)

Hybrid Approach
(Over Segmentation)
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its success diverts researcher‟s attention to apply HMM in word recognition. The main 

interest of this category of methods is that they bypass the segmentation problem: No 

complex "dissection" algorithm has to be built and recognition errors are basically due to 

failures in classification. The approach has also been called "segmentation-free" 

recognition.  

1.6.2.3 HOLISTIC APPROACH 

A holistic is also known as “Segmentation Free”. In this approach, the 

process recognizes an entire word as a unit. A major drawback of this class of methods is 

that their use is usually restricted to a predefined lexicon. Since they do not deal directly 

with letters but only with words, recognition is necessarily constrained to a specific 

lexicon of words. This point is especially critical when training on word samples is 

required. A training stage is thus mandatory to expand or modify the lexicon of possible 

words. This property makes this kind of method more suitable for applications where the 

lexicon is statically defined (and not likely to change), like bank cheque recognition. 

They can also be used for on-line recognition on a personal computer (or notepad), the 

recognition algorithm being then tuned to the writing of a specific user as well as to the 

particular vocabulary concerned (Ntzios et al., 2007). 

1.6.2.4 HYBRID APPROACH 

The Hybrid segmentation is also known as “Over Segmentation”. In this 

method, the first two method i.e explicit and implicit segmentation are combine together 

in a hybrid way. In other term it may be said that the hybrid segmentation is a 

combination of dissection and search methods in a hybrid way. In this approach, 

dissection algorithm is applied to the image, but the objective here is not to get a single 

character or specific features but to “over segment”, i.e. to cut the image in sufficiently 

many places so that the correct segmentation boundaries are included among the cuts 
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made (Razzak et al., 2010).  

1.6.3 FEATURE EXTRACTION 

Feature extraction is a process of defining a set of features of an image which 

represent meaningful information for analysis and classification. In case of character 

image, a set of numerical features will be used to classify the character. The numerical 

feature of the character images could be height of character, width of character, number 

of horizontal lines presents, numbers of vertical lines present, centroid of the character 

image, position of the various features and pixels in the various regions. 

Selection of a feature extraction method is probably the single most 

important factor in achieving high recognition performance in character recognition 

systems. Different feature extraction methods are designed for different representations 

of the characters, such as solid binary characters, character contours, skeletons (thinned 

characters), or gray level sub-images of each individual character.  A feature extraction 

method that proves to be successful in one application domain may turn out not to be 

very useful in another domain. In practice, the requirement of a good feature extraction 

method makes selection of the best method for a given application a challenging task. 

One must also consider whether the characters to be recognized have known orientation 

and size, whether they are handwritten, machine printed or typed, and to what degree 

they are degraded. Feature extraction methods are generally classified into three major 

groups such as Statistical features, Global transformation and series expansion, and 

Geometric and topological features (Elavarasan and Mani, 2015). 

1.6.4 CLASSIFICATION 

The output of feature extraction is a feature vector obtained from previous 

phase is assigned as an input to next phase i.e. classification or class label and recognized 
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by means of supervised and unsupervised method. The classification method is based on 

feature vector which have prevailed structural methods, especially in off-line character 

recognition. These methods include statistical methods, ANNs, SVMs, and multiple 

classifier combination. In most of the classification method, the data set is prepared 

which is separated into training and test set for every character. The performance of the 

classification depends on the accuracy of feature extraction of the characters. The 

classification methods is summarized into four categories such as  

 Statistical methods 

 Artificial neural networks (ANNs) 

 Support Vector Machines 

 Structural Pattern Recognition 

 Combine Multiple Classifiers 

1.6.4.1 STATISTICAL METHODS: 

Statistical classifiers are rooted in the Bayes decision rule, and can be divided 

into parametric ones and non-parametric ones (Burges, 1998). Non-parametric methods, 

such as Parzen window and k-NN rule, are not practical for real-time applications since 

all training samples are stored and compared. Assuming Gaussian density with various 

restrictions, the Bayesian discriminant function is reduced to a quadratic discriminant 

function (QDF), linear discriminant function (LDF), and Euclidean distance from class 

mean. Chang and Lin (2011) proposed regularized discriminant analysis (RDA) method 

which stabilizes the performance of QDF by smoothing the covariance matrices. Kimura 

et al. (1987) further proposed the modified QDF (MQDF) which has less parameters and 

lower computation than the QDF, and results in improved generalization accuracy. For 

modeling multi-modal distributions, the mixture of Gaussians in high dimensional 



 

22 

feature space does not necessarily give high classification accuracy, yet the mixture of 

linear subspaces has shown effects in handwritten character recognition (Cristianini and 

Taylor, 2000). 

1.6.4.2 ARTIFICIAL NEURAL NETWORKS: 

Feed forward neural networks, including multilayer perceptron (MLP), radial 

basis function (RBF) network, higher-order neural network (HONN), etc., have been 

widely applied to pattern recognition. The connecting weights are usually adjusted to 

minimize the squared error on training samples in supervised learning. Using a modular 

network for each class was shown to improve the classification accuracy (Webb, 2003). 

A network using local connection and shared weights, called convolutional neural 

network, has reported great success in character recognition (Dong et al., 2005). The 

RBF network can yield competitive accuracy with the MLP when training all parameters 

by error minimization (Downs, 2001). The HONN is also called as functional-link 

network, polynomial network or polynomial classifier (PC). Its complexity can be 

reduced by dimensionality reduction before polynomial expansion (Drezet and Harrison, 

2001) or polynomial term selection (Nikolaev and Iba, 2003). Vector quantization (VQ) 

networks and auto-association networks, with the sub-net of each class trained 

independently in unsupervised learning, are also useful for classification. The learning 

vector quantization (LVQ) of Kohonen is a supervised learning method and can give 

higher classification accuracy than VQ (Duda et al., 2001). Some improvements of LVQ 

learn prototypes by error minimization instead of heuristic adjustment (Duin, 2002). 

1.6.4.3 SUPPORT VECTOR MACHINES: 

The Support Vector Machine (SVM) is a new type of hyper plane classifier, 

developed based on the statistical learning theory of Vapnik (2013), with the aim of 

maximizing a geometric margin of hyperplane, which is related to the error bound of 
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generalization. The research of SVMs has seen a boom from the mid-1990s, and the 

application of SVMs to pattern recognition has yielded state-of-the-art performance.  

Generally SVM classifier is a binary linear classifier in kernel induced feature space and 

kernel function. The kernel function represents the inner product of two vectors in 

linear/nonlinear feature space.  

The Kernel methods, including support vector machines (SVMs) primarily 

and kernel principal component analysis (KPCA), kernel Fisher discriminant analysis 

(KFDA), etc., are receiving increasing attention and have shown superior performance in 

pattern recognition. An SVM is a binary classifier with discriminant function being the 

weighted combination of kernel functions over all training samples. After learning by 

quadratic programming (QP), the samples of non-zero weights are called support vectors 

(SVs). For multi-class classification, binary SVMs are combined in either one-against-

others or one-against-one (pairwise) scheme (Bo and Xianwu, 2006). Due to the high 

complexity of training and execution, SVM classifiers have been mostly applied to small 

category set problems. Albus et al. (2012) proposed a strategy to alleviate the 

computation cost to use a statistical or neural classifier for selecting two candidate 

classes, which are then discriminated by SVM. Dong et al. (2005) used a one-against-

others scheme for large set Chinese character recognition with fast training. They used a 

coarse classifier for acceleration but the large storage of SVs was not avoided. 

1.6.4.4 STRUCTURAL PATTERN RECOGNITION 

Structural pattern recognition methods are used more often in online 

character recognition (Liu et al., 2004) than in offline character recognition. Unlike 

statistical methods and Neural Networks that represent the character pattern as a feature 

vector of fixed dimensionality, structural methods represent a pattern as a structure 
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(string, tree, or graph) of flexible size. The structural representation records the stroke 

sequence or topological shape of the character pattern, and hence resembles well to the 

mechanism of human perception. In recognition, each class is represented as one or more 

structural templates, the structure of the input pattern is matched with the templates and 

is classified to the class of the template of minimum distance or maximum similarity. 

The structural matching procedure not only provides an overall similarity but also 

interprets the structure of the input pattern and indicates the similarities of the 

components. 

Despite the above merits of structural recognition, statistical methods and 

Neural Networks are more often adopted for the ease of feature extraction and learning 

from samples. Structural methods face two major difficulties: extracting structural 

primitives (strokes or line segments) from input patterns, and learning templates from 

samples. Primitive extraction from online character patterns (sequences of pen-down 

points) is much easier than from offline character images. Structural template learning 

from samples is undergoing study and has gained some progress. In practice, the 

templates are often selected from samples, constructed artificially or interactively. 

Structural pattern recognition is often mentioned together with syntactic 

pattern recognition, which represents patterns and classes using formal linguistics and 

recognizes via grammatical parsing. Extracting linguistic representation from patterns is 

even more difficult than structural representation. This is why syntactic methods have 

not been widely used in practical recognition systems. There are two important types of 

structural recognition techniques that are useful for character recognition: (i) attributed 

string matching and (ii) attributed graph matching. String matching techniques are often 

used in character string recognition as well, for matching string patterns with lexicon 
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entries.  

1.6.4.5 COMBINE MULTIPLE CLASSIFIERS: 

Combining multiple classifiers has been long pursued for improving the 

accuracy of single classifiers (Fumera and Roli, 2005). Parallel (horizontal) combination 

is more often adopted for high accuracy, while sequential (cascaded, vertical) 

combination is mainly used for accelerating large category set classification. The 

decision fusion methods are categorized into abstract level, rank-level, and 

measurement-level combination (Giacinto and Roli, 2001). Many fusion methods have 

been proposed to measurement-level combination (Sousa et al., 2007). The 

complementariness (also called as independence or diversity) of classifiers is important 

to yield high combination performance. For character recognition, combining classifiers 

based on different techniques of pre-processing, feature extraction, and classifier models 

is effective. Another effective method, called perturbation, uses a single classifier to 

classify multiple deformations of the input pattern and combine the decisions on multiple 

deformations. The deformations of training samples can also be used to train the 

classifier for higher generalization performance. 

1.7 APPLICATION OF CHARACTER RECOGNITION 

SYSTEM 

 

The intensive research effort in the field of Character Recognition was not 

only because of its challenge on simulation of human reading but also because it 

provides widespread efficient applications. The Optical Character Recognition 

technologies have many practical applications which include the following, as examples, 

but not limited to: 

 Digitization, storing, retrieving and indexing huge amount of electronic 
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data as a results of the resurgence of the World Wide Web. The text 

produced by OCR can be used for all kinds of Information Retrieval 

(IR) and Knowledge Management (KM) systems which are not so 

sensitive to the inevitable Word Error Rate (WER) lower than 10% to 

15%. 

 Text-to-Speech for blind people as reading aid and transfer of the 

recognition result into sound output or tactile symbols through 

stimulators 

 Telecommunication Device for Deaf (TDD). A TDD is a teleprinter. It 

is an electronic device which aids people with hearing or speech 

difficulties with communication through text and telephone lines. 

 In postal department – for scanning and reading preprinted and 

handwritten postal address and postal codes. 

 In publishing industry, as a text reader and store for editing and 

publishing documents/books. 

 In Banking, for automated finger print identification, check reader, etc. 

 Handwriting analyzer for automatic writer recognition and signature 

verification. 

 For mechanized document reading in textile and clothing manufacture 

enterprises, automatic punching of industrial telegraphs, retail data 

processing applications in food enterprises, and for retail product code 

name and price reading techniques. 

 In educational administrations – examinations assessment and 

attendance record evaluation. 

 In automated cartography, metallurgical industries, computer assisted 
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forensic linguistic system, electronic mail, information units and 

libraries and for facsimile. 

1.8 PROBLEMS OF RECOGNITION OF CHARACTERS 

A character can be written in a number of ways differing in shape and 

properties, such as tilt, stroke, cursively and overall shape. A plethora of fonts are 

available for use in any commonly used Word Processing Application Software. Yet, 

while perceiving any text written in a variety of ways, humans can easily recognize and 

read each character. This is because the human perception processes the information by 

the features that define a character‟s shape in an overall fashion. Thus, while modeling 

the human perception model in machines, a rugged feature extraction algorithm is 

needed before classification of characters (Shrivastava and Sharma, 2012).  Character 

misclassifications stem from two main sources: poor quality recognition unit (item) 

images and inadequate discriminatory ability of the classifier. There are many factors 

that contribute to noisy, hard to recognize item imagery: 

 poor original document quality 

 noisy, low resolution, multi-generation image scanning 

 incorrect or insufficient image pre-processing 

 poor segmentation into recognition items 

On the other hand, the character recognition method itself may lack a proper 

response on the given character set, thus resulting in classification errors. This type of 

errors can be difficult to treat due to a limited training set or limited learning abilities of 

the classifier. Typical recognition rates for machine-printed characters can reach over 

99% but handwritten character recognition rates are invariably lower because every 
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person writes differently. This random nature often manifests itself in a greater character 

variance in the feature space leading to greater misclassification rates. A common 

example of a “difficult” character is the letter “O” easily confused with the numeral “0”. 

Another good example could be the letter “l” confused with the numeral “1” or mistaken 

for a noisy image of the letter “I”. Rusu and Govindaraju (2004) discussed the character 

recognition abilities of human versus computers and present illustrated examples of 

recognition errors. The top level of their taxonomy of error causes consists of  

 Imaging defects due to heavy/light print, stray marks, curved baselines, 

etc. 

 Similar symbols as mentioned above 

 Punctuation due to commas and periods, quotation marks, special 

symbols, etc. 

 Typography due to italics and spacing, underlining, shaded 

backgrounds, unusual typefaces, very large/small print, etc. 

Their analysis provides insight into the strengths and weaknesses of current 

systems, and a possible roadmap to future progress. They conclude that the current OCR 

devices cannot read even on the level of a seven-year old child. The authors consider 

four potential sources of improvement: 

 Better image processing based on more faithful modeling of the 

printing, copying and scanning processes 

 Adaptive character classification by fine-tuning the classifier to the 

current document‟s typeface 

 Multi-character recognition by exploiting style consistency in typeset 
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text. 

 Increased use of context that depends on the document‟s linguistic 

properties and can vary from language to language. 

On the basis of the diversity of errors that they have encountered, they are 

inclined to believe that further progress in OCR is more likely to be the result of multiple 

combinations of techniques than on the discovery of any single new overarching 

principle. 

1.9 RECENT TREND AND DEVELOPMENT 

Digitizing information makes it easier to preserve, access, and share. For 

example, an original historical document may only be accessible to people who visit its 

physical location, but if the document content is digitized, it can be made available to 

people worldwide. There is a growing trend towards digitization of historically and 

culturally significant data. At present, reasonable efficient and inexpensive OCR 

packages are commercially available for digitization of printed text in English, Chinese 

and Japanese.  

The accurate recognition of Latin-script, typewritten text is now considered 

largely a solved problem. Typical accuracy rates exceed 99%, although certain 

applications demanding even higher accuracy require human review for errors. Other 

areas including recognition of hand printing, cursive handwriting, and printed text in 

other scripts (especially those with a very large number of characters) are still the subject 

of active research (Sharma et al., 2013). 

Optical Character Recognition (OCR) is sometimes confused with on-line 

character recognition. OCR is an instance of off-line character recognition, where the 
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system recognizes the fixed static shape of the character, while on-line character 

recognition instead recognizes the dynamic motion during handwriting. Recognition of 

cursive text is an active area of research, with recognition rates even lower than that of 

hand-printed text. Higher rates of recognition of general cursive script will likely not be 

possible without the use of contextual or grammatical information. For example, 

recognizing entire words from a dictionary is easier than trying to parse individual 

characters from script. Reading the Amount line of a cheque (which is always a written-

out number) is an example where using a smaller dictionary can increase recognition 

rates greatly. Knowledge of the grammar of the language being scanned can also help 

determine if a word is likely to be a verb or a noun, for example, allowing greater 

accuracy. The shapes of individual cursive characters themselves simply do not contain 

enough information to recognize all handwritten cursive script accurately (Sharma et al., 

2013). It is necessary to understand that OCR technology is a basic technology also used 

in advanced scanning applications. For more complex recognition problems, intelligent 

character recognition systems are generally used such as HMM, SVM and ANN. The 

artificial neural networks can be more advantageous and can be made indifferent to both 

affine and non-linear transformations. 

OCR for Latin Language:  

The most widely used languages such as English, Spanish and French are all 

derives from Latin script and even Mizo language is also based on the Latin script. 

Therefore some of literature survey has been conducted with recent development of  

Latin OCR which are highlighted as below- 

In 2012, Rashid et al. proposed a segmentation free text line recognition 

approach using multi-layer perceptron (MLP) and Hidden Markov Models (HMMs) in 
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which 98.4% character recognition accuracy was achieved. 

Patel et al. (2012) compare Open source Tesseract OCR and proprietary 

Transym OCR for recognition of vehicle number in which the colour image is converted 

into gray scale image. The Tesseract provides better accuracy of 61% for color image 

and 70% for gray scale images as compared to Transym, which provides only 47% of 

accuracy. They have also concluded that the Tesseract is faster than Transym because it 

takes average 1 second and 0.82 seconds for processing color and gray scale images 

respectively to process one image, while Transym takes average 6.75 seconds to process 

one image.  

George and Nicolai (2013) proposed a trainable filter called Combination of 

Shifted Filter Responses (COSFIRE) for recognition of English handwritten digits. The 

proposed COSFIRE filters provided effective machine vision solutions in three practical 

applications: the detection of vascular bifurcations in retinal fundus images (98.50 

percent recall and 96.09 percent precision), the recognition of handwritten digits (99.48 

percent correct classification), and the detection and recognition of traffic signs in 

complex scenes (100 percent recall and precision). 

Prasad et al. (2013) proposed simplistic approach for recognition of offline 

handwritten English alphabets using Artificial Neural Networks and they obtained the 

recognition rate of 98.10%.  

Dhiman and Singh (2013) carried out a comparative study on two most 

popular open source OCR such as Tesseract and GOCR for recognition of Latin script. 

They have found that the Tesseract OCR has better accuracy of 97.4% and precision of 

97.4% on colour image than GOCR with accuracy of 64.1% and precision of 89.2%.    
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Breuel et al. (2013) presents Long Short-Term Memory (LSTM) networks 

for recognition of machine-printed Latin and Fraktur script. They achieved error rates of 

0.15% (Fontane) and 1.47% (Ersch-Gruber). The recognition accuracies were found 

satisfactory without using any language modelling or any other post-processing 

techniques. 

OCR for Indian Languages:  

The major Indian languages OCR have been developed under the aegis of 

Technology Development for Indian Languages (TDIL) Programme, Ministry of 

Communications and Information Technology, Govt. of India, for Bangla, Devanagari, 

Gurumukhi, Kannada, Malayalam, Tamil, Telugu, Gujarathi, Oriya, Tibetan, Assamese, 

Manipur and Urdu. This section is to provide an overview of the research going on in 

Indian script OCR systems.  

Biswas et al. (2012) proposed stroke based feature extraction and HMM 

based character classifier for online handwritten Bangla characters.  They obtained the 

character level recognition accuracy of 91.85% on the test set of 8,616 samples. 

Kumar et al. (2012) have used the Ant-miner algorithm (AMA) for offline 

character recognition of hand written Oriya scripts, popularly known as Utkal lipi. The 

AMA is a rule-based approach and the rules are incrementally tuned during the training. 

The average recognition rate is above 90%. 

John and Balakrishnan (2013) proposed a handwritten character recognition 

system for Malayalam language. They have uses a combination of gradient and 

curvature feature in reduced dimension as the feature vector and SVM with Radial Basis 

Function (RBF) kernel as classifier. They obtained 96.28% and 97.96% of accuracy in 
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two different datasets.  

Kumar et al. (2013) proposed neural network based approach for recognition 

of kannada handwritten character and they obtained the recognition accuracy of 

99.58%. 

Agarwal and Hemarjani (2013) proposed template matching algorithm for 

recognition of handwritten Devanagari script and they obtained 92.66% accuracy for 

Handwritten Devanagari characters. 

Kumar et al. (2014) applied water reservoir based technique for identification 

and segmentation of touching characters in handwritten Gurmukhi words. The touching 

characters are segmented based on reservoir base area points. They have achieved 

93.51% accuracy for character segmentation with this method.  

Prasad and Kulkarni (2015) proposed weighted k-NN classifier and mean χ2 

distance measure for recognition of handwritten Gujarati characters and they obtained 

86.33 % recognition efficiency. 
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CHAPTER 2 

PREPROCESSING METHODOLOGY 

The preprocessing is a preliminary processing step to make the raw data 

usable for segmentation, feature extraction and classification.  The proposed 

preprocessing implementation methodology is depicted in the following figure. 
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Figure 2.1: Pre-Processing of Mizo OCR 

2.1 OPTICAL SCANNING 

The image is acquired through a scanner, digital camera or any other suitable 

digital input devices (Prasad et al., 2013). The recommended best scanning resolution for 

OCR accuracy is 300 dpi. Higher resolutions do not necessarily result in better accuracy 

and can slow down OCR processing time. The resolutions below 300 dpi may affect the 

quality and accuracy of OCR results. The image should have specific format such as jpg, 

bmp, tiff, etc. There are a number of factors that affect the accuracy of text recognized 

which include - scanner quality, scan resolution, type of printed documents (laser printer 

or photocopied), paper quality, fonts used in the text, linguistic complexities, and 

dictionary used. In this work, the scanner Epson L210 with software is used for image 

acquisition which is good enough for scanning resolution of 300 dpi. 
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2.2 IMAGE ENHANCEMENT METHODS 

The scanned image, sometimes, vary the level of contrast due to poor 

illumination or improper setting in the acquisition sensor device.   Low-contrast images 

can result from poor illumination, lack of dynamic range in the scanning devices, or even 

wrong setting of the scanner during image acquisition. The primary objective of image 

contrast enhancement is to differentiate between the foreground object and the 

background object so as to enable to perform better preprocessing results in our character 

recognition system. Image contrast enhancement approaches fall into two broad 

categories: spatial domain methods and frequency domain methods. The term spatial 

domain refers to the image plane itself, and approaches in this category are based on 

direct manipulation of pixels in an image. Frequency domain processing techniques are 

based on modifying the Fourier transform of an image.  

In this research work we used spatial domain methods for image 

enhancement. Spatial domain methods are particularly useful for directly altering the 

gray level values of individual pixels and hence the overall contrast of the entire image. 

Here we examine different types of spatial domain for selection of the best image 

enhancement in our character recognition system. 

2.2.1 LOGARITHMIC TRANSFORMATION 

Log transformation is one of the elementary image enhancement techniques 

of the spatial domain that can be effectively used for contrast enhancements of dark 

images. The log transform is essentially a grey level transform which means that the grey 

levels of image pixels are altered. This transformation maps a narrow range of low grey 

level values in the input image to a wider range of output levels. The general form of the 
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log transformation can be mathematically represented as below (Maini and Aggarwal, 

2010). 

              

Where s is the output value, r is the input value and c is a constant. This 

transformation maps a narrow range of low gray-level values in the input image into a 

wider range of output levels. The opposite is true of higher values of input levels. We 

would use this transformation to expand the values of dark pixels in an image while 

compressing the higher-level values. To expand the bright levels we would use the 

inverse logarithmic transformation. 

ALGORITHM 

Step 1:  Read the input image 

Step 2:  Generate input image process by class double the input image 

Step 3:  Generate output image process by using Logarithmic function 

Step 4:  Transform the output image by converting into 8 bit image 

Step 5:  Show input and output histogram and image 

EXPERIMENTAL RESULTS  

The logarithmic transformation gives more details in the darks areas making 

the image lighter and the light areas lost its details. The algorithm is very fast and the 

average time is 0.0392 seconds for a 240x320 image. The figure below illustrated the 

result of logarithmic transformation in terms of output image and output histogram. 
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Figure 2.2: Logarithmic transformation 

2.2.2 POWER-LAW TRANSFORMATION 

Power law transformation is another commonly used gray level 

transformation in the spatial domain. It is conceptually similar to alpha rooting in the 

frequency domain as this is done by raising the input grey level by some power. The 

general form of the Power-law transformation can be mathematically represented as 

below (Jayaraman et al., 2009). 

       

Where s is output grey image, c is scaling constant and r is input grey image, 

and  is the power constant to which the input grey level is raised.  

ALGORITHM 

Step 1:  Read the input image 

Step 2:  Generate input image process by class double the input image 

Step 3:  Set the value of Gamma = 2 (if gamma<1, its increase the contrast in dark 

 Input Image   

  

Output Image   

  
  

Input Histogram   Output Histogram   
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and if gamma>1, it will increase the contrast in whites) 

Step 4:  Generate output image process by power law function 

Step 5:  Transform the output image by converting into 8 bit image 

Step 6:  Show input and output histogram and images 

EXPERIMENTAL RESULTS  

The power-law transformation have two ways to operate it depends of the 

gamma value. If gamma is lowest than 1 it is more or less like an logarithm transform 

but much better because it can be use different slopes to the function. Thus, the dark 

areas are enhanced and more detailed. And if gamma is higher than 1, the function does 

the inverse result. It is enhanced the light areas and makes the image darker. The 

algorithm average time is 0.1232 seconds for a 240x320 image. It is slower than the 

logarithm transform but gets better results. The figure below illustrated the result of 

power law transformation in terms of output image and output histogram. 

 

Figure 2.3: Power Law Transformation 
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2.2.3 HISTOGRAM EQUALIZATION  

Histogram equalization is a common technique for enhancing the appearance 

of images. The method is useful in images with backgrounds and foregrounds that are 

both bright or both dark. In particular, the method can lead to better detail in photographs 

that are over or under-exposed (Russ, 2011). 

    
                 

               
  k = 0, 1, 2 ………L-1 

Where r and s are the input and output pixels of the image, L is the different 

values that can be the pixels, and rkmax and rkmin are the maximum and minimum gray 

values of the input image. 

ALGORITHM 

Step 1:  Read the input image 

Step 2:  Generate input image process  

Step 4:  Generate output image process by using histogram equalization function 

Step 5:  Transform the output image by converting into 8 bit image 

Step 6:  Show input and output histogram and images 

EXPERIMENTAL RESULTS  

Histogram equalization makes the histogram to expand between all the range 

(0,255) and gets more smooth transitions between the pixels of the image. The algorithm 

average time is 0.1590 seconds for a 240x320 image. It is quite fast but the results are 

not good. The figure below illustrated the result of histogram equilization in terms of 

output image and output histogram. 
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Figure 2.4: Histogram Equalization 

2.2.4 CONTRAST STRETCHING 

The level of contrast in an image may vary due to poor illumination or 

improper setting in the acquisition sensor device. Therefore, there is a need to manipulate 

the contrast of an image in order to compensate for difficulties in image acquisition. The 

idea behind contrast stretching is to increase the dynamic range of the gray levels in the 

image being processed. The idea is to modify the dynamic range of the grey-levels in the 

image. Linear Contrast Stretch is the simplest contrast stretch algorithm that stretches the 

pixel values of a low-contrast image or high-contrast image by extending the dynamic 

range across the whole image spectrum from 0 – 255 (Yang, 2006). 

The general formula for contrast stretching is 

  
 

        
 

Where r is the input image values, s is the output image values; m is the 

thresholding value and e is the slope. If e = 1 the stretching became a threshold 

transformation, if e > 1 the transformation its defined by the curve which is smoother 

when the e value is increase, and when e < 1 the transformation makes the negative and 

also stretching. 

 Input  Image   

  

Output Image   

  
Input Histogram   Output Histogram   
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ALGORITHM 

Step 1:  Read the input image 

Step 2:  Generate input image process by class double the input image 

Step 3:  Set the value of e = 3 and m = 80 

Step 4:  Generate output image process by stretching function 

Step 5:  Transform the output image by converting into 8 bit image 

Step 6:  Show input and output histogram and image 

EXPERIMENTAL RESULTS  

Contrast stretching separate the image in two parts the black and the white 

one, on the m value, and the transition between these parts is a slope that could be more 

or less smooth in the depends on the e value. It is also a fast algorithm and the average 

time is 0.0631 seconds. The transformation with the variable m = 80 and e = 3, the 

contrast has been enhanced with a good result for further process of the character 

recognition. The figure below illustrated the result of contrast stretching in terms of 

output image and output histogram. 

 

Figure 2.5: Contrast Stretching 
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2.2.5 DISCUSSIONS 

The subjective results depend on the input image, and each transformation 

works better for a type of image and worse for others types. For dark input images with 

low contrast, the logarithm and the power law transformations gave good results with 

gamma lower than 1. For light input images, the power law transformation with gamma 

higher than 1 have given better performance. For image with low contrast in gray scale, 

the best method is contrast stretching.  

It may be noted that the logarithm and histogram equalization methods does 

not required any human intervention for changing the parameters. In power law 

transformation, the “gamma” value is to be specified by the user. In contrast stretching 

the “m” gray scale value and the “e” slope of the transformation and local enhancement 

is the most hardworking function because it has to be calculated the limit values for the 

local deviation and local mean, and the size of the neighborhood.  

With an image resolution of 240x320, the logarithm transformation and the 

contrast stretching are the fastest algorithms with an average time of 0.0392 seconds and 

0.0631 seconds respectively whereas the histogram equalization transformation and the 

power-law transformation are the slowest algorithms with an average time of 0.1590 

seconds and 0.1232 seconds.  

We have concluded that the overall performance in terms of speed and image 

enhancement results, the contrast stretching method is the best algorithm for use in mizo 

character recognition system. Therefore, contrast stretching transformation for image 

enhancement is being implemented in this work.  
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2.3 IMAGE BINARIZATION 

Image binarization is the process of separating the objects of an image from 

its background. The most common method for binarization is to select a proper threshold 

for the intensity of the image and then convert all the intensity values above the threshold 

to one intensity value (“white”), and all intensity values below the threshold to the other 

chosen intensity (“black”). After determining the threshold value, each pixel in the image 

is compared with the threshold value. If the value of the pixel is less than the threshold, 

reset the pixel to one. Otherwise, reset the pixel to zero as in below equation (Chaudhary 

and Saini, 2014).  

P(x,y) =  {
                        

                        
} 

Where, P(x, y) is the value assigned to the pixel after binarization step.  

f(x,y) is the gray value of the pixels and the threshold value 255 is the value between the 

dominant and the maximum value. Image having gray value for the pixels that belongs to 

the foreground and value 255 i.e white (0) for the background pixels. After applying the 

binarization algorithm on the digital image, we obtain a binary image consisting of two 

values 1 as black and 0 as white.  

2.3.1 ALGORITHM 

Step 1:  Read 2D image  

Step 2:  Reshape the 2D gray scale image to 1D. 

Step 3:  Find the histogram of the image using „hist‟ function. 

Step 4:  Initialize a matrix with values from 0 to 255 

Step 5:  Find the weight, mean & variance for the foreground & background 

Step 6:  Calculate weight of foreground* variance of foreground + weight of 
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background* variance of background. 

Step 7:  Find the minimum value. 

2.3.2 EXPERIMENTAL RESULTS  

In this work we present a simple and effective algorithm for converting 

grayscale image into binary image. The algorithm assumes that the image contains two 

classes of pixels following bi-modal histogram (foreground pixels and background 

pixels), it then calculates the optimum threshold separating the two classes so that their 

combined spread (intra-class variance) is minimal. It converts gray scale image into a 

binary image on the basis of pixel whether it is below or above the specified threshold 

value. The following figure illustrates the experimental results: 

   

(a) Original Gray Image  (b) After Binarization  

Figure 2.6: Image Binarization 

2.4 NOISE DETECTION AND REMOVAL  

The scanned documents often contain noise which generally occurred due to 

printer, scanner, print quality, age of the document, etc (Vithlani, 2014). The presents of 

noise in the scanned document can reduces the accuracy of subsequent tasks of Character 

Recognition systems. This noise can appear in the foreground or background of an image 

and can be generated before or after scanning.  In this work, we encountered three types 
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of noises such as - Gaussian Noise, Salt and Pepper Noise, and Marginal Noise. 

2.4.1 GAUSSIAN AND SALT & PAPER NOISE AND REMOVAL 

METHODS 

The Gaussian noise is caused by random fluctuations in the signal. It is 

modeled by random values added to an image. In Gaussian noise, each pixel in the image 

will be changed from its original value by a small amount. Each pixel in the noisy image 

is the sum of the true pixel value and a random, Gaussian distributed noise value.  

The Salt and pepper noise is also called fat-tail distributed or impulsive noise 

or spike noise. An image containing salt-and-pepper noise will have dark pixels in bright 

regions and bright pixels in dark regions. It presents itself as sparsely occurring white 

and black pixels. This noise arises in the image because of sharp and sudden changes of 

image signal. An effective noise reduction method for this type of noise is a median filter 

or a morphological filter.  

In order to remove the above stated noises- Gaussian noise and Salt & paper 

noise, we examined various noise filter such as median filter, average filter, and wiener 

filter and proposed the best noise filter for this work.  

2.4.1.1 MEDIAN FILTER  

Median filtering is a nonlinear method used to remove noise from images. It 

is widely used as it is very effective at removing noise while preserving edges. The 

median filter works by moving through the image pixel by pixel, replacing each value 

with the median value of neighboring pixels. The pattern of neighbors is called the 

"window", which slides, pixel by pixel over the entire image. The median filter takes 

window area of an image (3x3, 5x5, 7x7, etc) which is calculated by first sorting all the 
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pixel values from the window into numerical order, and then replacing the pixel being 

considered with the middle (median) pixel value.  Figure below illustrates an example of 

how the median filter is calculated. 

 

Figure 2.7: Median Filter 

ALGORITHM 

Step 1:   Input a 2D image (mxn) 

Step 2:  Preallocate another matrix of size (m+2 by n+2) with zeros 

Step 3:   Copy the input matrix into the preallocated matrix 

Step 4:   Form a window matrix of size 3x3 with the elements of input matrix 

Step 5:  Copy the window matrix (3x3) into an array and sort it 

Step 6:   Find the median element. Here it is 5
th

 element. (The total elements are 9, the 

middle element will be 5) 

Step 7:  Place the 5
th

 element into the output matrix. Do the procedure for the complete 

input matrix. 

Step 8:   Convert the image into an image of 0-255 

Step 9:  Display the image without noise 

2.4.1.2 AVERAGE (OR MEAN) FILTER 

Average (or mean) filtering is a method of „smoothing‟ images by reducing 

the amount of intensity variation between neighbouring pixels. The average filter works 
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by moving through the image pixel by pixel, replacing each value with the average value 

of neighbouring pixels, including itself. There are some potential problems:  

 A single pixel with a very unrepresentative value can significantly affect the 

average value of all the pixels in its neighbourhood.  

 When the filter neighbourhood straddles an edge, the filter will interpolate 

new values for pixels on the edge and so will blur that edge. This may be a 

problem if sharp edges are required in the output. 

The figure below illustrates an example of how the Average (or Mean) filter 

is calculated. 

 

Figure 2.8: Average (or Mean) Filter 

ALGORITHM 

Step 1:   Input a 2D image (m x n) 

Step 2:   Preallocate another matrix of size (m+2 by n+2) with zeros 

Step 3:   Copy the input matrix into the preallocated matrix 

Step 4:   Form a window matrix of size 3x3 with the elements of input matrix 

Step 5:   Copy the window matrix (3x3) into an array and sort it 

Step 6:  Find the Average (or Mean) element. Here the total values of the elements 

divided by the total elements. (The total value of elements are 15, the total 
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element is 9. The mean value is 15/9=1.66 which can be round of at 2) 

Step 7: Place the mean value=2 into the output matrix. Do the procedure for the 

complete input matrix. 

Step 8:   Convert the image into an image of 0-255 

Step 9:   Display the image without noise 

2.4.1.3 WIENER FILTER 

The inverse filtering is a restoration technique for de-convolution, i.e., when 

the image is blurred by low pass filter, it is possible to recover the image by inverse 

filtering or generalized inverse filtering. However, inverse filtering is very sensitive to 

additive noise. The approach of reducing degradation at a time allows us to develop a 

restoration algorithm for each type of degradation and simply combine them. The Wiener 

filtering executes an optimal trade-off between inverse filtering and noise smoothing. It 

removes the additive noise and inverts the blurring simultaneously. The Wiener filtering 

is optimal in terms of the mean square error. In other words, it minimizes the overall 

mean square error in the process of inverse filtering and noise smoothing. The Wiener 

filtering is a linear calculating of the original image. The approach is based on a 

stochastic framework. 

ALGORITHM 

Step 1:  Read the input image 

Step 2:  Convert the image to grayscale 

Step 3:  Apply the winner filter to the image 

Step 4:  Return the image  

2.4.1.4 EXPERIMENTAL RESULTS  

The scanned image documents containing Gaussian Noise and Salt & Pepper 
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Noise are tested with three different types of noise filter such as median filter, wiener 

filter and average filter. The performance of these filter are calculated using PSNR (Peak 

Signal to Noise Ratio) and MSE (Mean Square Error) methods (Liu et al., 2011).  

  Where, 

                 (
    

   
)   

  And 

    
 

  
∑∑                

 

   

 

   

 

Where M and N are the total number of pixels in the horizontal and vertical 

dimension of image; g denotes the Noise image and f denote the filtered image (the 

image size is m x n). 

On increasing the image size with constant impulse noise density, PSNR 

increases, MSE decreases. This is because the ratio of image size to noise density 

increases with increasing image size and constant noise, therefore the output image is 

better de-noised. The comparative experimental results can be seen as table below 

Table 2.1:  Comparison of MSE and PSNR values 

Noise Type Filter Type MSE PSNR 

Gaussian Noise Median Filter 36.09 32.59 

 Wiener Filter 137.48 26.78 

 Average Filter 100.10 28.16 

Salt & Pepper 

Noise 
Median Filter 2.30 44.56 

 Wiener Filter 84.12 28.92 

 Average Filter 59.11 30.45 

The figure below illustrated the effect of noise filters against Gaussian Noise 

and Salt & Pepper Noise. 
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(a) Original Image with Gaussian Noise (b) After Median Filter 

  

(c) After Wiener Filter (d) After Mean Filter 

Figure 2.9:  Gaussian Noise with Noise Filters 

  

(a) Original Image with Salt-Pepper Noise (b) After Median Filter 

  

(c) After Wiener Filter (d) After Mean Filter 

Figure 2.10:  Salt & Pepper Noise with Noise Filters. 
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In this thesis a comparative study of various noise filters is carried out. The 

performance evaluation is done by using the terms of peak signal to noise ratio and mean 

square error. From the experimental results it can be concluded that the median filter 

removal is more effective than any other noise removal both salt & pepper noise and 

Gaussian noise. 

2.4.2 MARGINAL NOISE AND REMOVAL METHOD 

When a page of a book is scanned, textual noise (extraneous symbols from 

the neighboring page) and/or non-textual noise (black borders, speckles) may appear 

along the border of the document. Different amount of noise can be present along the 

border of a document image depending on the position of the paper on the scanner. In 

general, marginal noise along the page border can be classified into two broad categories 

based on its source: non-textual noise (black bar) and textual noise (back ground noise 

which is not uniform) as depicted in the figure below.  

 

Figure 2.11:  Representation of Textual and Non Textual Noise 

When these noise regions are fed to a character recognition engine, it reduced 

the performance of character recognition system in terms of accuracy. In this work we 

Non Textual Noise Textual Noise 

Non Textual Noise 
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present a simple and effective approach for border noise removal from scanned 

documents. Our algorithm for border noise removal works in three steps:  

Step 1:  Removal of non-textual marginal noises using Connected Component 

Method 

The first step is to remove non-textual marginal noise presents along the 

border of the image documents. The non-textual noises having higher density of edges 

than the normal text are identified using connected component analysis. First, scan the 

entire image document and calculate the area of each connected component. If the 

connected pixel is greater than the threshold value, then consider as non-textual noise. 

The threshold value is the area of the maximum connected pixel from a font size of 9-72 

points. The non-textual noise found in the image documents is then removed.  

Step 2:  Removal of textual & non-textual noise presents on top and bottom of 

image document using Horizontal Projection Profile 

The second step is to remove both textual and non-textual noise presents in 

the document using horizontal projection profile method.  The horizontal profile method 

removes only the noises presents above and bottom of the desired text image document.  

The connected component cannot clean up all the noises along the border; it may still 

exhibit some noises which are equivalent or lower than the threshold value. Therefore, a 

horizontal projection histogram is used to remove the present of marginal noise along the 

top and bottom of the image documents.  
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Figure 2.12:  Horizontal Projection Profile  

In the above figure, we found that there is a peak point of each detected blobs 

which is plot against the y-coordinate as shown in the figure above. An assumption is 

made that the non-textual noises have a peak values lower than the desire textual 

component. Based on this principle, a simple algorithm is prepared to remove marginal 

noise along the upper and lower margin of the image documents. 

Step 3:  Removal of textual & non-textual noise presents on left and right side of 

image document using Vertical Projection Profile 

The third step is to remove, both textual and non–textual noises presents in 

the left corner and right corner of the image document.  Even after performing noise 

removal using connected component and horizontal projection profile, some textual and 

non-textual noises still presents along the left and right corner of image document. These 

noises can be removed by using vertical projection profile method.   
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In this process, a rectangle window is projected vertically to find the pixels 

along the vertical direction. The method involves construction of a vertical histogram of 

the image like the one shown in the figure below. Based on the peak of this vertical 

histogram, individual lines in the document image are separated. The vertical projection 

profile is calculated by summing the black pixels in each column of the image. The 

vertical projection profile graph contains peaks and valleys symbolizing the noises and 

the textual component respectively. Then construct the Vertical Histogram for the image. 

Using the Histogram, the starting and ending line of each plot are determined. This 

starting and ending point are mark throughout the image document. The length of each 

plot is calculated by subtracting the starting point from the ending point.  The maximum 

length of textual component is greater than the maximum length of noises. The length of 

vertical histogram which is less than the actual textual component may be treated as a 

noise and hence removes by overwriting with background pixel.  A vertical projection 

showing the location of the noise in the image document is illustrated below. 

 
Figure 2.13:  Vertical Projection Profile  

Noise 
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In this chapter, we presented a simple and efficient algorithm for marginal 

noise removal from scanned documents. The algorithm works by combining projection 

profile analysis with connected component to identify borders of noise regions and 

removal. The experimental results showing removal of marginal noises illustrated in the 

figure below. 

  
(a)  Original Image Document with 

marginal noises 

(b)  After removal by Connected 

Component 

  
(c)  After Removal by Horizontal 

Projection 

(d)   After Removal by Vertical 

Projection 

Figure 2.14:  Marginal Noise Removal using Connected Component and Projection 

Profile 
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2.5 SKEW ANGLE DETECTION AND CORRECTION  

When scanning the document using a flatbed scanner, it is not placed 

correctly the document and hence the document is skewed resulting in a skewed image 

document. Skew is any deviation of the image from that of the original document, which 

is not parallel to the horizontal or vertical. Skew Correction remains one of the vital parts 

in document processing. Many methods have been proposed by researchers for the 

detection of skew in binary image documents (Dhandra, 2006). The methods are - 

projection profile, Fourier transform, Hough transform, nearest neighbour, linear 

regression analysis and morphology.  The Hough transform have more advantages than 

the others in terms of accuracy and simplicity. But due to slow speed, many researchers 

work on its speed complexity without compromising the accuracy. In this work, we 

introduced new method which reduces the time complexity without compromising the 

accuracy of Hough transform. 

Hough transform is the linear transform for detecting straight lines. In the 

image representation there is image space, in which the straight line can be represented 

by equation  y = mx + b and can be graphically plotted for each pair of image points (x, 

y). In the Hough transform, the main idea is to consider the characteristics of the straight 

line not as image points x or y, but in terms of its parameters, here the slope parameter m 

and the intercept parameter b. Based on that fact, the straight line y = mx + b can be 

represented as a point (b, m) in the parameter space. However, one faces the problem that 

vertical lines give rise to unbounded values of the parameters m and b. For computational 

reasons, it is therefore better to parameterize the lines in the Hough transform with two 

other parameters, commonly referred to as ρ (rho) and θ (theta). In which line can be 

represented Cartesian equation x. cos θi + y. sin θi = ρi. Where the parameter ρ represents 
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the distance between the line and the origin, and θ is the angle of the vector from the 

origin to this closest point. Figure 3.15 (a) shows the parameter plane of ρ and θ. In 

which X and Y are axis and ρ is distance and θ the angle but the Cartesian equation is 

slow for accumulating process than slope and intercept equations (Singh et al., 2008). 

 
 

(a) X-Y Parameter Plane of ρ (rho) and θ 

(theta) 

(b) Skew Angle Detection  

Figure 2.15: Hough Transformation  

The Hough transform accepts the input in the form of a binary edge map and 

find edges which are positioned likes straight lines. The idea of the Hough transform is 

that every edge point in the edge map is transformed to all possible lines that could pass 

through that point.  

Our skew detection approach is based on a technique involving Modified 

Hough Transform to detect the skew. In modified HT, we divide the spectrum of the HT 

space i.e., angle of skew which can be 0 degree to 45 degree into one-tenths, thus getting 

the portion in which the resultant skew lies. Then only that portion is further investigated 

by diving it into one-tenths and so on. This way the algorithm reaches the solution 

quickly as compared to the classical HT (Kumar and Singh, 2012). 
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2.5.1 ALGORITHMS 

(1) Hough Transform Algorithm for Line detection 

Step 1:  Select the Hough transform parameters ρmin, ρmax, θmin and θmax.  

Step 2:  Quantize the (ρ,θ) plane into cells by forming an accumulator cell array 

A(ρ,θ), where ρ is between ρmin and ρmax, and θ is between θmin and θmax.  

Step 3:   Assigning the element of an accumulator cell array A to zero.  

Step 4:  For each black pixel in a binary image, perform the following: For each value 

of θi from min to max, calculate the corresponding ρi using the equation: 

x.cosθi + y.sinθi = ρi Round off the ρi value to the nearest allowed ρ value. 

Updating the accumulator array element A ( ρi, θi) by voting procedure.  

Step 5:  In last, local maxima in the accumulator cell array correspond to a number of 

points lying in a corresponding line in the binary image.  

(2) Hough Transform Algorithm for Skew Angle Detection 

Step 1:  Read the input image 

Step 2:  Perform pre-processing for noise removal 

Step 3:  Perform Hong transformation on the image after preprocessing to draw 

straight line 

Step 4:  Find the peak point from the straight line in the Hong transformation 

Step 5:  Find the angle of bar from the peak point  

Step 6:  Return bar angle. 

(3) Hough Transform Algorithm for Skew Angle Correction 

Step 1:  Read the input skew angle 

Step 2:  Check whether positive or negative if positive goto step 2 else goto step 3 

Step 3:  angle_to_rotate= -90+ skew angle 

Step 4:  angle_to_rotate =  90+ skew angle 
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Step 5:  Perform image rotation by degree of angle_to_rotate 

Step 6:  Return rotated image 

 

2.5.2 EXPERIMENTAL RESULTS  

In this work, a sample of 20 skew angle image files has been generated for 

the purpose of testing the modified Hough Transform. These image files have skewed 

angle ranging from -30 degree to 45 degree.  The following figure illustrates a sample of 

skew angle and de-skew image.  

  

(a) Original Skew Angle Image (b) After Skew Angle Correction 

Figure 2.16: Skew Angle Detection and Correction 

The experimental result is quite satisfactory as the average accuracy is as 

good as 97.17% with and average error rate of 4.35% and the average execution time is 

0.203 seconds.  In this research work, we have adopted the modified HT because of its 

accuracy, simplicity and the performance speed. The experimental results can be seen at 

table below. 
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Table 2.2:  The performance of Hough Transform for Skew Detection and 

Correction 

Sl. No Actual 

Angle 

Detected 

Angle 

Error Accuracy % Time Second 

1 -30 -30.43 0.014 98.58 0.202 

2 -20 -20.11 0.005 99.45 0.296 

3 -10 -10.43 0.040 95.88 0.192 

4 -5 -4.90 0.020 98.00 0.203 

5 -3 -3.01 0.003 99.66 0.111 

6 1 0.77 0.230 90.00 0.154 

7 3 2.32 0.230 90.00 0.126 

8 5 5.02 0.004 99.60 0.110 

9 10 10.95 0.095 91.32 0.173 

10 15 15.26 0.017 98.29 0.156 

11 18 17.32 0.038 96.22 0.134 

12 19 19.39 0.020 98.34 0.224 

13 20 20.30 0.015 98.52 0.216 

14 25 25.38 0.015 98.50 0.257 

15 27 27.72 0.027 97.40 0.277 

16 30 29.8 0.006 99.33 0.205 

17 33 32.53 0.014 98.57 0.347 

18 40 40.16 0.040 99.50 0.187 

19 42 41.05 0.023 97.73 0.257 

20 45 44.34 0.015 98.53 0.239 

   0.0435 97.17 0.203 
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2.6 THINNING  

Thinning is also known as skeletonization, it is a process of peeling off a 

pattern as many pixels as possible without affecting the general shape of the pattern. An 

effective thinning algorithm should ideally remove all redundant pixels and retain the 

significant aspects of the pattern under process.  

There are two common approach for thinning algorithms such as - Iterative 

approach and Non-iterative approach. In iterative approach, pixels on the boundary are 

examined and successively deleted until a skeleton of one pixel width is obtained. On the 

other hand, non-iterative approach produces a medial line of the original image without 

the need of examining all pixels individually. In the proposed algorithm we follow the 

iterative approach, and a color coding is used in bitmap file of sixteen colors to mark, 

examine, preserve, delete and recovering pixels to achieve thinning and solve the 

problem of discontinuity yielding a very fine skeleton of the original image. 

Thinning algorithm is a Morphological operation that is used to remove 

selected foreground pixels from binary images. It preserves the topology (extent and 

connectivity) of the original region while throwing away most of the original foreground 

pixels. The figure below shows the result of a thinning operation on a simple binary 

image. 

 

(a)  Original Image 
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(b) After thinning the image 

Figure 2.17:  Thinning Operation 

2.6.1 ALGORITHM  

The algorithm needs to follow five main steps to achieve the task of 

skeletonization and they are as follows: 

Step 1:   Start and End points marking 

This is done by scanning the whole image from top-left to bottom-right 

corner allocating all pixels in inner and outer border of the image and distinguish those 

deletable from undeletable pixels.  

 For undeletable pixels, the algorithm considers all on-pixels (black) which 

surrounded by six or seven off-pixels (white). These pixels are expected to be 

a start or end points on the image and hence not deletable. 

 

Figure 2.18:  Start and end points detection 

 For deletable pixels, the algorithm consider all black-pixels which 
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surrounded by five or eight white-pixels are noise and then delete them as 

shown in the Figure below. 

 

Figure 2.19:  Pixels that consider as noise 

Step 2:  Allocation of Deletable Pixels 

In this step we need to allocate all pixels on the boundary of the image that 

can be deleted for the sake of thinning. Allocation of these pixels should follow the rules 

(template) shown in the figure below. 

 

Figure 2.20:  Templates for allocation of deletable pixels 

Where PT is a pixel under test and P0, P2, P4 and P6 are the four neighbor 

pixels of PT in four directions according to Freeman‟s Code. The conditions that make 

PT deletable are as follows:  

If  {(P2=on) & (P6 =off)   or  

(P0 =on) & (P4 =off)   or  

(P2 =off) & (P6 =on)   or  
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(P0 =off) & (P4=on)}  

So PT in all four, above mentioned, cases is deletable pixel provided that it 

should be connected to at least two other black pixels. Subsequently they will be mark 

first as deletable pixels, and later the algorithm will decide whether to delete them or not 

according to the conditions fulfillment. Now to avoid discontinuity there are three more 

rules to apply before start deleting all pixels marked as deletable pixels.  

(a)  The first rule is set to avoid discontinuity by making sure that all deletable pixels 

are not following any of patterns shown in the figure below. 

 

Figure 2.21:  first rule for discontinuity prevention 

If any of deletable pixels do fall under any of patterns shown in the above 

figure, one of deletable pixels should be retained. The priority of retaining a pixel goes to 

the deletable pixel which has more other deletable pixels connected to it than the other. 

However, if both of deletable pixel have the same number of other deletable pixel the 

priority goes to the one which leads the other according to the direction of image 

scanning from top-left to bottom-right. As a result, that pixel is marked as undeletable 

pixel.  

(b)  The second rule states that if a deletable pixel connected to another three 

deletable pixels in a manner shown in the above figure, the algorithm marks the medial 

pixel as a black pixel as shown in the figure below. 
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Figure 2.22:  Second rule for discontinuity prevention 

(c)   The third rule states that any pixel which has been marked as deletable and has 

two white pixels at direction of (P2 & P6) or (P0 & P4) as shown in the figure below 

should be reverted to black pixel. 

 

Figure 2.23:  Third rule for discontinuity prevention 

Step 3:  Deletion Process 

We shall now delete all pixels that still marked as deletable pixels. Deletion 

follows the scanning of the image from top-left corner to bottom-right corner. As a result 

of this deletion we have noticed that some discontinuities have occurred and hence we 

make the algorithm finish this process without any interruption and make it iterate as 

described in the next section till there are no more pixels to be deleted (in other word the 

number of deleted pixels after each iteration is same). Only then the algorithm starts 

checking for discontinuities and suggests proper connections. 

Step 4:  Iteration  

The algorithm now will iterate repeating step-2 and step-3 till there are no 
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more deletable pixels to delete. In other word the templates in Figure 2.20 are no longer 

applicable. The number of iterations depends mainly on the thickness of the character in 

the input image.  

Step 5:  Discontinuity Deletion and Recovery 

In case of any discontinuities in one place or another in the output skeleton, 

we propose a technique involves recovering of those deleted pixels which cause this type 

of discontinuity as following: We move a window of 3x3 on the whole thinned image 

and if one of the templates shown in the following figure was found, we check the 

missed pixel so that if it is proved that this pixel was there and, because of thinning 

algorithm, has been deleted we just recover that pixel back (make it black pixel), hence 

the problem of discontinuity is solved, otherwise we shall consider that as a deliberate 

discontinuity (i.e. is one of the character feature) and keep it as it is. 

 

Figure 2.24: Templates for recovery of deleted pixel and preserve connectivity 

Referring to the above figure, PT is a pixel to be checked whether it was there 

before applying the algorithm or not, so if it was there we just convert this pixel back to 

black pixel otherwise we leave it as it is.  

2.6.2 EXPERIMENTAL RESULTS  

The algorithm was tested on different handwritten text in both cases discrete 
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and cursive using Epson L210 (with 800 bpi resolution) for image capturing. A 

preserved smooth skeleton was obtained. The following figure show examples of tests 

carried out on real life images document along with their output skeletons.  

 

(a) Before Thinning Process (Skeletonization) 

 

(b) After Thinning Process (Skeletonization) 

Figure 2.25: Sample of original images document and their skeletons. 

The algorithm has used six codes to represent on-pixel (black), off-pixel 

(white), noise pixel, start or end point pixel, deletable pixel and recovered pixel. In the 

propose algorithm number of 3x3 templates were used to make good deleting decision, 

the algorithm deletes the pixels which satisfy the deletion templates until there is no 

pixel that can be deleted. Other templates were also used for discontinuity recovery. The 

algorithm was tested on different image input data in both cases discrete and cursive. The 

algorithm allows us to deal with typical troublesome handwritten text efficiently, and 

produces robust skeleton even in the presence of noises. The algorithm produces 

skeletons that are more representative of the shape of the original patterns and with less 
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noise spurs. The algorithm is considered fast enough and very applicable to be used in 

Mizo OCR systems. 

2.7 CONCLUSIONS 

In this chapter, the image enhancement is proposed to differentiate between 

the foreground object and the background object so as to enable to perform better 

preprocessing results. The logarithmic transformation, power-law transformation, 

histogram equalization and contrast stretching are considered for image enhancement. 

The contrast stretching transformation for image enhancement is being implemented in 

this work.  After image enhancement is over, the gray scale image is converted into 

binary image known as binarization for which the Otsu algorithm is being implemented. 

The occurrence of noises appeared in the foreground or background of an 

image like Gaussian Noise and Salt & Pepper Noise are removed using median filter, 

wiener filter, and average filter.  Their performances are evaluated using Peak Signal to 

Noise Ratio (PSNR) and Mean Square Error (MSE). In our experiment, we observed that 

the median filter performance is better than any other noise filter specially for removing 

salt & pepper noise and Gaussian noise. The marginal noises sometime appeared along 

the border of pages are removed using a combination of projection profile analysis and 

connected component. The skewed image documents are sometimes appeared due to 

incorrect placement of the document at the time of scanning process.  For testing the 

accuracy and speed of hough transform, we have taken 20 sample skewed image file 

with a skew angle ranging from −30 degree to +45 degree. The experimental result is 

quite satisfactory as the average accuracy is as good as 97.17% with and average error 

rate of 4.35% and the average execution time is 0.203 seconds.    
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The last part of preprocessing is thinning process. The proposed thinning 

algorithm is tested on different sample image documents in both cases discrete and 

cursive. A preserved smooth skeleton was obtained. The experiment is carried out with 

real life images document scanning from mizo bible and mizo kristian hlabu. The 

proposed thinning algorithm produces skeletons that are more representative of the shape 

of the original patterns with less noise spurs and found satisfactory for use in the Mizo 

OCR systems. 

  



 

70 

1
CHAPTER 3 

SEGMENTATION METHODOLOGY 

Segmentation is an integral part of any text based recognition system and is 

one of the most important components of the character recognition system (Acharya et 

al., 2013). After pre-processing, the noise free image is passed to the segmentation 

phase, where the image is decomposed into individual characters. Accuracy of character 

recognition heavily depends upon segmentation phase. Incorrect segmentation leads to 

incorrect recognition. However, good segmentation techniques enhance the performance 

of an OCR (Gupta and Nair, 2013). Segmentation in any recognition system consist of 

dividing the script into first lines, the lines are further divided into words and the words 

further divided into characters from which the different modifiers & conjuncts are 

separated. In this section, we analyze and compare the performance of existing 

segmentation methods found in the literature and proposed better segmentation method 

for Mizo characters. 

3.1 EXISTING SEGMENTATION METHODS 

In this section, we analyzed the existing segmentation methods commonly 

used by the researchers. Such segmentation methods are projection profile, Boundary 

detection, and morphological operators.   

Projection profile method: This method is based on the projection made by 

the various characters and lines in a given character image. In this method, horizontal 

profile is used for line segment and vertical profile is used for words and character 

__________________________________________ 
1
Published in International Journal of Soft Computing and Engineering (IJSCE), “Unicode Mizo 

Character Recognition System using Multilayer Neural Network Model”, 4(2):84-89 (2014). 
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segmentation. This method is suitable for segmenting image documents that are well 

spaced without overlapping and touching.  Rodrigues et al. (2000) have used projection 

profile for cursive character segmentation in which he achieved 86.39% accuracy with 

quick response time.  

Boundary Detection Method: Contour tracing, also known as boundary 

detection, is a technique that is applied to character image in order to extract their 

boundary. The most common contour tracing algorithm is Moor-Neighbour tracing 

algorithm and it is generally used to segment overlapping characters or symbols. The 

algorithm needs the coordinates of an image pixel that lies on the contour and returns the 

positions (row, column) of all the connected points by checking the continuity of the 

input pixel around its 3x3 neighbourhood. Sharma and Lehal (2006) have used boundary 

detection method for segmentation of isolated handwritten words in Gurmukhi script and 

could achieved 84.22% for words without any overlapped, connected or merged 

characters.  

Morphological Operators: The morphological operations are affecting the 

form, structure or shape of an object applied on binary images (black & white images). 

The Erosion and Dilation are the two morphological operators whose combination or 

series of combination can be applied with different structuring element depending upon 

the size of character image. Kamble and Megha (2011) have used Morphological 

approach for segmentation of scanned handwritten Devnagari text in which he  proposed 

system deals with the segmentation of modifiers and fused characters in handwritten 

words by segmenting the Words in hierarchical order: (a) segment the header Lines, (b) 

segment the top modifiers, (c) segment the bottom modifiers, (d) segment the fused 

characters. The experimental results achieved the accuracy of 54.83% using 
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morphological operator. 

3.2 PROBLEMS OF SEGMENTATION OF MIZO 

CHARACTERS  

In mizo characters, we have special characters like â Â, ê Ê, î Î, ô Ô, û Û, and 

ṭ Ṭ. These characters are very unique which are not available in English characters. In 

English, a text line can be considered as being composed of three zones: the upper zone, 

the middle zone and the lower zone (see figure below).  

 

Figure 3.1: Structure of English characters text line 

These zones are delimited by four virtual lines: the top-line, the upper-line, 

the base-line and the bottom-line. Each text lines has at least a middle zone; the upper 

zone depends on capital letters  and letters with ascenders, like h and k; the lower zone 

depends on letters with descenders, like g and y. When projection profile is used for line 

segmentation, we do not have any problem for English text line as there is no zero valley 

point which is shown in the following figure.  

 

Figure 3.2: Horizontal Projection of English text line 
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However, in Mizo text line as shown in the figure below, there are three 

zones presents such as upper zone, middle zone and lower zone. These zones are 

delimited by six imaginary lines: the top-line upper (y1), top-line bottom (y2), middle-

line upper (y3), middle-line bottom (y4), lower-line upper (y5) and lower-line bottom (y6).  

 

y1

y2

y3

y4

y5

y6

Upper Zone

Middle Zone

Lower Zone

 

Figure 3.3: Horizontal Projection of Mizo text line 

When projection profile is used for line segmentation, we have seen that 

there are zeros valley point between middle zone and upper zone and also between 

middle zone and lower zone. The zero valleys in horizontal projection profile are 

generally used for separation of lines.  Hence, the projection profile algorithm cannot be 

used directly for segmentation of mizo text line. 

Another problems of segmentation also arises when the characters are 

overlapped and touching each other in case of italic fonts and a combination of some 

characters like L and T, K and X, etc. The kinds of problems have been encountered 

during the research works. 

3.3 PROPOSED SOLUTION FOR SEGMENTATION OF MIZO 

CHARACTERS 

In this work, we have encountered problems in segmentation of Mizo 

characters because of some mizo characters having circumflex at the top of the 

characters and dotted at the bottom of the character. In order to overcome the problems, 

we have developed a new segmentation algorithm using a combination of projection 
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profile, connected component, bounding box and morphological dilation to enable to 

correctly segment all the mizo characters.  

3.3.1 LINE SEGMENTATION: 

In order to separate the text lines, we generally used the valleys point of the 

horizontal projection profile computed by a row-wise sum of black pixels. The position 

between two consecutive horizontal projections where the histogram height is least 

denotes one boundary line (Zramdini and Ingold, 1998). Using these boundary lines, 

document image is segmented into several text lines.  

 

Figure 3.4: Structure of Mizo text line 

A text line can be considered as being composed of three zones: the upper 

zone, the middle zone and the lower zone. These zones are all separate lines as seen from 

the projection histogram. The proportion of the different zones in the font size differs 

from one typeface to another. These zones are delimited by six virtual lines: the top-line 

upper (y1), top-line bottom (y2), middle-line upper (y3), middle-line bottom (y4), lower-

line upper (y5) and lower-line bottom (y6). These structures allow the definition of four 

kinds of text cases which is illustrated in the figure below:  



 

75 

 

 Figure 3.5: Different kind of Text cases 

The four text cases are: 

 full case, with character parts present in all three zones;  

 ascender case, with character parts present in the upper and middle zones;  

 descender case, with character parts present in the lower and middle zones;  

 short case, with character parts present in the middle zone. 

When the horizontal projection histograms are plotted, we can see peaks and 

valleys in the plot. The zero valued valleys are identified to separate the lines (Bharathi 

and Reddy, 2013). In mizo character, the upper zone and lower zone are treated as 

separate lines as there is a zero valley between upper zone and middle zone, and between 

middle zone and lower zone respectively. Hence, the traditional projection profile cannot 

be used for segmentation of mizo text line.  In mizo character the three zone i.e upper 

zone, middle zone and lower zone are necessary to segment into a single line for which a 

new algorithms have been formulated.  
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THE LINE SEGMENTATION ALGORITHM  

Step 1:  Scan the preprocessed text image horizontally and find the number of ON 

pixels in each row.  

Step 2:  Plot the histogram in x direction for the ON pixel count for the image.  

Step 3:  Scan the histogram projection to find first ON pixel count with zero and 

remember that y-coordinate as y1.  

Step 4:  Continue scanning the histogram projection then we would find lots of ON 

pixel counts to be non-zero since the characters would have started.  

Step 5:  Finally we get the first ON pixel count as zero and remember that y coordinate 

as y2.  

Step 6:  Repeat Step 3-5 for 2 times and to find the next consecutive black pixel and 

store the co-ordinate in y1, y2, y3, y4, y5, y6.  

Step 7:  Scan the image from y1 to y2, y3 to y4, y5 to y6 rows for the segmented line.  

Step 8:  Find the differences between y2 and y3, y4 and y5 and store in diff1 and diff2 

respectively which are the width of the valley point between the line segments. 

Step 9:  If diff1 and diff2 are smaller than threshold then scan the image from y1 to y6 

which will be the Full line segmentation. Scan the image from y1 to y6 rows 

for the segmented line.  

Step 10:  If diff2 is larger but diff1 is smaller than threshold then scan the image from y1 

to y4 which will be an ascender or decender line segmentation. Scan the image 

from y1 to y4 rows for the segmented line.  

Step 11:  If diff1 and diff2 are larger than threshold then scan the image from y1 to y2 

which will be the Short line segmentation. Scan the image from y1 to y2 rows 

for the segmented line.  

Step 12:  Clear y1, y2, y3, y4, y5, y6.  

Step 13:  Repeat the above steps till the end of the histogram. 

Step 14:  Return segmented line. 
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3.3.2 WORD SEGMENTATION 

The spacing between the words is used for word segmentation. Generally in 

English and Mizo script, spacing between the words is greater than the spacing between 

the characters in a word (Priyanka et al., 2010). The spacing between the words is found 

by taking the Vertical Projection Profile (VPP) of an input text line. Vertical Projection 

profile is the sum of ON pixels along every column of the image. A sample input text 

line and its vertical projection profile is shown in the figure below. From the Profile it is 

clear that the width of the zero-valued valleys is more between the words in the line as 

compared to the width of zero-valued valleys that exists between characters in a word. 

This information is used to count and separate words from the input text lines. 

 

 

Figure 3.6:  Word Segmentation 

THE WORD SEGMENTATION ALGORITHM  

Step 1:  Read the segmented line image   

Step 2:  Plot the histogram in vertical direction for the ON pixel count for the input 

image.  

Step 3:  Scan the vertical projected histogram to find first ON pixel count with 1 and 

remember that x coordinate as x1.  

Step 4:  Continue scanning the histogram projection then we would find lots of ON 

pixel counts to be non-zero since the characters would have started.  
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Step 5:  Finally we get the first ON pixel count as zero and remember that x-coordinate 

as x2.  

Step 6:  Continue Step 1 to Step 5 until the end pixel of the input line segment is 

reached in x-coordinate. 

Step 7:  Find the difference between each consecutive ON pixel 

Step 8:  Find the maximum value of the difference calculated in Step 7  

Step 9:  Divide the value obtain in step 8 by 2, which will be use as a threshold value 

for determining the word segment 

Step 10:  Loop from the First ON pixel to the Last ON pixel  

Step 11:  If the difference between the two consecutive ON pixel is found to be smaller 

than the threshold value, then merge the consecutive ON pixel until the 

difference is greater than the threshold value. 

Step 12:  Save the Merge image which form the Word Segment 

Step 13:  Return the Word segment 

3.3.3 CHARACTER SEGMENTATION 

The character segmentation process is carried out after segmented the word. 

The spacing between the characters is used for character segmentation. The spacing 

between the characters is found by taking the vertical projection profile of an input text 

line.  The vertical projection profile is the sum of ON pixels along every column of the 

image. A sample input text line and its vertical projection profile is shown in Figure 

below. From the Profile it is clear that the width of the zero-valued valleys between the 

characters is lesser than the words. This information is used to count and separate 

characters from the input text lines. 
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Figure 3.7:  Character Segmentation 

THE CHARACTER SEGMENTATION ALGORITHM  

Step 1:  Read the Segmented line image.  

Step 2:  Plot the histogram in vertical direction for the ON pixel count for the input 

image.  

Step 3:  Scan the histogram projection to find first ON pixel count with 1 and 

remember that x-coordinate as x1.  

Step 4:  Continue scanning the histogram projection then we would find lots of ON 

pixel counts to be non-zero since the characters would have started.  

Step 5:  Finally we get the first ON pixel count as zero and remember that y coordinate 

as x2.  

Step 6:  Segment the image from x1 to x2 which will form the first character and store 

in segmented character 

Step 7:  Clear x1 and x2 

Step 8:  Repeat the above steps till the end of the vertical histogram. 

Step 9:  Return segmented character. 

In case of some of characters are touching each other, the traditional 

projection profile cannot be used to segment the character.  As seen in the below figure, 

the character K and A are touching each other and hence it is treated as single character. 

Therefore, the traditional projection profile cannot be used directly in the touching 

character.  
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Figure 3.8: Touching Character  

In order to solve the problem of touching characters, the minimum valued 

valley point of vertical projection profile is set as threshold value for isolation of the 

character. Thereafter apply the vertical projection profile for segmentation of characters. 

The figure below illustrated the touching characters in vertical projection profile.    

 

Figure 3.9: Touching Character in Vertical Projection Profile  

THE TOUCHING CHARACTERS SEGMENTATION ALGORITHM 

Step 1:  Load the crop line image 

Step 2:  Perform vertical projection on the inverted image by sum(image,1) and store in 

variable „vp‟ 

Step 3:  Find the minimum valley point which is greater than zero from „vp‟ and store 

it in „minvp‟ 

Step 4:  Update vp=vp>minvp (threshold value) use for segmentation 

Step 5:  Assigned starting_pixel = vp>0 
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Step 6:  Assigned ending_pixel=vp<0 

Step 7:  for i=1 to length of (starting_pixel) 

Step 7.1: Crop character from the starting_pixel to ending_pixel 

  Step 7.2: Save crop character to array of segmented_character 

Step 8:  end of for loop 

Step 9:  Return segmented_character 

During the research work we have also encountered problems in overlapping 

characters which frequently taken place in an image document especially with italic fonts 

style giving unsatisfactory results. In case of overlapping character, the vertical 

projection profile cannot be used directly for character segmentation (Das et al., 2010). 

The overlapping character segmentation can be overcome by using a combination of 

morphological dilation, connected component, bounding box. However after taking the 

bounding box we have to remove noise from each individual segment as some of the 

character segment tends to exhibit some part of their consecutive character. The figure 

below illustrated the overlapping Mizo characters using bounding box. 

 

Figure 3.10: Overlapping Mizo characters  

In the above figure the bounding box has been generated for each blob. The 

alphabet „i‟ and „â’ have two blob each.   These two blobs should be merged into a single 

blob so as to enable to correctly segment into a single character. In order to merge these 

two blobs into a single blob, morphological dilation function need to be performed. 

However the dilation function cannot be applied to the whole image as other characters 

will affect to combine into single entity. Therefore, we set a threshold value by defining 

double size of the smallest blobs (dot) and apply this threshold value for dilation. Before 
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dilation, remove all the connected component which are greater than circumflex and 

dotted size and apply dilation with the threshold values in the dotted and circumflex.   

 

Figure 3.11:  Dilated image over circumflex and dotted   

After dilation is over, the dilated image and original image are combined 

together and thereafter bounding box is regenerated over the image document as shown 

in the figure below.   

 

Figure 3.12: Bounding Box regenerated with dilated characters   

Now the bounding box is generated correctly over the background image and 

the same rectangle co-ordinate is drawn to the foreground image which is illustrated in 

the figure below. Here, both the alphabet „i‟ and „â’ have a single blob which is the 

primary requirement for correct segmentation. 

 

Figure 3.13: Bounding Box after dilation process 

As per the bounding box generated in the above figure, all the characters are 

segmented accordingly. However the segmented characters have some portion of the 

character which is exhibited from the neighbouring characters. This exhibited portion of 
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characters is treated as a noise. The segmented character having noise are cleanup using 

simple noise removal. 

 

Figure 3.14: Segmented overlapped Characters  

 

Figure 3.15: Segmented overlapped characters after cleaning up 

THE OVERLAPPING CHARACTERS SEGMENTATION ALGORITHM 

Step 1:  Read the Segmented line image and store as a Foreground image  

Step 2:  Duplicate the Foreground image and store it as a Background image 

Step 3:  Find the size of the smallest blobs (dot) present in the Background image 

Step 4:  Select all the blobs present in the Background image which is smaller than the 

size of the smallest blobs multiply by 4, which will include all the circumflex 

and dot present in the character image. 

Step 5:  Apply Morphological dilation on the selected blobs derived in step 4 with the 

amount equivalent to the size of the smallest blobs derived in step3. 

Step 6:  Add the Result obtain in step5 with the background image so that the isolated 

blobs which form a single Mizo character will be merged into single entity.  

Step 7:  Draw bounding box on the Background image using connected component 

Step 8:  Draw the same bounding box on the Foreground image using the same 

parameter in step 7 

Step 9:  Segment the Character using the Bounding Box in the Foreground Image 
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Step 10: Remove Noise present in the Segmented Character by selecting the largest blobs 

from each character segment. 

Step 11:  Return the Noise free segmented character 

 

3.3.4 EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this work, we present a simple and efficient algorithm for line 

segmentation, word segmentation and character segmentation. The algorithm is 

implemented in MATLAB 7.12 and it is tested with the test datasets - doc#1, doc#2, 

doc#3 and doc#4 which are collected from real-life documents such as Laser print 

document, Vanglaini local newspapers, Mizo Bible, and Kristian Hla Bu. Some of the 

documents contained overlapping characters. In order to observe the efficiency of the 

proposed algorithm, standard measurements have been adopted by formulating the 

precision which is represented as below (Gupta and Nair, 2013). 

          (

(
                                               

                   
*

                                                          
 ,      

The experimental results are shown in the following table.  

Table 3.1:  Results of Line Segmentation for Mizo text document 

Document Images No of Line 

present 

Output of Line 

segmentation 

No. of Line 

Correctly 

segmented 

Precision 

(%) 

TestDoc#1 31 31 31 100 

TestDoc#2 32 32 32 100 

TestDoc#3 18 18 18 100 

TestDoc#4 12 12 12 100 
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Table 3.2:  Results of Word Segmentation for Mizo text document 

Document Images No of Word 

Present 

Output of Word 

segmentation 

No. of Word 

Correctly 

segmented 

Precision 

(%) 

TestDoc#1 184 184 184 100 

TestDoc#2 127 127 127 100 

TestDoc#3 156 156 156 100 

TestDoc#4 16 16 16 100 

Table 3.3:  Results of Character Segmentation for Mizo text document 

Document Images No of 

Character 

present 

Output of 

Character 

segmentation 

No. of 

Character 

Correctly 

segmented 

Precision 

(%) 

TestDoc#1 793 793 793 100 

TestDoc#2 635 635 635 100 

TestDoc#3 643 643 643 100 

TestDoc#4 249 249 249 100 

From the above experimental results, it is understood that the proposed 

method is reliable to segment Mizo text documents even though the text is overlapped. 

The average line segment accuracy is 100%, word segmentation is 100% and the 

character segmentation is 100%. The limitation of this method is that it resulted in 

segmentation errors for curve line text document which is frequently happen when a 

thick document is scanned. 

3.4 CONCLUSIONS 

Accuracy of character recognition heavily depends upon segmentation phase. 

Incorrect segmentation leads to incorrect recognition. In this research work, we have 

encountered problems in segmentation of Mizo characters due to special symbols like â, 
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ê, î, ô, û, and ṭ presents in every Mizo text. In order to overcome the problems, we have 

developed a hybrid techniques using a combination of projection profile, connected 

component, bounding box and morphological dilation to enable to correctly segment all 

the mizo characters. As a results, the proposed segmentation algorithms give a very good 

accuracy of 100% with four test document samples having 93 lines, 483 words, and 2320 

characters. The following table compared the performance of the proposed method with 

the existing segmentation method.  

Table 3.4: Comparison of proposed method with the existing segmentation methods 

Segmentation 

Methods 

Subtype No of 

characters in 

the datasets 

Correctly 

segmented 

characters 

Average 

Accuracy 

Projection 

Profile 

Horizontal Projection 
3788 3286 86.75% 

 Vertical Projection 

Boundary 

Detection 

Methods 

Contour tracing/Moore 

neighborhood 

algorithm 1673 1409 84.22% 
 

Bounding Box 

Morphological 

Operators 

Erosion & Dilation 
488 261 54.83% 

 

Proposed 

Method 

projection profile/ 

connected 

component/ 

bounding box/ 

morphological 

dilation 

2320 2320 100% 

 

From the above results, we observed that the proposed technique for 

segmentation of Mizo characters is much better than the existing segmentation method. 

The proposed segmentation method can also be used in any Latin based character 

recognition system.  
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CHAPTER 4 

FEATURE EXTRACTION METHODOLOGY 

Feature extraction is still one of the active research areas waiting for accurate 

recognition solutions and the accuracy of the recognition solutions is predominantly 

depends on proper features extraction methods. There exist many feature extraction 

methods which have their own advantages or disadvantages over other methods. There 

are several important criteria of feature extraction methods required to be considered for 

higher recognition rate. Firstly, an effective feature need to be invariant with respect to 

character shape variation caused by various writing styles of different individuals and 

maximize the separability of different character classes. It also needs to represents the 

raw image data of character through a reduced set of information which are most 

relevant for classification (i.e., used to distinguish the character classes) to increase the 

efficiency of classification process. Ease of implementation and fast extraction from raw 

data are also considered essential for commercial real time applications. 

Selection of a feature extraction method is probably the single most 

important factor in achieving high recognition performance in character recognition 

systems. Different feature extraction methods are designed for different representations 

of the characters, such as solid binary characters, character contours, skeletons (thinned 

characters), or gray level sub-images of each individual character.  A feature extraction 

method that proves to be successful in one application domain may turn out not to be 

very useful in another domain. In practice, the requirement of a good feature extraction 

method makes selection of the best method for a given application a challenging task. 

One must also consider whether the characters to be recognized have known orientation 



 

88 

and size, whether they are handwritten, machine printed or typed, and to what degree 

they are degraded. 

4.1 EXISTING FEATURE EXTRACTION METHODS  

 A suitable feature extractor and a good classifier play a very important role 

in achieving high recognition rate for a recognition system. If we want to develop a new 

feature extractor for a script, it will help us if we have the knowledge of the recognition 

ability of the existing feature extractor. This section examines a variety of feature 

extraction approaches and classification methods which have been used in various 

Optical Character Recognition applications. The study has been conducted using 6 

different features computed from Zoning, Projection histograms, Wavelet, Radon 

features, Directional features, and Moments. are considered. 

Zoning Method: Zoning method is one of the most popular and simple to 

implement feature extraction method. The character is divided into n x m zones and the 

densities of pixels in each zone are calculated and used as features. Ramappa and 

Krishnamurthy (2013) have proposed zonal based feature extraction in which the 

preprocessed image is resized to 60x60 and the resized image is divided into 5x5 zones 

to obtain the features. A feature vector is then computed by considering the number of on 

pixels in each zone. For each zone if the number of on pixels is greater than 5% of total pixels, 

then the value one is stored for that block. The size of the feature vector is 144. After 1000 

sample characters have been tested, it was reported that the recognition accuracy of 98.50% was 

achieved for handwritten kannada numeral.  

Projection Method: In projection method, the projection histogram count 

the number of black pixels in the vertical direction, horizontal direction, left diagonal and 

right diagonal of the specified area of the character. Naser et al. (2009) proposed 
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projection based feature extraction process for Bangla script. The segmented character 

image is resized by 80 x 80 having 80 rows and 80 columns resulting 80 feature vectors. 

The feature extraction has been tested with WEKA Neural Network Classifier of Radial 

Basis Function.  During testing, they have considered 10 characters with 12 different 

fonts having the total 120 characters. The accuracy for the projection of non-skeletonized 

characters is about 98.33%.  

Wavelet Transform: The wavelet transform decomposes a signal into a set 

of wavelet basis functions “wavelets” that are localized in time. Therefore signals with 

short bursts can be reconstructed with a much smaller set of wavelet basis functions. 

Zhang et al. (2004) proposed hybrid complex wavelet feature extraction and verification 

of handwritten numerals. They proposed two kinds of wavelet feature extraction 

methods. These two sets of hybrid features are congregated by combining the respective 

statistical wavelet features and structural geometrical features for the recognition and 

verification of handwritten numerals. Experiments demonstrated that the proposed 

hybrid features with 180 feature vectors and 2500 sample characters can achieve high 

recognition performance at the rate of 98.30 %.  

Radon Transform: Radon transform is used as one of the feature extraction 

methods. In Radon transform, 50 diverging beams are used to compute the features. It is 

seen from the accumulator data that the projections taken from 0 to 180 degree are 

exactly equal to the projections taken from 181 to 360 degree. Average value of the 

obtained projection data is taken to build the feature vector. Aradhya et al. ( 2007) used 

Radon Transform Radon Transform for robust unconstrained handwritten digit 

recognition in which they have extracted 703 feature vector and experimented with NN 

classifier with 2000 characters sample and achieved 91.2 % accuracy. 
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Direction Feature: Histograms of direction chain code of the contour points 

of the characters are used as features for recognition. The character image is first resize 

and is divided into 3x3 or 4x4 zones. Each zone has eight features. Mamatha et al. 

(2011) have used directional features along with K-Means for recognition of handwritten 

Kannada numerals in which the segmented image is first resized to 30x30 and is divided 

into blocks of 10x10 each. The character is divided into 9 zones with each zone has 8 

features and hence each numeral have 72 features. The K-Means clustering algorithm is 

being used for the classification. The features used for the classification are obtained 

from the directional chain code information of the contour points of the numerals. The 

proposed algorithm is experimented on nearly 1000 samples of handwritten Kannada 

numerals and obtained 96% of recognition accuracy.  

Moment Invariant: The Moment invariants technique is used to evaluate 7 

distributed parameter of a character image. Its measures the pixel distribution around the 

centre of gravity of the character and allow to capture the global character shape 

information. Ramteke (2010) uses Invariant moments based feature extraction method 

for recognition of handwritten Devanagari vowels in which the segmented character 

image is resized into 40 x 40 pixels. The character image is divided into 4 zones with 7 

invariant moments in each zone and generates 28 feature vectors. During 

experimentation, they have taken 10 samples of each vowel from 25 people and 

considered 13 vowels to generate 3250 samples characters. The success rate of the 

method is found to be 93.80%. 

4.2 PROPOSED SOLUTION FOR FEATURE EXTRACTION  

This section introduces the methodology used in designing feature extraction 

for the present work. Here we have proposed hybrid approach feature extraction method 
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using a combination of various techniques such as universe of discourse, zoning, 

neighborhood method, directional feature and geometric feature method (Blumenstein et 

al., 2003). 

4.2.1 UNIVERSAL OF DISCOURSE:  

Universe of discourse is defined as the shortest matrix that fits the entire 

character skeleton. The Universe of discourse is selected because the features extracted 

from the character image include the positions of different line segments in the character 

image. So every character image should be independent of its image size.  

  

(a) Original Image (b) Universe of Discourse 

Figure 4.1:  Universe of Discourse 

4.2.2 ZONING  

After the universe of discourse is selected, the character image is divided into 

small portion or zones of equal size and the densities of pixels in each zone are 

calculated and used as features. In this chapter, the character image is divided into 3x3 

equal size of zones and feature extraction was applied to individual zones rather than the 

whole image. This gives more information about fine details of character skeleton. Also 

positions of different line segments in a character skeleton become a feature if zoning is 

used. This is because, a particular line segment of a character occurs in a particular zone 
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in almost cases. For instance, the horizontal line segment in character „Â‟ almost occurs 

in the central zone of the entire character zone. The figure below illustrated the character 

image divided into different zones using grid size of 3x3.  

 

Figure 4.2: Different combination of character image divided into 3x3 equal zones  

4.2.3 NEIGHBORHOOD METHOD: 

The certain pixel in the character skeleton of each zone is to define as 

starters, intersections and minor starters for which neighborhood method is adopted. In 

neighbourhood method, all of the pixels that connected the pixel of interest (P) are 

considered to determine the starters, intersections and minor starters.   

  

4 –Connected Neighbourhood 8 –Connected Neighbourhood 

Figure 4.3:  4- and 8-Connected Neighbourhood   

A. STARTERS 

The pixel of interest (P) is having only 1-connected Neighbour in the character 

skeleton is defined as starters. Before character traversal starts, all the starters in the 

particular zone is found and is populated in a list. The figure below shows that the starter 

 

0 1 0 

1 P 1 

0 1 0 

1 1 1 

1 P 1 

1 1 1 
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points. 

 

Figure 4.4: Starter Points in a red mark with rounded  

B. INTERSECTIONS 

The definition for intersections is somewhat more complicated. The necessary but 

insufficient criterion for a pixel to be an intersection is that it should have more than one 

neighbour. When the proposed algorithm is applied to character „Â‟, in most cases, the 

intersection points found are given in the image as shown in the figure below. 

 

Figure 4.5: Intersection Points in a red mark with rounded  

A new property called true neighbours is defined for each pixel. Based on the 

number of true neighbours for a particular pixel, it is classified as an intersection or not. 

For this, neighbouring pixels are classified into two categories, direct pixels and 

diagonal pixels. Direct pixels are all those pixels in the neighbourhood of the pixel 

under consideration in the horizontal and vertical directions. Diagonal pixels are the 
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remaining pixels in the neighbourhood which are in a diagonal direction to the pixel 

under consideration. Now for finding number of true neighbours for the pixel under 

consideration, it has to be classified further based on the number of neighbours it have in 

the character skeleton. Pixels under consideration are classified as those with;  

 3-Connected Neighbours: If any one of the direct pixels is adjacent to 

anyone of the diagonal pixels, then the pixel under consideration cannot be 

an intersection, else if none of the neighbouring pixels are adjacent to each 

other then it‟s an intersection.  

 4-Connected Neighbours: If each and every direct pixel having an adjacent 

diagonal pixel or vice-versa, then the pixel under consideration cannot be 

considered as an intersection.  

 5-Connected or more Neighbours: If the pixels under consideration have 

five or more neighbours, then it is always considered as intersection.  

Once all the intersections are identified in the image, then they are populated in a list. 

C. MINOR STARTERS 

Minor starters are found along the course of traversal in the character skeleton. 

When the proposed algorithm is applied to character „Â‟, in most cases, the minor 

starters found are given in the image as shown in the figure below. 
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Figure 4.6: Minor Starter Points in a red mark with rounded  

Minor Starters are created when pixel under consideration have more than 2-

Connected Neighbours. There are two conditions that can occur: 

 Intersections: If current pixel is an intersection point. Then current line 

segment will end and all the remaining unvisited neighbours are populated in 

the minor starters list. 

 Non-intersections: Situations can occur where the pixel under consideration 

has more than two neighbours but still it‟s not an intersection. In such cases, 

the current direction of traversal is found by using the position of the 

previous pixel. If any of the unvisited pixels in the neighbourhood is in this 

direction, then it is considered as the next pixel and all other pixels are 

occupied in the minor starters list. If not any of the pixels is not in the present 

direction of traversal, then the current segment is ended there and all the 

pixels in the neighbourhood are occupied in the minor starters list.  

4.2.4 DIRECTIONAL FEATURE: 

The directional feature is used to identify the type of line segments presents 

in the character image of each zone. The line segments that would be determined in each 

character image are categorized into four types such as – (1) Vertical lines, (2) 
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Horizontal lines, (3) Right diagonal, and (4) Left diagonal. 

In order to distinguish the line segments, freeman chain code model are 

adopted for which a matric of 3x3 windows mask is prepared to determine the types of 

line segments. The figure below shows the chain code model. 

  

(a) 8-Connectivity (b) Direction of Connectivity 

Figure 4.7:  Freeman Chain Code Model for detecting the direction of the line 

segments 

In the above matrix, „C‟ represents the center pixel which is the pixel of 

interest. The neighbouring pixels are numbered in a clockwise manner starting from 

pixel below the central pixel. To extract direction vector from a line segment, the 

algorithm travels through the entire pixels in the line segments in the order they forms 

the line segment.  In order to find the type of line segment present in each zone, the 

matrix of 3X3 windows having the pixel of interest „c‟ at the centre (black pixel) is 

transverse from the starters through the contour of character image in each zone. All the 

line segments obtained during this process are stored, with the positions of pixels in each 

line segment. Once all the pixels in the image are visited, the algorithm stops.   The 

figure below illustrated the 3x1 windows mask transverse through the skeleton of 

character image in a zone.  
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For Zone 1:  

 

Figure 4.8:  Matric of 3x1mask transverse through the skeleton of character image  

This kind of set of rules identified all the line segments but the drawback is 

that segment in the shape of character „A‟ at the upper vertex and character „V‟ at the 

lower vertex, the algorithm will detect as a single line segment though it is compose of 

two segments. In order to prevent such errors, a new set of rules is applied to the segment 

given in the diagram below. 

  

(a) Before applying direction rules (b) After applying direction rules 

Figure 4.9: Direction rules to find new line segments 
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The Direction rules to find new line segments: 

(1) The previous direction was 6 or 2 AND the next direction is 8 or 4 OR. 

(2) The previous direction is 8 or 4 AND the next direction is 6 or 2 OR. 

(3) The direction of a line segment has been changed in more than three types of 

direction. 

The line segment marked in the image was obtained before applying the 

direction rules explained last. Though this line segment is actually composed of two 

different line segments, it will be detected as one. But after applying the direction rules 

explained here, the two line types will be differentiated. If a new line segment is 

detected, then the direction vector is broken down into two different vectors at that point. 

Now the following rules are defined for classifying each direction vector. 

(1) If maximum occurring direction type is 2 or 6, then line type is right 

diagonal. 

(2) If maximum occurring direction type is 4 or 8, then line type is left diagonal. 

(3) If maximum occurring direction type is 1 or 5, then line type is vertical. 

(4) If maximum occurring direction type is 3 or 7, then line type is horizontal. 

If two line types occur same number of times, then the direction type 

detected first among those two is considered to be the line type of the segment. 

4.2.5 GEOMETRIC FEATURE EXTRACTION: 

After the line type of each segment is determined, feature vector is formed based on this 

information (Gaurav and Ramesh, 2012). Every zone has a feature vector corresponding 

to it. Under the algorithm proposed, every zone has a feature vector with a length of 9. 
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The contents of each zone feature vector are 

(1) Number of horizontal lines. 

(2) Number of vertical lines. 

(3) Number of Right diagonal lines. 

(4) Number of Left diagonal lines. 

(5) Normalized Length of all horizontal lines. 

(6) Normalized Length of all vertical lines. 

(7) Normalized Length of all right diagonal lines. 

(8) Normalized Length of all left diagonal lines. 

(9) Normalized Area of the Skeleton. 

The number of any particular line type is normalized using the following method.  

         ((
               

  
*   + 

Normalized length of any particular line type is found using the following method.  

        (
                                

                   
) 

The feature vector explained here is extracted individually for each zone. So 

if there are N zones, there will be 9N elements in feature vector for each zone. For the 

system proposed, the original image was first zoned into 9 zones by dividing the image 

matrix. The features were then extracted for each zone. Again the original image was 

divided into 3 zones by dividing in the horizontal direction. Then features were extracted 

for each such zone. 
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After zonal feature extraction, certain features were extracted for the entire 

image based on the regional properties namely 

 Euler Number: It is defined as the difference of number of objects and 

number of holes in the image. For instance, a perfectly drawn „A‟ would 

have Euler number as zero, since number of objects is 1 and number of holes 

is 2, whereas „B‟ would have Euler number as -1, since it have two holes. 

 Regional Area: It is defined as the ratio of the number of the pixels in the 

skeleton to the total number of pixels in the image. 

 Eccentricity: It is defined as the eccentricity of the smallest ellipse that fits 

the skeleton of the image. 

From the above study and analysis, we proposed a new algorithm for feature extraction 

of mizo characters as follows: 

4.2.6 ALGORITHM 

Step 1:  Read the Segmented Character Image 

Step 2:  Normalized by universe of discourse for fitting the entire character image 

into the shortest matrix. 

Step 3:  Convert the Normalized image into Skelton image in order to extract a 

region-based shape representing the general form of an object 

Step 4:  Perform Zoning by dividing the character image into 3x3 windows of equal 

size. 

Step 5:  Find the Starters, intersections and minor starters in each zone and populated 

in a list.  

Step 6:  Find the type of line segments and calculate the number of line segments 

present in each zone where line segment are considered to be a pixel in 
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between starter to starter, starter to intersection and intersection to 

intersection.  

Step 7:  Calculate normalized length of all line segments using the formulae i.e length 

= ((total pixels in that line type)/(total zone pixels)). 

Step 8:  Calculate normalized area of the skeleton of character image in each zone. 

Step 9:   Repeat step 6 to 8 for all the zone and extract nine feature from each zone.  

Step 11:  Save the feature vector generated for each zone i.e 54 feature vectors  

Step 12:   Return 54 Feature vector. 

 

4.2.7 EXPERIMENTAL RESULTS AND DISCUSSIONS 

The proposed feature extraction algorithm has been implemented using 

MATLAB 7.12. The character image is divided into 3x3 equal size of zone having 9 

zones. In order to improve the execution time and space complexity, we have used 6 

zones instead of 9 zones having a matrix of 3x1 zones in 3 equal column and 1x3 zones 

in 3 equal rows. Here an attempt is made to achieve highest accuracy using less number 

of features and thereby improving the time and space complexity.  In our 

experimentation, four types of line segments are generated in each zone having 24 types 

of line segments in each character image. The sample character „Â‟ and „Ê‟ with font 

type – Arial, Cambria, Tahoma and Times new roman is illustrated in the following 

table. 
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Table 4.1: Number of line segments present in sample character „Â‟ and „Ê‟ 

 

In order to extract the feature vector, the above number of line type are fed 

into the proposed algorithm to generate the normalised feature vectors. The single 

characte image have 54 feature vectors having 9 features in each zone. The 

exeperimental results of the proposed feature extraction method is depicted in the 

following table.     
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Table 4.2:  Extracted 54 Features from sample character image „Â‟ and „Ê‟ with four 

different font types  

 

The efficiency of the proposed feature extraction is generally tested with classifier. In 

this chapter, we have experimented with neural network classifier requiring less time for 

ARIAL CAMBRIA TAHOMA TIME NEW ROMAN

Â Ê Â Ê Â Ê Â Ê

Zone 1 Z 1.1 0.8 0.6 0.8 0.8 0.4 0.8 0.6 0.6

Z 1.2 0.4 0.6 0.6 0.4 0.6 0.6 0.6 0.6

Z 1.3 0.6 0.8 1 0.8 1 0.6 1 0.8

Z 1.4 1 0.8 1 0.8 1 0.8 1 0.8

Z 1.5 0.0526 0.127 0.1875 0.0877 0.1818 0.069 0.1714 0.2167

Z 1.6 0.6053 0.7302 0.6875 0.6842 0.6364 0.6724 0.6857 0.6

Z 1.7 0.1579 0.0159 0 0.0702 0 0.1207 0 0.0333

Z 1.8 0 0.0317 0 0.0351 0 0.0345 0 0.0333

Z 1.9 0.0573 0.1123 0.0523 0.1242 0.0647 0.1422 0.0528 0.107

Zone 2 Z 1.1 0.6 0.2 0.8 0.4 0.8 0.2 0.6 0.4

Z 1.2 0.2 0.8 0.6 1 0.6 1 0.4 0.8

Z 1.3 1 1 0.4 0.8 0.6 1 1 0.8

Z 1.4 1 0.8 0.8 1 0.6 1 0.8 0.8

Z 1.5 0.3934 0.6275 0.1803 0.6667 0.1698 0.8788 0.4265 0.6383

Z 1.6 0.5082 0.2157 0.3934 0 0.1887 0 0.3088 0.0426

Z 1.7 0 0 0.2787 0.2222 0.2453 0 0 0.0638

Z 1.8 0 0.0196 0.0164 0 0.2264 0 0.1618 0.1277

Z 1.9 0.092 0.0909 0.0997 0.0784 0.1039 0.0809 0.1026 0.0838

Zone 3 Z 1.1 0.8 0.4 1 0.6 0.6 0.2 0.6 0.6

Z 1.2 0.6 1 0.6 0.4 0.6 1 0.8 0.2

Z 1.3 1 0.4 0.8 1 0.8 0.4 1 0.8

Z 1.4 1 0.8 0.8 0.4 1 1 1 1

Z 1.5 0.1538 0.6471 0 0.2041 0.0968 0.6667 0.4091 0.1951

Z 1.6 0.7308 0 0.6765 0.449 0.7097 0 0.4091 0.4146

Z 1.7 0 0.1176 0.1176 0 0.0323 0.1 0 0.1707

Z 1.8 0 0.0294 0.0588 0.102 0 0 0 0

Z 1.9 0.0392 0.0606 0.0556 0.1068 0.0608 0.0735 0.0332 0.0731

Zone 4 Z 1.1 0.8 0.8 1 0.6 1 0.6 1 0.6

Z 1.2 0.8 1 1 1 0.6 1 0.8 0.8

Z 1.3 0.6 0.4 0.6 0.8 0.6 0.8 0.8 0.8

Z 1.4 0.8 0.6 0.4 0.8 0.8 0.8 0.8 0.6

Z 1.5 0.3939 0.4915 0 0.551 0 0.8511 0 0.5192

Z 1.6 0.0909 0 0 0 0.0968 0 0.16 0.0385

Z 1.7 0.2727 0.1017 0.1429 0.0408 0.6129 0.0213 0.28 0.1154

Z 1.8 0.0909 0.2712 0.6429 0.3265 0.0645 0.0426 0.44 0.2115

Z 1.9 0.0498 0.1052 0.0458 0.1068 0.0608 0.1152 0.0377 0.0927

Zone 5 Z 1.1 1 0.8 1 0.8 1 0.8 1 0.8

Z 1.2 0.6 0.8 0.6 0.4 0.6 0.8 0.6 0.4

Z 1.3 1 0.8 1 1 1 0.8 1 1

Z 1.4 1 1 1 1 1 1 0.8 1

Z 1.5 0 0.6279 0 0.4186 0 0.5833 0 0.4651

Z 1.6 0.9412 0.2791 0.9412 0.4884 0.9412 0.3056 0.5152 0.4419

Z 1.7 0 0.0233 0 0 0 0.0278 0 0

Z 1.8 0 0 0 0 0 0 0.3636 0

Z 1.9 0.0513 0.0766 0.0556 0.0937 0.0667 0.0882 0.0498 0.0766

Zone 6 Z 1.1 0.8 0.8 0.6 0.8 0.6 0.8 0.4 0.6

Z 1.2 0.4 0.8 0.8 0.8 0.2 0.8 0.4 0.6

Z 1.3 0.8 0.6 0.8 0.8 0.8 0.6 1 0.8

Z 1.4 0.8 1 0.8 0.6 1 1 0.8 1

Z 1.5 0.2881 0.587 0.3077 0.44 0.3077 0.5 0.3529 0.4528

Z 1.6 0.2542 0.2826 0.2462 0.24 0.5192 0.3421 0.2794 0.2642

Z 1.7 0.0678 0.0435 0.0923 0.08 0.0192 0.0526 0 0.1321

Z 1.8 0.2881 0 0.2615 0.06 0 0 0.25 0

Z 1.9 0.089 0.082 0.1062 0.1089 0.102 0.0931 0.1026 0.0945
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training and testing. The performance of the network has been simulated using 

MATLAB 7.12 giving a satisfactory result of 99.1% accuracy. It is not only achieving 

higher levels of recognition accuracy but the overall time efficiency has increased as 

compared to the systems employing any other conventional methods of feature 

extraction. In this experiment, we have used testing datasets (doc#1, doc#2, doc#3, and 

doc#4). These datasets are extracted from real-life documents such as Laser print 

document, Vanglaini local newspapers, Mizo Bible, and Kristian Hla Bu. In these 

datasets, there are 2320 characters. The proposed method for feature extraction using a 

hybrid technques is much better than the existing methods. 

4.3 CONCLUSIONS 

Feature extraction and selection is one of the most challenging tasks in 

character recognition system. Different feature methods are designed for different 

representation of the characters which means a feature extraction method that proves to 

be successful in one application may turn out not to be very useful in another application. 

Further the type of format of the extracted features must match the requirement of the 

chosen classifier. Selection of feature extraction method is probably one of the most 

important characters for achieving high performance of the entire character recognition 

system. The existing feature extraction methods used by other researcher have been 

investigated. Such feature extraction methods are – Zoning, Projection histograms, 

Wavelet, Radon features, Directional features, and Moments. As a result found in the 

literature, the accuracy of these feature extraction methods varies from 91% to 98.5%. In 

this work, an attempt is made to improve the accuracy level by using a hybrid approach 

which is a combination of a various techniques such as universe of discourse, zoning, 

neighborhood method, directional feature and geometric feature method. The proposed 
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hybrid algorithms have been tested with 2320 characters sample dataset and achieved a 

very good result of 99.10 % accuracy.  

The following table compared the performance of the proposed feature 

extraction method with the existing feature extraction method.  

Table 4.3: Comparison of proposed method with the existing feature extraction methods 

Feature 

extraction 

method 

Feature 

vector 

No of character 

samples  

Classifier Accuracy  

(%) 

Zoning 144 1000 Artificial Immune 

System with K-nn 

(Hamming distance) 

98.50 

Projection 

Histogram 

80 120 NN Classifier 98.33 

Wavelet 180 2500 Neural Classifier 98.30 

Radon 

Transform 

703 2000 K-Means 91.20 

Directional 

Feature 

72 1000 K-NN 96.00 

Moments 28 3250 Feed Forward BPN 93.80 

Proposed 

Method 

54 2320 NN Classifier 99.10 

 

From the above table, we concluded that the proposed hybrid feature 

extraction method is much better than the existing feature extraction method and may use 

for implementation of mizo character recognition system. 

  



 

106 

__________________________________________________ 
2
Published in Science Vision, “Artificial neural network-based approach for Mizo character 

recognition system”, 14(2):61-66 (2014). 

2
CHAPTER 5 

ARTIFICIAL NEURAL NETWORK BASED APPROACH 

FOR MIZO CHARACTER RECOGNITION SYSTEM 

 

This chapter introduces the basic methodology used in designing the 

classification of mizo character and recognition system. The output of feature extraction 

is a feature vector obtained from previous phase and is assigned as an input to the 

Classification (Recognition). The feature vectors are learned and recognized by means of 

supervised and unsupervised method. In a supervised classification, we present examples 

of the correct classification (a feature vector along with its correct class) in training the 

classifier. Based on these examples (also termed as prototypes, or training samples), the 

classifier then learns how to assign a given feature vector to a correct class. The 

generation of the prototypes (i.e., the classification of feature vectors/objects they 

represent) has to be done manually in most cases. Supervised learning is of particular use 

when systems under training are intended to perform tasks that have previously been 

performed by humans with a certain degree of success. In such cases a relation between 

data is known to exist, but the rules governing it are not known, or are difficult to obtain. 

The system to be trained effectively learns by example, generalizing the knowledge to 

apply it to the entire domain. 

Unsupervised classification or clustering uses sample feature vectors without 

class labels. The classification of the feature vectors must be based on similarity between 

them based on which they are divided into natural groupings. Whether any two feature 

vectors are similar depends on the application. Obviously, unsupervised classification is 
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more difficult than supervised classification and supervised classification is the 

preferable option when possible. 

The recognition (classification) method is based on feature vector which 

have prevailed structural methods, especially in off-line character recognition. These 

methods include statistical methods, Artificial Neural Network, Kernel method and 

Genetic algorithm. In most of the recognition (classification) method, the data set is 

prepared which is separated into training and testing set for every character. The overall 

performance of the OCR depends on the classification method which is further depends 

on the accuracy of feature extraction of the characters. Hence, care must be taken to 

select feature extraction and classification methods for implementation of OCR system. 

5.1 DATA SETS USED  

The following datasets are used for training, designing, and testing purposes 

in the present work. 

5.1.1 DATASET FOR TRAINING (DATASET #1) 

In the present work, training dataset is prepared in the form of binary image 

from the following four fonts: 

1. Arial 

2. Cambria 

3. Tahoma  

4. Time New Roman 

Training dataset is prepared from 29 lowercase, 29 upper case letters, 10 

numerical and 25 special characters from these four fonts. Training characters size is 

fixed at 36 points. Total number of prototype characters is then 93x4=372. The following 
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training dataset is used for training neural network. The following are the prototype 

characters in four popular fonts – Arial, Cambria, Tahoma, and Time new roman. 

Font Name Upper Case/Lower Case/Numerical &  

Special Characters 

Arial  

 

Cambria 

 

Tahoma 

 

Time New Roman 

 

Figure 5.1:  Prototype characters from the 4 selected fonts (Dataset #1) 

5.1.2 DATASET FOR TESTING (DATASET # 2) 

We have created test data from real-life documents such as Laser print 

document, Vanglaini local newspapers, Mizo Bible, and Kristian Hla Bu. In order to 

obtain test characters in various sizes in various fonts (Arial, Cambria, Tahoma, Times 

New Roman), characters are typed in electronic documents in the required sizes, hard 
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copy prints of which are then scanned. Figure 5.2 shows an example of such a laser-

printout in which 793 characters of Arial font are typed in size 12. Other sizes include 

24, 48, and 72 points. Thus, sizes of our test characters vary from 12 to 72 points. Totally 

there are 10,919 test characters collected in this manner. This constitutes Dataset #2, 

which is used for testing. The following table presents the total number of test characters 

in each size, and in each of the five fonts. 

Table 5.1: Number of Test Characters (Dataset # 2): Size wise and Font wise 

Font 

Name 

Document 

Name 

FONT SIZE 

12 18 24 30 36 48 60 72 Total 

Arial DOC #1 793  793   793  793 3172 

Cambria DOC #2 635 635  635   635  2540 

Tahoma DOC #3 643  643  643 643  643 3215 

Times 

New 

Roman 

DOC #4 249 249 249 249 249 249 249 249 1992 

TOTAL  2320 884 1685 884 892 1685 884 1685 10919 
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(a) Laser Print document in Arial        

(Doc#1) 

 

(b) Vanglaini Local Newspaper in 

Cambria (Doc# 2) 

 

(c) Mizo Bible (Rom 5:1-7) in Tahoma 

(Doc#3) 

 

(d) Kristian Hla Bu (Pg 16) in  Mizo 

Time New Roman (Doc#4) 

Figure 5.2:  Testing Dataset used in the present work (Dataset #2) 

5.2 EXISTING CLASSIFICATION METHODS  

A classifier can be designed using a number of possible approaches 

(Kinhekar and Govilkar, 2014). Such approaches are broadly classified into four methods 
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i.e statistical methods, Artificial Neural Network, Kernel method and Genetic algorithm. 

The choice of a classifier is a difficult task and it is often based on which classifier(s) 

happen to be available, or best known, to the user. The four different types of 

classification techniques have been discussed as follows. 

STATISTICAL METHODS: Statistical method is a rule based system for 

classification. Prior to application of the methods, some rules will be made based on the 

features which the system is going to extract for the input character image. On the basis 

of the rule which is matched, the output of recognition is given (Deshpande et al., 2008). 

Some of the statistical methods are Quadratic Discriminant Function (QDF), Linear 

Discriminant Function (LDF), and Euclidean distance from class mean, K-NN, and 

Modified QDF (MQDF). Pal et al. (2007) have proposed a Quadratic Classifier based 

scheme for recognition of off-line Devanagari handwritten character data. They have 

tested with 36172 samples and could achieved 95.3% recognition accuracy.    

ARTIFICIAL NEURAL NETWORK (ANN): A neural network is a set of 

connected input-output units in which each connection has a weight associated with it. 

During the learning phase, the network by adjusting the weights so as to be able to 

predict the correct class label of the input values. Some of the ANN methods generally 

used for classification are - Feed forward neural networks including Multi-Layer 

Perceptron (MLP), Radial Basis Function (RBF) Network, Back Propagation Neural 

Network (BPN), etc.  (Shelke and Apte, 2011) 

Kanale and Chitnis (2011) have used Feed forward neural network for 

classification of handwritten Devanagari character in which 450 sample data has been 

collected. Each of the sample character has 35 feature vectors which is used as an input 
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to the neural network. In this work, it was observed that up to 96% recognition accuracy 

is achieved for Devanagari characters. 

KERNEL METHODS: These methods require only a user-specified kernel, 

i.e., a similarity function over pairs of data. In this process, the raw data is transformed 

into feature vector representations. This image in form of vector will be compared with 

the input image vector and based on matched feature the output is returned. Support 

Vector Machine (SVM), kernel principal component analysis (KPCA), kernel Fisher 

discriminant analysis (KFDA) are some classifiers based on this method. 

Aggarwal et al. (2012) uses kernel method for recognition of handwritten 

Devanagari character in which gradient representation is used as the basis for extraction 

of features. In the proposed approach, the sample image of Devanagari characters are 

normalized to 90x90 pixels sizes and divided into 9x9 sub-blocks. Each sub-block has 8 

standard directions. Finally the image is down sampled to 5 x 5 blocks from 9 x 9 using a 

Gaussian Filter giving a feature vector of dimensionality 200 (5x5x8).  The experimental 

dataset consist of 200 samples of each of 36 basic Devanagari characters having the total 

of 7200 character samples. The result of 94% recognition accuracy could be achieved 

with Kernel method. 

GENETIC ALGORITHM: These are stochastic search algorithm which 

uses probability to guide the search. On the unknown input binary character image, many 

operations are applied to extract the features of it and then with the features of the 

database template. This method aims for finding the global optimal solution by 

evaluating fitness function for each input character image.  

Agnihotri (2012) proposed to use Genetic algorithm to recognize off-line 

handwritten Devanagari script in which the feature of each character image is converted 
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into chromosome bit string of length 378. More than 1000 samples is used for training 

and testing. An attempt is made to use the power of genetic algorithm to recognised off-

line handwritten Devanagari script. The diagonal based feature extraction methods were 

used to extract 54 feature vectors for each character. The performance of the proposed 

system is 85.78%.  

5.2.1 COMPARISON OF EXISTING CLASSIFICATION 

In this work, we have carried out an investigation on various types of 

classification methods currently used in many Indian OCR applications.  The 

performance of classification mostly depends on the nature of the pattern of the character 

and their feature vectors. The overview of the ongoing research works in various 

character recognition systems and comparison of results of the relevant works found in 

the literature survey are presented in following table. 

Table 5.2:  Comparison of the existing Classification (Recognition) Methods 

Type of Classification 

Methods 

Subtype No of sample 

characters 

Average 

Accuracy (%) 

Statistical Methods 

(Pal et al., 2007)  

Quadratic 

discriminant 

function (QDF) 

36172 95.13 % 

Artificial Neural Network 

(Kanale and Chitnis, 2011) 

Feed Forward 

Neural Network 

450 96.00 % 

Kernal Methods 

(Aggarwal et al., 2012) 

Support Vector 

Machine (SVM) 

7200 94.00 % 

Genetic Algorithm 

(Agnihotri, 2012) 

Chromosome 

Function 

1000 85.78 % 

As per the above comparison statement, the Artificial Neural Network based 

approach classification give better performance results than any other classification in 
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terms of accuracy, adaptability and usability. In view of this, we proposed to use 

Artificial Neural network based Classification for Mizo character recognition system.    

5.3 PROPOSED ARTIFICIAL NEURAL NETWORK BASED 

APPROACH FOR RECOGNITION OF MIZO 

CHARACTER 

In this chapter, we proposed to use Artificial Neural Networks based 

approach for Classification of Mizo character recognition. There are many different 

types of Artificial Neural Network which are commonly used in character recognition 

system. In this section, we present four types of Artificial Neural Network such as Back 

Propagation Neural Network (BPNN), Radial Basis Function (RBF), Linear Vector 

Quantization (LVQ) and Recurrent Neural Network (RNN).  

Neural networks are composed of simple elements operating in parallel. 

These elements are inspired by biological nervous systems. Neural Network can be 

trained to perform complex functions in various fields, including pattern recognition, 

identification, classification, speech, vision, and control systems. Neural networks can 

also be trained to solve problems that are difficult for conventional computers or human 

beings. The network is adjusted, based on a comparison of the output and the target, until 

the network output matches the target. Typically, many such input pairs (input vectors) 

and target pairs (target vectors) are needed to train a network. 

Here, an attempt is made to analyze various types of neural networks and 

compare their performance to select the best method for implementation of mizo 

character recognition system. The neural networks under consideration for testing their 

performance are Back Propagation Algorithm (BPA), Learning Vector Quantization 

(LVQ), Radial Basis Function (RBF), and Recurrent Neural Network (RNN).  The input 
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vector is derived from the output of feature extraction. In order to test these networks, the 

total number of 93x4=372 characters sample have taken into consideration for training 

and 2320 characters for testing the networks. These sample characters are in four fonts - 

Arial, Cambria, Tahoma, and Times new roman having capital letters, small letters, 

numerical, and special characters. Fifty four (54) features have been extracted from each 

character which is used as an input vector for the input layer of the network. As there are 

93 different classes in mizo characters, the output layer of the network have 93 output 

vectors. The algorithm of the networks is program in MATLAB 7.12 and their results are 

compared based upon their perfection in the character recognition.  

The efficiency of classification is measures by confusion matrix and mean 

square errors. The confusion matrix is simply a square matrix that shows the various 

classification and misclassifications of the model in a compact area. The columns of the 

matrix correspond to the number of instances classified as a particular value and the rows 

correspond to the number of instances with the actual classification. The means square 

error is one of the most commonly used measures of success for numeric prediction. This 

value is computed by taking the average of the squared differences between each 

computed value and its corresponding correct value. 

5.3.1 BACK PROPAGATION NEURAL NETWORK (BPNN) 

Back Propagation Neural Network is a supervised multilayer neural network 

having three layers such as input layer, hidden layer and output layer (Barve, 2012). The 

following figure shows the back propagation architecture. 
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Figure 5.3: Back Propagation Neural Network Architecture 

Back propagation training algorithm is a supervised learning algorithm for 

multilayer feed forward neural network. Since it is a supervised learning algorithm, both 

input and target output vectors are provided for training the network. The error data at 

the output layer is calculated using network output and target output. Then the error is 

back propagated to intermediate layers, allowing incoming weights to these layers to be 

updated. This algorithm is based on the error correction learning rule. Basically, the error 

back-propagation process consists of two passes through the different layers of the 

network: a forward pass and a backward pass. In the forward pass, input vector is applied 

to the network, and its effect propagates through the network, layer by layer. Finally, a 

set of outputs is produced as the actual response of the network. During the forward pass 

the synaptic weights of network are all fixed. During the backward pass, on the other 

hand, the synaptic weights are all adjusted in accordance with the error correction rule. 

The actual response of the network is subtracted from a desired target response to 

produce an error signal. This error signal is then propagated backward through the 
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network, against direction of synaptic connections - hence the name “error back-

propagation”. The synaptic weights are adjusted so as to make the actual response of the 

network move closer the desired response.  

5.3.1.1 ALGORITHM 

The training algorithm of BPNN (Sivanandam and Deepa, 2006) involves the 

following stages: 

1. Initialization of weights 

2. Feed forward of training data 

3. Calculation and back propagation of errors 

4. Updation of weights and biases 

Steps 2-4 is repeated until the tolerable error has been achieved or the 

required number of epochs has been completed. A single run of step 2-4 is called as one 

epoch. During the initialization of weights, small random real numbers are assigned. 

During feed forward stage, training sample data are fed to each of the input layer of 

neurons (xi) and transmitted to the hidden neurons. Each hidden neuron (zj) receives 

input from each of the input neurons and after calculating the activation function, it then 

transmits to each of the output neurons (yk). The output unit then calculates the activation 

function to form the response of the network for a given input pattern. 

During calculation of errors, the output given by the network (yk) is 

compared with the target output (tk) to determine the associated error for that patter with 

that unit. Based on the error, the factor δk is calculated and is used to distribute the error 

at output yk during back propagation of errors to all units in the previous layer. Similarly, 

the factor δj is calculated for each of the hidden unit zj. 
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During the final stage, weights are updated based on the δ factor and the 

activation. The following symbols and abbreviations will also be used in the subsequent 

explanation of the algorithm: 

m =  number of neurons in the input layer 

p =  number of neurons in the hidden layer 

n =  number of neurons in the output layer 

xi =  i
th

 neuron in the input layer 

zj =  j
th 

neuron in the hidden layer 

yk =  k
th

 neuron in the output layer 

zinj =  Accumulated input received by j
th

 hidden neuron 

yink =  Accumulated input received by k
th

 output neuron 

Xi =  Activation of i
th

 input neuron 

Zj =  Activation of j
th

 hidden neuron 

Yk =  Activation of k
th

 output neuron 

Tk =  target output associated with the output neuron yk 

Vij =  connection weight from i
th

 neuron in the input layer to the j
th

 neuron in the 

hidden layer where i=1, 2, …, m and j=1, 2, …, p 

Wjk =  connection weight from j
th

 neuron in the hidden layer to the k
th

 neuron in 

the output layer where j=1, 2, …, p and k=1, 2, …, n 

yk
=  Error at k

th
 output neuron 

inj
=  Accumulated error back-propagated at j

th
 hidden neuron from output layer 

zj
 =  Error at j

th
 hidden neuron 

Initialization of weights: 

Connection weights are initialized using small random real numbers. In the 
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implementation of Mizo character recognition algorithm, the initialization assigns small 

random values in the range from -0.25 to +0.25.  

Feed forward: 

Each input neuron xi (i=1,2,…n) receives the input signal and transmits to 

each of the hidden neuron. 

For each hidden unit zj (j=1, 2, …, p), the input signal is summed up 





m

i

ijiin vXz
j

1  

Applying the activation function to the accumulated input to zj,, 

)(
jinj zfZ 

 

Where the activation function used here is sigmoid function and 

 jinj zin

e
zf




1

1
)(

 

The activation function output Zj is then sends to each of the output neuron 

yk. Each of the output neuron yk receives signals from each of the hidden neuron through 

the connection weight wjk. 





p

j

jkjin wZy
k

1  

Again applying the activation function to the accumulated input to each of 

the output neuron: 

)(
kink yfY 

 

So, the network output at k
th

 unit is the output of Yk. 
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Calculation and back Propagation of Errors: 

Each output unit yk (k=1,2, …,n) receives a target pattern corresponding to 

an input pattern, error information term in each of the k
th

 output layer neuron is 

calculated as: 

   
kinkkyk yfyt '

 

Each hidden unit zj (j=1,2,…p) sums its delta inputs from units in the layer above. 





m

k

jkjin w
j

1


 

The error information term in each of the jk
th

 hidden layer neuron is calculated as 

 
jj ininzj zf ' 

 

Updation of weights: 

Each output unit yk (k=1, 2, …, n) updates its connection weights from each 

hidden unit zj (j=0, 1, …, p) 

The weight correction term is given by 

jkjk Zw 
  

Therefore, 
 

jkww  (old)(new)w jkjk  

Each hidden unit zj (j=1, 2, …p) updates its connection weights from each 

input unit xi (i=1, 2, …, m) 

The weight correction term is given as 

ijij Xv 
  

Therefore,
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ijji vv  (old)(new)v
ji  

The process will be repeated until the stopping condition is reached. The 

stopping condition may be minimization of errors, number of epochs etc. The errors 

should be converging in each of the iterations or else the network may not be able to be 

trained. 

5.3.1.2 EXPERIMENTAL RESULTS & DISCUSSIONS 

 

Figure 5.4: Back Propagation Neural Network (BPNN) 

The BPNN is created with the MATLAB 7.12 in-built function „newff‟ 

having the transfer function „tansig‟ in hidden layer and „purelin‟ in the output layer. The 

proposed back propagation neural network has 54 neurons in the input layer, 150 

neurons in the hidden layer, and 93 neurons in the output layer. The training function 

„traingdx‟, variable learning rate gradient descent, is used in the experiment for training 

the network. The dataset (dataset#1) is divided into three subsets such as training set, 

validation set and test set. During the training process, the training stopped when the best 

validation performance occurred at the iteration 57. The training errors, validation errors 

and test errors are plot in the following figure.  
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Figure 5.5: BPNN Training Performance  

The Regression plot is one of the parameters for checking the output of the 

network has closely relationship with the target value for which we have generated 

regression plot during training process which is shown in the figure below.  

 

Figure 5.6: BPNN Regression Plot  
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The above regression plot represents the network outputs that have close 

relationship with the targets.  The data is a perfectly fit as the data falls along a 45 degree 

line, where the network outputs are equal to the targets. The above regression plots 

display the network output tracks the targets very well for training, testing and 

validation, and the R value is over 0.93 for the total response.  The results are quite 

satisfactory.   

The Plot confusion matrices is very important for identification of correct 

classification and misclassification of the character for which we have generated plot 

confusion matrix for Â, Ê, Î, Ô, Û and Ṭ which is shown in the following figure.  

 

Figure 5.7: BPNN -Plot Confusion Matrix  

The above plot confusion matrix is simply a square matrix that shows various 

classification and misclassifications of characters. The network outputs are very accurate 

as indicated by the high numbers of correct responses in the green squares and the low 

numbers of incorrect responses in the red squares. The lower right blue squares 
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illustrated the overall accuracies which is 100 % accuracy in these particular characters.  

After the above training process is over, we have tested the proposed BPN 

network with test data (dataset#2). The test results are shown in the following tables.  

Table 5.3:  Test Results of word recognition using BP Neural Network 

Document 

Image 

No of 

Word 

present 

Correctly 

Recognize 

Word 

Mis-

recognize 

Word 

Precision 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 181 179 2 98.89503 0.99 96.22 

Doc #2 127 125 2 98.42520 0.98 72.34 

Doc #3 159 158 1 99.37107 0.99 80.56 

Doc #4 67 64 3 95.52239 0.99 43.56 

Total 534 526 8 98.05342 0.9875 73.17 

 

Table 5.4:  Test Results of character recognition using BP Neural Network 

Document 

Image 

No of 

Character 

present 

Correctly 

Recognize 

Character 

Mis-

recognise 

Character 

Precision 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 793 791 2 99.75 0.99 96.22 

Doc #2 635 633 2 99.68 0.98 72.34 

Doc #3 643 642 1 99.84 0.99 80.56 

Doc #4 249 246 3 98.79 0.99 43.56 

Total 2320 2312 8 99.52 0.9875 73.17 

 

From the above test results, we can see that out of 534 words, the correctly 

recognised word is 526 and misclassification of words is 8. There are 2320 characters 

presents in the dataset considering only 12 points font size, out of which 2312 characters 

are correctly classified and only 8 characters are misclassified. The overall Classification 

accuracy is about 99.52% with an average mean square error of 0.98. The speed of 

recognition system is about 73.17 seconds. In view of these, the Back Propagation 

Neural Network based approach Classification is quite satisfactory for implementation of 

Mizo characters recognition system. The misclassified characters are shown in the table 

below 
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Table 5.5: Misclassified characters by BPNN 

Document Image Misrecognize 

Character 

Recognized as  No of Occurrence 

Doc #1 
û u 2 

Doc #2 
" ,, 2 

Doc #3 
û u 3 

Doc #4 
1 I 1 

Total 
  8 

5.3.2 RADIAL BASIS FUNCTION (RBF) 

The architecture of radial basis function network consists of three layers, the 

input layers, hidden layers and output layers as shown in the figure below: 

W

W

W

S

S

W

W
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ym
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Hidden Layer of Gaussian 
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Figure 5.8: Radial Basis Function (RBF) Architecture 

The RBF is designed to handle more neurons than standard feed forward 

back propagation network and it takes a fraction of time to train standard feed forward 

network (Beale et al., 2010). The RBF work best when many training vectors are 

available. Radial Basis Function network can be used for approximating functions and 

recognizing patterns. It uses Gaussian Potential functions. The Gaussian potential 
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functions are also used in networks called regularization networks. The architecture of 

radial basis function network is a multilayer feed forward network. There exists „n‟ 

number of input neurons and „m‟ number of output neurons with the hidden layer 

existing between the input and output layer. This hidden layer may also be called as 

radial basis layer. The interconnection between the input lay and hidden layer forms 

hypothetical connection and between the hidden and output layer forms weighted 

connections. The training algorithm is used for updation of weights in all 

interconnections.  

5.3.2.1 ALGORITHM 

The training algorithm for radial basis function network is given below. The 

important aspect of the radial basis function network is the usage of activation function 

for computing the output. Radial basis function uses Gaussian activation function. The 

response of such function is non-negative for all value of „x‟. The function is defined as 

   f(x) = exp (-x
2
) 

Its derivative is given by 

  f‟(x) = -2x.exp(-x2) = 2x.f(x) 

The radial basis function is different from the back propagation network in the Gaussian 

function it uses. The training algorithm  for the network is given as follows: 

Step 1:  Initialize the weights (set to small random values) 

Step 2:   While stopping is false do step 3–10. 

Step 3:  For each input do step 4–9. 

Step 4: Each input unit (xi where i = 1, 2, 3,…., n) receives input signals to all units in 

the layer above (hidden layer). 

Step 5:  Calculate the radial basis function 
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Step 6:  Choose the centres for the radial basis functions. The centres are chosen from 

the set of input vectors. A sufficient number of centres have to be selected in 

order to ensure adequate sampling of the input vector space. 

Step 7:  The output of im unit vi(xi) in the hidden layer. 

        (∑[     ̂  ] 
    

 

 

   

) 

 Where 

   xji = centre of the RBF unit for input variables 

   i = Width of the RBF unit 

   xji = jth variable of input pattern 

Step 8:  Initialize the weights in the output layer of the network to some small random 

value. 

Step 9:  Calculate the output of the neural network 

     ∑             

 

   

 

 Where 

H =  number of hidden layer nodes ( RBF function) 

ynet =  Output value of mth node in the output layer for the nth incoming 

pattern 

wim =  Weight between ith RBF unit and mth output node 

wo= Biasing term at nth output node 

Step 10:  Calculate error and test stopping condition 

The stopping condition may be weight change, number of epoch, etc.   

5.3.2.2 EXPERIMENTAL RESULTS AND DISCUSSIONS 

MATLAB 7.12 inbuilt transfer function „radbas‟ is used in the hidden layer 

and „purelin‟ in the output layer. The network has 54 neurons in the input layer, 93 
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neurons in the hidden layer, and 93 neurons in the output layer. In this work, the radial 

basis network with function „newrb‟ is used for designing the network with the design 

parameters GOAL and SPREAD. The network is designed with the default mean square 

error goal set at 0.01 and the spread value at 5. This makes the network function 

smoother and results in better generalization for new input vectors.  

 

Figure 5.9:  Radial Basis Function 

The network uses the training function „trainrp’ as the memory requirement 

is relatively small and faster than standard gradient descent algorithms. The designed 

RBF network is trained using training dataset (dataset#1). The training dataset is divided 

into three subsets such as training set, validation set and test set. During the training 

process, the training stopped when the best validation performance occurred at the 

iteration 54. The training performance is plotted between the Mean square error and the 

iteration (epoch) which is shown below. 
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Figure 5.10:  RBF-Training Performance  

The regression plot is generated as shown in the figure below to find out the 

the network perform linear regression between the network outputs and the 

corresponding targets.  

 

Figure 5.11:  RBF-Regression Plot  

The above regression plot represents the network outputs have close 

relationship with the targets. The training data indicates a good fit as the validation and 
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test results show R values that greater than 0.9. The scatter plot is helpful in showing that 

certain data points have poor fits.  

In order to examine the performance of classifiers, we have plotted confusion 

matrices as shown in the figure below.  

 

Figure 5.12:  RBF-Plot Confusion Matrix  

The above confusion matrix is simply a square matrix that shows various 

classification and misclassifications of characters. The network outputs are very accurate 

as indicated by the high numbers of correct responses in the green squares and the low 

numbers of incorrect responses in the red squares. The lower right blue squares 

illustrated the overall accuracies which is 100 % accuracy in this work.  

In order to test the Classification using RBF Neural Networks, we used the 

dataset for testing (dataset #2). These dataset#2 are fed into the proposed RBF Neural 

Network and the results are shown in the following tables. 
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Table 5.6: Test Results of word recognition using RBF Neural Network 

Document 

Image 

No of 

Word 

present 

Correctly 

Recognize 

Word 

Mis-

recognize 

Word 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 181 179 2 98.89 0.98 99.88 

Doc #2 127 124 3 97.64 0.99 72.34 

Doc #3 159 157 2 98.74 0.98 83.56 

Doc #4 67 64 3 95.52 0.98 43.56 

Total 534 524 10 97.69 0.9825 74.83 

 

Table 5.7: Test Results of character recognition using RBF Neural Network 

Document 

Image 

No of 

Character 

present 

Correctly 

Recognize 

Character 

Mis-

recognize 

Character 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 793 789 4 99.49 0.98 99.88 

Doc #2 635 633 2 98.90 0.99 72.34 

Doc #3 643 639 4 99.69 0.98 83.56 

Doc #4 249 248 1 98.39 0.98 43.56 

Total 2320 2309 11 99.12 0.9825 74.83 

 

From the above test results, we can see that out of 534 words, the correctly 

recognized word is 524 and misclassification of words is 10. There are 2320 characters 

presents in the dataset considering only 12 points font size, out of which 2309 characters 

are correctly classified and 11 characters are misclassified. The overall Classification 

accuracy is about 99.12% with an average mean square error of 0.9825. The speed of 

recognition system is about 74.83 seconds. In view of these, the RBF Neural Network 

based approach Classification is also quite satisfactory for implementation of mizo 

characters recognition system. The characters misclassified by RBF are shown in the 

following table. 
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Table 5.8: Misclassified Characters by RBF 

Document Image Misrecognize 

Character 

Recognized as  No of Occurrence 

Doc #1 û u 2 

E F 2 

Doc #2 0 o 2 

Doc #3 ê e 4 

Doc #4 3 8 1 

Total   11 

 

5.3.3 LEARNING VECTOR QUANTIZATION (LVQ) 

The LVQ neural network was first proposed by Kohonen. A LVQ network is 

a two layer feed-forward network, consisting of a competitive layer and linear layer. The 

first layer learns to classify the input vectors. The second layer transforms the 

competitive layer‟s classes into desired classification defined by the designer of the LVQ 

Network. The classes of competitive layer are called sub-classes while the classes of 

linear layer are called target classes. Both of the competitive and linear layers have one 

neuron per class. The number of neurons for the hidden layer (competitive) is always 

larger than the number of output neurons. 

The LVQ method is used in training ANNs for pattern classification, where 

each output represents a particular class. Each class is referred by a vector of weights 

that sequentially, represents the centers of the classes. The training data set is used 

several times during the training phase in a random order. The training of LVQ ANNs is 

terminated when classes remain stable or a specific number of iterations have been 

carried out. A trained LVQ neural network is a vector comparator. When a new vector is 

presented to the input layer of a LVQ ANN it will be classified to a class with the closest 

center (Pedreira, 2006). 

The basic architecture of LVQ network that has a first competitive layer and 
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a second linear layer is shown in the figure below. 
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Figure 5.13:  Linear Vector Quantization (LVQ) Architecture  

In LVQ Network, each output unit has a known class, since it uses 

supervised learning, thus differing from kohonen SOM, which uses unsupervised 

learning. The algorithm for the LVQ net (Sivanandam and Deepa, 2006) is to find the 

output unit that has a matching pattern with the input vector which is given below. 

5.3.3.1 ALGORITHM 

Step 1: Initialize weights (reference) vectors and initialize learning rate 

Step 2: While stopping is false, do step 3-7 

Step 3:  For each training input vector x, do step 4-5 

Step 4:  Computer j using square Euclidean distance 

         ∑(      )
 
 

Find j and D(j) is minimum 

Step 5: Update wj as follows: 
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 If t=cj, then 

  wj(new) = wj(old) + [x - wj(old)] 

 if t ≠ cj, then  

  wj(new) = wj(old) - [x - wj(old)] 

Step 6:  Reduce the learning rate 

Step 7:  Test for stopping condition 

The condition may be fixed number of iterations or the learning rate reaching 

a sufficiently small value. 

5.3.3.2 EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

Figure 5.14:  Learning Vector Quantization 

In this work, we have used MATLAB 7.12 built-in function „newlvq‟ to 

create LVQ network having two layer networks.  The first layer uses the competitive 

transfer function „compet‟, calculates weighted inputs with „negdist‟, and net input 

with „netsum‟. The second layer uses linear transfer function „purelin‟, calculates 

weighted input with „dotprod‟ and net inputs with „netsum‟. Neither layer has biases. The 

LVQ network parameters are set with the default learning rate (0.01) and default learning 

function (learnlv1). The first layer weights are initialized to the centre of the input ranges 

with the function „midpoint‟. The second layer weights are set from the typical class 
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percentages. 

The designed LVQ network has 54 input neurons, 60 hidden (competitive) 

neurons and 93 output neurons. The network is trained using training dataset (dataset#1). 

The dataset (dataset#1) is divided into three subsets such as training set, validation set 

and test set. During the training process, the training stopped when the best validation 

performance occurred at the iteration 58. The network uses the training function „train‟ 

for training the network. The training errors, validation errors and test errors are plot in 

the following figure.  

 

Figure 5.15: LVQ- Training Performance  

In order to find out the network has performed linear regression between the 

network outputs and the corresponding targets, the regression plot is generated.  The 

regression plot represents the network outputs have close relationship with the targets. 

The following figure shows the regression plot for the network.   
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Figure 5.16:  LVQ-Regression Plot  

The above regression plots display the network output tracks the targets very 

well for training, testing and validation, and the R value is over 0.97 for the total 

response.  The results are quite satisfactory. 

 

Figure 5.17:  LVQ-Plot Confusion Matrix  

The above confusion matrix is simply a square matrix that shows various 
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classification and misclassifications of characters. The network outputs are not accurate 

enough as indicated by the high numbers of correct responses in the green squares and 

the low numbers of incorrect responses in the red squares. The lower right blue squares 

illustrated the overall accuracies which is 83.3 % accuracy in this work.  

In order to test the Classification using LVQ Neural Networks, we used the 

dataset for testing (dataset #2). These dataset#2 are fed into the proposed LVQ Neural 

Network and the results are shown in the following tables. 

Table 5.9: Test Results of word recognition using LVQ Neural Network 

Document 

Image 

No of 

Word 

present 

Correctly 

Recognize 

Word 

Mis-

recognize 

Word 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 181 169 12 93.37 0.97 110.66 

Doc #2 127 120 7 94.48 0.98 72.34 

Doc #3 159 129 30 81.13 0.97 83.56 

Doc #4 67 58 9 86.56 0.97 43.56 

 534 476 58 88.885 0.9725 77.53 

Table 5.10: Test Results of character recognition using LVQ Neural Network 

Document 

Image 

No of 

Character 

present 

Correctly 

Recognize 

Character 

Mis-

recognize 

Character 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 793 777 16 97.98 0.97 110.66 

Doc #2 635 626 9 98.58 0.98 72.34 

Doc #3 643 617 26 95.95 0.97 83.56 

Doc #4 249 240 9 96.38 0.97 43.56 

 2320 2260 60 97.22 0.97 77.53 

From the above test results, we can see that out of 534 words, the correctly 

recognised word is 476 and misclassification of words is 58. There are 2320 characters 

presents in the dataset considering only 12 font size, out of which 2260 characters are 
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correctly classified and 60 characters are misclassified. The overall Classification 

accuracy is about 97.22% with an average mean square error of 0.97. The speed of 

recognition system is about 77.53 seconds. In view of these, the LVQ Neural Network 

based approach Classification is also not good enough for implementation of mizo 

characters recognition system. The following are misclassified by LVQ Neural Network. 

Table 5.11: Misclassified Characters by LVQ 

Document Image Misrecognize 

Character 

Recognized as  No of Occurrence 

Doc #1 I 1 14 

E F 2 

Doc #2 1 I 5 

" ,, 2 

0 o 2 

Doc #3 . , 7 

û u 3 

 l 1 16 

Doc #4 , . 7 

 1 I 1 

 3 8 1 

Total   60 

 

5.3.4 RECURRENT NEURAL NETWORK (RNN) 

The Recurrent Neural Network (RNN) is also known as Elman Neural 

Networks and it is feed forward network with an input layer, a hidden layer, an output 

layer and a special layer called context layer. The output of each hidden neuron is copied 

into a specific neuron in the context layer (Beale et al., 2010). The value of the context 

neuron is used as an extra input signal for all the neurons in the hidden layer one time 

step later. In an Elman network, the weights from the hidden layer to the context layer 

are set to one and are fixed because the values of the context neurons have to be copied 

exactly. Furthermore, the initial output weights of the context neurons are equal to half 
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the output range of the other neurons in the network. The Elman network can be trained 

with gradient descent back propagation and optimization methods. The following figure 

illustrates the RNN Architecture. 

Input Layer

Hidden Layer

Output Layer

Context 
Units

 

Figure 5.18:  Recurrent Neural Network Architecture 

5.3.4.1 ALGORITHM 

During the training procedure of an Elman network, similar to the case of 

MLP training, the network‟s output is compared with the target output and the square 

error is used to update the network‟s weights according to the error backpropagation 

algorithm with the exception that the values of recurrent connections‟ weights are 

constant to 1.0. If    is the vector produced by the union of input and context vectors, 

then the training algorithm for an Elman network is very similar to the algorithm for an 

MLP network training: 

Step 1: Initialize the weight vector       with random values in       the learning 

rate  , the repetitions counter (k = 0) and the epochs counter (k = 0). Initialize 

the context nodes at 0.5. 
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Step 2: Let w(k)  the network‟s weight vector in the beginning of epoch k   

1. Start of epoch k. Store the current values of the weight vector wold = 

w(k)  

2. For n = 1, 2, ………., N  

1. Select the training example (x
n
, t

n
) and apply the error 

backpropagation in order to compute the partial derivatives 
   

   
    

2. Update the weights 

wi(k+1) = wi(k) -  
   

   
    

3. Copy the hidden nodes‟ values to the context units. 

4. k = k + 1 

3. End of epoch k Termination check. If true, terminate. 

Step 3: k = k + 1. Go to step 2. 

 

5.3.4.2 EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

Figure 5.19:  Elman Networks Architecture 

In this work, we have developed RNN based simulation software using 

MATLAB 7.12 for classification of Mizo characters.  The Elman network is created with 
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the MATLAB in-built function „newelm‟ having the transfer function „tansig‟ in hidden 

(recurrent) layer and „purelin‟ in the output layer. When the network is created, the 

weights and biases of each layer are initialized with the Nguyen-Widrow layer-

initialization method, which is implemented in the function „initnw’. 

The network has 54 neurons in the input layer, 80 neurons in the hidden 

layer, and 93 neurons in the output layer with learning rate of 0.01. The training dataset 

(dataset#1) are used for training the network.  The dataset is divided into three subsets 

such as training set, validation set and test set. During the training process, the training 

stopped when the best validation performance occurred at the iteration 54. The training 

errors, validation errors and test errors are plot in the following figure.  

 

Figure 5.20:  RNN-Training Performance  

Regression plot is also generated to find out the network has performed 

linear regression between the network outputs and the corresponding targets as shown in 

the figure below. The training data indicates a good fit as the validation and test results 

show R values that greater than 0.9.  
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Figure 5.21:  RNN-Regression Plot  

The confusion matrix has been plotted as shown in the figure below.  

 

Figure 5.22: RNN- Plot Confusion Matrix  

The above confusion matrix shows the network outputs are very accurate as 

indicated by the high numbers of correct responses in the green squares and the low 

numbers of incorrect responses in the red squares. The lower right blue squares 
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illustrated the overall accuracies which is 100 % accuracy in this work.  

In order to test the Classification using Recurrent Neural Networks, we used 

the dataset for testing (dataset #2). These dataset#2 are fed into the proposed Recurrent 

Neural Network and the results are shown in the following table. 

Table 5.12: Test Results of word recognition using RNN Neural Network 

Document 

Image 

No of 

Word 

present 

Correctly 

Recognize 

Word 

Mis-

recognize 

Word 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 181 179 2 98.89 0.99 110.66 

Doc #2 127 121 6 95.27 0.98 72.34 

Doc #3 159 157 2 98.74 0.99 83.56 

Doc #4 67 63 4 94.02 0.98 43.56 

Total 534 520 14 96.73 0.985 77.53 

Table 5.13: Test Results of character recognition using RNN Neural Network 

Document 

Image 

No of 

Character 

present 

Correctly 

Recognize 

Character 

Mis-

recognize 

Character 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

Doc #1 793 791 2 99.75 0.99 110.66 

Doc #2 635 624 11 98.27 0.98 72.34 

Doc #3 643 640 3 99.53 0.99 83.56 

Doc #4 249 242 7 97.19 0.98 43.56 

Total 2320 2297 23 98.68 0.985 77.53 

 

From the above test results, we can see that out of 534 words, the correctly 

recognised word is 520 and misclassification of words is 14. There are 2320 characters 

presents in the dataset considering only 12 font size, out of which 2297 characters are 

correctly classified and 23 characters are misclassified. The overall Classification 

accuracy is about 98.68 % with an average mean square error of 0.985. The speed of 

recognition system is about 77.53 seconds. In view of these, the Recurrent Neural 
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Network based approach Classification is not good enough for implementation of mizo 

characters recognition system. The following are characters misclassified by Recurrent 

Neural Network. 

Table 5.14: Misclassified Characters by RNN 

Document 

Image 

Misrecognize 

Character 

Recognized as  No of Occurrence 

Doc #1 E F 2 

Doc #2 u û 12 

Doc #3 . , 7 

Doc #4 ṭ t 2 

Total   23 

 

5.4 POST PROCESSING  

The Neural Network Classifier output may be encoded using ASCII or 

Unicode. The ASCII code encoding scheme cannot be applied for mizo characters due to 

special characters presents in mizo alphabets. Therefore, it is suggested to use Unicode 

encoding system for machine readable and editable of the output of the classifier.  

In this section, we applied a two level post processing; where the first level 

post processing is Unicode encoding scheme of the recognised characters and the second 

level is formatting the encoded character into meaningful words.   

The Unicode standard reflects the basic principle which emphasizes that each 

character code has a width of 16 bits. Unicode text is simple to parse and process and 

Unicode characters have well defined semantics. Hence Unicode is chosen as the 

encoding scheme for the current work. After classification the characters are recognized 

and a mapping table is created in which the Unicode for the corresponding characters are 

mapped. The Unicode corresponding to Mizo characters is shown in the following table. 
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Table 5.15: Mapping of Unicode with Mizo Characters 

U+0041 A Mizo Capital letter A U+0061 a Mizo Small Letter A 

U+0042 B Mizo Capital letter B U+0062 b Mizo Small Letter B 

U+0043 C Mizo Capital letter C U+0063 c Mizo Small Letter C 

U+0044 D Mizo Capital letter D U+0064 d Mizo Small Letter D 

U+0045 E Mizo Capital letter E U+0065 e Mizo Small Letter E 

U+0046 F Mizo Capital letter F U+0066 f Mizo Small Letter F 

U+0047 G Mizo Capital letter G U+0067 g Mizo Small Letter G 

U+0048 H Mizo Capital letter H U+0068 h Mizo Small Letter H 

U+0049 I Mizo Capital letter I U+0069 i Mizo Small Letter I 

U+004A J Mizo Capital letter J  U+006A j Mizo Small Letter J 

U+004B K Mizo Capital letter K U+006B k Mizo Small Letter K 

U+004C L Mizo Capital letter L U+006C l Mizo Small Letter L 

U+004D M Mizo Capital letter M U+006D m Mizo Small Letter M 

U+004E N Mizo Capital letter N U+006E n Mizo Small Letter N 

U+004F O Mizo Capital letter O U+006F o Mizo Small Letter O 

U+0050 P Mizo Capital letter P U+0070 p Mizo Small Letter P 

U+0051 Q Mizo Capital letter Q U+0071 q Mizo Small Letter Q 

U+0052 R Mizo Capital letter R U+0072 r Mizo Small Letter R 

U+0053 S Mizo Capital letter S U+0073 s Mizo Small Letter S 

U+0054 T Mizo Capital letter T U+0074 t Mizo Small Letter T 

U+0055 U Mizo Capital letter U U+0075 u Mizo Small Letter U 

U+0056 V Mizo Capital letter V U+0076 v Mizo Small Letter V 

U+0057 W Mizo Capital letter W U+0077 w Mizo Small Letter W 

U+0058 X Mizo Capital letter X U+0078 x Mizo Small Letter X 

U+0059 Y Mizo Capital letter Y U+0079 y Mizo Small Letter Y 

U+005A Z Mizo Capital letter Z U+007A z Mizo Small Letter Z 

U+00C2 Â 
Mizo Capital letter A with 

circumflex 
U+00E2 â 

Mizo Small letter a with 

circumflex 

U+00CA Ê 
Mizo Capital letter E with 

circumflex 
U+00EA ê 

Mizo Small letter e with 

circumflex 

U+00CE Î 
Mizo Capital letter I with 

circumflex 
U+00EE î 

Mizo Small letter i with 

circumflex 

U+00D4 Ô 
Mizo Capital letter O with 

circumflex 
U+00F4 ô 

Mizo Small letter o with 

circumflex 

U+00DB Û 
Mizo Capital Letter U 

with circumflex 
U+00FB û 

Mizo Small Letter u with 

circumflex 

https://en.wikipedia.org/wiki/A
https://en.wikipedia.org/wiki/B
https://en.wikipedia.org/wiki/C
https://en.wikipedia.org/wiki/D
https://en.wikipedia.org/wiki/E
https://en.wikipedia.org/wiki/F
https://en.wikipedia.org/wiki/G
https://en.wikipedia.org/wiki/H
https://en.wikipedia.org/wiki/I
https://en.wikipedia.org/wiki/J
https://en.wikipedia.org/wiki/K
https://en.wikipedia.org/wiki/L
https://en.wikipedia.org/wiki/M
https://en.wikipedia.org/wiki/N
https://en.wikipedia.org/wiki/O
https://en.wikipedia.org/wiki/P
https://en.wikipedia.org/wiki/Q
https://en.wikipedia.org/wiki/R
https://en.wikipedia.org/wiki/S
https://en.wikipedia.org/wiki/T
https://en.wikipedia.org/wiki/U
https://en.wikipedia.org/wiki/V
https://en.wikipedia.org/wiki/W
https://en.wikipedia.org/wiki/X
https://en.wikipedia.org/wiki/Y
https://en.wikipedia.org/wiki/Z
https://en.wikipedia.org/wiki/%C3%82
https://en.wikipedia.org/wiki/%C3%82
https://en.wikipedia.org/wiki/%C3%82
https://en.wikipedia.org/wiki/%C3%82
https://en.wikipedia.org/wiki/%C3%8E
https://en.wikipedia.org/wiki/%C3%8E
https://en.wikipedia.org/wiki/%C3%8E
https://en.wikipedia.org/wiki/%C3%8E
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U+1E6C Ṭ 
Mizo Capital Letter T 

with dot 
U+1E6D ṭ 

Mizo Small Letter ṭ with 

dot 

 

The scanned image is passed through various blocks of functions and finally 

compared with the recognition details from the mapping table from which corresponding 

Unicode are accessed and printed using standard Unicode fonts so that the OCR 

achieved. 

In the second level of post-processing, format the encoded characters into 

meaningful words using the principle of bounding box and line formatting using a line 

break which is incremented on every line segment. The bounding box is used to calculate 

the distance between the characters and if the distances are greater than the threshold 

value, then the characters form a separate word.  The character and word spacing should 

be same format as that of the input testing dataset. The post processing output can be 

edited by using any word processing software. The results are quite satisfactory for mizo 

character recognition system. 

5.5 CONCLUSIONS 

In this work, we have carried out an investigation on various types of 

classification methods currently used in many OCR applications. These classification 

methods include statistical methods, Artificial Neural Network, Kernel method and 

Genetic algorithm.  The comparisons of results of the relevant works found in the 

literature survey are presented in this section. As per the comparison statement, the 

Artificial Neural Network based approach classification give better performance results 

than any other classification in terms of accuracy, adaptability and usability. In view of 

this, the Artificial Neural network based approach is proposed for Classification of mizo 
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character recognition system.    The neural networks classifiers under consideration for 

mizo OCR are Back Propagation Algorithm (BPA), Learning Vector Quantization 

(LVQ), Radial Basis Function (RBF), and Recurrent Neural Network (RNN).   

Here, an attempt is made to analyze these four types of neural networks and 

compare their performance to select the best method for implementation of mizo 

character recognition system. The overall performance of the OCR depends on the 

classification method.  Further, the performance of classification mostly depends on the 

nature of the pattern of the character and their feature vectors. In this work, fifty four 

(54) features have been extracted from each character which is used as an input vector 

for the input layer of the network. The proposed neural network is trained with training 

dataset (dataset#1) which is comprises of 29 lowercase, 29 upper case letters, 10 

numerical and 25 special characters with different fonts such as Arial, Cambria, Tahoma 

and Times new romans. The total number of prototype characters is then 93x4=372 for 

training the network. After the network is trained, the neural network classifier is tested 

with testing dataset (dataset#2). The dataset#2 is comprises of doc#1, doc#2, doc#3, and 

doc#4.  These datasets are extracted from real-life documents such as Laser print 

document, Vanglaini local newspapers, Mizo Bible, and Kristian Hla Bu. There are 2320 

characters in the testing dataset considering only 12 points font size.  As there are 93 

different classes in mizo characters, the output layer of neural network have 93 output 

vectors. The algorithm of the networks is program in MATLAB 7.12 and their results are 

compared based upon their perfection in the character recognition which is shown in the 

following table. 
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Table 5.16: Comparison of different Neural Network based Classifier 

Neural 

Network 

Classifier 

No of 

Character 

Tested 

Correctly 

Recognize 

Character 

Mis-

recognise 

Character 

Accuracy 

(%) 

MSE Time 

Taken 

(Second) 

BP Neural 

Network 

2320 2312 8 99.52 0.98 73.17 

RBF Neural 

Network 

2320 1309 11 99.12 0.98 74.83 

LVQ Neural 

Network 

2320 2260 60 97.22 0.97 77.53 

Recurrent 

Neural 

Network 

2320 2297 23 98.68 0.98 77.53 

 

As per the above comparison statement, the classification (recognition) using 

Back Propagation Neural Network give better performance results than any other neural 

network classifier in terms of accuracy and the speed. In view of the experimental 

results, we concluded that the Multilayer Back Propagation Neural Network may be used 

for implementation mizo character recognition system.  
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

The research work mainly focused on the development of Optical Character 

Recognition System for mizo script. The current OCR available in the market cannot be 

used for recognition of mizo characters due existence of special characters in mizo 

alphabets. Mizo alphabets are derived from English alphabets but it is uniquely different 

in some characters like a dotted below t character i.e. “ṭ” and presents of circumflex ^ in 

all six vowels such as “â”, “âw”, “ê”, “î”, “ô” and “û”. The design and implementation 

methodology involved preprocessing, segmentation of characters, feature extraction and 

artificial neural network based approach classification (recognition) for mizo characters. 

In chapter 1, we describes about introduction to character recognition system, objective 

of the proposed research work, Application of character recognition system, problems, 

recent trends and movements, motivation for the present work, literature survey of Latin 

and Indian languages OCR.   

In chapter 2, it was discussed about the preprocessing implementation 

methodology which is a preliminary processing step to make the raw data usable for 

segmentation, feature extraction and classification. During the research work we 

encountered various kinds of problems like the scanned documents have certain noises 

like Gaussian noise, salt & paper noise, marginal noises due to printer, scanner, print 

quality, age of the documents, etc.  The presents of noise in the scanned document 

reduces the accuracy of subsequent tasks of Character Recognition systems.  An 

attempted was made to remove these noises using median filter, wiener filter, and 

average filter.  In our experiment, the median filter performance is better than any other 
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noise filter specially for removing salt & pepper noise and Gaussian noise. The marginal 

noises comprising of textual noise and non-textual noise presents during scanning of 

thick documents, a simple and efficient algorithm have been developed using 

combination of projection profile and connected component analysis. We have also 

encountered problems while scanning process, the document is sometimes placed 

incorrectly resulting skewed images resulting poor recognition accuracy. A new 

algorithm have been developed  based on Hough transform which have been tested with 

sample of 20 skew angle image files having skewed angle ranging from -30 degree to 

+45 degree.  The experimental result is quite satisfactory as the average accuracy is as 

good as 97.17% with and average error rate of 4.35% and the average execution time is 

0.203 seconds. In the final part of preprocessing, an effective thinning algorithm is an 

ideally solution to remove all redundant pixels and retain the significant aspects of the 

pattern under process. The algorithm have been developed and tested with on different 

image input data in both cases discrete and cursive. A preserved smooth skeleton was 

obtained. 

In chapter 3, it was discussed about the implementation methodology of 

segmentation techniques for use in the mizo character recognition system. The accuracy 

of character recognition heavily depends upon segmentation phase. Incorrect 

segmentation leads to incorrect recognition. In this research work, we have encountered 

problems in segmentation of Mizo characters due to special symbols like â, ê, î, ô, û, and 

ṭ presents in every Mizo text. In order to overcome the problems, we have developed a 

hybrid techniques using a combination of projection profile, connected component, 

bounding box and morphological dilation to enable to correctly segment all the Mizo 

characters. As a result of experiment, the proposed segmentation algorithms give a very 

good result of 100% accuracy with four test document sample having 93 lines, 483 
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words, and 2320 characters. In this work, we have analyzed and study the existing 

segmentation methods for which the comparison statement have been made with the 

proposed solution. While comparing with the existing segmentation methods, the 

proposed hybrid segmentation method performance is much better than the existing 

method. In chapter 4, Feature extraction methodology for Mizo characters have been 

discussed in which a hybrid feature extraction method has been developed for Mizo 

characters. The feature extraction is one of the most challenging tasks in character 

recognition system. Different feature methods are designed for different representation of 

the characters which means a feature extraction method that proves to be successful in 

one application may turn out not to be very useful in another application. Further the 

type of format of the extracted features must match the requirement of the chosen 

classifier. As a result, we have developed a hybrid approach feature extraction 

algorithms giving a very good result of 99.10 % accuracy when testing with 2320 sample 

data set. In this work, we have analyzed and study the existing feature extraction 

methods for which the comparison statement have been made with the proposed solution. 

The comparison statement shows that the proposed hybrid feature extraction method 

performance is much better than the existing feature extraction method. 

In chapter 5, Artificial Neural Network based approach classification is 

proposed for Mizo character recognition system. The Classification is one of the most 

important part of character recognition system, here we have investigated various types 

of classification methods used in many OCR applications. These classification methods 

include statistical methods, Artificial Neural Network, Kernel method and Genetic 

algorithm.  Among these, the Artificial Neural Network based approach classification 

give better performance results than any other classification in terms of accuracy, 

adaptability and usability. In view of this, the Artificial Neural network based approach 
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is proposed for Classification of Mizo character recognition system. The neural networks 

classifiers under consideration for Mizo OCR are Back Propagation Algorithm (BPA), 

Learning Vector Quantization (LVQ), Radial Basis Function (RBF), and Recurrent 

Neural Network (RNN).  Here, an attempt is made to analyze these four types of neural 

networks and compare their performance to select the best method for implementation of 

Mizo character recognition system. The overall performance of the OCR depends on the 

classification method.  Further, the performance of classification mostly depends on the 

nature of the pattern of the character and their feature vectors. In this work, fifty four 

(54) features have been extracted from each character which is used as an input vector 

for the input layer of the network. The proposed neural network is trained with training 

dataset (dataset#1) which is comprises of 29 lowercase, 29 upper case letters, 10 

numerical and 25 special characters with different fonts such as Arial, Cambria, Tahoma 

and Times new romans. The total number of prototype characters is then 93x4=372 for 

training the network. After the network is trained, the neural network classifier is tested 

with testing dataset (dataset#2). The dataset#2 is comprises of doc#1, doc#2, doc#3, and 

doc#4.  These datasets are extracted from real-life documents such as Laser print 

document, Vanglaini local newspapers, Mizo Bible, and Kristian Hla Bu. There are 2320 

characters in the testing dataset considering only 12 points font size.  As there are 93 

different classes in Mizo characters, the output layer of neural network have 93 output 

vectors. In our experimental results, the Back propagation neural network achieved the 

accuracy rate of 99.52 % and the time taken for recognition of 2320 characters is about 

73.17 seconds leaving 8 characters are misrecognized. In view of this, we have 

concluded that the Back Propagation neural network is the most suitable classifier for 

Mizo character recognition system. The recognised characters are encoded into Unicode 

standard and formatting the encoded character into a meaningful words. 
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