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PREFACE

The present thesis entitled “A Study of Elastic Wave in Different Thermoelas-

tic Materials” is an outcome of the research carried out by me under the supervision

of Dr. S. Sarat Singh, Department of Mathematics & Computer Science, Mizoram

University, Aizawl - 796 004, Mizoram, INDIA.

This thesis consists of problem related with the propagation of elastic waves in

different thermoelastic materials. The amplitude and energy ratios of body waves

and the dispersion relations of surface waves are derived with the help of appropriate

boundary conditions of the materials. It consists of six chapters. The first chapter

is the introduction of the thesis which includes the basic definitions, elastic waves,

thermoelasticity and theories, application of wave propagation and review of litera-

ture.

Second chapter deals with the propagation of surface waves (Stoneley and Rayleigh

waves) in thermoelastic materials with voids. The frequency equations of the Stone-

ley waves at the bonded and unbonded interfaces between two dissimilar half-spaces

of thermoelastic materials with voids were obtained. The numerical values of the de-

terminant for bonded and unbonded interfaces are calculated for a particular model.

We also derived the frequency equation of Rayleigh wave in thermoelastic materials

with voids. The phase velocity and attenuation coefficients have shown that there

are two modes of vibration. These two modes are computed and they are depicted

graphically. The effect of thermal parameters on these surface waves are also dis-

cussed.

Third chapter studied the reflection/transmission of elastic waves in initially

stressed transversely isotropic thermoelastic materials. Three quasi type coupled

longitudinal(QL), transverse(QT ) and thermal waves were found to propagate in ini-

tially stressed transversely isotropic thermoelastic materials. For incident QL and

QT -waves at a plane interface, boundary conditions were implemented for obtaining

the coefficients of reflection/transmission, the distribution of energy in the reflected
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and transmitted waves are also discussed. We have observed that the results vary

with direction of incidence as well as the parameters due to elasticity, thermal and

initial stresses. Numerical computations have been performed and analyzed the im-

pact of initial stresses on the results. We have observed critical angles at θ0 = 300

and 580 for the reflected and transmitted QL-waves for incident QT -wave.

In Chapter 4, we have investigated ‘how do Rayleigh waves propagate on the

surface of heat conducting saturated porous materials?’. There exist three couple

longitudinal and a shear wave in such materials. The phase velocities of these body

waves are obtained and used for calculating the numerical results of phase velocities

of the Rayleigh type waves and attenuation coefficients. The dispersion relation for

Rayleigh type waves is obtained with the help of boundary conditions. We have

observed that two modes of Rayleigh waves, i.e., Type - I and II exist in the thermoe-

lastic saturated porous medium. The phase velocity and attenuation coefficients of

these waves are computed to verify the model. We have presented the results through

velocity curves. We have observed that the velocities depend upon the porosity, voids,

elastic and thermal parameters of the materials.

Chapter 5 discuss the problem of reflection/transmission of elastic waves in incom-

presssible transversely isotropic thermoelastic materials. Due to the incompressibility

condition, two coupled quasi-shear waves are found to propagate in such materials.

At the plane interface, appropriate boundary conditions have been implemented to

obtain the amplitude ratios of the reflected and transmitted quasi-shear waves. It

has been observed that these ratios are functions of angle of incidence, elastic and

thermal parameters of the material. To analyze the effect of thermal expansion and

specific heat of the material, we have depicted the results graphically.

Chapter 6 is summary and conclusions of the thesis.

A list of references has been given at the end.
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Chapter 1

General Introduction

1.1 Basic definition

Let R = (X1, X2, X3) and r = (x1, x2, x3) be the position vector of a particle in

the undeformed body V0 at time t0 and deformed body V at time t0 + t respectively.

This vector R refers particles of the body, while vector r describes the motion of the

particles. Thus

r = r(R, t), (1.1)

represents the deformation (motion) of all the particles in V0 as shown in Figure 1.1.

In component form, we can write

Figure 1.1: Deformation of a body.
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Chapter 1

ri = xi = xi(X1, X2, X3, t), i = 1, 2, 3. (1.2)

It is possible to write R in terms of r (See Pujol, 2003)

R = R(r, t) (1.3)

if the Jacobian is different from zero, i.e.,

J =
∂ (x1, x2, x3)

∂ (X1, X2, X3)
6= 0.

Equations (1.1) and (1.3) corresponds to the Lagrangian and Eulerian description

of motion respectively. This deformation is caused due to an external force, which

is either a body force that acts at a distance within a body or between bodies or a

surface force which acts upon a surface element of the body, regardless of whether

that element is a part of the boundary surface or an arbitrary element of surface

within the body.

If the distance between two neighborhood particles of a body is negligibly small in

comparison to its dimension, then the body is called continuum body. When an elastic

continuum body which is in equilibrium is subjected to some external forces, then

the body undergoes deformation. In this process, the particles act against internal

resistive forces of the material, that exist even in the absence of external forces. The

force per unit area set up inside the body to resist the deformation is called stress.

Figure 1.2: Stress vector.
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Chapter 1

Consider a surface element ∆S, inside or on the boundary of a material having

volume V as shown in Figure 1.2. Let the force acting on the surface element ∆S be

denoted by F. The stress vector T which represents the surface force per unit area

acting at the point (xi) across the surface element with outward unit normal vector

n̂ is given by (Sokolnikoff, 1946)

T(xi; n̂) = lim
∆S→0

F

∆S
. (1.4)

If Tn is the stress vector acting at a point of surface to which n̂ is normal, then

Tn = τijnj,

where τij is a stress tensor and it represents the jth component of the stress vector

acting across a plane to which xi-axis is normal.

The deformation of the body accompanying stress is called strain. The deformation

is called dilatation when the strain set up in the body is such that there is a change in

volume of the body without change in its shape. But the deformation is called shear

if the strain setup in the body is such that the shape of the body changes without any

change in its volume. Thus, stress and strain occur simultaneously. The relationship

between stress and strain for a deformable body is given by the generalized Hooke’s

law which states that stress and strain are linearly related. The tensor form of this

law is given as

τij = cijklekl, (i, j, k, l = 1, 2, 3) (1.5)

where cijkl is the elastic constant and also known as stiffness tensor. These are 81

which reduce to 54 due to symmetric nature of stress tensor and then reduce to 36 due

to the symmetry of strain tensor. The existence of strain energy function give further

reduction of these constants to 21 independent elastic constants. Such an elastic

body is called anisotropic material. For a monoclinic anisotropic materials, there are

13 independent elastic constants. The number of independent elastic constants in

3



Chapter 1

orthotropic materials and transversely isotropic materials are 9 and 5 respectively.

1.2 Elastic waves

Wave is a disturbance or variation that carries energy from one point of the

medium to another without actual transfer of particles. It may take the form of

elastic deformation, change in temperature, pressure, electric potential, electric or

magnetic intensity. The amplitude of a wave is the maximum displacement of any

particle of the medium from its equilibrium position. The time taken by any particle

of the medium to complete one vibration is called period of a wave. Wavelength is

equal to the distance between two consecutive particles of the medium which are in

the same state of vibration. It is also equal to the distance traveled by a wave by

its period. Frequency of a wave is the number of vibration made per second by any

particles of the medium. Phase or phase angle and phase difference represent the

state of vibration of the particle of a medium with respect to its mean position and

the different state of vibration of a particle at two different instants respectively. Path

difference indicates the distance between two points measured along the direction of

propagation of the wave through the medium, time difference is the time taken by

the wave to travel from one point of the medium to another.

The consequence of a rapid disturbance in an elastic material is transmitted from

one part of the body to another parts of the body. The remote parts of the body

may not be effected by the disturbance produced at a point as soon as it is produced.

This disturbance propagates through the body in the form of waves which are called

elastic waves. The elastic waves are based on the principle of restoring forces act-

ing on the particles of the medium, when the material is deformed by some external

force. Those waves found in the earth’s crust due to earthquakes are known as seismic

waves. When an elastic wave propagates in the material, the energy associated with

the deformation of the material gets transferred in the absence of a flow of matter.

The properties of elastic waves depend on the properties of the material in which

4



Chapter 1

they propagate. Elastic waves are mainly divided into two types: Body waves and

Surface waves.

Elastic waves which propagate through the interior of an elastic body are known

as body waves. These waves are classified into Primary waves (P -waves) and Sec-

ondary waves (S-waves) according to their modes of propagation. The primary waves

are compressional waves which are longitudinal in nature, they are associated with

pushing or pulling of the particles along the direction of the energy. These waves are

able to travel through solid as well as liquid materials and can travel through the

material with the greatest velocity. The secondary waves are shear/shaking waves

that are transverse in nature shearing the particles of the material along the direc-

tion perpendicular to the direction of the wave. These waves have different effects on

the surface of the material depending on their polarization and direction of propa-

gation. Horizontally polarized S-waves known as shear horizontal (SH) waves move

the material from side to side relative to the direction of propagation of the waves.

Vertically polarized S-waves known as shear vertical (SV ) waves move the particle

of the material up and down relative to the direction of propagation. The velocity

of the body wave depends not only on the elastic property of the medium but also

on the density of the medium. Since it is not possible to shear or twist a liquid, the

secondary waves can travel only through solids and their speeds of propagation are

slower than those of P -waves.

Surface waves are produced at the surface of material discontinuity in an elastic

body. These waves are propagating along the direction parallel to the surface of dis-

continuity and the amplitudes of these type of waves decrease with the increase in

the distance from the free surface. Surface waves are produced by energy carried by

body waves incident at the free surface of the material. There are mainly three types

of surface waves: Rayleigh waves, Stoneley waves and Love waves.

It was Rayleigh (1885) who first found the existence of an elastic wave in the

vicinity of the free surface of a semi infinite, homogeneous and isotropic elastic solid.

5
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The effect of these waves decrease rapidly with depth from the free surface and these

waves are known as Rayleigh waves. These waves are the result of fusion of longi-

tudinal and transverse waves and the particle motion in these waves are confined to

the neighborhood of the free surface. It is found that the surface particles describe

an elliptical path in the retrograde fashion and the maximum displacement parallel

to the direction of transmission is about two third of that in the vertical direction.

Stoneley (1924) observed that Rayleigh type waves could be transmitted along

the interface between two semi-infinite elastic solids having almost similar elastic

properties in welded contact. These waves are known as generalized Rayleigh waves

or Stoneley waves. Later on it was confirmed that generalized Rayleigh waves do to

exist at the interface of a solid medium and a liquid medium and their phase speeds

are lesser than that of regular Rayleigh waves.

Love waves are horizontally polarized surface waves which travel along the free

surface of an elastic material. These type of waves are the result of interference of

many S- waves guided by an elastic layer between elastic material and a stress free

surface. Love wave is the fastest surface wave and causes horizontal shifting of the

particles of an elastic material at the right angle to the direction of propagation.

1.3 Thermoelasticity

The theory of thermoelasticity deals with the influence of temperature of an elastic

solid on the distribution of stress and strain, and the inverse effect of deformation

on the distribution of temperature. Let δ represents the first variation of a function

in terms of its variables, the first law of thermodynamics also known as Law of

Conservation of Energy, states that within an unit volume of the system, the first

variation of the heat absorbed Q is equal to the difference between the differential

of internal energy U and the first variation of the work done on the system W .
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Mathematically, it can be represented by (See, Hetnarski and Eslami, 2009)

δQ = dU − δW. (1.6)

Here, δ-operation is assumed as path dependent, with the energy interactions between

two end states depending upon the end states as well as the path of variations. On

the other hand in d-operation, the variation of the function is with respect to all the

variables involved in the function including time. When a system completes a cyclic

process, Eq. (1.6) reduces to

δQ+ δW = 0. (1.7)

The thermodynamic process in a system is classified into reversible and irreversible

process. A process is said to be reversible when the system can return to its starting

state from the final state by following the same path of intermediate states from the

initial state to the final state. Otherwise, the process is called irreversible. According

to second law of thermodynamics, when a thermodynamic process is complete, the

equality sign in the Clausius inequality∮
δQ

T
≤ 0, (1.8)

refers to the reversible process. Where T is the absolute temperature. The left hand

side of the above inequality introduces a thermodynamic property called entropy.

The third law of thermodynamics states that for each system in equilibrium, the

entropy becomes zero when the temperature approaches the absolute zero.

In general, the variation of the temperature field within an elastic continuum pro-

duced thermal stresses. The effect of temperature field in the governing equations of

thermoelasticity is through the constitutive law. The theory of linear thermoelasticity

is based on linear addition of thermal strains to mechanical strains. The equilibrium

and compatibility equations remain the same as in the theory of elasticity and the

main difference is in the constitutive law.

The paper on thermoelasticity by Duhamel(1837) derived the equations of motion
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which involved the coupling between temperature field and the deformation of the

body. This theory of thermoelasticity is also known as theory of uncoupled thermoe-

lasticity. This theory claims that the temperature of an elastic body is not effect by

change in mechanical state of the body, which is not in accordance with the physical

experiments. The limitation of this theory is that the equation which governs the

temperature is in the form of parabola which indicate that even at an infinite distance

from the heat source, the thermal signals of infinite speed and the thermal distur-

bances have impact. Biot (1956a) formulated the theory of coupled thermoelasticity

considering the coupling equations of elasticity and heat conduction. This theory

includes the theory of heat conduction, thermal stresses, and strains set up due to

the flow of temperature in elastic bodies and the inverse effect of elastic deformation

on the distribution of temperature which give rise to thermoelastic dissipation. This

theory introduces the concept of thermoelastic potential which represents the elastic

and thermoelastic properties of the material and the concept of thermal force which

considers the generalized force as the product of temperature and virtual entropy dis-

placement. Just as in the uncoupled theory, this coupled theory also shows infinite

speed for the thermal signal. These two theories of thermoelasticity are also known

as classical theories.

1.3.1 Lord-Shulman Model (L− S model)

The thermoelastic model of Lord and Shulman (1967) used modify Fourier’s law of

heat conduction with the concept of a relaxation time. This relaxation time represents

the time needed to accelerate the heat flow. The energy equations for an isotropic

elastic material having thermal conduction are given as

τijeij + ρT Ṡ = ρĖ, (1.9)

ρT Ṡ = −qi,i, (1.10)
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where τij and eij represent stress and strain tensor respectively of an elastic material

having mass density ρ, change in temperature T , entropy density S, internal energy

E and heat flux vector qi. The superposed dot represents the time derivative. The

modified form of heat conduction law is given as

−kT,i = qi + τ0q̇i, (1.11)

where k and τ0 represent the coefficient of heat conduction and relaxation time re-

spectively.

The governing equations for a homogeneous isotropic heat conducting elastic ma-

terial are given by

(λ+ 2µ)ui,ij + µui,ij − (3λ+ 2µ)αT,i = ρüi, (1.12)

ρCe

(
Ṫ + τ0T̈

)
+ (3λ+ 2µ)αT0 (ėkk + τ0ëkk) = kT , ii, (1.13)

where λ and µ are Lamé parameters, ui is the displacement vector, Ce is the specific

heat, T0 is absolute temperature of the reference state and α represents the coefficient

of linear thermal expansion.

1.3.2 Green-Lindsay Model (G− L model)

This theory of thermoelasticity was introduced by Green and Lindsay(1972) using

the concept of entropy production inequality of Green and Laws(1972). The stress

tensor, heat flux vector and energy equation are given as

τik = Kikrjerj + aikT + bikṪ + aikrT,r, (1.14)

qi =
−T0

α

[
aiT + αbiṪ + arsers + αKijT,j

]
, (1.15)

ρ0η =
1

α

[
b+

(
e− bβ

α

)
T +

(
f − bγ

α

)
Ṫ − αbiTji − bijeij

]
, (1.16)

where ρ0 is the density on an elastic material having specific entropy η and hα =

f − bγ
α

. The entropy inequality leads to the following restrictions in the coefficients
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of the above equations as

ai = 0; aijk = 0; b = αa; bij = αaij;

(dα − h)Ṫ 2 + 2biṪ T,i +KijT,iT,j ≥ 0.

1.3.3 Green-Naghdi Model (G−N model)

The thermoelastic theory proposed by Green and Naghdi(1993), is described by

a system of partial differential equations in which the Fourier law of heat conduction

is replaced by the relation

q̇ = −k∗∇T, (1.17)

where q and T are the heat flux vector and temperature change fields respectively,

and k∗ is a symmetric positive definite second-order tensor field of dimension

[k∗] =
[
kT−1

0

]
, (1.18)

where k is the second-order tensor field for heat conductivity and T0 is a time unit.

In G − N model, thermoelastic wave corresponding to a displacement-temperature

pair (u, T ) satisfies the following equations

divC [∇u]− ρü + div (TM) = −b,

div (k∗∇T )− CeT̈ + T0M · ∇ü = −ṙ,
(1.19)

on R3 × [0,∞) with the initial conditions

u (x, 0) = u0, u̇ (x, 0) = u̇0, T (x, 0) = ν0, Ṫ (x, 0) = ν̇0, (1.20)

on R3 and the boundary conditions

u = u
′

and T = T
′
, (1.21)

on ∂R3 × [0,∞). Here, C is the elasticity tensor field, M is the stress-temperature

field. The absence of Ṫ in the energy equation (1.19) implies that a pair (u, T )

represents an undamped thermoelastic wave. Due to this reason, G − N theory is
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also known as thermoelasticity without energy dissipation.

1.3.4 Dual Phase Lag Model (DPL Model)

The concept of dual phase lag was introduced by Tzou(1995). This model al-

lows macroscopic formulation to represent the microscopic interactions in the heat

transport mechanism. Such interactions yield macroscopic lagging (or delayed) with

delaying times τT and τ0 which represent the phase-lag of temperature gradient (T )

and the phase-lag of heat flux (q) respectively. This theory describes the lagging

behavior with the constitutive equation

q(x, t+ τ0) = −k∇∇∇T (x, t+ τT ). (1.22)

Applying Taylor series expansion with respect to t, Eq.(1.22) gives(
1 + τ0

∂

∂t

)
q ≡ −k

(
1 + τT

∂

∂t

)
∇∇∇T. (1.23)

Combining Eq.(1.23) with the energy equation which is given by

−∇∇∇ · q = Ce
∂

∂t
T, (1.24)

the following equations are obtained(
1 + τT

∂

∂t

)
∇∇∇2T =

1

α

∂T

∂t
+
τ0

α

∂2T

∂t2
,(

1 + τT
∂

∂t

)
∇∇∇ (∇∇∇ · q) =

1

α

∂q

∂t
+
τ0

α

∂q

∂t
. (1.25)

These equations reduce to thermal wave in heat conduction when τT = 0. If τ0 = τT ,

Eq.(1.22) reduces to Fourier law in heat conduction and Eq.(1.25) reduces to the

classical diffusion equation.

1.3.5 Hetnarski-Ignaczak Model (H − I Model)

Hetnarski and Ignaczak (1996) proposed a non-linear thermoelastic model for

soliton like thermoelastic waves at low temperature. This model obeys the following
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system of field equations and inequalities:

(i) The geometric relations

E =
1

2

(
∇u + ∇uT

)
. (1.26)

(ii) The laws of balance of forces and moments

∇ · S + b = ρü, S = ST. (1.27)

(iii) Law of conservation of energy

ė = S · Ė−∇ · q + r. (1.28)

(iv) Dissipation inequality

η̇ ≥ −∇ · q
θ

+
r

T
(T > 0). (1.29)

(v) The constitutive laws

η = −∂ψ
∂T

, S =
∂ψ

∂E
, q = −k∇∇∇T + βββ, (1.30)

where u, E, S, q, T , η, e, b, r and ρ represent displacement, strain, stress, heat flux,

absolute temperature, entropy, internal energy, body force, heat supply and density

fields respectively. It may be noted that all are function of reference position vector

x and time t except ρ. The function ψ is defined as

ψ(θ,βββ,E) = e− ηθ, (1.31)

where βββ is a new constitutive variable and

β̇ββ = −A∇
∇∇θ
θ
, (|A| > 0). (1.32)

The constant A represents an elastic heat flow vector field.

The material constants k, Ce, θ0, µ, λ and α satisfy the following conditions

k > 0, Ce > 0, θ0 > 0, µ > 0, 3λ+ 2µ > 0, |α| > 0. (1.33)
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These material constants are analogous to those of a linear classical homogeneous

isotropic thermoelasticity and if βββ = 0 they reduce to the thermal conductivity, spe-

cific heat for zero deformation, reference temperature, Lamè moduli, and coefficient

of linear thermal expansion respectively.

1.3.6 Chandrasekharaiah-Tzou Model (C − T Model)

Chandrasekharaiah (1998) extended the work of Tzou (1995) on dual phase lag

by retaining τ0 upto second order and τT upto first order in the Taylor’s expansion

of Eq.(1.22). This expansion is given by(
1 + τ0

∂

∂t
+

1

2
τ 2

0

∂2

∂t2

)
q = −k

(
1 + τT

∂

∂t

)
∇∇∇T. (1.34)

This equation produces a hyperbolic-type heat transport equation predicting wave-

like thermal signals propagating with the finite speed.

1.3.7 Three Phase Lag Model (TPL Model)

A generalized mathematical model of a coupled thermoelasticity theory using

three-phase lags in the heat flux vector, the temperature gradient and in the thermal

displacement gradient was introduced by Choudhuri (2007). This theory uses three

phase-lags τ0, τT and τν to the heat flux vector (q), the temperature gradient (∇∇∇T )

and the thermal displacement gradient (∇∇∇ν) and is also known as three phase lag

model. This model has generalized constitutive equation for heat conduction as

q (x, t+ τ0) = − [k∇∇∇T (x, t+ τT ) + k∗∇∇∇ν(x, t+ τν)] , (1.35)

where k∗ is material constant.

The Taylor’s series expansion of (1.35) upto first order gives the following gener-

alized heat conduction law as(
1 + τ0

∂

∂t

)
q = −

[
(k + τνk

∗)∇∇∇T + τT
∂∇∇∇T
∂t

+ k∗∇∇∇ν
]
. (1.36)
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It may be noted that the above equation reduces to the classical Fourier law when

k∗ = 0, τ0 = τT , it reduces to the heat conduction law of L–S theory when k∗ =

0, τT = 0, and it becomes G−N theory when τ0 = 0, τT = 0 and τν = 0.

1.4 Application of wave propagation

We observe the practical application of propagation of elastic waves in many ac-

tivities from our daily life. The process of sharpening of knife is the result of stress

wave produced at the ‘cone of percussion’ which breaks the particle of the knife in

very specific pattern. The analysis of the effect of thermal on the deformation of

the material plays important role while constructing railway tracks. In the study of

structural materials, the main interest is in the response to impact or blast loads.

When a material is under load of moderate strength, the theory of elastic waves may

be enough to explain all the aspects of the response. Under more severe loads, the

material may undergo permanent deformation, fracture or perforation. In this type

of situations, the theory of elastic waves is still applicable in predicting the response

away from the impact.

The general aspects of ultrasonics are based on the introduction of a very low

energy level, high frequency stress pulse or wave packet into a material and observing

the subsequent propagation and reflection of that energy. The study of propagation,

reflection and attenuation of ultrasonic pulses determine many fundamental proper-

ties of materials such as elastic constants and damping characteristics.

The study of propagation of seismic waves considered the Earth as an inhomogeneous

isotropic elastic half-space for short epicentral distances or a ball for large epicentral

distances. The study of the generation and propagation of seismic waves, produced

in the Earth due to earthquakes is one of the important part of seismology. Elas-

tic waves carry lots of information about the characteristics of the medium through

which they travel and thus, it becomes a very reliable tool in the exploration cites.

They give valuable information about the interior of the material body. The body
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waves (P and S-waves) are useful in earthquake engineering for predicting earthquake

in the dynamic response of soils and man-made structures.

In the areas like mining and quarrying, we can find numerous applications of elas-

tic waves. Drilling process is perform by transmitting longitudinal waves produced

by an air hammer down drilling rod into the rock. In these type of works, the purpose

of blasting is to produce intense stress waves. The interactions of these waves with

each other and with the boundaries create fracture or remove large quantities of rock.

Many problems under the fields of Seismology, geophysics, Earthquake engineering,

tele-communication, medicines (echography), metallurgy (non-destructive testing)

and signal processing are associated with the study of elastic waves. This study

plays an important role in the process of detection of notches and faults in different

types of materials such as in railway tracks, buried land-mines, etc. The study of

propagation of longitudinal waves, shear waves and surface waves have been utilized

in various detecting applications.

1.5 Review of Literature

The subject of wave propagation and their phenomena of reflection and trans-

mission from boundary surface and interface is an interesting area of research. The

study of properties of different elastic materials and the propagation of elastic waves

can be explored through books such as Love (1944), Ewing et al. (1957), Biot (1965),

Payton (1983), Hanyga (1985), Graff (1991), Nayfeh (1995), Udias (1999), Chapman

(2004), Sato and Fehler (2009), Barber (2010), Jeffrey (2010), Singh (2013a), Het-

narski (2014), Altenbach and Öchsner (2020) and many others.

Chadwick and Seet (1970) considered the effects of heat conduction on plane

harmonic waves of small amplitude propagating in a transversely isotropic heat con-

ducting elastic material. The linear and nonlinear theory of elastic material contain-

ing voids were explored by Cowin and his co-workers (1979, 1983). Their theory was

based on the idea of Goodman and Cowin (1972) which presented a continuum theory
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for granular materials. They derived the constitutive relations, established the ther-

modynamic restrictions on material moduli and presented governing equations. They

have showed that the internal dissipation in the material arises due to the changes in

the void volume fraction and derived the propagation condition for the acceleration

waves. Dhaliwal and Sherief (1980) used generalized theory of thermoelasticity in

an anisotropic medium for obtaining variational principle for the equations of mo-

tion. Chandrasekharaiah (1986a) discussed the theory of heat conduction with second

sound and derived the governing equations of the conventional thermoelastic theory.

Sharma (1988) showed the existence of three types of plane waves quasi-longitudinal

(QL), quasi-transverse (QT ) and Thermal (T -mode) wave in a thermally conducting

homogeneous transversely isotropic elastic solid. Singh (2003) considered the problem

of plane wave propagation in a homogeneous transversely isotropic thermally conduct-

ing elastic solid with two thermal relaxation times and obtained the amplitude ratios

of the reflected waves. Singh and Tomar (2007, 2011) explored the problem of plane

wave propagation in an infinite thermo-elastic and rotating generalized thermo-elastic

material with voids. Kumar and Kansal (2008) derived the constitutive relations and

field equations for anisotropic generalized thermoelastic diffusion and also reduced

the results for transversely isotropic materials. Ciarletta et al. (2009) investigated

the linear theory of micropolar thermoelasticity for isotropic and homogeneous mate-

rials with voids with the consideration of thermal relaxation time. The equations of

motion for thermoporoelastic solids with two temperatures were derived by Manjula

and Reddy (2015) and they obtained the frequency equation.

Singh (2010a) studied the problem of the reflection of plane waves from a ther-

mally insulated stress-free monoclinic half-space of thermoelastic solid using L − S

and G − L theories. Abbas and Abd-Alla (2011) investigated the thermoelastic in-

teraction in an infinite fibre-reinforced anisotropic plate containing a circular hole

by showing effects of the presence and absence reinforcement on temperature, stress

and displacement. Sharma and Grover (2011) discussed the effects of voids, relax-
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ation times, thermomechanical coupling, surface conditions and beam dimensions on

energy dissipation induced by thermoelastic damping in micro-electromechanical sys-

tems (MEMS) or nano-electromechanical systems (NEMS) resonators for beams

under clamped and simply supported conditions. Othman et al. (2012) presented

a mathematical study of thermoelasticity in solid materials using Eringen coupled

(micropolar) theory, G − L theory and L − S theory. Bucur et al. (2014) stud-

ied the problem of the damped effects of the thermal field on the behavior of plane

harmonic waves and Rayleigh waves in a linear thermoelastic material with voids.

Pal et al. (2014) discussed the problem of plane wave propagation in an inhomo-

geneous anisotropic thermally conducting elastic solid with two thermal relaxation

times. Pazera and Jedrysiak (2015) considered the problem of thermoelasticity in

composite, made of two components non-periodically distributed as microlaminas

along one direction x1, which macroscopic properties change continuously along this

direction perpendicular to the laminas. Chirita and Danescuca (2016) investigated

the propagation of plane time harmonic waves in an infinite space filled by a ther-

moelastic material with microtemperatures. Abd-Alla et al. (2017) obtained the

temperature, displacement components and stresses components in the physical do-

main using Lame’s potential method in a homogeneous orthotropic, thermo-elastic

medium under the effect of gravity field. Othman and Abd-Elaziz (2017) investi-

gated the effect of hall current and rotation on a magneto-thermoelastic solid with

microtemperatures and voids. Lianngenga and Singh (2018) studied the effect of

linear thermal expansion and micro-inertia on the refraction of elastic waves at a

plane interface between two dissimilar half-spaces of micropolar thermoelastic mate-

rials with voids. They obtained the amplitude and energy ratios of the reflected and

refracted waves.

Chadwick and Currie (1974) explained the possibility of transformation of the

general secular equation for Stoneley waves propagating at the interface between

elastic crystals into a form which reduced to a single real condition on the wave
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speed. Currie (1974) analyzed the properties of Rayleigh waves traveling on a free

surface of an anisotropic elastic half-space. Harinath (1974) described the conditions

for propagation of interface waves between thermo-elastic solid and an elastic solid

by deriving the frequency equations. Murty (1975a, 1975b) examined the existence

of Stoneley waves at an unbonded and loosely bonded interface between two elastic

half-spaces. Barnett et al. (1985) shown the existence of Stoneley waves using the

notion of the impedance tensor at the bonded interface between the half-spaces of

anisotropic elastic materials. Chandrasekharaiah (1986b, 1987) studied the problem

of surface waves of general type propagating in a homogeneous isotropic linear elastic

half-space containing a distribution of voids and also obtained the corresponding fre-

quency equations. Abd-Alla (1999) investigated the effect of gravity and initial stress

on Rayleigh wave propagation in an orthotropic elastic solid medium by solving the

frequency equation. Mondal and Acharya (2006) determined the effect of voids on the

propagation of surface waves in a homogeneous micropolar elastic solid material con-

taining distribution of vacuous pores. Singh and Tomar (2007) studied the problem of

Rayleigh–Lamb waves propagation in an infinite plate of microstretch elastic material

with finite thickness. They derived frequency equations of the surface waves using

suitable boundary conditions. Kumar and Kumar (2010) considered the effect of voids

on the surface wave propagation in a layer of transversely isotropic thermoelastic ma-

terial with voids lying over an isotropic elastic half-space. Singh (2010) discussed the

problem of the propagation of a Love wave in a corrugated isotropic layer over a ho-

mogeneous isotropic half-space. In the context of dual-phase-lag model, Abouelregal

(2011) discussed the problem of propagation of Rayleigh waves in a thermo-elastic

homogeneous isotropic solid half-space. Kumar and Kumar (2011) analyzed the effect

of voids on the surface wave propagation in a layer of orthotropic thermoelastic ma-

terial with voids lying over an isotropic elastic half-space and derived the frequency

equation on the basis of the developed mathematical model under the boundary con-

ditions for welded and smooth contacts.
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Kumar et al. (2013) examined the propagation of Stoneley waves at the inter-

face between two couple stress thermo-elastic half-spaces. Sharma (2014a) discussed

the problem of propagation of Rayleigh waves in a thermoelastic half-space and

plotted the velocity curves. The frequency equation of Stoneley waves in magneto-

thermoelastic materials with voids and two thermal relaxation times was examined

by Abo-Dahab (2015). The properties of Stoneley and Scholte waves in a multilayer

of liquid/solid and solid/solid interfaces were investigated by Onen and Uz (2015).

Abbas et al. (2016) obtained the frequency equation for Rayleigh–Lamb wave prop-

agating in a plate of generalized thermoelasticity with one relaxation time. Gupta

and Ahmed (2017) developed a mathematical model on the propagation of Rayleigh

wave in a self-reinforced layer over an incompressible inhomogeneous elastic half-space

under the conditions of quadratically varying rigidity and linearly varying density.

Khurana and Tomar (2017) derived the frequency equations of two modes of Rayleigh

type waves in the half-space of non-local micropolar elastic solid and explained the

condition of existence of these two modes. Biswas and Mukhopadhyay (2018) exam-

ined the problem of Rayleigh surface waves in a homogeneous transversely isotropic

thermoelastic material in the context of three-phase-lag model. Farhan and Abd-Alla

(2018) discussed the effects of magnetic field and rotation on the propagation of sur-

face wave in a generalized magneto-thermoelastic materials with voids. Kaur et al.

(2018) derived the frequency equation for Rayleigh-type surface wave in an isotropic

homogeneous non-local elastic solid half-space with voids. They have illustrated the

graphical presentation of the variations of phase speed and corresponding attenu-

ation of Rayleigh-type wave against frequency, non-locality and void parameters.

Kumar et al. (2018a) analyzed the propagation of Stoneley waves at the interface

between two dissimilar half-spaces of isotropic modified couple stress thermo-elastic

materials. Lianngenga and Singh (2019) investigated the problem of symmetric and

anti-symmetric vibrations in micropolar thermoelastic plate with voids and they ob-

tained the dispersive frequency equations for different surface waves propagating in
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the plate.

Biot (1962a) analyzed the mechanics of deformation and acoustic propagation

in porous media using the specific relaxation models. Chang (1971) investigated

the stress field around a finite closed crack in an elastic material by applying a

plane dilatational wave to the crack. McCarthy (1972) discussed the propagation

of waves in generalized thermoelasticity and found the existence of four principal

waves. Bedford and Sutherland (1973) studied the problem of reflection and trans-

mission of plane waves at the interface between elastic material and fiber-reinforced

material. They compared the results with the experimental data obtained from ul-

trasonic measurements of waves transmitted through water into an aluminum plate

containing tungsten fibers. Sharma and Sidhu (1986) derived the secular equation

for the propagating plane harmonic waves in a homogeneous anisotropic generalized

thermoelastic material. Green (1991) discussed the problem of reflection and trans-

mission of transient stress waves in fiber composite laminates. Chattopadhyay et

al. (2002) computed the numerical values of reflection coefficients of qP and qSV

waves at the free rigid boundary of a fibre-reinforced material. Sharma and Pal

(2004) investigated the problem of propagation of the magnetic-thermoelastic plane

wave in an initially unstressed homogeneous isotropic conducting plate under uni-

form static magnetic field. Singh and Singh (2004) presented the expressions for the

phase velocity of quasi-P and quasi-SV waves propagating in the half-space of fibre-

reinforced anisotropic elastic materials. They considered the reinforcement direction

as functions of the angle between the propagation and reinforcement directions. Singh

and Tomar (2006) examined the problem of reflection and transmission of obliquely

incident plane transverse wave at a plane interface between two porous elastic half-

spaces in welded contact. Singh (2006) discussed the propagation of plane waves in

a thermally conducting linear fibre-reinforced composite materials and obtained the

phase velocity of coupled waves, namely qP , qSV and quasi-thermal waves. Singh

and Tomar (2007a, 2007b) investigated the problem of propagation of qP , qSV and
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qSH waves incident at a corrugated interface between two dissimilar fibre-reinforced

elastic half-spaces. They obtained amplitude and energy ratios of the reflected and

refracted waves. Chattopadhyay et al. (2007) derived the amplitude ratios of the re-

flected and refracted waves at the plane interface between two monoclinic half-spaces.

Kumar and Singh (2008) obtained the reflection and transmission coefficients of quasi-

longitudinal, quasi-thermal and quasi-transverse waves for different incident waves at

an imperfectly bonded interface between two orthotropic generalized thermoelastic

half-spaces having different elastic and thermal properties. Kumar and Gupta (2010)

studied the problem of propagation of elastic waves in transversely isotropic microp-

olar generalized thermoelastic half-space and also derived the amplitude ratios.

Abbas (2011) studied the problem of propagation of plane waves in the fibre-

reinforced anisotropic thermoelastic half-space. He used finite element method for

numerical computation of displacement, temperature and components of stress to

compare the results of the theories(GN − II and GN − III). Ponnusamy and Ra-

jagopal (2011) explored the problem of wave propagation in a transversely isotropic

thermoelastic solid cylinder of arbitrary cross-section using Fourier expansion colloca-

tion method. They obtained frequency equations for longitudinal and flexural (sym-

metric and antisymmetric) modes of vibrations. Singh (2011, 2013b) investigated the

problem of reflection and transmission of elastic waves due to incident plane couple

longitudinal waves and transverse wave at a plane interface between two dissimilar

half-spaces of thermo-elastic materials with voids. Chattopadhyay and Singh (2012)

explained the possibility of propagation of shear wave at the interface of two differ-

ent types of fibre reinforced media. Placidi et al. (2013) examined the problem of

reflection and transmission of compression and shear waves at structured interfaces

between second gradient continua and obtained the general balance equations for the

bulk system as well as jump duality conditions. Othman and Song (2014) described

the properties of reflected plane harmonic waves in a thermo-microstretch elastic half-

space under the effect of rotation. Choudhury et al. (2015) analyzed the propagation
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of elastic waves in an infinite granular thermoelastic medium rotating with a constant

speed. Kumar and Gupta (2015) discussed the problem of reflection and refraction

of obliquely incident plane wave at the interface of elastic and thermoelastic diffusion

media with fractional order derivative. Sahu et al. (2015) studied the problem of the

scattering of elastic wave in a composite bedded structure in which isotropic layer

is sandwiched between two highly anisotropic media. They have found the reflec-

tion/transmission coefficients and energy ratios of different reflected and transmitted

waves. Othman and Hilal (2016) determined the effects of the gravity and the mag-

netic fields on the plane waves in an isotropic thermoelastic materials under thermal

loading due to laser pulse. Pal and Kanoria (2016) analyzed the gravitational re-

sponse in the propagation of elastic waves in an infinite, homogeneous, transversely

isotropic thick plate. Abd-Alla et al. (2017) analyzed the effects of relaxation times,

rotation and magnetic field on incident and reflected plane waves in a transversely

isotropic magneto-thermoelastic medium. Lianngenga (2017) computed the numeri-

cal values of the phase velocities, attenuations and reflection coefficients of plane body

waves in the half-space of micropolar porous solid. Deswal et al. (2018) analyzed the

reflection of plane waves from the free surface of a homogeneous anisotropic fiber-

reinforced thermoelastic rotating medium with dual-phase-lag model. Khurana and

Tomar (2018) investigated the problem of reflection and transmission of a longitudi-

nal displacement wave and a set of coupled transverse waves at plane discontinuity

separating the two distinct non-local micropolar solids. Li et al. (2018) discussed the

problem of reflection and refraction of thermoelastic waves at an imperfect interface

between two semi-infinite homogeneous isotropic thermoelastic couple stress solids.

Lalvohbika and Singh (2019) examined the problem of reflection and transmission of

elastic waves for incident qP and qSV -wave at a corrugated interface between two

dissimilar nematic elastomer half-spaces.

Chadwick (1979) described the problem of propagation of plane harmonic waves

of small amplitude in a heat-conducting elastic body of unrestricted symmetry. Ben-
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veniste (1981) analyzed the propagation of one-dimensional waves in an initially de-

formed incompressible medium with different moduli of tension and compression.

Rogerson (1991) presented various dynamic properties and the condition of propa-

gation of elastic waves in the incompressible transversely isotropic elastic materials.

Dhaliwal and Wang (1993) established a generalized theory for a thermoelastic dipolar

pre-stressed body. Chadwick (1993,1994) developed the constitutive theory govern-

ing small deformations of an incompressible transversely isotropic elastic material and

discussed the nature of homogeneous and inhomogeneous plane waves in the mate-

rial. Ogden and Sotiropoulos (1997) examined the effect of pre-stress and finite strain

on the reflection of homogeneous plane waves in an incompressible isotropic elastic

solid. Itskov and Aksel (2002) explained the difficulty of deriving the constitutive re-

lations for anisotropic incompressible materials. Singh (2007) analyzed the problem

of wave propagation in free surface of an incompressible transversely isotropic elastic

half-space. The reflection coefficients are obtained for the case when outer slowness

section is re-entrant.

Abd-Alla et al. (2011a, 2011b) discussed the effect of initial stress on the prop-

agation of elastic waves in the half-spaces of different thermoelastic materials. Abo-

Dahab (2014) obtained the frequency equation for surface waves in a generalized

magneto-thermoelastic materials with voids and initial stress. Guo and Wei (2004)

analyzed the effects of initial stress on the numerical value of the amplitude and

energy ratios of the reflected and transmitted waves at the interface between two

piezoelectric half-spaces. Prikazchikov and Rogerson (2004) attempted the problem

of propagation of surface wave in a pre-stressed transversely isotropic incompressible

half-space and obtained the secular equation. Othman and Atwa (2012) constructed

the basic equations of generalized thermoelastic isotropic materials under hydrostatic

initial stress in the context of the GN theory of types II and III. They used nor-

mal mode analysis to obtain the exact expressions of temperature, displacement and

stress. Chatterjee et al. (2016) examined the reflection and refraction phenomena of
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plane waves incident at the interface between two distinct triclinic media under the

initial stresses. Othman et al. (2017) investigated the effect of rotation and initial

stress on the P , T and SV -waves in the generalized magneto-thermoelastic materials

using the normal mode analysis. Biswas and Abo-Dahab (2018) analyzed the effect

of initial stress and magnetic field on the propagation of Rayleigh waves in the con-

text of three-phase-lag model in the homogeneous magneto-thermoelastic orthotropic

materials. Kundu et al. (2019) studied the effect of thickness and initial stress on

the propagation of Rayleigh waves in an anisotropic crustal layer lying over an elastic

half-space containing void pores.

Biot (1956b) discussed the propagation of stress waves in a porous elastic solid

containing a compressible viscous fluid. Biot (1962b) extended the theory of acoustic

propagation in porous media to include anisotropy, viscoelasticity and solid dissi-

pation. Hosten (1991) computed the numerical values of reflection and transmission

coefficients of elastic waves through immersed composite layers at any incidence plane.

Hirai (1992) presented a numerical analysis on the propagation of Rayleigh waves in a

saturated porous elastic medium using finite element method. Boer et al. (1993) an-

alyzed transient wave propagation in fluid-staturated porous media and obtained the

exact solution by taking the Laplace transform of the governing equations with the

initial and boundary conditions. Levy et al. (1995) developed a mathematical model

for saturated flow of a Newtonian fluid in a homogeneous isotropic thermoelastic

porous medium under non-isothermal conditions. Kumar et al. (2002) investigated

a problem of surface wave propagation in a micropolar liquid-saturated porous layer

over a micropolar liquid-saturated porous half-space. Sharma and Pathania (2004)

studied the problem of generalized thermoelastic waves in anisotropic plates sand-

wiched between liquid layers using L−S, G−L and G−N theories of thermoelasticity.

Kumar and Hundal (2005) presented the analysis of symmetric wave propagation in

the half-space of fluid-saturated incompressible porous material and they obtained

the secular equation. Sharma (2007) explored an equivalence relation between the
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mathematical models of wave propagation derived from Biot’s theories as well as ho-

mogenisation theory. He derived phase velocity and attenuation of waves propagation

in an anisotropic fluid-saturated porous medium.

Markov (2009) determined the velocity and attenuation of Stoneley wave at the in-

terface between two dissimilar half-spaces of fluid-saturated porous media. Kumar et

al. (2011) discussed the problem of reflection and transmission of plane waves between

two different fluid saturated porous half-spaces for incident longitudinal and trans-

verse waves. They depicted the amplitude ratios of various reflected and transmitted

waves. Sharma (2012a, 2012b) obtained the frequency equations of the Rayleigh sur-

face waves in the partially saturated porous materials and poro-viscoelastic media.

Sharma and Bhargava(2014) investigated the problem of reflection and transmission

of thermoelastic plane waves at an imperfect interface between the half-spaces of ther-

mal conducting viscous-liquid and generalized thermoelastic solid. Sharma (2014b)

considered the effects of wave-induced fluid flow on the numerical values of phase

velocity and attenuation of Rayleigh waves in an elastic solid having double porosity.

Bucur (2016) examined the dissipative nature of the porous thermoviscoelastic ma-

terials in the propagation of the Rayleigh waves and obtained the secular equation in

the explicit and implicit form. Zorammuana and Singh (2016) presented graphically

the variations of amplitude and energy ratios of reflected waves with angle of inci-

dence. They analyzed both for the incident longitudinal and transverse waves at the

free surface of thermoelastic saturated porous material. Barak and Kaliraman (2018)

performed numerical computation for the reflection and transmission coefficients of

elastic waves at an imperfect interface between the micropolar elastic and fluid satu-

rated porous solid half-spaces. Kumar et al. (2018b) investigated the disturbances in

a homogeneous transversely isotropic magneto-visco thermoelastic rotating medium

with two temperature due to thermomechanical sources. Painuly and Arora (2019)

analyzed the problem of propagation of Rayleigh wave along the free surface of a

composite porous half-space saturated by two immiscible fluids.
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The extensive studies of the wave propagation can be explored through Toupin

(1962), Sinha and Sinha (1974), Yew and Jogi (1976), Tajuddin (1984), Sorek et

al. (1992), Zhang and Shinozuka (1996), Sinha and Elsibai (1996, 1997), Xia et al.

(1999), Verma (2001), Tomar and Singh (2005), Zhu and Tsvankin (2006), Tomar and

Singh (2006), Tomar and Kaur (2007a, 2007b), Yu and Dravinski (2009), Reddy and

Tajuddin (2010), Singh and Pal (2011), Zakharov (2011), Vinh and Giang (2012),

Singh and Zorammuana (2013), Steeb et al. (2013), Tomar and Khurana (2013),

Tomar et al. (2013), Vinh (2013), Zenkour et al. (2013), Singh et al. (2014), Tomar

and Ogden (2014), Yang et al. (2014), Singh (2015, 2017), Zorammuana and Singh

(2015), Srisailam et al. (2016), Vinh et al. (2016), Singh and Lianngenga (2017),

Sudheer et al. (2017), Singh et al. (2018), Singh and Lalvohbika (2018), Tong et al.

(2018) and Tomar and Kumar (2020).
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Propagation of surface waves in

thermoelastic materials with voids1

2.1 Introduction

Rayleigh (1885) introduced surface waves which travel along the stress free bound-

ary of an elastic half-space such that the disturbance is largely confined to the neigh-

borhood of the free boundary surface. In the propagation of Rayleigh wave, the

surface particles move in counterclockwise elliptical (retrograde) which change from

retrograde at the surface to prograde (clockwise elliptical) at depth passing through

a node at which there is no horizontal motion. Surface waves do to exist along the in-

terface between solid and solid half-spaces and they are called Stoneley waves, named

after Stoneley (1924). The amplitudes of these waves are maximum at the surface of

the material and decay exponentially towards the depth of each of the elastic solids.

Iesan (1986) developed the linear theory of thermoelastic material with voids by us-

ing Green and Rivlin (1964) and obtained the basic equations from the balance of

energy under the rigid body motions. Iesan also studied the propagation of accelera-

tion waves in homogeeous and isotropic bodies. Tomar and Singh(2006) derived the

frequency equations for Stoneley waves at unbonded and bonded interfaces between

two dissimilar microstretch elastic half-spaces.

1Journal of Vibration and Control, 25(14), 2053–2062 (2019)
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In this chapter, we study the propagation of surface waves in thermoelastic ma-

terials containing voids and obtain the secular equations for Stoneley waves for the

bonded and unbonded interfaces. We also computed the numerical values of the

determinants corresponding to secular equations of the Stoneley waves. The phase

velocity and attenuation of Rayleigh waves in thermoelastic material with voids are

obtained. We have depicted the velocity curves of these surface waves by computing

the phase velocity and attenuation coefficients.

2.2 Basic Equations

The field equations in thermo-elastic materials with voids in the absence of body

forces and external heat sources are given by (Iesan, 1986)

c2
1∇(∇ · u)− c2

2∇× (∇× u) +
β∗

ρ
∇φ− β

ρ
∇ν = ü, (2.1)

α∗∇2φ− β∗∇ · u− ξ∗φ+mν = ρκ∗φ̈, (2.2)

κ∇2ν − βT0∇ · u̇− aeT0ν̇ −mT0φ̇ = 0, (2.3)

where c2
1 = (λ+2µ)/ρ and c2

2 = µ/ρ, λ and µ are Lamé parameters, ρ is the density of

the medium, κ, β, ae and m are thermal parameters, T0 is the absolute temperature

of the reference state, α∗, β∗, ξ∗ and κ∗ are voids parameters, u is the displacement

vector, φ is the change in void volume fraction and ν is the change of temperature

from the reference state.

The constitutive relations in the thermo-elastic materials with voids are given by

τij = λekkδij + 2µeij + (β∗φ− βν)δij, hi = α∗φ,i, qi = κν,i,

eij =
1

2
(ui,j + uj,i), ρη = βekk + aeν +mφ, i, j, k = 1, 2, 3 (2.4)

where τij are stress tensors, eij are strain tensors, δij are Kronecker’s delta, hi are

equilibrated stress vectors, qi are heat flux vectors and η is the specific entropy.

Commas in the subscript denote the spatial derivative.
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The Helmholtz representation of the vector field u is

u = ∇p+∇×ψψψ, ∇ ·ψψψ = 0, (2.5)

where p and ψψψ are scalar and vector potential respectively.

2.3 Wave Propagation

Consider the Cartesian co-ordinate with x and y-axis lying horizontally and z-

axis vertically with positive direction pointing downward. Let us take two dissimilar

semi-infinite half-spaces of thermoelastic solids with voids (M : −∞ < z ≤ 0) and

(M ′ : 0 ≤ z < ∞) separated by z = 0. We will denote all the parameters in M

without prime and M ′ with prime.

We consider the two dimensional wave propagation in xz-plane. The equations of

motion in the half-space, M may be obtained from Eq.(2.1)-(2.3) by using harmonicity

of the traveling waves and (2.5) as

(∇2 + l21) p(x, z) + l22 φ(x, z)− l23 ν(x, z) = 0, (2.6)

(c2
2∇2 + ω2) ψψψ(x, z) = 0, (2.7)

(∇2 + l24) φ(x, z)− l25∇2 p(x, z) + l26 ν(x, z) = 0, (2.8)

(∇2 + l7) ν(x, z) + l8∇2 p(x, z) + l9 φ(x, z) = 0, (2.9)

where ω is the angular frequency,

l21 =
ω2

c2
1

, l22 =
c2

3

c2
1

, l23 =
c2

4

c2
1

, l24 =
ω2 − c2

7

c2
5

, l25 =
c2

6

c2
5

, l26 =
c2

8

c2
5

,

l7 = c9ω, l8 = c10ω, l9 = c11ω, c
2
3 =

β∗

ρ
, c2

4 =
β

ρ
, c2

5 =
α∗

ρκ∗
,

c2
6 =

β∗

ρκ∗
, c2

7 =
ξ∗

ρκ∗
, c2

8 =
m

ρκ∗
, c9 =

ıc∗

κ
, c10 =

ıβT0

κ
, c11 =

ımT0

κ
, c∗ = aeT0.
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Similarly, the equations of motion for the other half-space, M ′ are

(∇2 + l′21 ) p′(x, z) + l′22 φ′(x, z)− l′23 ν ′(x, z) = 0, (2.10)

(c′22∇2 + ω2) ψψψ′(x, z) = 0, (2.11)

(∇2 + l′24 ) φ′(x, z)− l′25 ∇2 p′(x, z) + l′26 ν ′(x, z) = 0, (2.12)

(∇2 + l′7) ν ′(x, z) + l′8∇2 p′(x, z) + l′9 φ
′(x, z) = 0, (2.13)

where

l′21 =
ω2

c′21
, l′22 =

c′23
c′21
, l′23 =

c′24
c′21
, l′24 =

(ω2 − c′27 )

c′25
, l′25 =

c′26
c′25
, l′26 =

c′28
c′25
, l′7 = c′9ω,

l′8 = c′10ω, l
′
9 = c′11ω, c

′2
1 =

(λ′ + 2µ′)

ρ′
, c′23 =

β∗′

ρ′
, c′24 =

β′

ρ′
, c′25 =

α∗′

ρ′κ∗′
, c′26 =

β∗′

ρ′κ∗′
,

c′27 =
ξ∗′

ρ′κ∗′
, c′28 =

m′

ρ′κ∗′
, c′9 =

ıc∗
′

κ′
, c′10 =

ıβ′T ′0
κ′

, c′11 =
ım′T ′0
κ′

, c∗
′
= a′eT

′
0.

The coupled dilatational waves (p, φ, ν) and (p′, φ′, ν ′) in Eqs.(2.6)-(2.9) and

(2.10)-(2.13) respectively satisfy the following equations

(∇6 + A ∇4 +B ∇2 + C){p, φ, ν}(x, z) = 0, (2.14)

(∇6 + A′ ∇4 +B′ ∇2 + C ′){p′, φ′, ν ′}(x, z) = 0, (2.15)

where

A = l21 + l24 + l7 + l22 l
2
5 + l23 l8,

B = l21(l24 + l7) + l24 l7 − l26 l9 + l22(l25 l7 + l26 l8) + l23(l24 l8 + l25 l9),

C = l21(l24 l7 − l26 l9),

A′ = l′21 + l′24 + l′7 + l′22 l′25 + l′23 l′8,

B′ = l′21 (l′24 + l′7) + l′24 l′7 − l′26 l′9 + l′22 (l′25 l′7 + l′26 l′8) + l′23 (l′24 l′8 + l′25 l′9),

C ′ = l′21 (l′24 l′7 − l′26 l′9).
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The full structure of the surface waves may be written as

(In the half-space, M)

{p, φ, ν}(x, z, t) =
3∑

n=1

{An, VnAn, LnAn}e(ıkx−mnz−ıωt),

ψ(x, z, t) = A4 e
(ıkx−m4z−ıωt),

(2.16)

where ψ is the y component of ψψψ, k is the wavenumber, Ai are amplitudes, m2
i =

k2 − k2
i , (i = 1, 2, 3) and m2

4 = k2 − k2
t are the penetration depth of surface waves

which decay exponentially in the medium M , k2
i are obtained from Eq.(2.14) and

kt = ω/c2. The coupling parameters are given as

Vi =
(l21 − k2

i )

(l23 H
∗
i − l22)

, Li = H∗i Vi, (i = 1, 2, 3)

and

H∗i =
(k2
i − l21){(l7 − k2

i )(l
2
4 − k2

i )− l26 l9} − l22{l26 l8 k2
i + l25 k

2
i (l7 − k2

i )}
l23{l26 l8 k2

i + l25 k
2
i (l7 − k2

i )}
.

(In the half-space, M ′)

{p′, φ′, ν ′}(x, z, t) =
3∑

n=1

{A′n, V ′nA′n, L′nA′n}e(ıkx+m′
nz−ıωt),

ψ′(x, z, t) = A′4 e
(ıkx+m′

4z−ıωt),

(2.17)

where ψ′ is the y component of ψψψ′, A′i are amplitudes, m′2i = k2−k′2i and m′24 = k2−k′2t

are the penetration depth of surface waves, which decay exponentially in the medium

M ′, k′2i are obtained from Eq.(2.15) and k′t = ω/c′2, where c′2 = µ′/ρ′. The coupling

parameters in M ′ are

V ′i =
(l′21 − k′2i )

(l′23 H
∗
i
′ − l′22 )

, L′i = H∗i
′V ′i ,

and

H∗i
′ =

(k′2i − l′21 ){(l′7 − k′2i )(l′24 − k′2i )− l′26 l′9} − l′22 {l′26 l′8 k
′2
i + l′25 k′2i (l′7 − k′2i )}

l′23 {l′26 l′8 k
′2
i + l′25 k′2i (l′7 − k′2i )}

.
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2.4 Boundary Conditions

The stress traction, displacements, equilibrated stress vectors and heat flux vectors

are continuous at z = 0. We consider the problem for both bonded interface and

unbonded interface between the two dissimilar half-spaces. These conditions at z = 0

may be written as

(i) Continuity of normal stress

λ(
∂2p

∂x2
+
∂2p

∂z2
) + 2µ(

∂2p

∂z2
+

∂2ψ

∂x∂z
) + β∗φ− βν

= λ′(
∂2p′

∂x2
+
∂2p′

∂z2
) + 2µ′(

∂2p′

∂z2
+
∂2ψ′

∂x∂z
) + β∗′φ′ − β′ν ′, (2.18)

(ii) Continuity of displacement component

∂p

∂x
− ∂ψ

∂z
=
∂p′

∂x
− ∂ψ′

∂z
, (2.19)

(iii) Continuity of equilibrated stress vectors

∂φ

∂z
= χ2

∂φ′

∂z
,

∂φ

∂x
= χ2

∂φ′

∂x
, (2.20)

(iv) Continuity of heat flux vectors

∂ν

∂z
= χ1

∂ν ′

∂z
,

∂ν

∂x
= χ1

∂ν ′

∂x
, (2.21)

(For the bonded interface)

(v) Continuity of displacement component

∂p

∂z
+
∂ψ

∂x
=
∂p′

∂z
+
∂ψ′

∂x
, (2.22)

(vi) Continuity of shear stress

µ(2
∂2p

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2
) = µ′(2

∂2p′

∂x∂z
+
∂2ψ′

∂x2
− ∂2ψ′

∂z2
), (2.23)
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(For the unbonded interface)

(v) Shearing stresses vanish

2
∂2p

∂x∂z
+
∂2ψ

∂x2
− ∂2ψ

∂z2
= 0, 2

∂2p′

∂x∂z
+
∂2ψ′

∂x2
− ∂2ψ′

∂z2
= 0, (2.24)

where χ1 = κ′/κ, and χ2 = α∗′/α∗.

Using Eqs.(2.4),(2.5), (2.16) and (2.17) into boundary conditions, we get the following

two sets of equations

4∑
j=1

aijAj +
8∑
j=5

aijA
′
j−4 = 0, i = 1, 2, 3, 4, 5, 6, 7, 8 (2.25)

where non-zero values of aij are given by

a1i = (λ+ 2µ)m2
i − λk2 + β∗Vi − βLi, (i = 1, 2, 3), a14 = −2ıµkm4,

a1i = −(λ′ + 2µ′)m′2i−4 + λ′k′2 − β∗′V ′i−4 + β′L′i−4, (i = 5, 6, 7), a18 = −2ıµ′km′4,

a2i = k, (i = 1, 2, 3), a24 = −ım4, a2i = −k, (i = 5, 6, 7), a28 = −ım′4,

a3i = Limi, (i = 1, 2, 3), a3i = χ1L
′
i−4m

′
i−4, (i = 5, 6, 7), a4i = Li, (i = 1, 2, 3),

a4i = −χ1L
′
i−4, (i = 5, 6, 7), a5i = Vimi, (i = 1, 2, 3), a5i = χ2V

′
i−4m

′
i−4, (i = 5, 6, 7),

a6i = Vi, (i = 1, 2, 3), a6i = −χ2V
′
i−4, (i = 5, 6, 7),

(for bonded interface)

a7i = mi, (i = 1, 2, 3), a74 = −ık, a7i = m′i−4, (i = 5, 6, 7),

a78 = ık, a84 = −ıµ(m2
4 + k2), a8i = 2µkmi, (i = 1, 2, 3),

a8i = 2µ′km′i−4, (i = 5, 6, 7), a88 = ıµ′(m′24 + k2).

(for unbonded interface)

a7i = 2kmi, (i = 1, 2, 3), a74 = −ı(m2
4 + k2),

a8i = 2km′i−4, (i = 5, 6, 7), a88 = ıµ′(m′24 + k2).
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These equations give the boundary conditions for the surface wave propagation

both for the bonded and unbonded interfaces between two dissimilar half-spaces of

thermoelastic materials with voids.

2.5 Stoneley Waves

We know that Stoneley waves propagate along the interfaces of solid-solid ma-

terials. The secular equations of such waves for bonded and unbonded interface

between two dissimilar half-spaces of thermoelastic materials with voids are derived

from (2.25) as

|aij| = 0, (i, j = 1, 2, 3, 4, 5, 6, 7, 8) (2.26)

The expression of 8× 8 determinant |aij| may be written as

(bonded interface)

∆ = α11(α22α33 − α23α32)− α12(α21α33 − α23α31) + α13(α21α32 − α22α31) (2.27)

and (unbonded interface)

∆ = β11β22 − β12β21, (2.28)

where

α11 = g41m
′
2 − g42m

′
1 + g43m3 + g44m2 + g45m1 − g46m3m4m

′
2 + g47m2m4m

′
2 +

g48m1m4m
′
2 + g49m3m4m

′
1 − g50m2m4m

′
1 − g51m1m4m

′
1,

α12 = g41m
′
3 − g52m

′
1 + g53m3 + g54m2 + g55m1 − g56m3m4m

′
3 + g57m2m4m

′
3 +

g58m1m4m
′
3 + g59m3m4m

′
1 − g60m2m4m

′
1 − g61m1m4m

′
1,

α13 = g62m4m
′
1 + g63m

′
1m
′
4 − g64m3m4 − g65m3m

′
4 + g66m2m4 + g67m2m

′
4 +

g68m1m4 + g69m1m
′
4 − g70,

α21 = g74m
′
2 − g75m

′
1 + g76m3 + g77m2 + g78m1 + g79m4m

′
1m
′
2 − g80m3m4m

′
2 +

g81m2m4m
′
2 + g82m1m4m

′
2 + g83m3m4m

′
1 − g84m2m4m

′
1 − g85m1m4m

′
1,
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α22 = g86m
′
3 − g87m

′
1 + g88m3 + g89m2 + g90m1 + g91m4m

′
1m
′
3 − g80m3m4m

′
3 +

g81m2m4m
′
3 + g82m1m4m

′
3 + g95m3m4m

′
1 − g96m2m4m

′
1 − g97m1m4m

′
1,

α23 = g98m4m
′
1 + g99m

′
1m
′
4 − h11m3m4 − h12m3m

′
4 + h13m2m4 + h14m2m

′
4 +

h15m1m4 + h16m1m
′
4,

α31 = h17m
′
2 − h18m

′
1 + h19m3 + h20m2 + g78m1 + g79m4m

′
1m
′
2 − g80m3m4m

′
2 +

g81m2m4m
′
2 + g82m1m4m

′
2 + g83m3m4m

′
1 − g84m2m4m

′
1 − g85m1m4m

′
1,

α32 = h29m
′
3 − h30m

′
1 + h31m3 + h32m2 + h33m1 + h34m4m

′
1m
′
3 − h35m3m4m

′
3 +

h36m2m4m
′
3 + h37m1m4m

′
3 + h38m3m4m

′
1 − h39m2m4m

′
1 − h40m1m4m

′
1,

α33 = h41m4m
′
1 + h42m

′
1m
′
4 − h43m3m4 − h44m3m

′
4 + h45m2m4 + h46m2m

′
4 +

h47m1m4 + h48m1m
′
4,

h11 = f32g15, h12 = f32g16, h13 = f33g15, h14 = f33g16, h15 = f34g15,

h16 = f34g16, h17 = f55g11, h18 = f51g13, h19 = (f52g13 − f56g11),

h20 = (f57g11 − f53g13), h21 = (f58g11 − f54g13), h22 = (f51g12 − f55g12),

h23 = f52g12, h24 = f53g12, h25 = f54g12, h26 = f56g12, h27 = f57g12,

h28 = f58g12, h29 = f61g11, h30 = f51g14, h31 = (f52g14 − f62g11),

h32 = (f63g11 − f53g14), h33 = (f64g11 − f54g14), h34 = (f51g12 − f61g12),

h35 = f52g12, h36 = f53g12, h37 = f54g12, h38 = f62g12, h39 = f63g12,

h40 = f64g12, h41 = f51g15, h42 = f51g16, h43 = f52g15, h44 = f52g16,

h45 = f53g15, h46 = f53g16, h47 = f54g15, h48 = f54g16, g11 = f12k
2
t ,

g12 = 2f11g41, g13 = f13k
2
t , g14 = f14k

2
t , g15 = 2f11g44, g16 = f11k

2
t ,

g21 = (f11k
2
t − 2f15b41), g22 = f16k

2
t , g23 = f17k

2
t , g24 = f18k

2
t , g26 = f19k

2
t ,

g27 = f20k
2
t , g28 = f21k

2
t , g32 = f22k

2
t , g33 = f23k

2
t , g34 = f24k

2
t , g35 = 2f15b44,

g41 = g11g21, g42 = g21g13, g43 = (g22g13 − g11g26), g44 = (g27g11 − g13g23),
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g45 = (g28g11 − g13g24), g46 = g12g22, g47 = g23g12, g48 = g12g24, g49 = g26g12,

g50 = g27g12, g51 = g28g12, g53 = (g22g14 − g11g32), g54 = (g33g11 − g14g23),

g52 = g14g21, g55 = (g11g34 − g12g22), g56 = g46, g57 = g47, g58 = g48, g59 = g49,

g60 = g50, g61 = g51, g62 = (g21g15 + g12g35), g63 = g21g16, g64 = g15g22,

g65 = g22g16, g66 = g15g23, g67 = g23g16, g68 = g24g15, g69 = g16g24, g70 = g11g35,

g74 = g11f35, g75 = g13f31, g76 = (g13f32 − g11f36), g77 = (g11f37 − g13f33),

g78 = (g11f38 − g13f34), g79 = (g12f31 − g12f35), g80 = g12f32, g81 = g12f33,

g82 = g12f34, g83 = g12f36, g84 = g12f37, g85 = g12f38, g86 = g11f41, g87 = g14f31,

g88 = (g14f32 − g11f42), g89 = (g11f43 − g14f33), g95 = g12f42, g96 = g12f43,

g90 = (g11f44 − g14f34), g91 = (g12f31 − g12f41), g97 = g13f44, g98 = g15f31,

g99 = g16f31, f11 = e11e22, f12 = (e11e23 − e21e12), f13 = (e11e24 − e21e13),

f14 = (e11e25 − e21e14), f15 = e11e33, f16 = e12e22, f17 = (e31e12 − e11e34),

f18 = (e11e35 − e12e32), f19 = e13e22, f22 = e22e14, f20 = (e31e13 − e11e36),

f21 = (e11e37 − e32e13), f23 = (e31e14 − e11e38), f31 = e11e44, f32 = e41e12,

f24 = (e11e39 − e32e14), f33 = (e42e12 − e11e45), f35 = e11e47, f36 = e13e41,

f34 = (e11e46 − e22e14), f37 = (e42e13 − e11e48), f41 = e11e
′
41, f42 = e41e14,

f38 = (e11e49 − e43e13), f43 = (e42e14 − e11e
′
42), f51 = e11e64, f52 = e12e61,

f44 = (e11e
′
43 − e43e14), f53 = (e12e62 − e11e65), f55 = e11e67, f56 = e13e61,

f54 = (e11e66 − e12e63), f57 = (e13e62 − e11e68), f61 = e11e
′
61, f62 = e61e14,

f58 = (e11e69 − e14e63), f63 = (e14e62 − e11e
′
62), f64 = (e11e

′
63 − e63e14),

e11 = (d11d22 − d21d12), e12 = (d11d23 − d21d13), e13 = (d11d24 − d21d14),

e14 = (d11d25 − d21d15), e21 = (d11d32 − d31d12), e23 = (d11d33 − d31d13),
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e22 = d11b11, e24 = (d11d34 − d31d14), e25 = (d11d35 − d31d15), e31 = d12b11,

e32 = (d12b12 − d11b13), e33 = d11d41, e34 = d13b11, e35 = (d13b12 − d11b15),

e36 = d14b11, e37 = (d14b12 − d11b15), e38 = d15b11, e39 = (d15b12 − d11b17),

e41 = d11d53, e42 = d12d51, e43 = (d52d12 − d11b54), e44 = d11d55, e45 = d13d51,

e46 = (d13d52 − d11d56), e47 = d11d57, e48 = d14d51, e49 = (d14d52 − d11d58),

e′41 = d11d59, e
′
42 = d15d51, e′43 = (d15d52 − d11b50), e61 = d11d63, e62 = d12d61,

e63 = (d12d62 − d11d64), e64 = d11d65, e65 = d13d61, e66 = (d62d13 − d11b66),

e67 = d11d67, e68 = d14d61, e69 = (d14d62 − d11d68), e′61 = d11d69, e
′
62 = d15d61,

e′63 = (d15d62 − d11d60), d11 = (b11L2 − b12L1), d12 = (b11L3 − b13L1),

d13 = (−χ1b11L
′
1 − b15L1), d14 = (−χ1b11L

′
2 − b16L1), d15 = (−χ1b11L

′
3 − b17L1),

d21 = (b11V2 − b12V1), d22 = (b11V3 − b13V1), d23 = (−χ2b11V
′

1 − b15V1),

d24 = (−χ2b11V
′

2 − b16V1), d25 = (−χ2b11V
′

3 − b17V1), d31 = k(b11 − b12),

d32 = k(b11 − b13), d33 = −k(b11 + b15), d34 = −k(b11 + b16), d35 = −k(b11 + b17),

d41 = kb11, d51 = b11V2, d52 = b12V1, d53 = b11V3, d54 = b13V1, d55 = χ2b11V
′

1 ,

d56 = b15V1, d57 = χ2b11V
′

2 , d58 = b16V1, d59 = χ2b11V
′

3 , d50 = b17V1, d61 = b11L2,

d62 = b12L1, d63 = b11L3, d64 = b13L1, d65 = χ1b11L
′
1, d66 = b15L1, d67 = χ1b11L

′
2,

d68 = b16L1, d69 = χ1b11L
′
3, d60 = b17L1, b11 = (a11 − k2), b12 = (a12 − k2),

b13 = (a13 − k2), b15 = (k2 − a15), b16 = (k2 − a16), b17 = (k2 − a17),

b41 = k(µ− µ′)/µ, b44 = (kb41µ+ µ′k′2t )/µ, β11 = (q22q26 − q25q23), q24 = −q11a88,

β12 = (q22q27 − q25q24), β21 = (q22q29 − q28q23), β22 = (q22q30 − q28q24),

q22 = (q11a86 − q12a85), q23 = (q11a87 − q13a85), q25 = (q11q15 − q12q14),

q26 = (q11q16 − q13q14), q11 = (p74p79 − p75p78), q12 = (p74p80 − p76p78),
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q13 = (p74p81 − p77p78), q14 = (p74p83 − p75p82), q15 = (p74p84 − p76p82),

q16 = (p74p85 − p77p82), q27 = q11q17, q17 = p74p88, q18 = (p74p88 − p75p87),

q19 = (p74p89 − p76p87), q20 = (p74p80 − p77p87), q21 = p74p91, p13 = −a74a31,

p11 = (a71a32 − a72a31), p12 = (a71a33 − a73a31), p14 = a71a35, p15 = a71a36,

p16 = a71a37, p17 = (a71a42 − a72a41), p18 = (a71a43 − a73a41), p19 = −a74a41,

p20 = a71a45, p21 = a71a46, p23 = (a71a52 − a72a51), p24 = (a71a53 − a73a51),

p22 = a71a47, p25 = −a74a51, p26 = a71a55, p27 = a71a56, p29 = (a71a62 − a72a61),

p28 = a71a57, p30 = (a71a63 − a73a61), p31 = −a74a61, p32 = a71a65, p33 = a71a66,

p34 = a71a57, p35 = a21(a71 − a72), p36 = a21(a71 − a73), p37 = (a71a24 − a74a21),

p38 = −a71a21, p39 = a71a28, p40 = (a71a12 − a72a11), p41 = (a71a13 − a73a11),

p42 = (a71a14 − a74a11), p43 = −a71a15, p44 = −a71a16, p47 = (p11p18 − p17p12),

p45 = −a71a17, p46 = −a71a18, p48 = (p11p19 − p17p13), p49 = (p11p20 − p17p14),

p50 = (p11p21 − p17p15), p51 = (p11p22 − p17p16), p52 = (p11p24 − p23p12),

p53 = (p11p25 − p23p13), p54 = (p11p26 − p23p14), p55 = (p11p27 − p23p15),

p56 = (p11p28 − p23p16), p57 = (p11p30 − p29p12), p58 = (p11p31 − p29p13),

p59 = (p11p32 − p29p14), p60 = (p11p33 − p29p15), p61 = (p11p34 − p29p16),

p62 = (p11p36 − p35p12), p63 = (p11p37 − p35p13), p64 = (p11p38 − p35p14),

p65 = (p11p38 − p35p15), p66 = (p11p38 − p35p16), p68 = (p11p41 − p40p12),

p69 = (p11p42 − p40p13), p70 = (p11p43 − p40p14), p71 = (p11p44 − p40p15),

p67 = p11p39, p72 = (p11p45 − p40p16), p73 = p11p46, p74 = (p47p53 − p52p48),

p75 = (p47p54 − p52p49), p76 = (p47p55 − p52p50), p77 = (p47p56 − p52p51),

p78 = (p47p58 − p57p48), p79 = (p47p59 − p57p49), p80 = (p47p60 − p57p50),
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p81 = (p47p61 − p57p51), p82 = (p47p63 − p62p48), p83 = (p47p64 − p62p49),

p84 = (p47p65 − p62p50), p85 = (p47p66 − p62p51), p87 = (p47p69 − p68p48),

p88 = (p47p70 − p68p49), p89 = (p47p71 − p65p50), p90 = (p47p72 − p68p51),

p86 = p47p67, p91 = p47p73.

Thus, the frequency equations for bonded and unbonded interface are respectively

given by

α11(α22α33 − α23α32)− α12(α21α33 − α23α31) + α13(α21α32 − α22α31) = 0

and

β11β22 − β12β21 = 0.

2.6 Rayleigh Waves

Since Rayleigh waves propagate along the free surface of half-space, we neglect

the half-space M ′ so that all the parameters corresponding to this materials are zero.

In this case, the frequency equation of the Stoneley waves (2.26)-(2.28) are reduced

to

f 2 −m2
1m

2
3f

2
1 − f 2

2m
2
2m

2
4 − 2m1m2m3m4f1f2 = 0, (2.29)

where

f = m2
1m

2
3(m2

2m
2
4r

2
51 + r2

53)−m2
2(m2

1r
2
52 +m2

3r
2
54), f1 = 2r52r54m

2
2, f2 = 2r53r51m

2
1m

2
3,

r51 = 2k2{(V1L2 − V2L1)(V1 − V3)− (V1L3 − V3L1)(V1 − V2)},

r52 = V1a13(V1L2 − V2L1)(m2
4 + k2)/2, r53 = V1a12(V1L3 − V3L1)(m2

4 + k2)/2,

r54 = [a11{(V1L3 − V3L1)V2 − (V1L2 − V2L1)V3)}](m2
4 + k2)/2.

This Equation (2.29) represents the frequency equation of the Rayleigh waves in

the thermoelastic materials with voids.
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2.7 Particular Cases

Case I: If the presence of voids are neglected, the problem reduces to the propa-

gation of surface wave in thermoelastic materials. In this condition,

α∗ = β∗ = ζ∗ = κ∗ = α′∗ = β′∗ = ζ ′∗ = κ′∗ = 0.

The frequency equations for the Stoneley waves for bonded and unbonded interface

are obtained from (2.26) as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a14 a15 a16 a18

a21 a22 a24 a25 a26 a28

a31 a32 a34 a35 a36 a38

a41 a42 a44 a45 a46 a48

a71 a72 a74 a75 a76 a78

a81 a82 a84 a85 a86 a88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

and the frequency equation for the Rayleigh wave is given by

a84(a12a31 − a11a32) + a14(a32a81 − a31a82) = 0 (2.30)

with the void parameters in mi, m
′
i, Li, L

′
i, (i = 1, 2) are vanished and the following

modified values

a1i = (λ+2µ)m2
i−λk2−βLi, (i = 1, 2), a1i = −(λ′+2µ′)m′2i−4+λ′k′2+β′L′i−4, (i = 5, 6).

The frequency equation (2.30) for Rayleigh wave agrees with the result of Abouel-

regal (2011).

Case II : If the presence of thermal is neglected, the problem reduces to the

propagation of surface wave in elastic materials containing voids. In this condition,

κ = β = ae = m = T0 = κ′ = β′ = a′e = m′ = T ′0 = 0.
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The frequency equations for the Stoneley waves for bonded and unbonded interface

are obtained from (2.26) as∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 a13 a14 a15 a17 a18

a21 a23 a24 a25 a27 a28

a51 a53 a54 a55 a57 a58

a61 a63 a64 a65 a67 a68

a71 a73 a74 a75 a77 a78

a81 a83 a84 a85 a87 a88

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0

and the frequency equation for the Rayleigh wave is given by

a84(a12a51 − a11a53) + a14(a53a81 − a51a83) = 0 (2.31)

with the thermal parameters in mi, m
′
i, Vi, V

′
i , (i = 1, 3) are vanished and the

following modified values

a1i = (λ+2µ)m2
i−λk2+β∗Vi, (i = 1, 3), a1i = −(λ′+2µ′)m′2i−4+λ′k′2−β∗′V ′i−4, (i = 5, 7).

The frequency equation (2.31) of the Rayleigh wave is similar with the result of

Chandrasekharaiah (1987) for the relevant problem.

2.8 Numerical Results and Discussion

In order to discuss the frequency equations of Stoneley and Rayleigh waves in

thermoelastic materials containing voids numerically, we consider the values of the

parameters in the half-spaces, M (Dhaliwal and Singh, 1980) and M ′ (Singh, 2011)

as given in Table 2.1.

We come to know that the frequency equation corresponding to the Stoneley

waves are quite complicated and the exact value of the phase velocity can not be

found easily. In this condition, we interpret the frequency curves with the help of

determinant values given by Equations (2.27) for bonded and (2.28) for unbonded
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interface. Figures 2.1-2.4 and 2.5-2.8 discuss the effect of thermal parameter on the

propagation of Stoneley and Rayleigh waves respectively.

Symbols(M) Value Symbols(M ′) Value Units

λ 2.17× 1010 λ′ 2.12× 1010 Nm−2

µ 3.278× 1010 µ′ 3.17× 1010 Nm−2

ρ 1.74× 103 ρ′ 3.8× 103 kgm−3

ξ∗ 1.475× 1010 ξ∗′ 2.25× 1010 Nm−2

β∗ 1.13849× 1010 β∗′ 1.29× 1010 Nm−2

α∗ 3.688× 10−5 α∗′ 1.7× 10−5 N

κ∗ 1.753× 10−15 κ∗′ 1.57× 10−15 m2

κ 1.7× 102 κ′ 1.14× 102 Wm−1degree−1

β 2.68× 106 β′ 1.07× 106 Nm−2degree−1

m 2× 106 m′ 2.28× 106 Nm−2degree−1

c∗ 1.8096× 106 c∗′ 1.04× 106 Jm−3degree−1

T0 298 T ′0 300 K

Table 2.1 Numerical values of the parameters

Figure 2.1: Variation of Real(∆) with phase speed of Stoneley waves (bonded) at different
values of κ & κ′.
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Figure 2.2: Variation of Image(∆) with phase speed of Stoneley waves (bonded) at dif-
ferent values of κ & κ′.

Figure 2.3: Variation of Real(∆) with phase speed of Stoneley waves (unbonded) at
different values of κ & κ′.

In Figures 2.1 and 2.2, the variation of the values of the real and imaginary part of

the frequency equations of Stoneley waves for the bonded interface with the phase

velocity at different values of (κ, κ′) are depicted. It may be noted that ω = 0.001. It

is observed that the values of real and imaginary values of ∆ increases and decreases

with the increase of phase velocity (c). With the increase of thermal parameters,
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Real(∆) decreases, while Imag(∆) increases. In the case of unbonded interface in

Figures 2.3 and 2.4, the values of real and imaginary part of ∆ decrease with the

increase of phase velocity. With the increase of thermal parameters, these values

increase. Thus, we have seen that the frequency equations of Stoneley waves depend

on the thermal parameters.

Figure 2.4: Variation of Image(∆) with phase speed of Stoneley waves (unbonded) at
different values of κ & κ′.

Figure 2.5: Variation of phase speed (C1
r ) of Rayleigh wave with angular frequency at

different values of κ.
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The velocity curves corresponding to the Rayleigh waves are given by Figures 2.5-

2.8. We have observed two modes of phase velocity of this surface wave. In Figures

2.5 and 2.6, values of the two modes of phase velocitsy of the Rayleigh wave increase

with the increase of angular frequency (ω) at different values of κ. These values

increase with the increase of κ.

Figure 2.6: Variation of phase speed (C2
r ) of Rayleigh wave with angular frequency at

different values of κ.

Figure 2.7: Variation of attenuation (A1
r) of Rayleigh wave with angular frequency at

different values of κ.
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Figure 2.8: Variation of attenuation (A2
r) of Rayleigh wave with angular frequency at

different values of κ.

The attenuation coefficients of the Rayleigh waves corresponding to the two mode

are depicted in Figures 2.7 and 2.8. These attenuation coefficients decrease with the

increase of ω for different values of κ. With the increase of κ, the values of these

coefficients decrease. Thus, the frequency equations depend on κ.

2.9 Conclusions

We have investigated the propagation of surface waves in the thermo-elastic ma-

terials with voids. The frequency equations of the Stoneley waves in the bonded

and unbonded interface between two dissimilar half-spaces of thermo-elastic materi-

als with voids are obtained. The frequency equation for the Rayleigh wave in such

medium are also derived. The frequency curves for the Stoneley waves are examined

numerically with the the help of determinant values. We also plot the velocity curves

for the Rayleigh wave. We conclude with the following points

(i) The Stoneley waves between two dissimilar half-spaces of thermo-elastic materials

with voids are dispersive in nature.

(ii) The real and imaginary values of determinant, ∆ for the bonded interface of
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Stoneley wave increases and decreases respectively with the increase of phase veloc-

ity.

(iii) The real part of ∆ decreases with the increase of thermal parameters κ & κ′,

while imaginary value of ∆ increases.

(iv) The real and imaginary values of ∆ for the Stoneley wave in the unbonded in-

terface decrease with the increase of phase velocity. These values increase with the

increase of thermal parameters, κ & κ′.

(v) We have observed two modes of phase velocity for the Rayleigh wave in the ther-

moelastic materials with voids.

(vi) The two modes of phase velocity of the Rayleigh wave increase with the increase

of angular frequency (ω) at different values of κ. These values also increase with the

increase of κ.

(vii) The two modes of attenuation coefficients of the Rayleigh wave decrease with

the increase of ω at different values of κ. It is observed that these coefficients decrease

with the increase of κ.
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Transmission of elastic waves in

initially stressed transversely

isotropic thermoelastic solids2

3.1 Introduction

Thermoelasticity discusses heat conduction, strains, and thermal stresses in the

materials with the inverse effect of temperature distribution. The study of thermoe-

lastic material has been implemented in many important fields such as seismology,

soil dynamics, physical sciences, aeronautics, atomic smasher, and nuclear reactors.

Othman and Song (2007) formulated the governing equations for isotropic and ho-

mogeneous generalized thermoelastic half-space under hydrostatic initial stress using

the Green and Naghdi theory of types II and III. They obtained the phase velocities

of thermal, P and SV -waves. Singh (2010b) shown the existence of three plane quasi

waves, namely, Quasi-Longitudinal (QL), Thermal (T -mode) and Quasi-Transverse

(QT ) waves in transversely isotropic thermoelastic solid with initial stresses and de-

rived the amplitude ratios of the reflected waves from a plane free boundary of such

medium.

In this chapter, we have studied the reflection/transmission of elastic waves in

initially stressed transversely isotropic thermoelastic materials. Three quasi type

2Engineering Reports, e12104, 1-14 (2020)
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coupled longitudinal (QL), transverse(QT ) and thermal waves are found to propa-

gate in initially stressed transversely isotropic thermoelastic materials. For incident

QL and QT -waves at a plane interface, boundary conditions were implemented for

obtaining the coefficients of reflection/transmission, the distribution of energy in the

reflected and transmitted waves are also discussed. Numerical computations have

been performed and analyzed the impact of initial stresses on the amplitude and en-

ergy ratios of the reflected and transmitted waves. We have observed critical angles

at θ0 = 300 and 580 for the reflected and transmitted QL-waves for incident QT -wave.

3.2 Basic Equations

Following Wang et al. (1997), the constitutive relations for prestressed bodies

with generalized thermoelasticity are

σij = cijmnemn + ejkPki − βijT, (3.1)

ρη = ρCeT + βijeij, (3.2)

qi + τ q̇i = −aiT −KijT,j − hijkejk, (3.3)

eij =
1

2
(uj,i + ui,j), (i, j, k,m, n = 1, 2, 3) (3.4)

where σij, qi, η, Pki and eij are stress, thermal flux, entropy, prestress and strain

tensors respectively, cijmn and βij, Kij, ai, hijk are elastic and thermal coefficients

respectively, the temperature is change from T0 to T , ui is the component of displace-

ment vector of the material with density ρ, thermal relaxation time τ and specific

heat Ce.

For the generalized thermoelastic materials under initial stresses with body force

Fi and internal heat source S, the equations of motions are given as

ρüi = σji,j + ρFi, (3.5)

ρT0η̇ = −qi,i + ρS, (i, j = 1, 2, 3). (3.6)
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Without body forces as well as heat sources and using Eqs.(3.1)-(3.3) in (3.5) and

(3.6), we get

(dijmnemn − βijT ),j = ρüi, (3.7)

T0(1 + τ
∂

∂t
)(βij ėij + ρCeṪ ) = (KijT,j + hijkejk + aiT ),i, (3.8)

where dijmn = cijmn + δjnemi and δjn is the Kronecker’s delta. Note that ai = 0 and

hijk = 0 for the uniform temperature prestressed bodies.

3.3 Wave Propagation

We consider Cartesian coordinates with x and y-axes lying horizontally and z-axis

as vertically. Two half-spaces M : 0 ≤ z <∞ and M ′ : −∞ < z ≤ 0 of transversely

isotropic thermoelastic medium under initial stresses are assumed to analyze wave

propagation in xz-plane. The diagrammatic structure of the problem is presented in

Figure 3.1.

For half-space M , equations of motions are (Singh, 2010b)

d11u1,11 + (d13 + d44)u3,13 + d44u1,33 − β1T,1 = ρü1, (3.9)

d44u3,11 + (d13 + d44)u1,13 + d33u3,33 − β3T,3 = ρü3, (3.10)

T0(1 + τ
∂

∂t
)(β1u̇1,1 + β3u̇3,3 + dṪ ) = K1T,11 + K3T,33, (3.11)

where u = (u1, 0, u3), d11 = c11 +P11, d13 = c13, d33 = c33 +P33, d44 = c44 +P11,K1 =

K11, K3 = K33, β1 = β11 = (d11 +d12)α1 +d13α3, β3 = β33 = 2d13α1 +d33α3, d = ρCe,

α1 and α3 are linear thermal expansion coefficients.

Similarly, for M ′,

d′11u
′
1,11 + (d′13 + d′44)u′3,13 + d′44u

′
1,33 − β′1T ′,1 = ρ′ü′1, (3.12)

d′44u
′
3,11 + (d′13 + d′44)u′1,13 + d′33u

′
3,33 − β′3T ′,3 = ρ′ü′3, (3.13)

T ′0(1 + τ ′
∂

∂t
)(β′1u̇

′
1,1 + β′3u̇

′
3,3 + d′Ṫ ′) = K ′1T

′
,11 + K ′3T

′
,33, (3.14)
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Figure 3.1: Geometry of the problem.

where β′1 = β′11 = (d′11 + d′12)α′1 + d′13α
′
3, β′3 = β′33 = 2d′13α

′
1 + d′33α

′
3, α′1 and α′3 are

due to thermal expansion, u = (u′1, 0, u
′
3), d′ = ρ′C ′e, d

′
11 = c′11 + P ′11, d′13 = c′13,

d′33 = c′33 + P ′33, d′44 = c′44 + P ′11, K ′1 = K ′11 and K ′3 = K ′33.

For the incident, reflected and transmitted waves, we have

〈u(n)
1 , u

(n)
3 , T (n)〉 = 〈And(n)

1 , And
(n)
3 , ıknF

nAn〉eıkn{xp
(n)
1 +zp

(n)
3 −vnt}, n = 0 to 6, (3.15)

where An is the amplitude constant, 〈d(n)
1 , 0, d

(n)
3 〉 and 〈p(n)

1 , 0, p
(n)
3 〉 are unit displace-

ment and propagation vectors respectively, kn is wavenumber, vn is phase velocity

(Singh, 2010b). Note that n = 0 represents incident QL or QT wave, n = 1, n = 2

and n = 3 represent for reflected QL, QT and thermal waves (T -mode) respectively

and n = 4, n = 5 and n = 6 represent for the transmitted QL, QT and thermal

waves respectively. The coupling constant F (n) is given by

F (n) =



(d11p
(n)2

1 +d44p
(n)2

3 −ρv2n)d
(n)
1 p

(n)
1 +(d13+d44)p

(n)2

1 p
(n)
3 d

(n)
3

β1
+

(d44p
(n)2

1 +d33p
(n)2

3 −ρv2n)d
(n)
3 p

(n)
3 +(d13+d44)p

(n)
1 p

(n)2

3 d
(n)
1

β3
, n = 0, 1, 2, 3

(d′11p
(n)2

1 +d′44p
(n)2

3 −ρ′v2n)d
(n)
1 p

(n)
1 +(d′13+d′44)p

(n)2

1 p
(n)
3 d

(n)
3

β′
1

+

(d′44p
(n)2

1 +d′33p
(n)2

3 −ρ′v2n)d
(n)
3 p

(n)
3 +(d′13+d′44)p

(n)
1 p

(n)2

3 d
(n)
1

β′
3

, n = 4, 5, 6.
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Using Snell’s law, we can have (Singh, 2011)

k0 sin θ0 = kr sin θr for r = 1, 2, 3, 4, 5, 6. (3.16)

3.4 Boundary Conditions

The stress tractions, heat flow and displacement components are continuous at

z = 0. We have

(i) Continuity of normal traction:

3∑
r=0

d33u
(r)
3,3 + d13u

(r)
1,1 − β3T

(r) =
6∑
r=4

d′33u
(r)
3,3 + d′13u

(r)
1,1 − β′3T (r).

(ii) Continuity of shear traction:

3∑
n=0

d44(u
(r)
1,3 + u

(r)
3,1) =

6∑
n=4

d′44(u
(r)
1,3 + u

(r)
3,1).

(iii) Continuity of heat flow:

3∑
r=0

Ṫ (r) =
6∑

n=4

Ṫ (r),
3∑
r=0

∂T (r)

∂z
=

6∑
r=4

∂T (r)

∂z
.

(iv) Continuity of displacement components:

3∑
r=0

u
(r)
1 =

6∑
r=4

u
(r)
1 ,

3∑
r=0

u
(r)
3 =

6∑
r=4

u
(r)
3 .

These boundary conditions may be reduced to

3∑
r=0

{kr(d33p
(r)
3 d

(r)
3 − β3F

(r)) + d13k0p
(0)
1 d

(r)
1 }Ar −

6∑
r=4

{kr(d′33p
(r)
3 d

(r)
3 − β′3F (r)) + d′13k0p

(0)
1 d

(r)
1 }Ar = 0, (3.17)

3∑
r=0

d44(krp
(r)
3 d

(r)
1 + k0p

(0)
1 d

(r)
3 )An −

6∑
r=4

d′44(krp
(r)
3 d

(r)
1 + k0p

(0)
1 d

(r)
3 )Ar = 0, (3.18)

3∑
r=0

krF
(r)Ar−

6∑
r=4

krF
(r)An = 0,

3∑
r=0

k2
np

(r)
3 F (r)An−

6∑
r=4

k2
rp

(r)
3 F (r)An = 0, (3.19)
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3∑
r=0

d
(r)
1 Ar −

6∑
r=4

d
(r)
1 Ar = 0,

3∑
r=0

d
(r)
3 Ar −

6∑
r=4

d
(r)
3 Ar = 0. (3.20)

Equations (3.17)-(3.20) will help to find the reflection and transmission coefficients

of the reflected and transmitted waves.

3.5 Amplitude Ratio

The matrix representation of Eqs (3.17)-(3.20) is given as

AZ = B, (3.21)

where A is a 6× 6 matrix, B and Z are 6× 1 matrices with the following elements

a1r =


kr(d33p

(r)
3 d

(r)
3 − β3F

(r)) + d13k0p
(0)
1 d

(r)
1 , r = 1, 2, 3

−kr(d′33p
(r)
3 d

(r)
3 − β′3F (r))− d′13k0p

(0)
1 d

(r)
1 , r = 4, 5, 6

,

a2r =


d44(krp

(r)
3 d

(r)
1 + k0p

(0)
1 d

(r)
3 ), r = 1, 2, 3

−d′44(krp
(r)
3 d

(r)
1 + k0p

(0)
1 d

(r)
3 ), r = 4, 5, 6

, a3j =


krF

(r), r = 1, 2, 3

−krF (r), r = 4, 5, 6

,

a4r =


d

(r)
1 , r = 1, 2, 3

−d(r)
1 , r = 4, 5, 6

, a5r =


d

(r)
3 , r = 1, 2, 3

−d(r)
3 , r = 4, 5, 6

,

a6j =


k2
rp

(r)
3 F (r), r = 1, 2, 3

−k2
rp

(r)
3 F (r), r = 4, 5, 6

, b1 = −k0(d33p
(0)
3 d

(0)
3 + d13p

(0)
1 d

(0)
1 − β3F

(0)),

b2 = −d44k0(p
(0)
3 d

(0)
1 + p

(0)
1 d

(0)
3 ), b3 = −k0F

(0), b4 = −d(0)
1 ,

b5 = −d(0)
3 , b6 = −k2

0p
(0)
3 F (0), Zr =

Ar
A0

.

Eq.(3.21) is solved for Zr due to incident QL and QT -waves.
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3.6 Energy Ratio

We have considered partition of energy at z = 0 and the rate of transmission is

given by (Achenbach, 1976)

E∗ = 〈τzz · u̇3〉+ 〈τzx · u̇1〉. (3.22)

Using Eq. (3.22), the energy ratios waves are

Ei =
ηi
η0

Z2
i , (i = 1, 2, 3, 4, 5, 6) (3.23)

where

ηi =



d
(i)
3 (d33kid

(i)
3 p

(i)
3 + d13k0d

(i)
1 p

(0)
1 − β3kiF

(i))+

d44d
(i)
1 (kid

(i)
1 p

(i)
3 + k0d

(i)
3 p

(0)
1 ), i = 0, 1, 2, 3

d
(i)
3 (d′33kid

(i)
3 p

(i)
3 + d′13k0d

(i)
1 p

(0)
1 − β′3kiF (i))+

d′44d
(i)
1 (kid

(i)
1 p

(i)
3 + k0d

(i)
3 p

(0)
1 ), i = 4, 5, 6.

Note that Er for r = 1, 2, 3 represent energy ratios of the reflected QL, QT and

T -mode waves respectively and r = 4, 5, 6 represent for the transmitted QL, QT and

T -mode waves respectively.

3.7 Particular Cases

CASE I: If P11 = P33 = P ′11 = P ′33 = 0, then dij = cij and d′ij = c′ij. Eqs. (3.21)

and (3.23) have the following modified values

a1j =


kj(c33p

(j)
3 d

(j)
3 − β3F

(j)) + c13k0p
(0)
1 d

(j)
1 , j = 1, 2, 3

−kj(c′33p
(j)
3 d

(j)
3 − β′3F (j))− c′13k0p

(0)
1 d

(j)
1 , j = 4, 5, 6

,

a2j =


c44(kjp

(j)
3 d

(j)
1 + k0p

(0)
1 d

(j)
3 ), j = 1, 2, 3

−c′44(kjp
(j)
3 d

(j)
1 + k0p

(0)
1 d

(j)
3 ), j = 4, 5, 6

,
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b1 = −k0(c33p
(0)
3 d

(0)
3 + c13p

(0)
1 d

(0)
1 − β3F

(0)), b2 = −c44k0(p
(0)
3 d

(0)
1 + p

(0)
1 d

(0)
3 ).

ηi =



d
(i)
3 (c33kid

(i)
3 p

(i)
3 + c13k0d

(i)
1 p

(0)
1 − β3kiF

(i))+

c44d
(i)
1 (kid

(i)
1 p

(i)
3 + k0d

(i)
3 p

(0)
1 ), i = 0, 1, 2, 3

d
(i)
3 (c′33kid

(i)
3 p

(i)
3 + c′13k0d

(i)
1 p

(0)
1 − β′3kiF (i))+

c′44d
(i)
1 (kid

(i)
1 p

(i)
3 + k0d

(i)
3 p

(0)
1 ), i = 4, 5, 6.

CASE II: If M ′ is stress free, then

Z1 =
b1(a22a63 − a23a62)− a12(b2a63 − a23b6) + a13(b2a62 − a22b6)

a11(a22a63 − a23a62)− a12(a21a63 − a23a61) + a13(a21a62 − a22a61)
,

Z2 =
a11(b2a63 − a23b6)− b1(a21a63 − a23a61) + a13(a21b6 − b2a61)

a11(a22a63 − a23a62)− a12(a21a63 − a23a61) + a13(a21a62 − a22a61)
,

Z3 =
a11(a22b6 − b2a62)− a12(a21b6 − b2a61) + b1(a21a62 − a22a61)

a11(a22a63 − a23a62)− a12(a21a63 − a23a61) + a13(a21a62 − a22a61)
. (3.24)

These ratios exactly match Singh (2010b).

The distribution of energy E1, E2 and E3 of the reflected waves are given by

(3.23).

CASE III: If M ′ is stress free and P11 = P33 = 0. Equation(3.24) will be modified

with the following changes

a1j = kj(c33p
(j)
3 d

(j)
3 − β3F

(j)) + c13k0p
(0)
1 d

(j)
1 ,

a2j = c44(kjp
(j)
3 d

(j)
1 + k0p

(0)
1 d

(j)
3 ), (j = 1, 2, 3)

b1 = −k0(c33p
(0)
3 d

(0)
3 + c13p

(0)
1 d

(0)
1 − β3F

(0)),

b2 = −c44k0(p
(0)
3 d

(0)
1 + p

(0)
1 d

(0)
3 ).

The results are exactly same as Sharma (1988).

The energy ratios E1, E2 and E3 are also given by (3.23) with the modified value of

ηi = d
(i)
3 (c33kid

(i)
3 p

(i)
3 + c13k0d

(i)
1 p

(0)
1 − β3kiF

(i))

+ c44d
(i)
1 (kid

(i)
1 p

(i)
3 + k0d

(i)
3 p

(0)
1 ), (i = 0, 1, 2, 3).
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3.8 Numerical Results

For evaluating the coefficients and energy distributions due to reflected and trans-

mitted waves for incident QL and QT waves, we have used the relevant parametric

values given in Table 3.1 (Chadwick and Seet, 1970).

Cobalt (M) Value Zinc (M ′) Value Units

ρ 8.836× 103 ρ′ 7.14× 103 kgm−3

c11 3.071× 1011 c′11 1.628× 1011 Nm−2

c12 1.650× 1011 c′12 0.362× 1011 Nm−2

c13 1.027× 1011 c′13 0.508× 1011 Nm−2

c33 3.581× 1011 c′33 0.627× 1011 Nm−2

c44 0.755× 1011 c′44 0.385× 1011 Nm−2

β1 7.04× 106 β′1 5.75× 106 Nm−2degree−1

β3 6.90× 106 β′3 5.17× 106 Nm−2degree−1

Ce 4.27× 102 C ′e 3.9× 102 Jkg−1degree−1

K1 0.690× 102 K ′1 1.24× 102 Wm−1degree−1

K3 0.690× 102 K ′3 1.24× 102 Wm−1degree−1

T0 298 T ′0 296 K

τ0 0.05 τ ′0 0.06

Table 3.1 Parametric Values

The unit propagation and displacement vectors are

(for incident quasi-longitudinal wave)

(p
(0)
1 , 0, p

(0)
3 ) = (sin θ0, 0, cos θ0), (d

(0)
1 , 0, d

(0)
3 ) = (sin θ0, 0, cos θ0),

(for incident quasi-transverse wave)

(p
(0)
1 , 0, p

(0)
3 ) = (sin θ0, 0, cos θ0), (d

(0)
1 , 0, d

(0)
3 ) = (cos θ0, 0,− sin θ0),
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(for reflected waves)

(p
(1)
1 , 0, p

(1)
3 ) = (sin θ1, 0,− cos θ1), (d

(1)
1 , 0, d

(1)
3 ) = (sin θ1, 0,− cos θ1),

(p
(2)
1 , 0, p

(2)
3 ) = (sin θ2, 0,− cos θ2), (d

(2)
1 , 0, d

(2)
3 ) = (− cos θ2, 0,− sin θ2),

(p
(3)
1 , 0, p

(3)
3 ) = (sin θ3, 0,− cos θ3), (d

(3)
1 , 0, d

(3)
3 ) = (sin θ3, 0,− cos θ3),

Figure 3.2: Variation of |Z1| with angle of incidence for different values of P and P ′.

Figure 3.3: Variation of |Z2| with angle of incidence for different values of P and P ′.
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(for transmitted waves)

(p
(4)
1 , 0, p

(4)
3 ) = (sin θ4, 0, cos θ4), (d

(4)
1 , 0, d

(4)
3 ) = (sin θ4, 0, cos θ4),

(p
(5)
1 , 0, p

(5)
3 ) = (sin θ5, 0, cos θ5), (d

(5)
1 , 0, d

(5)
3 ) = (cos θ5, 0,− sin θ5),

(p
(6)
1 , 0, p

(6)
3 ) = (sin θ6, 0, cos θ6), (d

(6)
1 , 0, d

(6)
3 ) = (sin θ6, 0, cos θ6).

Figure 3.4: Variation of |Z3| with angle of incidence for different values of P and P ′.

Figure 3.5: Variation of |Z4| with angle of incidence for different values of P and P ′.
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Figures 3.2-3.13 are due to incident QL wave, while Figures 3.14-3.25 represent for

the incident QT wave. It may be noted that P = P11 = P33, P ′ = P ′11 = P ′33 and

ω = 5.

Figure 3.6: Variation of |Z5| with angle of incidence for different values of P and P ′.

Figure 3.7: Variation of |Z6| with angle of incidence for different values of P and P ′.
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3.8.1 Incident QL-wave

Figures 3.2–3.4 explain the change in reflection coefficients with the change in θ0 at

different values of P and P ′. We have seen that |Z1| in Figure 3.2 increases when θ0

is increased.

Figure 3.8: Variation of |E1| with angle of incidence for different values of P and P ′.

Figure 3.9: Variation of |E2| with angle of incidence for different values of P and P ′.
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Figure 3.10: Variation of |E3| with angle of incidence for different values of P and P ′.

Figure 3.11: Variation of |E4| with angle of incidence for different values of P and P ′.

In Figure 3.3, all the curves corresponding to |Z2| increase initially and decrease

when the value of θ0 get larger. Thereafter, Curve I, Curve II and Curve III increase

to the maximum values at θ0 = 71◦, θ0 = 70◦ and θ0 = 68◦ respectively and then

decrease again. All the curves in Figure 3.4 for the amplitude ratio |Z3| increase to
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the maximum values at θ0 = 30◦(Curve I), θ0 = 28◦(Curve II) and θ0 = 26◦(Curve

III) which decrease with the increase of θ0. Note that the minimum and maximum

effects of initial stresses on |Z1| are near grazing and normal incidence respectively,

while the minimum effect on |Z3| is near normal incidence.

Figure 3.12: Variation of |E5| with angle of incidence for different values of P and P ′.

Figure 3.13: Variation of |E6| with angle of incidence for different values of P and P ′.
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Figure 3.14: Variation of |Z1| with angle of incidence for different values of P and P ′.

Figure 3.15: Variation of |Z2| with angle of incidence for different values of P and P ′.

The variation of the transmission coefficients are depicted in Figures 3.5–3.7. We

have seen that |Z4| decrease with the increase of θ0, while |Z5| and |Z6| are similar

to those of |Z2| and |Z3| respectively. All the curves in Figure 3.6 meet at a point

θ0 = 60◦. Here, also the effect of initial stresses on |Z4| is maximum when θ0 is close to

normal angle of incidence. The energy distribution on the reflected and transmitted
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waves are presented in Figures 3.8–3.10 and 3.11–3.13 respectively. In Figure 3.8, |E1|

increases when the value of θ0 is getting more. The effects of P and P ′ on |E1| are

minimum and maximum at the grazing and normal angle of incidence respectively.

Figure 3.16: Variation of |Z3| with angle of incidence for different values of P and P ′.

Figure 3.17: Variation of |Z4| with angle of incidence for different values of P and P ′.
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Figure 3.18: Variation of |Z5| with angle of incidence for different values of P and P ′.

Figure 3.19: Variation of |Z6| with angle of incidence for different values of P and P ′.

All the curves in Figure 3.9 for |E2| increase initially and meet at θ0 = 52◦ which

then increase to the maximum values at θ0 = 77◦(Curve I), θ0 = 78◦(Curve II) and

θ0 = 79◦(curve III). After these points, all the curves decrease with the rise of θ0. In

Figure 3.11, the value of |E4| falls when the value of θ0 is increased. The values of

|E3| in 3.10 increase to the maximum values for Curve I, Curve II and Curve III are
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observed at θ0 = 35◦, θ0 = 31◦ and θ0 = 28◦ respectively and all decrease with the

higher value of θ0. We have observed that the minimum effect of P and P ′ on |E3|

is near normal angle of incidence. |E5| and |E6| show similar pattern with |E2| and

|E3| respectively. The sum of the energy ratios is close to one.

Figure 3.20: Variation of |E1| with angle of incidence for different values of P and P ′.

Figure 3.21: Variation of |E2| with angle of incidence for different values of P and P ′.
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3.8.2 Incident QT -wave

Figures 3.14–3.16 and 3.17–3.19 are corresponding to the coefficients of reflection

and transmission respectively. In Figure 3.14, the values of |Z1| have parabolic paths

in the regions, Curve I: 0◦ ≤ θ0 ≤ 28◦, Curve II: 0◦ ≤ θ0 ≤ 24◦, Curve III: 0◦ ≤ θ0 ≤

21◦ and then increase with the increase of θ0. In Figure 3.15, |Z2| starts decreasing

to the minimum value which then increase with the higher value of θ0.

The values of |Z3| in Figure 3.16 increase initially and decrease slightly which increase

and decrease again when the value of θ0 is getting larger. In Figure 3.17, |Z4| increases

to the maximum value and then decreases with the rise in the value of θ0.

Figure 3.22: Variation of |E3| with angle of incidence for different values of P and P ′.

The value of |Z5| in Figure 3.18 decreases when the value of θ0 is increased. It

is observed that |Z6| has similar pattern with |Z3|. In this case, we have observed

critical angles θ0 = 30◦ for |Z1| and θ0 = 58◦ for |Z4|. We have seen that the effects

of P and P ′ on |Z3| and |Z6| are minimum near normal as well as grazing angle of

incidence. In Figure 3.20, all the curves show that |E1| increases to some point and

then drops to the minimum value which then rises with the increase of θ0. The values
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of |E2| in Figure 3.21 increase with the rise in the value of θ0. We notice that the

effect of initial stresses is very small near the normal incidence. It is observed that

|E3| in Figure 3.22 increases up to certain value and then decreases with the increase

of θ0. In Figures 3.23–3.25, we have seen that the variation of |E4| and |E6| have

similar pattern with |Z4| and |Z6| respectively.

Figure 3.23: Variation of |E4| with angle of incidence for different values of P and P ′.

Figure 3.24: Variation of |E5| with angle of incidence for different values of P and P ′.
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The values of |E5| in Figure 3.24 decrease initially and then increase up to certain

value which decreases again when the value of θ0 is increased. Here, we have noticed

critical angles, θ0 = 30◦ for |E1| and θ0 = 58◦ for |E4|. The law of conservation

of energy is also hold for this case. It is observed that the effect of initial stresses

are very small near the grazing and normal incidence in most of the amplitude and

energy ratios for incident QL and QT waves.

Figure 3.25: Variation of |E6| with angle of incidence for different values of P and P ′.

3.9 Conclusion

For incident QL and QT -waves at the interface between two different half-spaces

of initially stressed transversely isotropic thermo-elastic materials, the reflected and

transmitted waves are analyzed. The formula corresponding to the coefficient of

reflection/transmission and energy ratios are obtained with the help of appropri-

ate boundary conditions. These formulas are computed numerically for a particular

model. We have the following concluding remarks:

(i) The reflection/transmission coefficients and the energy distributions are found to

depend on angle of incidence, elastic, thermal and initial stress parameters.
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(ii) The ratios |Z1| and |E1| increase, while |Z4| and |E4| decrease with the rise in the

value of θ0 for the incident QL-wave.

(iii) For incident QL-wave, the maximum and minimum effects of initial stresses on

|Z1|, |Z4|, |E1| and |E4| are found near normal and grazing angle of incidence.

(iv) The effect of initial stresses on |Z3|, |Z6|, |E3| and |E6| is minimum near normal

angle of incidence for incident QL-wave and they have similar pattern.

(v) The reflected and transmitted QL-waves have critical angles at 30◦ and 58◦ re-

spectively for the incident QT wave.

(vi) The addition of all the energy distributions for the incident QL and QT -waves

is close to unity.

(vii) We have recovered the results of Singh (2010) and Sharma (1988) in the special

cases of the present problem.
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Rayleigh waves in thermoelastic

saturated porous medium3

4.1 Introduction

The solid and voids in porous materials are connected in a continuous form within

the volume of the materials forming looseness between the particles. Nunziato and

Cowin (1972) developed a non-linear theory for elastic material with voids and showed

that an internal dissipation has been caused due to the changes in volume fraction of

the materials. This theory was linearized by Cowin and Nunziato (1983) taking void

volume fraction as independent kinematical variable. Currie et al.(1977) discussed

the possibility of propagation of more than one surface waves in viscoelastic materi-

als. Goyal et al. (2016) confirmed the existence of more than one type of Rayleigh

waves in a swelling porous half-space. They obtained two modes of Rayleigh type

surface waves. One of them is the counterpart of the classical Rayleigh wave and

the second mode of Rayleigh-type surface waves arises due to the presence of either

liquid or gas phases of the swelling porous medium.

This chapter investigates the propagation of surface waves in the heat conducting

porous material saturated by non-viscous fluid. The frequency equation for Rayleigh

type waves are obtained separately for thermally insulated and isothermal boundary

3International Journal of Advances in Applied Mathematics and Mechanics, 8(4),
15-27 (2021)
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conditions. We have observed two modes of dispersive Rayleigh type waves - I and II.

The propagation speed, attenuation and specific loss due to these waves are computed

numerically to see the effect of porosity and Biot’s parameter. The velocity curves

have been presented and it has been observed that they depend on the porosity, elas-

tic, thermal and Biot’s parameter of the material. The phase speed of first Rayleigh

type wave is just lower than that of transverse waves and the second Rayleigh type

wave is faster than those of body waves.

σmn : Stress tensor in solid τmn : Stress tensor in porous

Pf : Fluid pressure α : Biot’s parameter

δmn : Kronecker’s delta λ, µ : Lamé parameters

M : Bulk coupling parameter wm : Average fluid motion

Um : Displacement in fluid um : Displacement in solid

T0 : Reference temperature f : Porosity

βf : Thermal stress in fluid βs : Thermal stress in solid

ρ : Density of porous aggregate ρf : Density of pore fluid

τ0, K : Thermal parameters q : Inertial

ω : Angular frequency τ0 : Thermal relaxation time

k : Wavenumber

Table 4.1: Symbol and Parameters

4.2 Basic equations

The stress tensors for a thermal conducting porous solid in which the voids are

saturated by non-viscous fluids are given by Biot(1956a)

τmn = σmn + α(−Pf )δmn. (4.1)
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The constitutive relations for an isotropic fluid saturated porous heat conducting

materials are given as Bear et al. (1992)

σmn = λul,lδmn + µ(um,n + un,m)− βs(T − T0)δmn, (4.2)

−Pf = αMul,l +Mwl,l − βf (T − T0)δmn. (4.3)

The equation of motion in the absence of body and internal forces for such mate-

rials are

τmn,m = ρüm + ρf ẅm, (4.4)

(−Pf ),m = ρf üm + qẅm, (4.5)

KT,nn − ρCe(Ṫ + τ0T̈ ) = T0β{τ0(ün,n + ẅn,n) + u̇n,n + ẇn,n}, (4.6)

where β = βs + αβf .

Using Eqs. (4.1)-(4.3) into Eqs. (4.4)-(4.6), we get

(λ+ µ+ α2M)∇(∇ · u) + µ∇2u− ρü + αM∇(∇ ·w)− ρfẅ − β∇T = 0, (4.7)

αM∇(∇ · u)− ρf ü +M∇(∇ ·w)− qẅ − βf∇T = 0, (4.8)

βT0{(∇ · u̇ + τ0∇ · ü) + (∇ · ẇ + τ0∇ · ẅ)} − {K∇2T − ρCe(Ṫ + τ0T̈ ) = 0. (4.9)

Using Helmholtz’s theorem, u and w can be decomposed as

u = ∇φs +∇×ψψψs, ∇ ·ψψψs = 0, (4.10)

w = ∇φf +∇×ψψψf , ∇ ·ψψψf = 0, (4.11)

where φs andψψψs are potentials representing solid phase and φf andψψψf are representing

fluid phase.

4.3 Surface wave

We consider Cartesian coordinates as x and z-axis lying horizontal with vertical

y-axis. The two dimensional problem of surface wave propagation is considered in the
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xy-plane of a half-space of thermoelastic saturated porous materials. Using harmonic

nature of traveling waves that potentials vary with exp(−ıωt) and inserting Eqs.

(4.10) & (4.11) into Eqs. (4.7)-(4.9), we get two sets of equations

{Ω3∇6 − ω2Ω2∇4 + ω4Ω1∇2 − ω6Ω0}{φs, φf , T}(x, y) = 0, (4.12)

{∇2 −
ω2(ρ2

f − ρq)
µq

}{ψψψs,ψψψf}(x, y) = 0, (4.13)

where Ω0 = ρCeτ(ρ2
f − ρq), Ω3 = MK(λ + 2µ), τ = 1 + ı

ω
, D1 = λ + 2µ + α2M ,

Ω1 = ρCeτ(D1q+Mρ−2αMρf )+K(ρq−ρ2
f )+T0τββf (ρ−ρf )+β2T0τ(q−ρf ) and Ω2 =

−K(D1q+Mρ−2αMρf )−ρCeτ(D1M−α2M2)−T0τββf (D1−αM)+β2T0τ(αM−M).

The full potential structures for surface waves in the saturated heat conducting

porous materials may be given as

〈φs, φf , T − T0〉(x, y, t) =
3∑

n=1

〈An, anAn, bnAn〉e(ıkx−mny−ıωt),

〈ψs, ψf〉(x, y, t) = 〈A4, dA4〉e(ıkx−m4y−ıωt),

(4.14)

where d, an and bn are the coupling constants given by

an =

βf
β

(D1 − ρc2
n)− (αM − ρfc2

n)

(M − qc2
n)− βf

β
(αM − ρfc2

n)
, d =

µ− ρc2
4

ρfc2
4

,

bn =
k2
n{(D1 − ρc2

n)(M − qc2
n)− (αM − ρfc2

n)2}
β{βf

β
(αM − ρfc2

n)− (M − qc2
n)}

, (n = 1, 2, 3).

Note that ψs and ψf are z-components of ψψψs and ψψψf respectively, An are amplitude

constants, m2
n = k2 − k2

n and kn are wavenumbers of the body waves.

4.4 Frequency Equations

At the free surface of the thermo-elastic saturated porous medium, the stress

tensors, gradient of temperature and fluid flux vanished. These conditions are (at

y = 0)

(λ+ α2M)∇2φs + 2µ
∂2φs
∂y2

+ αM∇2φf − β(T − T0)− 2µ
∂2ψs
∂x∂y

= 0, (4.15)

2
∂2φs
∂x∂y

+
∂2ψs
∂y2

− ∂2ψs
∂x2

= 0, (4.16)
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∂T

∂y
+ hT = 0, (4.17)

∂φ̇f
∂y
− ∂ψ̇f

∂x
= 0, (4.18)

where h→ 0 for thermally insulated surface and h→∞ for isothermal surface.

Inserting Eq. (4.14) into (4.15)-(4.18), we have

a11A1 + a12A2 + a13A3 + ıa14m4A4 = 0, (4.19)

m1a21A1 +m2a22A2 +m3a23A3 + ıa24A4 = 0, (4.20)

m1a31A1 +m2a32A2 +m3a33A3 = 0, (4.21)

a31A1 + a32A2 + a33A3 = 0, (4.22)

m1a41A1 +m2a42A2 +m3a43A3 + ıa44A4 = 0, (4.23)

where

a1n = (λ+ α2M + αMan)(m2
n − k2) + 2µm2

n − βbn, a14 = 2µk, a2n = 2k,

a24 = (m2
4 + k2), a3n = bn, a4n = an, a44 = kd, (n = 1, 2, 3).

These equations help to derive the frequency equations of the Rayleigh waves

corresponding to thermally insulated and isothermal surfaces respectively as

a11m2m3D11 − a12m1m3D12 + a13m1m2D13 − a14m1m2m3D14 = 0, (4.24)

and

D21m1m2 +D22m1m3 +D23m1m4 −D24m2m3 −D25m2m4 −D26m3m4 = 0, (4.25)

where

D11 = (a22a33 − a23a32)a44 + (a32a43 − a33a42)a24, D12 = (a21a33 − a23a31)a44+

(a31a43 − a33a41)a24, D13 = (a21a32 − a22a31)a44 + (a31a42 − a32a41)a24,

D14 = (a32a43 − a33a42)a21 + (a33a41 − a31a43)a22 + (a31a42 − a32a41)a23,

D21 = a33a14m
2
4(a41a22 − a42a21), D22 = a32a14m

2
4(a43a21 − a41a23),

D23 = (a32a13 − a33a12)(a41a24 − a44a21), D24 = a31a14m
2
4(a43a22 − a42a23),

D25 = (a31a13 − a33a11)(a42a24 − a44a22), D26 = (a31a12 − a32a11)(a44a23 − a43a24).
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Equations (4.24) & (4.25) contain radical powers in the expressions of mn and

difficult to solve directly. The radical powers are removed by squaring and obtained

the frequency equations as

(α2
11 − α2

12m
2
1m

2
3 − α2

13m
2
2m

2
4)2 − 4α2

12α
2
13m

2
1m

2
2m

2
3m

2
4 = 0, (4.26)

α2
21 − α2

22m
2
2m

2
3 = 0, (4.27)

where

α11 = D2
11a

2
11m

2
2m

2
3 +D2

13a
2
13m

2
1m

2
2 −D2

12a
2
12m

2
1m

2
3 −D2

14a
2
14m

2
1m

2
2m

2
3m

2
4,

α12 = 2D11D13a11a13m
2
2, α13 = 2D12D14a12a14m

2
1m

2
3, α22 = 2(D33D34m

2
4 −D31D32),

α21 = D2
31 +D2

32m
2
2m

2
3 −D2

33m
2
2m

2
4 −D2

34m
2
3m

2
4, D32 = 2(D21D22m

2
1 −D25D26m

2
4),

D31 = D2
21m

2
1m

2
2 +D2

22m
2
1m

2
3 +D2

23m
2
1m

2
4 −D2

24m
2
2m

2
3 −D2

25m
2
2m

2
4 −D2

26m
2
3m

2
4,

D33 = 2(D24D26m
2
3 −D21D23m

2
1), D34 = 2(D24D25m

2
2 −D22D23m

2
1).

Eqs. (4.26) and (4.27) are equations of 48 powers and all roots do not satisfy

the boundary conditions. The solutions of these equations are complex and assume

that the wavenumber, k = R + ıQ be a solution, then the phase speed cr = ω
R

and

attenuation Ar = Q satisfy

c−1 = c−1
r + ıω−1Q. (4.28)

It may be noted that the exponent in Eq. (4.14) becomes ıR(x− crt)−Qx−mny.

4.4.1 Specific Loss

The direct method to find internal friction for a material is finding the specific

loss. It may be defined as the ratio of energy dissipated (∆W ) in a specimen through

a stress cycle to the elastic energy (W ) stored in the specimen at the maximum strain.

Numerical values of this factor is calculated as

Specific Loss = 4π

∣∣∣∣crQω
∣∣∣∣ . (4.29)
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4.5 Path of surface particles

The amplitude of displacement and temperature functions due to the propagation

of Rayleigh type waves at the surface, y = 0 are obtained as

{uk, wk, T} =
{
|Uk| eıθk , |Wk| eıθ(k+2) , Tθe

ıθ5
}
A1e

(ıq−Qx), k = 1, 2 (4.30)

where

U1 = ık{1 +
L4

L5

− L6

L3L5

} − ım4
L7

L3L5

, U2 = −m1 −m2
L4

L5

+m3
L6

L3L5

+ ık
L7

L3L5

,

W1 = ık{a1 + a2
L4

L5

− a3
L6

L3L5

} − ıdm4
L7

L3L5

, Tθ = b1m1 + b2m2
L4

L5

− b3m3
L6

L3L5

,

W2 = −a1m1 − a2m2
L4

L5

+ a3m3
L6

L3L5

+ ıdk
L7

L3L5

, L1 = a14a21m1m4 − a11a24,

L2 = a14a22m2m4 − a12a24, L3 = a14a23m3m4 − a13a24, q = R(x− crt),

L6 = L1L5 + L2L4, L7 = a11L3L5 + a12L3L4 − a13 (L1L5 + L2L4) ,

(θ1, θ2, θ3, θ4, θ5) = (arg(U1), arg(U2), arg(W1), arg(W2), arg(Tθ)) ,

L4 = L1a33m3 − L3a31m1, (thermally insulated), L1a33 − L3a31, (isothermal),

L5 = L2a33m3 − L3a32m1, (thermally insulated), L2a33 − L3a32, (isothermal).

We know that the surface of thermoelastic saturated porous material damped out

the vibration of Rayleigh type wave. As a result of this, the phase differences are

developed between u1 and u2 in the solid and w1 and w2 in the fluid phase. Eq. (4.30)

retains the real part on the surface y = 0 as

{uk, wk} =
{
|Uk| cos(q + θk), |Wk| cos(q + θ(k+2))

}
N, k = 1, 2 (4.31)

where N = A1e
−Qx.

Eliminating q from Eq. (4.31), we get(
u1

|U1|

)2

+

(
u2

|U2|

)2

− 2

(
u1

|U1|

)(
u2

|U2|

)
cos(θ1 − θ2) = N2 sin2(θ1 − θ2), (4.32)(

w1

|W1|

)2

+

(
w2

|W2|

)2

− 2

(
w1

|W1|

)(
w2

|W2|

)
cos(θ3 − θ4) = N2 sin2(θ3 − θ4). (4.33)
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These Eqs. (4.32) and (4.33) represent ellipse in u1− u2 plane and w1−w2 plane

respectively due to the fact that

4

|U1|2 |U2|2
cos2(θ1 − θ2)− 4

|U1|2 |U2|2
= − 4

|U1|2 |U2|2
sin2(θ1 − θ2) < 0 and

4

|W1|2 |W2|2
cos2(θ3 − θ4)− 4

|W1|2 |W2|2
= − 4

|W1|2 |W2|2
sin2(θ3 − θ4) < 0.

The semi major (Xs, Xf ), minor axes (Ys, Yf ) and eccentricities (es, ef ) of the

elliptical path in Eqs. (4.32) and (4.33) are given by

X2
s =

N2

2

[
|U1|2 + |U2|2 +

√(
|U1|2 − |U2|2

)2
+ 4 |U1|2 |U2|2 cos2(θ1 − θ2)

]
,

Y 2
s =

N2

2

[
|U1|2 + |U2|2 −

√(
|U1|2 − |U2|2

)2
+ 4 |U1|2 |U2|2 cos2(θ1 − θ2)

]
,

e2
s =

2

√(
|U1|2 − |U2|2

)2
+ 4 |U1|2 |U2|2 cos2(θ1 − θ2)

|U1|2 + |U2|2 +

√(
|U1|2 − |U2|2

)2
+ 4 |U1|2 |U2|2 cos2(θ1 − θ2)

,

(4.34)

and

X2
f =

N2

2

[
|W1|2 + |W2|2 +

√(
|W1|2 − |W2|2

)2
+ 4 |W1|2 |W2|2 cos2(θ3 − θ4)

]
,

Y 2
f =

N2

2

[
|W1|2 + |W2|2 −

√(
|W1|2 − |W2|2

)2
+ 4 |W1|2 |W2|2 cos2(θ3 − θ4)

]
,

e2
f =

2

√(
|W1|2 − |W2|2

)2
+ 4 |W1|2 |W2|2 cos2(θ3 − θ4)

|W1|2 + |W2|2 +

√(
|W1|2 − |W2|2

)2
+ 4 |W1|2 |W2|2 cos2(θ3 − θ4)

. (4.35)

If αs and αf are the inclination of major-axes to the wave normal, then

tan(2αs) =
2
{

(tan2 δ − 1) |U1| |U2| cos(θ1 − θ2)−
(
|U1|2 − |U2|2

)
tan δ

}
(tan2 δ − 1)

(
|U1|2 − |U2|2

)
+ 4 |U1| |U2| cos(θ1 − θ2) tan δ

,

tan(2αf ) =
2
{

(tan2 δ − 1) |W1| |W2| cos(θ3 − θ4)−
(
|W1|2 − |W2|2

)
tan δ

}
(tan2 δ − 1)

(
|W1|2 − |W2|2

)
+ 4 |W1| |W2| cos(θ3 − θ4) tan δ

,

(4.36)

where δ is angle of propagation. For Rayleigh waves propagating along x-axis, δ = π
2
,

then Eq. (4.37) becomes

tan(2αs) =
2 |U1| |U2| cos(θ1 − θ2)

|U1|2 − |U2|2
,

tan(2αf ) =
2 |W1| |W2| cos(θ3 − θ4)

|W1|2 − |W2|2
.

(4.37)
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The horizontal and vertical components of displacement in solid and fluid phase

of the thermoelastic saturated porous material have equal magnitude, i.e., |U1| = |U2|

and |W1| = |W2| when αs = αf = π
4
. This means that the surface particles moving in

the elliptical path of Eqs. (4.34) and (4.35) are parallel to the direction of propagation

of Rayleigh waves. Since the semi-axes depend upon N = A1e
−Qx, they are increasing

or decreasing exponentially. Thus, the decay of surface particles in thermoelastic

saturated porous material are retrograde and prograde when Xs and Ys in solid as

well as Xf and Yf in fluid have same sign and opposite sign respectively.

4.6 Particular Cases

Case I: If the porosity of the material is neglected, then the fluid flow in it will

no more and the problem becomes Rayleigh waves propagation in the thermoelastic

solid. Thus, α = f = q = ρf = M = βf = an = 0 and Eqs.(4.12) & (4.13) reduce to

{Ω2∇4 + ω2Ω1∇2 + ω4Ω0}{φs, T}(x, y) = 0,

{µ∇2 + ρω2}{ψψψs}(x, y) = 0,

(4.38)

where

Ω0 = ρ2Ceτ, Ω1 = ρCeτ(λ+ 2µ) +Kρ+ β2
sT0τ, Ω2 = K(λ+ 2µ).

The coupling parameter bn is given by

bn =
1

βs
{(λ+ 2µ)(m2

n − k2) + ρω2}, (n = 1, 2).

The frequency equations are also reduced as (for thermally insulated)

(α2
11m

2
1 + α2

13m
2
1m

2
2m

2
4 − α2

12m
2
2)2 − 4α2

11α
2
13m

4
1m

2
2m

2
4 = 0, (4.39)

(for isothermal)

α2
21 − α2

22m
2
1m

2
2 = 0, (4.40)

with the following modified values
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α11 = a12a24a31, α12 = a11a24a32, α13 = a14(a21a32 − a22a31), α22 = a2
14m

2
4a21a22a31a32,

α21 = a2
24(a31a12 − a32a11)2 − a2

14m
2
4(a2

31a
2
22m

2
2 + a2

32a
2
21m

2
1),

a11 = (λ+ α2M + αM)(m2
1 − k2) + 2µm2

1, a12 = (λ+ α2M + αM)(m2
2 − k2) + 2µm2

2.

Eq. (4.39) is exactly match with the result of Abouelregal (2011) for the Lord

and Shulman theory. If τ0 = 0, then Eqs. (4.39) and (4.40) reduced to the result of

Chadwick(1960) for thermally insulated and isothermal condition respectively.

Figure 4.1: Effect of Biot’s parameter on cr1 (a) Thermally Insulated, (b) Isothermal.
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Figure 4.2: Effect of Biot’s parameter on Ar1 (a) Thermally Insulated, (b) Isothermal.

Case II: When we neglect thermal effect, βs = βf = τ0 = K = Ce = bn = 0 and

Eq.(4.12) becomes

{Ω2∇4 + ω2Ω1∇2 + ω4Ω0}{φs, φf}(x, y) = 0, (4.41)

where Ω0 = ρq−ρ2
f , Ω1 = D1q+Mρ−2αMρf , Ω2 = D1M −αM2 and the coupling

parameter an reduces to

an =
D1(k2 −m2

n)− ρω2

αM(m2
n − k2) + ρfω2

, (n = 1, 2).
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The frequency equation, in this case, becomes

(α2
11m

2
2 + α2

13m
2
1m

2
2m

2
4 − α2

12m
2
1)2 − 4α2

11α
2
13m

2
1m

4
2m

2
4 = 0, (4.42)

with the modified values of

α11 = a11(a22a44 − a24a42), α12 = a12(a21a44 − a24a41), α13 = a14(a21a42 − a22a41),

a11 = λ(m2
1 − k2) + 2µm2

1 − b1β, a12 = λ(m2
2 − k2) + 2µm2

2 − b2β.

Figure 4.3: Effect of Biot’s parameter on SL1 (a) Thermally Insulated, (b) Isothermal.
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Figure 4.4: Effect of Biot’s parameter on cr2 (a) Thermally Insulated, (b) Isothermal.

Case III: If we neglect the effect of thermal and porosity of the material, all the

parameters except ρ, λ and µ are zero and Eqs.(4.12) & (4.13) reduce to

{(λ+ 2µ)∇4 + ρω2}{φs}(x, y) = 0,

{µ∇2 + ρω2}{ψψψs}(x, y) = 0.

(4.43)

Eq. (4.25) also reduces to

{λ(m2
1 − k2) + 2µm2

1}(m2
4 + k2)− 4µk2m1m4 = 0,
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which may be expressed as(
2− c2

c2
4

)2

− 4

√
1− c2

c2
1

√
1− c2

c2
4

= 0, (4.44)

where c2
1 =

λ+ 2µ

ρ
and c2

4 =
µ

ρ
.

Eq. (4.44) is the frequency equation of Rayleigh wave in classical elasticity

(Rayleigh, 1885).

Figure 4.5: Effect of Biot’s parameter on Ar2 (a) Thermally Insulated, (b) Isothermal.

84



Chapter 4

Figure 4.6: Effect of Biot’s parameter on SL2 (a) Thermally Insulated, (b) Isothermal.

4.7 Numerical Results

For investigating the effect of porosity and Biot’s parameter on Rayleigh waves, we

consider the numerical values of liquid saturated reservoir rock particularly North-sea

Sandstone as given in Table 4.2 (Sharma, 2008).
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Parameters Value

(λ, µ) (3.7 Gpa, 7.9 Gpa)

(ρ, ρf ) (2216 kgm−3, 950 kgm−3)

(βf , βs) (2.37× 10−3 Gpa/K, 2βf )

(Ce, K) (1040 JKg−1/K, 170 Wm−1/K)

(α, f) (0.4, 0.16)

(M, q) (6 Gpa, 1.05ρf/f)

(T0, τ0) (300 K, 10−10)

Table 4.2: Parametric values

Figure 4.7: Effect of porosity on cr1 (a) Thermally Insulated, (b) Isothermal.
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We have solved the polynomial Eqs.(4.26) and (4.27) numerically for the wavenumber

of Rayleigh waves at the thermally insulated and isothermal surface respectively.

There are 48 roots for each cases and we drop those roots that arise due to squaring.

We get only two roots each for both the cases satisfying Eqs. (4.24) and (4.26) as well

as Eqs. (4.25) and (4.27). These two roots correspond to Rayleigh type I and II which

are of dispersive nature. Note that (cr1, Ar1, SL1) and (cr2, Ar2, SL2) correspond to

Rayleigh type I and II respectively.

Figure 4.8: Effect of porosity on Ar1 (a) Thermally Insulated, (b) Isothermal.
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We have observed that Rayleigh type I is found to propagate with the speed

just less than that of the transverse wave and the second type is faster than all the

body waves in the thermoelastic saturated porous material. The velocity curves are

depicted with angular frequency(ω) with different α and f in Figures 4.1-4.6 and

4.7-4.12 respectively. In each figures, (a) corresponds for thermally insulated and (b)

represents for isothermal surface boundary.

Figure 4.9: Effect of porosity on SL1 (a) Thermally Insulated, (b) Isothermal.
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Figure 4.10: Effect of porosity on cr2 (a) Thermally Insulated, (b) Isothermal.

4.7.1 Effect of Biot’s parameter

In Figure 4.1, the phase speed (cr1) corresponding to Rayleigh type I increases with

the increase of angular frequency (ω) for both the thermally insulated and isothermal

surface boundary. We have seen that the Rayleigh type I is faster in isothermal than

thermally insulated surface. Their values also increase with the increase of α. Similar

nature of variations in attenuation Ar1 are observed in Figure 4.2. The specific loss
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(SL1) in Figure 4.3 for thermally insulated surface increases with the increase of ω,

while it is decreased for isothermal surface. The values of SL1 increase with the

increase of α. For the thermally insulated and isothermal surface, the values of cr2,

Ar2 and SL2 corresponding to Rayleigh type II in Figures 4.4, 4.5 and 4.6 are all

increase with the increase of ω. Rayleigh type II is found to be faster in thermally

insulated than isothermal surface.

Figure 4.11: Effect of porosity on Ar2 (a) Thermally Insulated, (b) Isothermal.
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In Figure 4.4, we have observed that with the increase in the value of α, the

values of cr2 for both the thermally insulated and isothermal surface decrease. The

values of Ar2 and SL2 for the thermally insulated surface in Figures.4.5(a) and 4.6(a)

decrease, while those in Figures.4.5(b) and 4.6(b) for isothermal surface increase with

the increase of α.

Figure 4.12: Effect of porosity on SL2 (a) Thermally Insulated, (b) Isothermal.
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4.7.2 Effect of porosity

In Figures 4.7 and 4.10, the values of cr1 and cr2 for both thermally insulated

and isothermal surface increase with the increase of porosity (f). We have observed

that the values of Ar1 and SL1 in Figures 4.8 and 4.9 decrease with the increase

of f . In Figures 4.11 and 4.12, the values of Ar2 and SL2 for thermally insulated

surface decrease with the increase of f , while those of isothermal surface increase

with the increase of f . The values of Ar2 and Ar1 are found to be smaller in the

case of thermally insulated surface. In thermally insulated boundary, there is a linear

relationship of SL2 with ω. Thus, the propagation speed, attenuation and specific

loss of Rayleigh type waves in the thermally insulated and isothermal surface of

thermoelastic saturated porous material depend on Biot’s parameter and porosity.

4.8 Conclusions

We have analyzed the propagation of Rayleigh type waves at the thermally in-

sulated and isothermal surface of thermo-elastic saturated porous medium. The fre-

quency equations for the Rayleigh type waves have been derived separately using

boundary conditions. The velocity curves have been depicted and the results are

presented graphically. We conclude with the following points

(i) Two Rayleigh type waves - I, II exist in both the thermally insulated and isother-

mal boundary of thermo-elastic saturated porous medium. Notice that the propaga-

tion speed of first type is just lower than that of transverse waves and the second

type is faster than those of body waves.

(ii) We have observed that Rayleigh type-I is faster in the case of isothermal surface,

while Rayleigh type-II is faster in the case of thermally insulated boundary.

(iii) The propagation speeds, attenuation and specific loss except SL1 for isothermal

surface increase with the increase of ω.

(iv) It is observed that the values of cr1, Ar1 and SL1 increase with the increase of
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α, while cr2 decreases.

(v) The attenuation and specific loss of Rayleigh type II decrease with the increase

of α and f for thermally insulated boundary which increase in the case of isothermal

boundary.

(vi) The values of cr1 and cr2 increase, while Ar1 and SL1 decrease with the increase

of f for both the boundary conditions.

(vii) With a small change in f and α, there are drastic changed in velocity curves.

Thus, the effect of these parameters on the velocity curves of the Rayleigh type waves

are very high.
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Reflection and transmission of

elastic waves at a plane interface

between two dissimilar

incompresssible transversely

isotropic thermoelastic half spaces4

5.1 Introduction

The solutions of governing equations for an incompressible transversely isotropic

thermoelastic solid have shown the existence of two plane shear waves. Leslie and

Scott (1998, 2000) explored the wave stability for incompressibility at uniform tem-

perature or entropy in isotropic generalized thermoelasticity. They have showed that

the stability and unstability properties of waves propagating in a thermomechani-

cally constrained material are found to be unchanged by the existence of the thermal

relaxation time. Singh and Singla(2020) discussed the problem of surface wave in

an incompressible, homogeneous, transversely isotropic and rotating thermoelastic

medium in the context of the Green–Naghdi theory. They obtained the secular equa-

tion for Rayleigh waves for thermally insulated and isothermal boundaries.

4Accepted for publication to International Journal of Engineering, Science and Tech-
nology
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This chapter deals with the problem of reflection and transmission of shear waves

at a plane interface between two dissimilar incompresssible transversely isotropic ther-

moelastic half-spaces. Two coupled quasi-shear waves are found to propagate due to

the incompressibility of such materials. Applying appropriate boundary conditions

at the plane interface, amplitude ratios of the reflected and transmitted quasi-shear

waves are obtained. It has been observed that these ratios are functions of the an-

gle of incidence, elastic and thermal parameters of the materials. These ratios are

computed numerically for a particular model to see the effects of specific heat and

thermal expansion.

5.2 Fundamental Equations

The non-deformed state of homogeneous thermal conducting incompressible elas-

tic materials with transverse isotropy at uniform temperature, T0 has the following

set of equations (see Singh, 2015)

c11ux,xx + (c13 + c44)uz,xz + c44ux,zz − β1T,x − P,x = ρüx, (5.1)

c44uz,xx + (c13 + c44)ux,xz + c33uz,zz − β3T,z − P,z = ρüz, (5.2)

K1T,xx +K3T,zz − ρCe(Ṫ + τ0T̈ ) = T0{β1(u̇x,x + τ0üx,x) + β3(u̇z,z + τ0üz,z)}, (5.3)

where cij are elastic constants, P is the hydrostatic pressure, T is the increment in

temperature, τ0 and Ce are thermal relaxation times and specific heat respectively, ρ

is the density, K1 and K3 are the coefficients of thermal conductivity. It may be noted

that comma in the subscript denotes spatial derivatives, β1 = (c11 + c12)α1 + c13α3

and β3 = 2c13α1 + c33α3 with α1 and α3 are coefficients of linear expansion.

The incompressibility condition may be given as

ux,x + uz,z = 0, (5.4)
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Eliminating the hydrostatic pressure from Eqs.(5.1) and (5.2), we have

c11ux,xxz + (c13 + c44)uz,xzz + c44ux,zzz − β1T,xz − ρüx,z =

c44uz,xxx + (c13 + c44)ux,xxz + c33u3,133 − β3T,xz − ρüz,x.
(5.5)

Due to the incompressibility condition (5.4), we can find a scalar function φ(x, z, t)

such that

ux = φ,z and uz = −φ,x. (5.6)

Figure 5.1: Incident, Reflected and Transmitted shear waves.

5.3 Wave Propagation

Consider the Cartesian co-ordinates system with x and y-axes lying horizontally

and z-axis along the vertical direction. We aim to study the two dimensional problem

of wave propagation in xz-plane in the half-spaces of two incompressible transversely

isotropic materials M : 0 ≤ z < ∞ and M ′ : −∞ < z ≤ 0. The geometry of the

problem is given in Figure 5.1.
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The equations of motion for the half-spaces M and M ′ are

c44φ,xxxx + 2βφ,xxzz + β13T,xz = ρ(φ̈,xx + φ̈,zz),

K1T,xx +K3T,zz − ρCe(Ṫ + τ0T̈ ) = T0{(β1 − β3)(φ̇,xz + τ0φ̈,xz)},
(5.7)

c′44φ
′
,xxxx + 2β′φ′,xxzz + β′13T

′
,xz = ρ′(φ̈′,xx + φ̈′,zz),

K ′1T
′
,xx +K ′3T

′
,zz − ρ′C ′e(Ṫ ′ + τ ′0T̈

′) = T ′0{(β′1 − β′3)(φ̇′,xz + τ ′0φ̈
′
,xz)},

(5.8)

where β = (c11 + c33)/2 − c13 − c44, β′ = (c′11 + c′33)/2 − c′13 − c′44, β13 = β3 − β1,

β′13 = β′3 − β′1.

When a quasi shear wave propagating in the half-space M be incident at the

plane interface, z = 0 making an angle θ0 with the normal, two quasi shear waves

are reflected and transmitted in M and M ′ respectively. The structures of the wave

field for the incident, reflected and transmitted waves may be written as

〈φ(n), T (n)〉 = 〈An, anAn〉eıkn{xp
(n)
1 +zp

(n)
3 −cnt}, n = 0, 1, 2, 3, 4 (5.9)

where An is the amplitude constant, 〈p(n)
1 , 0, p

(n)
3 〉 is the unit propagation vector, kn

is the wavenumber and cn is the phase velocity. Note that n = 0 represents incident

quasi shear wave, n = 1, 2 and n = 3, 4 represent for the reflected and transmitted

quasi shear waves respectively. The coupling constant an is given by

an =



k2
n{c44(p

(n)4

1 + p
(n)4

3 ) + 2βp
(n)2

1 p
(n)2

3 − ρc2
n}

β13p
(n)
1 p

(n)
3

, n = 0, 1, 2

k2
n{c′44(p

(n)4

1 + p
(n)4

3 ) + 2β′p
(n)2

1 p
(n)2

3 − ρ′c2
n}

β′13p
(n)
1 p

(n)
3

, n = 3, 4.

The Snell’s law, in this case, is given as (Singh, 2011)

k0

kn
=

sin θn
sin θ0

for n = 1, 2, 3, 4. (5.10)
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5.4 Boundary Conditions

The tractions and displacement components are continuous at z = 0. These

conditions may be written as

(i) Continuity of normal traction:

2∑
n=0

{c44φ
(n)
,zzz + c22φ

(n)
,xxz − ρφ̈(n)

,z + β13T
(n)
,x } =

4∑
n=3

{c′44φ
(n)
,zzz + c′22φ

(n)
,xxz − ρ′φ̈(n)

,z + β′13T
(n)
,x },

(5.11)

where c22 = c11 + c33 − c44 − 2c13, c′22 = c′11 + c′33 − c′44 − 2c′13.

(ii) Continuity of shear traction:

2∑
n=0

c44(φ(n)
,zz − φ(n)

,xx) =
4∑

n=3

c′44(φ(n)
,zz − φ(n)

,xx). (5.12)

(iii) Continuity of displacement components:

2∑
n=0

φ(n)
,z =

4∑
n=3

φ(n)
,z ,

2∑
n=0

φ(n)
,x =

4∑
n=3

φ(n)
,x . (5.13)

Using Eqs.(5.9) and (5.10) into (5.11)-(5.13), these boundary conditions may be re-

duced to

2∑
n=0

{c44k
3
np

(n)3

3 + c22k
3
np

(n)2

1 p
(n)
3 − ρc2

nk
3
np

(n)
3 − β13anp

(n)
1 kn}An−

4∑
n=3

{c′44k
3
np

(n)3

3 + c′22k
3
np

(n)2

1 p
(n)
3 − ρ′c2

nk
3
np

(n)
3 − β′13anp

(n)
1 kn}An = 0,

(5.14)

2∑
n=0

c44k
2
n(p

(n)2

3 − p(n)2

1 )An −
4∑

n=3

c′44k
2
n(p

(n)2

3 − p(n)2

1 )An = 0, (5.15)

2∑
n=0

knp
(n)
3 An −

4∑
n=3

knp
(n)
3 An = 0,

2∑
n=0

knp
(n)
1 An −

4∑
n=3

knp
(n)
1 An = 0. (5.16)

Equations (5.14)-(5.16) will be used for evaluation of the amplitude ratios correspond-

ing to the reflected and transmitted waves.

98



Chapter 5

5.5 Amplitude Ratios

Equations (5.14)-(5.16) may be rewritten in matrix notation as

AZ = B, (5.17)

where A is a matrix of order 4 × 4 and B, Z are matrices of orders 4 × 1 with the

following entries

a1j =


c44k

3
jp

(j)3

3 + c22k
3
jp

(j)2

1 p
(j)
3 − ρc2

jk
3
jp

(j)
3 − β13ajp

(j)
1 kj, j = 1, 2,

−{c′44k
3
jp

(j)3

3 + c′22k
3
jp

(j)2

1 p
(j)
3 − ρ′c2

jk
3
jp

(j)
3 − β′13ajp

(j)
1 kj}, j = 3, 4,

a2j =


c44k

2
j (p

(j)2

3 − p(j)2

1 ), j = 1, 2,

−c′44k
2
j (p

(j)2

3 − p(j)2

1 ), j = 3, 4,

a3j =


kjp

(j)
3 , j = 1, 2,

−kjp(j)
3 , j = 3, 4,

a4j =


kjp

(j)
1 , j = 1, 2,

−kjp(j)
1 , j = 3, 4,

b11 = −{c44k
3
0p

(0)3

3 + (c11 + c33 − c44 − 2c13)k3
0p

(0)2

1 p
(0)
3 − ρc2

0k
3
0p

(0)
3 − β13a0p

(0)
1 k0},

b21 = −c44k
2
0(p

(0)2

3 − p(0)2

1 ), b31 = −k0p
(0)
3 , b41 = −k0p

(0)
1 .

Eq.(5.17) is solved for Zj =
Aj

A0
due to incident quasi shear wave. The amplitude ratio

Zj for j = 1, 2 represent for the reflected quasi shear waves and for j = 3, 4 represent

for the transmitted quasi shear waves.

5.6 Particular Cases

CASE I: If we neglect the effect of thermal, the problem becomes reflection/transmission

of plane waves at the interface of two dissimilar half-spaces of incompressible trans-

versely isotropic materials. The amplitude ratios of the reflected and transmitted

shear waves, in this case, are given by Eq.(5.17) with the following modified values
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a1j =


c44k

3
jp

(j)3

3 + c22k
3
jp

(j)2

1 p
(j)
3 − ρc2

jk
3
jp

(j)
3 , j = 1, 2,

−{c′44k
3
jp

(j)3

3 + c′22k
3
jp

(j)2

1 p
(j)
3 − ρ′c2

jk
3
jp

(j)
3 }, j = 3, 4,

b11 = −{c44k
3
0p

(0)3

3 + (c11 + c33 − c44 − 2c13)k3
0p

(0)2

1 p
(0)
3 − ρc2

0k
3
0p

(0)
3 }.

CASE II: If the half-space M ′ is neglected, then the problem reduces to reflection

of plane waves in an incompressible transversely isotropic thermoelastic materials.

The amplitude ratios are given by Eq.(5.17) with the modification that A is a matrix

of order 2× 2, B, Z are column matrices with the following entries

a1j = c44k
3
jp

(j)3

3 + c22k
3
jp

(j)2

1 p
(j)
3 − ρc2

jk
3
jp

(j)
3 − β13ajp

(j)
1 kj, a2j = c44k

2
j (p

(j)2

3 − p(j)2

1 ),

b21 = −c44k
2
0(p

(0)2

3 − p(0)2

1 ), b11 = −c44k
3
0p

(0)3

3 − c22k
3
0p

(0)2

1 p
(0)
3 + ρc2

0k
3
0p

(0)
3 + β13a0p

(0)
1 k0.

The amplitude ratios of the reflected waves depend on the angle of propagation,

elastic and thermal parameters of the material.

CASE III: If we neglect the effect of thermal and the half-space M ′, the problem

reduces to reflection of plane waves at the half-space of incompressible transversely

isotropic material. In this case, the amplitude ratios of the reflected waves are given

as in Case II with the following modified values

a1j = c44k
3
jp

(j)3

3 + c22k
3
jp

(j)2

1 p
(j)
3 −ρc2

jk
3
jp

(j)
3 , b11 = ρc2

0k
3
0p

(0)
3 − c44k

3
0p

(0)3

3 − c22k
3
0p

(0)2

1 p
(0)
3 .

5.7 Numerical Results

We have computed the amplitude ratios of reflected and transmitted shear waves

due to incident quasi shear waves. The relevant value of the parameters are given in

Table 5.1(Chadwick and Seet, 1970).

It may be noted that (p
(0)
1 , 0, p

(0)
3 ) = (sin θ0, 0, cos θ0) for incident quasi shear wave,

(p
(1)
1 , 0, p

(1)
3 ) = (sin θ1, 0,− cos θ1), (p

(2)
1 , 0, p

(2)
3 ) = (sin θ2, 0,− cos θ2) for reflected

quasi shear wave and (p
(3)
1 , 0, p

(3)
3 ) = (sin θ3, 0, cos θ3), (p

(4)
1 , 0, p

(4)
3 ) = (sin θ4, 0, cos θ4)

for transmitted quasi shear waves.
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The variation of amplitude ratios with the angle of incidence, θ0 at different val-

ues of (β, β′) are depicted through Figures 5.2–5.5, while Figures 5.6 and 5.7 show

the variation of amplitude ratios at different values of (Ce, C
′
e). The values of the

amplitude ratios |Z1| and |Z3| in Figures 5.2 and 5.4 of the reflected and transmitted

shear waves increases and decreases respectively with the increase of θ0. We have

observed that the effects of (β, β′) on |Z1| and |Z3| have minimum near the normal

and grazing angle of incidence.

Figure 5.2: Variation of |Z1| with angle of incidence for different values of β and β′.

Figure 5.3: Variation of |Z2| with angle of incidence for different values of β and β′.
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Cobalt (M) Value Zinc (M ′) Value Units

ρ 8.836× 103 ρ′ 7.14× 103 kgm−3

c11 3.071× 1011 c′11 1.628× 1011 Nm−2

c12 1.650× 1011 c′12 0.362× 1011 Nm−2

c13 1.027× 1011 c′13 0.508× 1011 Nm−2

c33 3.581× 1011 c′33 0.627× 1011 Nm−2

c44 0.755× 1011 c′44 0.385× 1011 Nm−2

β1 7.04× 106 β′1 5.75× 106 Nm−2degree−1

β3 6.90× 106 β′3 5.17× 106 Nm−2degree−1

Ce 4.27× 102 C ′e 3.9× 102 Jkg−1degree−1

K1 0.690× 102 K ′1 1.24× 102 Wm−1degree−1

K3 0.690× 102 K ′3 1.24× 102 Wm−1degree−1

T0 298 T ′0 296 K

τ0 0.05 τ ′0 0.06

Table 5.1: Value of the elastic and thermal parameters

Figure 5.4: Variation of |Z3| with angle of incidence for different values of β and β′.
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Figures 5.3 and 5.5 shown that the amplitude ratios |Z2| and |Z4| have similar fashion.

They started from certain values which decrease with the increase of θ0 and increase

thereafter to the maximum value followed by decreasing with the increase of θ0. Here

also the minimum effect of (β, β′) on |Z2| and |Z4| is observed near normal and grazing

angle of incidence.

Figure 5.5: Variation of |Z4| with angle of incidence for different values of β and β′.

Figure 5.6: Variation of |Z2| with angle of incidence for different values of Ce and C ′e.
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The effect of specific heats on the amplitude ratios |Z2| and |Z4| in Figures 5.6 and

5.7 have similar pattern. They have minimum effect of (Ce, C
′
e) near θ0 = 140 and

grazing angle of incidence. It is also observed that the values of |Z2| and |Z4| decrease

with the increase of specific heats. We also noticed very few effect of specific heats

on |Z1| and |Z3|. Thus, the amplitude ratios of the reflected and transmitted shear

waves are found to be functions of angle of incidence, elastic and thermal parameters.

Figure 5.7: Variation of |Z4| with angle of incidence for different values of Ce and C ′e.

5.8 Conclusion

The problem of incident quasi shear wave at a plane interface between two dissim-

ilar half-spaces of incompressible transversely isotropic thermoelastic materials has

been investigated. The amplitude ratios of the reflected and transmitted shear waves

are analytically and numerically obtained to analyze the effect of specific heats and

coefficient of linear thermal expansion. We summarize the concluding remarks as

(i) The amplitude ratios of the reflected and transmitted waves are found to be func-

tions of angle of incidence, elastic and thermal parameters of the materials.

(ii) The value of |Z1| and |Z3| increases and decreases respectively with the increase
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of θ0.

(iii) The effect of (β, β′) on the amplitude ratios has minimum near the normal and

grazing angle of incidence.

(iv) The effect of (Ce, C
′
e) on |Z2| and |Z4| has minimum near θ0 = 140 and grazing

angle of incidence.

(v) The values of |Z2| and |Z4| decrease with the increase of (Ce, C
′
e).
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Summary and Conclusions

In the present thesis, we study the propagation of elastic waves in different ther-

moelastic materials. We discuss the reflection and transmission of QL, QT and

thermal waves (T -mode) from a plane interface between two dissimilar thermoelas-

tic half-spaces. The amplitude and energy ratios of of the reflected and transmitted

waves are obtained analytically and numerically. We also discuss the propagation of

surface waves, particularly Rayleigh and Stoneley waves in such thermoelastic ma-

terials. The dispersion relations of Rayleigh and Stoneley waves are derived using

suitable boundary conditions.

The first chapter is the general introduction of the thesis which includes the basic

definitions, elastic waves, thermoelasticity and theories, application of wave propa-

gation and review of literature.

In Chapter 2, the problem of the propagation of surface waves (Stoneley and

Rayleigh waves) in thermoelastic materials with voids has been investigated. The

dispersion relations of the Stoneley waves at the bonded and unbonded interfaces

between two dissimilar half-spaces of thermoelastic materials with voids are derived.

The numerical values of the determinant corresponding to the frequency equation of

the Stoneley wave are calculated numerically for a particular model and they are rep-

resented graphically. We also derived the frequency equation of Rayleigh wave at the

surface free boundary of thermoelastic materials with voids. The velocity curve and
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attenuation of Rayleigh wave in this material have shown that there are two modes

of vibration. These two modes are computed and they are depicted graphically. The

effect of thermal parameters in these surface waves are also discussed.

Third chapter deals with the reflection/transmission of elastic waves at a plane

interface between two dissimilar half-space of initially stressed transversely isotropic

thermoelastic materials. Three quasi coupled longitudinal(QL), transverse(QT ) and

thermal waves are found to propagate in initially stressed transversely isotropic ther-

moelastic materials. We use boundary conditions to obtain the reflection/transmission

coefficients of the reflected/transmitted waves for incident QL and QT -waves. The

distribution of energy for the reflected and transmitted waves are also discussed. Nu-

merical computations have been performed for these coefficients and energy ratios to

analyze the impact of initial stresses. In the case of incident QT -wave, critical angles

are observed for reflected and transmitted QL-waves at θ0 = 300 and 580 respectively.

In Chapter 4, the problem of propagation of Rayleigh wave on the surface of heat

conducting saturated porous materials has been discussed. The dispersion relations of

the Rayleigh type waves are derived at the thermally insulated and isothermal bound-

ary surface. The velocity curves, attenuation and specific loss of the two modes of

Rayleigh waves are obtained for the thermoelastic saturated porous medium. The

effect of porosity and Biot’s parameters on these values are examined numerically for

a particular model. The velocity curves of the Rayleigh type waves depend on the

porosity, elastic, thermal and Biot’s parameter of the material. The phase speed of

Rayleigh type I is just lower than that of transverse waves and the Rayleigh type II

wave is faster than those of body waves.

Chapter 5 discuss the problem of reflection and transmission of elastic waves be-

tween two dissimilar incompresssible transversely isotropic thermoelastic half-spaces.

We have observed that two coupled quasi-shear waves can propagate through such

materials due to the incompressibility condition. The amplitude ratios of the reflected

and transmitted quasi-shear waves are obtained with the help boundary conditions.
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These ratios are computed numerically for a particular model . These ratios are com-

puted numerically and examined the effects of specific heat and thermal expansion.

It has been observed that these ratios are functions of angle of incidence, elastic and

thermal parameters of the material.

Chapter 6 is summary and conclusion.

Finally, list of references is given at the end.
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ABSTRACT

The study of wave propagation in thermoelastic materials is interesting due to

its applications. The theories of thermoelasticity consist of the combined analysis

of the effects of heat conduction as well as elasticity of the materials. The effect of

heat on the deformation of an elastic solid and the inverse effect of deformation on

the thermal state of the solid are considered. The study of wave propagation has

wide applications in the fields of Seismology, geophysics, Earthquake engineering,

tele-communication, medicines (echography), metallurgy and signal processing. It is

useful to detect the notches and faults in railway tracks, buried land-mines, etc. The

technique of wave propagation is also used in the exploration of valuable materials

such as minerals, crystals, hydrocarbons, fluids (oils, water) etc. beneath the earth

surface. The following objectives are taken up in the thesis:

1. Propagation of surface waves in thermoelastic materials with voids.

2. Transmission of elastic waves in initially stressed transversely isotropic ther-

moelastic solids.

3. Rayleigh waves in thermoelastic saturated porous medium.

4. Reflection and transmission of elastic waves at a plane interface between two

dissimilar incompresssible transversely isotropic thermoelastic half spaces.

The first chapter is the general introduction of the thesis which includes the basic

definitions, elastic waves, thermoelasticity and theories, application of wave propa-

gation and review of literature.

In Chapter 2, the problem of the propagation of surface waves (Stoneley and

Rayleigh waves) in thermoelastic materials with voids has been investigated. The

dispersion relations of the Stoneley waves at the bonded and unbonded interfaces

between two dissimilar half-spaces of thermoelastic materials with voids are derived.

The numerical values of the determinant corresponding to the frequency equation of
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the Stoneley wave are calculated numerically for a particular model and they are rep-

resented graphically. We also derive the frequency equation of Rayleigh wave at the

surface free boundary of thermoelastic materials with voids. We have observed that

there are two modes of vibration for the Rayleigh waves and obtained the velocity

curves and attenuation. These two modes are computed and they are depicted graph-

ically. The effect of thermal parameters on these surface waves are also discussed.

Third chapter deals with the reflection/transmission of elastic waves at a plane

interface between two dissimilar half-spaces of initially stressed transversely isotropic

thermoelastic materials. Three quasi coupled longitudinal(QL), transverse(QT ) and

thermal (T -mode) waves are found to propagate in initially stressed transversely

isotropic thermoelastic materials. We use suitable boundary conditions at the in-

terface to obtain the reflection/transmission coefficients of the reflected/transmitted

waves for incident QL and QT -waves. The distribution of energy for the reflected and

transmitted waves are also discussed. Numerical computations have been performed

for these coefficients and energy ratios to analyze the impact of initial stresses. In the

case of incident QT -wave, critical angles are observed for reflected and transmitted

QL-waves at θ0 = 300 and 580 respectively.

In Chapter 4, the problem of propagation of Rayleigh wave on the heat conduct-

ing saturated porous materials has been discussed. The dispersion relations of the

Rayleigh type waves are derived at the thermally insulated and isothermal bound-

ary surface. The velocity curves, attenuation and specific loss of the two modes of

Rayleigh waves are obtained for the thermoelastic saturated porous medium. The

effect of porosity and Biot’s parameters on these values are examined numerically for

a particular model. The velocity curves of the Rayleigh type waves depend on the

porosity, elastic, thermal and Biot’s parameter of the material. The phase speed of

Rayleigh type I is just lower than that of transverse waves and that of the Rayleigh

type II wave is faster than those of body waves.

Chapter 5 discuss the problem of reflection and transmission of elastic waves be-
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tween two dissimilar incompresssible transversely isotropic thermoelastic half-spaces.

We have observed that two coupled quasi-shear waves can propagate through such

materials. The amplitude ratios of the reflected and transmitted quasi-shear waves

are obtained with the help of boundary conditions. These ratios are computed nu-

merically and examined the effects of specific heat and thermal expansion. It has

been observed that these ratios are functions of angle of incidence, elastic and ther-

mal parameters of the material.

Chapter 6 is summary and conclusion.

Finally, list of references is given at the end.
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