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PREFACE

The present thesis entitled “A Study of Certain Structures on Almost Con-

tact Manifolds” is an outcome of the research carried out by the author under the

supervision of Dr. Jay Prakash Singh, Associate Professor, Department of Mathe-

matics and Computer Science, Mizoram University, Aizawl, Mizoram.

This thesis has been divided into six chapters and each chapter is subdivided into

smaller sections. The first chapter is the general introduction which includes the

basic definitions of differential geometry such as topological manifold, differentiable

manifolds, tangent vector, tangent space, vector field, Lie bracket, Lie derivative,

connection, covariant derivative, contraction, Riemannian manifold, Riemannian con-

nection, torsion tensor, semi-symmetric and quarter symmetric connection, different

curvature tensors, almost contact metric manifolds, almost contact para-contact met-

ric manifolds, recurrent manifolds and symmetric manifolds. Finally, the review of

literature is given.

The second chapter is dedicated to the study of a semi-symmetric metric connec-

tion in weakly symmetric almost contact manifolds. We studied weakly symmetric

Kenmotsu manifolds with respect to a semi-symmetric metric connection. We consid-

ered weakly Ricci symmetric, weakly concircular symmetric, weakly concircular Ricci

symmetric and weakly m-projectively symmetric Kenmotsu manifolds with respect

to such a connection. Weakly symmetric and weakly Ricci symmetric Para-Sasakian

manifolds admitting a semi-symmetric metric connection are considered. An exam-

ple of a 3-dimensional weakly symmetric and weakly Ricci symmetric Para-Sasakian

manifold admitting a semi-symmetric metric connection is given.

The third chapter is related to the study of semi-generalized recurrent almost con-

tact manifolds. We studied semi-generalized W3 recurrent manifolds and obtained

a necessary and sufficient condition for the scalar curvature to be constant in such

a manifold. Ricci symmetric and decomposable semi-generalized W3 recurrent man-

ifolds are studied. Finally, we constructed two examples of a semi-generalized W3

iv



recurrent manifold.

In the fourth chapter, we study N(k)-quasi Einstein manifolds. W ∗-Ricci pseu-

dosymmetric, W2-pseudosymmetric and Z-generalized pseudosymmetric N(k)-quasi

Einstein manifolds are studied. We considered the curvature properties of the pseudo

projective, W2 and conharmonic curvature tensors in an N(k)-quasi Einstein mani-

fold. Also, we have given examples to support the results.

In the fifth chapter, we considered the weak symmetry of the Z-tensor in almost

contact manifolds. Weakly Z-symmetric manifolds with Codazzi type and cyclic par-

allel Z tensor, Einstein weakly Z-symmetric manifolds and conformally flat weakly

Z-symmetric manifolds are studied. A totally umbilical hypersurface of a confor-

mally flat weakly Z-symmetric manifold is considered. We investigate decomposable

weakly Z-symmetric manifolds and we construct examples to support our results.

In Chapter 6, we gave the summary and the conclusion. The references of the

mentioned papers have been given with the surname of the author and the years of

the publication, which are decoded in chronological order in the Bibliography.
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Chapter 1

Chapter 1

Introduction

1.1 Topological Manifold

A topological space Mn is a locally Euclidean space such that every point p of Mn

has a neighborhood which is homeomorphic to an open subset U of the Euclidean

space Rn. If φ is a homeomorphism from U ⊂ Mn onto U , then U is called a

coordinate neighborhood; φ is called a coordinate map; the functions xi = ti · φ,

where ti denotes the ith canonical coordinate function on Rn are called the coordinate

functions and the pair (U, φ) is called a coordinate system or a chart.

A topological manifold of dimension n is a Hausdorff, second countable, locally

Euclidean space of dimension n.

Definition 1.1 The charts (U, φ : U → Rn) and (V, ψ : V → Rn) are said to be

C∞-compatible if φ ·ψ−1 : ψ(U ∩ V )→ φ(U ∩ V ) and ψ · φ−1 : φ(U ∩ V )→ ψ(U ∩ V )

are C∞-mappings.

Definition 1.2 An atlas M of class C∞ on a locally Euclidean space Mn is a col-

lection of coordinate systems {(Uα, φα) : α ∈ M} that cover Mn, i. e., such that

∪α∈MUα = Mn.

Definition 1.3 A differentiable structure (or maximal atlas) on a locally Euclidean

space Mn is an atlas M = {(Uα, φα) : α ∈ M} of class C∞, such that it is not

1



Chapter 1

contained in a larger atlas, i. e., if U is any atlas containing M, then M = U.

1.2 Differentiable Manifold

Definition 1.4 A topological manifold Mn together with a maximal atlas M is called

a differentiable manifold of class C∞ of dimension n (or simply differentiable manifold

of dimension n or C∞ manifold or n dimensional manifold).

A manifold is said to have dimension n if all of its connected components have di-

mension n. A 1-dimensional manifold is also called a curve, a 2-dimensional manifold

a surface.

1.3 Tangent Vectors and Tangent Spaces

Let Mn be a differentiable manifold and p ∈ Mn, C∞(p) be the set of all real-

valued C∞-functions, each defined on some neighborhood ∪ of p. Let us consider a

vector X at p such that

(i) X ∈Mn, f ∈ C∞(p), then Xf ∈ C∞(p),

(ii) X(f + g) = Xf +Xg, f, g ∈ C∞(p) ,

(iii) X(fg) = f(Xg) + (Xf)g,

(iv) X(af) = a(Xf), a ∈ R,

then X is called a tangent vector to Mn at p.

The set of all tangent vectors at p forms a vector space over R and is called the

tangent space of Mn at p and is denoted by Tp(M
n).

1.4 Vector Field

A vector field X on Mn is a linear mapping X : C∞(Mn) → C∞(Mn) such that

the map f → Xf satisfies

2
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(i) X(f + g) = Xf +Xg,

(ii) X(af) = aXf,

(iii) X(fg) = (Xf)g + f(Xg)

∀f, g ∈ C∞(Mn), a ∈ R. Thus to each point p ∈ Mn such a derivation assigns a

linear map Xp : C∞(Mn) → R defined by X(p)f = (Xf)(p) for each f ∈ C∞(Mn)

and hence the map p ∈ Xp assigns a field of tangent vectors.

1.5 Lie Bracket

If X, Y are C∞ vector fields, then we define a C∞-mapping called the Lie bracket

(or Poisson Bracket) [ , ] : Mn ×Mn →Mn as

[X, Y ]f = X(Y f)− Y (Xf),

where f ∈ C∞(Mn).

The Lie bracket satisfy the following properties:

(i) [X, Y ](f + g) = [X, Y ]f + [X, Y ]g,

(ii) [X, Y ](fg) = f [X, Y ]g + g[X, Y ]f,

(iii) [fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X,

(iv) [X, Y ] = −[Y,X], (skew symmetry)

(v) [X, aY + bZ] = a[X, Y ] + b[X,Z], (bilinear)

(vi) [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (Jacobi identity)

where f, g ∈ C∞(Mn), X, Y, Z ∈ C∞ and a, b are scalars.

3



Chapter 1

1.6 Lie Derivative

Let X be a C∞ vector field on an open set of Mn. Then the Lie derivative along

X is a type preserving linear mapping

LX : T rs → T rs ,

such that

(i) LXf = Xf,

(ii) LXY = [X, Y ],

(iii) (LXA)(Y ) = X(A(Y ))− A([X, Y ]), A is a 1− form

(iv) LXa = 0, a ∈ R

(v) (LXP )(A1, ..., Ar, X1, ..., Xs) = X(P (A1, ..., Ar, X1, ..., Xs))

− P (LXA1, ..., Ar, X1, ..., Xs)...

− P (A1, ..., Ar, [X,X1], X2, ..., Xs)...

− P (A1, ..., Xs−1, [X,Xs]), P ∈ T rs ,

where f is a C∞ function, X1, X2, ......, Xs are vector fields and A1, A2, ......., Ar are

1-forms.

1.7 Connection

Let p ∈Mn be a point of Mn, Tp(M
n) be a tangent space to Mn at p and T rs be a

vector space whose elements are the tensors of type (r, s). A connection ∇ is a type

preserving mapping ∇ : Tp ⊗ T rs → T rs that assigns to each pair of C∞-vector fields

(X,P ), X ∈ Tp, P ∈ T rs , a C∞ vector field ∇XP such that

(i) ∇Xf = Xf,

4
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(ii) ∇Xa = 0, a ∈ R

(iii) ∇X(Y + Z) = ∇XY +∇XZ,

(iv) ∇X(fY ) = (Xf)Y + f(∇XY ),

(v) ∇X+YZ = ∇XZ +∇YZ,

(vi) ∇fXZ = f∇XZ,

(vii) (∇Xν)(Y ) = X(ν(Y ))− ν(∇XY ),

(viii) (∇XP )(ν1, ..., νr, X1, ..., Xs) = X(P (ν1, ..., νr, X1, ..., Xs))

− P (∇Xν1, ..., νr, X1, ..., Xs)...

− P (ν1..., νr, X1, ...,∇XXs),

where f is a C∞-function.

1.8 Covariant Derivative

A linear affine connection on Mn is a function

∇ : χ(Mn)× χ(Mn)→ χ(Mn)

such that

(i) ∇Xf = Xf,

(ii) ∇fX+gYZ = f(∇XZ) + g(∇YZ),

(iii) ∇X(fY + gZ) = f(∇XY ) + g(∇XZ) + (Xf)Y + (Xg)Z,

whereX, Y, Z are arbitrary vector fields and f, g ∈ C∞(Mn). ∇X is a smooth function

called the covariant derivative and ∇XY is called the covariant derivative of Y with

respect to X.

The covariant derivative of a 1-form v is given by

(∇Xv)(Y ) = X(v(Y ))− v(∇XY ).

5
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1.9 Contraction

The linear mapping

Ck
h : T rs → T r−1

s−1 ; (i ≤ h ≤ r), (i ≤ k ≤ s),

such that

Ck
h(ν1 ⊗ ν2 ⊗ ...⊗ νr ⊗ β1 ⊗ β2 ⊗ ...⊗ βs) = βk(ν1 ⊗ ...⊗ νh−1 ⊗ νh+1...⊗ νr

⊗β1 ⊗ ...⊗ βk−1 ⊗ βk+1...⊗ βs),

where ν1, ν2, ..., νr, β1, β2, ..., βs ∈ Tp(Mn) and ⊗ denote the tensor product is called

contraction with respect to the hth contravariant and kth covariant places.

1.10 Riemannian Manifold

Consider an n-dimensional C∞ with the tangent space Tp at p ∈ Mn. A real

valued, bilinear symmetric, non-singular positive definite function g on the ordered

pair (X, Y ) of tangent vectors Tp at each point p, such that

(i) g(X, Y ) is a real number,

(ii) g is symmetric ⇒ g(X, Y ) = g(Y,X),

(iii) g is non-singular i. e., g(X, Y ) = 0, for all Y 6= 0⇒ X = 0,

(iv) g is positive definite i. e., g(X,X) > 0, for all X ∈ C∞ and g(X,X) = 0 if and

only if X = 0,

(v) g(aX + bY, Z) = ag(X,Z) + bg(Y, Z); a, b ∈ R,

is called the Riemannian metric tensor or the fundamental tensor of type (0,2). The

manifold Mn with a Riemannian metric g is called a Riemannian manifold and its

geometry is called a Riemannian geometry denoted by (Mn, g) or (M, g) or simply

by M .

6
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1.11 Riemannian Connection

Let (Mn, g) be an n-dimensional manifold and ∇ be an affine connection on Mn.

Then ∇ is said to be a Riemannian connection (or Levi-Civita connection) if

(i) ∇ is symmetric or torsion free i. e.,

∇XY −∇YX = [X, Y ], (1.1)

and

(ii) ∇ is a metric compatible or metric connection i. e.,

(∇Xg)(Y, Z) = 0. (1.2)

Thus a Riemannian connection on a Riemannian manifold is a linear connection

which is torsion free and metric compatible.

1.12 Torsion Tensor

The mapping T : χ(Mn)⊗ χ(Mn)→ χ(Mn) defined by

T (X, Y )
def
= ∇XY −∇YX − [X, Y ]. (1.3)

is called a torsion tensor of the connection ∇ for all X, Y ∈ χ(Mn).

The torsion tensor is vector valued, skew-symmetric, bilinear function T of type

(1, 2). A tensor is said to be symmetric or torsion free, if

T (X, Y ) = 0,

and ∇ = 0 .

7
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1.13 Semi Symmetric and Quarter Symmetric Con-

nection

A linear connection ∇̃ on an n-dimensional Riemannian manifold (Mn, g) is called

a quarter symmetric connection (Golab, 1975) if its torsion tensor T defined by

T (X, Y ) = ∇̃XY − ∇̃YX − [X, Y ], (1.4)

satisfies

T (X, Y ) = η(Y )φX − η(X)φY, (1.5)

where η is 1-form and φ is a (1, 1) tensor field. In particular, if φ(X) = X, then

the quarter symmetric connection reduces to a semi-symmetric connection. Thus

the notion of quarter symmetric connection generalizes the notion of semi symmetric

connection.

Moreover, if a quarter symmetric connection ∇̃ satisfies the condition

(∇̃Xg)(Y, Z) = 0, (1.6)

for all X, Y, Z ∈ Tp(M
n), where Tp(M

n) is the Lie algebra of vector fields of the

manifold Mn, then ∇̃ is said to be a quarter-symmetric metric connection, otherwise

it is called a quarter symmetric non-metric connection.

1.14 Curvature Tensor

The curvature tensor R of type (1, 3) with respect to the Riemannian connection

∇ is given by

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (1.7)

for all X, Y, Z ∈ Tp(Mn).

8
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Let R′ be the associative curvature tensor of the type (0, 4) of the curvature tensor

R. Then

R′(X, Y, Z, U) = g(R(X, Y )Z,U), (1.8)

R′ is called the Riemannian-Christoffel curvature tensor of first kind.

The associative curvature tensor R′ satisfies the following properties:

R′ is skew-symmetric in first two slot

i.e., R′(X, Y, Z, U) = − R′(Y,X,Z, U). (1.9)

R′ is skew-symmetric in last two slot

i.e., R′(X, Y, Z, U) = − R′(X, Y, U, Z). (1.10)

R′ is symmetric in two pair of slot

i.e., R′(X, Y, Z, U) = R′(Z,U,X, Y ). (1.11)

R′ satisfies Bianchi’s first identities

i.e., R′(X, Y, Z, U) + R′(Y, Z,X, U) + R′(Z,X, Y, U) = 0, (1.12)

and R′ satisfies Bianchi’s second identities

i.e., (∇X R′)(Y, Z, U, V ) + (∇Y R′)(Z,X,U, V ) + (∇Z R
′)(X, Y, U, V ) = 0. (1.13)

1.15 Ricci-Tensor

The tensor of type (0, 2) defined by

S(Y, Z)
def
= (C1

1R)(Y, Z) = −(C2
1R)(Z, Y ), (1.14)

9
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is called the Ricci tensor where C1
1 and C2

1 are the respective contractions. It is a

symmetric tensor,

i.e., S(X, Y ) = S(Y,X).

The linear map Q of type (1, 1) given by

g(QX, Y )
def
= S(X, Y ), (1.15)

is called a Ricci map. It is self adjoint,

i.e., g(QX, Y ) = g(X,QY ). (1.16)

The scalar curvature r of Mn at the point p is defined as

r
def
= (C1

1S). (1.17)

A Riemannian manifold Mn is said to be Einstein if

S(X, Y ) =
r

n
g(X, Y ). (1.18)

A Riemannian manifold Mn is said to be a flat manifold if

R(X, Y )Z = 0. (1.19)

1.16 Z-tensor

A generalized (0, 2) tensor defined by

Z(X, Y ) = S(X, Y ) + φg(X, Y ), (1.20)

where φ is a smooth function and S is the Ricci tensor is called the Z-tensor (Mantica

and Suh, 2012).

10
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1.17 Certain Curvature Tensors on a Riemannian

manifold

(A) Concircular curvature tensor:

The concircular curvature tensor C ′ of type (0, 4), is given by (Yano, 1940)

C ′(X, Y, Z, U) = R′(X, Y, Z, U)− r

n(n− 1)

[
g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)
]
. (1.21)

It satisfies the following algebraic properties

(i) C ′(X, Y, Z, U) = −C ′(Y,X,Z, U),

(ii) C ′(X, Y, Z, U) = −C ′(X, Y, U, Z),

(iii) C ′(X, Y, Z, U) = C ′(Z,U,X, Y ),

(iv) C ′(X, Y, Z, U) + C ′(Y, Z,X, U) + C ′(Z,X, Y, U) = 0,

where

C ′(X, Y, Z, U) = g(C(X, Y )Z,U).

(B) Conharmonic curvature tensor:

The conharmonic curvature tensor H ′ is defined as (Ishii, 1957)

H ′(X, Y, Z, U) = R′(X, Y, Z, U)− 1

(n− 2)

[
S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)
]
. (1.22)
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It satisfies the following properties

(i) H ′(X, Y, Z, U) = −H ′(Y,X,Z, U),

(ii) H ′(X, Y, Z, U) = −H ′(X, Y, U, Z),

(iii) H ′(X, Y, Z, U) = H ′(Z,U,X, Y ),

(iv) H ′(X, Y, Z, U) +H ′(Y, Z,X, U) +H ′(Z,X, Y, U) = 0,

where

H ′(X, Y, Z, U) = g(H(X, Y )Z,U).

(C) Projective curvature tensor:

The projective curvature tensor P ′ of type (0, 4) is defined by (Yano and Bochner,

1953)

P ′(X, Y, Z, U) = R′(X, Y, Z, U)− 1

(n− 1)

[
S(Y, Z)g(X,U)

− S(X,Z)g(Y, U)
]
. (1.23)

The projective curvature tensor P ′ satisfies

(i)P ′(X, Y, Z, U) = −P ′(Y,X,Z, U),

(ii)C1
1P = C1

2P = C1
3P = 0,

(iii)P ′(X, Y, Z, U) + P ′(Y, Z,X, U) + P ′(Z,X, Y, U) = 0,

where

P ′(X, Y, Z, U) = g(P (X, Y )Z,U).

(D) Pseudo-projective curvature tensor: The pseudo-projective curvature ten-

sor P̄ is defined by (Prasad, 2002)

P̄ (X, Y )Z = αR(X, Y )Z + β
[
S(Y, Z)X − S(X,U)Z]

− r

n

( α

n− 1
+ β

)[
g(Y, Z)X − g(X,Z)Y

]
, (1.24)
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where α and β are non zero constants.

It satisfies the following properties

(i)P̄ ′(X, Y, Z, U) = −P̄ ′(Y,X,Z, U),

(ii)P̄ ′(X, Y, Z, U) = P̄ ′(Y,X, U, Z),

where

P̄ ′(X, Y, Z, U) = g(P̄ (X, Y )Z,U).

(E) m-projective curvature tensor:

Pokhariyal and Mishra (1971) defined the m-projective curvature tensor W ∗′ of the

type (0, 4) by

W ∗′(X, Y, Z, U) = R′(X, Y, Z, U)− 1

2(n− 1)

[
g(X,U)S(Y, Z)− g(Y, U)S(X,Z)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)
]
. (1.25)

It satisfies the following algebraic properties

(i) W ∗′(X, Y, Z, U) = W ∗′(Z,U,X, Y ),

(ii) W ∗′(X, Y, Z, U) = −W ∗′(Y,X,Z, U),

(iii) W ∗′(X, Y, Z, U) = − W ∗′(X, Y, U, Z),

(iv) W ∗′(X, Y, Z, U) + W ∗′(Y, Z,X, U) + W ∗′(Z,X, Y, U) = 0,

where

W ∗′(X, Y, Z, U) = g(W ∗(X, Y )Z,U).

(F) W2 curvature tensor:

Pokhariyal and Mishra (1971) also defined the W2 curvature tensor of the type (0, 4)

as

W ′
2(X, Y, Z, U) = R′(X, Y, Z, U)− 1

(n− 1)

[
g(Y, Z)S(X,U)

− g(X,Z)S(Y, U)
]
. (1.26)
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It satisfies the following properties

(i) W ′
2(X, Y, Z, U) = −W ′

2(Y,X,Z, U),

(ii) W ′
2(X, Y, Z, U) + W ′

2(Y, Z,X, U) + W ′
2(Z,X, Y, U) = 0,

where

W ′
2(X, Y, Z, U) = g(W2(X, Y )Z,U).

(G) Conformal curvature tensor: The Weyl conformal curvature tensor C̄ ′ of

type (0, 4) is defined as (Yano and Kon, 1984)

C̄ ′(X, Y, Z, U) = R′(X, Y, Z, U)− 1

(n− 2)

[
g(Y, Z)S(X,U)− g(X,Z)S(Y, U)

+ S(Y, Z)g(X,U)− S(X,Z)g(Y, U)
]

+
r

(n− 1)(n− 2)

[
g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

]
. (1.27)

1.18 Almost Contact Metric Manifold

Let Mn(n = 2m + 1) be an odd-dimensional differentiable manifold. Let φ be a

tensor field of type (1,1), ζ a vector field, η a 1-form on Mn satisfying for arbitrary

vectors X, Y, Z

φ2X = −X + η(X)ζ, (1.28)

η(ζ) = 1, (1.29)

φ(ζ) = 0, (1.30)

η(φX) = 0, (1.31)
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and

rank(φ) = n− 1, (1.32)

then Mn is called an almost contact manifold (Sasaki, 1965) and the structure (φ, η, ζ)

is called an almost contact structure (Sasaki, 1960; Sasaki and Hatakeyama, 1961;

Hatakeyama et al., 1963).

An almost contact manifold Mn on which ∃ a Riemannian metric tensor g satis-

fying

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.33)

and

g(X, ζ) = η(X), (1.34)

is called an almost contact metric manifold and the structure (φ, ζ, η, g) is called an

almost contact metric structure (Sasaki, 1960).

The fundamental 2-form F ′ of an almost contact metric manifold Mn is defined

by

F ′(X, Y ) = g(φX, Y ). (1.35)

We have

F ′(X, Y ) = −F ′(Y,X). (1.36)

If in an almost contact metric manifold

2F ′(X, Y ) = (∇Xη)(Y )− (∇Y η)(X), (1.37)

then Mn is called an almost Sasakian manifold.

An almost contact metric manifold is called a Kenmotsu manifold (Kenmotsu,
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1972) if

∇Xζ = X − η(X)ζ, (1.38)

(∇Xφ)(Y ) = g(φX, Y )ζ − η(Y )φX, (1.39)

(∇Xη)(Y ) = g(X, Y )− η(X)η(Y ). (1.40)

In a Kenmotsu manifold, we have

R(X, Y )ζ = η(X)Y − η(Y )X, (1.41)

R(X, ζ)Y = g(X, Y )ζ − η(Y )X, (1.42)

R(ζ,X)ζ = X − η(X)ζ, (1.43)

S(X, ζ) = −(n− 1)η(X), (1.44)

S(ζ, ζ) = −(n− 1). (1.45)

1.19 Almost Para-Contact Metric Manifold

Let Mn be an n-dimensional C∞-manifold. If there exist a tensor field φ of the

type (1, 1), a vector field ζ and a 1-form η in Mn satisfying

φ2X = X − η(X)ζ, (1.46)

φ(ζ) = 0, η(ζ) = 1, (1.47)

then Mn is called an almost Para-contact manifold.
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Let g be a Riemannian metric satisfying

η(X) = g(X, ζ), η(φX) = 0, (1.48)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.49)

then the structure (φ, ζ, η, g) satisfying (1.46) - (1.49) is called an almost Para-contact

Riemannian structure. The manifold with such structure is called an almost Para-

contact Riemannian manifold (Sato and Matsumoto, 1976).

If we define F ′(X, Y ) = g(φX, Y ), then the following relations are satisfied:

F ′(X, Y ) = F ′(Y,X), (1.50)

and

F ′(φX, φY ) = F ′(X, Y ). (1.51)

An almost Para-contact metric manifold Mn is said to be Para-Sasakian or P -

Sasakian if (Adati and Matsumoto, 1977)

dη = 0, i.e., η is closed, (1.52)

(∇Xφ)(Y ) = −g(X, Y )ζ − η(Y )X + 2η(X)η(Y )ζ, (1.53)

∇Xζ = φX, (1.54)

rank(φ) = (n− 1), (1.55)

(∇Xη)(Y ) = g(φX, Y ) = g(φY,X), (1.56)

for any vector fields X, Y where ∇ denotes the covariant differentiation with respect

to g.
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Also, in a Para-Sasakian manifold, the following relations hold (Sato, 1976; Adati

and Matsumoto, 1977):

η(R(X, Y )Z) = g(X,Z)η(Y )− g(Y, Z)η(X), (1.57)

R(X, ζ)Y = g(X, Y )ζ − η(Y )X, (1.58)

R(ζ,X)ζ = X − η(X)ζ, (1.59)

R(X, Y )ζ = η(X)Y − η(Y )X, (1.60)

S(X, ζ) = −(n− 1)η(X), (1.61)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (1.62)

where R and S are the curvature and the Ricci tensors of the manifold respectively.

1.20 Recurrent Manifold

Let Mn be an n-dimensional smooth Riemannian manifold and χ(Mn) denotes

the set of all differentiable vector fields on Mn. Let X, Y ∈ χ(Mn); ∇XY denotes

the covariant derivative of Y with respect to X and R be the Riemannian curvature

tensor of type (1, 3). Then, Mn is said to be recurrent (Kobayashi and Nomizu, 1963)

if

(∇UR)(X, Y )Z = α(U)R(X, Y )Z, (1.63)

where X, Y, Z ∈ χ(Mn) and α is a non-zero 1-form known as recurrence parameter.

If the 1-form α is zero in (1.63), then the manifold reduces to a symmetric manifold

(Singh and Khan, 1999).

A Riemannian manifold (Mn, g) is said to be Ricci-recurrent (Patterson, 1952) if
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it satisfies the relation

(∇XS)(Y, Z) = A(X)S(Y, Z), (1.64)

for all X, Y, Z ∈ χ(Mn), where ∇ denotes the Levi-Civita connection and A is a

1-form on Mn. If the 1-form A vanishes identically on Mn, then a Ricci-recurrent

manifold becomes a Ricci-symmetric manifold.

A Riemannian manifold (Mn, g) is called a generalized recurrent manifold (De

and Guha, 1991) if its curvature tensor R satisfies the following condition:

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z], (1.65)

where A and B are 1-forms, B is non-zero and defined by

A(X) = g(X, ρ1), B(X) = g(X, ρ2), (1.66)

ρ1 and ρ2 are vector fields associated with 1-forms A and B respectively.

A Riemannian manifold (Mn, g) is said to be φ-recurrent (De et al., 2003) if there

exists a non-zero 1-form A such that

φ2((∇WR)(Y, Z)U) = A(W )R(Y, Z)U, (1.67)

for arbitrary vector fields Y, Z, U,W .

A Riemannian manifold (Mn, g) is called generalized φ-recurrent (Shaikh and

Ahmad, 2011) if its curvature tensor R satisfies

φ2((∇WR)(Y, Z)U) = A(W )R(Y, Z)U

+ B(W )[g(Z,U)Y − g(Y, U)Z], (1.68)

where A and B are 1-forms and B is non-zero.
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1.21 Weakly Symmetric Manifold

A non-flat Riemannian manifold (Mn, g), (n > 2) is called a weakly symmetric

manifold (Tamassy and Binh, 1989) if the curvature tensor R of type (1,3) satisfies

the condition

(∇XR)(Y, Z)U = A(X)R(Y, Z)U +B(Y )R(X,Z)U + C(Z)R(Y,X)U

+ D(U)R(Y, Z)X + g(R(Y, Z)U, P ), (1.69)

for all X, Y, Z, U ∈ χ(Mn), where ∇ denotes the Levi-Civita connection on (Mn, g)

and A,B,C,D and P are 1-forms and a vector field respectively which are non-zero

simultaneously.

A non-flat Riemannian manifold (Mn, g), (n > 2) is said to be weakly Ricci sym-

metric (Tamassy and Binh, 1993) if the Ricci tensor S satisfies the condition

(∇XS)(Y, Z) = α(X)S(Y, Z) + β(Y )S(X,Z) + γ(Z)S(Y,X), (1.70)

where α, β, γ are simultaneously non-zero.

1.22 Semi-symmetric Manifold

A Riemannian manifold (Mn, g) is known as a semi-symmetric manifold (Cartan,

1946) if it satisfies the relation

R(X, Y ) ·R(U, V )W = 0, (1.71)

for all X, Y, Z, U, V,W ∈ χ(Mn).

A Riemannian manifold Mn is said to be Ricci semi-symmetric (Cartan, 1946) if

the Ricci tensor S satisfies

R(X, Y ) · S(U, V ) = 0. (1.72)
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1.23 Pseudosymmetric Manifold

An n-dimensional Riemannian manifold Mn, (n > 2) is called a pseudosymmetric

manifold (Deszcz, 1992) if R ·R and Q(g,R) are linearly dependent, i. e.,

R ·R = LRQ(g,R) (1.73)

holds on the set UR = {x ∈ Mn : Q(g,R) 6= 0 at x}, where LR is some function on

UR.

Also, Mn is called Ricci pseudosymmetric and Ricci-generalized pseudosymmetric

manifold if

R · S = LSQ(g, S), (1.74)

and

R ·R = LGQ(S,R) (1.75)

holds on the set US = {x ∈Mn : Q(g, S) 6= 0 at x} and UG = {x ∈Mn : Q(S,R) 6=

0 at x} respectively, where LS and LG are some functions on US and UG.

1.24 Methodology

Differentiable manifold was defined on the basis of differential calculus, topology

and real analysis. With the help of differentiable manifold, we can study curves

and surfaces in n-dimensional Euclidean space. Riemannian manifold is a part of

differentiable manifold which we study by index free notation and tensor notation.

The fundamental theorem of Riemannian Geometry, Lie algebra, Ricci Identity, Ja-

cobi Identity, Bianchi first Identity, Bianchi second Identity, Contraction method,

Koszul’s formula and Levi-Civita connection are used in our study. The details of

some of the above mentioned methods are given as:
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(i) Ricci identity:

For a tensor field R of type (0, 1) on a Riemannian manifold (Mn, g),

([∇X∇Y ]u−∇[X,Y ]u)(Z) = −u(R(X, Y )Z),

([∇X ,∇Y ]P −∇[X,Y ]P )Z = R(X, Y )(P (Z))− P (R(X, Y )Z).

(ii) Jacobi identity:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, for X, Y, Z ∈ χ(Mn).

(iii) Bianchi’s First identity:

For a tensor field R of type (0, 1) on a Riemannian manifold (Mn, g),

R(X, Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

where X, Y, Z are vector fields.

(iv) Bianchi’s Second identity:

For a Riemannian connection ∇, we have

(∇XR)(Y, Z)W + (∇YR)(Z,X)W + (∇ZR)(Y,X)W = 0,

where R is the curvature tensor.

(v) Koszul’s Formula:

2g(∇XY, Z) = Xg(Y, Z) +Y g(Z,X)−Zg(X, Y ) + g([X, Y ], Z)− g([Y, Z], X) +

g([Z,X], Y )

for all X, Y, Z ∈ χ(Mn).

(vi) Fundamental Theorem of Riemannian Geometry:

Every Riemannian manifold (Mn, g) of dimension n admits a unique torsion

free connection.

1.25 Review of Literature

The idea of semi-symmetric linear connection on a differentiable manifold was

introduced by Friedman and Schouten (1924). Hayden (1932) defined a metric con-

nection with torsion on a Riemannian manifold. Yano (1970) studied some curvature
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and derivational conditions for semi-symmetric connections in Riemannian manifolds.

As a generalization of this, Golab (1975) introduced quarter symmetric connection

on a differentiable manifold.

A semi-symmetric metric connection was defined in an almost contact manifold by

Sharfuddin and Hussain (1976). Manifolds admitting semi-symmetric metric connec-

tion have been studied by Amur and Pujar (1978), Szabo (1982, 87), De and Biswas

(1997), De and Sengupta (2000), Murathan and Ozgur (2008), Yilmaz et al. (2011)

and other geometers. De and Sengupta (2000) investigated the curvature tensor of an

almost contact metric manifold admitting a type of semi-symmetric metric connec-

tion and studied the curvature properties of the conformal curvature tensor and the

projective curvature tensor. This was also studied by many geometers like Sasaki and

Hatakeyama (1961), Hatakeyama (1963), Hatakeyama et al. (1963), Oubina (1985).

Agashe and Chafle (1992) introduced a semi symmetric non-metric connection on

a Riemannian manifold and this was further studied by De and Kamilya (1994),

Pandey and Ojha (2001), Prasad and Kumar (2002), Chaturvedi and Pandey (2008),

Chaubey (2011) and others. Verma (2020) studied the properties of trans-Sasakian

manifolds admitting a semi-symmetric metric connection.

The notion of Para-Sasakian manifolds was first defined by Adati and Masumoto

in 1927. Kenmotsu (1972) initiated the study of Kenmotsu manifolds. Tamassy and

Binh (1989, 1993) introduced the notion of weakly symmetric manifolds and weakly

Ricci symmetric manifolds. In 2005, De and Ghosh defined the weakly concircular

Ricci symmetric manifolds. Shaikh and Hui initiated the notion of weakly concircular

symmetric manifolds in 2009. In 2015, Singh studied some properties of LP -Sasakian

manifolds with respect to a quarter symmetric non-metric connection. Prakasha and

Vikas (2015) studied some properties of weakly symmetric Kenmotsu manifolds ad-

mitting a quarter-symmetric metric connection. φ-symmetric LP -Sasakian manifolds

admitting semi-symmetric metric connection were studied by Shaikh and Hui in 2015.

In 2018, Hui and Lemence studied generalized φ-recurrent Kenmotsu manifolds with
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respect to quarter-symmetric metric connection. Some curvature properties of trans

Sasakian manifolds with respect to a quarter symmetric non-metric connection have

been studied by Lalmalsawma and Singh (2019). In 2020, Yadav et al. investigated

the properties of Kenmotsu manifolds with respect to a semi-symmetric metric con-

nection.

The idea of recurrent manifolds was introduced by Walker (1950). Several authors

have generalized the notion of recurrent manifolds such as 2-recurrent manifolds by

Lichnerowicz (1950), Ricci recurrent manifolds by Patterson (1952), projective 2-

recurrent manifolds by Ghosh (1970) and others. A tensor field of type (0, p) is said

to be recurrent if

(∇XT )(Y1, Y2, ...., Yp)T (Z1, Z2, ...., Zp)

−T (Y1, Y2, ...., Yp)(∇XT )(Z1, Z2, ...., Zp) = 0,

holds on (Mn, g).

De and Guha (1991) studied generalized recurrent manifold with the non-zero 1-

form A and another non-zero associated 1-form B. Such a manifold has been denoted

by GKn. If B becomes zero then the manifold GKn reduces to recurrent manifold

introduced by Ruse (1951) denoted by Kn. Khan (2004) introduced the notion of

generalized recurrent Sasakian manifolds to generalize the notion of recurrency. Gen-

eralized recurrent and generalized Ricci recurrent manifolds have been studied by

several authors such as Özgür (2007), Arslan et al. (2009), Mallick et al. (2013) and

many others. Rajesh Kumar et al. (2010) extended the study of semi-generalized

recurrent manifolds to LP- Sasakian manifolds and obtained some interesting results.

Archana Singh et al. (2016) extended this study to Para- Sasakian manifolds.

Prasad (2000) initiated the notion of semi-generalized recurrent manifold. A

Riemannian manifold (Mn, g) is called a semi-generalized recurrent manifold if its

curvature tensor R satisfies the condition

(∇XR)(Y, Z)W = A(X)R(Y, Z)W +B(X)g(Y, Z)W (1.76)
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where A,B are two 1-forms, B is non zero, P1 and P2 are two vector fields such that

g(X,P1) = A(X), g(X,P2) = B(X)

for any vector field X and ∇ denote the operator of covariant differentiation with

respect to g. Singh and Khan (2000) studied generalized recurrent and generalized

conformally recurrent manifolds. Generalized concircularly recurrent manifolds have

been studied by De and Gazi (2009). Generalized φ-recurrent and generalized concir-

cular φ-recurrent P -Sasakian manifold were studied by Singh (2014a). Singh (2014b)

studied m-projective recurrent Riemannian manifold. In 2014, De and Pal studied

some geometric properties of generalized m-projectively recurrent manifolds. Jaiswal

and Yadav (2016) studied generalized m-projective φ-recurrent trans-Sasakian man-

ifolds.

An n-dimensional Riemannian or semi-Riemannian manifold M(n > 2) is said to

be an Einstein manifold if it satisfies

S =
r

n
g, (1.77)

where S and r are the Ricci tensor and the scalar curvature respectively. Equation

(1.77) is called the Einstein metric condition (Besse, 1987). The notion of a quasi

Einstein manifold was introduced during the study of exact solutions to the Einstein

field equations and consideration of quasi-umbilical hypersurfaces (Chaki and Maity,

2000). A non-flat Riemannian manifold (M, g) is said to be quasi Einstein if its Ricci

tensor S satisfies

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (1.78)

∀X, Y ∈ T (M) where a and b are smooth functions, b 6= 0 called the associated

scalars, η is a non zero 1-form defined by

g(X, ζ) = η(X), g(ζ, ζ) = 1, (1.79)
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called the associated 1-form and the unit vector field ζ is called the generator of the

manifold. The study of quasi Einstein manifolds was continued by Chaki (2001),

Guha (2003), De and Ghosh (2004b) and several other geometers. The notion of

quasi Einstein manifolds have been extended to generalized quasi Einstein manifolds

(De and Ghosh, 2004a), mixed generalized quasi Einstein manifolds (Bhattacharya

and Debnath, 2004), generalized Einstein manifolds (Bejan and Binh, 2008) and

others. Özgür also studied generalized quasi Einstein manifolds (2006) and super

quasi Einstein manifolds (2009). The k-nullity distribution of a Riemannian manifold

M is defined as

N(k) : p→ Np(k) = {Z ∈ Tp(M) : R(X, Y )Z = k[g(Y, Z)X − g(X,Z)Y ]} (1.80)

for some smooth function (Tanno, 1988). If the generator ζ in a quasi Einstein

manifold M belongs to some k-nullity distribution, then M is called an N(k)-quasi

Einstein manifold (Tripathi and Kim, 2007).

In 2016, Mallick and De studied the derivation conditions R(ζ,X) · Z = 0 and

P (ζ,X) ·Z = 0 in an N(k)-quasi Einstein manifold, where P is the projective curva-

ture tensor. N(k)-quasi Einstein manifolds satisfying C(ζ,X) ·R = 0, R(ζ,X) ·W ∗ =

0 and W ∗(ζ,X) · S = 0, where C is the conformal curvature tensor have been stud-

ied by De et al. (2016). Also, in 2019, Chaubey studied W ∗-pseudosymmetric and

Z-recurrent N(k)-quasi Einstein manifolds. N(k)-quasi Einstein manifolds satisfying

certain curvature conditions have been studied by Tripathi and Kim (2007), Hossein-

zadeh and Taleshian (2012), Hui and Lemence (2013), De et al. (2016), Chaubey

(2017) and so on. In 2020, Ünal studied N(k)-quasi Einstein manifolds with respect

to a type of semi-symmetric metric connection.

In 2012, Mantica and Suh defined a (0, 2) tensor known as the Z-tensor as

Z(X, Y ) = S(X, Y ) + φg(X, Y ),

where φ is a scalar function. Mantica and Molinari (2012) generalized the notion
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of weakly Ricci symmetric manifolds to weakly Z-symmetric manifolds and studied

several geometric properties. The study of the Z-tensor was continued by Mantica

and Suh (2014), Mallick and De (2016) and other geometers.

In 1926, Cartan studied Riemannian symmetric spaces obtaining a classification.

A Riemannian manifold (Mn, g) is called a locally symmetric manifold if ∇R = 0,

where R is the Riemannian curvature tensor and ∇ is the Levi Civita connection.

The notion of locally symmetric manifolds have been extended to conformally sym-

metric manifolds (Chaki and Gupta, 1963), pseudo symmetric manifolds (Chaki,

1987), weakly symmetric manifolds (Tamassy and Binh, 1989) and so on. Prvanovic

(1995) introduced the notion of weakly symmetric manifolds. A non-flat Riemannian

manifold (Mn, g) is said to be weakly symmetric (Tamassy and Binh, 1989) if the

curvature tensor R satisfies equation (1.69). We denote such a manifold by (WS)n.

In a (WS)n, we have B = C and D = E (De and Bandhyopadhyay, 1999).

A Riemannian manifold (Mn, g)(n > 2) is said to be weakly Z-symmetric (Man-

tica and Molinari, 2012) if the Z tensor satisfies

(∇XZ)(V,W ) = A(U)Z(V,W ) +B(V )Z(W,U) + C(W )Z(U, V )

where A,B,C are the associated 1-forms. Various properties of the Z-tensor were

pointed out by Mantica and Suh (2012). This notion was further generalized by De

et al. (2015) to weakly cyclic Z-symmetric manifolds. The concept of Z-recurrent

form embraces both pseudo Z-symmetric and weakly Z-symmetric manifolds.

The study of cyclic parallel and Codazzi type Ricci tensor were introduced by

Gray (1978). A Riemannian manifold is said to have cyclic parallel Ricci tensor if S

is non-zero and

(∇XS)(U, V ) + (∇US)(X, V ) + (∇V S)(U,X) = 0. (1.81)

The Ricci tensor S in a Riemannian manifold is said to be of Codazzi type if S is not
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zero and satisfies

(∇XS)(U, V ) = (∇V S)(U,X). (1.82)

In 2014, De and Prajjwal studied almost pseudo Z-symmetric manifolds with cyclic

parallel Z-tensor and proved that an almost pseudo Z-symmetric manifold with Co-

dazzi type Z tensor is quasi-Einstein. Recently, De et al. (2015) obtained a condition

for a conformally flat weakly cyclic Z-symmetric manifold to be of quasi constant

curvature. Weakly cyclic generalized Z-symmetric manifolds were studied by Pandey

(2020).

28



Chapter 2

Chapter 2

Properties of Semi-symmetric

Metric Connection

In this chapter we studied weakly symmetric, weakly Ricci symmetric, weakly

concircular symmetric and weakly concircular Ricci symmetric properties of a Ken-

motsu manifolds with respect to a semi-symmetric metric connection. Weakly m-

projectively symmetric Kenmotsu manifold with respect to such a connection are

considered. Also, we studied weakly symmetric Para-Sasakian manifolds with re-

spect to a semi-symmetric metric connection.

2.1 Introduction

Definition 2.1 A semi-symmetric connection in a Riemmanian manifold is defined

by Friedman and Schouten (1924) as a connection ∇ whose torsion tensor T satisfies

T (X, Y ) = η(Y )X − η(X)Y (2.1)

where

g(X, ζ) = η(X) (2.2)

Singh, J. P. and Lalnunsiami, K. (2019). Some results on weakly symmetric Kenmotsu mani-
folds, Science and Technology Journal, 7 (1), 13-21.
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is a 1-form and X, Y ∈ χ(Mn) where χ(Mn) is the set of all differentiable vector

fields in Mn. In addition, if ∇g = 0 then ∇ is known as a semi-symmetric metric

connection.

Weakly symmetric and weakly Ricci symmetric manifolds have been defined by

Tamassy and Binh (1989, 1993).

Definition 2.2 A Riemannian manifold Mn(n > 2) is said to be a weakly concircular

symmetric manifold (Shaikh and Hui, 2009) if ∃ 1-forms B1, B2, B3, B4, B5 such that

(∇XC
′)(Y, Z, U, V ) = B1(X)C ′(Y, Z, U, V ) +B2(Y )C ′(X,Z, U, V )

+ B3(Z)C ′(Y,X, U, V ) +B4(U)C ′(Y, Z,X, V )

+ B5(V )C ′(Y, Z, U,X) (2.3)

where B1, B2, B3, B4, B5 are not simultaneously zero and the concircular curvature

tensor C ′ is defined by (1.21).

Definition 2.3 A Riemmanian manifold Mn(n > 2) is called a weakly concircular

Ricci symmetric manifold (De and Ghosh, 2005) if ∃ 1-forms A1, A2, A3, not simul-

taneously zero such that the concircular Ricci tensor P given by

P (X, Y ) =
n∑
i=1

C ′(ei, X, Y, ei) = S(X, Y )− r

n
g(X, Y ) (2.4)

is not identically zero and satisfies

(∇XP )(Y, Z) = A1(X)P (Y, Z) + A2(Y )P (X,Z) + A3(Z)P (Y,X) (2.5)

for all X, Y, Z ∈ χ(Mn).

Definition 2.4 A weakly m-projectively symmetric manifold is a non m-projectively

flat manifold Mn(n > 2) where

(∇XW
∗)(Y, Z, U, V ) = B1(X)W ∗(Y, Z, U, V ) +B2(Y )W ∗(X,Z, U, V )

+ B3(Z)W ∗(Y,X, U, V ) +B4(U)W ∗(Y, Z,X, V )

+ B5(V )W ∗(Y, Z, U,X) (2.6)
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where W ∗ is the m-projective curvature tensor defined by (1.25).

An n-dimensional differentiable manifold Mn(n > 2) is called a Kenmotsu mani-

fold (Kenmotsu, 1972) if ∃ an almost contact structure (φ, ζ, η, g) satisfying equations

(1.28)-(1.32) and (1.38)-(1.40) respectively.

An n-dimensional differentiable manifold Mn(n > 3) is called a Para-Sasakian

manifold (Adati and Matsumoto, 1977) if it admits an almost paracontact structure

(φ, ζ, η, g) satisfying (1.46)-(1.49) and (1.53)-(1.56) respectively.

2.2 Semi-symmetric metric connection in a Ken-

motsu manifold

A semi-symmetric metric connection in a Kenmotsu manifold is given by Yano

(1970) as

∇̃XY = ∇XY + η(Y )X − g(X, Y )ζ. (2.7)

We obtain a relation between the Riemmanian curvature tensor R with respect

to the Levi-Civita connection ∇ and the curvature tensor R̃ with respect to the

semi-symmetric metric connection ∇̃ as (Prakasha and Vikas, 2013)

R̃(X, Y )Z = R(X, Y )Z − 3[g(Y, Z)X − g(X,Z)Y ] + 2[η(Y )X

− η(X)Y ]η(Z)− 2[g(X,Z)η(Y )− g(Y, Z)η(X)]ζ. (2.8)

On contracting equation (2.8), we get

S̃(X, Y ) = S(X, Y )− (3n− 5)g(X, Y ) + 2(n− 2)η(X)η(Y ), (2.9)

where S̃ and S are the Ricci tensors with respect to ∇̃ and ∇ respectively.

Again by contraction, equation (2.9) reduces to

r̃ = r − 2(n− 1), (2.10)
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where r̃ and r are the scalar curvatures with respect to ∇̃ and ∇ respectively.

Making use of equations (1.28)-(1.31), (1.41)-(1.45), we get

R̃(X, Y )ζ = 2
[
η(X)Y − η(Y )X

]
, (2.11)

R̃(X, ζ)Y = 2
[
g(X, Y )ζ − η(Y )X

]
, (2.12)

R̃(ζ,X)ζ = 2
[
X − η(X)

]
, (2.13)

S̃(X, ζ) = −2(n− 1)η(X), (2.14)

S̃(ζ, ζ) = −2(n− 1). (2.15)

2.3 Weakly concircular symmetric Kenmotsu man-

ifolds with respect to a semi-symmetric metric

connection

Consider a Kenmotsu manifold which is weakly concircular symmetric with re-

spect to ∇̃. Then,

(∇̃XC̃ ′)(Y, Z, U, V ) = B1(X)C̃ ′(Y, Z, U, V ) +B2(Y )C̃ ′(X,Z, U, V )

+ B3(Z)C̃ ′(Y,X, U, V ) +B4(U)C̃ ′(Y, Z,X, V )

+ B5(V )C̃ ′(Y, Z, U,X), (2.16)

where C̃ ′ is the concircular curvature tensor with respect to ∇̃ which is not identically

zero.

In a weakly concircular symmetric Kenmotsu manifold with respect to a semi-

symmetric metric connection, B2 = B3 and B4 = B5. So equation (2.16) can be
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written as

(∇̃XC̃ ′)(Y, Z, U, V ) = B1(X)C̃ ′(Y, Z, U, V ) +B2(Y )C̃ ′(X,Z, U, V )

+ B2(Z)C̃ ′(Y,X, U, V ) +B4(U)C̃ ′(Y, Z,X, V )

+ B4(V )C̃ ′(Y, Z, U,X). (2.17)

Substituting Y = V = ζ in equation (2.17) and taking summation over i, 1 ≤ i ≤

n, we get

(∇̃X S̃)(Z,U)− dr̃(X)

n
g(Z,U) = B1(X)

[
S̃(Z,U)− r̃

n
g(Z,U)

]
+ B2(Z)

[
S̃(X,U)− r̃

n
g(X,U)

]
+ B4(U)

[
S̃(Z,X)− r̃

n
g(Z,X)

]
+ B2(R̃(X,Z)U) +B4(R̃(X,U)Z)

− r̃

n(n− 1)

[
g(Z,U){B2(X) +B4(X)}

− B2(Z)g(X,U)−B4(U)g(X,Z)

]
. (2.18)

Taking X = Z = U = ζ, equation (2.18) reduces to

B1(ζ) +B2(ζ) +B4(ζ) =
dr̃(ζ)

r̃ + 2n(n− 1)
, (2.19)

provided r̃ + 2n(n− 1) 6= 0.

Substituting X,Z by ζ in equation (2.18) and using equation (2.19), we have

B4(U) = B4(ζ)η(U). (2.20)

Similarly, on substitution of X,U by ζ in equation (2.18) and using equation

(2.19), we obtain

B2(Z) = B2(ζ)η(Z). (2.21)

Taking Z = U = ζ in equation (2.18) and using equations (2.11), (2.19), (2.20)

33



Chapter 2

and (2.21) we get

B1(X) =
dr̃(X)

r̃ + 2n(n− 1)
−
[
B2(ζ) +B4(ζ)

]
η(X). (2.22)

This leads to the theorem:

Theorem 2.1 In a weakly concircular symmetric Kenmotsu manifold admitting a

semi-symmetric metric connection ∇̃, the relation between the associated 1-forms

B1, B2, B4 is given by equation (2.22).

2.4 On weakly concircular Ricci symmetric Ken-

motsu manifolds admitting a semi-symmetric

metric connection

Consider a weakly concircular Ricci symmetric Kenmotsu manifold admitting a

semi-symmetric metric connection ∇̃. We have,

(∇̃XP̃ )(Y, Z) = A1(X)P̃ (Y, Z) + A2(Y )P̃ (X,Z) + A3(Z)P̃ (Y,X), (2.23)

where

P̃ (X, Y ) =
n∑
i=1

C̃ ′(ei, X, Y, ei)

= S̃(X, Y )− r̃

n
g(X, Y ) (2.24)

is not identically zero for all X, Y, Z ∈ χ(Mn).

Suppose equation (2.23) holds. Then, we have

(∇̃X S̃)(Y, Z)− dr̃(X)

n
g(Y, Z) = A1(X)

[
S̃(Y, Z)− r̃

n
g(Y, Z)

]
+ A2(Y )

[
S̃(X,Z)− r̃

n
g(X,Z)

]
+ A3(Z)

[
S̃(Y,X)− r̃

n
g(Y,X)

]
. (2.25)
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Replacing X, Y, Z by ζ in equation (2.25), we obtain

A1(ζ) + A2(ζ) + A3(ζ) =
dr̃(ζ)

r̃ + 2n(n− 1)
, (2.26)

provided r̃ + 2n(n− 1) 6= 0.

Taking X = Y = ζ in equation (2.25) and using (2.26), we get

A3(Z) = A3(ζ)η(Z). (2.27)

Similarly, replacing X,Z by ζ and using equation (2.26), (2.25) becomes

A2(Y ) = A2(ζ)η(Y ), (2.28)

and replacing Y, Z by ζ in equation (2.25) and using (2.26), we get

A1(X) =
dr̃(X)

r̃ + 2n(n− 1)
+
[
A1(ζ)− dr̃(ζ)

r̃ + 2n(n− 1)

]
η(X), (2.29)

provided r̃ + 2n(n− 1) 6= 0.

Adding equations (2.27), (2.28) and (2.29), we have

A1(X) + A2(X) + A3(X) =
dr̃(X)

r̃ + 2n(n− 1)
, (2.30)

provided r̃ + 2n(n− 1) 6= 0.

Theorem 2.2 The sum of the associated 1-forms A1, A2, A3 in a weakly concircular

Ricci symmetric Kenmotsu manifold which admits a semi-symmetric metric connec-

tion ∇̃ is given by equation (2.30).
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2.5 Weakly m-projectively symmetric Kenmotsu

manifolds admitting a semi-symmetric metric

connection

Suppose a Kenmotsu manifold is weakly m-projectively symmetric with respect

to ∇̃. Then, we have

(∇̃XW̃
∗)(Y, Z, U, V ) = A1(X)W̃ ∗(Y, Z, U, V ) + A2(Y )W̃ ∗(X,Z, U, V )

+ A3(Z)W̃ ∗(Y,X, U, V ) + A4(U)W̃ ∗(Y, Z,X, V )

+ A5(V )W̃ ∗(Y, Z, U,X), (2.31)

where

W̃ ∗′(X, Y, Z, U) = R̃′(X, Y, Z, U)− 1

2(n− 1)

[
g(X,U)S̃(Y, Z)− g(Y, U)S̃(X,Z)

+ S̃(X,U)g(Y, Z)− S̃(Y, U)g(X,Z)
]
, (2.32)

for all vector fields X, Y, Z, U, V ∈ χ(Mn) and A1, A2, A3, A4, A5 are 1-forms, not

simultaneously zero.

In a weakly m-projectively symmetric Kenmotsu manifold admitting a semi-

symmetric metric connection, A2 = A3, A4 = A5. So equation (2.31) can be written

as

(∇̃XW̃
∗)(Y, Z, U, V ) = A1(X)W̃ ∗(Y, Z, U, V ) + A2(Y )W̃ ∗(X,Z, U, V )

+ A2(Z)W̃ ∗(Y,X, U, V ) + A4(U)W̃ ∗(Y, Z,X, V )

+ A4(V )W̃ ∗(Y, Z, U,X). (2.33)

From equation (2.32), we can obtain

n∑
i=1

W̃ ∗(ei, Y, Z, ei) =
n

2(n− 1)

[
S̃(Y, Z)− r̃

n
g(Y, Z)

]
. (2.34)
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Also,

n∑
i=1

W̃ ∗(X, Y, ei, ei) = 0, (2.35)

n∑
i=1

W̃ ∗(ei, ei, ei, ei) = 0. (2.36)

The m-projective curvature tensor W̃ ∗ with respect to ∇̃ satisfies

W̃ ∗(X, Y, Z, U) + W̃ ∗(Y, Z,X, U) + W̃ ∗(Z,X, Y, U) = 0, (2.37)

W̃ ∗(X, Y, U, Z) + W̃ ∗(Y, Z, U,X) + W̃ ∗(Z,X,U, Y ) = 0. (2.38)

Nature of the scalar curvature with respect to semi-symmetric metric

connection.

Let Q̃ be the Ricci operator with respect to ∇̃ defined by

g(Q̃X, Y ) = S̃(X, Y ).

On covariant differentiation of equation (2.32) along X and using Bianchi identity,

we obtain

(∇̃XW̃
∗)(Y, Z, U, V ) + (∇̃Y W̃

∗)(Z,X,U, V ) + (∇̃ZW̃
∗)(X, Y, U, V )

= − 1

2(n− 1)

[
{(∇̃X S̃)(Z,U)− (∇̃ZS̃)(X,U)}g(Y, V )

+ {(∇̃Y S̃)(X,U)− (∇̃X S̃)(Y, U)}g(Z, V )

+ {(∇̃ZS̃)(Y, U)− (∇̃Y S̃)(Z,U)}g(X, V )

+ {(∇̃X S̃)(Y, V )− (∇̃Y S̃)(X, V )}g(Z,U)

+ {(∇̃Y S̃)(Z, V )− (∇̃ZS̃)(Y, V )}g(X,U)

]
. (2.39)

Suppose S̃ is a Codazzi tensor, then

(∇̃X S̃)(Y, Z) = (∇̃Y S̃)(X,Z). (2.40)
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Using (2.40) in (2.39), we get

(∇̃XW̃
∗)(Y, Z, U, V ) + (∇̃Y W̃

∗)(Z,X,U, V ) + (∇̃ZW̃
∗)(X, Y, U, V ) = 0. (2.41)

Suppose equation (2.41) holds. Then, clearly the Ricci tensor S̃ is of Codazzi

type. Thus, we can state the theorem:

Theorem 2.3 The necessary and sufficient condition for the Ricci tensor S̃ in a

weakly m-projectively symmetric Kenmotsu manifold with respect to the semi-symmetric

metric connection ∇̃ to be of Codazzi type is that the relation (2.41) holds.

Suppose S̃ is Codazzi. Then, equation (2.41) holds. Using (2.33) in equation

(2.41), we get

λ(X)W̃ ∗(Y, Z, U, V ) + λ(Y )W̃ ∗(Z,X,U, V ) + λ(Z)W̃ ∗(X, Y, U, V ) = 0, (2.42)

where λ(X) = A1(X)− 2A2(X), for all X, Y, Z, U, V ∈ χ(Mn).

Putting Y = V = ei and taking summation over i, 1 ≤ i ≤ n, (2.42) reduces to

n

2(n− 1)

[
λ(X){S̃(Z,U)− r̃

n
g(Z,U)} − λ(Z){S̃(X,U)− r̃

n
g(X, V )}

]
= 0. (2.43)

Again, substituting X = U = ζ in (2.43) and summing over i, 1 ≤ i ≤ n, we get

λ(Q̃Z) =
r̃

n
λ(Z), which implies that

S̃(Z, T ) =
r̃

n
g(Z, T ). (2.44)

This leads to the theorem:

Theorem 2.4 If the Ricci tensor S̃ in a weakly m-projectively symmetric Kenmotsu

manifold admitting a semi-symmetric metric connection ∇̃ is of Codazzi type, then
r̃

n

is an eigenvalue of S̃ corresponding to the eigenvector T defined by g(X,T ) = λ(X).
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2.6 Semi-symmetric metric connection in a Para-

Sasakian manifold

A semi-symmetric metric connection ∇̃ in a Para-Sasakian manifold is given by

equation (2.7). A relation between the curvature tensor R̃ with respect to the semi-

symmetric metric connection ∇̃ and the curvature tensor R with respect to the Levi-

Civita connection ∇ in such a manifold is obtained as (Barman, 2014)

R̃(X, Y )Z = R(X, Y )Z + g(X,φZ)Y − η(X)η(Z)Y

+ η(Y )η(Z)X − g(Y, φZ)X + g(X,Z)Y

− g(Y, Z)X + g(X,Z)φY − g(Y, Z)φX

− g(X,Z)η(Y )ζ + g(Y, Z)η(X)ζ. (2.45)

By suitable contraction of (2.45), we get

S̃(Y, Z) = S(Y, Z)− (n− 2)g(Y, φZ) + (n− 2)η(Y )η(Z)

− (n− 2 + ψ)g(Y, Z), (2.46)

where S̃ and S are the Ricci tensors of ∇̃ and ∇ respectively and ψ = trace of φ =∑n
i=1 g(ei, φei). Also, by contraction of (2.46) we obtain,

r̃ = r − (2n− 1)ψ − (n− 1)(n− 2), (2.47)

where r̃ is the scalar curvature of the manifold with respect to ∇̃.

From equation (2.46) we can show that S̃ is symmetric. By doing suitable cal-

culations and using the relations (1.46) - (1.48), (1.57) - (1.61), (2.45) and (2.46), it

follows that

S̃(Y, ζ) = −(n− 1 + ψ)η(Y ), (2.48)

R̃(X, Y )ζ = η(X)(Y + φY )− η(Y )(X + φX), (2.49)
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R̃(X, ζ)Y = g(X, Y + φY )ζ − η(Y )(X + φX). (2.50)

2.7 Weakly symmetric Para-Sasakian manifolds with

respect to semi-symmetric metric connection

Let us consider a weakly symmetric Para-Sasakian manifold admitting a semi-

symmetric metric connection ∇̃. Then

(∇̃XR̃)(Y, Z)V = A(X)R̃(Y, Z)V +B(Y )R̃(X,Z)V + C(Z)R̃(Y,X)V

+ D(V )R̃(Y, Z)X + g(R̃(Y, Z)V,X)P (2.51)

∀X, Y, Z, V ∈ χ(Mn).

By suitable contraction of (2.51), we obtain

(∇̃X S̃)(Z, V ) = A(X)S̃(Z, V ) +B(R̃(X,Z)V ) + C(Z)S̃(X, V )

+ D(V )S̃(X,Z) + E(R̃(X, V )Z), (2.52)

where E(X) = g(X,P ). Putting V = ζ in (2.52) and using (2.47), (2.49), (2.50) and

(2.51) we get

(∇̃X S̃)(Z, ζ) = −(n− 1 + ψ)[A(X)η(Z) + C(Z)η(X)]

+ η(X)[B(Z) +B(φZ)]− η(Z)[B(X) +B(φX)]

+ D(ζ)S̃(X,Z) + E(ζ)g(X,Z + φZ)

− η(Z)[E(X) + E(φX)]. (2.53)

We know that

(∇̃X S̃)(Z, ζ) = ∇̃X S̃(Z, ζ)− S̃(∇̃XZ, ζ)− S̃(Z, ∇̃Xζ). (2.54)

Using equations (1.46) - (1.49), (1.52), (1.54), (2.45) and (2.49) in (2.54), we
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obtain

(∇̃X S̃)(Z, ζ) = −S̃(Z,X + φX)− (n− 1 + ψ)g(Z,X + φX). (2.55)

Comparing (2.53) and (2.55), we have

−S̃(Z,X + φX)− (n− 1 + ψ)g(Z,X + φX) = −(n− 1 + ψ)

[A(X)η(Z) + C(Z)η(X)] + η(X)[B(Z) +B(φZ)]

−η(Z)[B(X) +B(φX)] +D(ζ)S̃(X,Z) + E(ζ)g(X,Z + φZ)

−η(Z)[E(X) + E(φX)]. (2.56)

Putting X = Z = ζ in (2.56) and using (1.46) - (1.49) and (2.49), we obtain

−(n− 1 + ψ)[A(ζ) + C(ζ) +D(ζ)] = 0. (2.57)

Since n > 3, this implies

A(ζ) + C(ζ) +D(ζ) = 0. (2.58)

Also by replacing Z with ζ in (2.52) and doing suitable calculations, we obtain

−S̃(V,X + φX)− (n− 1 + ψ)g(V,X + φX) = −(n− 1 + ψ)

[A(X)η(V ) +D(V )η(X)] + C(ζ)S̃(X, V ) +B(ζ)g(X, V + φV )

−[B(X) +B(φX)]η(V ) + [E(V ) + E(φV )]η(X)

−[E(X) + E(φX)]η(V ). (2.59)

Substituting V = ζ in (2.59) and using (1.46) - (1.49) and (2.49), we get

−(n− 1 + ψ)[A(X)η(V ) + C(ζ)η(X) +D(ζ)η(X)] + η(X)[B(ζ)

+E(ζ)]− [B(X) +B(φX)]− [E(X) + E(φX)] = 0. (2.60)
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Similarly putting X = ζ in (2.60), we have

−(n− 1 + ψ)[A(ζ)η(V ) + C(ζ)η(V ) +D(V )]

+[E(V ) + E(φV )]− E(ζ)η(V ) = 0. (2.61)

Substituting V = X in (2.61), we obtain

−(n− 1 + ψ)[A(ζ)η(X) + C(ζ)η(X) +D(X)]

+[E(X) + E(φX)]− E(ζ)η(X) = 0. (2.62)

Adding (2.61) and (2.62) and using (2.59), we get

−(n− 1 + ψ)[A(X) +D(X)]− (n− 1 + ψ)C(ζ)η(X)

+B(ζ)η(X)− [B(X) +B(φX)] = 0. (2.63)

Substituting X = ζ in (2.57) and then using (1.46) - (1.49) and (2.49), we get

−(n− 1 + ψ)[A(ζ)η(Z) +D(ζ)]η(Z)− (n− 1 + ψ)C(Z)

+[B(Z) +B(φZ)]− η(Z)B(ζ) = 0. (2.64)

Substituting Z by X in (2.64), we have

−(n− 1 + ψ)[A(ζ)η(X) +D(ζ)η(X) + C(X)]

+[B(X) +B(φX)]− η(X)B(ζ) = 0. (2.65)

Taking the sum of (2.63) and (2.65) and using (2.58), we get

−(n− 1 + ψ)[A(X) + C(X) +D(X)] = 0. (2.66)

Since n > 3, this implies

A(X) + C(X) +D(X) = 0,

for any X in Mn. This leads to the following theorem:

Theorem 2.5 In a weakly symmetric Para-Sasakian manifold Mn(n > 3) admitting
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a semi-symmetric metric connection ∇̃, the sum of the associated 1- forms A,C and

D vanishes everywhere.

2.8 Weakly Ricci symmetric Para-Sasakian man-

ifolds with respect to semi-symmetric metric

connection

Let Mn be a weakly Ricci symmetric Para-Sasakian manifold with respect to ∇̃.

Then,

(∇̃X S̃)(Y, Z) = α(X)S̃(Y, Z) + β(Y )S̃(X,Z) + γ(Z)S̃(X, Y ), (2.67)

∀X, Y, Z ∈ χ(Mn).

Putting Z = ζ in (2.67), we get

(∇̃X S̃)(Y, ζ) = α(X)S̃(Y, ζ) + β(Y )S̃(X, ζ) + γ(ζ)S̃(X, Y ). (2.68)

By (2.55) and (2.68), we have

−S̃(Y,X + φX) − (n− 1 + ψ)g(X + φX, Y ) = α(X)S̃(Y, ζ)

+ β(Y )S̃(X, ζ) + γ(ζ)S̃(X, Y ). (2.69)

Putting X = Y = ζ in (2.69) and by using (1.46) - (1.49) and (2.48), we get

−(n− 1 + ψ)[α(ζ) + β(ζ) + γ(ζ)] = 0.

Since n > 3, we have

α(ζ) + β(ζ) + γ(ζ) = 0. (2.70)

Putting Y = ζ in (2.69) and using (1.46) - (1.49) and (2.49), we get

α(X) = α(ζ)η(X). (2.71)
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Similarly,

β(X) = β(ζ)η(X), (2.72)

γ(X) = γ(ζ)η(X). (2.73)

Adding equations (2.71), (2.72) and (2.73), we get

α(X) + β(X) + γ(X) = 0.

for all vector fields X ∈Mn. This gives the following theorem:

Theorem 2.6 There does not exist a weakly Ricci symmetric Para-Sasakian mani-

fold Mn(n > 3) admitting a semi-symmetric metric connection unless the sum of the

associated 1-forms α, β and γ is zero everywhere.

Suppose a weakly Ricci-symmetric Para-Sasakian manifold admitting a semi-symmetric

metric connection ∇̃ is Ricci-recurrent. This implies

(∇̃X S̃)(Y, Z) = α(X)S̃(Y, Z). (2.74)

From (2.74), we have

β(Y )S̃(X,Z) + γ(Z)S̃(X, Y ) = 0. (2.75)

Putting X = Y = Z = ζ in (2.75), we get

β(ζ) + γ(ζ) = 0, (since n > 3). (2.76)

Putting X = Y = ζ in (2.75), we have

γ(Z) = −η(Z)γ(ζ). (2.77)

Similarly,

β(Z) = −η(Z)β(ζ). (2.78)
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Therefore, by adding (2.77) and (2.78), we get

γ(Z) + β(Z) = 0, (2.79)

for any vector field Z ∈Mn. This yields the following theorem:

Theorem 2.7 In a weakly Ricci symmetric Para-Sasakian manifold Mn(n > 3) ad-

mitting a semi-symmetric metric connection ∇̃ where the connection ∇̃ is Ricci-

recurrent, the 1-forms β and γ are in the opposite direction.

Consider a weakly concircular Ricci symmetric Para-Sasakian manifold admitting a

semi-symmetric metric connection ∇̃. We have,

(∇̃XP̃ )(Y, Z) = α(X)P̃ (Y, Z) + β(Y )P̃ (X,Z) + γ(Z)P̃ (Y,X). (2.80)

Then by the definition and equation (2.80), we have

(∇̃X S̃)(Y, Z) − dr̃

n
g(Y, Z) = α(X)

[
S̃(Y, Z)− r̃

n
g(Y, Z)

]
+ β(Y )

[
S̃(X,Z)− r̃

n
g(X,Z)

]
+ γ(Z)

[
S̃(Y,X)− r̃

n
g(Y,X)

]
. (2.81)

Setting X = Y = Z = ζ in (2.81), we have

α(ζ) + β(ζ) + γ(ζ) =
dr̃

r̃ + n(n− 1 + ψ)
. (2.82)

Substituting X = Y = ζ in (2.81), we have

γ(Z) = γ(ζ)η(Z), (2.83)

provided r̃ + n(n− 1 + ψ) 6= 0.

Similarly,

β(Z) = β(ζ)η(Z), (2.84)

provided r̃ + n(n− 1 + ψ) 6= 0.
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Put Y = Z = ζ in (2.81), we have

α(X) =
dr̃(X)

r̃ + n(n− 1 + ψ)
+

[
α(ζ)− dr̃(ζ)

r̃ + n(n− 1 + ψ)

]
η(X). (2.85)

By adding (2.83), (2.84) and (2.85), we get

α(X) + β(X) + γ(X) =
dr̃(X)

r̃ + n(n− 1 + ψ)

=
dr(X)

r − (n− 1)(ψ + 2(n− 1))
, (2.86)

for any X ∈Mn. This leads to the following:

Theorem 2.8 The sum of the associated 1-forms in a weakly concircular Ricci sym-

metric Para-Sasakian manifold Mn(n > 3) admitting a semi-symmetric metric con-

nection ∇̃ is zero if the scalar curvature is constant and r̃ + n(n− 1 + ψ) 6= 0.

2.9 Example of a 3-dimensional weakly symmet-

ric and weakly Ricci symmetric Para-Sasakian

manifold admitting a semi-symmetric metric

connection

In this section, we construct an example of a 3-dimensional Para-Sasakian mani-

fold admitting a semi-symmetric metric connection which supports Theorems 2.5 and

2.6.

Consider a 3 - dimensional manifold M = {(x, y, z) : (x, y, z) ∈ R3}. We choose

the vector fields

e1 = ex
∂

∂y
, e2 = ex(

∂

∂y
+

∂

∂z
), e3 = − ∂

∂x
,

which are linearly independent at each point of M. Let g be the Riemannian metric
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defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any vector field Z on M . Define

the (1, 1) tensor field φ as φ(e1) = e1, φ(e2) = e2, φ(e3) = 0. By linearity property of

φ and g, we have

η(e3) = 1, φ2X = X − η(X)e3,

g(φX, φY ) = g(X, Y )− η(X)η(Y ),

for all vector fields X, Y on M . Thus for e3 = ζ, (φ, ζ, η, g) is an almost paracontact

structure on M .

Let ∇ be the Levi- Civita connection with respect to g. Then, we have

[e1, e2] = 0, [e2, e3] = e2, [e1, e3] = e1.

The Riemannian connection ∇ of the metric g is given by Koszul’s formula,

2g(∇XY, Z) = Xg(Y, Z) + Y g(X,Z)− Zg(X, Y )

+g([X, Y ], Z)− g([Y, Z], X) + g([Z,X], Y ),

which yields

∇e1e2 = 0, ∇e1e3 = e1, ∇e1e1 = −e3,

∇e2e3 = e2, ∇e2e2 = −e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above, it can be easily seen that (φ, ζ, η, g) is a Para-Sasakian structure

on M . Hence, (M,φ, ζ, η, g) is a 3-dimensional Para-Sasakian manifold. By using the
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above results we can easily obtain,

R(e1, e2)e2 = −e1, R(e1, e3)e3 = −e1, R(e2, e1)e1 = −e2,

R(e2, e3)e3 = −e2, R(e3, e1)e1 = −e3, R(e3, e2)e2 = −e3,

R(e1, e2)e3 = 0, R(e3, e2)e1 = 0, R(e3, e1)e2 = 0.

The definition of Ricci tensor in a 3 - dimensional manifold implies that

S(X, Y ) =
3∑
i=1

g(R(ei, X)Y, ei). (2.87)

Using the components of the curvature tensor in (2.87) we get

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2,

S(e1, e2) = 0, S(e2, e3) = 0, S(e3, e1) = 0.

The semi-symmetric metric connection ∇̃ is given by (2.45) which yields,

∇̃e1e2 = 0, ∇̃e1e3 = 2e1, ∇̃e1e1 = −2e3,

∇̃e2e3 = 2e2, ∇̃e2e2 = −2e3, ∇̃e2e1 = 0,

∇̃e3e3 = 0, ∇̃e3e2 = 0, ∇̃e3e3 = 0.

By using (2.46), we have

R̃(e1, e2)e2 = −4e1, R̃(e1, e3)e3 = −2e1, R̃(e2, e1)e1 = −4e2,

R̃(e2, e3)e3 = −2e2, R̃(e3, e1)e1 = −2e1, R̃(e3, e2)e2 = −2e2,

R̃(e1, e2)e3 = 0, R̃(e3, e2)e3 = 0, R̃(e3, e1)e2 = 0.

Using the components of the curvature tensor, we can easily calculate the com-

ponents of the Ricci tensor with respect to the Levi-Civita connection and the semi-

symmetric metric connection, respectively as,

S̃(e1, e1) = −6, S̃(e2, e2) = −6, S̃(e3, e3) = −4,

S̃(e1, e2) = 0, S̃(e2, e3) = 0, S̃(e3, e1) = 0.
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Using the above components of the curvature tensor with respect to the semi-

symmetric metric connection and equation (2.51), we get

A(ei) + C(ei) +D(ei) = 0, ∀i = 1, 2, 3.

Also, using the above components of the Ricci tensor with respect to the semi-

symmetric metric connection and equation (2.67), we get

α(ei) + β(ei) + γ(ei) = 0, ∀i = 1, 2, 3.

Thus, this is an example of a 3-dimensional Para-Sasakian manifold admitting

a semi-symmetric metric connection which is weakly symmetric and weakly Ricci-

symmetric.
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Chapter 3

Semi-generalized W3 Recurrent

Manifolds

In this chapter we considered semi-generalized W3 recurrent manifolds. We ob-

tained a necessary and sufficient condition for the scalar curvature to be constant

in such a manifold. Later Ricci symmetric and decomposable semi-generalized W3

recurrent manifolds are studied. Also, we obtained a sufficient condition for such

a manifold to be quasi Einstein. Finally, we constructed two examples of a semi-

generalized W3 recurrent manifold.

3.1 Introduction

A Riemannian manifold (Mn, g) is called a semi-generalized recurrent manifold if

its curvature tensor R satisfies equation (1.76) where A,B are two 1-forms, B is non

zero, P1 and P2 are two vector fields defined by

g(X,P1) = A(X), g(X,P2) = B(X)

for any vector field X and ∇ denote the operator of covariant differentiation with

respect to g. We considered a non-flat Riemannian manifold (Mn, g)(n > 2) whose
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W3 curvature tensor satisfies

(∇XW3)(Y, Z, U, V ) = α(X)W3(Y, Z, U, V ) + β(X)g(Z,U)g(Y, V ), (3.1)

where α, β are 1-forms, β is non-zero and W3 is the W3 curvature tensor defined by

(Pokhariyal, 1973)

W3(Y, Z, U, V ) = R(Y, Z, U, V ) +
1

(n− 1)

[
g(Z,U)S(Y, V )

−g(Z, V )S(Y, U)
]
. (3.2)

Such a manifold is called a semi-generalized W3 recurrent manifold.

Let Q denote the symmetric endomorphism of the tangent space at each point of

Mn corresponding to the Ricci tensor S such that

S(X, Y ) = g(QX, Y ) (3.3)

for every vector fields X and Y .

Chaki and Maity (2000) introduced the notion of quasi Einstein manifold. A non-

flat Riemannian manifold (Mn, g)(n > 2) is called a quasi Einstein manifold if S is

not identically zero and satisfies

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (3.4)

where a, b(b 6= 0) are scalars and η is a non-zero 1-form defined by

η(X) = g(X, ρ),

where ρ is a unit vector field.
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3.2 Necessary and sufficient condition for the scalar

curvature to be constant in a semi-generalized

W3 recurrent manifold

From equations (3.1) and (3.2), we have

(∇XR)(Y, Z, U, V ) = α(X)R(Y, Z, U, V ) +
1

(n− 1)

[
α(X)

{
g(Z,U)S(Y, V )

−g(Z, V )S(Y, U)
}
−
{
g(Z,U)(∇XS)(Y, V )

−g(Z, V )(∇XS)(Y, U)
}]

+ β(X)g(Z,U)g(Y, V ). (3.5)

Using Bianchi’s second identity and (3.5), we have

α(X)R(Y, Z, U, V ) + α(Y )R(Z,X,U, V ) + α(Z)R(X, Y, U, V )

+β(X)g(Z,U)g(Y, V ) + β(Y )g(X,U)g(Z, V ) + β(Z)g(Y, U)g(X, V )

+
1

(n− 1)

[
α(X)

{
g(Z,U)S(Y, V )− g(Z, V )S(Y, U)

}
+α(Y )

{
g(X,U)S(Z, V )− g(X, V )S(Z,U)

}
+α(Z)

{
g(Y, U)S(X, V )− g(Y, V )S(X,U)

}
−
{
g(Z,U)(∇XS)(Y, V )− g(Z, V )(∇XS)(Y, U)

}
−
{
g(X,U)(∇Y S)(Z, V )− g(X, V )(∇Y S)(Z,U)

}
−
{
g(Y, U)(∇ZS)(X, V )− g(Y, V )(∇ZS)(X,U)

}]
= 0. (3.6)

Putting Y = V = ei in (3.6) and summing over i, 1 ≤ i ≤ n, we get

α(X)S(Z,U) + α(R(Z,X)U)− α(Z)S(X,U)

+nβ(X)g(Z,U) + 2β(Z)g(X,U)

+
1

(n− 1)

[
α(X){rg(Z,U)− 2S(Z,U)}+ α(QZ)g(X,U)

−(n− 1)α(Z)S(X,U) + 2(∇ZS)(X,U)

−
{
g(Z,U)dr(X) + g(X,U)

dr(Z)

2

}]
= 0. (3.7)
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Contracting (3.7) with Z and U , we obtain(
2n− 3

n− 1

)
rα(X)−

(
3n− 4

n− 1

)
α(QX) + (n2 + 2)β(X)− 1

(n− 1)
dr(X) = 0, (3.8)

which can be written as

rα(X) =

(
3n− 4

2n− 3

)
α(QX)− (n2 + 2)(n− 1)

(2n− 3)
β(X) +

1

(2n− 3)
dr(X). (3.9)

Thus, we can state the following:

Theorem 3.1 In a semi-generalized W3 recurrent manifold, the scalar curvature r

is constant if and only if

rα(X) =

(
3n− 4

2n− 3

)
α(QX)− (n2 + 2)(n− 1)

(2n− 3)
β(X),

for all vector fields X.

Suppose r is constant in a semi-generalized W3 recurrent manifold, i. e., dr = 0.

Then, equation (3.9) becomes

rα(X) =

(
3n− 4

2n− 3

)
α(QX)− (n2 + 2)(n− 1)

(2n− 3)
β(X). (3.10)

Contraction of equation (3.5) yields

(∇XS)(Z,U) = α(X)S(Z,U) + nβ(X)g(Z,U) +
1

(n− 1)

[
α(X){rg(Z,U)

−S(Z,U)} − {dr(X)g(Z,U)− (∇XS)(Z,U)}
]
. (3.11)

Making use of (3.10) and dr = 0 in (3.11), we obtain

(∇XS)(Z,U) = α(X)S(Z,U) +
(n− 1)

(n− 2)(2n− 3)

[
(n2 − 3n− 2)β(X)

+(3n− 4)α(QX)
]
g(Z,U)

which can be written as

(∇XS)(Z,U) = α(X)S(Z,U) + nγ(X)g(Z,U),
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where

γ(X) =
(n− 1)

n(n− 2)(2n− 3)

[
(n2 − 3n− 2)β(X) + (3n− 4)α(QX)

]
.

This leads to the theorem:

Theorem 3.2 A semi-generalized W3 recurrent manifold with constant scalar cur-

vature is semi-generalized Ricci recurrent.

3.3 Ricci symmetric semi-generalized W3 recurrent

manifold

Assume that the semi-generalized W3 recurrent manifold is Ricci symmetric.

Then, ∇S = 0, i. e., ∇Q = 0. This implies that r is constant and dr = 0. Then,

from equation (3.11), we have

(n− 2

n− 1

)
α(X)S(Z,U) +

[
r

(n− 1)
α(X) + nβ(X)

]
g(Z,U) = 0. (3.12)

Since r is constant, equation (3.10) holds. Substituting the value of β(X) from

equation (3.10) in (3.12), we have

S(Z,U) =
n

(n− 2)(n2 + 2)

[
r(n2 − 3n− 2)− (3n− 4)

α(QX)

α(X)

]
g(Z,U),

which can be written as

S(Z,U) = λg(Z,U),

where λ =
n

(n− 2)(n2 + 2)

[
r(n2 − 3n− 2)− (3n− 4)

α(QX)

α(X)

]
. Thus, we have:

Theorem 3.3 A Ricci symmetric semi-generalized W3 recurrent manifold is an Ein-

stein manifold.
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3.4 Sufficient condition for a semi-generalized W3

recurrent manifold to be a quasi Einstein man-

ifold

Equation (3.11) yields

(∇XS)(Y, Z) = α(X)S(Y, Z) +
n

(n− 1)

[
(n− 1)β(X)

+
r

n
α(X)− dr(X)

n

]
g(Y, Z). (3.13)

A vector field P defined by g(X,P ) = α(X) is said to be a concircular vector field

if

(∇Xα)(Y ) = νg(X, Y ) + ω(X)α(Y ), (3.14)

where ν is a non-zero scalar and ω is a closed 1-form. If P is unit, then (3.14) can

be written as

(∇Xα)(Y ) = ν[g(X, Y )− α(X)α(Y )]. (3.15)

Suppose a semi-generalizedW3 recurrent manifold admits a unit concircular vector

field P . Using Ricci identity in (3.15), we have

α(R(X, Y )Z) = −ν2[g(X,Z)α(Y )− g(Y, Z)α(X)]. (3.16)

Contraction of equation (3.16) with respect to Y and Z gives

α(QX) = (n− 1)ν2α(X), (3.17)

where Q is the Ricci operator given by (3.3).

This implies

S(X,P ) = (n− 1)ν2α(X). (3.18)
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We know that

(∇XS)(Y, P ) = ∇XS(Y, P )− S(∇XY, P )− S(Y,∇XP ). (3.19)

Using equation (3.18) in (3.19), we have

(∇XS)(Y, P ) = (n− 1)ν2∇Xα(Y )− (n− 1)ν2α(∇XY )− S(Y,∇XP ),

or

(∇XS)(Y, P ) = (n− 1)ν2(∇Xα)(Y )− S(Y,∇XP ).

Applying (3.15) in the above equation, we get

(∇XS)(Y, P ) = (n− 1)ν3[g(X, Y )− α(X)α(Y )]− S(Y,∇XP ). (3.20)

Now,

(∇Xα)(Y ) = ∇Xα(Y )− α(∇XY ) = ∇Xg(Y, P )− g(∇XY, P )

= g(Y,∇XP ), since (∇Xg)(Y, P ) = 0.

By virtue of (3.15), this implies

ν[g(X, Y )− α(X)α(Y )] = g(Y,∇XP ),

⇒ g(νX, Y )− g(να(X)P, Y ) = g(∇XP, Y ),

or, ∇XP = ν[X − α(X)P ].

Therefore,

S(Y,∇XP ) = S(Y, νX)− S(Y, να(X)P ),

which implies S(Y,∇XP ) = ν[S(X, Y )− α(X)S(Y, P )]. (3.21)

Making use of equation (3.21) in (3.20), we have

(∇XS)(Y, P ) = (n− 1)ν3[g(X, Y )− α(X)α(Y )]

−ν[S(X, Y )− α(X)S(Y, P )]. (3.22)
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Applying (3.18) in (3.22), we obtain

(∇XS)(Y, P ) = (n− 1)ν3g(X, Y )− νS(X, Y ). (3.23)

From (3.23), we have

(∇XS)(Y, P ) =
(n− 2

n

)
α(X)S(Y, P ) + (n− 1)

[
β(X)

− r

n(n− 2)
α(X) +

dr(X)

n(n− 1)

]
g(Y, P ).

Using equations (3.20) and (3.23), the above equation becomes

(n− 1)ν3g(X, Y )− νS(X, Y ) =
(n− 2)

n(n− 1)
ν2α(X)α(Y )

+(n− 1)
[
β(X)− r

n(n− 2)
α(X) +

dr(X)

n(n− 1)

]
α(Y ). (3.24)

If the scalar curvature is constant, then dr = 0. From (3.10), we have rα(X) =(
3n− 4

2n− 3

)
α(QX)− (n2 + 2)(n− 1)

(2n− 3)
β(X), which can be written as

β(X) =
1

(n2 + 2)

[
(3n− 4)ν2 −

(
2n− 3

n− 1

)
r
]
α(X). (3.25)

Making use of equation (3.25) and dr = 0 in (3.24), we get

(n− 1)ν3g(X, Y )− νS(X, Y ) =
[
(n− 1)ν2

+
1

n(n− 2)(n2 + 2)

{
(n− 1)(3n− 4)ν2 − r(n2 − 3n− 2)

}]
α(X)α(Y ),

i. e., (n− 1)ν3g(X, Y )− νS(X, Y ) =
(n− 1)

(n− 2)(n2 + 2)

[{
(n3 + n2 − 2n− 4)ν2

− r(n2 − 3n− 2)
}]
α(X)α(Y ).

Thus, we get

S(X, Y ) = (n− 1)ν2g(X, Y ) +
(n− 1)

(n− 2)(n2 + 2)

[{
r

ν
(n2 − 3n− 2)

− (n3 + n2 − 2n− 4)ν

}]
α(X)α(Y ),

57



Chapter 3

or, S(X, Y ) = ag(X, Y ) + bα(X)α(Y ),

where a = (n−1)ν2 and b =
(n− 1)

(n− 2)(n2 + 2)

[{
r

ν
(n2−3n−2)−(n3 +n2−2n−4)ν

}]
are two non-zero constants. Hence, the manifold is a quasi Einstein manifold. Thus,

we have the theorem:

Theorem 3.4 A semi-generalized W3 recurrent manifold which admits a unit con-

circular vector field and whose associated scalar is a non-zero constant is a quasi

Einstein manifold.

3.5 Decomposable semi-generalized W3 recurrent

manifold

Definition 3.1 A Riemannian manifold (Mn, g)(n > 2) is said to be a decomposable

Riemannian manifold (Schouten, 1954) if it can be expressed in the form Mn =

Mp
1 ×M

n−p
2 for some p, 2 ≤ p ≤ (n− 2), i. e., in some coordinate neighbourhood of

Mn , the metric g can be written as

ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ, (3.26)

where ḡab are functions of x1, x2, ....., xp denoted by x̄, g∗αβ are functions of xp+1, xp+2, ....., xn

denoted by x∗, a, b, c...... runs from 1 to p and α, β, γ, ..... runs from p + 1 to n. Mp
1

and Mn−p
2 are called the components of Mn.

Suppose a semi-generalized W3 recurrent manifold (Mn, g)(n > 2) is decompos-

able. Then, Mn = Mp
1×M

n−p
2 for some p, 2 ≤ p ≤ (n−2), Let X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(Mp

1 ),

X∗, Y ∗, Z∗, U∗, V ∗ ∈ χ(Mn−p
2 ). Since Mn is decomposable, we have

S(X̄, Ȳ ) = S̄(X̄, Ȳ ),

S(X∗, Y ∗) = S∗(X∗, Y ∗),

(∇X̄S)(Ȳ , Z̄) = (∇̄X̄S)(Ȳ , Z̄),
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(∇X∗S)(Y ∗, Z∗) = (∇∗X∗S)(Y ∗, Z∗)

and r = r̄ + r∗.

From (3.1), we have

W3(X̄, Ȳ , Z̄, Ū) = W̄3(X̄, Ȳ , Z̄, Ū), (3.27)

W3(X∗, Y ∗, Z∗, U∗) = W ∗
3 (X∗, Y ∗, Z∗, U∗),

W3(Y ∗, Z̄, Ū , V̄ ) = 0 = W3(Ȳ , Z∗, U∗, V ∗) = W3(Ȳ , Z∗, Ū , V̄ ) = W3(Ȳ , Z̄, U∗, V̄ ),

W3(Ȳ , Z∗, U∗, V̄ ) =
1

(n− 1)
g(Z∗, U∗)S(Ȳ , V̄ ), (3.28)

W3(Y ∗, Z̄, Ū , V ∗) =
1

(n− 1)
g(Z̄, Ū)S(Y ∗, V ∗), (3.29)

W3(Y ∗, Z̄, U∗, V̄ ) = − 1

(n− 1)
g(Z̄, V̄ )S(Y ∗, U∗),

W3(Ȳ , Z∗, Ū , V ∗) = − 1

(n− 1)
g(Z∗, V ∗)S(Ȳ , Ū),

(∇X∗W3)(Ȳ , Z̄, Ū , V̄ ) = 0 = (∇X̄W3)(Y ∗, Z∗, U∗, V ∗).

From (3.2), we get

(∇X̄W3)(Ȳ , Z̄, Ū , V̄ ) = α(X̄)W3(Ȳ , Z̄, Ū , V̄ ) + β(X̄)g(Z̄, Ū)g(Ȳ , V̄ ),

and α(X∗)W3(Ȳ , Z̄, Ū , V̄ ) + β(X∗)g(Z̄, Ū)g(Ȳ , V̄ ) = 0. (3.30)

Also,

β(p̄,p∗)(0⊕ v) = 0,

where p̄ ∈M1, p
∗ ∈M2 and v ∈ Tp∗(M2). Also, for every (p̄, p∗) ∈Mn, we have from

(3.1),

(∇X∗W3)(p̄,p∗)(Y
∗, Z∗, U∗, V ∗) = (∇∗X∗W3)p∗(Y

∗, Z∗, U∗, V ∗) (3.31)

and the R. H. S does not depend on p̄ ∈M1.
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Suppose β(X∗) = 0, ∀X∗ ∈ χ(M2), then (3.30) yields

α(X∗)W3(Ȳ , Z̄, Ū , V̄ ) = 0, (3.32)

and α(X∗)W̄3(Ȳ , Z̄, Ū , V̄ ) = 0. (3.33)

If M1 is not W3 flat, i. e., (W̄3)p̄0 6= 0, for some p̄0 ∈ M1, then equations (3.32)

and (3.33) gives

α(p̄,p∗)(0⊕ v) = 0. (3.34)

Then, (3.2) yields

(∇X∗W3)(p̄,p∗)(Y
∗, Z∗, U∗, V ∗) = 0,

for every p̄ ∈M1, p
∗ ∈M2 and v ∈ Tp∗(M2). It follows that if M1 is not W3 flat, then

α(p̄,p∗)(W
∗
3 )p∗(Y

∗, Z∗, U∗, V ∗) = 0. (3.35)

for all p̄ ∈M1, p
∗ ∈M2.

Assume that

(∇XW3)(Y, Z, U, V ) = ᾱ(X)W3(Y, Z, U, V ) + β̄(X)g(Z,U)g(Y, V ), (3.36)

where ᾱ and β̄ are 1-forms.

Using (3.36) in (3.2), we obtain

[α(X)− ᾱ(X)]W3(Y, Z, U, V ) + [β(X)− β̄(X)]g(Z,U)g(Y, V ) = 0. (3.37)

Contraction of (3.37) over Y and V gives

[α(X)− ᾱ(X)]

[
S(Z,U) − 1

(n− 1)

{
rg(Z,U)− S(Z,U)

}]
+ [β(X)− β̄(X)]g(Z,U) = 0. (3.38)
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Again contracting (3.38) over Z and U , we have

β(X) = β̄(X),

which implies, from (3.37)

α(X) = ᾱ(X),

for all X ∈Mn provided W3 6= 0, i. e., the manifold is not W3 flat. Thus, the 1-forms

α and β are uniquely determined provided that the manifold is not W3 flat. So, from

equation (3.34), we have

α(p̄,p∗)(X
∗) = 0, (3.39)

for all p̄ ∈M1, p
∗ ∈M2.

Hence, from equation (3.32), we can conclude that either

(1) α(X∗) = 0, or

(2) M1 is W3 flat.

Also, from (3.2), we get

(∇X∗W3)(Y ∗, Z̄, Ū , V ∗) = α(X∗)W3(Y ∗, Z̄, Ū , V ∗)

+β(X∗)g(Z̄, Ū)g(Y ∗, V ∗). (3.40)

Consider case (1). From (3.40), we have

(∇X∗W3)(Y ∗, Z̄, Ū , V ∗) = 0,

which by virtue of (3.28) gives

(∇X∗S)(Y ∗, V ∗) = 0, (3.41)

i. e., the component M2 is Ricci symmetric. Using equations (3.32), (3.34), (3.37),

(3.38) and (3.39), and α(X∗) = 0, β(X∗) = 0, for all X∗ ∈M2, we have from (3.2),

(∇X∗W3)(Y ∗, Z∗, U∗, V ∗) = 0,
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and hence

(∇X∗R)(Y ∗, Z∗, U∗, V ∗) +
1

(n− 1)

[
g(Z∗, U∗)(∇X∗S)(Y ∗, V ∗)

− g(Z∗, V ∗)(∇X∗S)(Y ∗, U∗)
]

= 0,

which by virtue of (3.41) yields

(∇X∗R)(Y ∗, Z∗, U∗, V ∗) = 0.

Hence, M2 is locally symmetric. Similarly, we can prove for M1. Thus, we can state

the theorem:

Theorem 3.5 Let Mn be a decomposable semi-generalized W3 recurrent manifold

which is not W3 flat such that Mn = Mp
1 ×M

n−p
2 , 2 ≤ p ≤ (n− 2). If β(X∗) = 0 for

all X∗ ∈M2, (respectively β(X̄) = 0, for all X̄ ∈M1), then either (1) or (2) holds.

(1) α(X∗) = 0, ∀X∗ ∈ χ(M2),(respectively α(X̄) = 0, ∀X̄ ∈ χ(M1)), and hence

M2(respectively M1) is Ricci symmetric as well as locally symmetric.

(2) M2(respectively M1) is W3 flat.

Also, from (3.2), we have

(∇X̄W3)(Ȳ , Z∗, U∗, V̄ ) = α(X̄)W3(Ȳ , Z∗, U∗, V̄ )

+β(X̄)g(Z∗, U∗)g(Ȳ , V̄ ). (3.42)

Using equation (3.31) in (3.42), we get

1

(n− 1)
g(Z∗, U∗)(∇X̄S)(Ȳ , V̄ ) =

α(X̄)

(n− 1)
g(Z∗, U∗)S(Ȳ , V̄ )

+β(X̄)g(Z∗, U∗)g(Ȳ , V̄ ). (3.43)

Assume g(Z∗, U∗) 6= 0, then (3.43) becomes

(∇X̄S)(Ȳ , V̄ ) = α(X̄)S(Ȳ , V̄ ) + (n− 1)β(X̄)g(Ȳ , V̄ ),

⇒ (∇X̄S)(Ȳ , V̄ ) = A(X̄)S(Ȳ , V̄ ) + nB(X̄)g(Ȳ , V̄ ),
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where A(X̄) = α(X̄) and B(X̄) = (n−1)
n
β(X̄) are two non-zero 1-forms. This leads

to the theorem:

Theorem 3.6 Let Mn be a decomposable semi-generalized W3 recurrent manifold

which is not W3 flat such that Mn = Mp
1 × Mn−p

2 , 2 ≤ p ≤ (n − 2). Then

M1(respectively M2) is semi-generalized Ricci recurrent.

3.6 Example of a semi-generalized W3 recurrent

manifold

Example 1:

Consider R4 with the Riemannian metric defined by

ds2 = gijdx
idxj = (1− 4q)[(dx1)2 + (dx2)2 + (dx3)2 + (dx4)2], (3.44)

where q = ex
1

k2
, for a non-zero constant k and x1 6= 0. The non-vanishing components

of the Christoffel’s symbols, the Riemannian curvature tensors and the Ricci tensors

are

Γ1
22 = Γ1

33 = Γ1
44 =

2q

1− 4q
,

Γ1
11 = Γ2

12 = Γ3
13 = Γ4

14 = − 2q

1− 4q
,

R1221 = R1331 = R1441 = − 2q

1− 4q
,

S11 =
6q

(1− 4q)2
, S22 = S33 =

2q

(1− 4q)2

and the components which can be obtained by symmetry properties. Using

r = gijSij, (3.45)
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we get r =
12q

(1− 4q)3
, which is non-zero. By virtue of (3.2), we get the non-zero

components of the W3 curvature tensor as

(W3)1221 = − 4q

1− 4q
, (W3)1331 = (W3)1441 = − 8q

3(1− 4q)
,

whose non-zero covariant derivatives are

(W3)1221,1 = − 4q

(1− 4q)2
, (W3)1331,1 = (W3)1441,1 = − 8q

3(1− 4q)2

and their symmetric components. Here “, ” denotes the operator of covariant differ-

entiation with respect to the metric g. To show that (R4, g) is a semi-generalized W3

recurrent manifold, we choose the 1-forms α and β as

αi =


1

1− 4q
, i = 1,

0, otherwise,

βi = 0, for i = 1, 2, 3, 4.

Then, equation (3.1) reduces to

(W3)1221,1 = α1(W3)1221, (3.46)

(W3)1331,1 = α1(W3)1331, (3.47)

(W3)1441,1 = α1(W3)1441 (3.48)

and the other cases hold trivially.

R. H. S of (3.46) = α1(W3)1221

=
( 1

1− 4q

)
.
(
− 4q

1− 4q

)
= − 4q

(1− 4q)2
= (W3)1221,1

= L. H. S of (3.46).
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Similarly, equations (3.47) and (3.48) can be proved. Therefore, (R4, g) is a semi-

generalized W3 recurrent manifold.

Example 2:

Define a Riemannian metric g on R4 by

ds2 = gijdx
idxj = (x1)

1
3 [(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2, where x1 6= 0. (3.49)

We obtain the non-vanishing components of the Christoffel’s symbols, the curva-

ture tensors and the Ricci tensors as

Γ1
22 = Γ1

33 =
1

6x1
,

Γ1
11 = Γ2

12 = Γ3
13 = − 1

6x1
,

R1221 = − 5

36(x1)
5
3

= R1331, R2332 = − 1

36(x1)
5
3

,

S11 = − 5

18(x1)2
, S22 = S33 =

1

9(x1)2

and their symmetric components.

Using (3.45), we get r =
1

2(x1)
7
3

, which is non-zero and non constant. From

equation (3.2), we obtain

(W3)1221 = − 5

108(x1)
5
3

= (W3)1331, (W3)2332 = − 1

36(x1)
5
3

,

and the components obtained by symmetric properties. Using these, we get the

covariant derivatives of the W3 curvature tensors as

(W3)1221,1 =
25

324(x1)
8
3

= (W3)1331,1, (W3)2332,1 =
5

108(x1)
8
3

.

To show that the manifold under consideration is semi-generalized W3 recurrent,
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we choose the 1-forms α and β as

αi =


− 5

3(x1)
, i = 1,

0, otherwise,

βi = 0, for i = 1, 2, 3, 4.

From equation (3.1), we have

(W3)1221,1 = α1(W3)1221, (3.50)

(W3)1331,1 = α1(W3)1331, (3.51)

(W3)2332,1 = α1(W3)2332, (3.52)

and all other cases hold trivially. Now,

R. H. S of (3.50) = α1(W3)1221

=
(
− 5

3(x1)

)
.
(
− 5

108(x1)
5
3

)
=

25

324(x1)
8
3

= (W3)1221,1

= L. H. S of (3.50)

and equations (3.51) and (3.52) can be proved in a similar manner. Therefore, R4

with the given metric is a semi-generalized W3 recurrent manifold.
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Chapter 4

Curvature Properties of N(k)-quasi

Einstein Manifolds

In this chapter we considered N(k)-quasi Einstein manifolds satisfying certain

curvature conditions. W ∗-Ricci pseudosymmetric, W2-pseudosymmetric and

Z-generalized pseudosymmetric N(k)-quasi Einstein manifolds are studied. We con-

sidered N(k)-quasi Einstein manifolds satisfying the curvature conditions P̄ (ζ,X) ·

W2 = 0 and P̄ (ζ,X) ·H = 0, where P̄ , W2 and H are the pseudo projective, W2 and

conharmonic curvature tensors respectively. We studied pseudo projectively sym-

metric N(k)-quasi Einstein manifolds and showed that there does not exist a pseudo

projectively semisymmetric N(k)-quasi Einstein manifold. Also, we constructed some

examples to support the existence of such manifolds.

Singh, J. P. and Lalnunsiami, K. (2020). Certain Curvature Properties of N(k)-quasi Einstein
Manifolds, SUT Journal of Mathematics, 56(1), 55-69.

Singh, J. P. and Lalnunsiami, K. (2020). On a type of N(k)-quasi Einstein manifolds, Bulletin
of the Transilvania University of Braşov Series III: Mathematics, Informatics, Physics, Vol 13(62),
No. 1, 219-236.
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4.1 Introduction

A non-flat Riemannian manifold (M, g) is said to be quasi Einstein if its Ricci

tensor S satisfies equation (1.78). In 2007, Tripathi and Kim defined N(k)-quasi

Einstein manifolds. In an N(k)-quasi Einstein manifold, k is not arbitrary as given

by (Özgür and Tripathi, 2009):

Lemma 4.1 In an n-dimensional N(k)-quasi Einstein manifold,

k =
a+ b

n− 1
. (4.1)

Also, in an N(k)-quasi Einstein manifold, we have

R(X, Y )ζ = k
[
η(Y )X − η(X)Y

]
, (4.2)

R(X, ζ)Y = k
[
η(Y )X − g(X, Y )ζ

]
= −R(ζ,X)Y, (4.3)

η(R(X, Y )Z) = k
[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
. (4.4)

In 1971, Pokhariyal and Mishra defined the m-projective and the W2 curvature

tensors given by equations (1.25) and (1.26) respectively. The Z tensor in a Rie-

mannian manifold is defined by equation (1.20) (Mantica and Molinari, 2012). The

conharmonic curvature tensor (Ishii, 1957) and the pseudo projective curvature tensor

(Prasad, 2002) are defined by equations (1.22) and (1.24) respectively.

Using equations (1.78) and (1.79), we obtain

S(X, ζ) = (a+ b)η(X), (4.5)

r = na+ b, (4.6)

where r is the scalar curvature of the manifold. In an n-dimensional N(k)-quasi

68



Chapter 4

Einstein manifold, we have

W2(X, Y )ζ =
b

(n− 1)

[
η(Y )X − η(X)Y

]
, (4.7)

W2(ζ,X)Y =
1

(n− 1)

[
η(Y )QX − (a+ b)η(Y )X

]
, (4.8)

η(W2(X, Y )Z) = 0, (4.9)

W ∗(X, Y )ζ =
b

2(n− 1)

[
η(Y )X − η(X)Y

]
, (4.10)

W ∗(ζ,X)Y =
b

2(n− 1)

[
g(X, Y )ζ − η(Y )X

]
, (4.11)

η(W ∗(X, Y )Z) =
b

2(n− 1)

[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
, (4.12)

P̄ (X, Y )ζ =
[β(n− 1) + α

b

][
η(Y )X − η(X)Y

]
, (4.13)

P̄ (ζ,X)Y =
(α− β)

n

[
g(X, Y )ζ − η(Y )X

]
(4.14)

+ βb
[
η(Y )η(X)− η(Y )X

]
,

η(P̄ (X, Y )Z) =
(α− β)

n

[
g(Y, Z)η(X)− g(X,Z)η(Y )

]
, (4.15)

H(X, Y )ζ =
(na+ b)

(n− 1)(n− 2)

[
η(Y )X − η(X)Y

]
, (4.16)

H(ζ,X)Y =
(na+ b)

(n− 1)(n− 2)

[
g(X, Y )ζ − η(Y )X

]
, (4.17)

η(H(X, Y )Z) =
(na+ b)

(n− 1)(n− 2)

[
g(Y, Z)η(X) (4.18)

− g(X,Z)η(Y )
]
.
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The generalized Z-tensor in an N(k)-quasi Einstein manifold takes the form,

Z(X, Y ) = (a+ φ)g(X, Y ) + bη(X)η(Y ), (4.19)

which by contraction, reduces to

Z = (a+ φ)n+ b. (4.20)

Also,

Z(X, ζ) = (a+ b+ φ)η(X), (4.21)

Z(ζ, ζ) = (a+ b+ φ), (4.22)

∀X, Y, Z ∈Mn.

4.2 m-projective curvature tensor in an N(k)-quasi

Einstein manifold

Suppose an N(k)-quasi Einstein manifold satisfies

W ∗(ζ,X) ·W2 = 0,

or,

W ∗(ζ,X)W2(U, V )Z −W2(W ∗(ζ,X)U, V )Z

−W2(U,W ∗(ζ,X)V )Z −W2(U, V )W ∗(ζ,X)Z = 0. (4.23)
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Using (4.12), (4.23) it becomes

b

2(n− 1)

[
g(X,W2(U, V )Z)ζ − η(W2(U, V )Z)X

−g(X,U)W2(ζ, V )Z + η(U)W2(X, V )Z

−g(X, V )W2(U, ζ)Z + η(V )W2(U,X)Z

−g(X,Z)W2(U, V )ζ + η(Z)W2(U, V )X
]

= 0. (4.24)

Since b 6= 0 and n > 1, we have

g(X,W2(U, V )Z)ζ − η(W2(U, V )Z)X

−g(X,U)W2(ζ, V )Z + η(U)W2(X, V )Z

−g(X, V )W2(U, ζ)Z + η(V )W2(U,X)Z

−g(X,Z)W2(U, V )ζ + η(Z)W2(U, V )X = 0. (4.25)

Taking inner product of (4.25) with respect to ζ, we have

W ′
2(U, V, Z,X)− η(W2(U, V )Z)η(X)

−g(X,U)η(W2(ζ, V )Z) + η(U)η(W2(X, V )Z)

−g(X, V )η(W2(U, ζ)Z) + η(V )η(W2(U,X)Z)

−g(X,Z)η(W2(U, V )ζ) + η(Z)η(W2(U, V )X) = 0. (4.26)

From equations (4.9) and (4.26), it follows that W ′
2(U, V, Z,X) = 0. Thus, we can

state the following theorem:

Theorem 4.1 An n-dimensional N(k)-quasi Einstein manifold satisfies the condi-

tion W ∗(ζ,X) ·W2 = 0 if and only if the manifold is W2-flat.

Definition 4.1 A Riemannian manifold is said to be semi-symmetric (Szabo; 1982,

1987) if

R ·R = 0, (4.27)

where R is the Riemannian curvature tensor.
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Consider an N(k)-quasi Einstein manifold which is W ∗-semisymmetric. Then, we

have

(R(X, Y ) ·W ∗)(U, V )Z = 0,

which implies that

R(X, Y )W ∗(U, V )Z −W ∗(R(X, Y )U, V )Z

−W ∗(U,R(X, Y )V )Z −W ∗(U, V )R(X, Y )Z = 0. (4.28)

Taking inner product of (4.28) with respect to ζ, we have

g(R(X, Y )W ∗(U, V )Z, ζ)− g(W ∗(R(X, Y )U, V )Z, ζ)

−g(W ∗(U,R(X, Y )V )Z, ζ)− g(W ∗(U, V )R(X, Y )Z, ζ) = 0. (4.29)

Substituting X = ζ, (4.29) reduces to

g(R(ζ, Y )W ∗(U, V )Z, ζ)− g(W ∗(R(ζ, Y )U, V )Z, ζ)

−g(W ∗(U,R(ζ, Y )V )Z, ζ)− g(W ∗(U, V )R(ζ, Y )Z, ζ) = 0. (4.30)

Using equations (4.3) and (4.11) in (4.30), we get

W ∗(U, V, Z,X)− b

2(n− 1)

[
g(U, Y )g(V, Z)− g(V, Y )g(U,Z)

]
= 0. (4.31)

Making use of (1.20) and (4.31), we obtain

R′(U, V, Z, Y )− 1

2(n− 1)

[
S(V, Z)g(U, Y )− S(U,Z)g(V, Y )

+S(U, Y )g(V, Z)− S(V, Y )g(U,Z)
]

− b

2(n− 1)

[
g(U, Y )g(V, Z)− g(V, Y )g(U,Z)

]
= 0. (4.32)

Contracting (4.32) with respect to U and Y , we have

S(V, Z) = (a+ b)g(V, Z),

which is a contradiction as the manifold is quasi Einstein. This leads to the theorem:
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Theorem 4.2 There does not exist a W ∗-semisymmetric N(k)-quasi Einstein man-

ifold.

Definition 4.2 A Riemannian manifold is said to be a symmetric manifold (Kobayashi

and Nomizu, 1963; Desai and Amur, 1975) if

(∇XR)(Y, Z)V = 0, (4.33)

where ∇ is the operator of covariant differentiation with respect to the metric g.

Consider an N(k)-quasi Einstein manifold which is W ∗-symmetric. Then, we can

write

(∇XW
∗)(U, V, Z, Y ) = 0.

Using equation (1.25), we have

(∇XR
′)(U, V, Z, Y ) =

1

2(n− 1)

[
(∇XS)(V, Z)g(Y, U)− (∇XS)(U,Z)g(V, Y )

+ (∇XS)(U, Y )g(V, Z)− (∇XS)(V, Y )g(U,Z)
]
. (4.34)

Setting U = Y = ei and summing over i, 1 ≤ i ≤ n, we get

(∇XS)(V, Z) =
dr(X)

n
g(V, Z). (4.35)

Using equation (1.79) in (4.35), we obtain

da(X)g(V, Z) + db(X)η(V )η(Z) + b
[
(∇Xη)(Z)η(V )

+(∇Xη)(V )η(Z)
]

=
dr(X)

n
g(V, Z). (4.36)

Putting Z = V = ζ, we get

dr(X) = n[da(X) + db(X)]. (4.37)

Also, from (4.6), it follows that

dr(X) = nda(X) + db(X). (4.38)
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From equations (4.37) and (4.38), we get

db(X) = 0,

i. e., b is constant. Therefore, we have the theorem:

Theorem 4.3 There exists no W ∗-symmetric N(k)-quasi Einstein manifold unless

the associated scalar b is a non-zero constant.

From equation (1.25), we can write

(div W ∗)(X, Y )Z = (div R)(X, Y )Z − 1

2(2n− 3)

[
dr(X)g(Y, Z)

− dr(Y )g(X,Z)
]
, (4.39)

where “div” denotes the divergence.

We know that in a Riemannian manifold,

(div R)(X, Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z). (4.40)

Using equation (4.39) in (4.40), we get

(div W ∗)(X, Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z)

− 1

2(2n− 3)

[
dr(X)g(Y, Z)− dr(Y )g(X,Z)

]
. (4.41)

Suppose that an N(k)-quasi Einstein manifold is W ∗-conservative. Then,

(div W ∗)(X, Y )Z = 0,

or,

(∇XS)(Y, Z)− (∇Y S)(X,Z) =
1

2(2n− 3)

[
dr(X)g(Y, Z)

− dr(Y )g(X,Z)
]
. (4.42)
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Making use of equation (4.6) in (4.42), we obtain

da(X)g(Y, Z) + db(X)η(Y )η(Z)− da(Y )g(X,Z)− db(Y )η(X)η(Z)

+b
[
(∇Xη)(Y )η(Z) + (∇Xη)(Z)η(Y )− (∇Y η)(X)η(Z)− (∇Y η)(Z)η(X)

]
=

1

2(2n− 3)

[
dr(X)g(Y, Z)− dr(Y )g(X,Z)

]
. (4.43)

Assume that the associated scalar b is non-zero constant. Then db(X) = 0, from

which it follows that dr(X) = nda(X), ∀X. Therefore equation (4.43) becomes

3(n− 2)

2(2n− 3)

[
da(X)g(Y, Z)− da(Y )g(X,Z)

]
+ b
[
(∇Xη)(Y )η(Z)

+(∇Xη)(Z)η(Y )− (∇Y η)(X)η(Z)− (∇Y η)(Z)η(X)
]

= 0. (4.44)

Substituting Y = Z = ζ in equation (4.44), we obtain

b(∇ζη)(X) =
3(n− 2)

2(2n− 3)

[
da(X)− da(ζ)η(X)

]
. (4.45)

Contracting equation (4.44) over Y and Z, we have

b
[
(∇ζη)(X) + η(X)

n∑
i=1

(∇eiη)(ei)
]
− 3(n− 1)(n− 2)

2(2n− 3)
da(X) = 0. (4.46)

From equations (4.45) and (4.46), it follows that

bη(X)
n∑
i=1

(∇eiη)(ei) =
3(n− 1)(n− 2)

2(2n− 3)
da(X)

− 3(n− 2)

2(2n− 3)

[
da(X)− da(ζ)η(X)

]
. (4.47)

Taking X = ζ, equation (4.47) becomes

n∑
i=1

(∇eiη)(ei) =
3(n− 1)(n− 2)

2(2n− 3)
da(ζ). (4.48)

Making use of equations (4.45) and (4.48), (4.46) becomes

da(X) = da(ζ)η(X). (4.49)
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Substituting X = ζ in equation (4.44) and using (4.49), we get

b[(∇Xη)(Y )− (∇Y η)(X)] = 0,

or,

(∇Xη)(Y )− (∇Y η)(X) = 0, (since n 6= 0)

which implies that the 1-form η is closed.

Setting X = ζ, the above equation reduces to

(∇ζη)(Y ) = 0,

which implies that

∇ζζ = 0.

Therefore, we can state the theorem:

Theorem 4.4 On an (n > 3)-dimensional N(k)-quasi Einstein manifold which is

W ∗-conservative and b is non-zero constant, the associated 1-form η is closed and the

integral curves of the generator ζ are geodesics.

4.3 W ∗-Ricci pseudosymmetric N(k)-quasi Einstein

manifold

Definition 4.3 A Riemannian manifold is said to be Ricci pseudosymmetric (Deszcz,

1992) if the tensors R ·S and Q(g, S) are linearly dependent at every point of Mn, i.

e.,

R · S = LSQ(g, S),

where LS is a smooth function on AS = {x ∈ R : S 6= r
n
g in x}.

Consider an N(k)-quasi Einstein manifold which is W ∗-Ricci pseudosymmetric.

Then the vectors W ∗ · S and Q(g, S) are linearly dependent, i.e.,

(W ∗(X, Y ) · S)(Z,U) = LSQ(g, S)(Z,U ;X, Y ), (4.50)
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where LS is a function on AS = {x ∈ R : S 6= r
n
g at x}. Then,

S(W ∗(X, Y )Z,U) + S(Z,W ∗(X, Y )U) = LS
[
S((X ∧ Y )Z,U)

+ S(Z, (X ∧ Y )U)
]
. (4.51)

Taking X = ζ in (4.51), we have

S(W ∗(ζ, Y )Z,U) + S(Z,W ∗(ζ, Y )U) = LS
[
S((ζ ∧ Y )Z,U)

+ S(Z, (ζ ∧ Y )U)
]
. (4.52)

Using (4.11) and

(X ∧ Y )Z = g(Y, Z)X − g(X,Z)Y, (4.53)

equation (4.52) becomes

[ b

2(n− 1)
− LS

][
S(U,X)g(Y, Z)− S(U, Y )g(X,Z)

+g(U, Y )S(Z,X)− g(U,X)S(Z, Y )
]

= 0, (4.54)

which implies that either

LS =
b

2(n− 1)
,

or,

S(U,X)g(Y, Z)− S(U, Y )g(X,Z)

+g(U, Y )S(Z,X)− g(U,X)S(Z, Y ) = 0. (4.55)

Using equation (1.78), (4.55) can be written as

a
[
g(U,X)g(Y, Z)− g(U, Y )g(X,Z)

+g(U, Y )g(Z,X)− g(U,X)g(Z, Y )
]

+b
[
η(U)η(X)g(Y, Z)− η(U)η(Y )g(X,Z)

+g(U, Y )η(Z)η(X)− g(U,X)η(Z)η(Y )
]

= 0. (4.56)
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Contracting equation (4.56) with respect to X and U , we get

g(Y, Z) = nη(Y )η(Z).

Substituting Y = Z = ζ in the above equation, we have

n = 1,

which is a contradiction. Therefore,

LS =
b

2(n− 1)
.

Thus, we can state:

Theorem 4.5 An n-dimensional W ∗-Ricci pseudosymmetric N(k)-quasi Einstein

manifold satisfies the relation LS = b
2(n−1)

.

4.4 W2-pseudosymmetric N(k)-quasi Einstein man-

ifold

Definition 4.4 An n-dimensional Riemannian manifold is said to be pseudosym-

metric (Deszcz, 1992) if

R ·R = LQ(g,R),

i.e., R · R and Q(g,R) are linearly dependent and L is a function on B = {x ∈ R :

Q(g,R) 6= 0 at x}.

Suppose that an N(k)-quasi Einstein manifold is W2-pseudosymmetric. Then,

(R(X, Y ) ·W2)(U, V )Z = LW2Q(g,W2)(U, V, Z;X, Y ), (4.57)

where LW2 is a smooth function on BW2 = {x ∈ R : Q(g,W2) 6= 0 at x}.
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From (4.57), we have

R(X, Y )W2(U, V )Z −W2(R(X, Y )U, V ))

−W2(U,R(X, Y )V )Z −W2(U, V )R(X, Y )Z

= LW2

[
(X ∧W2 Y )W2(U, V )Z −W2((X ∧W2 Y )U, V )Z

−W2(U, (X ∧W2 Y )V )Z −W2(U, V )(X ∧W2 Y )Z
]
. (4.58)

Put X = ζ in the above equation, we have

R(ζ, Y )W2(U, V )Z −W2(R(ζ, Y )U, V )Z)

−W2(U,R(ζ, Y )V )Z −W2(U, V )R(ζ, Y )Z

= LW2

[
(ζ ∧W2 Y )W2(U, V )Z −W2((ζ ∧W2 Y )U, V )Z

−W2(U, (ζ ∧W2 Y )V )Z −W2(U, V )(ζ ∧W2 Y )Z
]
. (4.59)

Using (4.3) and (4.53), we get

(k − LW2)
[
W ′

2(U, V, Z, Y )ζ − η(W2(U, V )Z)Y

−g(Y, U)W2(ζ, V )Z + η(U)W2(Y, V )Z

−g(Y, V )W2(U, ζ)Z + η(V )W2(U, Y )Z

−g(Y, Z)W2(U, V )ζ + η(Z)W2(U, V )X
]

= 0. (4.60)

Taking inner product of (4.60) with respect to ζ, we get

(k − LW2)
[
W ′

2(U, V, Z, Y )− η(W2(U, V )Z)η(Y )

−g(Y, U)η(W2(ζ, V )Z) + η(U)η(W2(Y, V )Z)

−g(Y, V )η(W2(U, ζ)Z) + η(V )η(W2(U, Y )Z)

−g(Y, Z)η(W2(U, V )ζ) + η(Z)η(W2(U, V )X)
]

= 0. (4.61)

By virtue of (4.9), (4.61) reduces to

(k − LW2)W
′
2(U, V, Z, Y ) = 0.
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Since W2 6= 0, we have

k − LW2 = 0,

or,

k = LW2 .

This leads to the theorem:

Theorem 4.6 An N(k)-quasi Einstein manifold is W2-pseudosymmetric provided

that k = LW2 .

4.5 Z-generalized pseudosymmetric N(k)-quasi Ein-

stein manifold

Definition 4.5 A Riemannian manifold is said to be Ricci-generalized pseudosym-

metric (Deszcz, 1992) if at every point of Mn, the tensors R · R and Q(S,R) are

linearly dependent, i. e.,

R ·R = LQ(S,R),

where L is a function on A = {x ∈ R : Q(S,R) 6= 0 at x}.

Consider an N(k)-quasi Einstein manifold which is Z-generalized pseudosymmet-

ric. Then,

R ·R = LZQ(Z,R),

where LZ is a function on AZ = {x ∈ R : Q(Z,R) 6= 0 at x}. Then,

R(X, Y )R(U, V )W −R(R(X, Y )U, V )W −R(U,R(X, Y )V )W

−R(U, V )R(X, Y )W = LZ
[
(X ∧Z Y )R(U, V )W

−R((X ∧Z Y )U, V )W −R(U, (X ∧Z Y )V )W −R(U, V )(X ∧Z Y )W
]
.(4.62)
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Taking X = ζ in (4.62), we have

R(ζ, Y )R(U, V )W −R(R(ζ, Y )U, V )W −R(U,R(ζ, Y )V )W

−R(U, V )R(ζ, Y )W = LZ
[
(ζ ∧Z Y )R(U, V )W

−R((ζ ∧Z Y )U, V )W −R(U, (ζ ∧Z Y )V )W −R(U, V )(ζ ∧Z Y )W
]
. (4.63)

Using (4.3) and

(X ∧Z Y )U = Z(Y, U)X − Z(X,U)Y,

in (4.63), we have

[k − LZ(a+ φ)]
[
R′(U, V,W, Y )ζ − η(R(U, V )W )Y

−g(Y, U)R(ζ, V )W + η(U)R(Y, V )W

−g(Y, V )R(U, ζ)W + η(V )R(U, Y )W

−g(Y,W )R(U, V )ζ + η(W )R(U, V )Y
]

= LZb
[
η(Y )η(R(U, V )W )ζ − η(R(U, V )W )Y

−g(Y, U)R(ζ, V )W + η(U)R(Y, V )W

−g(Y, V )R(U, ζ)W + η(V )R(U, Y )W

−g(Y,W )R(U, V )ζ + η(W )R(U, V )Y
]
. (4.64)

Taking inner product of (4.64) with respect to ζ, we have
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[k − LZ(a+ φ)]
[
R′(U, V,W, Y )− η(R(U, V )W )η(Y )

−g(Y, U)η(R(ζ, V )W ) + η(U)η(R(Y, V )W )

−g(Y, V )η(R(U, ζ)W ) + η(V )η(R(U, Y )W )

−g(Y,W )η(R(U, V )ζ) + η(W )η(R(U, V )Y )
]

= LZb
[
η(Y )η(R(U, V )W )− η(R(U, V )W )η(Y )

−g(Y, U)η(R(ζ, V )W ) + η(U)η(R(Y, V )W )

−g(Y, V )η(R(U, ζ)W ) + η(V )η(R(U, Y )W )

−g(Y,W )η(R(U, V )ζ) + η(W )η(R(U, V )Y )
]
. (4.65)

Using (1.26) and (1.80), (4.65) reduces to

LZbk[η(W )η(U)g(V, Y )− η(W )η(V )g(U, Y )] = 0,

which implies (since b 6= 0),

LZk = 0,

i. e., LZ = 0 or k = 0.

This leads to the theorem:

Theorem 4.7 A Z-generalized pseudosymmetric N(k)-quasi Einstein manifold is

either semisymmetric or k = 0.

4.6 Pseudo projective curvature tensor in an N(k)-

quasi Einstein manifold

Suppose M satisfies the curvature condition P̄ (ζ,X) ·W2 = 0. Then,

P̄ (ζ,X)W2(U, V )Z − W2(P̄ (ζ,X)U, V )Z −W2(U, P̄ (ζ,X)V )Z)

− W2(U, V )P̄ (ζ,X)Z = 0, (4.66)
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for all vector fields U, V, Z,X ∈M .

Using equation (4.14) in (4.66), we have

b

[
(α− β)

n

{
W ′

2(U, V, Z,X)ζ − η(W2(U, V )Z)X

−g(X,U)W2(ζ, V )Z + η(U)W2(X, V )Z

−g(X, V )W2(U, ζ)Z + η(V )W2(U,X)Z

−g(X,Z)W2(U, V )ζ + η(Z)W2(U, V )X
}

+β
{
η(X)η(W2(U, V )Z)ζ − η(W2(U, V )Z)X

−η(X)η(U)W2(ζ, V )Z + η(U)W2(X, V )Z

−η(X)η(V )W2(U, ζ)Z + η(V )W2(U,X)Z

−η(X)η(Z)W2(U, V )ζ + η(Z)W2(U, V )X
}]

= 0. (4.67)

Since b 6= 0, equation (4.67) can be written as

(α− β)

n

{
W ′

2(U, V, Z,X)ζ − η(W2(U, V )Z)X

− g(X,U)W2(ζ, V )Z + η(U)W2(X, V )Z

− g(X, V )W2(U, ζ)Z + η(V )W2(U,X)Z

− g(X,Z)W2(U, V )ζ + η(Z)W2(U, V )X
}

+ β
{
η(X)η(W2(U, V )Z)ζ − η(W2(U, V )Z)X

− η(X)η(U)W2(ζ, V )Z + η(U)W2(X, V )Z

− η(X)η(V )W2(U, ζ)Z + η(V )W2(U,X)Z

− η(X)η(Z)W2(U, V )ζ + η(Z)W2(U, V )X
}

= 0. (4.68)
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Taking inner product of (4.68) with respect to ζ, we have

(α− β)

n

{
W ′

2(U, V, Z,X)− η(W2(U, V )Z)η(X)

− g(X,U)η(W2(ζ, V )Z) + η(U)η(W2(X, V )Z)

− g(X, V )η(W2(U, ζ)Z) + η(V )η(W2(U,X)Z)

− g(X,Z)η(W2(U, V )ζ) + η(Z)η(W2(U, V )X)
}

+ β
{
η(X)η(W2(U, V )Z)− η(W2(U, V )Z)η(X)

− η(X)η(U)η(W2(ζ, V )Z) + η(U)η(W2(X, V )Z)

− η(X)η(V )η(W2(U, ζ)Z) + η(V )η(W2(U,X)Z)

− η(X)η(Z)η(W2(U, V )ζ) + η(Z)η(W2(U, V )X)
}

= 0. (4.69)

From equations (4.9) and (4.69), it follows that

(α− β)

n
W ′

2(U, V, Z,X) = 0.

Since n > 2 this implies that

α = β or W2 = 0.

Thus, we can state:

Theorem 4.8 An n-dimensional N(k)-quasi Einstein manifold M satisfies the cur-

vature condition P̄ (ζ,X) ·W2 = 0 provided α = β or the manifold is W2-flat.

Suppose M satisfies the curvature condition P̄ (ζ,X) ·H = 0. Then, we can write

P̄ (ζ,X)H(U, V )Z − H(P̄ (ζ,X)U, V )Z −H(U, P̄ (ζ,X)V )Z

− H(U, V )P̄ (ζ,X)Z = 0. (4.70)
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Using (4.14) in (4.70), we have

b

[
(α− β)

n

{
H ′(U, V, Z,X)ζ − η(H(U, V )Z)X

− g(X,U)H(ζ, V )Z + η(U)H(X, V )Z

− g(X, V )H(U, ζ)Z + η(V )H(U,X)Z

− g(X,Z)H(U, V )ζ + η(Z)H(U, V )X
}

+ β
{
η(X)η(H(U, V )Z)ζ − η(H(U, V )Z)X

− η(X)η(U)H(ζ, V )Z + η(U)H(X, V )Z

− η(X)η(V )H(U, ζ)Z + η(V )H(U,X)Z

− η(X)η(Z)H(U, V )ζ + η(Z)H(U, V )X
}]

= 0. (4.71)

Since b 6= 0, equation (4.71) can be written as

(α− β)

n

{
H ′(U, V, Z,X)ζ − η(H(U, V )Z)X

− g(X,U)H(ζ, V )Z + η(U)H(X, V )Z

− g(X, V )H(U, ζ)Z + η(V )H(U,X)Z

− g(X,Z)H(U, V )ζ + η(Z)H(U, V )X
}

+ β
{
η(X)η(H(U, V )Z)ζ − η(H(U, V )Z)X

− η(X)η(U)H(ζ, V )Z + η(U)H(X, V )Z

− η(X)η(V )H(U, ζ)Z + η(V )H(U,X)Z

− η(X)η(Z)H(U, V )ζ + η(Z)H(U, V )X
}

= 0. (4.72)
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Taking inner product of (4.72) with respect to ζ, we have

(α− β)

n

{
H ′(U, V, Z,X)− η(H(U, V )Z)η(X)

− g(X,U)η(H(ζ, V )Z) + η(U)η(H(X, V )Z)

− g(X, V )η(H(U, ζ)Z) + η(V )η(H(U,X)Z)

− g(X,Z)η(H(U, V )ζ) + η(Z)η(H(U, V )X)
}

+ β
{
η(X)η(H(U, V )Z)− η(H(U, V )Z)η(X)

− η(X)η(U)η(H(ζ, V )Z) + η(U)η(H(X, V )Z)

− η(X)η(V )η(H(U, ζ)Z) + η(V )η(H(U,X)Z)

− η(X)η(Z)η(H(U, V )ζ) + η(Z)η(H(U, V )X)
}

= 0. (4.73)

Using equation (4.17) in (4.73), we get

(α− β)

n

[
H ′(U, V, Z,X) +

(na+ b)

(n− 1)(n− 2)

{
g(X,U)g(V, Z)

− g(X, V )g(U,Z)
}]
− β (na+ b)

(n− 1)(n− 2)

[
η(X)η(U)g(V, Z)

− η(X)η(V )g(U,Z)
]

= 0. (4.74)

Making use of (1.22) in (4.74), we obtain

(α− β)

n

[
R′(U, V, Z,X)− 1

(n− 2)

{
S(V, Z)g(X,U)

− S(U,Z)g(X, V ) + g(V, Z)S(X,U)− g(U,Z)S(X, V )
}

+
(na+ b)

(n− 1)(n− 2)

{
g(V, Z)g(X,U)− g(U,Z)g(X, V )

}]
+ β

(na+ b)

(n− 1)(n− 2)

[
η(V )η(Z)g(X,U)− η(U)η(Z)g(X, V )

]
= 0. (4.75)

Taking U = X = ei in (4.75) and summing over i, 1 ≤ i ≤ n, we get

β
(na+ b

n− 2

)
η(V )η(Z) = 0.
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Since n > 2, β 6= 0 and η 6= 0, we have

na+ b = 0.

Using this in equation (4.74), it follows that

(α− β)

n
H ′(U, V, Z,X) = 0,

⇒ α = β = 0 or H ′(U, V, Z,X) = 0,

which leads to the theorem:

Theorem 4.9 Let M be an n-dimensional N(k)-quasi Einstein manifold. Then M

satisfies the curvature condition P̄ (ζ,X) ·H = 0 if α = β or the manifold is conhar-

monically flat.

Consider an N(k)-quasi Einstein manifold which is pseudo projectively semisym-

metric. Then,

(R(X, Y ) · P̄ )(U, V )W = 0,

R(X, Y )P̄ (U, V )W − P̄ (R(X, Y )U, V )W − P̄ (U,R(X, Y )V )W

− P̄ (U, V )R(X, Y )W = 0, (4.76)

Taking inner product of (4.76) with respect to ζ, we have

g(R(X, Y )P̄ (U, V )W, ζ)− g(P̄ (R(X, Y )U, V )W, ζ)− g(P̄ (U,R(X, Y )V )W, ζ)

− g(P̄ (U, V )R(X, Y )W, ζ) = 0,

Substituting X = ζ, the above equation becomes

g(R(ζ, Y )P̄ (U, V )W, ζ)− g(P̄ (R(ζ, Y )U, V )W, ζ)− g(P̄ (U,R(ζ, Y )V )W, ζ)

− g(P̄ (U, V )R(ζ, Y )W, ζ) = 0.
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Using equation (4.3), we have

k

[
P̄ ′(U, V,W, Y )− (α− β)

n

{
g(V,W )g(U, Y )

− g(U,W )g(V, Y )
}]

= 0. (4.77)

Assuming k 6= 0 and making use of equation (1.24), (4.77) becomes

αR′(U, V,W, Y ) = −β[S(V,W )g(U, Y )− S(U,W )g(V, Y )]

+

{
r

n

( α

n− 1
+ β

)
+

(α− β)b

n

}[
g(V,W )g(U, Y )

− g(U,W )g(V, Y )
]
. (4.78)

Contracting equation (4.78) with respect to U and Y , we get

S(V,W ) =
[ r

n(n− 1)
+

(α− β)b

n(α + β(n− 1))

]
g(V,W )

showing that the manifold is Einstein, which is not possible since M is an N(k)-quasi

Einstein manifold. Thus, we can state:

Theorem 4.10 There does not exist a pseudo projectively semisymmetric N(k)-quasi

Einstein manifold.

Consider a pseudo projectively symmetric N(k)-quasi Einstein manifold. Then,

(∇XP̄
′)(Z,U, V,W ) = 0.

By virtue of equation (1.24), the above equation can be written as

α(∇XR
′)(Z,U, V,W ) + β[(∇XS)(U, V )g(Z,W )

− (∇XS)(Z, V )g(U,W )]− dr(X)

n

( α

n− 1
+ β

)[
g(U, V )g(Z,W )

− g(Z, V )g(U,W )
]

= 0. (4.79)
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Contracting (4.79) with respect to Z and W , we obtain

(∇XS)(U, V ) =
dr(X)

n
g(U, V ). (4.80)

Using (1.78) in equation (4.80), we have

da(X)g(U, V ) + db(X)η(U)η(V ) + b[(∇Xη)(U)η(V )

+ (∇Xη)(V )η(U)] =
dr(X)

n
g(U, V ). (4.81)

Substituting U = V = ζ, (4.81) becomes

dr(X) = n[da(X) + db(X)]. (4.82)

Also, taking covariant derivative of equation (4.6) with respect to X, we obtain

dr(X) = nda(X) + db(X). (4.83)

From equations (4.82) and (4.83), it follows that

(n− 1)db(X) = 0,

or

db(X) = 0,

which implies that b is constant. This leads to the following theorem:

Theorem 4.11 An N(k)-quasi Einstein manifold is pseudo projectively symmetric

provided the associated scalar b is non-zero constant.
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4.7 Conharmonically pseudosymmetric N(k)-quasi

Einstein manifold

Consider an N(k)-quasi Einstein manifold which is conharmonically pseudosym-

metric. Then,

(R(X, Y ) ·H)(Z,W )U = LHQ(g,H)(Z,W,U ;X, Y ) (4.84)

for a smooth function LH ∈ AH = {x ∈ M : Q(g,H) 6= 0 at x}, where X, Y, Z,W,U

are arbitrary.

From equation (4.84) we have

R(X, Y )H(Z,W )U −H(R(X, Y )Z,W )U

−H(Z,R(X, Y )W )U −H(Z,W )R(X, Y )U

= LH [(X ∧H Y )H(Z,W )U −H((X ∧H Y )Z,W )U

−H(Z, (X ∧H Y )W )U −H(Z,W )(X ∧H Y )U ]. (4.85)

Putting X = ζ, (4.85) becomes

R(ζ, Y )H(Z,W )U −H(R(ζ, Y )Z,W )U

−H(Z,R(ζ, Y )W )U −H(Z,W )R(ζ, Y )U

= LH [(ζ ∧H Y )H(Z,W )U −H((ζ ∧H Y )Z,W )U

−H(Z, (ζ ∧H Y )W )U −H(Z,W )(ζ ∧H Y )U ]. (4.86)

Making use of equation (4.3) in (4.86) and

(X ∧H Y )Z = g(Y, Z)X − g(X,Z)Y,
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we have

(k − LH)[H ′(Z,W,U, Y )ζ − η(H(Z,W )U)Y − g(Y, Z)H(ζ,W )U

+ η(Z)H(Y,W )U − g(Y,W )H(Z, ζ)U + η(W )H(Z, Y )U

− g(Y, U)H(Z,W )ζ + η(U)H(Z,W )Y ] = 0.

Assuming k 6= LH and taking inner product of the above equation with respect

to ζ, we have

H ′(Z,W,U, Y ) +
na+ b

(n− 1)(n− 2)

[
g(Z, Y )g(W,U)

− g(Z,U)g(W,Y )
]

= 0. (4.87)

From equations (1.22) and (4.87), we obtain

R′(Z,W,U, Y ) = a1[g(Z, Y )g(W,U)− g(Z,U)g(W,Y )]

+ a2[η(W )η(U)g(Y, Z)− η(Z)η(U)g(W,Y )

+ η(Z)η(Y )g(W,U)− η(W )η(Y )g(Z,U)],

where a1 =
a

n− 1
− b

(n− 1)(n− 2)
and a2 =

b

n− 2
. This leads to the following

theorem:

Theorem 4.12 An n-dimensional N(k)-quasi Einstein manifold which is conhar-

monically pseudosymmetric and k 6= LH is of quasi-constant curvature.

4.8 Examples of N(k)-quasi Einstein manifolds

Example 1:

Consider a Riemannian metric g on R3 by

ds2 = gijdx
idxj = ex

3

cos(x3)[(dx1)2 + (dx2)2]− (dx3)2.
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Then, we have

g11 = g22 = ex
3

cos(x3), g33 = −1,

g11 = g22 = e−x
3

sec(x3), g33 = −1.

Then, the non-vanishing components of the Christoffel’s symbols and the curva-

ture tensors are

Γ3
11 = Γ3

22 = ex
3 (cos(x3)− sin(x3))

2
,

Γ1
13 = Γ2

23 =
cos(x3)− sin(x3)

2cos(x3)
,

R1221 = −e2x3 (1− sin(2x3))

4
, R1331 = R2332 = −ex3 (1 + sin(2x3))

4cos(x3)
.

Also, the non-vanishing components of the Ricci tensors are

S11 = S22 = −ex3sin(x3), S33 =
(1 + sin(2x3))

2cos2(x3)
.

Using these results in

r = gijSij, (4.88)

we get

r = −(sec2(x3)− 6tan2(x3))

2
,

which is non-zero.

To show that the manifold is N(k)-quasi Einstein, we choose the scalar functions

a and b and the 1-form η as

a = −tan(x3), b =
1

2
sec2(x3),

ηi(x) =


1, i = 3,

0, otherwise,

at any point x ∈ R3.

92



Chapter 4

From (1.78), we have

S11 = ag11 + bη1η1, (4.89)

S22 = ag22 + bη2η2, (4.90)

S33 = ag33 + bη3η3 (4.91)

and all others hold trivially.

R. H. S of (4.91) = ag33 + bη3η3

= −tan(x3)(−1) +
1

2
sec2(x3)(1)

=
(1 + sin(2x3))

2cos2(x3)
= S33

= L.H.S of (4.91).

Similarly, it can be shown that equations (4.89) and (4.90) hold. Using equation

(4.1), we get

k =
a+ b

n− 1
=
sin(2x3)− 1

4
.

So, (R3, g) is an N
( sin(2x3)−1

4

)
–quasi Einstein manifold.

Example 2:

Consider a pseudo projectively flat quasi Einstein manifold. Then, from (1.24),

we have

αR(X, Y )Z = −β
[
S(Y, Z)X − S(X,Z)Y

]
(4.92)

+
r

n

[ α

n− 1
+ β

][
g(Y, Z)X − g(X,Z)Y

]
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Using equations (1.77) in (4.92), we get

αR(X, Y )Z = −
{
βa− r

n

( α

n− 1
+ β

)}[
g(Y, Z)X − g(X,Z)Y

]
(4.93)

− βb
[
η(Y )η(Z)X − η(X)η(Z)Y

]
.

Replacing Z by ζ in (4.93) we have,

R(X, Y )ζ =
[ r

n(n− 1)
− βb

n

(n− 1

n

)][
η(Y )X − η(X)Y

]
,

which shows that ζ belongs to the
(

r
n(n−1)

− βb
n

(
n−1
n

))
-nullity distribution. Therefore,

we can state:

Theorem 4.13 A pseudo projectively flat quasi Einstein manifold is an

N
(

r
n(n−1)

− βb
n

(
n−1
n

))
-quasi Einstein manifold.

Example 3:

Consider a quasi Einstein manifold which is conharmonically flat. Then by equa-

tion (1.22), we have

R(X, Y )Z =
1

(n− 2)

[
S(X,Z)Y − S(Y, Z)X (4.94)

+ g(Y, Z)QX − g(X,Z)QY
]
.

Using (1.77) and (4.6) in (4.94), we have

R(X, Y )Z =
1

(n− 2)

[
2a
{
g(Y, Z)X − g(X,Z)Y

}
+ b
{
η(Y )η(Z)X (4.95)

− η(X)η(Z)Y + g(Y, Z)η(X)ζ)− g(X,Z)η(Y )ζ
}]
.

Substituting Z = ζ, equation (4.95) reduces to

R(X, Y )ζ =
(2a+ b

n− 2

)[
η(Y )X − η(X)Y

]
,

showing that the manifold is an N
(2a+ b

n− 2

)
-quasi Einstein manifold. Thus, we have

the following theorem:
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Theorem 4.14 A conharmonically flat quasi Einstein manifold is an N
(2a+ b

n− 2

)
-

quasi Einstein manifold.

Example 4:

Consider R4 with the Riemannian metric g defined by

ds2 = gijdx
idxj = (x3)2[(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

Then, we have

g11 = g22 = g33 = (x3)2, g44 = 1,

g11 = g22 = g33 =
1

(x3)2
, g44 = 1.

The non-vanishing components of the Christoffel’s symbols, the curvature tensors

and the Ricci tensors are

Γ3
11 = Γ3

22 = − 1

x3
, Γ3

33 = Γ1
13 = Γ2

23 =
1

x3
,

R1331 = R2332 = −1, S11 = S22 = S44 = 0, S33 =
2

(x3)2
.

Using (4.88) and the above results, we get

r = 2,

which is non-vanishing. To show that the manifold under consideration is an N(k)-

quasi Einstein manifold, we choose the scalar functions a, b and the 1-form η as

a = 0, b = 2,

ηi(x) =


1
x3
, i = 3,

0, otherwise,

95



Chapter 4

at any point x ∈ R4. From (1.78), we have

S11 = ag11 + bη1η1, (4.96)

S22 = ag22 + bη2η2, (4.97)

S33 = ag33 + bη3η3, (4.98)

S44 = ag44 + bη4η4 (4.99)

and all others hold trivially.

R. H. S of (4.98) = ag33 + bη3η3

= −0 + 2
( 1

x3

)( 1

x3

)
=

2

(x3)2
= S33

= L.H.S of (4.98).

Similarly, it can be shown that equations (4.96), (4.97) and (4.99) hold. Using

(4.1), we get

k =
a+ b

n− 1
=

2

3
.

So, (R4, g) is an N
(

2
3

)
-quasi Einstein manifold.
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Chapter 5

Weakly Z-symmetric Manifolds

In this chapter, we considered weakly Z-symmetric manifolds. Weakly Z-symmetric

manifolds with Codazzi type and cyclic parallel Z tensor are studied. We considered

Einstein weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric

manifolds. Also, we showed that a totally umbilical hypersurface of a conformally

flat weakly Z-symmetric manifolds is of quasi constant curvature. Decomposable

weakly Z-symmetric manifolds are studied and some examples are constructed to

support the existence of such manifolds.

5.1 Introduction

A non-flat Riemannian manifold (Mn, g) is said to be weakly symmetric (Tamassy

and Binh, 1989) if the curvature tensor R′ given by R′(X, Y, U, V ) = g(R(X, Y )U, V )

satisfies (1.69). The Z tensor in a Riemannian manifold is defined by

Z(X, Y ) = S(X, Y ) + φg(X, Y ),

which on contraction reduces to

Z = r + nφ. (5.1)

Lalnunsiami, K. and Singh J. P. (2020). On some classes of weakly Z-symmetric manifolds,
Communications of the Korean Mathematical Society, 35(2), 935-951.
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(Mantica and Suh, 2012). A Riemannian manifold is called a weakly Z-symmetric

manifold (Mantica and Molinari, 2012) if the Z tensor satisfies

(∇XZ)(U, V ) = A(X)Z(U, V ) +B(U)Z(X, V ) +D(V )Z(U,X), (5.2)

where A,B,D are simultaneously non-zero 1-forms defined by

A(X) = g(X, ρ1), B(X) = g(X, ρ2), D(X) = g(X, ρ3). (5.3)

Here, ρ1, ρ2, ρ3 are known as the basic vector fields of Mn corresponding to A,B,D

respectively. We denote this manifold by (WZS)n. An Einstein manifold (Besse,

1987) is a Riemannian manifold (Mn, g) whose Ricci tensor satisfies (1.77).

An Einstein manifold can be generalized to a quasi Einstein manifold. A non-flat

Riemannian manifold (Mn, g)(n > 2) whose Ricci tensor is not identically zero and

satisfies

S(U, V ) = ag(U, V ) + bη(U)η(V ),

for smooth functions a, b( 6= 0), and η is a 1-form which is non zero defined by

η(X) = g(X, ζ), η(ζ) = 1,

for all vector fields X is called a quasi Einstein manifold (Chaki and Maity, 2000).

A Riemannian manifold is said to have cyclic parallel Ricci tensor if S is non-zero

and satisfies (1.81) (Gray, 1978). Also, the Ricci tensor S in a Riemannian manifold

is said to be of Codazzi type (Gray, 1978) if S is not zero and satisfies (1.82). We

have the following important lemma:

Lemma 5.1 (Walker’s Lemma) (Walker, 1950): If aij, bi are numbers satisfying

aijbk + ajkbi + akibj = 0,

for i, j, k = 1, 2, ........n, then either all aij = 0 or all bi = 0.
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Let S denote the Ricci tensor of the manifold defined by

S(X, Y ) = g(QX, Y ),

where Q is the Ricci operator. We define

Ā(X) = A(QX), B̄(X) = B(QX), D̄(X) = D(QX), (5.4)

called the auxiliary 1-forms corresponding to A,B and D. From (1.20), we have

Z(U, V ) = Z(V, U),

Z(U, ρ1) = S(U, ρ1) + φg(U, ρ1),

or,

Z(U, ρ1) = Ā(U) + φA(U).

Similarly,

Z(U, ρ2) = B̄(U) + φB(U),

Z(U, ρ3) = D̄(U) + φD(U).

Now, equation (5.2) yields

(∇XZ)(U, V )− (∇VZ)(U,X) = E(X)Z(U, V )− E(V )Z(U,X), (5.5)

where

E(X) = A(X)−D(X) = g(X, ρ), ρ = ρ1 − ρ3. (5.6)

Making use of equation (1.20) in (5.5), we have

(∇XS)(U, V ) + (Xφ)g(U, V ) − (∇V S)(U,X)− (V φ)g(U,X)

= E(X)Z(U, V )− E(V )Z(U,X). (5.7)

Contracting equation (5.7) with respect to U and V and using (5.1) and (5.6), we
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get

dr(X) = 2
[
r + (n− 1)φ

]
E(X)− 2Ē(X)− 2(n− 1)(Xφ). (5.8)

A conformally flat Riemannian manifold (Mn, g)(n > 2) is said to be of quasi

constant curvature (Chen and Yano, 1972) if its curvature tensor R′ of type (0, 4)

satisfies

R′(X, Y, U, V ) = l
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+ m

[
g(X, V )H(Y )H(U) + g(Y, U)H(X)H(V )

− g(X,U)H(Y )H(V )− g(Y, V )H(X)H(U)
]
, (5.9)

where l,m are scalar functions, m 6= 0 called the associated scalars, H 6= 0 is called

the associated 1-form given by g(X,µ) = H(X) and µ is a unit vector field known as

the generator of the manifold.

A Riemannian manifold whose curvature tensor R′ satisfies

R′(X, Y, U, V ) = F (Y, U)F (X, V )− F (X,U)F (Y, V ), (5.10)

where F is a symmetric (0, 2) tensor is known as a special manifold (Chern, 1956)

with the associated symmetric tensor F and denoted by ψ(F )n.

5.2 Weakly Z-symmetric manifolds

In this section, we consider Einstein (WZS)n, (WZS)n with Codazzi and cyclic

parallel Z tensor and conformally flat (WZS)n.

Suppose the Z tensor in a (WZS)n is of Codazzi type. Then,

(∇XZ)(U, V ) = (∇VZ)(U,X). (5.11)

Using (5.2) in (5.11), we get

[
A(X)−D(X)

]
Z(U, V ) =

[
A(V )−D(V )

]
Z(U,X),
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or,

E(X)Z(U, V ) = E(V )Z(U,X). (5.12)

Contraction of (5.12) over U and X yields

E(V )[r + (n− 1)φ] = E(QV ). (5.13)

Also, on substituting V = ρ in (5.12) and using equations (1.20), (5.4) and (5.6),

we obtain

E(X)
[
E(QU) + φE(U)

]
= E(ρ)

[
S(X,U) + φg(X,U)

]
. (5.14)

Equations (5.13) and (5.14) gives

E(X)E(U)(r + (n− 1)φ) = E(ρ)S(X,U) + φE(ρ)g(X,U). (5.15)

If ρ is a unit vector field, then equation (5.15) becomes

S(X,U) = −φg(X,U) + (r + (n− 1)φ)E(X)E(U),

which implies that the manifold is quasi Einstein. Thus, we can state:

Theorem 5.1 In a (WZS)n, if the Z tensor is of Codazzi type, then the manifold

is quasi Einstein provided that the vector field ρ defined by

E(X) = A(X)−D(X) = g(X, ρ), ρ = ρ1 − ρ3,

is a unit vector field.

Consider an Einstein (WZS)n. Then, from (1.77), we have

dr(X) = 0, (5.16)

which implies that,

(∇XS)(U, V ) = 0. (5.17)
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Making use of equations (5.16) and (5.17) in (5.2), we obtain

(Xφ)g(U, V ) =
( r
n

+ φ
)[
A(X)g(U, V )

+ B(U)g(X, V ) +D(V )g(U,X)
]
. (5.18)

Contracting (5.18) over U and V , we get

n(Xφ) =
( r
n

+ φ
)[
nA(X) +B(X) +D(X)

]
. (5.19)

Similarly,

n(Uφ) =
( r
n

+ φ
)[
nB(X) + A(X) +D(X)

]
, (5.20)

and

n(V φ) =
( r
n

+ φ
)[
nD(X) +B(X) + A(X)

]
. (5.21)

Replacing U, V by X in (5.20) and (5.21) and adding (5.19), (5.20) and (5.21),

we have

3n(Xφ) =
( r
n

+ φ
)

(n+ 2)
[
A(X) +B(X) +D(X)

]
. (5.22)

If φ is constant, we have from (5.22),

A(X) +B(X) +D(X) = 0. (5.23)

Conversely, if (5.23) holds, then φ is constant which proves the theorem:

Theorem 5.2 The sum of the associated 1-forms A,B,D in an Einstein (WZS)n

is zero if and only if φ is constant.

Now, suppose (5.23) holds. Then, from (5.2),

(∇XZ)(X,X) = [A(X) +B(X) +D(X)]Z(X,X),
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which gives

(∇XZ)(X,X) = 0, (5.24)

i. e., Z is covariantly constant in the direction of X.

Further, if (5.24) holds, then (5.23) follows if Z(X,X) 6= 0. This leads to the

following corollary:

Corollary 5.1 The Z tensor in an Einstein (WZS)n is covariantly constant in the

direction of X if and only if (5.24) holds.

Interchanging X,U, V in equation (5.2) and adding, we have

(∇XZ)(U, V ) + (∇UZ)(V,X) + (∇VZ)(U,X) = F (X)Z(U, V )

+ F (U)Z(V,X) + F (V )Z(U,X), (5.25)

where F (X) = A(X) +B(X) +D(X).

Suppose the Z tensor is cyclic parallel, i. e.,

(∇XZ)(U, V ) + (∇UZ)(V,X) + (∇VZ)(U,X) = 0.

Then, (5.25) becomes

F (X)Z(U, V ) + F (U)Z(V,X) + F (V )Z(U,X) = 0. (5.26)

From Walker’s Lemma, it follows that F (X) = 0 or Z(X, Y ) = 0. But Z(X, Y ) 6=

0 which implies that F (X) = 0. i. e.,

A(X) +B(X) +D(X) = 0.

Conversely, if A(X) + B(X) + D(X) = 0, then from (5.25), Z is cyclic parallel.

This leads to the theorem:

Theorem 5.3 In a (WZS)n, the Z tensor is cyclic parallel if and only if A(X) +

B(X) +D(X) = 0.
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The Weyl conformal curvature tensor C̄ in a Riemannian manifold (Mn, g)(n > 3)

is given by equation (1.27). Consider a conformally flat (WZS)n. Then,

div C̄ = 0,

where “div” denotes the divergence. Hence,

(∇XS)(U, V )− (∇V S)(U,X) =
1

2(n− 1)

[
g(U, V )dr(X)

− g(U,X)dr(V )
]
. (5.27)

Using equations (5.7) and (5.8), (5.27) becomes

E(X)Z(U, V ) − E(V )Z(U,X)− (Xφ)g(U, V ) + (V φ)g(U,X)

=
1

2(n− 1)

[
2{r + (n− 1)φ}{E(X)g(U, V )

− E(V )g(U,X)} − 2(n− 1){(Xφ)g(U, V )

− (V φ)g(U,X)} − 2{Ē(X)g(U, V )

− Ē(V )g(U,X)}
]
, (5.28)

where Ē(X) = E(QX).

Substituting X = ρ in (5.28), we get

E(X)Ē(V ) = E(V )Ē(X). (5.29)

Again, replacing X by ρ in (5.29), we get

Ē(V ) =
Ē(ρ)

E(ρ)
E(V ),

or

Ē(V ) = sE(V ), (5.30)

where

s =
Ē(ρ)

E(ρ)
. (5.31)
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Using (5.31) in (5.8), we obtain

dr(X) = 2{r − s+ (n− 1)φ}E(X)− 2(n− 1)(Xφ). (5.32)

Assume that E 6= 0. Substituting X = ρ in (5.28) and using (5.30), we have

E(ρ)Z(U, V )− E(V )Z(U, ρ) =
1

(n− 1)

{
r − s+ (n− 1)φ

}[
E(ρ)g(U, V )

− E(V )E(ρ)
]
. (5.33)

Making use of (1.20) and (5.30), (5.33) becomes

E(ρ)S(U, V ) + φE(ρ)g(U, V )− sE(U)E(V )− φE(U)E(V )

=
1

(n− 1)

{
r − s+ (n− 1)φ

}[
E(ρ)g(U, V )− E(V )E(ρ)

]
, (5.34)

or

S(U, V ) =

(
r − s
n− 1

)
g(U, V ) +

(
ns− r
n− 1

)
T (U)T (V ),

where T (X) = E(X)
E(ρ)

. Thus, we can write

S(U, V ) = ag(U, V ) + bT (U)T (V ), (5.35)

where a =
r − s
n− 1

and b =
ns− r
n− 1

. Thus, the manifold is quasi-Einstein which leads

to the theorem:

Theorem 5.4 A conformally flat (WZS)n is quasi Einstein provided that the 1-form

E given by

E(X) = A(X)−D(X) = g(X, ρ), ρ = ρ1 − ρ3,

is non-zero.

Now, from (5.34), we have

S(U, V ) =
( r − s
n− 1

)
g(U, V ) +

(ns− r
n− 1

)E(U)E(V )

ρ
.
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Putting V = ρ, we get

S(U, ρ) = sE(U) = sg(U, ρ),

i. e., ρ is an eigenvector of S with eigenvalue s. Thus, we can state the following

corollary:

Corollary 5.2 In a conformally flat (WZS)n, the vector field ρ corresponding to the

1-form E is an eigenvector of the Ricci tensor S corresponding to the eigenvalue s.

Suppose the (WZS)n is conformally flat. Then, we have,

C̄(X, Y, U, V ) = 0,

which implies that,

R′(X, Y, U, V ) =
1

(n− 2)

[
S(Y, U)g(X, V )− S(X,U)g(Y, V )

+ S(X, V )g(Y, U)− S(Y, V )g(X,U)
]

− r

(n− 1)(n− 2)

[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
.

Using (5.35) and assuming that ρ is a unit vector field, the above equation becomes

R′(X, Y, U, V ) =
[ 2a

(n− 2)
− r

(n− 1)(n− 2)

][
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+

b

(n− 2)

[
g(X, V )E(Y )E(U) + g(Y, U)E(X)E(V )

− g(X,U)E(Y )E(V )− g(Y, V )E(X)E(U)
]
,

or,

R′(X, Y, U, V ) = l
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+ m

[
g(X, V )E(Y )E(U) + g(Y, U)E(X)E(V )

− g(X,U)E(Y )E(V )− g(Y, V )E(X)E(U)
]
, (5.36)

where l =
2a

(n− 2)
− r

(n− 1)(n− 2)
and m =

b

(n− 2)
, i. e., the manifold is of quasi

constant curvature. Thus, we have the theorem:
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Theorem 5.5 If the vector field ρ associated with E in a conformally flat (WZS)n

is a unit vector field, then the manifold is of quasi constant curvature.

Suppose that

F (X, Y ) =
√
lg(X, Y ) +

m√
l
E(X)E(Y ). (5.37)

Then, F is a symmetric tensor. Using equation (5.37) in (5.36), we get

R′(X, Y, U, V ) = F (Y, U)F (X, V )− F (X,U)F (Y, V ).

Thus, the manifold is a ψ(F )n. i.e.,

Proposition 5.1 A conformally flat (WZS)n is a ψ(F )n.

Definition 5.1 Consider a hypersurface (M̄n−1, g) of a conformally flat (WZS)n

whose curvature tensor is denoted by R̄. Then, for any vector field X, Y, U, V ∈

χ(M̄n−1), we have (Yano and Kon, 1984)

g(R(X, Y )U, V ) = g(R̄(X, Y )U, V )− g(B(X, V ), B(Y, U))

+ g(B(Y, V ), B(X,U)), (5.38)

where B is the second fundamental form of M̄ . If

B(X, Y ) = τg(X, Y ), (5.39)

where τ is the mean curvature of M , then M is totally umbilical.

In a conformally flat (WZS)n,

g(R(X, Y )U, V ) = l
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+ m

[
g(X, V )T (Y )T (U) + g(Y, U)T (X)T (V )

− g(X,U)T (Y )T (V )− g(Y, V )T (X)T (U)
]
, (5.40)

where l =
2a

(n− 2)
− r

(n− 1)(n− 2)
, m =

b

(n− 2)
and T (X) =

E(X)√
E(ρ)

.
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From equations (5.38) and (5.40), we have

g(R̄(X, Y )U, V ) = l
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+m

[
g(X, V )T (Y )T (U) + g(Y, U)T (X)T (V )

−g(X,U)T (Y )T (V )− g(Y, V )T (X)T (U)
]

+g(B(X, V ), B(Y, U))− g(B(Y, V ), B(X,U)).

By hypothesis M̄ is totally umbilical, so the above equation becomes

g(R̄(X, Y )U, V ) = (l+ | τ |2)
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+ m

[
g(X, V )T (Y )T (U) + g(Y, U)T (X)T (V )

− g(X,U)T (Y )T (V )− g(Y, V )T (X)T (U)
]
,

or

g(R̄(X, Y )U, V ) = p
[
g(Y, U)g(X, V )− g(X,U)g(Y, V )

]
+ q

[
g(X, V )E(Y )E(U) + g(Y, U)E(X)E(V )

− g(X,U)E(Y )E(V )− g(Y, V )E(X)E(U)
]
, (5.41)

where p = l+ | τ |2 and q = m and assuming that ρ is a unit vector field. Since b 6= 0,

i. e., q 6= 0, we can state:

Theorem 5.6 A totally umbilical hypersurface of a conformally flat (WZS)n is of

quasi constant curvature.

5.3 Examples of (WZS)n

Example 1:

Consider R3 with the Riemannian metric g given by

ds2 = gijdx
idxj = ex

1

x3(dx1)2 + (dx2)2 + (dx3)2,
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which gives the non-vanishing components of the Lorentzian metric and its associated

components as

g11 = ex
1

x3, g22 = g33 = 1,

g11 =
1

ex1x3
, g22 = g33 = 1.

Then, the non-zero components of the Christoffel’s symbols, the curvature tensors

and the Ricci tensors are

Γ1
11 =

1

2
, Γ3

11 = − 1

2ex1
, Γ1

13 =
1

2x3
,

R1331 = − 1

4x3
ex

1

,

S11 =
1

4x3
ex

1

, S33 =
1

4(x3)2
.

Using

r = gijSij, (5.42)

we get r = 1
2(x3)2

which is non-vanishing and non-constant.

Take the function φ = 1
4(x3)2

such that

Z11 =
1

2x3
ex

1

, Z33 =
1

2(x3)2
,

Z11,1 =
1

2x3
ex

1

, Z11,3 = − 1

2(x3)2
ex

1

, Z33,3 = − 1

(x3)3
.
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Also, we choose the 1-forms as

Ai(x) =


− 1
x3
, i = 3

0, otherwise,

Bi(x) =


− 2
x3
, i = 3

0, otherwise,

Di(x) =


1
x3
, i = 3

0, otherwise,

at any point x in R3. From equation (5.2), we have

Z11,1 = A1Z11 +B1Z11 +D1Z11, (5.43)

Z11,3 = A3Z11 +B1Z13 +D1Z13, (5.44)

Z33,3 = A3Z33 +B3Z33 +D3Z33, (5.45)

and all others hold trivially.

Now,

R. H. S of (5.44) = A3Z11 +B1Z13 +D1Z13

=
(
− 1

x3

)
.
(
− 1

2x3
ex

1)
= − 1

2(x3)2
ex

1

= Z11,3

= L.H.S of (5.44),
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and,

R. H. S of (5.45) = A3Z33 +B3Z33 +D3Z33

=

(
− 1

x3
− 2

x3
+

1

x3

)
1

2(x3)2

= − 1

(x3)3
= Z33,3

= L.H.S of (5.45)

and (5.43) holds. So, (R3, g) is a (WZS)n.

Example 2:

Consider the Riemannian metric g in R4 defined by

ds2 = gijdx
idxj = (dx1)2 + (x1)

4
3 [(dx2)2 + (dx3)2 + (dx4)2],

which gives the non-zero components of the Lorentzian metric and its associated

components as

g11 = 1, g22 = g33 = g44 = (x1)
4
3 ,

g11 = 1, g22 = g33 = g44 =
1

(x1)
4
3

.

Then, the non-vanishing components of the Christoffel’s symbols and the curva-

ture tensors are

Γ4
14 = Γ3

13 = Γ2
12 =

2

3x1
, Γ1

22 = Γ1
33 = Γ1

44 = −2

3
(x1)

1
3 ,

R1221 = R1331 = R1441 = − 2

9(x1)
2
3

, R2332 = R3443 = R2442 =
4

9
(x1)

2
3 .

From these, we get the non-zero components of the Ricci tensors and their covari-

ant derivatives as

S11 =
2

3(x1)2
, S22 = S33 = S44 = − 2

3(x1)
2
3

.

Using (5.42), we get r = − 4
3(x1)2

which is non-vanishing and non-constant. Take
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the function φ = − 1
(x1)2

. Then, using (1.20), we obtain

Z11 =
1

3(x1)2
, Z22 = Z33 = Z44 = − 5

3(x1)
2
3

,

Z11,1 = − 2

3(x1)3
, Z22,1 = Z33,1 = Z44,1 =

10

9(x1)
5
3

.

Also, we choose the 1-forms

Ai(x) =


− 2

3x1
, i = 1

0, otherwise,

Bi(x) =


− 1

3x1
, i = 1

0, otherwise,

Di(x) =


− 1
x1
, i = 1

0, otherwise,

at any point x in R3. From (5.2), we have

Z11,1 = A1Z11 +B1Z11 +D1Z11, (5.46)

Z22,1 = A1Z22 +B2Z12 +D2Z12, (5.47)

Z33,1 = A3Z33 +B3Z13 +D3Z13, (5.48)

Z44,1 = A1Z44 +B4Z14 +D4Z14 (5.49)

and all others hold trivially.
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Therefore,

R. H. S of (5.46) = A1Z11 +B1Z11 +D1Z11

=

(
− 2

3
− 1

3
− 1

)
1

3(x1)2

= − 2

3(x1)2
= Z11,1

= L.H.S of (5.46),

and,

R. H. S of (5.47) = A1Z22 +B2Z12 +D2Z12

= − 2

3x1
.
(
− 5

3(x1)
2
3

)
=

10

9(x1)
5
3

= Z22,1

= L.H.S of (5.47).

Similarly, equations (5.48) and (5.49) can be proved. So, R4 with the given metric

is a (WZS)n.

Example 3:

Define a Riemannian metric g on R4 as

ds2 = gijdx
idxj = ex

4

[(dx1)2 + (dx2)2 + (dx3)2] + (dx4)2.

Then, the non-vanishing components of the Lorentzian metric and its associated

components are

g11 = g22 = g33 = ex
4

, g44 = 1,

g11 = g22 = g33 =
1

ex4
, g44 = 1.

Also, the non-zero components of the Christoffel’s symbols, the curvature tensors

and the Ricci tensors are

Γ1
14 = Γ2

24 = Γ3
34 =

1

2
, Γ4

11 = Γ422 = Γ4
33 = −1

2
ex

4

,
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R1441 = R2442 = R3443 =
1

4
ex

4

, R1221 = R2332 = R1331 =
1

4e2x4
.

S11 = S22 = S33 = − 3

4ex4
, S44 = −3

4
.

From (5.42), we get r = −3 which is non-vanishing.

Let us take φ = 1. Thus, the components of the Z tensor and their derivatives

are

Z11 = Z22 = Z33 =
1

4ex4
, Z44 =

1

4

Z11,4,= Z22,4 = Z33,4 =
1

4ex4
.

Also, we choose the 1-forms as

Ai(x) =


1, i = 4

0, otherwise,

Bi(x) =


2, i = 4

0, otherwise,

Di(x) =


−3, i = 4

0, otherwise,

at any point x in R4. From (5.2), we have

Z11,4 = A4Z11 +B1Z14 +D1Z14, (5.50)

Z22,4 = A4Z22 +B2Z42 +D2Z42, (5.51)

Z33,4 = A4Z33 +B3Z43 +D3Z43, (5.52)

Z44,1 = A1Z44 +B4Z14 +D4Z14 (5.53)
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and all others hold trivially. Now,

R. H. S of (5.50) = A4Z11 +B1Z14 +D1Z14

= 1.
1

4ex4

=
1

4ex4
= Z11,4

= L.H.S of (5.50),

and,

R. H. S of (5.53) = A1Z44 +B4Z14 +D4Z14

= (1 + 2− 3)
1

4

= 0 = Z44,4

= L.H.S of (5.53).

Similarly, we can show that (5.51) and (5.52) holds. So, (R4, g) is a (WZS)n.

5.4 Decomposable (WZS)n

Consider a decomposable manifold M = Mp
1 ×M

n−p
2 for 2 ≤ p ≤ n − p, i. e., in

some coordinate neighbourhood of the manifold,

ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ,

where ḡab are functions of x̄ = x1, x2, ...., xp and g∗αβ are functions of x∗ = xp+1, xp+2, ...., xn,

a, b runs from 1 to p and α, β runs from p + 1 to n. Here, Mp
1 and Mn−p

2 are called

the components of Mn.

Let X̄, Ȳ , Z̄, Ū , V̄ ∈ χ(M1), X∗, Y ∗, Z∗, U∗, V ∗ ∈ χ(M2). Since the manifold is

decomposable, we have (Yano and Kon, 1984)

S(X̄, Ȳ ) = S̄(X̄, Ȳ ),

S(X∗, Y ∗) = S∗(X∗, Y ∗),
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(∇X̄S)(Ȳ , Z̄) = (∇̄X̄S)(Ȳ , Z̄),

(∇X∗S)(Y ∗, Z∗) = (∇∗X∗S)(Y ∗, Z∗)

and r = r̄ + r∗.

Now, using (1.20) and (5.2), we have

(∇XS)(U, V ) + (Xφ)g(U, V ) = A(X)
[
S(U, V ) + φg(U, V )

]
+ B(U)

[
S(X, V ) + φg(X, V )

]
+ D(V )

[
S(U,X) + φg(U,X)

]
.

Then, we have

(∇∗XS)(Ū , V̄ ) + (X∗φ)g(Ū , V̄ ) = A(X∗)
[
S(Ū , V̄ ) + φg(Ū , V̄ )

]
+ B(Ū)

[
S(X∗, V̄ ) + φg(X∗, V̄ )

]
+ D(V̄ )

[
S(Ū ,X∗) + φg(Ū ,X∗)

]
.

Suppose φ is constant in M2, then the above equation becomes

A(X∗)
[
S(Ū , V̄ ) + φg(Ū , V̄ )

]
= 0,

which implies that A = 0 in M2 or M1 is Einstein. Similarly, we can show that if φ

is constant in M1, then A = 0 in M1 or M2 is Einstein. This leads to the theorem:

Theorem 5.7 In a decomposable (WZS)n (Mn, g), where Mn = Mp
1 ×M

n−p
2 , 2 ≤

p ≤ n− 2, if φ is constant in M2, then A = 0 in M2 or M1 is Einstein. Similarly, if

φ is constant in M1, then either A = 0 in M1 or M2 is Einstein.
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Chapter 6

Summary and Conclusion

In the present thesis, we studied the structures of some almost contact manifolds.

The following objectives are taken up in the study:

1. To study properties of metric/non metric connection.

2. To establish the geometrical properties of semi-generalized recurrent almost

contact manifolds.

3. To study inter-relations and applications of certain curvature conditions on

Quasi-Einstein manifolds.

4. To characterize weak symmetry of Z tensor in almost contact manifolds.

In Chapter 1, we give the general introduction of the study which includes the

basic definitions and formulae of differential geometry such as topological space, dif-

ferentiable manifolds, tangent vector, tangent space, vector field, Lie bracket, Lie

derivative, connection, covariant derivative, contraction, Riemannian manifold, Rie-

mannian connection, torsion tensor, semi-symmetric and quarter symmetric connec-

tion, different curvature tensors, almost contact metric manifolds, almost contact

para-contact metric manifolds, recurrent manifolds and symmetric manifolds. Some

methods used for solving problems and the review of literature are also included in
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this chapter.

In Chapter 2, we study weak symmetries of Kenmotsu and Para-Sasakian mani-

folds admitting a semi-symmetric metric connection. Weakly symmetric and weakly

Ricci symmetric Kenmotsu manifolds with respect to a semi-symmetric metric con-

nection have been studied. We obtained the sum of the associated 1-forms in weakly

concircular and weakly concircular Ricci symmetric Kenmotsu manifold admitting a

semi-symmetric metric connection. A necessary and sufficient condition for the Ricci

tensor S̃ in a weakly m-projectively symmetric Kenmotsu manifold with respect to

the semi-symmetric metric connection to be of Codazzi type is obtained. Also, a nec-

essary condition for a Para-Sasakian manifold to be weakly symmetric and weakly

Ricci symmetric with respect to a semi-symmetric metric connection are obtained.

Lastly, we construct an example of a 3-dimensional weakly symmetric and weakly

Ricci symmetric Para-Sasakian manifold admitting a semi-symmetric metric connec-

tion.

In Chapter 3, we investigated semi-generalized W3 recurrent manifolds. A neces-

sary and sufficient condition for the scalar curvature to be constant in such a manifold

is obtained. Also, we proved that a semi-generalized W3 recurrent manifold with con-

stant scalar curvature is semi-generalized Ricci recurrent. Later, we showed that a

Ricci symmetric semi-generalized W3 recurrent manifold is an Einstein manifold. A

sufficient condition for a semi-generalized W3 recurrent manifold to be quasi-Einstein

is obtained. Decomposable semi-generalized W3 recurrent manifolds are studied. Fi-

nally, we have given two examples of a semi-generalized W3 recurrent manifold.

In Chapter 4, some curvature properties of N(k)-quasi einstein manifolds are

studied. We proved that the associated 1-form η in an n(n > 3)-dimensional N(k)-

quasi Einstein manifold which is W ∗-conservative and b is non-zero constant is closed
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and the integral curves of the generator ζ are geodesics. Also, we proved that an

n-dimensional W ∗-Ricci pseudosymmetric N(k)-quasi Einstein manifold satisfies the

relation LS = b
2(n−1)

. A sufficient condition for an N(k)-quasi Einstein manifold to be

W2-pseudosymmetric is obtained. Z-generalized pseudosymmetric N(k)-quasi Ein-

stein manifolds are studied. We considered the properties of the pseudo projective,

W2 and conharmonic curvature tensors in an N(k)-quasi Einstein manifold. We stud-

ied pseudo projectively symmetric N(k)-quasi Einstein manifolds and showed that

there does not exist a pseudo projectively semi-symmetric N(k)-quasi Einstein man-

ifold. Lastly, we constructed examples to support our results.

In Chapter 5, we studied weakly Z-symmetric manifolds. We showed that in a

weakly Z-symmetric manifolds with Codazzi type Z tensor, the manifold is quasi

Einstein provided that the vector field ρ defined by

E(X) = A(X)−D(X) = g(X, ρ), ρ = ρ1 − ρ3,

is a unit vector field. Einstein weakly Z-symmetric manifolds and conformally flat

weakly Z-symmetric manifolds are studied. A necessary condition for the Z tensor

in a weakly Z-symmetric manifolds to be cyclic parallel is obtained. Also, we showed

that a totally umbilical hypersurface of a conformally flat weakly Z-symmetric man-

ifolds is of quasi constant curvature. Decomposable weakly Z-symmetric manifolds

are studied and some examples are constructed to support the existence of such man-

ifolds.

Finally, we concluded that the whole work of this thesis give some geometrical

properties and structures of almost contact manifolds with respect to semi-symmetric

metric connection, semi-generalized recurrent properties in almost contact manifolds,

curvature conditions in N(k)-quasi Einstein manifolds and weak symmetries of the

Z-tensor in almost contact manifolds.
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ABSTRACT

The study of geometric structures on smooth manifolds has broad applications

in classical mechanics, thermodynamics, geometric quantization, integrable systems

and to control theory. Contact geometry is an important tool to study systems

of differential equations. Focusing on the study of almost contact manifolds, the

following objectives are taken up in the thesis:

1. To study properties of metric/non metric connection.

2. To establish the geometrical properties of semi-generalized recurrent almost

contact manifolds.

3. To study inter-relations and applications of certain curvature conditions on

quasi-Einstein manifolds.

4. To characterize weak symmetry of Z tensor in almost contact manifolds.

Chapter 1 is the General Introduction of the problems which includes basic def-

initions, topological space, differentiable manifolds, tangent vector, tangent space,

vector field, Lie bracket, Lie derivative, connection, covariant derivative, contrac-

tion, Riemannian manifold, Riemannian connection, torsion tensor, semi-symmetric

and quarter symmetric connection, different curvature tensors, almost contact metric

manifolds, almost contact para-contact metric manifolds, recurrent manifolds, sym-

metric manifolds and review of literatures.

In Chapter 2, we studied semi-symmetric metric connection in weakly symmetric

almost contact manifolds. Weakly symmetric, weakly Ricci symmetric, weakly con-

circular symmetric, weakly concircular Ricci symmetric and weakly m-projectively

symmetric Kenmotsu manifolds with respect to such a connection are considered.

We investigated the properties of weakly symmetric and weakly Ricci symmetric

Para-Sasakian manifolds admitting a semi-symmetric metric connection. Lastly, we

give an example of a Para-Sasakian manifold which is weakly symmetric and weakly

Ricci symmetric with respect to such a connection.
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In Chapter 3, we investigated semi-generalized W3 recurrent manifolds. A neces-

sary and sufficient condition for the scalar curvature to be constant in such a man-

ifold is obtained. Ricci symmetric and decomposable semi-generalized W3 recurrent

manifolds are studied. We obtained a sufficient condition for a semi-generalized W3

recurrent manifold to be quasi Einstein. We studied decomposable semi-generalized

W3 recurrent manifolds and constructed examples to support our results.

In Chapter 4, some curvature properties of N(k)-quasi Einstein manifolds are

studied. The nature of the associated 1-form in a W ∗-conservative N(k)-quasi Ein-

stein manifold with constant associated scalar b is investigated. We studied W ∗-Ricci

pseudosymmetric, W2-pseudosymmetric and Z-generalized pseudosymmetric N(k)-

quasi Einstein manifolds. The curvature properties of the pseudo projective, W2 and

conharmonic curvature tensors in an N(k)-quasi Einstein manifold are considered.

Finally, we give examples of N(k)-quasi Einstein manifolds.

In Chapter 5, we studied weakly Z-symmetric manifolds. We investigated weakly

Z-symmetric manifolds with Codazzi type and cyclic parallel Z tensor, Einstein

weakly Z-symmetric manifolds and conformally flat weakly Z-symmetric manifolds.

A totally umbilical hypersurface of a conformally flat weakly Z-symmetric manifold is

considered. Decomposable weakly Z-symmetric manifolds are studied and examples

are given to support our results.

Chapter 6 is on the summary and conclusion.
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