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PREFACE

The present thesis entitled “A Study on Certain Almost Contact Man-

ifolds and Invariant Submanifolds” is an outcome of the research carried out

by the author under the supervision of Prof. Jay Prakash Singh, Professor and

Head, Department of Mathematics and Computer Science, Mizoram University,

Aizawl, Mizoram.

This thesis has been divided into seven chapters and each chapter is subdi-

vided into smaller sections. The first chapter is the general introduction which

includes the literature reviews and the basic definitions such as topological man-

ifold, smooth manifold, symmetric manifolds, almost contact metric manifold,

(κ, µ)-contact metric manifold, Sasakian space forms, Kenmotsu manifold, al-

most Kenmotsu manifold, submanifolds, generalized m-quasi-Einstein structure,

Ricci-Yamabe soliton and Lorentzian manifold.

The second chapter is dedicated to the study of (κ, µ)-contact metric mani-

fold and the semiconformal curvature tensor. This chapter is divided into three

sections. In the first section, we introduce two types of generalized ϕ-recurrent

(κ, µ)-contact metric manifolds known as hyper generalized ϕ-recurrent (k, µ)-

contact metric manifolds and quasi generalized ϕ-recurrent (k, µ)-contact metric

manifolds, and investigate their properties. We prove their existence by con-

structing the non-trivial examples. Then in the second section, the geometric

structures of generalized (k, µ)-space forms under certain curvature restrictions

and their quasi-umbilical hypersurface are analyzed. Also, the results obtained

are verified by constructing an example of 3-dimensional generalized (k, µ)-space

form. Finally in the third section, we introduce a type of Riemannian manifold,

namely, an almost pseudo semiconformally symmetric manifold which is denoted

by A(PSCS)n. Several geometric properties of such a manifold are studied under

certain curvature conditions. Some results on Ricci symmetric A(PSCS)n and
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Ricci-recurrent A(PSCS)n are obtained. Next, we consider the decomposability

of A(PSCS)n. Finally, two non-trivial examples of A(PSCS)n are constructed.

In the third chapter, we study the generalized m-quasi-Einstein structure. In

the first section, we analyze the properties of H-contact manifolds and K-contact

manifold admitting the generalized m-quasi-Einstein structure whose potential

vector field satisfies certain conditions. Also, 3-dimensional normal almost con-

tact manifold admitting generalized m-quasi-Einstein metric is considered. In

the second section, we analyze the generalized m-quasi-Einstein structure in the

context of almost Kenmotsu manifolds and gave its classification. Moreover, gen-

eralized m-quasi-Einstein metric (g, f,m, λ) in almost Kenmotsu 3-H-manifold

is considered. Finally, some examples of generalized m-quasi-Einstein structures

are constructed.

In the fourth chapter, we study the properties of almost Ricci-Yamabe soli-

tons (shortly, ARYS). In the first section, ARYS in the context of a complete

contact metric manifold with the Reeb vector field ξ as an eigenvector of the

Ricci operator, K-contact and (κ, µ)-contact manifolds are analyzed. An illus-

trative example is given to support the obtained result. In the second section,

we obtain some isometric results while examining ARYS in the Kenmotsu mani-

fold, (κ, µ)′-almost Kenmotsu manifold and 3-dimensional non-Kenmotsu almost

Kenmotsu manifolds. Finally, a few non-trivial examples of Kenmotsu manifolds

and almost Kenmotsu manifolds admitting ARYS are constructed.

The fifth chapter is divided into two sections. The first section is devoted

to the study of invariant submanifolds of f -Kenmotsu manifolds under certain

conditions on the second and third fundamental forms. We also consider the f -

Kenmotsu space form and give two examples supporting the obtained results. In

the second section, we obtain Chen’s inequalities for the submanifolds of general-

ized Sasakian-space-forms endowed with a quarter-symmetric connection. As an

application of the obtained inequality, we derive first Chen inequality for bi-slant
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submanifold of generalized Sasakian-space-forms.

In Chapter 6, we obtain some results on spacetime. This chapter includes two

sections. In the first section, we study the geometrical aspects of a perfect fluid

spacetime with torse-forming vector field ξ under certain curvature restrictions,

and Ricci-Yamabe soliton and η-Ricci-Yamabe soliton in a perfect fluid spacetime.

We also give a non-trivial example of perfect fluid spacetime admitting η-Ricci-

Yamabe soliton. Then in the second section, we classify the Einstein-type metric

on Kenmotsu, non-Kenmotsu (κ, µ)′-almost Kenmotsu and almost Kenmotsu 3-

H-manifolds. Finally, we construct some non-trivial examples to verify our main

results.

In Chapter 7, we give the summary and the conclusion. The references of the

mention papers have been given with the surname of the authors and the years

of the publication, which are decoded in chronological order in the Bibliography.
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ABSTRACT

In 1828, Gauss formulated an important property of surfaces known as Gaussian cur-

vature in his famous work,“Theorema Egregium”.Then, Riemann extended Gauss’s

theorem to spaces known as manifolds. Later on Einstein used Riemannian geom-

etry and its generalization, Finsler geometry, to formulate general relativity theory.

Riemannian geometry are used in information geometry, probability and statistics,

group theory, representation theory analysis and statistics. Contact geometry has

been matured from the mathematical formalism of classical mechanics. It has broad

applications in geometrical optics, integrable system, thermodynamics and control

theory. In this thesis, we attempt to further understand the properties of Riemannian

manifold and almost contact manifolds along with their submanifolds by considering

the following objectives.

1. To study semiconformal curvature tensor.

2. To study geometrical properties of (κ, µ)-contact metric manifolds.

3. To study the properties of certain Ricci solitons.

4. To characterize the invariant submanifolds of certain almost contact manifolds.

In Chapter 1, we give the definitions of topological manifold, smooth manifold,

Riemannian manifold, almost contact metric manifolds, Kenmotsu manifolds, f -

Kenmotsu manifold, almost Kenmotsu manifolds, space forms, Lorentzian manifolds,

generalized m-quasi-Einstein structure, almost Ricci-Yamabe soliton and Submani-

folds, along with the review of literature.

In the first section of Chapter 2, we introduced and studied hyper generalized

ϕ-recurrent (k, µ)-contact metric manifolds and quasi generalized ϕ-recurrent (k, µ)-

contact metric manifolds. Then in the second section, the geometric structures of

generalized (k, µ)-space forms and their quasi-umbilical hypersurface are analyzed.
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Finally, the third section is devoted to the introduction of almost pseudo semicon-

formally symmetric manifold. Moreover, in each sections, we constructed non-trivial

examples.

In Chapter 3, we considered generalized m-quasi-Einstein metric. In the first sec-

tion, H-contact manifold, K-contact and 3-dimensional normal almost contact man-

ifold admitting generalized m-quasi-Einstein metric are studied. In the second sec-

tion, we showed that a complete Kenmotsu manifold admitting generalized m-quasi-

Einstein metric is isometric to a hyperbolic space H2n+1(−1) or a warped product

M̃ ×γ R. Then, (κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0 admitting generalized

m-quasi-Einstein metric is locally isometric to some warped product spaces. Also,

some examples of warped product manifolds admitting generalized m-quasi-Einstein

metric are given. Finally, almost Kenmotsu 3-H-manifold are also considered.

In Chapter 4, we gave classification of almost Ricci-Yamabe solitons in the context

of almost Kenmotsu manifolds as well as K-contact and (κ, µ)-contact metric mani-

fold. In the first section, we focus on complete contact metric manifold with the Reeb

vector field as an eigenvector of the Ricci operator whose metric admits an almost

Ricci-Yamabe soliton and potential vector field collinear with the Reeb vector field.

Then, complete K-contact manifold and non-Sasakian (k, µ)-contact metric manifold

admitting gradient ARYS are studied. In the second section, ARYS in the context of

almost Kenmotsu manifolds are considered. Non-trivial examples of manifolds whose

metric admits ARYS are also constructed.

In Chapter 5, we derived Chen’s inequalities for submanifolds of generalized

Sasakian-space-forms endowed with a quarter-symmetric connection. Moreover, a

detail study on invariant submanifold of f -Kenmotsu manifold is done.

In Chapter 6, the first section is focused on analyzing the geometrical properties

of perfect fluid spacetime with torse-forming vector field admitting Ricci-Yamabe

soliton and η-Ricci-Yamabe soliton. Then in second section, we classified Einstein-

type metric in Kenmotsu manifold as well as non-Kenmotsu (κ, µ)′-almost Kenmotsu

5



manifolds.Also, almost Kenmotsu 3-H-manifold with Einstein-type metric are stud-

ied.

Chapter 7 is devoted for summary and conclusion.
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Chapter 1

Chapter 1

Introduction

1.1 Topological Manifold

Definition 1.1. Suppose M is a topological space. We say that M is a topolog-

ical manifold of dimension n or a topological n-manifold if it has the following

properties:

1. M is a Hausdorff space: for every pair of distinct points p, q ∈ M , there

are disjoint open subsets U, V ⊆M such that p ∈ U and q ∈ V .

2. M is second-countable: there exists a countable basis for the topology of M .

3. M is locally Euclidean of dimension n.

1.2 Smooth Manifold

Let M be a topological n-manifold. A coordinate chart on M is a pair (U,φ),

where U is an open subset of M and φ : U → Ū is a homeomorphism from U to

an open subset Ū = φ(U) ⊆ Rn. If (U,φ) and (V, ψ) are two charts such that

U ∩ V ̸= ∅, the composite map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is called the

transition map from φ to ψ. Two charts (U,φ) and (V, ψ) are said to be smoothly
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Chapter 1

compatible if either U ∩V = ∅ or the transition map ψ◦φ−1 is a diffeomorphism.

An atlas A is a collection of charts whose domain cover M . If any two charts in

A are smoothly compatible then A is said to be a smooth atlas. A smooth atlas

A on M is maximal if it is not properly contained in any larger smooth atlas.

Definition 1.2. If M is a topological manifold, a smooth structure or differen-

tiable structure (C∞-structure) on M is a maximal smooth atlas A. A smooth

manifold is a pair (M,A), where M is a topological manifold and A is a smooth

structure on M .

1.3 Riemannian Manifold

The Riemannian metric allows us to define geometric concepts such as lengths,

angles and distances on smooth manifolds. Similar to the inner product on vector

space, for manifold, the appropriate structure is a Riemannian metric, which is

essentially a choice of the inner product on each tangent space, varying smoothly

from point to point.

Definition 1.3. Let M be a smooth manifold with or without a boundary. A

Riemannian metric on M is a smooth symmetric covariant 2-tensor field on M

that is positive definite at each point. A Riemannian manifold is a pair (M, g),

where M is a smooth manifold and g is a Riemannian metric on M .

1.4 Connections on Riemannian Manifold

An affine or linear connection on a smooth manifoldM is a R-bilinear mapping

∇ : χ(M)× χ(M) → χ(M),

which satisfies the following properties:

3



Chapter 1

1. ∇fXY = f∇XY,

2. ∇XfY = f∇XY + (Xf)Y,

for any X, Y ∈ χ(M) and smooth function f . On a Riemannian manifold M

of dimension n, the affine connection ∇ is said to be Levi-Civita connection or

Riemannian connection if it satisfies the following:

1. ∇ is symmetric or torsion-free i.e., ∇XY −∇YX = [X, Y ] and

2. ∇ is a metric compatible i.e., (∇Xg)(Y, Z) = 0 for all X, Y, Z ∈ χ(M).

LetMn be an n-dimensional Riemannian manifold with Riemannian metric g.

A linear connection ∇ is known as a quarter-symmetric connection if its torsion

tensor T is given by

T (X, Y ) = ∇XY −∇YX − [X, Y ]

satisfies

T (X, Y ) = Λ(Y )φX − Λ(X)φY,

where Λ is a 1-form and P is a vector field given by Λ(X) = g(X,P ) and φ is

(1, 1)-tensor. Qu andWang (2015) introduced a special type of quarter-symmetric

connection defined as:

∇XY = ∇̂XY + ψ1Λ(Y )X − ψ2g(X, Y )P, (1.1)

where ∇̂ denote the Levi-Civita connection. It is easy to see that the quarter-

symmetric connection ∇ include the semi-symmetric metric connection (ψ1 =

ψ2 = 1) and the semi-symmetric non-metric connection (ψ1 = 1, ψ2 = 0).

4



Chapter 1

1.5 Symmetric Manifolds

Riemannian symmetric spaces have been a primary topic of research in differ-

ential geometry theories. It was Cartan, who first initiated the study of Rieman-

nian symmetric spaces and gave its classification (Cartan, 1926). According to

him, an n-dimensional Riemannian manifold M is said to be locally symmetric

if its curvature tensor R satisfies Rhijk,l = 0, where “,” represent the covariant

differentiation with respect to the metric tensor and Rhijk are the components of

the curvature tensor of the manifold M . The notion of locally symmetric spaces

has been extended by many geometer throughout the year, some of which are

Recurrent (Walker, 1950), locally φ-symmetric (Takahashi, 1977), pseudo sym-

metric (Chaki, 1987) and weakly symmetric (Tamássy and Binh, 1989). Sen and

Chaki (1967) obtained an expression for the covariant derivative of the curvature

tensor while studying conformally flat space of class one with certain curvature

restrictions on the curvature tensor, which is as follows:

Rh
ijk,l = 2λlR

h
ijk + λiR

h
ljk + λjR

h
ilk + λkR

h
ijl + λhRl

ijk , (1.2)

where λi is a non-zero covariant vector. Later, Chaki (1987) introduced a manifold

whose curvature tensor satisfies (1.2) and called it a pseudo symmetric manifold

(PS)n. Extending (PS)n, De and Gazi (2008) introduced almost pseudo sym-

metric manifold (APS)n. A Riemannian manifold (Mn, g), (n > 2) is said to be

an almost pseudo symmetric (De and Gazi, 2008) if its curvature tensor R of type

(0, 4) satisfies the following relation:

(∇ER)(X, Y,W, V ) = [A(E) +B(E)]R(X, Y,W, V ) + A(X)R(E, Y,W, V )

+ A(Y )R(X,E,W, V ) + A(W )R(X, Y,E, V )

+ A(V )R(X, Y,W,X), (1.3)
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Chapter 1

for all X, Y,W, V ∈ χ(M), where A,B are non-zero 1-forms given by

g(E, ρ) = A(E), g(E, σ) = B(E), (1.4)

for all vector field E ∈ χ(M), where χ(M) being the Lie algebra of vector fields

on M . Further extending the notion of (APS)n, Tamássy and Binh (1989) intro-

duced weakly symmetric manifolds.

1.6 Recurrent Manifolds

Walker (1950) introduced the notion of a locally recurrent Riemannian mani-

fold as an extension to locally symmetric spaces. A non flat Riemannian manifold

is said to be locally recurrent (Walker, 1950) if there exists a non-zero 1-form A

such that

(∇XR)(Y, Z)U = A(X)R(Y, Z)U, (1.5)

for all X, Y, Z, U ∈ χ(M). Then, De et al. (2003) studied φ-recurrent Sasakian

manifolds as an extension to locally φ-symmetric manifolds (Takahashi, 1977).

As a weaker version of the locally recurrent Riemannian manifold, Dubey (1979)

introduced the notion of the generalized recurrent manifold. A non-flat Rieman-

nian manifold is said to be a generalized recurrent manifold if its curvature tensor

R satisfies

∇R = A⊗R +B ⊗G, (1.6)

where A and B are non-vanishing 1-forms defined as (1.4) and the tensor G is

defined by

G(X, Y )Z = g(Y, Z)X − g(X,Z)Y, (1.7)

for any X, Y, Z ∈ χ(M). Shaikh et al. (2011) extended this concept to general-

ized φ-recurrent Sasakian manifold. Hui (2017) studied generalized φ-recurrent
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generalized (κ, µ)-contact metric manifold and obtained interesting results. A

non-flat Riemannian manifold is said to be a generalized φ-recurrent manifold if

the curvature tensor R satisfies the condition

φ2((∇WR)(X, Y )Z) = A(W )R(X, Y )Z +B(W )G(X, Y )Z, (1.8)

for any X, Y, Z,W ∈ χ(M).

1.7 Almost Contact Metric Manifolds

A (2n+1)-dimensional smooth manifoldM is called an almost contact metric

manifold if it admits a (1, 1)-tensor field φ, a unit vector field ξ (called the Reeb

vector field) and a 1-form η such that

φ2 = −I + η ⊗ ξ, η(ξ) = 1, η · φ = 0, (1.9)

this is equivalent to a reduction of the structural group of the tangent bundle

to U(n) × 1 (see (Sasaki, 1960; Sasaki and Hatakeyama, 1961)). A Riemannian

metric g is said to be an associated (or compatible) metric if it satisfies

g(φX,φY ) = g(X, Y )− η(X)η(Y ), (1.10)

for all X, Y ∈ χ(M). An almost contact manifold M2n+1(φ, ξ, η) together with a

compatible metric g is known as an almost contact metric manifold (Blair et al.,

1995; Blair, 1976, 2010). Chinea and Gonzalez (1990) obtained a complete clas-

sification for almost contact metric manifolds through the study of the covariant

derivative of the fundamental 2-form. The fundamental 2-form Φ of an almost

contact metric manifold (M,φ, ξ, η, g) is defined by

Φ(X, Y ) = g(X,φY ),
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for all X, Y ∈ χ(M), and this form satisfies η ∧ Φn ̸= 0. This means that every

almost contact metric manifold is orientable. Moreover, an almost contact metric

manifold is said to contact metric manifold if dη = Φ. The following formulas

hold on a contact metric manifold (Blair, 2010)

∇Xξ = −φX − φhX, (1.11)

Further we define two self-adjoint operators h and ℓ by h = 1
2
(Lξφ), where

Lξφ denotes the Lie-derivative of φ along ξ and ℓ = R(·, ξ)ξ respectively, where

R is the Riemannian curvature of M . These operators satisfy

hξ = ℓξ = 0, hφ+ φh = 0, T r.h = Tr.hφ = 0. (1.12)

Tr.ℓ = S(ξ, ξ) = 2n− ||h||2. (1.13)

Here, “Tr.” denotes trace. When a unit vector ξ is Killing (i.e. h = 0 or Tr.ℓ =

2n) then the contact metric manifold is called K-contact. On the K-contact

manifold, we have

R(X, ξ)ξ = X − η(X)ξ, (1.14)

An almost contact structure (φ, η, ξ) and almost contact manifold M is said to

be normal if the almost complex structure on M × R defined by J(X, fd/dt) =

(φX − fξ, η(X)d/dt), where f is a real function on M × R and t a coordinate

on R, is integrable (Blair, 1976, 2010). The necessary and sufficient condition for

the almost contact structure (φ, η, ξ) to be normal is

[φ, φ] + 2dη ⊗ ξ = 0,

where the pair [φ, φ] is the Nijenhuis tensor of φ defined by

[φ, φ](X, Y ) = [φX,φY ] + φ2[X, Y ]− φ[φX, Y ]− φ[X,φY ],
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for all X, Y ∈ χ(M). A normal almost contact metric manifold is a Sasakian

manifold. It was shown that an almost contact metric manifold is Sasakian if

and only if

(∇Xφ)Y = g(X, Y )ξ − η(Y )X, (1.15)

for any X, Y ∈ χ(M). A Sasakian manifold is K-contact but the converse is true

only in dimension 3. Olszak (1986) showed that a 3-dimensional almost contact

metric manifold M is normal if and only if ∇ξ · φ = φ · ∇ξ, or, equivalently,

∇Xξ = −αφX + β(X − η(X)ξ), (1.16)

where 2α = divξ and 2β = Tr.(φ∇ξ), divξ is the divergence of ξ defined by

divξ = Tr.{X → ∇Xξ} and Tr.(φ∇ξ) = Tr.{X → φ∇Xξ}. On a 3-dimensional

normal almost contact metric manifold the following relations hold (Olszak, 1986)

S(X, ξ) = −Xα− (φX)β − {ξα + 2(α2 − β2}η(X), (1.17)

ξα + 2αβ = 0. (1.18)

for any X ∈ χ(M).

1.8 Generalized Sasakian space forms

A plane section π in the tangent bundle TpM at a point p of a Riemannian

manifold is called a φ-section if it is spanned by X and φX, where X is a unit

tangent vector orthogonal to ξ. The sectional curvature of a φ-section is called a

φ-sectional curvature. A Sasakian manifold with constant φ-sectonal curvature

c is said to be a Sasakian space form and is denoted by M(c) (Blair, 1976).

Some examples of Sasakian space forms are R2n+1 and S2n+1, with the standard

Sasakian structures (Blair, 1976). Alegre et al. (2004) introduced generalized

Sasakian space forms as almost contact metric manifolds M whose curvature
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tensor R can be written as

R(X, Y )Z = f1{g(Y, Z)X − g(X,Z)Y }

+ f2{g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ}

+ f3{η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ},

(1.19)

for any vector fields X, Y, Z on M , where f1, f2 and f3 are functions on M .

Sasakian-space-forms appear as natural examples of generalized Sasakian-space-

forms, with constant functions f1 = c+1
4
, f2 = f3 = c−1

4
. Many authors have

studied generalized Sasakian-space-forms in different context such as Alegre and

Carriazo (2008), Carriazo et al. (2020), Rehman (2015) and Sarkar et al. (2015).

1.9 (κ, µ)-contact metric Manifold

The (κ, µ)-nullity distribution of almost contact metric manifold M(φ, ξ, η, g)

is a distribution (Blair et al., 1995):

N(κ, µ) : p→ Np(κ, µ) = {Z ∈ χ(M) : R(X, Y )Z = κ{g(Y, Z)X

−g(X,Z)Y }+ µ{g(Y, Z)hX − g(X,Z)hY }},

for any X, Y, Z ∈ χ(M) and real numbers κ and µ. If µ = 0, the (κ, µ)-nullity dis-

tribution N(κ, µ) is called the κ-nullity distribution N(κ) (Koufogiorgos, 1993).

An almost contact metric manifold M with ξ ∈ N(κ, µ) is called a (κ, µ)-contact

metric manifold. A (κ, µ)-contact metric manifold becomes Sasakian manifold

for κ = 1 and µ = 0. In a (k, µ)-contact metric manifold the following relations
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hold (Blair et al., 1995; Papantoniou, 1993)

h2 = (k − 1)φ2, k ≤ 1, (1.20)

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (1.21)

S(X, Y ) = [2(n− 1)− nµ]g(X, Y ) + [2(n− 1) + µ]g(hX, Y )

+[2(1− n) + n(2k + µ)]η(X)η(Y ), (1.22)

for any vector fields X, Y ∈ χ(M).

1.10 Curvatures on Riemannian Manifold

A conformal transformation is an angle preserving map. If g and ḡ are two

metrics of an n-dimensional Riemannian manifold M such that

ḡ(X, Y ) = e2σg(X, Y ),

for all vector fields X, Y on M and σ is a scalar function, then the angle between

two tangent vectors at a point p ∈M does not change with respect to the change

of metrics. Under such case M and M̄ are conformally related and the cor-

responding between them is known as conformal transformation (Obata, 1970).

One of the most important curvature tensors for analyzing the intrinsic properties

of the Riemannian manifold is the Weyl conformal curvature tensor introduced

by Yano and Kon (1984). This curvature is invariant under conformal trans-

formation. The conformal curvature C of type (1,3) on a (2n + 1)-dimensional

Riemannian manifold (M, g), n > 1, is defined by

C(X, Y )Z = R(X, Y )Z − 1

2n− 1

[
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

−g(X,Z)QY
]
+

r

2n(2n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
, (1.23)
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where r is the scalar curvature of M , Q is the Ricci operator and S the Ricci

tensor.

It is known that a harmonic function is defined as a function whose Laplacian

vanishes. In conformal transformation, harmonic functions are not invariant,

in general. To tackle this, Ishi (1957) obtained the condition under which a

harmonic function becomes invariant by introducing conharmonic transformation

as a subgroup of conformal transformation (1.23) satisfying

σi,i + σ,iσ
i
, = 0.

The tensor H which remains invariant under conharmonic transformation is

known as conharmonic curvature tensor. For a Riemannian manifold M of

dimension-(2n+ 1), the conharmonic curvature tensor is given by

H(X, Y )Z = R(X, Y )Z − 1

(2n− 1)

[
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY
]
, (1.24)

for all vector fields X, Y, Z on M .

According to Kim (2016), the semiconformal curvature tensor P̃ of type (1, 3)

on a Riemannian manifold (Mn, g) is defined as follows:

P̃ (X, Y )W = −(n− 2)bC(X, Y )W + [a+ (n− 2)b]H(X, Y )W, (1.25)

where a, b are constants not simultaneously zero, C(X, Y )W denotes the con-

formal curvature tensor of type (1, 3), and H(X, Y )W denotes the conharmonic

curvature tensor of type (1, 3).

Mantica and Suh (2013) introduced and studied Q̃ curvature tensor. In a

(2n + 1)-dimensional Riemannian manifold (M, g), the Q̃ curvature tensor is

given by

Q̃(X, Y )Z = R(X, Y )Z − v

2n

[
g(Y, Z)X − g(X,Z)Y

]
, (1.26)
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for any X, Y, Z ∈ χ(M) and v is an arbitrary scalar function on M . If v = r
2n+1

,

then Q̃ curvature tensor reduces to concircular curvature tensor (Yano, 1910).

1.11 Kenmotsu Manifold

To study the manifolds of negative curvature Bishop and O’Neill (1969) intro-

duced the warped product as a generalization of the Riemannian product. Tanno

(1969) gave a classification of connected (2n + 1)-dimensional almost contact

metric manifold M based on its automorphism groups possessing the maximum

dimension (n+1)2. For such a manifold, the sectional curvature of plane sections

containing ξ is a constant, k(say). Then there are three classes.

i) k > 0, M is a homogeneous Sasakian manifold of constant holomorphic sec-

tional curvature.

ii) k = 0, M is the global Riemannian product of a line or a circle with a Kähler

manifold of constant holomorphic sectional curvature.

iii) k < 0, M is warped product space R×f Cn.

Kenmotsu (1972) studied the third case and obtained its geometric properties.

The structure so obtained is now known as the Kenmotsu structure and the

manifold with a Kenmotsu structure is called the Kenmotsu manifold (Janssens

and Vanhecke, 1981). In general, a Kenmotsu manifold is not Sasakian. A

Kenmotsu manifold can be defined as a normal almost contact metric manifold

such that dη = 0 and dΦ = 2η ∧ Φ. Kenmotsu proved that such a manifold is

locally a warped product I×f N
2n, where I is an open interval with coordinate t,

f = cet is the warping function for some positive constant c andN2n is a Kählerian

manifold (Kenmotsu, 1972). It is well known that a Kenmotsu manifolds can be
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characterized, through their Levi-Civita connection ∇ satisfying the following:

∇Xξ = X − η(X)ξ, (1.27)

(∇Xφ)Y = −η(Y )φX − g(X,φY )ξ, (1.28)

for any X, Y ∈ χ(M). On a Kenmotsu manifold M the following holds (Ken-

motsu, 1972):

R(X, Y )ξ = η(X)Y − η(Y )X, (1.29)

Qξ = −2nξ, (1.30)

for any vector fields X, Y on M .

1.12 Almost Kenmotsu Manifolds

Kim and Pak (2005) and Olszak (1989) studied almost contact metric man-

ifolds such that η is closed and dΦ = 2η ∧ Φ and called it as almost Kenmotsu

manifold. A normal almost Kenmotsu manifold is a Kenmotsu manifold. In

almost Kenmotsu manifold M , we have

∇Xξ = −φ2X − φhX, (1.31)

for any vector field X on M . Dileo and Pastore (2009) studied almost Ken-

motsu manifolds satisfying (κ, µ)-nullity distribution and (κ, µ)′-nullity distribu-

tion. Later, Pastore and Saltarelli (2011) extended it to generalized nullity distri-

bution. An almost Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be a general-

ized (κ, µ)-almost Kenmotsu manifold if ξ belongs to the generalized (κ, µ)-nullity

distribution, i.e.,

R(X, Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (1.32)
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for all vector fields X, Y onM , where κ, µ are smooth functions onM . An almost

Kenmotsu manifold M2n+1(φ, ξ, η, g) is said to be a generalized (κ, µ)′-almost

Kenmotsu manifold if ξ belongs to the generalized (κ, µ)′-nullity distribution,

i.e.,

R(X, Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ], (1.33)

for all vector fields X, Y on M , where κ, µ are smooth functions on M . Moreover

if both κ and µ are constants in (1.33), thenM is called a (κ, µ)′-almost Kenmotsu

manifold (Pastore and Saltarelli, 2011; Wang and Liu, 2016a; Dileo and Pastore,

2009). On generalized (κ, µ) or (κ, µ)′-almost Kenmotsu manifold with h ̸= 0

(equivalently, h′ ̸= 0), the following relations hold (Dileo and Pastore, 2009):

h′2 = (κ+ 1)φ2, h2 = (κ+ 1)φ2, (1.34)

Qξ = 2nκξ. (1.35)

1.13 f-Kenmotsu Manifold

If the fundamental 2-form Φ and the 1-form η are closed, then M is said

to be an almost cosympletic manifold (Goldberg and Yano, 1969). A normal

almost cosympletic manifold is cosympletic (Blair, 2010). Equivalently, an almost

contact metric structure is cosympletic if and only if ∇φ = 0. On almost contact

metric structure, the conformal transformation is defined by

φ∗ = φ, ξ∗ = e−ρξ, η∗ = eρη, g∗ = e2ρg̃,

where ρ is a differentiable function. M is said to be a locally conformal almost

cosympletic manifold (Olszak, 1989) if every point of M has a neighbourhood

U such that (U , φ∗, ξ∗, η∗, g∗) is almost cosympletic for some function ρ on U . A

normal locally conformal almost cosympletic manifold (Olszak and Rosca, 1991) is
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called the f -Kenmotsu manifold. Equivalently, an almost contact metric manifold

is called the f -Kenmotsu manifold (Mangione, 2008) if it satisfies

(∇Xφ)(Y ) = f(g(φX, Y )ξ − η(Y )φX), (1.36)

where f ∈ C∞(M) is strictly positive and df ∧ η = 0 holds. In particular, if

f = constant ≡ α > 0, then M is called α-Kenmotsu manifold, if f = 1 then M

is the Kenmotsu manifold (Kenmotsu, 1972) and when f = 0 then M becomes

cosympletic manifold. An f -Kenmotsu manifold is called regular if f 2 + ξf ̸= 0.

The following relations holds in an f -Kenmotsu manifold (Kim et al., 2002;

Olszak and Rosca, 1991):

∇Xξ = −fφ2X, (1.37)

R(X, Y )ξ = f 2(η(X)Y − η(Y )X) + Y (f)φ2X −X(f)φ2Y, (1.38)

Qξ = −2nf 2ξ − ξ(f)ξ − (2n− 1)gradf, (1.39)

for all vector fields X, Y on M .

An f -Kenmotsu manifold M of dimension ≥ 5 is of pointwise constant φ-

sectional curvature c if and only if its curvature tensor R is of the form (Olszak,

1989)

R(X, Y )Z =
c− 3f 2

4
(g(Y, Z)X − g(X,Z)Y )

+
c+ f 2

4
(2g(X,φY )φZ + g(X,φZ)φY − g(Y, φZ)φX)

+ (
c+ f 2

4
+ ξf)(η(X)η(Z)Y − η(Y )η(Z)X

+ g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ), (1.40)

for all X, Y, Z ∈ χ(M). An f -Kenmotsu manifold with pointwise constant φ-

sectional curvature c is called f -Kenmotsu space form M(c).
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1.14 Some Vector Fields

A vector field V is said to be harmonic vector field if it is a critical point of

the energy functional E defined by

E(V ) =
1

2

∫
||dV ||2dM =

n

2
vol(M, g) +

1

2

∫

M

||∇V ||2dM

on the space χ1 of all unit vector fields on M . A contact metric manifold whose

Reeb vector field is harmonic is called an H-contact manifold. Perrone (2004)

proved that a contact metric manifold is an H-contact manifold, that is ξ is a

harmonic vector field, if and only if ξ is an eigenvector of the Ricci operator.

This implies Qξ = (Tr.l)ξ. This is valid for K-contact manifolds, (k, µ)-contact

manifolds and unit sphere S2n+1 with standard contact metric structure.

A vector field V on a contact metric manifold M is said to be contact if there

exists a smooth function ϱ :M → R satisfying

(LV η)(Y ) = ϱη(Y ), (1.41)

for all Y ∈ χ(M) and if ϱ = 0, then the vector field V is called strict.

A smooth vector field X on a Riemannian manifold is said to be a conformal

vector field if there exists a smooth function ψ on M that satisfies

LXg = 2ψg.

We say that X is non-trivial if X is not Killing, that is, ψ ̸= 0.

A vector field ξ is called torse-forming (Blaga, 2018) if it satisfies

∇Xξ = X + η(X)ξ, (1.42)

for any X ∈ χ(M) and 1-form η.
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1.15 Ricci-Yamabe Soliton

The theory of geometric flows plays a significant role in understanding the ge-

ometric structure in Riemannian geometry. Ricci flow is a well-known geometric

flow introduced by Hamilton (1998), who used it to prove a three-dimensional

sphere theorem (Hamilton, 1982). The Ricci flow plays a crucial role in forming

proof of Thurston’s conjecture, including as a special case, the Poincare conjec-

ture. The Ricci soliton on a Riemannian manifold (M, g) are the self-similar

solutions to Ricci flow and is defined by

1

2
LV g + S = λg, (1.43)

where LV g denotes the Lie-derivative of g along potential vector field V , S is

the Ricci curvature of M2n+1 and λ, a real constant. When the vector field V

is the gradient of a smooth function f on M2n+1, that is, V = ∇f , then we say

that Ricci soliton is a gradient (For details see (Cao, 2009; Petersen and Wylie,

2009)). According to Petersen (2009), a gradient Ricci soliton is rigid if it is a

flat N ×Γ Rk, where N is Einstein and gave certain classification. The notion

of almost Ricci soliton was introduced by Pigola et al. (2011) by taking λ as a

smooth function in the definition of Ricci soliton (1.43).

To tackle the Yamabe problem on manifolds of positive conformal Yamabe

invariant, Hamilton (1998) introduced the geometric flow known as Yamabe flow.

The Yamabe soliton is a self-similar solution to the Yamabe flow. On a Rieman-

nian manifold (M, g), a Yamabe soliton is given by

1

2
LV g = (r − λ)g, (1.44)

where r is the scalar curvature of the manifold and λ, a real constant. The

Yamabe soliton preserves the conformal class of the metric but the Ricci soliton
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does not in general. However, in dimension n = 2, both the solitons are similar.

If λ is a smooth function in (1.44), then it is called almost Yamabe soliton.

Guler and Crasmareanu (2019) introduced a new type of geometric flow which

is a scalar combination of Ricci flow and Yamabe flow under the name Ricci-

Yamabe map and define the following:

Definition 1.4. (Guler and Crasmareanu, 2019) The map RY (α,β,g) : I →

T s2 (M) given by:

RY (α,β,g) =
∂g

∂t
(t) + 2αS(t) + βr(t)g(t),

is called the (α, β)-Ricci-Yamabe map of the Riemannian flow (M, g). If

RY (α,β,g) ≡ 0,

then g(.) will be called an (α, β)-Ricci-Yamabe flow.

The Ricci-Yamabe flow can be Riemannian or semi-Riemannian or singular

Riemannian flow due to the involvement of scalars α and β. These kind of

different choices can be useful in some physical models such as relativity theory.

The Ricci-Yamabe soliton emerges as the limit of the solution of Ricci-Yamabe

flow.

Definition 1.5. A Riemannian manifold (Mn, g), n > 2 is said to admit almost

Ricci-Yamabe soliton (g, V, λ, α, β) if there exist smooth function λ such that

LV g + 2αS = (2λ− βr)g, (1.45)

where α, β ∈ R.

Almost Ricci-Yamabe soliton is of particular interest as it generalizes a large

group of well-known solitons such as:

1. Ricci almost soliton (α = 1, β = 0).
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2. almost Yamabe soliton (α = 0, β = 1).

3. Ricci-Bourguignon almost soliton (α = 1, β = −2ρ).

Also, if λ is constant, then it includes Ricci soliton, Yamabe soliton and Ricci-

Bourguignon soliton among others.

If V is a gradient of some smooth function f on M , then the above notion is

called gradient almost Ricci-Yamabe soliton and then (1.45) reduces to

∇2f + αS = (λ− 1

2
βr)g, (1.46)

where ∇2f is the Hessian of f .

The almost Ricci-Yamabe soliton (ARYS) is said to be expending, shrinking

or steady if λ < 0, λ > 0 or λ = 0 respectively. In particular, if λ is constant,

then almost Ricci-Yamabe soliton reduces to Ricci-Yamabe soliton.

Extending the notion of Ricci soliton, Cho and Kimura (2009) introduced the

η-Ricci soliton which is obtained by perturbing the equation (1.43) by a multiple

of a certain (0, 2)-tensor field η ⊗ η. A more general extension is obtained by

Siddiqi and Akyol (2004) and called such soliton as η-Ricci-Yamabe soliton of

type (α, β) which is defined as:

LV g + 2αS + (2µ− βr) + 2ωη ⊗ η = 0. (1.47)

1.16 m-quasi-Einstein Structure

The study of Einstein manifolds and their several generalizations have received

a lot of attention in recent years. Extending the notion of the m-Bakry-Emery

Ricci tensor, Case (2010) introduced an interesting generalization of gradient

Ricci soliton and Einstein manifold. The m-Bakry-Emery Ricci tensor is defined
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as follows

Smf = S +∇2f − 1

m
df ⊗ df,

where the integer m satisfies 0 < m ≤ ∞, ∇2f denotes the Hessian form of the

smooth function f . The m-Bakery-Emery Ricci tensor arises from the warped

product (M ×N, ḡ) of two Riemannian manifolds (Mn, g) and (Nm, h) with the

Riemannian metric ḡ = g + e−
2f
m h. We called a quadruple (g, f,m, λ) on a Rie-

mannian manifold (M, g), m-quasi-Einstein structure if it satisfies the equation

S +∇2f − 1

m
df ⊗ df = λg, (1.48)

for some λ ∈ R. Notice that for m = ∞, Eq. (1.48) gives gradient Ricci soliton

and for constant f , it becomes Einstein. Them-quasi-Einstein structure has been

deeply studied by Case (2010), Case et al. (2010) and Ghosh (2020a).

Later on Barros-Ribeiro Jr. (2012a) and Limoncu (2010) generalized and

studied equation (1.48) independently, by considering a 1-form V ♭ instead of df ,

which satisfies

S +
1

2
LV g −

1

m
V ♭ ⊗ V ♭ = λg, (1.49)

where V ♭ is the 1-form associated with the potential vector field V . In particular,

if the 1-form V ♭ is closed, we called (1.49), a closed m-quasi-Einstein structure.

When V ≡ 0, the m-quasi-Einstein structure is said to be trivial, and in this case,

the metric becomes an Einstein metric.

Extending the notion of quasi-Einstein structure, Catino (2012) introduced

and studied the concept of the generalized quasi-Einstein manifold. A particular

case of this was proposed by Barros-Ribeiro Jr. (2014) which is defined as follows:

A Riemannian manifold (Mn, g) is said to be generalized m-quasi-Einstein
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(g, f,m, λ) if there exists function λ :Mn → R such that

S +∇2f − 1

m
df ⊗ df = λg. (1.50)

Notice that for m = ∞, (1.50) reduces to gradient Ricci almost soliton. Also

when df is replaced by V ♭, then we called (1.50), generalized m-quasi-Einstein

(g, V,m, λ) structure. Moreover, if V ≡ 0 then it is said to be trivial.

1.17 Submanifold

LetM andN be smooth manifolds, where dim(M) ≤ dim(N), let F :M → N

be a smooth map, and let p be a point in M . We say that F is an immersion at

p if the differential map dp(F ) : Tp(M) → TF (p)(N) is injective, and that F is an

immersion if it is an immersion at every p in M .

Definition 1.6. Suppose (N, g̃) is a Riemannian manifold of dimension m, M

is a manifold of dimension n and ι :M → N is an immersion. If M is given the

induced Riemannian metric g := ι∗g̃, then ι is said to be an isometric immersion.

If in addition ι is injective, so that M is an immersed submanifold of N , then M

is said to be a Riemannian submanifold of N .

The geometry of submanifolds in recent decades has become a topic of grow-

ing interest for its significant applications in applied mathematics and theoretical

physics. The notion of invariant submanifolds can be used to discuss the prop-

erties of a non-linear autonomous system. In general, the invariant submanifolds

inherit almost all the geometric properties of the ambient manifold. Another im-

portant type of submanifold is a totally geodesic submanifold. The significance of

this submanifold is that the geodesics of the ambient manifolds remain geodesics

in the submanifolds. Moreover, the notion of geodesics plays an important role

in the theory of relativity.
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Let M be an immersed submanifold of Riemannian manifold M̃ with induced

metric g. By Γ(TM) and Γ(T⊥M), we denote the tangent and normal subspaces

of M in M̃ . Also let ∇ and ∇⊥ denotes the induced connection on the tangent

bundle TM and the normal bundle T⊥M ofM respectively. Then the Gauss and

Weingarten formulae are given by

∇̃XY = ∇XY + σ(X, Y ), (1.51)

and

∇̃XV = −AVX +∇⊥
XV, (1.52)

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where σ and A are called the second

fundamental form and shape operator of M respectively. They are related by

g(AVX, Y ) = g(σ(X, Y ), V ). (1.53)

The mean curvature vector H of Mn is defined to be

H =
1

n
Tr(σ),

where Tr denotes the trace. A submanifoldM in a Riemannian manifold is called

minimal if its mean curvature vector vanishes identically. The submanifold M is

called totally geodesic if σ(X, Y ) = 0 for any X, Y ∈ Γ(TM).

The covariant derivative of the second fundamental form σ is defined by

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ), (1.54)

for all X, Y, Z ∈ Γ(TM), where ∇̃ is called the Vander-Waerden-Bortolotti con-

nection on M . Then ∇̃σ is a normal bundle valued tensor of type (0,3) and is

called the third fundamental form ofM . Whenever ∇̃σ = 0, thenM is said to be

have parallel second fundamental form. The Gauss equation for the Riemannian
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curvature R of the submanifold M is given by

R̃(X, Y )Z = R(X, Y )Z + Aσ(X,Z)Y − Aσ(Y,Z)X, (1.55)

for any X, Y, Z ∈ Γ(TM).

In submanifold theory, obtaining the relationships between the intrinsic in-

variant and extrinsic invariant has been the primary goal of many geometers in

recent decades. Chen invariants were introduced by Chen (1993) to tackle the

question raised by Chern’s concerning the existence of minimal immersions into

a Euclidean space of arbitrary dimension (Chern, 1968).

Suppose L is an r-dimensional subspace of TxM , x ∈M , r ≥ 2 and {e1, ..., er}

an orthonormal basis of L. The scalar curvature τ of the r-plane section L is given

by

τ(L) =
∑

1≤i<j≤r
Kij, (1.56)

where Kij is the sectional curvature of the plane section spanned by ei and ej at

x ∈M . Let Π ⊂ TxM be a 2-plane section and K(Π) be the sectional curvature

of M for a plane section Π in TxM,x ∈M . Then

K(Π) =
1

2
[R(e1, e2, e2, e1)−R(e1, e2, e1, e2)]. (1.57)

The scalar curvature τ(x) of M at the point x is given by

τ(x) =
∑

i<j

Kij, (1.58)

where {e1, ..., em} is an orthonormal basis for TxM .

Chen’s δ-invariant δM of a Riemannian manifold M introduced by Chen is

δM(x) = τ(x)− inf{K(Π)|Π is a plane section ⊂ TxM}, (1.59)

where τ is the scalar curvature of M .
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1.18 Lorentzian Manifold

An n-dimensional pseudo-Riemannian (or sometimes called semi-Riemannian)

manifold is a pair (M, g), where M is an n-dimensional smooth manifold and g is

a symmetric, nondegenerate 2-tensor field on M (called the metric). A pseudo-

Riemannian manifold is said to be Riemannian if g has a signature (+,+, ...,+),

and is said to be Lorentzian if g has a signature (−,+, ...,+) or (+,−, ...,−).

1.19 Review of Literature

Koufogiorgos (1997) introduced and studied (κ, µ) space forms. The (κ, µ)-

space forms are studied by Akbar and Sarkar (2015), De and Samui (2016) and

Shashidhar and Nagaraja (2015). Carriazo et al. (2011) introduced the general-

ized (κ, µ) space form which generalizes the notion of (κ, µ)-space forms. Carriazo

and Molina (2011) studied Dα-homothetic deformations of generalized (κ, µ)-

space forms and found that deformed spaces are again generalized (κ, µ)-space

forms in dimension 3, but not in general. Carriazo et al. (2013) studied gen-

eralized (κ, µ)-space forms in contact metric and Trans-Sasakian manifolds. In

recent years, many geometers studied generalized (κ, µ)-space forms under sev-

eral conditions (Shivaprasanna et al., 2014; Faghfouri and Ghaffarzadeh, 2015;

Shivaprasanna, 2016; Hui et al., 2018; Kumar and Nagaraja, 2019; Shammukha

and Venkatesha, 2019 ). De and Majhi (2019) studied Q curvature tensor in a

generalized Sasakian space form.

A Ricci soliton is a self similar solution to the Ricci flow (Hamilton, 1982).

Some applications of Ricci flow are Ricci flow gravity (Graf, 2007), nonlinear

reaction-diffusion systems in biology, chemistry and physics (Ivancevic and Ivance-

vic, 2011), brain surface conformal parametrization with the Ricci flow ( Wang

et al., 2012) and in the economy (Sandhu et al., 2016). Cao (2006, 2009) and
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Petersen and Wylie (2009) introduced and studied gradient Ricci soliton. Cao

and Zhou (2010) studied complete shrinking Ricci solitons, Munteanu and Wang

(2017) showed that positively curved shrinking Ricci solitons are compact and

Wylie (2008) showed that a complete shrinking Ricci solitons have finite funda-

mental group. Deshmukh et al. (2020) gave a characterization of trivial Ricci

solitons. A Ricci solitons with Jacobi-type vector fields were studied by Desh-

mukh (2012). Cho and Sharma (2010) initiated the study of Ricci solitons in

contact geometry. The notion of almost Ricci soliton was introduced by Pigola

et al. (2011). Barros et al. (2021) studied the rigidity of the gradient almost

Ricci solitons and showed that it is isometric to the Euclidean space Rn or sphere

Sn. Cao et al. (2011), Barros et al. (2013) and Yang and Zhang (2017) obtained

several rigidity results.

Chu and Wang (2013) gave scalar curvature estimates for gradient Yamabe

solitons. Then, Wang (2016) and Suh and De (2020) studied Yamabe solitons.

Shaikh et al. (2021) gave some characterizations of gradient Yamabe solitons.

Chaubey et al. (2022) gave complete classification of Yamabe solitons on real hy-

persurfaces in the complex quadric Qm = SOm+1/SO2SOm. Extending Yamabe

solitons, Barbosa and Ribeiro (2013) introduced almost Yamabe solitons. Seko

and Maeta (2019) gave classification of almost Yamabe solitons in Euclidean

spaces. Alkhaldi et al. (2021) gave a characterization of almost Yamabe soliton

with conformal vector field.

After Guler and Crasmareanu (2019) introduction of Ricci-Yamabe soliton

many geometers such as De et al. (2022), Dey (2020) and Sardar and Sarkar

(2022) analyzed Ricci-Yamabe solitons. Siddiqi and De (2022) and Singh and

Khatri (2021) studied Ricci-Yamabe soliton in different spacetimes. Siddiqi et al.

(2022) consider almost Ricci-Yamabe soliton on static spacetimes.

Barros and Gomes (2017) obtained some triviality of compactm-quasi-Einstein

manifolds.Case et al. (2011) studied the properties of quasi-Einstein metrics
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and proved several rigidity results. Ghosh (2015a, 2019a) studied contact met-

ric manifolds with quasi-Einstein structures (1.48) and (1.49). Recently, Chen

(2020) studied quasi-Einstein structure in almost cosympletic manifolds and De

et al. (2021) studied quasi-Einstein metric (g, f,m, λ) in the context of three-

dimensional cosympletic manifolds. Hu et al. (2015, 2017) studied generalized

m-quasi-Einstein metric with restriction on Ricci curvature and scalar curvature.

Barros and Ribeiro (2014) obtained characterizations and integral formulae for

generalized m-quasi-Einstein metrics. Ghosh (2015b) considered generalized m-

quasi-Einstein metric in Sasakian and K-contact manifolds and showed that it is

isometric to the unit sphere S2n+1. Barros and Gomes (2013) proved that a com-

pact gradient generalized m-quasi-Einstein metric with constant scalar curvature

must be isometric to a standard Euclidean sphere Sn with the potential function

well determined.

The study of the geometry of invariant submanifolds of almost contact mani-

folds were initiated by Yano and Ishihara (1969). Later on many geometers stud-

ied invariant submanifolds of certain classes of almost contact manifolds such as

Anitha and Bagewadi (2003), Endo (1986), Kon (1973), De and Majhi (2015b),

Shaikh et al. (2016) and Atceken (2021). Chen (1993) obtained an inequality for

a Riemannian submanifold Mm of a real space form M̃ with constant sectional

curvature c as

δM ≤ m2(m− 2)

2(m− 1)
∥ H ∥2 +1

2
(m+ 1)(m− 2)c, (1.60)

where H is the mean curvature of the submanifold Mm. Eq. (1.60) is known as

first Chen inequality.

Then Chen (1996) gave the inequality for Riemannian submanifold Mm of

complex-space-form M̃n(4c) as follows:

δM ≤ m2(m− 2)

2(m− 1)
∥ H ∥2 +1

2
(m+ 1)(m− 2)c+

3

2
∥ P ∥2 c− 3Θ(π)c. (1.61)
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Afterward, many authors obtained Chen’s inequalities for different submanifolds

in various ambient spaces, like the Sasakian space form (Cioroboin, 2003), gen-

eralized space forms (Mihai, 2004; Alegre et al. 2007), Kenmotsu space form

(Kumar et al., 2010), Riemannian manifold of quasi-constant curvature (Özgür,

2011), Cosympletic space form (Gupta, 2013), quaternionic space forms (Vilcu,

2013), Statistical manifolds (Aytimur et al., 2019; Decu and Haesen, 2022; Lone

et al., 2022) and GRW spacetime (Poyraz, 2022).

Qu and Wang (2015) introduced the notion of a special type of a quarter-

symmetric connection as a generalization of a semi-symmetric metric connection

(Hayden, 1932) and a semi-symmetric non-metric connection (Agashe and Chafle,

1992). They studied the Einstein warped product and multiply warped products

with a quarter-symmetric connection (Qu and Wang, 2015). Wang and Zhang

(2010) obtained Chen’s inequalities for submanifolds of real space forms endowed

with a quarter-symmetric connection. Mihai and Özgür (2011) obtained the

Chen inequalities for submanifolds of complex space forms and Sasakian space

forms with a semi-symmetric metric connection. Wang (2019) obtained Chen

inequalities for submanifolds of complex space forms and Sasakian space forms

with quarter-symmetric connections which improved the results of Mihai and

Özgür (2011). Sular (2016) obtained Chen inequalities for submanifolds of gen-

eralized space forms with a semi-symmetric metric connection. Al-Khaldi et al.

(2021) obtained the Chen-Ricci inequalities Lagrangian submanifold in a general-

ized complex space form and a Legendrian submanifold in a generalized Sasakian

space form endowed with the quarter-symmetric connection.

In the last decade, a great deal of work had been done on η-Ricci soliton and

η-Yamabe soliton in the framework of Riemannian geometry. Recently, geometric

flows are initiated in the investigation of the cosmological model such as perfect

fluid spacetime. Blaga (2020) studied η-Ricci and η-Einstein soliton in perfect

fluid spacetime and obtained the Poisson equation from the soliton equation when
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the potential vector field ξ is of gradient type. Kumara and Venkatesha (2019)

analyzed Ricci soliton in perfect fluid spacetime with torse-forming vector field.

Also, Conformal Ricci soliton in perfect fluid spacetime is studied (Siddiqi and

Siddiqui, 2020). Praveena et al. (2021) studied solitons in Kählerian space-time

manifolds.

Qing and Yuan (2013), Leandro (2021) and Patra and Ghosh (2021) studied

the properties of Einstein-type manifolds. The interesting idea of Einstein-type

manifolds is characterized in many papers (Catino et al., 2017; Leandro, 2021).

Leandro (2021) classified Einstein-type manifold under the assumptions of zero-

radial Weyl curvature and harmonic Weyl curvature. As a physical application,

Leandro proved that there are no multiple black holes in static vacuum Einstein

equation with null cosmological constant having zero radial Weyl curvature and

divergence free Weyl tensor of order four. Catino et al. (2017) investigated it

under Bach-flat condition. Recently, Patra and Ghosh (2021) considered the

Einstein-type equation within the context of contact manifolds. Moreover, an

Einstein-type compact contact manifold with zero radial Weyl curvature was

considered. The critical point equation, Miao-Tam equation and Fischer-Marsden

equation on Kenmotsu and almost Kenmotsu manifold were studied by many

authors in Patra (2021), Patra and Ghosh (2018), Wang and Wang (2017) and

Chaubey et al. (2021). Kumara et al. (2021) characterized the static perfect

fluid space-time metrics on almost Kenmotsu manifolds.
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Chapter 2

On (κ, µ)-contact metric

manifolds and semiconformal

curvature

This chapter is divided into three main sections. The first section deals with

generalized recurrent (κ, µ)-contact metric manifolds. In the second section, gen-

eralized (κ, µ)-space forms are considered and the third section is devoted to

almost pseudo semiconformally symmetric manifolds.

2.1 On a Class of Generalized Recurrent (κ, µ)-

contact Metric Manifolds

After Cartan’s (1926) introduction of locally symmetric spaces. Many authors

introduced weaker version of symmetric spaces, one of which is a hyper genral-

ized recurrent manifold which is an extension of a generalized recurrent manifold

M. Khatri, J.P. Singh (2020), On a class of generalized recurrent (κ, µ)-contact metric
manifolds, Commun. Korean Math. Soc., 35 (4), 1283-1297.
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(Dubey, 1979). A Riemannian manifold is said to be hyper generalized recurrent

manifold if its curvature tensor R satisfies the condition

∇R = A⊗R +B ⊗ (g ∧ S), (2.1)

where A and B are 1-forms defined in (1.4).

Recently, Venkatesha et al. (2019) extended the notion of hyper general-

ized recurrent manifolds (resp. quasi generalized recurrent manifolds) to hyper

generalized φ-recurrent Sasakian manifolds (resp. quasi generalized φ-recurrent

Sasakian manifolds) and obtained interesting results. Continuing this, we stud-

ied hyper generalized φ-recurrent (κ, µ)-contact metric manifolds and prove its

existence by giving a proper example. Similarly, quasi generalized φ-recurrent

(κ, µ)-contact metric manifolds are investigated.

2.1.1 Preliminaries

In a (κ, µ)-contact metric manifold the following properties are true (Blair et

al., 1995):

h2 = (κ− 1)φ2, κ ≤ 1, (2.2)

∇Xξ = −φX − φhX, (∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX), (2.3)

R(X, Y )ξ = κη(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (2.4)

R(ξ,X)Y = κ(X, Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX], (2.5)

S(X, Y ) = [2(n− 1)− nµ]g(X, Y ) + [2(n− 1) + µ]g(hX, Y )

+[2(1− n) + n(2κ+ µ)]η(X)η(Y ), (2.6)

S(X, ξ) = 2nκη(X), (2.7)

r = 2n(2n− 2 + κ− nµ), (2.8)

S(φX,φY ) = S(X, Y )− 2nκη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ), (2.9)
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for all X, Y ∈ χ(M).

Definition 2.1. A (2n+1)-dimensional (κ, µ)-contact metric manifold is said to

be η-Einstein if its Ricci tensor S is of the form

S(X, Y ) = αg(X, Y ) + βη(X)η(Y ),

for any vector fields X and Y , where α and β are constants. If β = 0, then the

manifold M is an Einstein manifold.

2.1.2 Hyper generalized φ-recurrent (k, µ)-contact metric

manifold

Shaikh and Patra (2010) studied hyper generalized recurrent manifolds. Re-

cently, Venkatesha et al. (2019) studied hyper generalized φ-recurrent Sasakian

manifold and obtained important results. By observing this, we extended it to

(κ, µ)-contact metric manifold. In this subsection, we study hyper generalized

φ-recurrent (κ, µ)-contact metric manifold.

Definition 2.2. A (2n + 1)-dimensional (κ, µ)-contact metric manifold is said

to be a hyper generalized φ-recurrent if its curvature tensor R satisfies

φ2((∇WR)(X, Y )Z) = A(W )R(X, Y )Z +B(W )H(X, Y )Z, (2.10)

for all vector fields X, Y and Z. Here, A and B are two non-vanishing 1-forms

such that A(X) = g(X, ρ1), B(X) = g(X, ρ2) and the tensor H is defined by

H(X, Y )Z = S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY, (2.11)

for all vector fields X, Y and Z. Here, Q is the Ricci operator, ρ1 and ρ2 are vector

fields associated with 1-forms A and B respectively. If the 1-form B vanishes, then

(2.10) reduces to the notion of φ-recurrent manifolds.
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Theorem 2.1. In a hyper generalized φ-recurrent (κ, µ)-contact metric manifold,

the 1-forms A and B satisfy the relation

κA(W ) + [n(2κ− µ+ 2)− 2]B(W ) = 0.

Proof. Let us consider hyper generalized φ-recurrent (κ, µ)-contact metric mani-

fold. In view of (2.10) and (1.9) we obtain

−(∇WR)(X, Y )Z + η((∇WR)(X, Y )Z)ξ

= A(W )R(X, Y )Z +B(W )H(X, Y )Z. (2.12)

Taking an inner product with U in (2.12), we get

−g((∇WR)(X, Y )Z) + η((∇WR)(X, Y )Z)η(U)

= A(W )g(R(X, Y )Z,U) +B(W )g(H(X, Y )Z,U). (2.13)

Contracting over X and U in (2.12) gives

−(∇WS)(Y, Z) + η((∇WR)(ξ, Y )Z)

= [A(W ) + (2n− 1)B(W )]S(Y, Z) + rB(W )g(Y, Z). (2.14)

Taking Z = ξ in (2.14) and using the fact that η((∇WR)(ξ, Y )ξ) = 0 we obtain

−(∇WS)(Y, ξ) = [2nκ(A(W ) + (2n− 1)B(W )) + rB(W )]η(Y ). (2.15)

Putting Y = ξ in the above equation gives

2nκ[A(W ) + (2n− 1)B(W )] + rB(W ) = 0. (2.16)

Using (2.8) in (2.16), we obtain

κA(W ) + [n(2k − µ+ 2)− 2]B(W ) = 0. (2.17)

for any vector field W . This completes the proof.
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Taking r = 0 in (2.16), we are in a position to state the following corollary:

Corollary 2.1. In a hyper generalized φ-recurrent (κ, µ)-contact metric manifold,

if the scalar curvature of the manifold vanishes then, either

1. 1-forms A and B are co-directional, or

2. it is
(
0, 2(n−1)

n

)
-contact metric manifold.

Let {ei}2n+1
i=1 be an orthonormal basis of the manifold. Putting Y = Z = ei in

(2.14) and taking summation over i, 1 ≤ i ≤ 2n + 1, and using (1.9), (2.3) and

(2.7) we obtain

−dr(W ) = r[A(W ) + 4nB(W )]. (2.18)

This led us to the following theorem:

Theorem 2.2. In a hyper generalized φ-recurrent (κ, µ)-contact metric mani-

fold, if the scalar curvature of the manifold is a non-zero constant then, A(W ) +

4nB(W ) = 0, for any vector field W .

Theorem 2.3. In a hyper generalized φ-recurrent (κ, µ)-contact metric manifold,

the associated vector fields ρ1 and ρ2 corresponding to 1-forms A and B satisfy

the relation

rη(ρ1) + 2(2n− 1)(r − 2nκ)η(ρ2) = 0.

Proof. Changing X, Y, Z cyclically in (2.13) and using Bianchi’s identity we get

A(W )g(R(X, Y )Z,U) + A(X)g(R(Y,W )Z,U) +

A(Y )g(R(W,X)Z,U) +B(W )g(H(X, Y )Z,U) +

B(X)g(H(Y,W )Z,U) +B(Y )g(H(W,X)Z,U) = 0. (2.19)
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Contracting over Y and Z and using (1.9), we obtain

A(W )S(X,U)− A(X)S(W,U)− κg(X,U)A(W ) + κg(W,U)A(X)

− µg(hW,U)A(X) +B(W )[rg(X,U) + (2n− 1)S(X,U)]

+B(X)[−rg(W,U)− (2n− 1)S(W,U)] +B(QX)g(W,U)

−B(QW )g(X,U) +B(X)S(W,U)−B(W )S(X,U) = 0. (2.20)

Again contracting (2.20) over X and U yields

(r + 2nκ)A(W )− A(QW ) + µA(hW )

+(4nr − 2r)B(W )− (4n− 2)B(QW ) = 0. (2.21)

Replacing W by ξ in (2.21) results in

rη(ρ1) + 2(2n− 1)(r − 2nκ)η(ρ2) = 0. (2.22)

This completes the proof.

Theorem 2.4. A hyper generalized φ-recurrent (κ, µ)-contact metric manifold is

an η-Einstein manifold.

Proof. Since we have

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ). (2.23)

Using (2.3) and (2.7) in (2.23) we get

(∇WS)(Y, ξ) = −2nκg(φW + φhW, Y ) + S(Y, φW + φhW ). (2.24)

From (2.17) and (2.24) we obtain

2nκg(φW + φhW, Y )− S(Y, φW + φhW )

=
[
2nκ{A(W ) + (2n− 1)B(W )}+ rB(W )

]
η(Y ). (2.25)
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Taking Y = φY in (2.25) gives

S(Y,W ) + S(Y, hW ) = 2nκg(Y,W ) + [2nκ+ 2(2n− 2 + µ)]g(Y, hW )

+ 2(2n− 2 + µ)(κ− 1)g(Y,−W + η(W )ξ). (2.26)

Using

S(Y, hW ) = (2n− 2− nµ)g(Y, hW )− (2n− 2 + µ)(κ− 1)g(Y,W )

+ (2n− 2 + µ)(κ− 1)η(W )η(Y ),

and (2.6) in (2.26) led us to the following relation

S(Y,W ) = αg(Y,W ) + βη(Y )η(W ), (2.27)

where

α =
[2(nκ+ n− 1) + µ(n+ 2)][2(n− 1)− nµ]− [2(n− 1) + µ][µ(1− κ) + 2(n− 1) + 2κ]

2nκ+ µ(n+ 1)
,

β =
[2(nκ+ n− 1) + µ(n+ 2)][2(1− n) + n(2κ+ µ)]− (κ− 1)[2(n− 1) + µ]2

2nκ+ µ(n+ 1)
.

This completes the proof.

Theorem 2.5. In a hyper generalized φ-recurrent (κ, µ)-contact metric manifold,

the 1-forms A and B satisfy the relation

2nκA(φW ) + [r + 2nκ(2n− 1)]B(φW ) = 0.

Proof. In view of (1.9), (2.3) and (2.4) we get

(∇WR)(X, Y )ξ = κ(W + hW,φY )X − g(W + hW,φX)Y ]

+ µ[g(W + hW,φY )hX − g(W + hW,φX)hY + {(1− κ)g(W,φX)

+ g(W,hφX)}η(Y )ξ − {(1− κ)g(W,φY ) + g(W,hφY )}η(X)ξ

+ µη(W ){η(X)φhY − η(Y )φhX}] +R(X, Y )φW +R(X, Y )φhW. (2.28)
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Using (2.28) in (2.12) results in the following relation

κ(W + hW,φY )η(X)− g(W + hW,φY )η(Y )]ξ + µ[(1− κ)g(W,φX)η(Y )

+ g(W,hφX)η(Y )− (1− κ)g(W,φY )η(X)− g(W,hφY )η(X)]ξ

+ κ(Y, φW )η(X)− g(X,φW )η(Y ) + g(Y, φhW )η(X)− g(X,φhW )η(Y )]ξ

− κ(W + hW,φY )X − g(W + hW,φX)Y ]− µ[g(W + hW,φY )hX

− g(W + hW,φX)hY + {(1− κ)g(W,φX) + g(W,hφX)}η(Y )ξ

− {(1− κ)g(W,φY ) + g(W,hφY )}η(X)ξ + µη(W ){η(X)φhY

− η(Y )φhX}] +R(X, Y )φW +R(X, Y )φhW = A(W ){κη(Y )X

− η(X)Y ] + µ[η(Y )hX − η(X)hY ]}+B(W ){2nκη(Y )X

− η(X)Y ] + η(Y )QX − η(X)QY }. (2.29)

Putting Y = ξ in (2.29) we get

A(W )[κ(X − η(X)ξ) + µhX] +B(W )[2nκX

− 4nκη(X)ξ +QX] + µ2η(W )φhX = 0. (2.30)

Taking W = φW and contracting over X in (2.30) gives

2nκA(φW ) + [r + 2nκ(2n− 1)]B(φW ) = 0. (2.31)

This completes the proof.

2.1.3 Example of hyper generalized φ-recurrent (k, µ)-contact

metric manifold

In this subsection, we construct an example of hyper generalized φ-recurrent

(k, µ)-contact metric manifold. We consider a 3-dimensional manifold M3 =

{(x, y, z) ∈ R3 : x ̸= 0} where (x, y, z) are the standard coordinates in R3. Let
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{E1, E2, E3} be linearly independent vector fields in M3 which satisfy

[E1, E2] = 2xE1, [E2, E3] = 0, [E1, E3] = 0.

Let g be Riemannian metric defined by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0.

Let η be the 1-form defined by

η(X) = g(X,E3),

for any vector field X. Let φ be (1,1)-tensor field defined by

φE1 = E2, φE2 = −E1, φE3 = 0.

Then we have

η(E3) = 1, φ2(X) = −X + φ(X)E3

and

g(φX,φY ) = g(X, Y )− η(X)η(Y ).

Moreover

hE3 = 0, hE1 = −E1, hE2 = E2.
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Thus for E3 = ξ, (φ, ξ, η, g) defines a contact metric structure on M3. Let ∇ be

the Riemannian connection of g. Using the Koszul formula we obtain

∇E1E1 = −2xE2, ∇E1E2 = 2xE1, ∇E1E3 = 0,

∇E2E1 = 0, ∇E2E2 = 0, ∇E2E3 = 0,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

Thus the metricM3(φ, ξ, η, g) under consideration is a (κ, µ)-contact metric man-

ifold. Now, we will show that it is a 3-dimensional hyper generalized φ-recurrent

(κ, µ)-contact metric manifold. The non-vanishing components of curvature ten-

sor and Ricci tensor are

R(E1, E2)E1 = 4x2E2, R(E1, E2)E2 = −4x2E1,

S(E1, E1) = S(E2, E2) = −4x2.

Since {E1, E2, E3} forms the orthonormal basis of the 3-dimensional (κ, µ)-contact

metric manifold any vector fields can be expressed as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,

Z = a3E1 + b3E2 + c3E3.

Then,

R(X, Y )Z = u1E1 + u2E2, (2.32)

where u1 = 4x2b3(a2b1 − a1b2) and u2 = −4x2a3(a2b1 − a1b2).

and

F (X, Y )Z = v1E1 + v2E2 + v3E3, (2.33)

40



Chapter 2

where

v1 = 4x2[a1(a1a2 + b1b2)(a1a3 + b1b3 + c1c3)

+ b3(a2b1 − a1b2)− a2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)],

v2 = 4x2[b1(a1a3 + b1b3 + c1c3)(a1a2 + b1b2)

− a3(a2b1 − a1b2)− b2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)]

and

v3 = 4x2[c1(a1a3 + b1b3 + c1c3)(a1a2 + b1b2)− c1(a2a3 + b2b3) + c2(a1a3 + b1b3)

− c2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)].

By virtue of (2.32), we have the following

(∇E1R)(X, Y )Z = 8x3(a1b2 − a2b1)(b3E1 − a3E2), (2.34)

(∇E2R)(X, Y )Z = 0,

(∇E3R)(X, Y )Z = 0.

Form (2.32) one can easily obtain the following

φ2(∇Ei
R)(X, Y )Z = piE1 + qiE2, i = 1, 2, 3, (2.35)

where p1 = −8x3b3(a1b2 − a2b1), q1 = 8x3a3(a1b2 − a2b1),

p2 = 0, q2 = 0, p3 = 0, q3 = 0.

Let the 1-forms be defined as

A(E1) =
p1v2 − v1q1
u1v2 − v1u2

, B(E1) =
u1q1 − p1u2
u1v2 − v1u2

, (2.36)

A(E2) = 0, B(E2) = 0,

A(E3) = 0, B(E3) = 0,
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satisfying, p1v2 − v1q1 ̸= 0, u1v2 − v1u2 ̸= 0, u1q1 − p1u2 ̸= 0 and v3 = 0.

In view of (2.32), (2.33) and (2.35) it is easy to show the following relation:

φ2(∇Ei
R)(X, Y )Z) = A(Ei)R(X, Y )Z +B(Ei)F (X, Y )Z, i = 1, 2, 3. (2.37)

Hence, the metric M3 under consideration is a 3-dimensional hyper generalized

φ-recurrent (κ, µ)-contact metric manifold which is neither φ-symmetric nor φ-

recurrent.

We can state the following.

Theorem 2.6. There exists a 3-dimensional hyper generalized φ-recurrent (κ, µ)-

contact metric manifold which is neither φ-symmetric nor φ-recurrent.

2.1.4 Quasi generalized φ-recurrent (k, µ)-contact metric

manifold

Recently, Venkatesha et al. (2019) studied quasi generalized φ-recurrent

Sasakian manifolds. A brief study on quasi generalized recurrent manifolds was

done by Shaikh and Roy (2010) and obtained interesting results. In this subsec-

tion, we will study quasi generalized φ-recurrrent (κ, µ)-contact metric manifolds.

Definition 2.3. A (2n + 1)-dimensional (κ, µ)-contact metric manifold is said

to be a quasi generalized φ-recurrent if its curvature tensor R satisfies

φ2((∇WR)(X, Y )Z) = D(W )R(X, Y )Z + E(W )F (X, Y )Z, (2.38)

for all vector fields X, Y and Z. Here, D and E are two non-vanishing 1-forms

such that D(X) = g(X,µ1), E(X) = g(X,µ2) and the tensor F is define by

F (X, Y )Z = g(Y, Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y, Z)η(Y )ξ − g(X,Z)η(Y )ξ, (2.39)

42



Chapter 2

for all vector fields X, Y and Z. Here, µ1 and µ2 are vector fields associated with

1-forms D and E respectively.

Theorem 2.7. In a quasi generalized φ-recurrent (κ, µ)-contact metric manifold,

the associated 1-forms D and E are related by κD(W ) + 2E(W ) = 0.

Proof. Consider a quasi generalized φ-recurrent (κ, µ)-contact metric manifold.

From (2.38) we get

−((∇WR)(X, Y )Z) + η((∇WR)(X, Y )Z)ξ

= D(W )R(X, Y )Z + E(W )F (X, Y )Z. (2.40)

Taking the same steps as in Theorem 2.1, we obtain the relation:

κD(W ) + 2E(W ) = 0. (2.41)

This completes the proof.

Contracting over X in (2.40) gives

−(∇WS)(Y, Z) + η((∇WR)(ξ, Y )Z) = D(W )S(Y, Z)

+ [(2n+ 1)g(Y, Z) + (2n− 1)η(Y )η(Z)]E(W ). (2.42)

Putting Y = Z = ei, (2.42) reduce to

−dr(W ) = rD(W ) + 2n(2n+ 3)E(W ). (2.43)

We are in a position to state the following:

Theorem 2.8. In a quasi generalized φ-recurrent (κ, µ)-contact metric manifold,

if the scalar curvature is a non-zero constant then

rD(W ) + 2n(2n+ 3)E(W ) = 0.

Theorem 2.9. In a quasi generalized φ-recurrent (κ, µ)-contact metric manifold,
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the scalar curvature of the manifold satisfy the relation r = κ(5+2n2)]+2(2n−1)].

Proof. Changing X, Y, Z cyclically in (2.40) and making use of Bianchi’s identity

we get

D(W )R(X, Y )Z +D(X)R(Y,W )Z +D(Y )R(W,X)Z

+E(W )F (X, Y )Z + E(X)F (Y,W )Z + E(Y )F (W,X)Z = 0. (2.44)

Contracting over X in (2.44) we get

D(W )S(Y, Z) +D(R(Y,W )Z)−D(Y )S(W,Z) + E(W )[(2n+ 1)g(Y, Z)

+ (2n− 1)η(Y )η(Z)] + E(Y )g(W,Z)− g(Y, Z)E(W ) + η(W )η(Z)E(X)

− η(Y )η(Z)E(W ) + g(W,Z)η(Y )η(µ2)− g(Y, Z)η(W )η(µ2)

− E(Y )[(2n+ 1)g(W,Z) + (2n+ 1)η(Z)η(W )] = 0. (2.45)

Putting Y = Z = ei, 1 ≤ i ≤ 2n+ 1 in (2.45) we obtain

rD(W )− 2nκD(W ) + µD(hW )−D(QW ) + 2(2n2 + n− 1)E(W )

+ 2(1− 2n)η(W )η(µ2) = 0. (2.46)

Replacing W with ξ in (2.46) gives

r = κ[(5 + 2n2) + 2(2n− 1)]. (2.47)

This completes the proof.

Corollary 2.2. In a quasi generalized φ-recurrent (κ, µ)-contact metric manifold,

if κ = 0 then the scalar curvature is constant.

Proceeding like in Theorem 2.4, one can easily show that the manifold is an

η-Einstein manifold. Hence, we get the following statement:

Theorem 2.10. A quasi generalized φ-recurrent (κ, µ)-contact metric manifold

is an η-Einstein manifold i.e.,
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S(Y,W ) = αg(Y,W ) + βη(Y )η(W ),

where

α =
[2(nκ+ n− 1) + µ(n+ 2)][2(n− 1)− nµ]− [2(n− 1) + µ][µ(1− κ) + 2(n− 1) + 2κ]

2nκ+ µ(n+ 1)
,

β =
[2(nκ+ n− 1) + µ(n+ 2)][2(1− n) + n(2κ+ µ)]− (κ− 1)[2(n− 1) + µ]2

2nκ+ µ(n+ 1)
.

2.1.5 Example of a quasi generalized φ-recurrent (κ, µ)-

contact metric manifold

In this subsection we give an example of a quasi generalized φ-recurrent (κ, µ)-

contact metric manifold. We consider a 3-dimensional manifold M = {(x, y, z) ∈

R3 : x ̸= 0, y ̸= 0}, where {x, y, z} is the standard coordinates in R3. Let

{E1, E2, E3} be the global coordinate frame on M given by

E1 =
∂

∂y
, E2 = 2xy

∂

∂z
+

∂

∂y
, E3 =

∂

∂z
.

Hui (2017) has shown that M is a 3-dimensional (κ, µ)-contact metric manifold

with κ = − 1
y
and µ = − 1

y
. We will show that the manifold M is a 3-dimensional

quasi generalized φ-recurrent (κ, µ)-contact metric manifold. Any vector fields

X, Y, Z on M can be expressed as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,

Z = a3E1 + b3E2 + c3E3,
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where ai, bi, ci ∈ R+ (set of positive numbers). Then the Riemannian curvature

R becomes

R(X, Y )Z = v1E1 + v2E2, (2.48)

where v1 = −2b3
y2
(a1b2 − a2b1) and v2 =

2a3
y2
(a1b2 − a2b1).

Also

F (X, Y )Z = (b3u1 + 2c3u2)E1 + (2c3u3 − a3u1)E2

− 2(a3u2 − b3u3)E3, (2.49)

where u1 = (a1b2 − b1a2), u2 = (a1c2 − a2c1), u3 = (b1c2 − b2c1).

From (2.48) we obtained

(∇E1R)(X, Y )Z =
4

y3
(a1b2 − a2b1)(b3E1 − a3E2), (2.50)

(∇E2R)(X, Y )Z = 0, (2.51)

(∇E3R)(X, Y )Z = 0. (2.52)

Making use of (2.50), (2.51) and (2.52) we get the following

φ2((∇Ei
R)(X, Y )Z) = piE1 + qiE2, i = 1, 2, 3, (2.53)

where

p1 = −4b3
y3

(a1b2 − a2b1), q1 =
4a3
y3

(a1b2 − a2b1),

p2 = 0, q2 = 0, p3 = 0, q3 = 0.
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Let us define 1-forms A and B by

A(E1) =
a3p1(2c3u2 − b3u1)− q1b3(b3u1 + 2c3u2)

v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3)
,

B(E1) =
b3(q1v1 − p1v2)

v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3)
,

A(E2) = 0, B(E2) = 0,

A(E3) = 0, B(E3) = 0, (2.54)

where a3p1(2c3u2 − b3u1) − q1b3(b3u1 + 2c3u2) ̸= 0, b3(q1v1 − p1v2) ̸= 0 and

v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3) ̸= 0.

Using (2.50), (2.53) and (2.54) one can easily show that

φ2((∇Ei
R)(X, Y )Z) = A(Ei)R(X, Y )Z +B(Ei)F (X, Y )Z, i = 1, 2, 3. (2.55)

Hence, the manifold under consideration is a 3-dimensional quasi generalized φ-

recurrent (κ, µ)-contact metric manifold. Thus we can state the following.

Theorem 2.11. There exists a 3-dimensional quasi generalized φ-recurrent (κ, µ)-

contact metric manifold which is neither φ-symmetric nor φ-recurrent.

2.2 On the Geometric Structures of Generalized

(κ, µ)-space forms

An almost contact metric manifold (M2n+1, φ, ξ, g, η) is said to be a general-

ized (κ, µ)-space form if there exists differentiable functions f1, f2, f3, f4, f5, f6 on

the manifold whose curvature tensor R is given by

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6, (2.56)

J.P. Singh, M. Khatri (2021), On the Geometric Structures of Generalized (k, µ)-space
forms, Facta Univ., Math. Inform., 36 (5), 1129-1142.
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where R1, R2, R3, R4, R5, R6 are the following tensors:

R1(X, Y )Z = g(Y, Z)X − g(X,Z)Y,

R2(X, Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X, Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ,

R4(X, Y )Z = g(Y, Z)hX − g(X,Z)hY + g(hY, Z)X − g(hX,Z)Y,

R5(X, Y )Z = g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY, Z)φhX,

R6(X, Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ,

for any X, Y, Z ∈ χ(M). Here, h is a symmetric tensor given by 2h = Lξφ,

where L is the Lie derivative. In particular, for f4 = f5 = f6 = 0 it reduces

to the generalized Sasakian space form (Alegre et al., 2004). It is obvious that

(κ, µ)-space form is an example of generalized (κ, µ) space form when

f1 =
c+ 3

4
, f2 =

c− 1

4
, f3 =

c+ 3

4
− κ, f4 = 1, f5 =

1

2
, f6 = 1− µ

are constants.

De and Samui (2016) studied quasi-umbilical hypersurface on (κ, µ)-space

forms. A hypersurface (M̃2n+1, g̃) of a Riemannian manifold M2n+1 is called

quasi-umbilical (Chen, 1973) if its second fundamental tensor has the form

σ(X, Y ) = αg(X, Y ) + βω(X)ω(Y ), (2.57)

where ω is the 1-form, α, β are scalars and the vector field corresponding to the

1-form ω is a unit vector field. Here, the second fundamental tensor σ is defined

by σ(X, Y ) = g̃(AρX, Y ), where A is (1,1) tensor and ρ is the unit normal vector

field and X, Y are tangent vector fields.

In this section, the geometric structures of generalized (k, µ)-space forms and

their quasi-umbilical hypersurface are analyzed. First ξ-Q̃ and conformally flat
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generalized (k, µ)-space form is investigated and shown that a conformally flat

generalized (k, µ)-space form is Sasakian. Next, we prove that a generalized

(k, µ)-space form satisfying Ricci pseudosymmetry is η-Einstein. We obtain the

condition under which a quasi-umbilical hypersurface of a generalized (k, µ)-space

form is a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a

quasi-umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally,

the results obtained are verified by constructing an example of a 3-dimensional

generalized (k, µ)-space form.

2.2.1 Preliminaries

In a generalized (κ, µ)-space form (M2n+1, g) the following relations hold (Ale-

gre and Blair, 2004):

R(X, Y )ξ = (f1 − f3){η(Y )X − η(X)Y }

+ (f4 − f6){η(Y )hX − η(X)hY }, (2.58)

QX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ

+ ((2n− 1)f4 − f6)hX, (2.59)

r = 2n{(2n+ 1)f1 + 3f2 − 2f3}, (2.60)

S(φX,φY ) = S(X, Y )− 2n(f1 − f3)η(X)η(Y ). (2.61)

where, R, S,Q, r are respectively the curvature tensor of type (1,3), the Ricci

tensor, the Ricci operator i.e. g(QX, Y ) = S(X, Y ), for any X, Y ∈ χ(M) and

the scalar curvature of the manifold respectively.
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2.2.2 Flatness of generalized (κ, µ)-space form

De and Samui (2016) studied conformally flat (κ, µ) space form and De and

Majhi (2019) analyzed ξ-Q̃ flatness of generalized Sasakian space form. General-

izing the results obtained, in this subsection we studied ξ-Q̃ flat and conformally

flat generalized (κ, µ)-space form.

Definition 2.4. A generalized (κ, µ)-space form (M2n+1, g), is said to be ξ-Q flat

if Q̃(X, Y )ξ = 0, for any X, Y ∈ χ(M) on M .

We have, from (1.26)

Q̃(X, Y )ξ = R(X, Y )ξ − v

2n

[
η(Y )X − η(X)Y

]
, (2.62)

for any X, Y ∈ χ(M). Using (2.58) in (2.62) we get

Q̃(X, Y )ξ =
(
f1 − f3 −

v

2n

)[
η(Y )X − η(X)Y

]

+ (f4 − f6)[η(Y )hX − η(X)hY ]. (2.63)

Suppose non-Sasakian generalized (κ, µ)-space form is ξ − Q flat. Then from

(2.63) we get

(
f1 − f3 −

v

2n

)[
η(Y )X − η(X)Y

]
+ (f4 − f6)[η(Y )hX − η(X)hY ] = 0. (2.64)

Taking X = φX in (2.64), we obtain

{(
f1 − f3 −

v

2n

)
φX + (f4 − f6)hφX

}
η(Y ) = 0. (2.65)

Since η(Y ) ̸= 0 and taking the inner product with U in (2.65) gives

(
f1 − f3 −

v

2n

)
g(φX,U) + (f4 − f6)g(φX, hU) = 0. (2.66)

Since g(φX,U) ̸= 0 and g(φX, hU) ̸= 0, we see that f1 − f3 =
v
2n

and f4 = f6.

Conversely, taking f1 − f3 = v
2n

and f4 = f6, and putting these values in (2.63)
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gives Q̃(X, Y )ξ = 0 and hence M is ξ − Q̃ flat. Therefore we can state the

following:

Theorem 2.12. A non-Sasakian generalized (κ, µ)-space form (M2n+1, g), is ξ-Q

flat if and only if f1 − f3 =
v
2n

and f4 = f6.

In particular, if v = r
2n+1

then Q̃ tensor reduces to concircular curvature ten-

sor. Making use of (2.60) in the forgoing equation gives v = 2n{(2n+1)f1+3f2−2f3}
2n+1

.

In regard to Theorem 2.12, for ξ-concircularly flat we obtain f3 =
3f2
1−2n

and hence

we can state the following corollary:

Corollary 2.3. A non-Sasakian generalized (κ, µ)-space form (M2n+1, g), is ξ-

concircularly flat if and only if f3 =
3f2
1−2n

and f4 = f6.

We can easily see that Theorem 3.1 and Corollary 3.1 obtained by De and

Majhi (2019), are particular cases of Theorem 2.12 and Corollary 2.3 respectively

for f4 = f5 = f6 = 0.

Substituting the values, f4 − f6 = µ and f1 − f3 = κ in Theorem 2.12, we

obtained the following corollary:

Corollary 2.4. A (κ, µ)-space form (M2n+1, g), is ξ-Q̃ flat if and only if κ = v
2n

and µ = 0.

Definition 2.5. A generalized (κ, µ)-space form (M2n+1, g), n > 1, is said to be

conformally flat if C(X, Y )Z = 0, for any X, Y, Z ∈ χ(M) on M .

Suppose generalized (κ, µ)-space form is conformally flat. Then from (1.23),

we get

R(X, Y )Z − 1

2n− 1

{
S(Y, Z)X − S(X,Z)Y + g(Y, Z)PX − g(X,Z)PY

}

+
r

2n(2n− 1)

{
g(Y, Z)X − g(X,Z)Y

}
= 0. (2.67)
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As a consequence of taking X = ξ in (2.67) and using (1.9), (2.58) and (2.59).

Eq.(2.67) becomes

(f1 − f3){g(Y, Z)ξ − η(Z)Y }+ (f4 − f6){g(hY, Z)ξ − η(Z)hY }

− 1

2n− 1

{
S(Y, Z)ξ − 2n(f1 − f3)η(Z)Y + 2n(f1 − f3)g(Y, Z)ξ

− η(Z)PY
}
+

r

2n(2n− 1)

{
g(Y, Z)ξ − η(Z)Y

}
= 0. (2.68)

Putting Z = φZ in (2.68) and making use of (2.58), (2.59) and (2.60) results in

the following

2(n+ 1)f6g(hY, φZ) = 0. (2.69)

This shows that either f6 = 0 or φh = 0. In the second case, from (1.9) we have

h = 0. Therefore we can state the following:

Theorem 2.13. If a generalized (κ, µ)-space form (M2n+1, g), n > 1, is confor-

mally flat, then either f6 = 0 or M is Sasakian.

Corollary 2.5. If a (κ, µ)-space form (M2n+1, g), n > 1, is conformally flat, then

either µ = 1 or M is Sasakian.

2.2.3 Pseudosymmetric generalized (κ, µ)-space form

In this subsection certain pseudo symmetry such as Ricci pseudo symmetry

and conformal Ricci pseudo symmetry in the context of generalized (κ, µ)-space

form are studied. First, we review an important definition

Definition 2.6 (Deszcz, 1992; Shaikh et al., 2015). A Riemannian manifold

(M, g), n ≥ 1, admitting a (0, κ)-tensor field T is said to be T -pseudosymmetric

if R · T and D(g, T ) are linearly dependent, i.e., R · T = LTD(g, T ) holds on the

set UT = {x ∈M : D(g, T ) ̸= 0 at x}, where LT is some function on UT .

In particular, if R ·R = LRD(g,R) and R · S = LSD(g, S) then the manifold

is called pseudosymmetric and Ricci pseudosymmetric respectively. Moreover if
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LR = 0 ( resp., LS = 0) then pseudosymmetric (resp., Ricci pseudosymmetric)

reduces to semisymmetric (resp., Ricci semisymmetric) introduced by Cartan in

1946.

Definition 2.7. A generalized (κ, µ)-space form (M2n+1, g), is said to be Ricci

pseudosymmetric if its Ricci curvature satisfies the following relation,

R · S = fS2D(g, S),

holds on the set US2 = {x ∈ M : D(g, S) ̸= 0 at x}, where fS2 is some function

on US2.

Suppose a generalized (κ, µ)-space form (M2n+1, g), is Ricci pseudosymmetric

i.e.,

R · S = fS2D(g, S),

which can be written as

S(R(X, Y )U, V ) + S(U,R(X, Y )V ) = −fs
[
S(Y, V )g(X,U)

−S(X, V )g(Y, U) + S(U, Y )g(X, V )− S(U,X)g(Y, V )
]

(2.70)

Taking X = U = ξ in (2.70) and using (2.58), (2.59) and (2.61), we get

(
f3 − f1 + fS2

)
S(Y, V ) +

[
2n(f1 − f3)(f1 − f3 − fS2)− (κ− 1)(f4

− f6)((2n− 1)f4 − f6)
]
g(Y, V )− (κ− 1)(f4 − f6)

(
(2n− 1)f4

− f6
)
η(Y )η(V ) + (f4 − f6)

(
(1− 2n)f3 − 3f2

)
g(hY, V ) = 0. (2.71)

Considering fS2 ̸= f1 − f3 and further taking (1− 2n)f3 − 3f2 = 0 in (2.71), the

manifold is η-Einstein. Hence we can state the following:

Theorem 2.14. A Ricci pseudosymmetric generalized (κ, µ)-space form (M2n+1, g),

with fS2 ̸= f1 − f3, is η-Einstein manifold if f3 =
3f2
1−2n

.

If fS2 = 0, then Ricci pseudosymmetric generalized (κ, µ)-space form reduces
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to Ricci semisymmetric generalized (κ, µ)-space form. In view of Theorem (2.14)

we obtain the following:

Corollary 2.6. A Ricci semisymmetric generalized (κ, µ)-space form (M2n+1, g),

with f1 − f3 ̸= 0 is η-Einstein manifold if f3 =
3f2
1−2n

.

Definition 2.8. A generalized (κ, µ)-space form (M2n+1, g), n > 1, is said to be

conformal Ricci pseudosymmetric if

C · S = fS4D(g, S),

holds on the set US4 = {x ∈M : D(g, S) ̸= 0 at x}, where fS4 is any function on

US4.

Suppose a generalized (κ, µ)-space form is conformal Ricci pseudosymmetric.

Then, we have

S(C(X, Y )U, V ) + S(U,C(X, Y )V ) = −fS4

[
S(Y, V )g(X,U)

−S(X, V )g(Y, U) + S(U, Y )g(X, V )− S(U,X)g(Y, V )
]
. (2.72)

Taking X = U = ξ and f4 = f6 in (2.72) and making use of (1.23),(1.9) and

(2.59), we obtain

S2(Y, V ) =
(
4nf1 + 3f2 − (2n+ 1)f3 + 2n(2n− 1)fS4

)
S(Y, V )

−(2n− 1)fS4η(Y )η(V )−
(
2nf1 + 3f2 − f3

)
g(Y, V ). (2.73)

Thus, we can state the following:

Theorem 2.15. If a generalized (κ, µ)-space form (M2n+1, g), n > 1, is conformal

Ricci pseudosymmetric with f4 = f6, then the relation(2.73) holds.
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2.2.4 Quasi-umbilical hypersurface of generalized (κ, µ)-

space form

Let us consider a quasi-umbilical hypersurface M̃ of a generalized (κ, µ)-space

form. From Gauss, for any vector fields X, Y, Z,W tangent to the hypersurface

we have

R(X, Y, Z,W ) = R̃(X, Y, Z,W )− g(σ(X,W ), σ(X,Z))

+ g(σ(X,Z), σ(Y,W )), (2.74)

where, R(X, Y, Z,W ) = g(R(X, Y )Z,W ) and R̃(X, Y, Z,W ) = g(R̃(X, Y )Z,W ).

Here, σ is the second fundamental tensor of M̃ given by

σ(X, Y ) = αg(X, Y )ρ+ βω(X)ω(Y )ρ, (2.75)

where, ρ is the only unit normal vector field. Here, ω is the 1-form, the vector

field corresponding to the 1-form ω is a unit vector field and α, β are scalars.

Using (2.75) in (2.74), we obtain the following result

f1
[
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
+ f2

[
g(X,φZ)g(φY,W )

− g(Y, φZ)g(φX,W ) + 2g(X,φY )g(φZ,W )
]
+ f3

[
η(X)η(Z)g(Y,W )

− η(Y )η(Z)g(X,W ) + g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
]

+ f4
[
g(Y, Z)g(hX,W )− g(Y, Z)g(hY,W ) + g(hY, Z)g(X,W )

− g(hX,Z)g(Y,W )
]
+ f5

[
g(hY, Z)g(hX,W )− g(hX,Z)g(hY,W )

+ g(φhX,Z)g(φhY,W )− g(φhY, Z)g(φhX,W )
]
+ f6

[
η(X)η(Z)g(hY,W )

− η(Y )η(Z)g(hX,W ) + g(hX,Z)η(Y )η(W )− g(hY, Z)η(X)η(W )
]

= R̃(X, Y, Z,W )− α2g(X,W )g(Y, Z)− αβg(X,W )ω(Y )ω(Z)

− αβg(Y, Z)ω(X)ω(W ) + α2g(Y,W )g(X,Z) + αβg(Y,W )ω(X)ω(Z)

+ αβg(X,Z)ω(Y )ω(W ). (2.76)
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Contracting over X and W in (2.76), we obtain

S̃(Y, Z) =
(
2nf1 + 3f2 − f3 + 2nα2 + αβ

)
g(Y, Z)

−
(
3f2 + (2n+ 1)f3

)
η(Y )η(Z) +

(
(2n− 1)f4 − f6

)
g(hY, Z)

+ αβ(2n− 1)ω(Y )ω(Z). (2.77)

Hence, we can state the following:

Theorem 2.16. A quasi-umbilical hypersurface of a generalized (κ, µ)-space form

is a generalized quasi Einstein hypersurface, provided f4 =
f6

2n−1

In particular, for a (κ, µ)-space form, the above Theorem 2.16 reduces to the

following:

Theorem 2.17 (De and Samui, 2016). A quasi-umbilical hypersurface of a (κ, µ)-

contact space form is a generalized quasi-Einstein hypersurface, provided µ =

2− 2n.

Corollary 2.7. A quasi-umbilical hypersurface of a generalized Sasakian space

form is a generalized quasi-Einstein hypersurface.

For any vector fields X, Y , the tensor field K(X, Y ) = R̃(X, Y, Y,X) is called

the sectional curvature of M̃ given by the sectional plane {X, Y }. The sectional

curvatureK(X, ξ) of a sectional plane spanned by ξ and vector field X orthogonal

to ξ is called the ξ-sectional curvature of M̃ .

Theorem 2.18. A ξ-sectional curvature of a quasi-umbilical hypersurface of gen-

eralized (κ, µ)-space form is given by

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX,φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).
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Proof. Taking W = X and Z = Y in (2.76) results in following

f1
[
g(Y, Y )g(X,X)− g(X, Y )g(Y,X)

]
+ f2

[
g(X,φY )g(φY,X)

− g(Y, φY )g(φX,X) + 2g(X,φY )g(φY,X)
]
+ f3

[
η(X)η(Y )g(X, Y )

− η(Y )η(Y )g(X,X)− g(X, Y )η(X)η(Y )− g(Y, Y )η(X)η(X)
]

+ f4
[
g(Y, Y )g(hX,X)− g(X, Y )g(hY,X) + g(hY, Y )g(X,X)

− g(hX, Y )g(Y,X)
]
+ f5

[
g(hY, Y )g(hX,X)− g(hX, Y )g(hY,X)

+ g(φhX, Y )g(φhY,X)− g(φhY, Y )g(φhX,X)
]
+ f6

[
η(x)η(Y )g(hY,X)

− η(Y )η(Y )g(hX,X) + g(hX, Y )η(Y )η(X)− g(hY, Y )η(X)η(X)
]

= K(X, Y )− α2g(X,X)g(Y, Y )− αβg(X,X)ω(Y )ω(Y )

− αβg(Y, Y )ω(X)ω(X) + α2g(X, Y )g(X, Y ) + αβg(X, Y )ω(X)ω(Y )

+ αβg(X, Y )ω(Y )ω(X). (2.78)

Putting Y = ξ in (2.78) gives

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX,φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).

This completes the proof.

2.2.5 Examples of generalized (κ, µ)-space forms

Now we will show the validity of obtained result by considering an example of

a generalized (κ, µ)-space form of dimension 3. Koufogiorgos and Tsichlias (2000)

constructed an example of generalized (κ, µ)-space of dimension 3 which was later

shown by Carriazo et al. (2013) to be a contact metric generalized (κ, µ)-space

form M3(f1, 0, f3, f4, 0, 0) with non-constant f1, f3, f4.

Example 2.1. Let M3 be the manifold M = {(x1, x2, x3) ∈ R3|x3 ̸= 0} where
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(x1, x2, x3) are standard coordinates on R3. Consider the vector fields

e1 =
∂

∂x1
, e2 = −2x2x3

∂

∂x1
+

2x1
x23

∂

∂x2
− 1

x23

∂

∂x3
, e3 =

1

x3

∂

∂x2
,

are linearly independent at each point of M and are related by

[e1, e2] =
2

x23
e3, [e2, e3] = 2e1 +

1

x33
e3, [e3, e1] = 0.

Let g be the Riemannian metric defined by g(ei, ej) = δij, i, j = 1, 2, 3 and η

be the 1-form defined by η(X) = g(X, e1) for any X on M . Also, let φ be

the (1, 1)-tensor field defined by φe1 = 0, φe2 = e3 φe3 = −e2. Therefore,

(φ, e1, η, g) defines a contact metric structure on M . Put λ = 1
x23
, κ = 1− 1

x43
and

µ = 2(1− 1
x23
), then symmetric tensor h satisfies he1 = 0, he2 = λe2, he3 = −λe3.

The non-vanishing components of the Riemannian curvature are as follows:

R(e1, e2)e1 = −(κ+ λµ)e2, R(e1, e2)e2 = (κ+ λµ)e1,

R(e1, e3)e1 = (−κ+ λµ)e3, R(e− 1, e3)e3 = (κ− λµ)e1,

R(e2, e3)e2 = (κ+ µ− 2λ3)e3, R(e2, e3)e3 = −(κ+ µ− 2λ3)e2.

Therefore, M is a generalized (κ, µ)-space with κ, µ not constant. As a contact

metric generalized (κ, µ)-space is a generalized (κ, µ)-space form with κ = f1− f3

and µ = f4 − f6 (Theorem 4.1 (Carriazo et al., 2013)), the manifold under

consideration is a generalized (κ, µ)-space form M3(f1, 0, f3, f4, 0, 0) where

f1 = −3 +
2

x23
+

1

x43
+

2

x63
,

f3 = −4 +
2

x23
+

2

x43
+

2

x63

f4 = 2(1− 1

x23
).

Next we obtain the non-vanishing components of Q̃-curvature tensor for arbitrary
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function v as follows:

Q̃(e1, e2)e1 = −(κ+ λµ− v

2
)e2, Q̃(e1, e2)e2 = (κ+ λµ− v

2
)e1,

Q̃(e1, e3)e1 = (−κ+ λµ+
v

2
)e3, Q̃(e1, e3)e3 = (κ− λµ− v

2
)e1,

Q̃(e2, e3)e2 = (κ+ µ− 2λ3 +
v

2
)e3, Q̃(e2, e3)e3 = −(κ+ µ− 2λ3 +

v

2
)e2.

From the above equations we see that Q̃(X, Y )e1 = 0 for all X, Y on M if and

only if v = 2(1− 1
x43
) and x23 = 1. Hence, Theorem 2.12 is verified.

Example 2.2. Alegre et al. (2004) showed that the warped product R×f Cm with

f1 = −(f ′)2

f 2
, f2 = 0, f3 = −(f ′)2

f 2
+
f ′′

f
,

is a generalized Sasakian space form. Since every generalized Sasakian space form

is a particular case of generalized (κ, µ)-space form, R×f Cm with f1, f2, f3 define

as above and f4 = f5 = f6 = 0 is a generalized (κ, µ)-space form.

2.3 On almost pseudo semiconformally symmet-

ric manifold

A Riemannian manifold (Mn, g) of dimension n ≥ 4 is said to be pseudo

semiconformally symmetric (Kim, 2017) if its semiconformal curvature tensor P

of type (0, 4) satisfies the relation

(∇EP )(X, Y,W, V ) = 2A(E)P (X, Y,W, V ) + A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) + A(W )P (X, Y,E, V )

+ A(V )P (X, Y,W,E). (2.79)

J.P. Singh, M. Khatri (2020), On almost pseudo semiconformally symmetric manifold,
Differ. Geom.-Dyn. Syst., 22, 233-253.
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for all vector fields X, Y,W, V and E on M . Extending the notion of pseudo

semiconformally symmetric manifold we introduced a type of non-flat Riemannian

manifold (Mn, g), (n ≥ 4) whose semiconformal curvature tensor P of type (0, 4)

satisfies the condition

(∇EP )(X, Y,W, V ) = [A(E) +B(E)]P (X, Y,W, V ) + A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) + A(W )P (X, Y,E, V )

+ A(V )R(X, Y,W,E), (2.80)

where A and B are non-zero 1-forms and are called the associated 1-forms.

2.3.1 Preliminaries

In this subsection, we will derive some formulas, which we will be using in

the study of A(PSCS)n throughout this subsection. Let {ei} be an orthonormal

basis of the tangent space at each point of the manifold where 1 ≤ i ≤ n.

Now from equation (1.25), we have

n∑

i=1

P (X, Y, ei, ei) = 0 =
n∑

i=1

P (ei, ei, X, Y ), (2.81)

and,

n∑

i=1

P (ei, Y,W, ei) =
n∑

i=1

P (Y, ei, ei,W ) = −{a+ (n− 2)b}r
(n− 2)

g(Y,W ), (2.82)

where, r =
∑n

i=1 S(ei, ei) is the scalar curvature.
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Making use of equation (1.25) we obtain the following relations:

(i) P (X, Y,W, V ) = −P (Y,X,W, V ),

(ii) P (X, Y,W, V ) = −P (X, Y, V,W ),

(iii) P (X, Y,W, V ) = P (W,V,X, Y ),

(iv) P (X, Y,W, V ) + P (Y,W,X, V ) + P (W,X, Y, V ) = 0. (2.83)

2.3.2 An A(PSCS)n, (n ≥ 4) with non-zero constant scalar

curvature and Codazzi type of Ricci tensor

Theorem 2.19. In A(PSCS)n, (n ≥ 4) the scalar curvature is a non-zero con-

stant if and only if (4 + n)A(E) + nB(E) = 0, provided [a+ (n− 2)b] ̸= 0.

Proof. Taking the covariant derivative of equation (1.25) with respect to E we

get,

a(∇ER)(X, Y,W, V ) = (∇EP )(X, Y,W, V ) +
a

(n− 2)

{
(∇ES)(Y,W )g(X, V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X, V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+
b dr(E)

(n− 1)

{
g(Y,W )g(X, V )

− g(X,W )g(Y, V )

}
. (2.84)

Inserting equation (2.80) in equation (2.84) we obtain,

a(∇ER)(X, Y,W, V ) = [A(E) +B(E)]P (X, Y,W, V ) + A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) + A(W )P (X, Y,E, V )

+ A(V )R(X, Y,W,E) +
a

(n− 2)

{
(∇ES)(Y,W )g(X, V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X, V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+
b dr(E)

(n− 1)

{
g(Y,W )g(X, V )

− g(X,W )g(Y, V )

}
. (2.85)
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Putting X = V = ei, (i = 1, 2, ..., n) and λ =
{a+ (n− 2)b}r

(n− 2)
in equation (2.85),

we obtain

a(∇ES)(Y,W ) = [A(E) +B(E)]
[
−λrg(Y,W )

]
+ A(P̃ (E, Y )W )

+ A(Y )
[
−λrg(E,W )

]
+ A(W )

[
−λrg(Y,E)

]
− A(P̃ (W,E)Y )

+
a

(n− 2)

[
n(∇ES)(Y,W )− (∇ES)(W,Y ) + dr(E)g(Y,W )

− (∇ES)(Y,W )
]
+ b dr(E)g(Y,W ). (2.86)

Contracting over Y and W in equation (2.86), the above equation reduces to

n[a+ (n− 2)b] dr(E) = [a+ (n− 2)b]r[(4 + n)A(E) + nB(E)]. (2.87)

Assuming [a+ (n− 2)b] ̸= 0, then equation (2.87) reduces to

n dr(E) = r[(4 + n)A(E) + nB(E)]. (2.88)

Clearly if [(4 + n)A(E) + nB(E)] = 0 then r is a non-zero constant.

Conversely, if r is a non-zero constant then [(4 + n)A(E) + nB(E)] = 0.

This completes the proof.

Theorem 2.20. In A(PSCS)n, if the semiconformal curvature tensor P satisfies

Bianchi’s second identity then A(PSCS)n reduces to a pseudo semiconformally

symmetric manifold, provided [a+ (n− 2)b] ̸= 0 and r ̸= 0.

Proof. Suppose that the semiconformal tensor P in A(PSCS)n satisfies Bianchi’s

second identity. Then making use of equation (2.80), we get

[B(E)− A(E)]P (X, Y,W, V ) + [B(X)− A(X)]P (Y,E,W, V )

+[B(Y )− A(Y )]P (E,X,W, V ) = 0. (2.89)

Let Q(E) = B(E)− A(E) and ρ1 be a basic vector such that

g(E, ρ1) = Q(E), (2.90)
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for all E. Equation (2.89) with the help of equation (2.90) may be written as

Q(E)P (X, Y,W, V ) +Q(X)P (Y,E,W, V ) +Q(Y )P (E,X,W, V ) = 0. (2.91)

Putting X = V = ei in equation (2.91), the above equation reduces to

Q(E)

{
− [a+ (n− 2)b]r

(n− 2)
g(Y,W )

}
+Q(P̃ (Y,E)W )

−Q(Y )

{
− [a+ (n− 2)b]r

(n− 2)
g(E,W )

}
= 0, (2.92)

and contracting over Y and W , we infer

[a+ (n− 2)b]rQ(E) = 0. (2.93)

Suppose r ̸= 0 and [a+ (n− 2)b] ̸= 0 in above equation implies Q(E) = 0.

This completes the proof.

Theorem 2.21. If A(PSCS)n satisfies Bianchi’s second identity then the scalar

curvature is constant provided [a+ (n− 2)b] ̸= 0.

Proof. Suppose A(PSCS)n satisfies Bianchi’s second identity. Then, from equa-

tion (1.25), we obtain

a

(n− 2)

{
(∇ES)(Y,W )g(X, V )− (∇ES)(X,W )g(Y, V ) + (∇ES)(X, V )g(Y,W )

− (∇ES)(Y, V )g(X,W ) + (∇XS)(E,W )g(Y, V )− (∇XS)(Y,W )g(E, V )

+ (∇XS)(Y, V )g(E,W )− (∇XS)(E, V )g(Y,W ) + (∇Y S)(X,W )g(E, V )

− (∇Y S)(E,W )g(X, V )− (∇Y S)(X, V )g(E,W ) + (∇Y S)(E, V )g(X,W )

}

+
b

(n− 1)

{
dr(E){g(Y,W )g(X, V )− g(X,W )g(Y, V )}

+ dr(X){g(E,W )g(Y, V )− g(Y,W )g(E, V )}

+ dr(Y ){g(X,W )g(E, V )− g(E,W )g(X, V )}
}

= 0. (2.94)
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Contracting equation (2.94) over Y and W , the equation reduces to

a

(n− 2)

[
1

2
dr(E)g(X, V ) + (n− 2)(∇ES)(X, V ) + (2− n)(∇XS)(E, V )

−1

2
dr(X)g(E, V )− (∇ES)(X, V ) + (∇XS)(E, V )

]
+ bg(X, V )dr(E)

−bg(E, V )dr(X) +
b

(n− 1)

[
dr(X)g(E, V )− dr(E)g(X, V )

]
= 0. (2.95)

Substituting X = V = ei in equation (2.95) yields

[a+ (n− 2)b] dr(E) = 0. (2.96)

This completes the proof.

2.3.3 Ricci Symmetric A(PSCS)n, (n ≥ 4) and Ricci-recurrent

A(PSCS)n, (n ≥ 4).

Theorem 2.22. In a Ricci symmetric A(PSCS)n, (n ≥ 4), Bianchi’s second

identity holds for semiconformal curvature tensor.

Proof. Since A(PSCS)n is Ricci symmetric, the Ricci tensor S satisfies the con-

dition

∇S = 0

and dr = 0.

Using this, we have

(∇EP )(X, Y,W, V ) = a(∇ER)(X, Y,W, V ).

Hence,

(∇EP )(X, Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) =

a[(∇ER)(X, Y,W, V ) + (∇XR)(Y,E,W, V ) + (∇YR)(E,X,W, V )], (2.97)
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implies,

(∇EP )(X, Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) = 0. (2.98)

Hence, the theorem is proved.

Theorem 2.23. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the vector fields cor-

responding to the 1-forms A and B are in opposite direction, provided r ̸= 0 and

[a+ (n− 2)b] ̸= 0.

Proof. Contracting equation (2.80) over E, we get

(divP̃ )(X, Y )W = A(P̃ (X, Y )W ) +B(P̃ (X, Y )W )

− A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W )

+ A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) + A(P̃ (X, Y )W ). (2.99)

Moreover we have,

(divP̃ )(X, Y )W =
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}

−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
. (2.100)

Combining equations (2.99) and (2.100), the above equations reduces to

A(P̃ (X, Y )W ) +B(P̃ (X, Y )W )− A(X)

{
[a+ (n− 2)b]r

(n− 2)

}

g(Y,W ) + A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) + A(P̃ (X, Y )W )

=
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}

−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
. (2.101)
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Suppose the manifold is Ricci symmetric, then equation (2.101) becomes

2A(P̃ (X, Y )W ) +B(P̃ (X, Y )W )− A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W )

+ A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) = 0. (2.102)

Inserting Y = W = ei in equation (2.102) and taking summation over 1 ≤ i ≤ n,

we obtain

[a+ (n− 2)b]r[(n+ 1)A(X) +B(X)] = 0. (2.103)

If r ̸= 0 and [a+(n−2)b] ̸= 0, then above equation gives B(X) = −(n+1)A(X).

Therefore, this led to the statement of the above theorem.

Corollary 2.8. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the scalar curvature

vanishes if [(n+ 1)A(X) +B(X)] ̸= 0, provided [a+ (n− 2)b] ̸= 0.

Theorem 2.24. In a Ricci-recurrent A(PSCS)n, (n ≥ 4), if the scalar curvature

is non-zero and [a+ (n− 2)b] ̸= 0, then H̃(E) = 3A(E) +B(E), for all E.

Proof. Equation (1.25) making use of (2.80) results in the following

[A(E) +B(E)]P (X, Y,W, V ) + A(X)P (E, Y,W, V ) + A(Y )P (X,E,W, V )

+ A(W )P (X, Y,E, V ) + A(V )R(X, Y,W,E) = a(∇ER)(X, Y,W, V )

− a

(n− 2)

{
(∇ES)(Y,W )g(X, V )− (∇ES)(X,W )g(Y, V )

+ (∇ES)(X, V )g(Y,W )− (∇ES)(Y, V )g(X,W )

}

− b dr(E)

(n− 1)

{
g(Y,W )g(X, V )− g(X,W )g(Y, V )

}
. (2.104)

Now, contracting the above equation yields

dr(E) = rH̃(E). (2.105)
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The use of equation (2.105) in equation (2.104) gives

[A(E) +B(E)]P (X, Y,W, V ) + A(X)P (E, Y,W, V ) + A(Y )P (X,E,W, V )

+ A(W )P (X, Y,E, V ) + A(V )R(X, Y,W,E) = a(∇ER)(X, Y,W, V )

− a

(n− 2)

{
S(Y,W )g(X, V )− S(X,W )g(Y, V )

+ S(X, V )g(Y,W )− S(Y, V )g(X,W )

}
H(E)

− brH̃(E)

(n− 1)

{
g(Y,W )g(X, V )− g(X,W )g(Y, V )

}
. (2.106)

Putting X = V = ei in equation (2.106), we get

[A(E) +B(E)]

{
− [a+ (n− 2)b]r

(n− 2)

}
g(Y,W ) + A(P̃ (E, Y )W )

− A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(E,W )− A(W )

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,E)

− A(P̃ (W,E)Y ) = −r
{
[a+ (n− 2)b]

(n− 2)

}
g(Y,W )H̃(E). (2.107)

Moreover, inserting Y = W = ei in equation (2.107), the above equation becomes

[(n+ 4)A(E) + nB(E)] = nH̃(E). (2.108)

Similarly, taking E = Y = ei in equation (2.107) gives,

(1 + n)A(W ) +B(W ) = H̃(W ), (2.109)

and replacing W = E in the above equation, we get

(1 + n)A(E) +B(E) = H̃(E). (2.110)

Again, contracting the equation (2.107) over E and W , we infer

(n+ 1)A(Y ) +B(Y ) = H̃(Y ). (2.111)
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Substituting Y = E in equation (2.111) gives

(1 + n)A(E) +B(E) = H̃(E). (2.112)

Combining equations (2.108),(2.110) and (2.112), we obtain

H̃(E) = 3A(E) +B(E). (2.113)

Hence, H̃(E) = 3A(E) +B(E) provided r ̸= 0 and [a+ (n− 2)b] ̸= 0.

2.3.4 Decomposition of A(PSCS)n, (n ≥ 4)

A Riemannian manifold (Mn, g) is said to be decomposable or a product

manifold (Schouten, 1954) if it can be written as Mp
1 ×Mn−p

2 for 2 ≤ p ≤ (n−2),

that is, in some coordinate neighborhood of the Riemannian manifold (Mn, g)

the metric can be expressed as

ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ, (2.114)

where ḡab are functions of x1, x2, ..., xp denoted by x̄ and g∗αβ are functions of

xp+1, xp+2, ..., xn denoted by x∗ : a, b, c, ...run from 1 to p and α, β, γ, ...., run from

p+1 to n. In (2.114), ḡab and g
∗
αβ are the matrices ofMp

1 (p ≥ 2) andMn−p
2 (n−p ≥

2) respectively, which are called the components of the decomposable manifold

Mn =Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).

We will assume throughout this section that all objects indicated by a ‘bar’

belong to M1 and all objects indicated by a ‘star’ belongs to M2.

Let Ē, X̄, Ȳ , W̄ , V̄ ∈ χ(M1) and E∗, X∗, Y ∗,W ∗, V ∗ ∈ χ(M2). Then in a

decomposable Riemannian manifold Mn = Mp
1 × Mn−p

2 (2 ≤ p ≤ n − 2), the
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following relations hold

R(E∗, X̄, Ȳ , W̄ ) = 0 = R(Ē,X∗, Ȳ ,W ∗) = R(Ē,X∗, Y ∗,W ∗),

(∇E∗R)(X̄, Ȳ , W̄ , V̄ ) = 0 = (∇ĒR)(X̄, Y
∗, W̄ , V ∗) = (∇E∗R)(X̄, Y ∗, W̄ , V ∗),

R(Ē, X̄, Ȳ , W̄ ) = R̄(Ē, X̄, Ȳ , W̄ );R(E∗, X∗, Y ∗,W ∗) = R∗(E∗, X∗, Y ∗,W ∗),

S(Ē, X̄) = S̄(Ē, X̄);S(E∗, X∗) = S∗(E∗, X∗),

(∇ĒS)(X̄, Ȳ ) = (∇̄ĒS)(X̄, Ȳ ); (∇E∗S)(X∗, Y ∗) = (∇∗
E∗S)(X∗, Y ∗),

(2.115)

where r̄,r∗ and r are scalar curvature ofM1,M2 andM respectively and are related

as r = r̄ + r∗. Also S(Ē,X∗) = 0 and g(Ē,X∗) = 0.

Theorem 2.25. Let an A(PSCS)n be a decomposable space such that Mn =

Mp
1 ×Mn−p

2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 on M2, the manifold M2 is Ricci symmetric and

scalar curvature r∗ is constant in M2, provided dr̄(E
∗) = 0 and

a(n− p− 2)

(n− 2)
̸=

bp(n− p)

(n− 1)
.

ii) when M1 is semiconformally flat, then M1 is an Einstein manifold.

Proof. Let us consider a Riemannian manifold (Mn, g) which is a decomposable

A(PSCS)n, then

Mn =Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).
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Now from equation (1.25), we obtain

P (X∗, Ȳ , W̄ , V̄ ) = 0 = P (X̄, Y ∗,W ∗, V ∗)

= P (X̄, Y ∗, W̄ , V̄ ) = P (X̄, Ȳ ,W ∗, V̄ );

P (X∗, Ȳ , W̄ , V ∗) = − a

(n− 2)

[
S(Ȳ , W̄ )g(X∗,W ∗) + S(X∗, V ∗)g(Ȳ , W̄ )

]

− rb

(n− 1)

[
g(Ȳ , W̄ )g(X∗, V ∗)

]
;

P (X∗, Y ∗, W̄ , V̄ ) = 0 = P (X̄, Ȳ ,W ∗, V ∗);

P (X∗, Ȳ ,W∗, V̄ ) =
a

(n− 2)

[
S(Ȳ , V̄ )g(X∗,W ∗) + S(X∗,W ∗)g(Ȳ , V̄ )

]

+
rb

(n− 1)

[
g(Ȳ , V̄ )g(X∗,W ∗)

]
.

Further simplifying the above equation, we get

(∇ĒP )(X̄, Ȳ , W̄ , V̄ ) = [A(Ē) +B(Ē)]P (X̄, Ȳ , W̄ , V̄ )

+A(X̄)P (Ē, Ȳ , W̄ , V̄ ) + A(Ȳ )P (X̄, Ē, W̄ , V̄ )

+A(W̄ )P (X̄, Ȳ , Ē, V̄ ) + A(V̄ )P (X̄, Ȳ , W̄ , Ē). (2.116)

Putting X̄ = X∗ in equation (2.116) gives

A(X∗)P (Ē, Ȳ , W̄ , V̄ ) = 0. (2.117)

Also, inserting Ē = E∗ in equation (2.116), we have

[A(E∗) +B(E∗)]P (X̄, Ȳ , W̄ , V̄ ) = 0. (2.118)

Similarly inserting Ē = E∗ and X̄ = X∗ in equation (2.116), we infer

A(W̄ )P (X∗, Ȳ , E∗, V̄ ) + A(V̄ )P (X∗, Ȳ , W̄ , E∗) = 0. (2.119)

Putting Ē = E∗ and W̄ = W ∗ in equation (2.116), we get

A(X̄)P (E∗, Ȳ ,W ∗, V̄ ) + A(Ȳ )P (X̄, E∗,W ∗, V̄ ) = 0. (2.120)
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And, taking X̄ = X∗, Ȳ = Y ∗ and W̄ = W ∗ in equation (2.116) results in

A(X∗)P (Ē, Y ∗,W ∗, V̄ ) + A(Y ∗)P (X∗, Ē,W ∗, V̄ ) = 0. (2.121)

Substituting Ȳ = Y ∗, W̄ = W ∗ and V̄ = V ∗ in equation (2.116), we have

A(W ∗)P (X̄, Y ∗, Ē, V ∗) + A(V ∗)P (X̄, Y ∗,W ∗, Ē) = 0. (2.122)

Moreover, using equation (1.25) gives

(∇E∗P )(X∗, Y ∗,W ∗, V ∗) = [A(E∗) +B(E∗)]P (X∗, Y ∗,W ∗, V ∗)

+A(X∗)P (E∗, Y ∗,W ∗, V ∗) + A(Y ∗)P (X∗, E∗,W ∗, V ∗)

+A(W ∗)P (X∗, Y ∗, E∗, V ∗) + A(V ∗)P (X∗, Y ∗,W ∗, E∗). (2.123)

From equation (2.123), we obtain

[A(Ē +B(Ē)]P (X∗, Y ∗,W ∗, V ∗) = 0, (2.124)

and,

A(X̄)P (E∗, Y ∗,W ∗, V ∗) = 0. (2.125)

Putting Ē = E∗, X̄ = X∗ and V̄ = V ∗ in equation (2.116) gives

(∇E∗P )(X∗, Ȳ , W̄ , V ∗) = [A(E∗) +B(E∗)]P (X∗, Ȳ , W̄ , V ∗)

+A(X∗)P (E∗, Ȳ , W̄ , V ∗) + A(V ∗)P (X∗, Ȳ , W̄ , E∗). (2.126)

Similarly, putting E∗ = Ē,X∗ = X̄ and V ∗ = V̄ in equation (2.123) gives

(∇ĒP )(X̄, Y
∗,W ∗, V̄ ) = [A(Ē) +B(Ē)]P (X̄, Y ∗,W ∗, V̄ )

+A(X̄)P (Ē, Y ∗,W ∗, V̄ ) + A(V̄ )P (X̄, Y ∗,W ∗, Ē). (2.127)
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In regard to equations (2.117) and (2.118), we have the following two cases:

i) A = B = 0onM2.

ii) M1 is semiconformally flat.

First, we consider the case (i). Then, equation (2.126) becomes

(∇E∗P )(X∗, Ȳ , W̄ , V ∗) = 0, (2.128)

implies,

a(∇E∗R)(X∗, Ȳ , W̄ , V ∗)− a

(n− 2)
(∇E∗S)(X∗, V ∗)g(Ȳ , W̄ )

−b dr(E
∗)

(n− 1)
g(Ȳ , W̄ )g(X∗, V ∗) = 0. (2.129)

Now, Putting Ȳ = W̄ = ēα, 1 ≤ α ≤ p in equation (2.129), we get

a(n− p− 2)

(n− 2)
(∇E∗S)(X∗, V ∗)− b dr(E∗)

(n− 1)
pg(X∗, V ∗) = 0. (2.130)

Also, taking X∗ = V ∗ = e∗i , p+ 1 ≤ i ≤ n in equation (2.130) gives

a(n− p− 2)

(n− 2)
dr∗(E∗)− bp(n− p)

(n− 1)
dr(E∗) = 0. (2.131)

If possible let dr̄(E∗) = 0. The equation (2.131) becomes

[
a(n− p− 2)

(n− 2)
− bp(n− p)

(n− 1)

]
dr∗(E∗) = 0. (2.132)

Thus r∗ is constant in M2 provided,
a(n− p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
. Then from equa-

tion (2.130), we get

(∇E∗S)(X∗, V ∗) = 0.

Therefore, M2 is Ricci symmetric.
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Secondly, we will consider case (ii). Since M1 is semiconformally flat, we get

aR(X̄, Ȳ , W̄ , V̄ )− a

(n− 2)

[
S(Ȳ , W̄ )g(X̄, V̄ )− S(X̄, W̄ )g(Ȳ , V̄ )

+ S(X̄, V̄ )g(Ȳ , W̄ )− S(Ȳ , V̄ )g(X̄, W̄ )
]

− br

(n− 1)

[
g(Ȳ , W̄ )g(X̄, V̄ )− g(X̄, W̄ )g(Ȳ , V̄ )

]
= 0. (2.133)

Putting X̄ = V̄ = ēα in equation (2.133), the above equation becomes

S(Ȳ , W̄ ) =

[
ar̄(n− 1) + br(p− 1)(n− 2)

a(n− p− 2)

]
g(Ȳ , W̄ ). (2.134)

Therefore, M1 is an Einstein manifold.

Hence, this completes the theorem.

Theorem 2.26. Let an A(PSCS)n be a decomposable space such that Mn =

Mp
1 ×Mn−p

2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 onM1, the manifoldM1 is Ricci symmetric and scalar

curvature r̄ is constant in M1, provided dr
∗(Ē) = 0 and

a(p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
.

ii) when M2 is semiconformally flat, then M2 is an Einstein manifold.

Proof. Making use of equations (2.124) and (2.125), we get the following two

cases:

i) A = B = 0onM1.

ii) M2 is semiconformally flat.

Proceeding in a similar manner as in Theorem 6.1,

Hence, we will obtain the required result.

Corollary 2.9. If A(PSCS)n is a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n−2), then one of the decomposed manifold is semiconformally

flat while on other manifold both the associate 1-form A and B vanishes.
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2.3.5 Examples of A(PSCS)4

In this subsection, we have constructed two examples of an A(PSCS)4 on

coordinate space R4 (with coordinates(x1, x2, x3, x4)) and obtain all the non-

vanishing components of the curvature tensor, the Ricci tensor, the scalar curva-

ture and the semiconformal curvature tensor along with its covariant derivatives.

Then we verified the relation (2.80).

Example 2.3. Let us consider a Riemannian metric g defined on 4-dimensional

manifold M4 = {(x1, x2, x3, x4) ∈ R4 : x1 ̸= −1} given by

ds2 = (x1 + 1)(x4)2(dx1)2 + 2dx1dx2 + (dx3)2 + (dx4)2. (2.135)

A similar Riemannian metric g is given by De and Gazi (2009).

Then the covariant and contravariant components of the metric are as follows

g11 = (x1 + 1)(x4)2, g12 = g21 = 1, g33 = g44 = 1

g11 = 0, g12 = g21 = 1, g33 = g44 = 1, g22 = −(x1 + 1)(x4)2 (2.136)

All non-vanishing components of the Christoffel symbols and the curvature tensor

in the considered metric are as follows:

Γ4
11 = −(x1 + 1)(x4),Γ2

11 =
1

2
(x4)2,Γ2

14 = (x1 + 1)(x4)

R1441 = (x1 + 1) (2.137)

From equations (2.136) and (2.137), the non-vanishing components of Ricci ten-

sor are

S11 = x1 + 1. (2.138)

The scalar curvature of the metric considered is given by,

r = 0. (2.139)
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The only non-vanishing components of the semiconformal curvature tensor

are

P1441 =
a

2
(x1 + 1) ̸= 0. (2.140)

Clearly, the only non-vanishing term of ∇lPhijk are

∇1P1441 =
a

2
̸= 0. (2.141)

In term of the local coordinate system, let us define the components of the 1-form

A and B as

Ai =





1

6(x1 + 1)
for i = 1

0, otherwise

and,

Bi =





1

2(x1 + 1)
for i = 1

0 , otherwise

(2.142)

at any point in M4.

In (M4, g) the considered 1-form reduces the equation (2.80) in the following

equations

∇1P1441 = (3A1 +B1)P1441 + A4P1141 + A4P1411. (2.143)

∇4P1141 = [A4 +B4]P1141 + A1P4141 + A1P1441 + A4P1141 + A1P1144. (2.144)

∇4P1411 = [A4 +B4]P1411 + A1P4411 + A4P1411 + A1P1441 + A1P1414. (2.145)

In all other cases excluding (2.143),(2.144), and (2.145), the relation (2.80) either

holds trivially or the components of each term vanish identically.
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By (2.142), we get

RHS of (2.143) = (3A1 +B1)P1441 + A4P1141 + A4P1411

=

[
3

6(x1 + 1)
+

1

2(x1 + 1)

]
a

2
(x1 + 1)

=
a

4
+
a

4

=
a

2

= ∇1P1441

= LHS of (2.143). (2.146)

By proceeding in a similar manner, it can be shown that the equations (2.144)

and (2.145) are also true.

Thus, (M4, g) is an A(PSCS)4.

Example 2.4. Let us consider a Riemannian metric g defined on 4-dimensional

manifold M4 = (x1, x2, x3, x4) ∈ R4 given by

ds2 = (1 + 2q)[(dx1)2 + (dx2)2] + (dx3)2 + (dx4)2, (2.147)

where q =
ex

1

k2
, where k is a non-zero constant.

Then the covariant and contravariant components of the metric are as follows:

g11 = g22 = 1 + 2q, g33 = g44 = 1

g11 = g22 =
1

1 + 2q
, g33 = g44 = 1 (2.148)

All the non-vanishing components of the Christoffel symbols and the curvature

tensor in the considered metric are

Γ1
11 = Γ2

12 =
q

1 + 2q
, Γ1

22 = − q

1 + 2q

R1221 =
q

1 + 2q
(2.149)
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By (2.148) and (2.149), the non-vanishing components of the Ricci tensor are

S11 =
q

(1 + 2q)2
. (2.150)

The Scalar curvature is given by

r = gijSij = g11S11 + g22S22 + g33S33 + g44S44

=
q

(1 + 2q)3
. (2.151)

The only non-vanishing components of semiconformal curvature tensors are

P1221 =
q

1 + 2q

{
a

2
− b

3

}
. (2.152)

From equation (2.152), it can be shown that only non-zero terms of ∇lPhijk are

∇1P1221 =
1

(1 + 2q)2

{
a

2
− b

3

}
, (2.153)

and all other components of ∇lPhijk vanish identically.

In terms of the local coordinate system, let us consider the components of the

1-form A and B as

Ai =





1

6q(1 + 2q)
for i = 1

0, otherwise

and,

Bi =





1

2q(1 + 2q)
for i = 1

0 , otherwise

(2.154)

at any point in M4.

In (M4, g), the considered 1-form reduces equation (2.80) into the following equa-

tions

∇1P1221 = (3A1 +B1)P1221 + A2P1121 + A2P1211. (2.155)

77



Chapter 2

∇2P1121 = (A2 +B2)P1121 + A1P2121 + A1P1221 + A2P1121 + A1P1122. (2.156)

∇2P1211 = [A2 +B2]P1211 + A1P2211 + A2P1211 + A1P1221 + A1P1212. (2.157)

The relation (2.80) either holds trivially or the components of each term vanishes

identically excluding the above cases.

By (2.155) we get

RHS of (2.155) = (3A1 +B1)P1221 + A2P1121 + A2P1211.

=

[
3

6q(1 + 2q)
+

1

2q(1 + 2q)

]
q

(1 + 2q)

{
a

2
− b

3

}

=
1

(1 + 2q)2

{
a

2
− b

3

}

= ∇1P1221

= LHS of (2.155). (2.158)

By proceeding similarly it can be shown that the equations (2.156) and (2.157)

also holds.

Thus, (M4, g) is an A(PSCS)4.
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Chapter 3

Properties of Generalized

m-quasi-Einstein Structure

This chapter is divided into two sections. First section is devoted to the study

of generalizedm-quasi-Einstein metric on certain almost contact manifolds and in

the section, almost Kenmotsu manifolds admitting generalized m-quasi-Einstein

structure are considered.

3.1 Generalized m-quasi-Einstein metric on cer-

tain almost contact manifolds

Firstly, we will give some examples of generalizedm-quasi-Einstein structures.

Example 3.1. On a standard unit sphere (Sn, g0), n ≥ 2, considering the function

f = −m In(τ − hv
n
), where τ is a real parameter lying in (1/n,+∞) and hv is

some height function. Then considering λ = (n−1)−m τ−u
u
, we find that (Sn, g0)

admits generalized m-quasi-Einstein metric. For details, see (Barros and Ribeiro,

2014).

J.P. Singh, M. Khatri (2022), Generalizedm-quasi-Einstein metric on certain almost contact
manifolds, Filomat,(Accepted).
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Example 3.2. On the Euclidean space (Rn, g0), n ≥ 2 together with function

f = −m In(τ + |x|2), where τ is a positive real perimeter and |x| is the Euclidean

norm of x, we see that u = e−
f
m = τ + |x|2 and considering λ = −2m

u
, it admits

generalized m-quasi-Einstein structure (Barros and Ribeiro, 2014).

Next, we will construct an example in a warped product manifold. Let us

consider M = R×σ N
n−1 with the product metric g = dt2 + σ2(t)g0, where g0 is

a fixed metric in Nn−1 and σ is a positive function on R.

Example 3.3. For a positive m ∈ R, let us assume,

f(x, t) = f(t) = m(t− et), σ(t) = e−t

Inserting the value of σ in Eq. 2.3, 2.4 (Wang, 2011) together with the assumption

that Nn−1 is a Ricci flat manifold we get

S +∇2f − 1

m
df ⊗ df = λg,

where λ = et(et + 2 − m) − n. Hence M admits generalized m-quasi-Einstein

metric.

Example 3.4. Consider a Hyperbolic space Hn(−1) ⊂ Rn+1 : ⟨x, x⟩0 = −1,.

Now, consider a height function hv : Hn(−1) → R given by hv(X) = ⟨x, v⟩0 for

a fixed point v ∈ Hn(−1). Let us assume u = e−
f
m = τ + hv, τ > −1, then

Hn(−1) admits generalized m-quasi-Einstein metric for λ = −(n − 1) − m τ−u
u
.

For details, see (Barros and Ribeiro, 2014).

Ghosh (2019a) on H-contact manifold proved, “Let M2n+1(φ, ξ, η, g) be an

H-contact manifold. If g represents an m-quasi-Einstein metric with non-zero

potential vector field V collinear with ξ, then M is K-contact and η-Einstein.”

Generalizing this we prove the following result.
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Theorem 3.1. Let M2n+1(φ, ξ, η, g) be an H-contact manifold. If g represents a

generalizedm-quasi-Einstein metric with non-zero potential vector field V collinear

with ξ, then M is K-contact and η-Einstein. Moreover, λ is constant.

Proof. A potential vector field V collinear with Reeb vector field ξ implies V = σξ,

for some smooth function σ on M . Differentiating this along any X ∈ χ(M) we

get

∇XV = X(σ)ξ − σ(φX + φhX). (3.1)

In consequence of (3.1), Eq. (1.50) reduces to the following

X(σ)η(Y ) + Y (σ)η(X)− 2σg(φhX, Y )

+2S(X, Y )− 2

m
σ2η(X)η(Y ) = 2λg(X, Y ), (3.2)

for any X, Y ∈ χ(M). Replacing X and Y by ξ in (3.2) and using (1.13) yields

ξσ + Tr.ℓ− σ2

m
= λ. (3.3)

Putting Y = ξ in (3.2) and using (3.3) we obtain

Qξ − (Tr.ℓ)ξ = −1

2
{Dσ − (ξσ)ξ}. (3.4)

Moreover, contracting (3.2) we obtain the following result

ξσ + r − σ2

m
= (2n+ 1)λ. (3.5)

By hypothesis, H-contactness implies ξ is an eigenvector of the Ricci operator

at each point of M i.e. Qξ = (Tr.ℓ)ξ. Making use of this in (3.4), we get

Dσ = (ξσ)ξ. By Lemma 1 (Patra, 2021), σ is constant onM . Then (3.2) reduces

to

QX = −σhφX +
σ2

m
η(X)ξ + λX, (3.6)
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for any X ∈ χ(M). Differentiating (3.6) along arbitrary Y ∈ χ(M) and using

(1.11) we obtain

(∇YQ)X = −σ(∇Y hφ)X − σ2

m
[g(X,φY + φhY )ξ

+ η(X)(φX + φhY )] + (Y λ)X. (3.7)

Contracting (3.7) over Y and making use of (1.12) gives

1

2
Xr = −σ(divhφ)X + (Xλ). (3.8)

Recalling that for any contact metric manifold div(φh)X = 2nη(X)− g(Qξ,X).

By hypothesis, since Qξ = Tr.ℓξ, we get div(φh)X = (2n−Tr.ℓ)η(X). Applying

this in the forgoing eq. (3.8) infers

1

2
Xr = σ(2n− Tr.ℓ)η(X) + (Xλ). (3.9)

Also differentiating (3.5) along X ∈ χ(M) gives Xr = (2n + 1)(Xλ). Using this

in (3.9) and replacing X by φX gives g(φX,Dλ) = 0, which implies Dλ = (ξλ)ξ.

Then by Lemma 1 (Patra, 2021), we have λ is constant and hence Xr = 0 i.e. r

is constant on M . In consequence of this (3.9) reduces to σ(2n−Tr.ℓ) = 0. Thus

either σ = 0 or Tr.ℓ = 2n. Since V is non-zero implies σ ̸= 0. Hence, Tr.ℓ = 2n

which implies the manifold is K-contact. From (3.6) we see that m is η-Einstein

i.e. QX = λX + σ2

m
η(X)ξ, where σ2

m
= λ− 2n. This completes the proof.

Boyer and Galicki (2001) studied EinsteinK-contact and η-EinsteinK-contact

manifolds. In particular, they proved that a compact Einstein K-contact is

Sasakian. This is also true for compact η-Einstein (S = αg+ βη⊗ η for constant

α, β) K-contact with α > −2. These results are also valid if one relaxes com-

pactness by completeness (Sharma, 2008). Because of the above theorem and the

Boyer-Galicki result, we can state the following:

Corollary 3.1. Let M2n+1(φ, ξ, η, g) be a complete H-contact manifold. If g ad-
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mits shrinking generalized m-quasi-Einstein metric with non-zero potential vector

field V collinear with ξ then M is compact Sasakian and η-Einstein.

Replacing H-contactness by a compact contact metric manifold and general-

izing Theorem 3 (Rovenski and Patra, 2021) we prove the following result.

Theorem 3.2. Let M2n+1(φ, ξ, η, g) be a complete contact metric manifold. If g

admits a generalized m-quasi-Einstein metric with non-zero potential vector field

collinear with ξ and ||∇(σ2) − 4
3m
σ2V + 2(2n − 1)σξλ||g ∈ L1(M, g) then M is

K-contact and η-Einstein.

Proof. By our assumption V = σξ and hence Eq. (3.1)-(3.5) are valid. Making

use of (3.1) generalized m-quasi-Einstein equation becomes

QX +
1

2
[g(X,Dσ)ξ + η(X)Dσ] +

σhφX = λX +
σ2

m
η(X)ξ. (3.10)

Differentiate (3.10) along arbitrary Y ∈ χ(M) then contracting the obtained

result along Y and taking X = ξ together with div(φh)ξ = ||h||2 we get

1

2
{ξr + ξ(ξσ) + divDσ} − σ||h||2 = 2

m
σ(ξσ) + ξλ. (3.11)

Differentiating (3.5) along ξ yields

ξr = (2n+ 1)(ξλ) +
2σ

m
(ξσ)− ξ(ξσ). (3.12)

Using convention divDσ = −∆σ and combining (3.11) and (3.12) we obtain

1

2
∆σ + σ||h||2 + σ

m
(ξσ) =

1

2
(2n− 1)(ξλ). (3.13)

In contact metric manifold divξ = 0 and hence g(Dσ, ξ) = ξσ = divV . Now

contracting the well-known formula ∇X(σ
2V ) = X(σ2)V + σ2(∇XV ) over X
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gives

div(σ2V ) = g(∇σ2, V ) + σ2divV = 3σ2ξ(σ). (3.14)

Multiplying (3.13) by σ and using (3.14) and (∆σ)σ = 1
2
∆(σ2)+||∆σ||2 we obtain

the following relation

div(∇(σ2)− 4

3m
σ2V + 2(2n− 1)σξλ) = 4σ2||h||2 + 2||∇σ||2, (3.15)

Here we have used the fact that div(ξλ) = λdivξ + ξ(λ). Applying Proposition 1

(Caminha et al., 2010), the foregoing equation (3.15) infers

2σ2||h||2 + ||∇σ||2 = 0. (3.16)

This implies ∇σ = 0 and h = 0, hence M is K-contact and σ is constant.

Moreover, from (3.10) it is η-Einstein. This completes the proof.

Using a similar argument as in Corollary 3.1, we can state the following:

Corollary 3.2. Let M2n+1(φ, ξ, η, g) be a complete contact metric manifold. If

g admits shrinking generalized m-quasi-Einstein metric with non-zero potential

vector field collinear with ξ and ||∇(σ2) − 4
3m
σ2V + 2(2n − 1)σξλ||g ∈ L1(M, g)

then M is compact Sasakian and η-Einstein.

Theorem 3.3. Let M2n+1(φ, ξ, η, g) be a complete K-contact manifold. If g

admits a closed generalized m-quasi-Einstein metric whose potential vector field

is contact then M is compact, Einstein and Sasakian. Moreover, V is strict and

λ is constant.

Proof. Taking the exterior derivative of (1.41) and by properties of Lie-derivative

we obtain

(LV dη)(X, Y ) = d(LV η)(X, Y )

=
1

2
[X(ϱ)η(Y )− Y (ϱ)η(X)] + ϱdη(X, Y ), (3.17)
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for any X, Y ∈ χ(M). Taking the Lie-derivative of dη(X, Y ) = g(X,φY ) along

V and using (3.17) gives

(LV φ)Y =
1

2
[Dϱη(Y )− Y (ϱ)ξ] + ϱφY

− 2

m
V b(φY )V + 2QφY − 2λφY. (3.18)

Replacing Y by ξ in a generalized m-quasi-Einstein equation becomes

(LV g)(X, ξ) =
2

m
V b(X)η(V )− 4nη(X) + 2λη(X), (3.19)

for any X ∈ χ(M). Combining the forgoing equation and (1.41) on the Lie-

derivative of η(X) = g(X, ξ) yields

g(X,LV ξ) = (ϱ+ 4n− 2λ)η(X)− 2

m
V b(X)η(V ), (3.20)

for all X ∈ χ(M). Replacing Y by ξ in (3.18) and making use of the fact that

φξ = 0 implies (LV φ)ξ = 0 we obtain Dϱ = ξ(ϱ)ξ. By Lemma 1 (Patra, 2021),

we see that ϱ is constant. As a consequence of this (3.18) becomes

(LV φ)Y = ϱφY − 2

m
V b(φY )V + 2QφY − 2λφY. (3.21)

On the other hand, taking Lie-derivative of g(ξ, ξ) = 1 and using (3.19) we get

λ = 2n+ ϱ− 1

m
η(V )η(V ). (3.22)

Now taking Lie-derivative of (1.9) along V we obtain

(LV φ)φX + φ(LV φ)X = (LV η)(X)ξ + η(X)LV ξ, (3.23)

for all X ∈ χ(M). Making use of (1.41), (3.20) and (3.21) in (3.23) infers

(2λ− ϱ)X +
1

m
[V b(X)V − V b(φX)φV ]

−QX + φQφX − λη(X)ξ = 0. (3.24)
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Replacing X by ξ in (3.24) and inserting (3.22) we get η(V )[V − η(V )ξ] = 0

which implies V = η(V )ξ or η(V ) = 0 i.e. V = 0. Assume V ̸= 0, then

taking derivative of V = η(V )ξ along arbitrary X ∈ χ(M) and using (1.27) gives

∇XV = g(∇XV, ξ)− η(V )φX, which implies

dV b(X, Y ) = 2η(V )g(X,φY ) + g(∇XV, ξ)η(Y )− g(∇Y V, ξ)η(X).

Replacing X by φX and Y by φY in the forgoing equation and using the fact

that V b is closed we get η(V )dη(X, Y ) = 0. Since dη is non-vanishing everywhere

on M implies η(V ) = 0, a contradiction. Hence V = 0, consequently M is

Einstein i.e. QX = λX. Making use of this in (3.24) shows ϱ = 0. Then (3.22)

implies M is Einstein with Einstein constant 2n. Suppose M is complete. Since

M is complete Einstein by Myer’s theorem (Myers, 1935) it is compact. Finally,

applying the Boyer-Gallicki (2001) theorem we can conclude that M is Sasakian.

This completes the proof.

Finally, we studied the generalized m-quasi-Einstein metric in the framework

of 3-dimensional normal almost contact metric manifold and prove the following

result.

Theorem 3.4. If a 3-dimensional normal almost contact metric manifold with

β =constant admits a generalized m-quasi-Einstein metric whose non-zero poten-

tial vector field is collinear with ξ then M3 is either η-Einstein, β-Kenmotsu or

locally the product of a Kähler manifold and an interval or unit circle S1.

Proof. In a 3-dimensional Riemannian manifold the curvature tensor is given by

(Blair, 2010)

R(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + g(QY,Z)X

−g(QX,Z)Y − r

2
{g(Y, Z)X − g(X,Z)Y }. (3.25)

By our hypothesis, V = σξ, for some smooth σ. Differentiating this and using
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(1.16), the generalized m-quasi-Einstein equation becomes

QX = (σβ +
σ2

m
)η(X)ξ + (λ− σβ)X − 1

2
[η(X)Dσ + (Xσ)ξ]. (3.26)

Inserting (3.26) in (3.25) and replacing Z by ξ gives

R(X, Y )ξ =
1

2
[(Y σ)η(X)ξ − (Xσ)η(Y )ξ] +

1

2
[(Xσ)Y − (Y σ)X]

+(
σ2

m
− ξσ

2
+ 2λ− σβ − r

2
)[η(Y )X − η(X)Y ]. (3.27)

Replacing X by φX and Y by φY in (3.27) we obtain

φX(σ)φY = φY (σ)φX. (3.28)

Taking X = Dσ in (3.28) gives φY (σ)φDσ = 0 which implies Dσ = ξ(σ)ξ.

Differentiating forgoing equation along any X ∈ χ(M) infers

(∇XDσ) = X(ξσ)ξ − α(ξσ)φX + β[X − η(X)ξ](ξσ). (3.29)

Making use of the fact that g(∇XDσ, Y ) = g(∇YDσ,X) from (3.29) we get

X(ξσ)η(Y )− Y (ξσ)η(X)− 2α(ξσ)g(φX, Y ) = 0. (3.30)

Choosing X, Y ⊥ ξ above equation reduces to α(ξσ) = 0. Therefore, either α = 0

or ξσ = 0. If α = 0 then M is either β-Kenmotsu (for β ̸= 0) or cosympletic

manifold (for β = 0). Assuming the next case when ξσ = 0, implies Dσ = 0 and

hence σ is constant. In consequence, from (3.26) we see that M is η-Einstein.

This completes the proof.

Replacing X by ξ in (3.26) and differentiating it along any Y ∈ χ(M) results

in

(∇YQ)ξ = (λ+
σ2

m
)∇Y ξ + Y (λ+

σ2

m
)ξ

−1

2
[(∇YDσ) + Y (ξσ)ξ + (ξσ)(∇Y ξ)]. (3.31)
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Contracting the foregoing (3.31) yields

1

2
ξr = 2β(λ+

σ2

m
) + ξλ+

2σ

m
(ξσ)− 1

2
[∆σ + ξ(ξσ) + 2β(ξσ)]. (3.32)

Contracting (3.26) and then differentiating the obtained result by ξ and finally

inserting it in (3.32) we obtain

1

2
∆σ = (ξλ) + (

σ

m
+ β)(ξσ) + 2β(λ+

σ2

m
+ ασ). (3.33)

For the case when α = 0 and β a non-zero constant, M is β-Kenmotsu manifold.

In a β-Kenmotsu manifold we have Qξ = −2β2ξ. Replacing X by ξ in (3.26) and

using the forgoing equation along with Dσ = (ξσ)ξ infers

ξσ = λ+
σ2

m
+ 2β2. (3.34)

Making use of the fact ∆σ = div(Dσ) = ξ(ξσ) + 2β(ξσ) and inserting (3.34) we

get

∆σ = ξλ+ 2(β +
σ

m
)(ξσ). (3.35)

Combining (3.35) and (3.33) infers

ξλ = −4β(λ+
σ2

m
). (3.36)

Now, for the second case when σ is constant, Eq. (3.33) gives

ξλ = −2β(λ+
σ2

m
+ ασ). (3.37)

Choosing λ as constant, Eq. (3.36) implies either β = 0 or λ = −σ2

m
. Assume

β ̸= 0 then σ is constant. Therefore, inserting the value of λ in (3.34) shows

β = 0, a contradiction. Hence, β = 0 and M is cosympletic. In the second case,

(1.13) implies either β = 0 or λ + σ2

m
+ ασ = 0. Fix β ̸= 0 then it is obvious

that α is a non-zero constant. Therefore M is α-Sasakian manifold and hence

has constant scalar curvature. Hence we can state the following:
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Corollary 3.3. If a 3-dimensional normal almost contact metric manifold with

β =constant admitsm-quasi-Einstein metric whose potential vector field is collinear

with ξ then M3 is locally the product of a Kähler manifold and an interval or unit

circle S1 or has constant scalar curvature. Moreover, σ is constant.

3.2 Generalizedm-quasi-Einstein structure in al-

most Kenmotsu manifolds

The goal of this section is to analyze the generalized m-quasi-Einstein struc-

ture in the context of almost Kenmotsu manifolds. Firstly we showed that a

complete Kenmotsu manifold admitting a generalized m-quasi-Einstein struc-

ture (g, f,m, λ) is locally isometric to a hyperbolic space H2n+1(−1) or a warped

product M̃ ×γ R under certain conditions. Next, we proved that a (κ, µ)′-almost

Kenmotsu manifold with h′ ̸= 0 admitting a closed generalized m-quasi-Einstein

metric is locally isometric to some warped product spaces. Finally, generalized

m-quasi-Einstein metric (g, f,m, λ) in almost Kenmotsu 3-H-manifold is consid-

ered and proved that either it is locally isometric to the hyperbolic space H3(−1)

or the Riemannian product H2(−4)× R.

3.2.1 On Kenmotsu manifold

Firstly, we construct some examples of the Kenmotsu manifold admitting

generalized m-quasi-Einstein metric.

Example 3.5. Let (N, J, g0) be a Kähler manifold of dimension 2n. Consider

the warped product (M, g) = (R×σN, dt
2+σ2g0), where t is the coordinate on R.

We set η = dt, ξ = ∂
∂t

and the tensor field φ is defined on R×σ N by φX = JX

for vector field X on N and φX = 0 if X is tangent to R. Then the warped

product R ×σ N, σ
2 = ce2t with the structure (φ, ξ, η, g) is a Kenmotsu manifold
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(Kenmotsu, 1972). In particular, if we take N = CH2n, then N being Einstein,

the Ricci tensor of M becomes S = −2ng. Further we define a smooth function

f(t) = ket, k > 0. Then it is easy to verify that (M, f, g, λ) is a generalized

m-quasi-Einstein with λ = ket

m
(m− ket)− 2n on R×σ CH2n.

Similarly, a large group of examples of generalized m-quasi-Einstein metric on

the Kenmotsu manifold can be constructed by taking different potential functions

on the warped product.

Example 3.6. Consider the warped product R×σ Hn with metric g = dt2 + σ2g0

where g0 is the standard metric on the hyperbolic space Hn (Ghosh, 2019b). Let

σ(t) = cosht, then the warped product becomes Einstein manifold with Ricci tensor

S = −ng and it admits a generalized m-quasi-Einstein structure (R×σHn, f, g, λ)

with f(x, t) = sinht and λ(x, t) = sinht− cosh2t
m

− n.

Example 3.7. LetM2n+1 = R×coshtCH2n with metric g = dt2+(cosh2t)g0, where

g0 is the standard metric on the complex hyperbolic space CH2n (Ghosh, 2019b).

Then M2n+1 becomes Einstein manifold with the Ricci tensor SM = −2ng (see

Lemma 1.1 (Pigola et al., 2011)). Consider a function f(x, t) = sinht, then

(M2n+1, f, g, λ) is a generalized m-quasi-Einstein structure if λ = sinht− cosh2t
m

−

2n.

Next, we state and proved the following result:

Theorem 3.5. If the metric of a Kenmotsu manifold M2n+1(φ, ξ, η, g) represents

a generalized m-quasi-Einstein structure (g, f,m, λ), then it is η-Einstein, pro-

vided 1 + ξ(f)
m

̸= 0. Moreover, if M2n+1 is complete and Reeb vector field ξ leaves

the scalar curvature invariant, then we have

1. If f has a critical point, thenM is isometric to the hyperbolic space H2n+1(−1).
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2. If f is without critical points, then M is isometric to the warped product

M̃ ×γ R of a complete Riemannian manifold M̃2n and the real line R with

warped function γ : R → R such that γ̈ − γ = 0, γ > 0.

Proof. From (1.50), we have

∇XDf = λX +
1

m
g(X,Df)Df −QX. (3.38)

Taking the covariant derivative of (3.38) along arbitrary vector field Y we get

∇Y∇XDf = (Y λ)X + λ(∇YX) +
1

m
{g(X,∇YDf)Df

+g(X,Df)(∇YDf)} − (∇YQ)X −Q(∇YX). (3.39)

Making use of (3.38) and (3.39) in the relation R(X, Y )Df = ∇X∇YDf −

∇Y∇XDf −∇[X,Y ]Df we obtain

R(X, Y )Df = (Xλ)Y − (Y λ)X + (∇YQ)X − (∇XQ)Y

+
λ

m
[g(Y,Df)X − g(X,Df)Y ] +

1

m
[g(X,Df)QY − g(Y,Df)QX]. (3.40)

Taking an inner product of (3.40) with ξ and using (1.30) yields

g(R(X, Y )Df, ξ) = (Xλ)η(Y )− (Y λ)η(X) + g((∇YQ)ξ,X)

−g((∇XQ)ξ, Y ) +
(λ+ 2n)

m
[g(Y,Df)η(X)− g(X,Df)η(Y )]. (3.41)

Taking an inner product of (1.29) with Df and inserting it in the last equation

(3.41) we obtain

(Xλ)η(Y )− (Y λ)η(X) + g((∇YQ)ξ,X)− g((∇XQ)ξ, Y )

+
(λ+ 2n+m)

m
[g(Y,Df)η(X)− g(X,Df)η(Y )] = 0. (3.42)

Replacing Y by ξ in (3.42) and making use of the relation (∇ξQ)Y = −2QY −4nY
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(see Lemma 2 (Ghosh, 2019b)) we get

σDf −mDλ = {σ(ξf)−m(ξλ)}ξ, (3.43)

where σ = m+ λ+ 2n. Contracting (3.40) along arbitrary vector field X gives

(m− 1)

m
S(Y,Df) =

1

2
(Y r)− 2n(Y λ) +

1

m
(2nλ− r)g(Y,Df). (3.44)

Replacing Y by ξ and using (1.30) in (3.44) we get

1

m
(2nσ − 4n2 − r − 2n)(ξf)− 2n(ξλ) +

1

2
(ξr) = 0. (3.45)

Also on the Kenmotsu manifold, we have ξr = −2(r + 2n(2n + 1)) (Lemma 2

(Ghosh, 2019b)). Inserting this in the last equation infer

2n

m
[σ(ξf)−m(ξλ)] = {r + 2n(2n+ 1)}{1 + (ξf)

m
}. (3.46)

Replacing Y by ξ in (3.40) and using the relation R(X, ξ)Y = g(X, Y )ξ−η(Y )X,

we obtain

1

m
g(X, σDf −mDλ)ξ =

(σ − 2n)

m
(ξf)X

−(ξλ)X − (1 +
ξf

m
)QX − 2nX. (3.47)

Combining (3.43), (3.46) and (3.47) we obtain the following relation

(1 +
ξf

m
)(
r

2n
+ 2n+ 1)η(X)ξ = (1 +

ξf

m
){( r

2n
+ 1)X −QX}. (3.48)

If possible take 1 + ξf
m

̸= 0. Then from the last equation we get

QX = (1 +
r

2n
)X − (

r

2n
+ 2n+ 1)η(X)ξ, (3.49)

for any vector field X on M . Therefore, M is η-Einstein.

Suppose that ξ leaves the scalar curvature r invariant i.e., ξr = 0. Conse-

quently, r = −2n(2n + 1). By virtue of this in (3.49) we get QX = −2nX, i.e.,
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M is Einstein. Inserting r = −2n(2n + 1) in (3.46) gives σ(ξf) − m(ξλ) = 0

and hence (3.43) implies Dλ = σ
m
Df . Now we consider a function u = e−

f
m on

M . Then it follows Du = − u
m
Df . Taking covariant derivative of the forgoing

expression along arbitrary vector field X we get

∇XDf − 1

m
g(X,Df)Df = −m

u
∇XDu. (3.50)

Using (3.50) along with the fact that QX = −2nX, (3.38) yields

∇XDu = −(λ+ 2n)u

m
X. (3.51)

Also we have (λ+m+2n)Df = mDλ, simplifying it gives D(λu) = −(m+2n)Du

which implies λu = −(m + 2n)u + k, k is a constant. Inserting the forgoing

relations in (3.51) we get

∇XDu = (u− k

m
)X.

Applying Kanai’s theorem (Kanai, 1983), we conclude that if f has a critical

point then M is isometric to the hyperbolic space H2n+1(−1) or if f is without

critical points then M is isometric to the warped product M̃ ×γ R of a complete

Riemannian manifold M̃2n and the real line R with warped function γ : R → R

such that γ̈ − γ = 0, γ > 0.

Remark 3.1. Suppose 1+ ξf
m

= 0 in some open set O ofM . Then ξf = −m, since

the Kenmotsu manifold is locally isometric to the warped product (−ϵ, ϵ)×cet N ,

where N is a Kähler manifold of dimension 2n and (−ϵ, ϵ) is an open interval

(Kenmotsu, 1972). Using the local parametrization: ξ = ∂
∂t

then we have ∂f
∂t

=

−m hence the potential function is f = −mt, t > 0.

Theorem 3.6. If a Kenmotsu manifold admits a non-trivial generalized m-quasi-

Einstein structure (g, V,m, λ) whose potential vector field is pointwise collinear

with the Reeb vector field ξ then it is η-Einstein.
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Proof. Suppose potential vector field V is pointwise collinear with the Reeb vector

field ξ then V = Fξ, where F is a smooth function. Differentiating covariantly

along arbitrary vector field X of V = Fξ and using (1.27) we get

∇XV = (XF )ξ + F (−φ2X − φhX). (3.52)

Inserting (3.52) in (1.50) gives

S(X, Y ) +
1

2
[(XF )η(Y ) + (Y F )η(X)] + Fg(h′X, Y )

−(
F 2

m
+ F )η(X)η(Y ) = (λ− F )g(X, Y ), (3.53)

for all vector fields X, Y . Replacing X, Y by ξ in (3.53) and using (1.9) we get

ξF = λ+ 2n+ F 2

m
. Further taking Y as ξ and using the last expression in (3.53)

we obtain

XF = (λ+
F 2

m
+ 2n)η(X). (3.54)

Contracting (3.53) and inserting in the above equation (3.54), yields

r = 2n(λ− F − 1). (3.55)

In consequence of (3.54) and (3.55) in (3.53) gives

QX = (
r

2n
+ 1)X − (

r

2n
+ 2n+ 1)η(X)ξ, (3.56)

for any vector field X. Thus manifold is η-Einstein. This completes the proof.

Suppose F is constant, then (3.54) gives λ = −2n− F 2

m
. This in (3.55) implies

r is constant. Hence ξr = 0 which implies r = −2n(2n+ 1). Inserting the values

of r and λ in (3.55) gives F = −m which further implies λ = −m − 2n. Hence

we can state the following:

Corollary 3.4. If a Kenmotsu manifold admits a non-trivial generalized m-quasi-

Einstein structure (g, V,m, λ) whose potential vector is a constant multiple of Reeb
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vector field ξ then it is Einstein i.e., QX = −2nX with λ = −m− 2n.

3.2.2 On almost Kenmotsu manifolds

Lemma 3.1 (Wang and Liu, 2016a). LetM2n+1(φ, ξ, η, g) be a generalized (κ, µ)′-

almost Kenmotsu manifold with h′ ̸= 0. For n > 1, the Ricci operator Q of M

can be expressed as

QX = −2nX + 2n(κ+ 1)η(X)ξ − [µ− 2(n− 1)h′]X,

for any vector field X on M . Further, if κ and µ are constants and n ≥ 1, then

µ = −2 and hence

QX = −2nX + 2n(κ+ 1)η(X)ξ − 2nh′X, (3.57)

for any vector field X on M . In both cases, the scalar curvature of M is 2n(κ−

2n).

Proposition 3.1. There does not exist a generalized m-quasi-Einstein structure

with φV = 0 in (κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0.

Proof. By hypothesis we have φV = 0. Operating this with φ gives V = η(V )ξ

i.e., V = Fξ where F is a smooth function. Taking the covariant derivative along

arbitrary vector field X of the last equation and inserting it in (1.49) we obtain

S(X, Y ) +
1

2
[(XF )η(Y ) + (Y F )η(X)] + Fg(h′X, Y )

−(
F 2

m
+ F )η(X)η(Y ) = (λ− F )g(X, Y ), (3.58)

Replacing X by ξ in (3.58) yields

1

2
(Y F ) = [λ+

F 2

m
− 2nκ− 1

2
(ξF )]η(Y ), (3.59)
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for any vector field X on M . Contracting (1.35) and using Lemma 3.1, we get

ξF = (2n+ 1)λ− 2n(κ− 2n) +
F 2

m
− 2nF. (3.60)

Replacing Y by ξ in (3.59) and combining it with (3.60) gives F = λ + 2n.

Inserting (3.59) in (3.58) and using it in Lemma 3.1, we obtain

{2λ+
F 2

m
− F − 2nκ+ 2n− (ξF )}η(X)η(Y ) + λg(h′X, Y ) = 0. (3.61)

Replacing X by h′X in (3.61) implies λ(κ+ 1)g(φX,φY ) = 0. Since h′ ̸= 0 and

κ < −1, we get λ = 0 and using it in F = λ+2n gives F = 2n. In a consequence

of this, in (3.60) we get κ = 2n
m
, a contradiction. This completes the proof.

Now using the above Lemmas and proposition we proved the following:

Theorem 3.7. Let M2n+1(φ, ξ, η, g) be a (κ, µ)′-almost Kenmotsu manifold with

h′ ̸= 0. If g admits a closed generalized m-quasi-Einstein metric then we get one

of the following:

1. M2n+1 is locally isometric to Hn+1(−4)× Rn.

2. M2n+1 is locally isometric to the warped product

Hn+1(α)×f Rn, Bn+1(α′)×f ′ Rn

where Hn+1(α) is the hyperbolic space of constant curvature α = −1 − 2m
n

− m2

n2 ,

Bn+1(α′) is a space of constant curvature α′ = −1 + 2m
n

− m2

n2 , f = ce(1−
m
n
)t and

f ′ = c′e(1+
m
n
)t where c, c′ are positive constants.

Proof. Since V ♭ is closed, Eq. (1.49) implies

∇XV = λX +
1

m
g(X, V )V −QX. (3.62)

Making use of the relation R(X, Y )V = ∇X∇Y V −∇Y∇XV −∇[X,Y ]V in (3.62)
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we get

R(X, Y )V = (Xλ)Y − (Y λ)X + (∇YQ)X − (∇XQ)Y

+
λ

m
{g(Y, V )X − g(X, V )Y }+ 1

m
{g(X, V )QY − g(Y, V )QX}. (3.63)

Taking an inner product of (3.63) with ξ and using Lemma 4.4 (Patra et al.,

2020) we obtain

g(R(X, Y )V, ξ) = (Xλ)η(Y )− (Y λ)η(X) + g(QφhY,X)

−g(QφhX, Y ) +
(λ− 2nκ)

m
{g(Y, V )η(X)− g(X, V )η(Y )}. (3.64)

Contracting (3.63) and making use of the fact that scalar curvature is constant

yields

(m− 1)

m
S(Y, V ) = −2n(Y λ) +

1

m
(2nλ− r)g(Y, V ). (3.65)

Taking an inner product of (1.33) with V and inserting it in (3.64) we get

(ξλ)ξ −Dλ− 1

m
{λ− (2n+m)κ}φ2V + 2h′V = 0. (3.66)

Operating by φ in (3.66) yields

1

m
{λ− (2n+m)κ}φV − φDλ+ 2φh′V = 0. (3.67)

Making use of the second equation in Lemma 3.1 in (3.65) and operating the

obtained expression by φ we get

{2nλ− r + 2n(m− 1)}φV − 2nmφDλ+ 2n(m− 1)φh′V = 0. (3.68)

Combining (3.67) and (3.68) we get

[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]φV − n(1 +m)φDλ = 0,
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implies

[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]V − n(1 +m)Dλ ∈ Rξ.

Therefore we can write

Dλ = αV + sξ, (3.69)

where

α =
1

n(m+ 1)
[2n(λ+m− 1)− r − n(m− 1)

m
{λ− (2n+m)κ}]

and s is a smooth function on M . Inserting (3.69) in (3.66) gives

(ξλ)ξ − αV − sξ − 1

m
{λ− (2n+m)κ}φ2V + 2h′V = 0. (3.70)

Operating (3.70) by h′ we get

1

m
{λ− (2n+m)κ− αm}h′V + 2(κ+ 1)φ2V = 0.

Inserting the last equation in (3.70) we obtain

4(κ+ 1)φ2V =
1

m
[λ− (2n+m)κ− αm][(ξλ)ξ

−αV − sξ − 1

m
{λ− (2n+m)κ}φ2V ], (3.71)

then operating (3.71) by φ and using Proposition 3.1, we get

[λ− (2n+m)κ− αm]2 + 4m2(κ+ 1) = 0, (3.72)

implies λ is constant. Replacing Y by ξ in (3.65) and taking λ as constant, gives

[λ− r

2n
− κ(m− 1)]η(V ) = 0. (3.73)

So we get either η(V ) = 0 or λ− r
2n

− κ(m− 1) = 0.

Case-I: Suppose η(V ) = 0. Then taking covariant derivative along ξ and using
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(3.62) gives λ = 2nκ. Inserting this in (3.72) we get κ = −2. Without loss

of generality, we may choose ν = 1. As a consequence of this in Theorem 5.1

(Pastore and Saltarelli, 2011) we get

R(Xν , Yν)Zν = −4[g(Yν , Zν)Xν − g(Xν , Zν)Yν ],

R(X−ν , Y−ν)Z−ν = 0,

for any Xν , Yν , Zν ∈ [ν]′ and X−ν , Y−ν , Z−ν ∈ [−ν]′. Making use of the fact that

µ = −2 it follows from Proposition 4.1 (Dileo and Pastore, 2009) and Propo-

sition 4.3 (Dileo and Pastore, 2009) that K(X, ξ) = −4 for any X ∈ [ν]′ and

K(X, ξ) = 0 for any X ∈ [−ν]′. As shown by Dileo and Pastore (2009), the dis-

tribution [ξ] ⊕ [ν]′ is integrable with totally geodesic leaves and the distribution

[−ν]′ is integrable with total umbilical leaves by H = −(1− ν)ξ, where H is the

mean curvature vector field for the leaves of [−ν]′ immersed in M2n+1. Taking

ν = 1, then the two distribution [ξ] ⊕ [ν]′ and [−ν]′ are both integrable with

totally geodesic leaves immersed in M2n+1. Hence M2n+1 is locally isometric to

Hn+1(−4)× Rn.

Case-II: If λ − r
2n

− κ(m − 1) = 0, then inserting the value of scalar curvature

from Lemma 3.1 gives λ = mκ − 2n. Using this in (3.72) implies κ = −1 − m2

n2 .

By applying Dileo-Pastore (2009) result we complete the proof.

Remark 3.2. When V = Df , it is clear that V ♭ is closed. Therefore if the non-

normal (κ, µ)′-almost Kenmotsu manifold admits a generalized m-quasi-Einstein

structure (g, f,m, λ) then we get similar results as in Theorem 3.7. In a particular

case of Theorem 3.7, for m = ∞ we easily obtain Theorem 3.1 (Wang, 2016).

Let U1 be the open subset of a 3-dimensional almost Kenmotsu manifold M3

such that h ̸= 0 and U2 the open subset of M3 which is defined by U2 = {p ∈

M3 : h = 0 in a neighbourhood of p}. Therefore U1 ∪ U2 is an open and dense

subset of M3 and there exists a local orthonormal basis {e1 = e, e2 = φe, e3 = ξ}
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of three smooth unit eigenvectors of h for any point p ∈ U1 ∪ U2. On U1 we may

set he1 = ϑe1 and he2 = −ϑe2, where ϑ is a positive function.

Lemma 3.2 (Cho, 2014). On U1 we have

∇ξξ = 0, ∇ξe = aφe, ∇ξφe = −ae,

∇eξ = e− ϑφe, ∇ee = −ξ − bφe, ∇eφe = ϑξ + be,

∇φeξ = −ϑe+ φe, ∇φee = ϑξ + cφe, ∇φeφe = −ξ − ce,

where a, b, c are smooth functions.

From Lemma 3.2, the poisson brackets for {e1 = e, e2 = φe, e3 = ξ} are as

follows:

[e3, e1] = (a+ ϑ)e2 − e1, [e1, e2] = be1 − ce2, [e2, e3] = (a− ϑ)e1 + e2. (3.74)

Then the expression for the Ricci operator are as follows:

Lemma 3.3. The Ricci operator Q with respect to the local basis {ξ, e, φe} on U1

can be written as

Qξ = −2(ϑ2 + 1)ξ − (φe(ϑ) + 2ϑb)e− (e(ϑ) + 2ϑc)φe,

Qe = −(φe(ϑ) + 2ϑb)ξ − (A+ 2ϑa)e+ (ξ(ϑ) + 2ϑ)φe,

Qφe = −(e(ϑ) + 2ϑc)ξ + (ξ(ϑ) + 2ϑ)e− (A− 2ϑa)φe,

where we set A = e(c) + b2 + c2 + φe(b) + 2 for simplicity.

Now we state and prove the following:

Theorem 3.8. If a 3-dimensional almost Kenmotsu 3-H-manifold with h′ ̸= 0 ad-

mits a generalized m-quasi-Einstein (g, f,m, λ) structure whose potential function

is constant along the Reeb vector field, then it is Einstein or is locally isometric

to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure.
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Proof. For an almost Kenmotsu 3-H-manifold from Lemma 3.3, we have

e(ϑ) = −2ϑc, φe(ϑ) = −ϑb. (3.75)

By our assumption, since the potential function is constant along the Reeb vector

field, we can write

Df = f1e+ f2φe, (3.76)

for smooth functions f1 = f(e) and f2 = φe(f). Substituting X = ξ in (3.38)

and using Lemma 3.2, Lemma 3.3 and (3.76) gives





ξf1 − af2 = 0,

af1 + ξ(f2) = 0,

λ = 2(ϑ2 + 1).

(3.77)

Again, putting X = e in (3.38) and then using Lemma 3.2, Lemma 3.3 and (3.76)

gives





e(f1) + bf2 = λ+
f21
m

− A− 2ϑa,

ϑf2 − f1 = 0,

e(f2)− bf1 =
f1f2
m

− ξ(ϑ)− 2ϑ.

(3.78)

Similarly, for X = φe, we get





φe(f1)− cf2 =
f1f2
m

− ξ(ϑ)− 2ϑ,

φe(f2) + cf1 = λ+
f22
m

+ A− 2aϑ,

ϑf1 − f2 = 0.

(3.79)

Comparing the second argument of (3.78) and the third argument of (3.79), we

get (ϑ2 − 1)f2 = 0. If f2 = 0, then the third argument of (3.79) implies f1 = 0,

then (3.76) gives Df = 0, that is, f is constant.
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For the case f2 ̸= 0, we have ϑ = 1. In consequence, the second argument of

(3.78) and the third argument of (3.79) gives f1 = f2. Moreover, taking ϑ = 1 in

(3.75), we get b = c = 0. Also, first and second equation of (3.77) gives a = 0

when f1 = f2. Inserting the above values in (3.74), we get

[e3, e1] = e2 − e1, [e1, e2] = 0, [e2, e3] = −e1 + e2.

Using Milnor’s result (Milnor, 1976), we can conclude thatM3 is locally isometric

to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure.

This completes the proof.

In consequence of Theorem 3.8, we can state the following corollary.

Corollary 3.5. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a non-

trivial generalized m-quasi-Einstein (g, f,m, λ) structure whose potential function

is constant along the Reeb vector field, then it is locally isometric to either the

hyperbolic space H3(−1) or the Riemannian product H2(−4)× R.

Proof. We shall divide the proof into two cases:

Case-I: When h = 0, then M is a Kenmotsu manifold. Then we have

QX = (
r

2
+ 1)X − (

r

2
+ 3)η(X)ξ. (3.80)

By assumption, ξf = 0. Replacing X = ξ in (3.38) then taking the inner product

with ξ gives λ = −2n under our assumptions. In consequence, (1.29) gives ξr = 0.

Since ξr = −2(r+6), we get r = −6 which reduces (3.80) to QX = −2X. Clearly,

M3 is conformally flat.

Case-II: When h ̸= 0, then by Theorem 3.8, we have a = b = c = 0. From

Lemma 3.3, we see that r = −2(ϑ2 + 1) − 2A. Making use of the fact that

a = b = c = 0 implies r = −8. It is easy to see that M3 is conformally flat.

Applying Wang’s theorem (Theorem 1.6 (Wang, 2017)), we can conclude that
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M3 is locally isometric to either the hyperbolic space H3(−1) or the Riemannian

product H2(−4)× R.

Corollary 3.6. If a 3-dimensional almost Kenmotsu 3-H-manifold admits a non-

trivial m-quasi-Einstein (g, f,m, λ) structure whose potential function is constant

along the Reeb vector field, then either it is locally isometric to the hyperbolic space

H3(−1) or the Riemannian product H2(−4)× R.

Next, we constructed an example of almost Kenmotsu manifold admitting a

generalized m-quasi-Einstein structure.

Example 3.8. Let (N, J, ḡ) be a strictly almost Kähler Einstein manifold. We set

η = dt, ξ = ∂
∂t

and the tensor field φ is defined on R×fN by φX = JX for vector

field X on N and φX = 0 if X is tangent to R. Consider a metric g = g0 + σ2ḡ,

where σ2 = ce2t, g0 is the Euclidean metric on R and c is a positive constant.

Then it is easy to verify that the warped product R ×σ N, σ
2 = ce2t, with the

structure (φ, ξ, η, g) is an almost Kenmotsu manifold (Dileo and Pastore, 2007).

Since N is Einstein S = −2ng. We define a smooth function f(x, t) = t2. then

it is easy to verify that the warped product R×σN, σ
2 = ce2t admits a generalized

m-quasi-Einstein structure (g, f,m, λ) with λ = 2
m
(m(1− n)− 2t2).
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Chapter 4

Characterization of Almost

Ricci-Yamabe Solitons

This chapter is divided into two sections. First section is devoted to the study

of almost Ricci-Yamabe soliton on certain almost contact metric manifolds and in

the section, we considered almost Ricci-Yamabe soliton in the context of almost

Kenmotsu manifolds.

4.1 Almost Ricci-Yamabe Soliton on Contact Met-

ric Manifolds

4.1.1 Almost (α, β)-Ricci-Yamabe solitons with V = σξ

Ghosh (2014) obtained a result for contact metric manifold with potential

vector field collinear with the Reeb vector field. Motivated by this study, we

extended it to an almost (α, β)-Ricci-Yamabe soliton. We prove the following:

Theorem 4.1. Let M (2n+1)(φ, ξ, η, g) be a complete contact metric manifold

where the Reeb vector field ξ is an eigenvector of the Ricci operator at each point

of M . If g admits an almost (α, β)-Ricci-Yamabe soliton with α ̸= 0 and non-
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zero potential vector field collinear with the Reeb vector field ξ, then M is compact

Einstein Sasakian and the potential vector field is a constant multiple of the Reeb

vector field ξ.

Proof. Suppose the potential vector field is collinear with the Reeb vector field

i.e., V = σξ, where σ is a non-zero function on M . Differentiating it along

arbitrary vector field X gives

∇XV = (Xσ)ξ − σ(φX + φhX). (4.1)

Using this in (1.45) and simplifying we obtain

(Xσ)η(Y ) + (Y σ)η(X)− 2σg(φhX, Y )

+2αS(X, Y ) = (2λ− βr)g(X, Y ). (4.2)

Taking X = Y = ξ in (4.2) yields

ξσ + 2αTrℓ = 2λ− βr. (4.3)

Replacing Y by ξ in (4.2) gives

Dσ + (ξσ)ξ + 2αQξ = (2λ− βr)ξ. (4.4)

Suppose that the Reeb vector field ξ is an eigenvector of the Ricci operator at

each point of M , then Qξ = (Trl)ξ. Using this in the forgoing equation along

with (4.3) gives, Dσ = (ξσ)ξ. Differentiating it along with vector field X yields

∇XDσ = X(ξσ)ξ − (ξσ)(φX + φhX). (4.5)

Making use of the Poincare lemma in (4.5), we obtain

X(ξσ)η(Y )− Y (ξσ)η(X) + 2(ξσ)dη(X, Y ) = 0. (4.6)

Choosing X, Y ⊥ ξ and using the fact that dη ̸= 0 in (4.6), we see that ξσ = 0.
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Hence, Dσ = 0 i.e. σ is a constant. Then (4.2) becomes,

2αQY + 2σhφY = (2λ− βr)Y. (4.7)

Contracting (4.7) and using the fact that Trhφ = 0, we get

[2α + (2n+ 1)β]r = 2(2n+ 1)λ. (4.8)

Differentiating (4.7) along arbitrary vector field X gives

2α(∇XQ)Y + 2σ(∇Xhφ)Y = 2(Xλ)Y − β(Xr)Y. (4.9)

Contracting (4.9) and using the fact that in contact metric manifold, div(hφ)Y =

g(Qξ, Y )− 2nη(Y ), in the forgoing equation result in the following

(α + β)(Y r) + 2σ[Trℓ− 2n]η(Y )− 2(Y λ) = 0. (4.10)

Taking Y ⊥ ξ and using (4.8) in (4.10) gives α = 0 or Y r = 0. Assuming α ̸= 0

and replacing Y by φ2Y shows Dr = (ξr)ξ. Differentiating along arbitrary vector

field X gives, ∇XDr = X(ξr)ξ − (ξr)(φX + φhX). Applying Poincare lemma,

the forgoing equation yields

X(ξr)η(Y )− Y (ξr)η(X)− (ξr)dη(X, Y ) = 0. (4.11)

Choosing X, Y ⊥ ξ, it follows that ξr = 0. Hence, Dr = 0 i.e. r is constant.

Then (4.8) implies λ is constant and consequently from (4.3), Trℓ is constant. In

view of (4.10) we get Trℓ = 2n i.e. h = 0. Hence manifold is K-contact and then

from (4.7), it is Einstein provided α ̸= 0. Suppose M is complete, then making

use of results in Sharma (2008) and Boyer and Galicki (2001), we see that the

manifold is compact Einstein Sasakian. This completes the proof.

From (4.3) we get, 2αTrℓ = (2λ− βr). Using this in (4.4) gives

2α[Qξ − (Trℓ)ξ] +Dσ + (ξσ)ξ = 0. (4.12)
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Making use of result by Perrone (2004) and (4.12), we can state the following

Corollary 4.1. Let M2n+1(φ, ξ, η, g) be a contact metric manifold such that g

represents an almost (α, β)-Ricci-Yamabe soliton with α ̸= 0. Then M is an

H-contact metric manifold if and only if the potential vector field is a constant

multiple of the Reeb vector field ξ.

In consequence of Theorem 4.1, considering a particular case when potential

vector field V is the Reeb vector field ξ, we can easily prove the following:

Corollary 4.2. There does not exist almost Ricci-Yamabe soliton in a non-

Sasakian (k, µ)-contact metric manifold whose potential vector field is the Reeb

vector field ξ.

4.1.2 Almost Ricci-Yamabe soliton on K-contact Mani-

fold

Sharma (2008) proved that if a compact K-contact metric is a gradient Ricci

soliton then it is Einstein Sasakian. Extending this for gradient Ricci almost

soliton, Ghosh (2014) proved that compact K-contact metric is Einstein Sasakian

and isometric to a unit sphere S2n+1. However, this result is also true if one relax

the hypothesis compactness to completeness (Patra, 2021). In this section we

consider the gradient almost Ricci-Yamabe soliton and extend these results and

prove

Theorem 4.2. If a K-contact manifold M (2n+1)(φ, ξ, η, g) admits a gradient al-

most Ricci-Yamabe soliton with α ̸= 0, then it is Einstein with constant scalar

curvature r = 2n(2n+1). Further, if M is complete, then it is compact Sasakian

and isometric to a unit sphere S2n+1.

Proof. A gradient almost Ricci-Yamabe soliton is given by

∇XDf + 2αQX = (2λ− βr)X. (4.13)
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Taking the covarient differentiation of (4.13) along arbitrary vector field Y yields

∇Y∇XDf + 2α(∇YQ)X + 2αQ(∇YX)

= 2(Y λ)X − β(Y r)X + (2λ− βr)(Y X). (4.14)

Since R(X, Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X, Y ]Df , then in consequence

of (4.14) we get

R(X, Y )Df = 2[(Xλ)Y − (Y λ)X]− β[(Xr)Y − (Y r)X]

− 2α[(∇XQ)Y − (∇YQ)X]. (4.15)

Differentiating (1.13) along vector field Y and using (1.14) gives

(∇XQ)ξ = QφX − 2nφX. (4.16)

Taking the inner product of (4.15) with ξ and replacing Y by ξ and using the fact

that g(R(X, Y )Df, ξ) = −g(R(X, Y )ξ,Df) along with R(X, ξ)ξ = X − η(X)ξ

and (4.16), Eq. (4.15) reduces to X(f + 2λ− βr) = ξ(f + 2λ− βr)η(X), which

can be written as d(f + 2λ − βr) = ξ(f + 2λ − βr)η. Then operating the last

equation by d and using Poincare lemma i.e., d2 = 0 we get dξ(f + 2λ − βr) ∧

η + ξ(f + 2λ − βr)dη = 0. Taking the wedge product of forgoing equation with

η and using the fact that η ∧ η = 0 yields ξ(f + 2λ − βr)dη ∧ η = 0. Therefore

ξ(f +2λ− βr) = 0 on M as dη is non-vanishing everywhere on M , consequently,

D(f + 2λ− βr) = 0. Hence f + 2λ− βr is constant on M .

Taking Lie differentiation of (4.13) along ξ and noting LξQ = 0 (as ξ is Killing)

we obtain

Lξ(∇XDf) + 2αQ(LξX) = 2(ξλ)X − β(ξr)X + (2λ− βr)LξX. (4.17)

Lie differentiating Df along ξ and using (1.11) yields

LξDf = [ξ,Df ] = ∇ξDf −∇Dfξ = (2λ− βr)ξ − 4nαξ + φDf. (4.18)
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Differentiating covariantly (4.18) along vector field Y and using (1.11) we obtain

∇YLξDf = 2(Y λ)ξ − β(Y r)ξ + 4nαφY + (∇Y φ)Df − 2αφQY (4.19)

According to Yano (1970), we have the commutative formula

LV∇YX −∇YLVX −∇[V,Y ]X = (LV∇)(Y,X). (4.20)

Setting V = ξ and X = Df in (4.20) and noting Lξ∇ = 0 and using (4.17)-(4.19)

yields

[2(ξλ)− β(ξr)]g(X, Y )− Y (2λ− βr)η(X)− 4nαg(φY,X)

+g((∇Y φ)X,Df) + 2αg(φQY,X) = 0. (4.21)

Replacing X by φX and Y by φY along with well known formula

(∇Y φ)X + (∇φY φ)φX = 2g(Y,X)ξ − η(X)(Y + η(Y )ξ)

we get

2ξ(f + 2λ− βr)g(X, Y )− Y (f + 2λ− βr)η(X)

− ξ(f + 2λ− βr)η(X)η(Y ) + 2αg(QφY,X)

+ 2αg(φQY,X)− 8nαg(φY,X) = 0. (4.22)

Suppose α ̸= 0. Since f + 2λ− βr is constant Eq. (4.22) reduces to

QφX + φQX = 4nφX, (4.23)

for any X ∈ χ(M).

Taking an inner product of (4.15) along with f + 2λ− βr = constant yields

g((∇YQ)X − (∇XQ)Y,Df) = 0. (4.24)

Let {ei, φei, ξ; i = 1, 2, ...n} be an orthonormal φ−basis of M such that Qei =
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σiei. Using this in (4.23) we get Qφei = (4n− σi)φei. Then the scalar curvature

is given by

r = g(Qξ, ξ) +
n∑

i=1

[g(Qei.ei) + g(Qφei, φei)] = 2n(2n+ 1).

Replacing X by ξ in (4.24) and using (4.16) yields QφDf − 2nφDf = 0. In

consequence of this in (4.23), it reduces to φQDf = 2nφDf . Operating last

equation with φ and using (1.13) gives QDf = 2nDf . Then taking covarient

derivative results in

(∇XQ)Df − 2αQ2X + (2λ− βr + 4nα)QX − 2n(2λ− βr)X = 0. (4.25)

Since r = 2n(2n + 1) is constant, then divQ = 1
2
dr = 0. Making use of this

and contracting (4.25) we obtain ||Q||2 = 2nr. As a consequence of this with

r = 2n(2n + 1), we can easily see that ||Q − r
2n+1

I||2 = 0 i.e., the length of

the symmetric tensor Q − r
2n+1

I vanish, we must have QX = 2nX. Thus M is

Einstein with Einstein constant 2n. Suppose M is complete, then by the result

of Sharma (2008) we can conclude that M is compact. Applying Boyer-Galicki

(2001) we conclude that it is Sasakian. Also, Eq. (4.13) can be rewritten as

∇XDf = −ρX, where ρ = 4αn+ βr − 2λ, then by Obata’s theorem (1962) it is

isometric to a unit sphere S2n+1. This completes the proof.

4.1.3 Almost Ricci-Yamabe soliton on (k, µ)-contact met-

ric manifold

Theorem 4.3. If a non-Sasakian (k, µ)-contact metric manifoldM (2n+1)(φ, ξ, η, g)

admits a gradient almost Ricci-Yamabe soliton with α ̸= 0, then M3 is flat and

the soliton vector field is homothetic, and for n > 1, M is locally isometric to

En+1 × Sn(4) and the soliton vector field is tangential to the Euclidean factor

En+1.
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Proof. Making use of R(X, Y )Df = ∇X∇YDf − ∇Y∇XDf − ∇[X,Y ]Df and

(4.13), we get

R(X, Y )Df = 2α[(∇YQ)X − (∇XQ)Y ] + 2[(Xλ)Y − (Y λ)X]. (4.26)

Taking the covariant derivative of (1.22) and using it in (4.26) yields

R(X, Y )Df = 2α{[2(n− 1) + µ][2(1− k)g(Y, φX)ξ

+ η(X){h(φY + φhY } − η(Y ){h(φX + φhX}+ µη(X)φhY

− µη(Y )φhX] + [2(1− n) + n(2k + µ)]{2g(Y, φX)ξ

− (φY + φhY )η(X) + (φX + φhX)η(Y )}}+ 2[(Xλ)Y − (Y λ)X]. (4.27)

Taking the inner product of (4.27) with ξ gives

g(R(X, Y )Df, ξ) = 4α(µ+ 2k − kµ+ nµ)g(Y, φX)

+ 2[(Xλ)Y − (Y λ)X]. (4.28)

Taking the inner product of (1.21) with Df , we get

g(R(X, Y )ξ,Df) = k[η(Y )g(X,Df)− η(X)g(Y,Df)]

+µ[η(Y )g(hX,Df)− η(X)g(hY,Df)]. (4.29)

Combining (4.28) and (4.29) we get

k[η(Y )g(X,Df)− η(X)g(Y,Df)]

+µ[η(Y )g(hX,Df)− η(X)g(hY,Df)]

+4α(µ+ 2k − kµ+ nµ)g(Y, φX)

+2[(Xλ)η(Y )− (Y λ)η(X)] = 0. (4.30)

Taking X = φX and Y = φY and using the fact that R(φX,φY )ξ = 0, Eq.
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(4.30) for α ̸= 0 reduces to

k =
µ(1 + n)

µ− 2
. (4.31)

Replacing Y = ξ in (4.30) gives

(k + µh)Df + 2(Dλ)− [k(ξf) + 2(ξλ)]ξ = 0. (4.32)

As a consequence of (1.22), replacing X with Df and simplifying we obtain

QDf = −4n(Dλ). (4.33)

Making use of (4.33) in (4.32) gives

2n(k + µh)Df −QDf − 2n[k(ξf) + 2(ξλ)]ξ = 0. (4.34)

Taking an inner product of (4.34) with ξ we get, k(ξf) + 2(ξλ) = 0 and using

this in forgoing equation

2n(k + µh)Df = QDf. (4.35)

Differentiating (4.35) and simplifying, we obtain

(2nµ2 − µ[2(n− 1) + µ])φhDf − 2nµh(2λ− βr − 4nαk)ξ = 0. (4.36)

Taking inner product of (4.36) with ξ gives, µh(2λ− βr − 4nαk) = 0, and using

it in (4.36)

(2nµ2 − µ[2(n− 1) + µ])φhDf = 0. (4.37)

Operating h in the above equation and using (1.20), we get

(k − 1)µ[2(n− 1) + µ− 2nµ]φDf = 0. (4.38)

We get the following cases:

Case-I: For µ = 0. In consequence, equation (4.31) gives k = 0. Hence,
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R(X, Y )ξ = 0.

Now Blair (1977) proved that a (2n+1)-dimensional contact metric manifold

satisfying R(X, Y )ξ = 0 is locally isometric to En+1 × Sn(4) for n > 1 and flat if

n = 1.

Therefore, we conclude that the manifold under consideration is locally iso-

metric to En+1 × Sn(4) for n > 1 and flat if n = 1.

Case-II: For φDf = 0. Operating φ on both sides gives Df = (ξf)ξ. Differenti-

ating along arbitrary vector field X gives

∇XDf = X(ξf)ξ − (ξf)(φX + φhX). (4.39)

Applying Poincare lemma in the above equation yields

X(ξf)η(Y )− Y (ξf)η(X) + (ξf)dη(X, Y ) = 0. (4.40)

Taking X, Y ⊥ ξ and since dη is nowhere vanishing on M , it follows ξf = 0.

Hence Df = 0 i.e., f is constant. Then from (4.13) we see that M is Einstein

(i.e., 2αQY = (2λ − βr)Y ). Taking a trace of the last equation yields 2αr =

(2n+ 1)(2λ− βr). Also, replacing Y by ξ in the second last equation and using

the previous equation results in QY = 2nkY . Consequently the scalar curvature

is r = 2nk(2n+1). Now proceeding similarly as in Theorem 4.1 of Ghosh (2014),

we also find that for n = 1, M is locally flat ( as µ = 0 and k = 0 consequently

R(X, Y )ξ = 0), using µ = 2(1 − n) in (4.31) we see that k = n − 1
n
> 1, a

contraction. Since M3 is flat and λ is constant in view of (4.13) we see that the

vector field is homothetic.

Case-III: For 2(n− 1) + µ− 2nµ = 0 implies µ = 2(1−n)
1−2n

.

Using this value of µ in the expression of k in (4.31), we get k = 1
n
− n.
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Making us of (4.41) in (4.35) yields

[2(1− n) + n(2k + µ)](Df − (ξf)ξ) + [2nµ− 2(n− 1)− µ]hDf = 0. (4.41)

Inserting µ = 2(1−n)
1−2n

and k = 1
n
− n in (4.41), we obtain Df = (ξf)ξ. Then

proceeding similarly as in Case II we obtain a similar conclusion. Since QX =

2nkX, taking covarient differentiation gives ∇Q = 0 and consequently (4.26)

reduces to

R(X, Y )Df = 2[(Xλ)Y − (Y λ)X].

Since R(X, Y )ξ = 0 and taking the inner product of forgoing equation with ξ

and replacing Y by ξ gives Xλ = (ξλ)η(X). Similarly as above we can easily see

that λ is constant and consequently R(X, Y )Df = 0 i.e., Df is tangent to the

flat factor En+1. This completes the proof.

Example 4.1. Finally, we construct an example for verifying the obtained result.

Replacing α = 0 and β = x, x ̸= 0 in an example of (k, µ)-spaces given by Boeckx

(2000), we obtain a non-Sasakian (k, µ)-contact metric manifold with k = 1− x4

16

and µ = 2+ x2

2
. We consider a 5-dimensional manifoldM = {(x1, x2, x3, x4, x5) ∈

R5 : xi ̸= 0, i = 1, 2, .., 5} where (x1, x2, x3, x4, x5) are standard coordinates in R5.

Let {e1, e2, e3, e4, e5} be a linearly independent global frame on M such that

[e5, e1] = 0, [e5, e2] = 0, [e5, e3] =
x2

2
e1, [e5, e4] =

x2

2
e2,

[e1, e2] = 0, [e1, e3] = −xe2 + 2e5, [e1, e4] = 0,

[e2, e3] = xe1, [e2, e4] = 2e5, [e3, e4] = −xe3.

Let g be the Riemannian metric defined by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e4, e4) = g(e5, e5) = 1, g(ei, ej) = 0, i ̸= j.
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Let η be the 1-form defined by η(X) = g(X, e5) for any X ∈ χ(M). Also, let φ be

(1,1) tensor field defined by φe1 = e3, φe2 = e4, φe3 = −e1, φe4 = −e2, φe5 = 0.

Then for ξ = e5, (φ, ξ, g, η) defines a contact metric structure on M . Let ∇ be

Levi-Civita connection on M . Then using the Koszul formula we calculate

∇e1e5 = ρe3, ∇e2e5 = ρe4, ∇e3e5 = −(ρ+ 2)e1, ∇e4e5 = −(ρ+ 2)e2,

∇e5e1 = ρe3, ∇e5e2 = ρe4, ∇e5e3 = ρe1, ∇e5e4 = ρe2,

∇e1e1 = 0, ∇e1e2 = 0, ∇e1e3 = −ρe5, ∇e1e4 = 0,

∇e2e1 = 0, ∇e2e2 = 0, ∇e2e3 = 0, ∇e2e4 = −ρe5,

∇e3e1 = xe2 − (ρ+ 2)e5, ∇e3e2 = −xe1, ∇e3e3 = xe4, ∇e3e4 = −xe3,

∇e4e1 = 0, ∇e4e2 = −(ρ+ 2)e5, ∇e4e3 = 0, ∇e4e4 = 0,

where ρ = (x
2

4
− 1). Moreover using (1.11) in the above expressions gives he1 =

−(ρ+ 1)e1, he2 = −(ρ+ 1)e2, he3 = −(ρ+ 3)e3, he4 = −(ρ+ 3)e4, he5 = 0.

From the above it can be easily seen that M5(φ, η, ξ, g) is a non-Sasakian (k, µ)-

contact metric manifold.

The non-vanishing components of Riemannian curvature on M are as follows

R(e1, e2)e4 = −ρ2e3+2ρe5, R(e1, e2)e5 = −2ρe4, R(e1, e3)e1 = −ρ(ρ+2)e3−2ρe3,

R(e1, e3)e2 = −2ρe4, R(e1, e3)e3 = −ρ(ρ+ 1)e1 − 2ρe1, R(e1, e3)e4 = −2ρe2,

R(e1, e4)e2 = −ρ(ρ+ 2)e3, R(e1, e4)e3 = −ρ(ρ+ 2)e2, R(e1, e5)e1 = −ρ2e5,

R(e1, e5)e5 = −ρ2e1, R(e2, e3)e1 = −ρ(ρ+ 2)e4, R(e2, e3)e4 = −ρ(ρ+ 2)e1,

R(e2, e4)e1 = −2ρe3, R(e2, e4)e2 = −ρ(ρ+ 2)e2 − 2ρe2, R(e2, e4)e3 = −2ρe1,

R(e2, e4)e4 = −ρ(ρ+ 2)e2 − 2ρe2, R(e2, e5)e2 = −ρ2e5, R(e2, e5)e5 = ρ2e2,

R(e3, e4)e1 = x2e2−(ρ+2)2e2, R(e3, e4)e2 = (ρ+2)2e1−x2e1, R(e3, e4)e3 = x2e4,
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R(e3, e4)e4 = −x2e3, R(e3, e5)e3 = −ρ(ρ+2)e5−
x2

2
ρe5, R(e3, e5)e5 = ρ(ρ+2)e3+

x2

2
ρe3,

R(e4, e5)e4 = −ρ(ρ+ 2)e5 −
x2

2
ρe5, R(e4, e5)e5 = ρ(ρ+ 2)e4 +

x2

2
ρe4.

The non-vanishing components of Ricci curvature are

S(e1, e1) = S(e2, e2) =
x4

16
− 2, S(e3, e3) = S(e4, e4) =

x4

8
− 2x2 + 2,

S(e5, e5) =
3x4

8
− x2 − 2.

The scalar curvature on M is r = x4 − 5x2 − 2. Clearly, one can see that for

V = e5, the metric g under consideration does not satisfy (1.45). Thus, Corollary

4.2 is verified.

4.2 Almost Ricci-Yamabe soliton on Almost Ken-

motsu Manifolds

In this section, we examine ARYS within the framework of certain classes

of almost Kenmotsu manifolds. Firstly, we prove that a complete Kenmotsu

manifold, admitting ARYS with α ̸= 0 is locally isometric to hyperbolic space

H2n+1(−1) when Reeb vector field leaves the scalar curvature invariant. Secondly,

we show that ARYS on the Kenmotsu manifold reduces to Ricci-Yamabe soliton

under the certain conditions on the soliton function. Next, it is proved that if a

(κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0 admits gradient ARYS then either

it is locally isometric to H2n+1(−4) × Rn or potential vector field is pointwise

collinear with the Reeb vector field. Moreover, 3-dimensional non-Kenmotsu

almost Kenmotsu manifolds admitting gradient ARYS are considered. Several

examples have been constructed of ARYS on different classes of warped product

spaces.
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4.2.1 On Normal almost Kenmotsu manifold

In this section, we deal with a normal almost Kenmotsu manifold, that is,

Kenmotsu manifold admitting ARYS and gradient ARYS. Firstly, we give some

examples of gradient ARYS.

Example 4.2. Let (N, J, g0) be a Kähler manifold of dimension 2n. Consider

the warped product (M, g) = (R×σN, dt
2+σ2g0), where t is the coordinate on R.

We set η = dt, ξ = ∂
∂t

and (1,1) tensor field φ by φX = JX for vector field X on

N and φX = 0 if X is tangent to R. The above warped product with the structure

(φ, ξ, η, g) is a Kenmotsu manifold (Kenmotsu, 1972). In particular, if we take

N = CH2n, then N being Einstein, the Ricci tensor of M becomes SM = −2ng.

Then it is easy to verify that (M, f, g, λ) is an ARYS for f(x, t) = ket, k > 0 and

λ(x, t) = −2nα− nβ(2n+ 1) + ket.

Therefore, a large number of examples can be constructed by considering

different potential functions f on warped product spaces. Next, we constructed

an example by using Kanai’s result (Kanai, 1983).

Example 4.3. Let N2n be a complete Einstein Kähler manifold with SN =

−(2n − 1)g0. Now consider the warped product M2n+1 = R ×cosht N
2n with the

metric g = dt2 + (cosht)2g0. Then by using the result by Kanai (1983), there

exists a function f on M without critical points satisfying ∇2f = −fg. Then it

is easy to see that (M, g,∇f, λ) is an ARYS for λ = −2nα− f − nβ(2n+ 1).

Ghosh (2011) initiated the study of Ricci soliton in Kenmotsu 3-manifold.

He later studied the gradient almost Ricci soliton in the Kenmotsu manifold and

obtained Theorem 3 (Ghosh, 2019b). Here, we generalized these results for ARYS

and prove them.

Theorem 4.4. If the metric of a Kenmotsu manifold M2n+1(φ, ξ, η, g) admits a

gradient ARYS with α ̸= 0, then it is η-Einstein. Moreover, if M is complete and
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ξ leaves the scalar curvature invariant then it is locally isometric to Hyperbolic

space H2n+1(−1). Also, λ can be expressed locally as λ = Acosht + Bsinht −

2nα− nβ(2n+ 1), where A,B are constants on M .

Proof. Suppose the metric g of Kenmtosu manifold admits gradient Ricci-Yamabe

soliton, then from (1.46) we have

∇XDf = σX − αQX, (4.42)

for any vector field X on M and σ = λ− βr
2
is a smooth function on M .

Taking an inner product of (4.42) along arbitrary vector field Y , we obtain:

∇Y∇XDf = (Y σ)X + σ(∇YX)− α(∇YQ)X − αQ(∇YX). (4.43)

Making use of (4.43) in the well-known formula R(X, Y )Df = ∇X∇YDf −

∇Y∇XDf −∇[X,Y ]Df yields

R(X, Y )Df = (Xσ)Y − (Y σ)X − α[(∇XQ)Y − (∇YQ)X]. (4.44)

Taking a covariant derivative of (1.30) and using (1.27), we get (∇XQ)ξ =

−2n(X − η(X)ξ). Because of this the inner product of (4.44) with ξ gives

g(R(X, Y )Df, ξ) = (Xσ)η(Y )− (Y σ)η(X). (4.45)

Now, taking an inner product of (1.29) with Df yields

g(R(X, Y )ξ,Df) = (Y f)η(X)− (Xf)η(Y ). (4.46)

Combining (4.45) and (4.46) and replacing Y by ξ in the obtain relations we

obtain

d(σ − f) = ξ(σ − f)η, (4.47)

where d is the exterior derivative. This means that σ − f is invariant along the
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distribution D (i.e., D = kerη) hence σ − f is constant for all X ∈ D.

Contracting (4.44) infer

S(Y,Df) = −2n(Y σ) +
α

2
(Y r), (4.48)

for any vector field Y on M . Replacing Y by ξ in (4.44) and taking an inner

product with Y gives

g(R(X, ξ)Df, Y ) = (Xσ)η(Y )− (ξσ)g(X, Y )− αS(X, Y ) + 2nαg(X, Y ).(4.49)

As a consequence of (1.27) and (1.29) in (4.49), we get

[(Xf)− (Xσ)]η(Y ) + ξ(σ − f)g(X, Y ) + αS(X, Y ) + 2nαg(X, Y ) = 0. (4.50)

Contracting (4.50) over X gives

2nξ(σ − f) + α[r + 2n(2n+ 1)] = 0. (4.51)

Replacing Y by ξ in (4.48) and making use of (4.51) and (1.30), we see that

ξr = −2(r + 2n(2n+ 1)), for α ̸= 0. In consequence, (4.51) in (4.47) gives

d(σ − f) = −α( r
2n

+ 2n+ 1)η. (4.52)

Applying Poincare lemma and using the fact that dη = 0 on (4.52), we obtain

−αdr ∧ η = 0, and making use of the value of ξr we have

Dr = −2(r + 2n(2n+ 1))ξ. (4.53)

Taking an inner product of (4.52) with vector field X, then inserting it along with

(4.51) in (4.50) we get

QX = (
r

2n
+ 1)X − (

r

2n
+ 2n+ 1)η(X)ξ, (4.54)

for any vector field X on M . Therefore, M is η-Einstein.

Suppose that ξr = 0, i.e., ξ leaves the scalar curvature invariant. In con-
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sequence of this we get r = −2n(2n + 1), a constant. Inserting this in (4.54)

implies QX = −2nX i.e., M is Einstein. Now suppose that M is complete. As r

is constant, (4.52) gives Df = Dλ. In consequence of this, (4.42) becomes

∇XDλ = (λ+ k)X, (4.55)

where k = n(2α + β(2n + 1)). Applying Tashiro’s theorem (Tashiro, 1965), we

see that it is locally isometric to hyperbolic space H2n+1(−1). Replacing X by ξ

and taking inner product with ξ, (4.55) gives ξ(ξλ) = λ+k. But as we know that

a Kenmotsu manifold is locally isometric to the warped product (−ϵ, ϵ) ×cet N ,

where N is a Kähler manifold of dimension 2n and (−ϵ, ϵ) is an open interval.

Using the local parametrization: ξ = ∂
∂t

(where t is the coordinate on (−ϵ, ϵ)) we

get from (4.55)

∂2λ

∂t2
= λ+ 2nα + nβ(2n+ 1)

Its solution can be exhibited as λ = Acosht+Bsinht− 2nα−nβ(2n+1), where

A,B are constants on M . This completes the proof.

Lemma 4.1. If the metric of a Kenmotsu manifold M2n+1(φ, ξ, η, g)(n > 1)

admits ARYS then

1. ξ(ξλ) + ξλ = 2(2nα + λ+ nβ(2n+ 1)).

2. Dλ = (ξλ)ξ + β{(r + 2n(2n+ 1))ξ + Dr
2
}.

Proof. Taking the covariant derivative of (1.45) along arbitrary vector field X,

we get

(∇XLV g)(Y, Z) = 2(Xσ)g(Y, Z)− 2α(∇XS)(Y, Z), (4.56)

where σ = λ− βr
2
. We know the following commutative formula (Yano, 1970):

(LV∇Xg −∇XLV g −∇[V,X]g)(Y, Z)

= −g((LV∇)(X, Y ), Z)− g((LV∇)(X,Z), Y ), (4.57)
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for all vector fields X, Y, Z on M . Since g is parallel with respect to Levi-Civita

connection ∇, the above relation becomes:

(∇XLV g)(Y, Z) = g((LV∇)(X, Y ), Z) + g((LV∇)(X,Z), Y ). (4.58)

We know that LV∇ is a symmetric tensor of type (1,2) and so it follows from

(4.58) that

2g((LV∇)(X, Y ), Z) = (∇XLV g)(Y, Z) + (∇YLV g)(Z,X)− (∇ZLV g)(X, Y ).(4.59)

Inserting (4.56) in (4.59), then replacing Y by ξ we obtain

(LV∇)(X, ξ) = 2αQX + (4nα + ξσ)X + g(X,Dσ)ξ − η(X)Dσ. (4.60)

Taking the covariant derivative of (4.60) along arbitrary vector field Y gives

(∇YLV∇)(X, ξ) + (LV∇)(X, Y )− η(Y )(LV∇)(X, ξ)

= 2α(∇YQ)X + Y (ξσ)X + g(X,∇YDσ)ξ

− g(X,Dσ)φ2Y + g(X,φ2Y )Dσ − η(X)(∇YDσ). (4.61)

Making use of this in the formula (Yano, 1970)

(LVR)(X, Y )Z = (∇XLV∇)(Y, Z)− (∇YLV∇)(X,Z)

we obtain

(LVR)(X, Y )ξ = 2α{(∇XQ)Y − (∇YQ)X}+X(ξσ)Y − Y (ξσ)X

+ g(Y,Dσ)X − g(X,Dσ)Y + η(X)∇YDσ − η(Y )∇XDσ

+ 2α{η(X)QY − η(Y )QX}+ (4αn+ ξσ){η(X)Y − η(Y )X}. (4.62)

Now differentiating ξσ = g(ξ,Dσ) along vector field X and using (1.27) we get

X(ξσ) = g(X,Dσ)− (ξσ)η(X) + g(∇XDσ, ξ). (4.63)
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Replacing Y by ξ in (1.45), then inserting it in the Lie-derivative of (1.29) yields

(LVR)(X, Y )ξ +R(X, Y )LV ξ = g(X,LV ξ)Y

−g(Y,LV ξ)X + 2(σ + 2αn){η(X)Y − η(Y )X}. (4.64)

Combining (4.62), (4.63) and (4.64), we obtain

g(X,LV ξ)Y − g(Y,LV ξ)X −R(X, Y )LV ξ

= 2α{(∇XQ)Y − (∇YQ)X + η(X)QY

− η(Y )QX}+ g(∇XDσ, ξ)Y − g(∇YDσ, ξ)X

+ η(X)∇YDσ − η(Y )∇XDσ − 2σ{η(X)Y − η(Y )X}. (4.65)

Replacing X and Y by φX and φY in (4.65) then contracting the obtained

equation and using Lemma 4.2 (Ghosh, 2020b) results in

S(Y,LV ξ) + 2ng(Y,LV ξ) = α(Y r) + 2α(r + 4n2 + 2n)η(Y )− g(∇ξDλ,φ
2Y ).

Contracting (4.65) and combining it with the forgoing equation yields

2(n− 1)g(∇ξDσ, Y ) + ξ(ξσ)η(Y ) + η(Y )divDσ = 4n(2nα + σ)η(Y ). (4.66)

Replacing Y by ξ in (4.66), we get (2n − 1)ξ(ξσ) + divDσ = 4n(2nα + σ). In

view of this in (4.66) infer g(∇ξDσ,X) = ξ(ξσ)η(X) for n > 1. Now taking ξ

instead of Y in (4.65) and making use of the above relations we obtain

∇XDσ = −2(2nα + σ)φ2X + ξ(ξσ)φ2X + ξ(ξσ)η(X)ξ. (4.67)

As a consequence of (4.67), the expression of the curvature tensor is as follows:

R(X, Y )Dσ = 2(Y σ)φ2X − 2(Xσ)φ2Y + Y (ξ(ξσ))X

−X(ξ(ξσ))Y + 2(ξ(ξσ)− σ − 2nα){η(Y )X − η(X)Y }. (4.68)

Replacing Y by ξ in (4.68), then inserting the obtained equation back in (4.68)
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gives

R(X, Y )Dσ = (Xσ)Y − (Y σ)X − 2{(Xσ)η(Y )ξ

− (Y σ)η(X)ξ}+ {ξ(ξ(ξσ))− ξσ}{η(Y )X − η(X)Y }

+ 2{ξ(ξσ)− σ − 2nα}{η(Y )X − η(X)Y }. (4.69)

Replacing X and Y by φX and φY in (4.69) and then contracting the obtained

result yields

S(Y,Dσ) = −2ng(Y,Dσ).

As a consequence of this in the contraction of (4.69) and further replacing Y by

φY in the obtained expression yields φDσ = 0. Differentiating this along vector

field X and inserting it in (4.67) along with the fact that σ = λ− βr
2
and (1.27)

gives

ξ(ξλ) + ξλ = 2(2nα + λ+ nβ(2n+ 1)). (4.70)

This completes the proof.

Theorem 4.5. Let M2n+1(φ, ξ, η, g)(n > 1) be a Kenmotsu manifold whose met-

ric represents an ARYS. If Hessλ(ξ, ξ) is constant along Reeb vector field then it

reduces to Ricci-Yamabe soliton with λ = −2nα− nβ(2n+ 1).

Proof. By hypothesis, Hessλ(ξ, ξ) is constant along the Reeb vector field ξ i.e.,

ξ(ξ(ξλ)) = 0 implies ξ(ξλ) is constant along ξ. In view of this in the covariant

derivative of first relation in Lemma (4.1) along ξ, we get ξ(ξλ) = 2(ξλ). Again

differentiating this along ξ yields ξλ = 0, that is, λ is constant along ξ. Making

use of this in first relation of Lemma (4.1) gives λ = −2nα−nβ(2n+1). Therefore

ARYS reduces to Ricci-Yamabe soliton. This completes the proof.

Remark 4.1. The above Theorem 4.5 is a generalization of Theorem 4.1 in

Ghosh (2020b), where he obtained the condition under which a Ricci almost soli-
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ton reduces to an expanding Ricci soliton with λ = −2n. It is easy to see that

for α = 1 and β = 0 Theorem 4.1 (Ghosh, 2020b) can be obtained from Theorem

4.5. Moreover, the first condition of Theorem 4.1 (Ghosh, 2020b) is also true for

this choice of scalars.

A Kenmotsu manifold is said to be η-Einstein if there exists smooth functions

a and b such that

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (4.71)

for all vector field X, Y on M . If b = 0, then M becomes an Einstein manifold.

Theorem 4.6. If the metric of an η-Einstein Kenmotsu manifoldM2n+1(φ, ξ, η, g)(n >

1) admits Ricci-Yamabe soliton with α ̸= 0 then it is Einstein with constant scalar

curvature r = −2n(2n+ 1), provided 2α + nβ ̸= 0.

Proof. Replacing Y by ξ in (4.71) and using (1.30), we get a + b = −2n. Then

contracting (4.71) gives r = (2n+ 1)a+ b. In view of this (4.71) becomes

S(X, Y ) = (
r

2n
+ 1)g(X, Y )− (

r

2n
+ 2n+ 1)η(X)η(Y ), (4.72)

for any vector field X, Y on M . Making use of (4.72) in (1.45) yields

(LV g)(Y, Z) = {2λ− βr − 2α(
r

2n
+ 1)}g(Y, Z) + 2α{(2n+ 1) +

r

2n
}η(Y )η(Z).(4.73)

Taking the covariant derivative of (4.73) along arbitrary vector field X we obtain

(∇XLV g)(Y, Z) = −(
α

n
+ β)(Xr)g(Y, Z) +

α

n
(Xr)η(Y )η(Z)

+2α(
r

2n
+ 2n+ 1){g(X, Y )η(Z) + g(X,Z)η(Y )− 2η(X)η(Y )η(Z)}. (4.74)
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Making use of (4.74) in (4.59) yields

2(LV∇)(X, Y ) = −(
α

n
+ β){(Xr)Y + (Y r)X − g(X, Y )Dr}

+
α

n
{(Xr)η(Y )ξ + (Y r)η(X)ξ − η(X)η(Y )Dr}

+ 4α(2n+ 1 +
r

2n
){g(X, Y )ξ − η(X)η(Y )ξ}. (4.75)

Setting X = Y = ei where ei : i = 1, 2, .., 2n+1 is an orthonormal frame in (4.75)

and summing over i, we get

2
2n+1∑

i=1

εi(LV∇)(ei, ei) = −{β(1− 2n) +
α

n
(1− n)}Dr

+
2α

n
(ξr)ξ + 8nα(

r

2n
+ 2n+ 1)ξ. (4.76)

Now taking the covariant derivative of (4.73) give

(∇XLV g)(Y, Z) = −β(Xr)g(Y, Z)− 2α(∇XS)(Y, Z),

which on contracting yields 2
∑2n+1

i=1 εi(LV∇)(ei, ei) = β(2n − 1)Dr. In conse-

quence of this in (4.76), we obtain

2α(n− 1)Dr + 2α(ξr)ξ + 8nα(
r

2n
+ 2n+ 1)ξ = 0. (4.77)

Taking an inner product of (4.77) with ξ, we get ξr = −2(r + 2n(2n + 1)) for

α ̸= 0. In view of this, (4.77) yields Dr = (ξr)ξ for n > 1. Then, replacing Y by

ξ in (4.75) results in

2(LV∇)(X, ξ) = −β(Xr)ξ + (
α

n
+ β)(ξr)φ2X. (4.78)

Taking the covariant derivate of (4.78), then inserting it in Yano’s result (Yano,

1970):

(LVR)(X, Y )Z = (∇XLV∇)(Y, Z)− (∇YLV∇)(X,Z)
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, for Z = ξ yields

2(LVR)(X, Y )ξ = −β{X(Y r)ξ − Y (Xr)ξ} − β{(Xr)φ2Y − (Y r)φ2X}

+(
α

n
+ β){X(ξr)φ2Y − Y (ξr)φ2X + 2(ξr){η(Y )X − η(X)Y }}. (4.79)

Contracting (4.79) over X gives (LV S)(Y, ξ) = −nβ(ξr)η(Y ). In consequence of

this in the Lie-derivative of (1.30), we obtain

(
r

2n
+ 1)g(Y,LV ξ)− (

r

2n
+ 2n+ 1)η(Y )η(LV ξ) =

nβ(ξr)η(Y )− 2n(2λ− βr + 4αn)η(Y )− 2ng(Y,LV ξ). (4.80)

Replacing Y by ξ in (4.80) then inserting back in (4.80) gives λ = −2αn−nβ(2n+

1). In view of this in (4.73) we get η(LV ξ) = −β
2
(r+2n(2n+1)). In consequence

of this and Dr = (ξr)ξ in the Lie-derivative of S(X, ξ) = −2nη(X) we get

(r + 2n(2n+ 1)){2LV ξ −
β

2
(ξr)ξ} = 0. (4.81)

Thus we get either r = −2n(2n+ 1) in this case M is Einstein or LV ξ = β
4
(ξr)ξ.

Suppose r ̸= −2n(2n + 1) in some open set O on M . Then using (1.27) and

(4.81) implies

∇ξV = V − η(V )ξ − β

4
(ξr)ξ. (4.82)

Taking Y = ξ in the commutative formula (LV∇)(X, Y ) = ∇X∇Y V −∇∇XY V +

R(V,X)Y and using (4.82), (4.81) and (4.78), we obtain

(2α + nβ)(ξr)φ2X = 0,

for any vector field X on O. This shows that ξr = 0, that is, r = −2n(2n+1), a

contradiction. This completes the proof.

In particular, if we take scalar α = 1 and β = 0 then in regard to the Theorem

4.6, we can state the following:
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Corollary 4.3 (Ghosh, 2013). If the metric of an η-Einstein Kenmotsu manifold

M2n+1(φ, ξ, η, g), n > 1 is a Ricci soliton then it is Einstein and the soliton is

expanding.

For the case α = 1 and β = −2ρ, we can state the following:

Corollary 4.4. If the metric of an η-Einstein Kenmotsu manifoldM2n+1(φ, ξ, η, g)(n >

1) admits ρ-Einstein soliton then it is Einstein with constant scalar curvature

r = −2n(2n+ 1), provided ρ ̸= 1
n
.

It is known that the warped product R ×cet V (k) where V (k) is a Kähler

manifold of constant holomorphic sectional curvature of dimension 2n admits

Kenmotsu structure (Kenmotsu, 1972)). Moreover, its sectional tensor is given

by (Bishop and O’Neill, 1969)

R(X, Y )Z = H{g(Y, Z)X − g(X,Z)Y }+ (H + 1){g(X,Z)η(Y )ξ

− g(Y, Z)η(X)ξ + η(X)η(Z)Y − η(Y )η(Z)X + g(X,φZ)φY

− g(Y, φZ)φX + 2g(X,φY )φZ}.

Contracting the above equation we see that

S(X, Y ) = 2{(n− 1)H − 1}g(X, Y )− 2(n− 1)(H + 1)η(X)η(Y ),

that is, it is η-Einstein. Now making use of Theorem (4.6) we get H = −1.

Hence, we can state the following:

Corollary 4.5. If the metric of the warped product R ×cet V (k), (n > 1) is a

Ricci-Yamabe soliton with α ̸= 0 then it is of constant curvature -1, provided

2α + nβ ̸= 0.

4.2.2 On Non-Normal almost Kenmotsu manifolds

First, we give some examples of almost Kenmotsu manifold admitting ARYS.
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Example 4.4. Let (N, J, ḡ) be a strictly almost Kähler Einstein manifold. We

take η = dt, ξ = ∂
∂t

and (1,1)-tensor φ by φX = JX for vector field X on N and

φX = 0 if X is tangent to R. Then it is known that (M, g) = (R×cetN, g0+ce
2tḡ)

together with the structure (φ, ξ, η, g) is an almost Kenmotsu manifold (Ken-

motsu, 1972). Also since N is Einstein, we see SM = −2ng. We define a

smooth function f(x, t) = t2 then it is easy to see that (M, g, f, λ) is an ARYS

for λ(x, t) = −2nα− nβ(2n+ 1) + 2.

We can also construct an example of ARYS in almost Kenmotsu manifold

constructed by Barbosa-Ribeiro (2013).

Example 4.5. On the warped product M = R ×σ(t) H2n consider the metric

g = dt2 + σ2(t)g0, where g0 is the standard metric on the hyperbolic space H2n.

Then by Algere et al. (2004) result, it is easy to see that it is almost Kenmotsu

manifold. Let σ(t) = cosht and f(x, t) = sinht then (M, g, f, λ) is an ARYS with

λ = sinht− nβ(2n+ 1)− 2nα.

Here, we consider the gradient almost Ricci-Yamabe soliton in the context of

(κ, µ)′-almost Kenmotsu manifold and generalized Theorem 3.5 (Dey, 2020) and

Theorem 3.1 (Wang, 2016). We state and prove the following:

Theorem 4.7. If M2n+1(φ, ξ, η, g) be a (κ, µ)′-almost Kenmotsu manifold with

h′ ̸= 0 admitting gradient ARYS then eitherM is locally isometric to H2n+1(−4)×

Rn or potential vector field is pointwise collinear with the Reeb vector field.

Proof. Suppose that (κ, µ)′-almost Kenmotsu manifold admits gradient ARYS

then Eq. (4.42)-(4.44) is valid. Taking an inner product of (4.44) with ξ and

inserting Lemma 3.1, we obtain

g(R(X, Y )Df, ξ) = (Xλ)η(Y )− (Y λ)η(X)− α{g(Qh′Y,X)− g(Qh′X, Y )}.(4.83)
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Taking an inner product of (1.21) with Df , then inserting it in (4.83) and replac-

ing X by ξ gives

−(ξλ)ξ +Dλ = κ{(ξf)ξ −Df} − µh′Df. (4.84)

Contracting (4.44) over X, we get QDf = −2nDλ. As a consequence of this in

Lemma 3.1 gives

Dλ−Df + (κ+ 1)(ξf)ξ = h′Df. (4.85)

Combining (4.84) and (4.85), we obtain

κ{(ξf)ξ −Df}+Dλ+ (ξλ)ξ − 2Df + 2(κ+ 1)(ξf)ξ = 0. (4.86)

Operating the forgoing equation by φ yields

φDλ− (κ+ 2)φDf = 0,

implies,

Dλ− (κ+ 2)Df ∈ Rξ.

Therefore, we can write Dλ = (κ+ 2)Df + sξ, where s is a smooth function. In

view of this in (4.84) infer

2(κ+ 1)Df + (s− ξλ− κξf)ξ = 2h′Df. (4.87)

Operating (4.87) by h′ and then inserting the obtained expression in (4.87) gives

(κ+ 2)φDf = 0.

Thus we have either κ = −2 or Df = (ξf)ξ.

Suppose κ = −2. Then without loss of generality, we may choose ν = 1. Then

we have from Theorem 5.1 (Pastore and Saltarelli, 2011) we get

R(Xν , Yν)Zν = −4[g(Yν , Zν)Xν − g(Xν , Zν)Yν ],
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R(X−ν , Y−ν)Z−ν = 0,

for any Xν , Yν , Zν ∈ [ν]′ and X−ν , Y−ν , Z−ν ∈ [−ν]′. As a consequence of this,

Proposition 4.1 and Proposition 4.3 (Pastore and Saltarelli, 2011) along with

ν = 1 show that it is locally isometric to H2n+1(−4) × Rn. This completes the

proof.

Suppose κ ̸= −2. Then in regard to Theorem 4.7, we have V = Df = (ξf)ξ.

Take F = ξf and taking the covariant derivative of V = Fξ along arbitrary

vector field X we get

∇XV = (XF )ξ + F (−φ2X + h′X).

Making use of this in (1.45) yields

(XF )η(Y ) + (Y F )η(X) + 2Fg(X, Y )− 2Fη(X)η(Y )

+2Fg(h′X, Y ) = (2λ− βr)g(X, Y )− 2αS(X, Y ). (4.88)

Replacing Y by ξ in (4.88) gives

XF = (2λ− βr − 4nακ− ξF )η(X), (4.89)

for any vector field X on M . Contracting (4.88) then inserting it in (4.89) and

replacing X by ξ in the obtained expression we obtain

F = λ− βr

2
+ 2nα. (4.90)

Inserting (4.89) in (4.88) and comparing it with Lemma 3.1 yields (F −2nα)(κ+

1)φ2X = 0 for any X on M . As κ < −1, we see that F = 2nα, in view of

this in (4.90) implies λ = βr
2

i.e., a constant. Therefore, M reduces to gradient

Ricci-Yamabe soliton. Hence using Corollary 3.7 (Dey, 2020) we can state the

following:

Corollary 4.6. Let M2n+1(φ, ξ, η, g) be a non-Kenmotsu (κ, µ)′-almost Ken-
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motsu manifold with κ ̸= −2 admitting a gradient ARYS then

1. The potential vector field V is a constant multiple of ξ.

2. V is a strict infinitisimal contact transformation.

3. V leaves h′ invariant.

Consider a generalized (κ, µ)′-almost Kenmotsu manifold of dimension three

with κ < −1. If we assume that κ is invariant along ξ, then from (Proposition

3.2 (Pastore and Saltarelli, 2011)) we have ξ(κ) = −2(κ + 1)(µ + 2) implies

µ = −2. Moreover, from (Lemma 3.3 (Saltarelli, 2015)), we have h′(gradµ) =

gradκ− ξ(κ)ξ which implies κ is constant under our assumption. Therefore M3

becomes a (κ,−2)′-almost Kenmotsu manifold. By applying Theorem 4.7, we can

conclude the following:

Corollary 4.7. Let M3(φ, η, ξ, g) be a generalized non-Kenmotsu (κ, µ)′-almost

Kenmotsu manifold with κ < −1 invariant along the Reeb vector field admitting

gradient ARYS then it is either locally isometric to the product space H2n+1(−4)×

Rn or potential vector field is pointwise collinear with the Reeb vector field.

4.2.3 On 3-dimensional Almost Kenmotsu manifolds

Suppose that the non-trivial potential vector field of gradient ARY soliton

(α ̸= 0) is orthogonal to the Reeb vector field ξ, then we can write V = f1e+f2φe,

where f1, f2 are smooth functions. Replacing X by ξ in (4.42) and making use of

Lemmas 3.2 and 3.3, we get





−2α(ϑ2 + 1) = λ− βr
2
,

φe(ϑ) = −2bϑ,

e(ϑ) = −2cϑ.

(4.91)
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Similarly, taking X = e in (4.42) gives





ϑf1 − f2 = 0,

e(f1) + bf2 − α(A+ 2aϑ) = λ− βr
2
,

e(f2)− bf1 + α(ξ(ϑ) + 2ϑ) = 0.

(4.92)

Also for X = φe, we obtain





ϑf1 − f2 = 0,

φe(f1)− cf2 + α(ξ(ϑ) + 2ϑ) = 0,

cf1 + φe(f2)− α(A− 2aϑ) = λ− βr
2
.

(4.93)

Comparing the first arguments of (4.92) and (4.93), we see that (ϑ2 − 1)f1 = 0.

If f1 = 0, then from first argument of (4.93) we get f2 = 0, which further implies

V = 0, a contradiction. Therefore, we must have ϑ = 1. As a consequence of

this in second and third statement of (4.91) yields b = c = 0 and first argument

of (4.92) gives f1 = f2.

Combining the first equation of (4.91) with the second eqn. (4.92) and third eqn.

(4.93), then making use of the fact that ϑ = 1 yields

e(f1)− φe(f1) = cf1 − bf1 + 4αa = 0, (4.94)

where we use f1 = f2. Similarly from (4.92) and (4.93), one can get

φe(f1)− cf1 = e(f1)− bf1. (4.95)

Making use of (4.94) and (4.95), together with b = c = 0 gives a = 0. In

consequence, Eq. (3.74) becomes

[ξ, e] = φe− e, [e, φe] = 0, [φe, ξ] = −e+ φe.
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Using Milnor’s result (Milnor, 1976) we can conclude thatM3 is locally isometric

to a non-unimodular Lie group with a left-invariant almost Kenmotsu structure.

Moreover, it is obvious that ∇ξh = 0 and it is conformally flat with constant

scalar curvature r = −8. Now making use of Wang’s result (Wang, 2017) which

state that, “An almost Kenmotsu 3-manifold satisfying ∇ξh = 0 is conformally

flat with constant scalar curvature if and only if it is locally isometric to either the

hyperbolic space H3(−1) or the Riemannian product H2(−4) × R” we can state

the following:

Theorem 4.8. If a 3-dimensional non-Kenmotsu almost Kenmotsu manifold ad-

mits a gradient ARYS (α ̸= 0) whose non-trivial potential vector field is orthogo-

nal to the Reeb vector field, then it is locally isometric to the Riemannian product

H2(−4)× R.
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Chapter 5

On Invariant Submanifolds and

Chen’s Inequalities

This chapter is divided into two sections. The first section involved the study

of invariant submanifolds of the f -Kenmotsu manifold and in the second section,

we obtained Chen’s inequalities for submanifolds of generalized Sasakian-space-

forms endowed with the quarter-symmetric connection.

5.1 Invariant Submanifolds of f-Kenmotsu Man-

ifolds

Definition 5.1. A submanifold M of an f -Kenmotsu manifold M̃ is said to be

invariant if the structure vector field ξ is tangent to M at every point of M and

φX is tangent to M for any vector field X tangent to M at every point of M ,

that is, φ(TM) ⊂ TM at every point of M .

M. Khatri, S.K. Chaubey, J.P. Singh (2022), Invariant Submanifolds of f -Kenmotsu Man-
ifolds , Int. J. Geom. Methods Mod. Phys., (Accepted).

137



Chapter 5

It is easy to see that for invariant submanifolds of f -Kenmotsu manifolds, we

have

σ(X, ξ) = 0, (5.1)

for any X ∈ Γ(TM).

Proposition 5.1. LetM be an invariant submanifold of an f -Kenmotsu manifold

M̃ . Then the following relations hold:

∇Xξ = −fφ2X, (5.2)

φσ(X, Y ) = σ(φX, Y ) = σ(X,φY ), (5.3)

(∇Xφ)Y = f(g(φX, Y )ξ − η(Y )φX), (5.4)

R(X, Y )ξ = f 2(η(X)Y − η(Y )X) + φ2(Y f)− φ2(Xf), (5.5)

where ∇, σ and R denote the induced Levi-Civita connection, shape operator and

Riemannian curvature tensor of M , respectively.

Proof. By using (1.36), (1.37), (1.38), (1.51), (1.55) and (5.1) we can directly

compute the required results.

Thus we can state the following:

Lemma 5.1. An invariant submanifold M of f -Kenmotsu manifold M̃ is again

an f -Kenmotsu manifold.

Lemma 5.2. Any invariant submanifold M of f -Kenmotsu manifold M̃ is a

minimal submanifold.

Proof. Since an invariant submanifold M of f -Kenmotsu manifold M̃ is again f -

Kenmotsu manifold, M is of odd dimension, say (2n+1)-dimension. Consider an
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orthonormal basis e1, ..., e2n+1 of M such that en+t = φet(t = 1, ..., n), e2n+1 = ξ.

Then by (5.1) and (5.4) we have

σ(φei, φei) = φ2σ(ei, ei) = −σ(ei, ei).

Now,

Tr(σ) =
2n+1∑

i=1

(σ(ei, ei) + σ(φei, φei)) + σ(ξ, ξ) = 0.

This shows that M is a minimal submanifold.

Now R̃ · σ is given by

(R̃(X, Y ) · σ)(Z,U) = R⊥(X, Y )σ(Z,U)− σ(R(X, Y )Z,U)

− σ(Z,R(X, Y )U), (5.6)

for all X, Y, Z, U ∈ Γ(TM), where

R⊥(X, Y ) = [∇⊥
X ,∇⊥

Y ]−∇⊥
[X,Y ].

If R̃ · σ = 0, then the submanifold is called semiparallel. Arslan et al. ((1990)

defined and studied submanifolds satisfying the condition R̃(X, Y ) · ∇̃σ = 0 for

all X, Y ∈ Γ(TM) and called it as 2-semiparallel. We can write

(R̃(X, Y ) · ∇̃σ)(Z,U, V ) = R⊥(X, Y )(∇̃σ)(Z,U, V )− (∇̃σ)(R(X, Y )Z,U, V )

−(∇̃σ)(Z,R(X, Y )U, V )− (∇̃σ)(Z,U,R(X, Y )V ),(5.7)

for all X, Y, Z, U, V ∈ Γ(TM) and (∇̃σ)(Z,U, V ) = (∇̃Zσ)(U, V ).

For a (0, k)-type tensor field T , k ≥ 1 and a (0, 2)-type tensor field G on a

Riemannian manifoldM . D(G, T )-tensor field is defined by (Atceken and Uygun,

2021)

D(G, T )(X, Y, ...Tk;X, Y ) = −T ((X ∧G Y )X, Y, .....Tk)

....− T (X, Y, ....Tk−1, (X ∧G Y )Tk) (5.8)
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for all X, Y, ....Tk, X, Y ∈ Γ(TM), where

(X ∧G Y )Z = G(Y, Z)X −G(X,Z)Y.

Definition 5.2 (Atceken, 2021; Atceken et al., 2020). Let M be a submanifold

of a Riemannian manifold (M̃, g). If there exist functions L1, L2, L3 and L4 on

M̃ such that

R̃ · σ = L1D(g, σ), (5.9)

R̃ · ∇̃σ = L2D(g, ∇̃σ), (5.10)

R̃ · σ = L3D(S, σ), (5.11)

R̃ · ∇̃σ = L4D(S, ∇̃σ), (5.12)

then M is, respectively, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseu-

doparallel and 2-Ricci-generalized pseudoparallel submanifold. In particular, if

L1 = 0 or L3 = 0 (resp., L2 = 0 or L4 = 0), then M is said to be semiparallel

(resp., 2-semiparallel).

Next, we give some characterization theorems for totally geodesic submani-

folds of f -Kenmotsu manifolds.

Theorem 5.1. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . Then M is totally geodesic if and only if the second fundamental form is

parallel, provided M is non-cosympletic.

Proof. Suppose that the second fundamental form σ is parallel, then form (1.54)

we have

(∇̃Xσ)(Y, Z) = ∇⊥
Xσ(Y, Z)− σ(∇XY, Z)− σ(Y,∇XZ) = 0. (5.13)
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Replacing Z by ξ in (5.13) and using (1.9), (5.1) and (5.2) gives

fσ(X, Y ) = 0.

As M is non-cosympletic, f ̸= 0. Hence σ = 0. This completes the proof.

Theorem 5.2. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . If M is a pseudoparallel submanifold then it is totally geodesic or the function

L1 satisfies L1 = −(f 2 + ξf).

Proof. Consider that M is pseudoparallel, then from (5.9) we have

(R̃(X, Y ) · σ)(Z,U) = L1D(g, σ)(Z,U ;X, Y ), (5.14)

for all X, Y, Z, U ∈ Γ(TM). Making use of (5.6) and (5.8) in (5.14) gives

R⊥(X, Y )σ(Z,U)− σ(R(X, Y )Z,U)− σ(Z,R(X, Y )U)

= −L1{σ((X ∧g Y )Z,U) + σ(Z, (X ∧g Y )U)}. (5.15)

Substituting X and Z by ξ and using (5.1) in (5.15) we get

(L1 + f 2 + ξf)σ(X, Y ) = 0,

for all X, Y ∈ Γ(TM). This completes the proof.

Corollary 5.1. Let M be an invariant submanifold of a regular f -Kenmotsu

manifold M̃ . Then M is totally geodesic if and only if it is semiparallel.

Theorem 5.3. Let M be an invariant submanifold of an f -Kenmotsu manifold

M̃ . If M is 2-pseudoparallel submanifold then it is either totally geodesic or

cosympletic or the function L2 satisfies L2 = −(f 2 + ξf).

Proof. Under our assumption, from (5.10) we have

(R̃(X, Y ) · ∇̃σ)(U, V, Z) = L2D(g, ∇̃σ)(U, V, Z;X, Y ), (5.16)
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for all X, Y, Z, U, V ∈ Γ(TM). Making use of (5.6) and (5.8) in (5.16) gives

R⊥(X, Y )(∇̃Uσ)(V, Z)− (∇̃R(X,Y )Uσ)(V, Z)− (∇̃Uσ)(R(X, Y )V, Z)

− (∇̃Uσ)(V,R(X, Y )Z) = −L2{(∇̃(X∧gY )Uσ)(V, Z)

+ (∇̃Uσ)((X ∧g Y )V, Z) + (∇̃Uσ)(V, (X ∧g Y )Z)}. (5.17)

Putting X = V = ξ in (5.17) yields

R⊥(ξ, Y )(∇̃Uσ)(ξ, Z)− (∇̃R(ξ,Y )Uσ)(ξ, Z)− (∇̃Uσ)(R(ξ, Y )ξ, Z)

− (∇̃Uσ)(ξ, R(ξ, Y )Z) = −L2{(∇̃(ξ∧gY )Uσ)(ξ, Z)

+ (∇̃Uσ)((ξ ∧g Y )ξ, Z) + (∇̃Uσ)(ξ, (ξ ∧g Y )Z)}. (5.18)

Computing each term of (5.18) individually and using (1.9), (1.54), (5.1), (5.2)

and (5.5), we obtain the following:

(∇̃(ξ∧gY )Uσ)(ξ, Z) = fσ(φ2(ξ ∧g Y )U,Z)

= fη(U)σ(Y, Z). (5.19)

(∇̃Uσ)((ξ ∧g Y )ξ, Z) = (∇̃Uσ)(η(Y )ξ − Y, Z)

= −σ(∇Uξ, Z)η(Y )− (∇̃Uσ)(Y, Z)

= fσ(φ2U,Z)η(Y )− (∇̃Uσ)(Y, Z)

= −fσ(U,Z)η(Y )− (∇̃Uσ)(Y, Z). (5.20)

(∇̃Uσ)(ξ, (ξ ∧g Y )Z) = −σ(∇Uξ, g(Y, Z)ξ − η(Z)Y )

= fσ(U, Y )η(Z). (5.21)

R⊥(ξ, Y )(∇̃Uσ)(ξ, Z) = −R⊥(ξ, Y σ(∇Uξ, Z)

= −fR⊥(ξ, Y )σ(U,Z). (5.22)
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(∇̃R(ξ,Y )Uσ)(ξ, Z) = −σ(∇R(ξ,Y )Uξ, Z)

= fσ(φ2R(ξ, Y )U,Z)

= −f 3σ(Y, Z)η(U)− fσ(gradf, Z)g(φ2U, Y )− f(Uf)σ(Y, Z).

(5.23)

(∇̃Uσ)(R(ξ, Y )ξ, Z) = f 2(∇̃Uσ)(Y, Z)− f 2η(Y )(∇̃Uσ)(ξ, Z)

− (ξf)(∇̃Uσ)(φ
2Y, Z). (5.24)

(∇̃Uσ)(ξ, R(ξ, Y )Z) = −f 2σ(∇Uξ, Y )− σ(∇Uξ, gradf)g(φ
2Z, Y )

+ (Zf)σ(∇Uξ, φ
2Y ). (5.25)

Combining (5.18)-(5.25) and then replacing Z by ξ in the forgoing equation we

lead

f(f 2 + ξf + L2)σ(Y, U) = 0,

for all Y, U ∈ Γ(TM). This completes the proof.

Corollary 5.2. Let M be an invariant submanifold of a regular f -Kenmotsu

manifold. If M is 2-semiparallel, then it is totally geodesic or cosympletic.

Theorem 5.4. Let M be an invariant submanifold of a regular f -Kenmotsu

manifold M̃ . If M is a Ricci-generalized pseudoparallel submanifold then M is

either totally geodesic or the function L3 satisfies L3 =
1
2n
.

Proof. Suppose that M is a Ricci-generalized pseudoparallel submanifold then

from (5.11) becomes

(R̃(X, Y ) · σ)(Z,U) = L3D(S, σ)(Z,U ;X, Y ), (5.26)
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for all X, Y, Z, U ∈ Γ(TM). Making use of (5.6) and (5.8) in (5.26) gives

R⊥(X, Y )σ(Z,U)− σ(R(X, Y )Z,U)− σ(Z,R(X, Y )U)

= −L3{σ((X ∧S Y )Z,U) + σ(Z, (X ∧S Y )U)}. (5.27)

Inserting X = U = ξ in (5.27) and then using (5.1) and (5.5) we obtain

(1− 2nL3)(f
2 + ξf)σ(Z, Y ) = 0,

for all vector fields Z, Y . This completes the proof.

Theorem 5.5. Let M be an invariant submanifold of a regular f -Kenmotsu

manifold M̃ . If M is a 2-generalized Ricci pseudoparallel submanifold then M is

either totally geodesic or cosympletic or the function L4 satisfies L4 =
1
2n
.

Proof. By hypothesis, from (5.12) we have

(R̃(X, Y ) · ∇̃σ)(U, V, Z) = L4D(S, ∇̃σ)(U, V, Z;X, Y ), (5.28)

for all vector fields X, Y, Z, U, V . Making use of (5.6) and (5.8) in (5.28) gives

R⊥(X, Y )(∇̃Uσ)(V, Z)− (∇̃R(X,Y )Uσ)(V, Z)− (∇̃Uσ)(R(X, Y )V, Z)

− (∇̃Uσ)(V,R(X, Y )Z) = −L4{(∇̃(X∧SY )Uσ)(V, Z)

+ (∇̃Uσ)((X ∧S Y )V, Z) + (∇̃Uσ)(V, (X ∧S Y )Z)}. (5.29)

Replacing X = V = ξ in (5.29) gives

R⊥(ξ, Y )(∇̃Uσ)(ξ, Z)− (∇̃R(ξ,Y )Uσ)(ξ, Z)− (∇̃Uσ)(R(ξ, Y )ξ, Z)

− (∇̃Uσ)(ξ, R(ξ, Y )Z) = −L4{(∇̃(ξ∧SY )Uσ)(ξ, Z)

+ (∇̃Uσ)((ξ ∧S Y )ξ, Z) + (∇̃Uσ)(ξ, (ξ ∧S Y )Z)}. (5.30)
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Computing each terms separately gives

(∇̃(ξ∧SY )Uσ)(ξ, Z) = −σ(∇(ξ∧SY )Uξ, Z)

= fσ(φ2(ξ ∧S Y )U,Z)

= fS(ξ, U)σ(Y, Z). (5.31)

(∇̃Uσ)((ξ ∧S Y )ξ, Z) = (∇̃Uσ)(S(Y, ξ)ξ − S(ξ, ξ)Y, Z)

= S(Y, ξ)(∇̃Uσ)(ξ, Z)− S(ξ, ξ)(∇̃Uσ)(Y, Z). (5.32)

(∇̃Uσ)(ξ, (ξ ∧S Y )Z) = (∇̃Uσ)(ξ, S(Y, Z)ξ − S(ξ, Z)Y )

= −S(ξ, Z)(∇̃Uσ)(ξ, Y ). (5.33)

Making use of (5.22)-(5.25) and (5.31)-(5.33) in (5.30) then replacing Z by ξ we

get

f(1− 2nL4)(f
2 + ξf)σ(Y, U) = 0,

for all Y, U ∈ Γ(TM). This completes the proof.

5.1.1 3-dimensional invariant submanifold of f-kenmotsu

manifold

Lemma 5.3. Let M be an invariant submanifold of f -Kenmotsu manifold M̃ ,

then there exists the distributions D and D⊥ such that

TM = D ⊕D⊥⊕ < ξ >, φ(D) ⊂ D⊥and φ(D⊥) ⊂ D.

Proof. The proof is similar to the proof of Lemma 4.1 (Chaubey et al., 2022) and

Proposition 6.1 (Shaikh et al., 2016).

Theorem 5.6. A 3-dimensional submanifold M of f -Kenmotsu manifold M̃ is
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totally geodesic if and only if it is invariant.

Proof. Suppose that a 3-dimensional submanifoldM of f -Kenmotsu manifold M̃

is invariant, then form (5.3) for X1, Y1 ∈ D we have

φσ(X1, Y1) = σ(φX1, Y1) = σ(X1, φY1). (5.34)

Operating (5.34) by φ and using (1.9) gives

φσ(X1, φY1) = φ2σ(X1, Y1) = −σ(X1, Y1) + η(σ(X1, Y1))ξ. (5.35)

Since σ(X1, Y1) ⊂ T⊥M , σ(X1, Y1) is orthogonal to ξ ∈ TM . In consequence,

from (5.34) and (5.35) we get

σ(φX1, φY1) = σ(X2, Y2) = −σ(X1, Y1), (5.36)

where X2 = φX1, Y2 = φY1 ∈ D⊥. Now for any X1, Y1 ∈ D and X2, Y2 ∈ D⊥ we

see that

σ(X1 +X2 + ξ, Y1) = σ(X1, Y1) + σ(X2, Y1) + σ(ξ, Y1),

σ(X1 +X2 + ξ, Y2) = σ(X1, Y2) + σ(X2, Y2) + σ(ξ, Y2),

σ(X1 +X2 + ξ, ξ) = σ(X1, ξ) + σ(X2, ξ) + σ(ξ, ξ).

In view of the above equations and (5.22), we can write

σ(X1 +X2 + ξ, Y1 + Y2 + ξ) = σ(X2, Y1) + σ(X1, Y2). (5.37)

Taking U, V ∈ TM as U = X1 +X2 + ξ and V = Y1 + Y2 + ξ, (5.37) becomes

σ(U, V ) = σ(X2, Y1) + σ(X1, Y2).

Operating the last equation by φ then using (5.34) and (5.36) yields

φσ(U, V ) = σ(X2, φY1) + σ(X1, φY2) = 0,
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Again operating by φ gives σ(U, V ) = 0, for any vector fields U, V . Therefore, M

is totally geodesic

The proof of the converse part is similar to the proof of Theorem 4.6 (Chaubey

et al., 2022). This completes the proof.

5.1.2 η-Ricci soliton on invariant submanifolds of f-Kenmotsu

manifolds

LetM be an invariant submanifold of an f -Kenmotsu manifold. Consider the

equation

1

2
(Lξg)(X, Y ) + S(X, Y ) + λg(X, Y ) + ωη(X)η(Y ) = 0, (5.38)

for any X, Y ∈ Γ(TM), where Lξg is the Lie-derivative of g along ξ, S is the

Ricci tensor of g, and λ and ω are real constants. The data (g, ξ, λ, ω) satisfies

(5.38) is called η-Ricci soliton on M (Cho and Kimura, 2009). In particular, if

ω = 0 then it is called Ricci soliton (Hamilton, 1998) and it is expanding, steady

or shrinking according to λ > 0, λ = 0 or λ < 0 (Chow et al., 2006).

Making use of (5.2), we can write

(Lξg)(X, Y ) = g(∇Xξ, Y ) + g(X,∇Y ξ)

= 2f{g(X, Y )− η(X)η(Y )}.

In consequence of the last expression in (5.38) gives

S(X, Y ) = −(f + λ)g(X, Y ) + (f − ω)η(X)η(Y ), (5.39)

for any vector fields X, Y on M . Thus we can state the following:

Theorem 5.7. If (g, ξ, λ, ω) is an η-Ricci soliton on an invariant submanifold

M of an f -Kenmotsu manifold M̃ , then M is η-Einstein.

In particular for ω = 0 we have
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Corollary 5.3. If (g, ξ, λ) is a Ricci soliton on an invariant submanifold M of

f -Kenmotsu manifold M̃ , then M is η-Einstein.

Replacing X = Y = ξ in (5.39) and using (5.5), we get

λ = 2n(f 2 + ξf)− ω.

Theorem 5.8. Let an invariant submanifold M of f -Kenmotsu manifold M̃

admit an η-Ricci soliton (g, ξ, λ, µ) then λ = 2n(f 2 + ξf)− ω.

Suppose ξ = ∂
∂t
, then for Ricci soliton (g, ξ, λ) on M , λ assumes the form

λ = 2n(f 2 + ∂f
∂t
). Obvious that f = 1

t+F
is the general solution of f 2 + ∂f

∂t
= 0,

for some function F (independent of t), provided t+ F ̸= 0. Thus, we can write

Corollary 5.4. Let an invariant submanifold M of an f -Kenmotsu manifold M̃

admits a Ricci soliton (g, ξ, λ). Then the soliton (g, λ, ξ) is shrinking, expanding

or steady if f < 1
t+F

, f > 1
t+F

or f = 1
t+F

, respectively.

Corollary 5.5. Let an invariant submanifold M of Kenmotsu manifold M̃ ad-

mit a Ricci soliton (g, ξ, λ). Then M is η-Einstein and the soliton (g, ξ, λ) is

expanding.

Corollary 5.6. Let an invariant submanifold M of a cosympletic manifold M̃

admit a Ricci soliton (g, ξ, λ). Then M is Einstein and the soliton (g, ξ, λ) is

steady.

Suppose that invariant submanifoldM of an f -Kenmotsu manifold M̄ admits

an η-Ricci soliton. Let the Reeb vector field ξ ofM is the gradient of some smooth

function ψ, that is, ξ = gradψ. Then equation (5.38) becomes

1

2
{g(∇Xgradψ, Y ) + g(X,∇Y gradψ)}+ S(X, Y ) + λg(X, Y ) + ωη(X)η(Y ) = 0.

Contracting the above equation over X and Y , we find

∇2ψ = Ψ, (5.40)
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where Ψ = −(τ +(2n+1)λ+ω) and ∇2 denotes the Laplacian operator of g and

τ represents the scalar curvature of M .

A smooth function ψ on a Riemannian manifold M is said to satisfy the

Poisson’s equation if it satisfies the partial differential equation (5.40) for some

smooth function Ψ onM . Particularly if we choose Ψ = 0, then the above Poisson

equation reduces to the Laplace equation, and ψ is said to be harmonic.

By considering the above facts, we can state the following:

Theorem 5.9. Let an invariant submanifold M of an f -Kenmotsu manifold M̃

admits an η-Ricci soliton (g, ξ, λ, ω). If the Reeb vector field of M is the gradient

of some smooth function ψ, then ψ satisfies Poisson’s equation (5.40).

Theorem 5.10. Let an invariant submanifold M of an f -Kenmotsu manifold M̃

admits an η-Ricci soliton (g, ξ, λ, ω). If the Reeb vector field of M is the gradient

of some smooth function ψ, then ψ satisfies the Laplace equation if and only if

λ = − τ+ω
2n+1

.

Remark 5.1. To study celestial mechanics, Pierre-Simon de Laplace used the

Laplace operator. Laplacian represents the flux density of the gradient flow of a

function. Laplacian occurs in differential equations that describes many physical

phenomena, such as electrical and gravitational potentials, the diffusion equation

for heat and fluid flow, wave propagation, quantum mechanics, Hodge theory, de

Rham cohomology, image processing and computer version.

5.1.3 Invariant submanifold of f-Kenmotsu space forms

Let M be a (2n+1)-dimensional invariant submanifold of f -Kenmotsu space

form M̃2m+1(c). We consider an orthonormal basis e1, ..., e2n+1 of M such that

en+t = φet(t = 1, ..., n), e2n+1 = ξ. Then, using (1.40), (1.55) and (5.1) the
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expression for the curvature tensor of M is given by

R(X, Y, Z, U) =
c− 3f 2

4
(g(Y, Z)g(X,U)− g(X,Z)g(Y, U))

+
c+ f 2

4
(2g(X,φY )g(φZ,U) + g(X,φZ)g(φY, U)

− g(Y, φZ)g(φX,U)) + (
c+ f 2

4
+ ξf)(η(X)η(Z)g(Y, U)

− η(Y )η(Z)g(X,U) + g(X,Z)η(Y )η(U)− g(Y, Z)η(X)η(U))

+ g(σ(X,U), σ(Y, Z))− g(σ(X,Z), σ(Y, U)), (5.41)

for all X, Y, Z, U ∈ Γ(TM). From (5.41), the Ricci curvature and scalar curvature

of M is given by

S(Y, Z) =
c− 3f 2

2
ng(Y, Z) +

3(c+ f 2)

4
g(φY, φZ)

+(
c+ f 2

4
+ ξf)((1− 2n)η(Y )η(Z)− g(Y, Z))

−
∑

i

g(σ(ei, Z), σ(Y, ei)). (5.42)

and,

τ = n(n+ 1)c− n(1 + 3n)f 2 − 4nξf − ||σ||2, (5.43)

where, ||σ||2 = ∑n
i,j=1 g(σ(ei, ej), σ(ei, ej)).

Now, for 1 ≤ i, j ≤ n, n+ 1 ≤ α ≤ 2p, where p = m− n we define

σαij = g(σ(ei, ej), eα), (5.44)

and its derivatives as

σαijk = ∇̃ekσ
α
ij = g((∇̃ekσ)(ei, ej), eα), (5.45)

and

σαijkl = ∇̃el∇̃ekσ
α
ij = g((∇̃el∇̃ekσ)((ei, ej), eα). (5.46)
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Yildiz and Murathan (2009) obtain

1

2
∆(||σ||2) =

n∑

i,j,k=1

g((∇̃ek∇̃ekσ)(ei, ej), σ(ei, ej)) + ||∇̃σ||2, (5.47)

where,

||σ||2 =
n∑

i,j,k=1

2p∑

α=n+1

(σαij)
2,

||∇̃σ||2 =
n∑

i,j,k=1

2p∑

α=n+1

(σαijkk)
2,

where ∆ denotes the Laplacian operator of g. For Ricci-generalized pseudoparallel

submanifold for L3 =
1
2n
, from (5.26) we have

R̃(el, ek) · σ =
1

2n
(el ∧S ek) · σ. (5.48)

Also we have

(R̃(el, ek) · σ)(ei, ej) = (∇̃el∇̃ekσ)(ei, ej)− (∇̃ek∇̃elσ)(ei, ej). (5.49)

Making use of (5.1) and (5.8) we get

((el ∧S ek)σ)(ei, ej) = −S(ek, ei)σ(el, ej) + S(el, ei)σ(ek, ej)

−S(ek, ej)σ(ei, el) + S(el, ej)σ(ei, ek). (5.50)

Combining (5.48), (5.49) and (5.50) gives

(∇̃el∇̃ekσ)(ei, ej)− (∇̃ek∇̃elσ)(ei, ej) =
1

2n
[−S(ek, ei)σ(el, ej)

+S(el, ei)σ(ek, ej)− S(ek, ej)σ(ei, el) + S(el, ej)σ(ei, ek)]. (5.51)
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Now using (5.51) we compute

g((∇̃ek∇̃ekσ)(ei, ej), σ(ei, ej)) = g((∇̃ek∇̃eiσ)(ek, ej), σ(ei, ej))

= g((∇̃ei∇̃ekσ)(ek, ej), σ(ei, ej))

+
1

2n
[S(ek, ek)g(σ(ei, ej), σ(ei, ej))

− S(ei, ek)g(σ(ek, ej), σ(ei, ej))

+ S(ek, ej)g(σ(ei, ek), σ(ei, ej))

− S(ei, ej)g(σ(ek, ek), σ(ei, ej))]. (5.52)

Inserting (5.52) in (5.47) we get

1

2
∆(||σ||2)− ||∇̃σ||2 =

n∑

i,j,k=1

{g((∇̃ei∇̃ekσ)(ek, ej), σ(ei, ej))

+
1

2n
[S(ek, ek)g(σ(ei, ej), σ(ei, ej))− S(ei, ek)g(σ(ek, ej), σ(ei, ej))

+ S(ek, ej)g(σ(ei, ek), σ(ei, ej))− S(ei, ej)g(σ(ek, ek), σ(ei, ej))]}. (5.53)

Now we compute each term separately.

n∑

i,j,k=1

S(ek, ek)g(σ(ei, ej), σ(ei, ej)) = τ ||σ||2. (5.54)

n∑

i,j,k=1

S(ei, ek)g(σ(ek, ej), σ(ei, ej)) =
n∑

i,j,k=1

2p∑

α=n+1

S(ei, ek)g(Aαek, Aαei)

=
n∑

i,j,k=1

2p∑

α=n+1

[(
c(n+ 1) + f 2(1− n)

2
− 1)g(ei, ek)g(Aαek, Aαei)

− (
(n+ 1)(c+ f 2)

2
+ (2n− 1)ξf)η(ek)η(ej)g(Aαek, Aαei)

− g(Aαek, Aαei)g(Aαek, Aαei)]. (5.55)

n∑

i,j,k=1

S(ei, ej)g(σ(ek, ek), σ(ei, ej)) =
n∑

i,j,k=1

2p∑

α=n+1

S(ei, ej)TrAαg(Aαei, ej).(5.56)
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Combining (5.53)-(5.56) and using the minimality we get

1

2
∆(||σ||2) =

n∑

i,j,k=1

g((∇̃ei∇̃ejσ)(ek, ek), σ(ei, ej)) +
1

2n
τ ||σ||2 + ||∇̃σ||2. (5.57)

Take Hα =
∑n

k=1 σ
α
kk then (5.57) becomes

1

2
∆(||σ||2) =

n∑

i,j,k=1

2p∑

α=n+1

σαij(∇̃ei∇̃ejH
α) +

1

2n
τ ||σ||2 + ||∇̃σ||2.

Then by Lemma 5.2, last equation becomes

1

2
∆(||σ||2) = 1

2n
τ ||σ||2 + ||∇̃σ||2. (5.58)

Hence, we can state the following.

Theorem 5.11. Let M be a (2n + 1)-dimensional invariant submanifold of f -

Kenmotsu space form M̃2m+1(c). If M is a Ricci-generalized pseudoparallel sub-

manifold with L3 =
1
2n
, then we obtain the following relation:

1

2
∆(||σ||2) = 1

2n
τ ||σ||2 + ||∇̃σ||2.

5.1.4 Examples of an invariant submanifold of f-Kenmotsu

manifolds

Example 5.1. Consider a 5-dimensional manifold M̃ = {(x1, x2, x3, x4, t) ∈

R5 : t ̸= 0} where (x1, x2, x3, x4, t) are the standard coordinates in R5. Now

let {e1, e2, e3, e4, e5} be a linearly independent global frame on M̃ given by

e1 = et
2 ∂

∂x1
, e2 = et

2 ∂

∂x2
, e3 = et

2 ∂

∂x3
, e4 = et

2 ∂

∂x4
, e5 =

∂

∂t
.

Let g be a Riemannian metric on M̃ define as

g(ei, ej) =





1, if i = j,

0, if i ̸= j, where 1 ≤ i, j ≤ 5.
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Set e5 = ξ, then we see that η(e5) = 1 and η(ei) = 0 for i = 1, 2, 3, 4.

Also, we define (1,1)-tensor φ as

φ(e1) = −e2, φ(e2) = e1, φ(e3) = −e4, φ(e4) = e3, φ(e5) = 0.

As a consequence of the above equations its easy to see that φ2X = −X + η(X)ξ

and g(φX,φY ) = g(X, Y )−η(X)η(Y ), for any vector fields X, Y on M̃ . Clearly,

M̃(φ, ξ, g, η) forms an almost contact metric manifold. Let ∇̃ be the Levi-Civita

connection with respect to the metric g. Then we have

[ei, ej] =





−2tei, if i = 1, 2, 3, 4; j = 5,

0, otherwise.

(5.59)

Making use of the Koszul formula and (5.59), we obtained the following

∇̃e1e1 = 2te5, ∇̃e1e2 = 0, ∇̃e1e3 = 0, ∇̃e1e4 = 0, ∇̃e1e5 = −2te1,

∇̃e2e2 = 2te5, ∇̃e2e3 = 0, ∇̃e2e4 = 0, ∇̃e2e5 = −2te2, ∇̃e3e3 = 2te5,

∇̃e3e4 = 0, ∇̃e3e5 = −2te3, ∇̃e4e5 = −2te4, ∇̃e4e4 = 2te5, ∇̃e5e5 = 0.

The above relations imply that the manifold satisfies ∇̃Xξ = −fφ2X, for ξ = e5

and f = −2t. Therefore, M̃ is an f -Kenmotsu manifold with f = −2t. More-

over, M̃ is regular as f 2 + ξf ̸= 0.

Let M be a subset of M̃ and consider the isometric immersion π : M →

M̃ defined by π(x1, x3, t) = (x1, 0, x3, 0, t). Clearly, M = {(x1, x3, t) ∈ R3 :

(x1, x3, t) ̸= 0} is a 3-dimensional submanifold of M̃ , where (x1, x3, t) are standard

coordinates in R3. We choose the vector fields

e1 = et
2 ∂

∂x1
, e3 = et

2 ∂

∂x3
, e5 =

∂

∂t
.
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We define g1 such that {e1, e3, e5} is an orthonormal basis of M as follows:

g1(ei, ej) =





1, if i = j,

0, if i ̸= j, where i, j = 1, 3, 5.

Set ξ = e5. Then define 1-form η1 and (1,1)-tensor field φ1 as η1(·) = g1(·, e5)

and φ1(e1) = −e3, φ1(e3) = e1, φ1(e5) = 0.

Making use of the above relations, it is easy to see that

η1(e5) = 1, φ2
1(X) = −X + η1(X)e5,

g1(φ1X,φ1Y ) = g1(X, Y )− η1(X)η1(Y ),

for vector fields X, Y onM . Clearly, M(η1, g1, e5, φ1) is an invariant submanifold

of M̃ . Let ∇ be the Levi-Civita connection induced by the metric g1, then by using

Koszul formula, we derive the following:

∇e1e1 = 2te5,∇e1e3 = 0,∇e1e5 = −2te1,

∇e3e3 = 2te5,∇e3e5 = −2te3,∇e5e5 = 0.

One can see that M(g1, η1, φ1, e5) forms a 3-dimensional f -Kenmotsu manifold

with f = −2t. Thus, Lemma 5.1 is verified.

Let σ be the second fundamental form, then using (1.51) and the above rela-

tions we obtained

σ(X, Y ) = 0,

for any vector field X, Y on M . Thus, M is a totally geodesic submanifold of M̃ .

Hence, Theorem 5.6 and Corollary 5.1, 5.2 are verified.

Example 5.2. Let Rn be an n-dimensional real number space. Define M5 =

{(x1, x2, x3, x4, x5) : xi ∈ R, i = 1, 2, ..., 5 and x3 ̸= 0}. Let {e1, e2, e3, e4, e5} be
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a set of linearly independent vector fields of M5 given by

e1 = e−e
x3 ∂

∂x1
, e2 = e−e

x3 ∂

∂x2
, e3 =

∂

∂x3
, e4 = e−e

x3 ∂

∂x4
, e5 = e−e

x3 ∂

∂x5
.

Let g be the associated metric of M5 which is define as

g(ei, ej) =





1, if i = j,

0, if i ̸= j, where 1 ≤ i, j ≤ 5.

Also, we define (1,1)-tensor field φ of M5 as

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0, φ(e4) = −e5, φ(e5) = e4.

By the linearity property of g and φ, we can easily show that the following relations

φ2ei = −ei+η(ei)e3, g(ei, e3) = η(ei) and g(φei, φej) = g(ei, ej)−η(ei)η(ej) holds

for i, j = 1, 2, 3, 4, 5 and ξ = e3. Thus, M5(g, φ, η, ξ = e3) is an almost contact

metric manifold.

Now by simple computation, we get the following relation:

[ei, ej] =





ex3ei, if i = 1, 2, 4, 5; j = 3,

0, otherwise.

Let ∇ denote the Levi-Civita connection, then by using Koszul’s formula and

above relations, we can obtain the following:

∇e1e1 = −ex3e3,∇e1e2 = 0,∇e1e3 = ex3e1,∇e1e4 = 0,

∇e1e5 = 0,∇e2e2 = −ex3e3,∇e2e3 = ex3e2,∇e2e4 = 0,

∇e2e5 = 0,∇e3e3 = 0,∇e3e4 = −ex3e4,∇e3e5 = −ex3e5,

∇e4e4 = −ex3e3,∇e4e5 = 0,∇e5e5 = −ex3e3.

Clearly, from the above relations, we can see that M5(g, φ, ξ, η) is an f -Kenmotsu

manifold for ξ = e3 and f = ex3. Moreover, M5 is a regular f -Kenmotsu mani-
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fold as f 2 − ξf = ex3 ̸= 0.

Let M3 be a subset of M5. Now consider an isometric immersion π : M3 →

M5 define as π(x1, x2, x3) = (x1, x2, x3, 0, 0) where (x1, x2, x3) is the standard

coordinates in R3. Clearly, M3 = {(x1, x2, x3) ∈ R3 and (x1, x2, x3) ̸= 0} is a

submanifold of M5. Let {e1, e2, e3} be the basis of M3 which is define as

e1 = e−e
x3 ∂

∂x1
, e2 = e−e

x3 ∂

∂x2
, e3 =

∂

∂x3
.

Let us define the associate metric g1 of M3 as

g1(ei, ej) =





1, if i = j,

0, if i ̸= j, where 1 ≤ i, j ≤ 3.

Also, 1-from η1 and (1,1)-tensor field φ1 are define as follows:

φ1(e1) = −e2, φ1(e2) = e1, φ1(e3) = 0 and η1(·) = g1(·, e3)

Making use of the above relations, it is easy to see that

η1(e3) = 1, φ2
1(X) = −X + η1(X)e3,

g1(φ1X,φ1Y ) = g1(X, Y )− η1(X)η1(Y ),

for any vector fields X, Y on M3. Clearly, M3(η1, g1, e3, φ1) is an invariant sub-

manifold of M5. Let ∇ be the Levi-Civita connection induced by the metric g1,

then by using the Koszul formula, we derive the following:

∇e1e1 = −ex3e3,∇e1e2 = 0,∇e1e3 = ex3e1,

∇e2e2 = −ex3e3,∇e2e3 = ex3e2,∇e3e3 = 0.

It is obvious that M3(g1, φ1, η1, e3) is also an f -Kenmotsu manifold for f = ex3.

Thus, Lemma 5.1 is verified.
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Let σ be the second fundamental form, then using (1.51) and the above rela-

tions we obtained

σ(X, Y ) = 0,

for any vector field X, Y on M3. This shows that the 3-dimensional invariant

submanifold of an f -Kenmotsu manifold is totally geodesic. Hence, the statement

of Theorem 5.6 is verified. Also, we can show that Corollary 5.1 and Corollary

5.2 holds on M3.

5.2 Improved Chen’s Inequalities for Submani-

folds of Generalized Sasakian-space-forms

LetMm be an m-dimensional submanifold of a (m+p)-dimensional Rieman-

nian manifold M̃m+p endowed with the quarter-symmetric connection ∇ and the

Levi-Civita connection ∇̂. Let ∇ and ∇̂ denote the induced quarter-symmetric

connection and the induced Levi-Civita connection on the submanifold M . The

Gauss formula with respect to ∇ and ∇̂ can be written as

∇X1X2 = ∇X1X2 + h(X1, X2), X1, X2 ∈ Γ(TM)

∇̂X1X2 = ∇̂X1X2 + ĥ(X1, X2), X1, X2 ∈ Γ(TM)

where h and ĥ are the second fundamental forms associated with the quarter-

symmetric connection ∇ and the Levi-Civita connection ∇̂ respectively, and are

related as follows:

h(X1, X2) = ĥ(X1, X2)− ψ2g(X1, X2)P
⊥, (5.60)

Y. Li, M. Khatri, J.P. Singh, S.K. Chaubey (2022), Improved Chen’s Inequalities for Sub-
manifolds of Generalized Sasakian-space-forms, Axioms, 11(7), 324.
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where P⊥ is the normal component of the vector field P on M . If P T represents

that tangent component of the vector field P on M , then P = P T + P⊥.

The curvature tensor R with respect to the quarter-symmetric connection ∇

on M̃m+p can be expressed as (Qu and Wang, 2015):

R(X1, X2, X3, X4) = R̂(X1, X2, X3, X4) + ψ1β1(X1, X3)g(X2, X3)

−ψ1β1(X2, X3)g(X1, X4) + ψ2g(X1, X3)β1(X2, X4)− ψ2g(X2, X3)β1(X1, X4)

+ψ2(ψ1 − ψ2)g(X1, X3)β2(X2, X4)− ψ2(ψ1 − ψ2)g(X2, X3)β2(X1, X4),(5.61)

where β1 and β2 are symmetric (0, 2)-tensor field defined as

β1(X1, X2) = (∇̂X1Λ)(X2)− ψ1Λ(X1)Λ(X2) +
ψ2

2
g(X1, X2)Λ(P ),

and

β2(X1, X2) =
Λ(P )

2
g(X1, X2) + Λ(X1)Λ(X2).

Moreover, we assume that tr(β1) = λ and tr(β2) = µ.

Let R and R̂ be the curvature tensors of ∇ and ∇̂ respectively, then the Gauss

equation with respect to the quarter-symmetric connection is as follows (Qu and

Wang, 2015):

R(X1, X2, X3, X4) = R(X1, X2, X3, X4)− g(h(X1, X4), h(X2, X3))

+g(h(X2, X4), h(X1, X3)) + (ψ1 − ψ2)g(h(X2, X3), P )g(X1, X4)

+(ψ2 − ψ1)g(h(X1, X3), P )g(X2, X4). (5.62)

Let {e1, . . . , em} and {em+1, . . . , em+p} be an orthonormal frame of TxM and

T⊥
x M at the point x ∈ M , then the mean curvature vector of M associated to

∇ is H = 1
m

∑m
i=1 h(ei, ej). Similarly, the mean curvature vector of M associ-

ated to ∇̂ is Ĥ = 1
m

∑m
i=1 ĥ(ei, ej). Also, the squared length of h is ∥ h ∥2=

∑m
i,j=1 g(h(ei, ej), h(ei, ej).
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First, we recall the well-known lemma obtained by Chen (1993), which is as

follows:

Lemma 5.4. If a1, ..., am, am+1 are m+ 1 (m ≥ 2) real numbers such that

( m∑

i=1

ai

)2

= (m− 1)
( m∑

i=1

a2i + am+1

)
,

then 2a1a2 ≥ am+1, with equality holding if and only if a1 + a2 = a3 = ... = am.

Let Mm be a submanifold of a generalized Sasakian space form M̃(f1, f2, f3)

of dimension (2n + 1). For any tangent vector field X1 on M , we can write

φX1 = T X1 + FX1, where T X1 is the tangential component and FX1 is the

normal component of φX1. The squared norm of T at x ∈M is defined as

∥ T ∥2=
m∑

i,j=1

g2(φei, ej), (5.63)

where {e1, ..., em} is any orthonormal basis of the tangent space TxM and de-

composing the structural vector field ξ = ξT + ξ⊥, where ξT and ξ⊥ denotes the

tangential and normal components of ξ. Moreover, we set Θ2(Π) = g2(T e1, e2) =

g2(φe1, e2), where {e1, e2} is the orthonormal basis of 2-plane section Π.

Theorem 5.12. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a quarter-

symmetric connection ∇, then

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+
(
∥ ξΠ ∥2 −(m− 1) ∥ ξT ∥2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a 2-plane section TxM , x ∈M .
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If in addition, P is a tangent vector field on Mm, then H = Ĥ and the

equality case holds at a point x ∈ M if and only if there exists an orthonormal

basis {e1, ..., em} of TxM and an orthonormal basis {em+1, ..., e2n+1} of T⊥
x M such

that the shape operators of M in M̃(f1, f2, f3) at x have the following forms:

Aem+1 =




hm+1
11 0 0 . . . 0

0 hm+1
22 0 . . . 0

0 0 hm+1
11 + hm+1

22 . . . 0

...
...

...
. . .

...

0 0 0 . . . hm+1
11 + hm+1

22




and

Aer =




hr11 hr12 0 . . . 0

hr12 −hr11 0 . . . 0

0 0 0 . . . 0

...
...

...
. . .

...

0 0 0 . . . 0




,m+ 2 ≤ r ≤ 2n+ 1

Proof. Let x ∈ M and {e1, e2, ..., em}, {em+1, ..., e2n+1} be an orthonormal basis

of TxM and T⊥
x M , respectively, then from (5.62), (1.58), (5.61) and (1.19) we get

2τ(x) = m2 ∥ H ∥2 − ∥ h ∥2 +m(m− 1)f1 + 3f2 ∥ T ∥2

−2(m− 1)f3 ∥ ξT ∥2 −(ψ1 + ψ2)λ(m− 1)

−ψ2(ψ1 − ψ2)µ(m− 1)−m(m− 1)(ψ1 − ψ2)Λ(H). (5.64)

We set,

c = 2τ(x)− m2(m−2)
m−1

∥ H ∥2 −m(m− 1)f1 − 3f2 ∥ T ∥2

+2(m− 1)f3 ∥ ξT ∥2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) +m(m− 1)(ψ1 − ψ2)Λ(H), (5.65)
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then (5.64) becomes

m2 ∥ H ∥2= (m− 1)
(
∥ h ∥2 +c

)
. (5.66)

For a chosen orthonormal basis, (5.66) can be written as:

( m∑

i=1

hm+1
ii

)2

= (m− 1)
[ m∑

i=1

(hm+1
ii )2 +

∑

i ̸=j
(hm+1

ij )2 +
2n+1∑

r=m+2

m∑

i,j=1

(hrij)
2 + c

]
,

then using Lemma (Zhang et al., 2014), we have

2hm+1
11 hm+1

22 ≥
∑

i ̸=j
(hm+1

ij )2 +
2n+1∑

r=m+2

m∑

i,j=1

(hrij)
2 + c. (5.67)

Now, let Π = span{e1, e2}, then from (5.62), (5.61) and (1.19) we get

R(e1, e2, e2, e1) =
2n+1∑

r=m+1

[hr11h
r
22 − (hr12)

2]− (ψ1 − ψ2)g(h(e2, e2), P )

+f1 + 3f2g
2(φe1, e2)− f3(η

2(e1) + η2(e2))

−ψ1β1(e2, e2)− ψ2β1(e1, e1)− ψ2(ψ1 − ψ2)β2(e1, e1). (5.68)

and

R(e1, e2, e1, e2) =
2n+1∑

r=m+1

[(hr12)
2 − hr11h

r
22] + (ψ1 − ψ2)g(h(e1, e1), P )

−f1 − 3f2g
2(φe1, e2) + f3(η

2(e1) + η2(e2))

+ψ1β1(e1, e1) + ψ2β1(e2, e2) + ψ2(ψ1 − ψ2)β2(e2, e2). (5.69)

Making use of (5.68) and (5.69) in (1.57), we obtain

K(Π) =
2n+1∑

r=m+1

[hr11h
r
22 − (hr12)

2]− (ψ1 − ψ2)

2
Λ(tr(h |Π))

+f1 + 3f2Θ
2(Π)− f3(∥ ξΠ ∥2)

−ψ1

2
tr(β1 | Π)−

ψ2

2
tr(β1 |Π)−

ψ2

2
(ψ1 − ψ2)tr(β2 |Π). (5.70)
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Combining (5.64) and (5.70) gives

τ(x)−K(Π) = (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+
(
∥ ξΠ ∥2 −(m− 1) ∥ ξT ∥2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)

+
2n+1∑

r=m+1

[ ∑

1≤i<j≤m
hriih

r
jj − hr11h

r
22 −

∑

1≤i<j≤m
(hrij)

2 + (hr12)
2
]
. (5.71)

Making use of Lemma 2.4 (Zhang et al. 2014), we have

2n+1∑

r=m+1

[ ∑

1≤i<j≤m
hriih

r
jj − hr11h

r
22 −

∑

1≤i<j≤m
(hrij)

2 + (hr12)
2
]
≤ m2(m− 2)

2(m− 1)
∥ H ∥2 .(5.72)

In view of the last expression in (5.71), we obtain

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+
(
∥ ξΠ ∥2 −(m− 1) ∥ ξT ∥2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
. (5.73)

Now, if P is a tangent vector field on M , then (5.60) implies h = ĥ and

H = Ĥ. If the equality case (5.73) holds at a point x ∈ M , then the equality

cases of (5.67) and (5.72) hold, which gives

hm+1
11 = hm+1

22 = hm+1
33 = · · · = hm+1

mm

hm+1
1j = hm+1

2j = 0, j > 2

hr11 + hr22 = 0, r = m+ 2, . . . , 2n+ 1

hrij = 0, i ̸= j, r = m+ 1, . . . , 2n+ 1

hm+1
ij = 0, i ̸= j, i, j > 2
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So choosing a suitable orthonormal basis, the shape operators take the desired

forms.

Corollary 5.7. Under the same arguments as in Theorem 5.12,

1. If the structure vector field ξ is tangent to M , we have

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+
(
∥ ξΠ ∥2 −(m− 1)

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

2. If the structure vector field ξ is normal to M , we have

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+ +
(ψ1 + ψ2)

2

(
tr(β1 |Π)

−λ(m− 1)
)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

Remark 5.2. It should be noted that Theorem 5.12 generalizes the Theorem 6

obtained by Wang (2019). Moreover, taking different values of fi, i = 1, 2, 3, we

can obtain similar inequalities as Theorem 5.12 for the Kenmotsu space form and

Cosympletic space form endowed with certain types of connections by restricting

the values of ψi, i = 1, 2.

Remark 5.3. If in Theorem 5.12, we take ψ1 = ψ2 = 1 then we obtained Theorem

5.1 (Sular, 2016).

Corollary 5.8. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a semi-
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symmetric non-metric connection, then

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+
(
3 ∥ T ∥2 −6Θ2(Π)

)f2
2

+
(
∥ ξΠ ∥2 −(m− 1) ∥ ξT ∥2

)
f3

+
1

2

(
tr(β1 |Π)− λ(m− 1)

)
+

1

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a 2-plane section TxM , x ∈M .

For an integer k ≥ 0 we denote by S(m, k) the set of k-tuples (m1, . . . ,mk)

of integers ≥ 2 satisfying m1 < m and m1, . . . ,mk ≤ m. Also, let S(m) be the

set of unordered k-tuples with k ≥ 0 for a fixed m. Then, for each k-tuples

(m1, . . . ,mk) ∈ S(m), Chen introduced a Riemannian invariant δ(m1, . . . ,mk) as

follows (Chen, 1995)

δ(m1, . . . ,mk)(x) = τ(x)− inf{τ(L1) + · · ·+ τ(Lk)}, (5.74)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of TxM such that

dimLj = mj, j ∈ {1, . . . , k}. For simplicity, we set

Ψ1(Lj) =
∑

1≤i<j≤r
g2(T ei, ej), Ψ2(Lj) =

∑

1≤i<j≤r
[g(ξT , ei)

2 + g(ξT , ej)
2]

Ψ3(Lj) =
∑

1≤i<j≤r
[β1(ei, ei) + β1(ej, ej)], Ψ4(Lj) =

∑

1≤i<j≤r
[β2(ei, ei) + β2(ej, ej)]

Ψ5(Lj) =
∑

1≤i<j≤r
Λ(h(ei, ei) + h(ej, ej))

As the generalization of Theorem 5.12, we state and prove the following results

using the methods used by Zhang et al. (2014).

Theorem 5.13. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a quarter-
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symmetric connection ∇, then

δ(m1, . . . ,mk) ≤ b(m1, . . . ,mk) ∥ H ∥2 +a(m1, . . . ,mk)f1

+3f2

(∥ T ∥2
2

−
k∑

j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ∥ ξT ∥2 −

k∑

j=1

Ψ2(Lj)
)

−(ψ1 + ψ2)

2

(
(m− 1)λ−

k∑

j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k∑

j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k∑

j=1

Ψ5(Lj)
)
,

for any k-tuples (m1, . . . ,mk) ∈ S(m). If P is a tangent vector field on M , the

equality case holds at x ∈ Mm if and only if there exists an orthonormal basis

{e1, ..., em} of TxM and an orthonormal basis {em+1, ..., e2n+1} of T⊥
x M such that

the shape operators of M in M̃(f1, f2, f3) at x have the following forms:

Aem+1 =




a1 0 . . . 0

0 a2 . . . 0

...
...

. . .
...

0 0 . . . am



, Aer =




Ar1 . . . 0 0

...
. . .

...
...

0 . . . Ark 0

0 . . . 0 ςrI



, r = m+ 2, . . . , 2n+ 1,

where a1, . . . , am satisfy

a1 + · · ·+ am1 = · · · = am1+···+mk−1+1 + · · ·+ am1+···+mk+1 = · · · = am

and each Arj is a symmetric mj×mj submatrix satisfying tr(Ar1) = · · · = tr(Ark) =

ςr, I is an identity matrix.

Proof. Choose an orthonormal basis {e1, ..., em} of TxM and an orthonormal basis

{em+1, ..., e2n+1} of T⊥
x M such that mean curvature vector H is in the direction
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of the normal vector to em+1. We set

ai = hm+1
ii , i = 1, . . . ,m

b1 = a1, b2 = a2 + · · ·+ am1 , b3 = am1+1 + · · ·+ am1+m2 , . . . ,

bk+1 = am1+···+mk−1+1 + · · ·+ am1+···+mk−1+mk
, . . . , bγ+1 = am,

and consider the following sets

D1 = {1, . . . ,m1}, D2 = {m1 + 1, . . . ,m1 +m2}, . . . ,

Dk = {(m1 + · · ·+mk−1) + 1, . . . , (m1 + · · ·+mk−1) +mk}.

Let L1, . . . , Lk be mutually orthogonal subspace of TxM with dimLj = mj, de-

fined by

Lj = Span{em1+···+mj−1+1, . . . , em1+···+mj
}, j = 1, . . . , k.

From (5.62), (1.56), (5.61) and (1.19), we get

τ(Lj) =
mj(mj − 1)

2
f1 + 3f2Ψ1(Lj)− f3Ψ2(Lj)

−(ψ1 + ψ2)

2
Ψ3(Lj)−

ψ2

2
(ψ1 − ψ2)Ψ4(Lj)−

(ψ1 − ψ2)

2
Ψ5(Lj)

+
2n+1∑

r=m+1

∑

αj<βj

[
hrαjαj

hrβjβj − (hαjβj)
2
]
. (5.75)

We set

ε = 2τ − 2b(m1, . . . ,mk) ∥ H ∥2 −m(m− 1)f1 − 3f2 ∥ T ∥2

+2(m− 1)f3 ∥ ξT ∥2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) +m(m− 1)(ψ1 − ψ2)Λ(H), (5.76)
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where,

b(m1, . . . ,mk) =

m2
(
m+ k − 1−

k∑

j=1

mj

)

2
(
m+ k −

k∑

j=1

mj

) ,

for each (m1, . . . ,mk) ∈ S(m).

Also, let γ = m+k−
k∑

j=1

mj. Then in view of this and (5.76), Eq. (5.64) becomes

m2 ∥ H ∥2= (∥ h ∥2 +ε)γ,

which can be written as

( γ+1∑

i=1

bi

)2

= γ
[
ε+

γ+1∑

i=1

b2i +
∑

i ̸=j
(hm+1

ij )2 +
2n+1∑

r=m+2

m∑

i,j=1

(hrij)
2

−2
∑

α1<β1

aα1aβ1 − · · · − 2
∑

αk<βk

aαk
aβk

]
, (5.77)

where αj, βj ∈ Dj for all j = 1, . . . , k.

Now applying Lemma 2.3 (Zhang et al., 2014) in (5.77), we obtain

∑

α1<β1

aα1aβ1 + · · ·+
∑

αk<βk

aαk
aβk ≥

1

2

[
ε+

∑

i ̸=j
(hm+1

ij )2 +
2n+1∑

r=m+2

m∑

i,j=1

(hrij)
2
]
,

which further implies

k∑

j=1

2n+1∑

r=m+1

∑

αj<βj

[
hrαjαj

hrβjβj − (hrαjβj
)2
]
≥ ε

2

+
1

2

2n+1∑

r=m+1

∑

(α,β)/∈D2

(hrαβ)
2 +

2n+1∑

r=m+2

∑

αj∈Dj

(hrαjαj
)2 ≤ ε

2
, (5.78)

where D2 = (D1 × D1) ∪ · · · ∪ (Dk × Dk). Combining (5.64), (5.75) and (5.78)
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gives

τ −
k∑

j=1

τ(Lj) ≤ b(m1, . . . ,mk) ∥ H ∥2 +a(m1, . . . ,mk)f1

+3f2

(∥ T ∥2
2

−
k∑

j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ∥ ξT ∥2 −

k∑

j=1

Ψ2(Lj)
)

−(ψ1 + ψ2)

2

(
(m− 1)λ−

k∑

j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k∑

j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k∑

j=1

Ψ5(Lj)
)
, (5.79)

where, a(m1, . . . ,mk) =
1
2

[
m(m− 1)−

k∑

j=1

mj(mj − 1)
]
.

The equality case (5.79) at a point x ∈M holds if and only if all the previous

inequalities hold, thus, the shape operators take the desired forms.

Remark 5.4. Restricting the values of fi, i = 1, 2, 3 and ψi for i = 1, 2, we can

obtain similar bounds as Theorem 5.13 for certain contact space forms endowed

with certain connections.

Theorem 5.14. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a quarter-

symmetric connection ∇, then

(i) For each unit vector X1 in TxM , we have

Ric(X1) ≤ (m− 1)f1 + 3f2
∑m

j=2 g
2(φX1, ej) + f3

(
(2−m)η2(X1)− ∥ ξT ∥2

)

+[ψ1 + (1−m)ψ2]β1(X1, X1)− ψ1λ+ ψ2(ψ1 − ψ2)(1−m)β2(X1, X1)

−(ψ1 − ψ2)[mΛ(H)− Λ(h(X1, X1))] +
m2

4
∥ H ∥2 . (5.80)

(ii) If H(x) = 0, then a unit tangent vector X1 at x satisfies the equality case

of (5.80) if and only if X1 ∈ M(x) = {X1 ∈ TxM | h(X1, X2) = 0, ∀X2 ∈
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TxM}.

(iii) The equality of (5.80) holds for all unit tangent vectors at x if and only if

either

1. m ̸= 2, hrij = 0, i, j = 1, 2...,m.r = m+ 1, . . . , 2n+ 1, or

2. m = 2, hr11 = hr22, h
r
12 = 0, r = 3, . . . , 2n+ 1.

Proof. Choosing the orthonormal basis {e1, . . . , em} such that e1 = X1, where

X1 ∈ TxM is a unit tangent vector at the point x on M . In view of (5.62), (5.61)

and (1.19) then proceeding similarly as the proof of Theorem 4 (Wang, 2019),

one can easily obtained the desire results.

By choosing an orthonormal frame {e1, . . . , ek} of L such that e1 = X1, a unit

tangent vector, Chen (1995) defined the k-Ricci curvature of L at X1 by

RicL(X1) = K12 +K13 + · · ·+K1k. (5.81)

For an integer k, 2 ≤ k ≤ m, the Riemannian invariant Θk on M is defined by

Θk(x) =
1

k − 1
inf{RicL(X1) | L,X1}, x ∈M

where L runs over all k-plane sections in TxM and X1 runs over all unit vectors

in L. From Zhang et al. (2014), we have

τ(x) ≥ m(m− 1)

2
Θk(x). (5.82)

Let us choose {e1, . . . , em} and {em+1, . . . , e2n+1} as an orthonormal basis of TxM

and T⊥
x M,x ∈ M , respectively, where em+1 is parallel to the mean curvature

vector H. In addition, let {e1, . . . , em} diagonalize the shape operator Aem+1 .
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Then,

Aem+1 =




a1 0 . . . 0

0 a2 . . . 0

...
...

. . .
...

0 0 . . . am




and

Aer = hrij, i, j = 1, . . . ,m, r = m+ 2, . . . , 2n+ 1, trAer = 0.

(5.83)

In consequence of the above assumptions, Eq. (5.64) can be written as follows:

m2 ∥ H ∥2= 2τ +
m∑

i=1

a2i +
2n+1∑

r=m+2

m∑

i,j=1

(hrij)
2 −m(m− 1)f1

−3f2 ∥ T ∥2 +2(m− 1)f3 ∥ ξT ∥2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) +m(m− 1)(ψ1 − ψ2)Λ(H). (5.84)

Using the Cauchy-Schwartz inequality we have

m∑

i=1

a2i ≥ m ∥ H ∥2 . (5.85)

Combining (5.82), (5.84) and (5.84), we are able to state the following:

Theorem 5.15. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a quarter-

symmetric connection ∇, then for any integer k, 2 ≤ k ≤ m and any point x ∈M ,

we have

∥ H ∥2 (x) ≥ Θk(x)− f1 −
3f2

m(m− 1)
∥ T ∥2 +2f3

m
∥ ξT ∥2

+
λ

m
(ψ1 + ψ2) +

µ

m
ψ2(ψ1 − ψ2) + (ψ1 − ψ2)Λ(H).

As a particular case of Theorem 5.15, we obtained Theorem 6.2 (Sular, 2016)
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which is as follows:

Corollary 5.9 (Sular, 2016). Let Mm,m ≥ 3 be an m-dimensional submanifold

of a (2n+ 1)-dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed

with a semi-symmetric metric connection, then for any integer k, 2 ≤ k ≤ m and

any point x ∈M , we have

∥ H ∥2 (x) ≥ Θk(x)− f1 −
3f2

m(m− 1)
∥ T ∥2 +2f3

m
∥ ξT ∥2 +2λ

m
.

Corollary 5.10. Let Mm,m ≥ 3 be an m-dimensional submanifold of a (2n+1)-

dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed with a semi-

symmetric non-metric connection, then for any integer k, 2 ≤ k ≤ m and any

point x ∈M , we have

∥ H ∥2 (x) ≥ Θk(x)− f1 −
3f2

m(m− 1)
∥ T ∥2 +2f3

m
∥ ξT ∥2 + λ

m
+ Λ(H).

Remark 5.5. Restricting function fi, i = 1, 2, 3, we can easily obtain similar

inequality in the case of Sasakian, Kenmotsu and Cosympletic space forms.

5.2.1 Some Applications

The notion of slant submanifolds in almost contact geometry was introduced

by Lotta (1996). A submanifoldM of an almost contact metric manifold (M̃, φ, ξ, η, g)

tangent to the structure vector field ξ is said to be a contact slant submanifold if,

for any point x ∈ M and any vector X1 ∈ TxM linearly independent on ξx, the

angle between the vector φX1 and the tangent space TxM is constant. This angle

is known as the slant angle of M . The concept of slant submanifold is further

generalized as follows:

Definition 5.3 (Alqahtani et al., 2017). A submanifold M of an almost contact

metric manifold M is called a bi-slant submanifold, whenever we have

1. TM = Dθ1 ⊕Dθ2 ⊕ ξ
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2. φDθ1 ⊥ Dθ2 and φDθ2 ⊥ Dθ1.

3. For i = 1, 2, the distribution Di is slant with slant angle θi.

Now, as a consequence of Theorem 5.12, we can state the following:

Theorem 5.16. LetM be a (m = 2d1+2d2+1)-dimensional bi-slant submanifold

of a (2n+ 1)-dimensional generalized Sasakian space form M̃(f1, f2, f3) endowed

with a quarter-symmetric connection ∇, then we have

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+3
(
(d1 − 1)cos2θ1 + d2cos

2θ2

)f2
2

− (m− 1)f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

for any plane Π invariant by T and tangent to slant distribution Dθ1 and

τ(x)−K(Π) ≤ (m− 2)
( m2

2(m− 1)
∥ H ∥2 +(m+ 1)

f1
2

)

+3
(
d1cos

2θ1 + (d2 − 1)cos2θ2

)f2
2

− (m− 1)f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+
ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

for any plane Π invariant by T and tangent to slant distribution Dθ2. Moreover,

the ideal case is the same as Theorem 5.12.

Proof. Let M be a bi-slant submanifold of a generalized Sasakian space form

M̃(f1, f2, f3) of dimension (m = 2d1 + 2d2 + 1) and let {e1, . . . , em = ξ} be an

orthonormal frame of tangent space TxM at a point x ∈M , such that

e1, e2 = secθ1T e1, . . . , e2d1−1, e2d1 = secθ1T e2d1−1, e2d1+1, e2d1+2

= secθ2T e2d1+1, . . . , e2d1+2d2−1, e2d1+2d2 = secθ2T e2d1+2d2−1, e2d1+2d2+1 = ξ,
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which gives

g2(φei+1, ei) =





cos2θ1, for i = 1, 2, . . . , 2d1 − 1

cos2θ2, for i = 2d1 + 1, . . . , 2d1 + 2d2 − 1.

Thus we have

∥ T ∥2= 2{d1cos2θ1 + d2cos
2θ2}

Making use of the above facts in Theorem 5.12, the proof is straight forward.

In a similar manner Theorems 5.13, 5.14 and 5.15 can be stated for bi-slant

submanifold of a generalized Sasakian space form. Moreover, restricting the val-

ues of θi, i = 1, 2, similar results can be obtained for a large class of submanifolds

such as slant, semi-slant, hemi-slant, semi-invariant submanifolds. Also, by tak-

ing different values of fi, i = 1, 2, 3 we can derive similar inequalities for Sasakian,

Kenmotsu and Cosympletic space forms.
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Chapter 6

Some Results on Spacetime

6.1 On Ricci-Yamabe soliton and Geometrical

Structure in a Perfect Fluid Spacetime

As Ricci-Yamabe soliton is a scalar combination of Ricci and Yamabe soliton,

it is fruitful to study it in the context of perfect fluid spacetime and obtain results

that generalize the previously known results in perfect fluid spacetime.

6.1.1 Geometrical structure of perfect fluid spacetime with

torse-forming vector field

According to Einstein’s field equation, the energy-momentum tensor describes

the curvature of spacetime and hence plays a crucial role in the theory of rela-

tivity. The spacetime of general relativity is regarded as a connected four dimen-

sional semi-Riemannian manifold (M4, g) with Lorentzian metric g with signature

(−,+,+,+). A spacetime is said to be a perfect fluid spacetime if the Ricci tensor

J.P. Singh, M. Khatri (2021), On Ricci-Yamabe soliton and geometrical structure in a
perfect fluid spacetime, Afr. Math., 32(7), 1645-1656.
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is of the form:

S = ag + bη ⊗ η, (6.1)

where a, b are scalars and η is non-zero 1-form.

The general form of energy-momentum tensor T for a perfect fluid is (O’Neill,

1983)

T (X, Y ) = ρg(X, Y ) + (σ + ρ)η(X)η(Y ), (6.2)

for any X, Y ∈ χ(M), where σ is the energy density, ρ is the isotropic pressure, g

is the metric tensor of Minkowski spacetime, η(X) = −g(X, ξ) is 1-form, equiv-

alent to unit vector ξ and g(ξ, ξ) = −1. If ρ = ρ(σ) then perfect fluid spacetime

is called isentropic (Hawking and Ellis, 1973) and if σ = 3ρ then it is a radiation

fluid.

Einstein’s field equation (O’Neill, 1983) governing the perfect fluid motion is

defined as:

S(X, Y ) + (λ− r

2
)g(X, Y ) = kT (X, Y ), (6.3)

for any X, Y ∈ χ(M), where λ is the cosmological constant, k(≈ 8πG, where G

is universal Gravitational constant) is the gravitational constant.

Combining (6.2) and (6.3) we obtain

S(X, Y ) = −(λ− r

2
+ kρ)g(X, Y ) + k(σ + ρ)η(X)η(Y ). (6.4)

Taking trace of (6.4), the scalar curvature becomes r = 4λ+ k(σ − 3ρ), using in

(6.4) we infer

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (6.5)

where a = λ+ k(σ−ρ)
2

and b = k(σ + ρ).
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Lemma 6.1 (Blaga, 2018; Venkatesha and Kumara, 2019; Siddiqi and Siddiqui,

2020). In perfect fluid spacetime with torse-forming vector field ξ, the following

relations hold:

η(∇ξξ) = 0, ∇ξξ = 0,

(∇Xη)(Y ) = g(X, Y ) + η(X)η(Y ),

R(X, Y )ξ = η(Y )X − η(X)Y,

(Lξg)(X, Y ) = 2[g(X, Y ) + η(X)η(Y )],

R(X, ξ)ξ = −X − η(X)ξ.

Let (M4, g) be a semiconformally flat perfect fluid spacetime with torse-

forming vector field ξ. As P = 0, we have divP = 0 where “div” is the di-

vergent. Since r is constant, implies X(r) = 0 for any X ∈ χ(M). From (1.25)

for divP = 0 we obtain

k(σ + ρ)[η(Y )X − η(X)Y ] = 0. (6.6)

As k ̸= 0, in this case the equation of state ρ + σ = 0 emerges. This is the

characteristic equation of state for dark energy in the universe and corresponds to

the cosmological constant (Stephani et al., 2003). Essentially, as density cannot

be negative, the pressure ρ must be negative which is useful in explaining the

observed accelerated expansion of the universe problem.

Making use of ρ = −σ in (6.5) and (1.25) gives

R(X, Y )Z =
1

3α
(3α− 4β)(λ+ kσ)[g(Y, Z)X − g(X,Z)Y ]. (6.7)

Therefore, spacetime has constant curvature. As de-Sitter space is a Lorentzian

manifold of constant curvature with implied negative pressure driving cosmic

inflation (Schmidt, 1993) we can state the following:

Theorem 6.1. If perfect fluid spacetime with torse-forming vector field ξ is semi-
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conformally flat, then the spacetime represents de-Sitter space, provided α ̸= 0.

We know that manifold of constant curvature is Einstein. Also from (6.7) we

easily see that R · R = 0. A perfect fluid spacetime satisfying R · R = 0 and

R · S = 0 are called semi-symmetric and Ricci semi-symmetric respectively. A

semi-symmetric implies Ricci semi-symmetric but conversely not true.

Proposition 6.1. A semiconformally flat perfect fluid spacetime with torse-

forming vector field ξ is

i) Einstein.

ii) semi-symmetric and Ricci semi-symmetric.

According to Karchar (1992), a Lorentzian manifold is called infinitesimal

spatially isotropic relative to timelike unit vector field ρ if its curvature tensor R

satisfies relations

R(X, Y )Z = l[g(Y, Z)X − g(X,Z)Y ],

for all X, Y, Z ∈ ρ⊥ and

R(X, ρ)ρ = mX,

for all X ∈ ρ⊥, where l,m are real-valued functions on the manifold.

Let ξ⊥ denote the 3-dimensional distribution in a semiconformally flat perfect

fluid spacetime orthogonal to torse-forming vector field ξ, then from (6.7) we get

R(X, Y )Z =
1

3α
(3α− 4β)(λ+ kσ)[g(Y, Z)X − g(X,Z)Y ], (6.8)

for all X, Y, Z ∈ ξ⊥. Also taking Y = Z = ξ in (6.8) gives

R(X, ρ)ρ = − 1

3α
(3α− 4β)(λ+ kσ)X, (6.9)

for every X ∈ ξ⊥. Hence we can state the following:
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Theorem 6.2. A semiconformally flat perfect fluid spacetime with a ̸= 0 and

torse-forming vector field ξ is infinitesimally spatially isotropic relative to unit

vector field ξ.

Theorem 6.3. Let (M4, g) be a general relativistic perfect fluid spacetime with

torse-forming vector field ξ.

1. If P (ξ, ·) · S = 0 then ρ = −σ or ρ = 3α(λ−1)+β(4λ+kσ)
3k(α−β) .

2. If S(ξ, ·) · P = 0 then ρ = λ
k
or ρ = 3α(λ−1)+β(4λ+kσ)

3k(α−β) .

Proof. 1. Suppose perfect fluid spacetime with torse-forming vector field ξ satis-

fies P (ξ,X) · S(U, V ) = 0, implies

S(P (ξ,X)U, V ) + S(U, P (ξ,X)V ) = 0, (6.10)

for all X,U, V ∈ χ(M). Inserting (6.5) and (1.25) in (6.10) results in

− 2αk(σ + ρ)(λ+
k

2
(σ − ρ))η(X)η(U)η(V ) + k(σ + ρ)(α− βr

3
−

α(λ− kρ))[−g(X,U)η(V )− 2η(X)η(U)η(V )− g(X, V )η(U)]

+ 2αk2(σ + ρ)2η(X)η(U)η(V ) = 0. (6.11)

Replacing U by ξ in (6.11) we obtain that either ρ = −σ or ρ = 3α(λ−1)+β(4λ+kσ)
3k(α−β) .

2. Suppose perfect fluid spacetime satisfies S(ξ,X) · P (U, V )W = 0, implies

S(X,P (U, V )W )ξ − S(ξ, P (U, V )W )X + S(X,U)P (ξ, V )W

− S(ξ, U)P (X, V )W + S(X, V )P (U, ξ)W − S(ξ, V )P (U,X)W

+ S(X,W )P (U, V )ξ − S(ξ,W )P (U, V )X = 0, (6.12)

for all X,U, V,W ∈ χ(M).

Taking V = W = ξ in (6.12) and using (6.5) and (1.25), we obtain the following

relation

(λ− kρ)(α− βr

3
− α(λ− kρ))[g(X,U) + η(X)η(U)] = 0.
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Thus either ρ = λ
k
or ρ = 3α(λ−1)+β(4λ+kσ)

3k(α−β) .

This completes the proof.

6.1.2 Ricci-Yamabe soliton in a perfect fluid spacetime

In this subsection, we study Ricci-Yamabe soliton in the framework of perfect

fluid spacetime admitting a torse-forming vector field ξ.

Taking potential vector field, V = ξ in (1.45) and using Lemma 6.1 we obtain

αS(X, Y ) = [µ− βr

2
− 1]g(X, Y )− η(X)η(Y ). (6.13)

Inserting X = Y = ξ in (6.13) yields

µ = λ(α + 2β) +
βk

2
(σ − 3ρ)− αk

2
(σ + 3ρ). (6.14)

Hence we can state the following:

Theorem 6.4. If a perfect fluid spacetime with torse-forming vector field ξ admits

Ricci-Yamabe soliton (g, ξ, µ, α, β), then the Ricci-Yamabe soliton is expanding,

steady or shrinking according to as λ > k
2(α+2β)

{α(σ + 3ρ) − β(σ − 3ρ)}, λ =

k
2(α+2β)

{α(σ+3ρ)−β(σ−3ρ)} or λ < k
2(α+2β)

{α(σ+3ρ)−β(σ−3ρ)} respectively,

provided α + 2β ̸= 0.

Remark 6.1. Now we will look at some of the particular cases of Theorem 6.4.

If a perfect fluid spacetime with torse-forming vctor field ξ admits:

1. Ricci soliton (α = 1, β = 0), then the Ricci soliton is expanding, steady or

shrinking according as λ > k
2
(σ+3ρ), λ = k

2
(σ+3ρ) or λ < k

2
(σ+3ρ) respectively.

This was shown by Venkatesha and Kumara (2019).

2. Yamabe soliton (α = 0, β = 2), then the Yamabe soliton is expanding, steady or

shrinking according as λ > k
4
(3ρ−σ), λ = k

4
(3ρ−σ) or λ < k

4
(3ρ−σ) respectively.

3. Einstein soliton (α = 1, β = −1), then µ = −λ − kσ implies Einstein soliton

is expanding if λ < −kσ, steady if λ = −kσ and shrinking if λ > −kσ.
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Theorem 6.5. If a perfect fluid spacetime with torse-forming vector field ξ admits

Ricci-Yamabe soliton (g, V, µ, α, β), then either every perfect fluid spacetime with

torse-forming vector field ξ is a spacetime with the equal associated scalar or the

Ricci-Yamabe soliton is expanding, steady or shrinking according to as Theorem

6.4.

Proof. Inserting (6.5) in (1.45) we get

(LV g)(X, Y ) = 2(µ− βr

2
− aα)g(X, Y )− 2αbη(X)η(Y ). (6.15)

Taking Lie-differentiation of (6.5) and using it in (6.15) yields

(LV S)(X, Y ) = 2a(µ− βr

2
− aα)g(X, Y )− 2aαbη(X)η(Y )

+ b[(LV η)(X)η(Y ) + (LV η)(Y )η(X)]. (6.16)

Differentiating covariantly (6.5) along vector field Z and using Lemma 6.1 infer

(∇ZS)(X, Y ) = b[g(Z,X)η(Y ) + g(Z, Y )η(X) + 2η(X)η(Y )η(Z)]. (6.17)

According to Yano (1970), we have the following commutative formula:

(LV∇Zg − ∇ZLV g −∇[V,Z](X, Y )

= −g((LV∇)(Z,X), Y )− g((LV∇)(Z, Y ), X). (6.18)

Combining (1.45) and (6.18) we obtain

g((LV∇)(X, Y ), Z) = (∇ZS)(X, Y )− (∇XS)(Y, Z)− (∇Y S)(X,Z). (6.19)

Inserting (6.17) in (6.19), we get the form

(LV∇)(X, Y ) = −2b[g(X, Y )ξ + η(X)η(Y )ξ]. (6.20)

Again consider the commutative formula given by Yano (1970):

(LVR)(X, Y )Z = (∇XLV∇)(Y, Z)− (∇YLV∇)(X,Z). (6.21)
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Taking covariant differentiation of (6.20) and using it in (6.21), yields

(LVR)(X, Y )Z = 2b[g(X,Z)Y − g(Y, Z)X

+ η(X)η(Z)Y − η(Y )η(Z)X]. (6.22)

Contracting (6.22) with respect to X gives

(LV S)(Y, Z) = −6b[g(Y, Z) + η(Y )η(Z)]. (6.23)

Putting Y = Z = ξ in (6.23), we have

(LV S)(ξ, ξ) = 0. (6.24)

Inserting X = Y = ξ in (6.16) we obtain

−2a(µ− βr

2
− aα)− 2aαb+ 2b(LV η)(ξ) = 0. (6.25)

Also, taking X = ξ in (6.15) infer

(LV g)(X, ξ) = [2(µ− βr

2
− aα) + 2αb]η(X). (6.26)

Taking Lie-differentiation of η(X) = g(X, ξ) and using it in (6.26) give us the

relation:

(LV η)(X)− g(LV ξ,X)− [2(µ− βr

2
− aα) + 2bα]η(X) = 0. (6.27)

Again, taking Lie-differentiation of g(ξ, ξ) = −1 along V and using (6.16) gives

η(LV ξ) = µ− βr

2
− aα + αb. (6.28)

Making use of (6.28) and (6.25) and substituting the values of a and b we obtain

the following relation:

[2λ− k(σ + 3ρ)][µ− λ(α + 2β) +
βk

2
(σ − 3ρ)− αk

2
(σ + 3ρ)] = 0. (6.29)
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Thus we see that either λ = k
2
(σ+3ρ) or µ = λ(α+2β)+ βk

2
(σ−3ρ)− αk

2
(σ+3ρ).

We obtain the following two cases:

Case-I: If λ ̸= k
2
(σ + 3ρ), then µ = λ(α + 2β) + βk

2
(σ − 3ρ) − αk

2
(σ + 3ρ). In

this case Ricci-Yamabe soliton is expanding, steady or shrinking accordingly as

Theorem 6.4.

Case-II: If λ = k
2
(σ+ 3ρ) and µ ̸= λ(α+ 2β) + βk

2
(σ− 3ρ)− αk

2
(σ+ 3ρ), implies

µ ̸= 3βk(σ + 3ρ). Then we get

S(X, Y ) = k(σ + ρ)[g(X, Y ) + η(X)η(Y )], (6.30)

i.e. perfect fluid spacetime is a spacetime with equal associated scalar constant.

This completes the proof.

Taking X = Y = ξ in (6.20) yields

(LV∇)(ξ, ξ) = 0. (6.31)

Using the commutative formula:

(LV∇)(X, Y ) = ∇X∇Y V −∇∇XY V +R(V,X)Y. (6.32)

Replacing X, Y by ξ in (6.32) and using (6.31) gives

∇ξ∇ξV −∇∇ξξV +R(V, ξ)ξ = 0. (6.33)

Since ξ is torse-forming vector field, ∇ξξ = 0 then (6.33) becomes

∇ξ∇ξV +R(V, ξ)ξ = 0. (6.34)

This implies that potential vector field V is a Jacobi vector field along the geodesic

of ξ. Hence we can state the following:

Theorem 6.6. If a perfect fluid spacetime with torse-forming vector field ξ admits

a Ricci-Yamabe soliton (V, g, µ, α, β), then the potential vector field V is a Jacobi
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vector field along the geodesics of ξ.

6.1.3 η-Ricci-Yamabe soliton in a perfect fluid spacetime

In this section we consider η-Ricci-Yamabe soliton in the context of perfect

fluid spacetime admitting torse-forming vector field ξ and obtain the Poisson

equation.

Writing explicitly the Lie derivative Lξg and taking potential vector V = ξ in

(1.47) we get

[g(∇Xξ, Y ) + g(X,∇Y ξ)] + 2αS(X, Y )

+(2µ− βr)g(X, Y ) + 2ωη(X)η(Y ) = 0, (6.35)

for any X, Y ∈ χ(M). Contracting (6.35) yields

div(ξ) + αr + (µ− βr

2
)dim(M) = ω. (6.36)

Let (M4, g) be a general relativistic perfect fluid spacetime and (g, ξ, µ, ω, α, β)

be an η-Ricci-Yamabe soliton in M . From (1.47) and (6.5) we get

1

2
[g(∇Xξ, Y ) + g(X,∇Y ξ)] + (aα + µ− βr

2
)g(X, Y )

+(αb+ ω)η(X)η(Y ) = 0. (6.37)

Consider {ei}1≤i≤4 an orthonormal frame field and let ξ = Σ4
i=1ξ

iei, we have

Σ4
i=1ϵii(ξ

i)2 = −1 and η(ei) = ϵiiξ
i.

Multiplying (6.37) by ϵii and summing over i for X = Y = ei we obtain

4µ− ω = (2β − α)r − div(ξ). (6.38)

Taking X = Y = ξ in (6.37) gives

ω − µ = α(a− b)− βr

2
. (6.39)
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Therefore,

µ = (2β − α)λ+
βk

2
(σ − 3ρ)− αk

2
(σ − ρ)− div(ξ)

3
(6.40)

ω = −αk(σ + ρ)− div(ξ)

3
(6.41)

Hence we can state the following:

Theorem 6.7. Let (M, g) be a 4-dimensional pseudo-Riemannian manifold and

let η be the g-dual 1-form of the gradient vector field ξ = grad(f) with g(ξ, ξ) =

−1. If (1.47) defines an η-Ricci-Yamabe soliton in M , then the Poisson equation

satisfies by f is

∆(f) = −3[ω + αk(σ + ρ)].

In view of (1.47), taking α = 0 and β = 1 it gives η-Yamabe soliton. Thus we

can state the following:

Corollary 6.1. Let (M, g) be a 4-dimensional pseudo-Riemannian manifold and

let η be the g-dual 1-form of the gradient vector field ξ = grad(f) with g(ξ, ξ) =

−1. If (1.47) defines an η-Yamabe soliton in M , then the Poisson equation

satisfies by f is

∆(f) = −3ω.

Remark 6.2. Now we look at some of the particular cases of Theorem 6.7. Under

similar hypothesis as in Theorem 6.7, if g admits:

1. η-Ricci soliton (α = 1, β = 0), then the Poisson equation satisfies by f is

∆(f) = −3[ω + k(σ + ρ)].

2. η-Einstein soliton (α = 1, β = −1), then the Poisson equation becomes ∆(f) =

−3[ω + k(σ + ρ)]. This result was shown by Blaga (2018).

Example 6.1. An η-Ricci-Yamabe soliton (g, ξ, µ, ω, α, β) in a radiation fluid is
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given by

µ = (4β − α)λ− αkp− div(ξ)

3

ω = −4αkp− div(ξ)

3

From this example, we deduce that Ricci-Yamabe soliton in radiation fluid is

steady if p = (α−4β)λ
3αk

, expanding if p > (α−4β)λ
3αk

and shrinking if p < (α−4β)λ
3αk

for

α ̸= 0.

Example 6.2. In this section, we constructed a non-trivial example of a per-

fect fluid spacetime admitting η-Ricci-Yamabe soliton in a 4-dimensional pseudo-

Riemannian manifold. Let M = {(x, y, z, t) ∈ R4; t ̸= 0}, where (x, y, z, t) are

the standard coordinates of R4. Consider a Lorentzian metric g on M is given by

ds2 = e2t[dx2 + dy2 + dz2]− dt2. (6.42)

The non-vanishing components of the Christoffel symbol, the curvature tensor and

Ricci tensor are

Γ4
11 = Γ4

22 = Γ4
33 = e2t,Γ1

14 = Γ2
24 = Γ3

34 = 1,

R1441 = R2442 = R3443 = e2t, R1221 = R1331 = R2332 = −e4t,

S11 = S22 = S33 = −3e2t, S44 = 3.

Therefore, the scalar curvature of the manifold is r = −12. Thus, (M4, g) is

a perfect fluid spacetime whose isotropic pressure and energy density are ρ =

1
k
(λ+ 3) and σ = − 1

k
(λ+ 3) respectively.

Let η be the 1-form defined by η(Z) = −g(Z, t) for any Z ∈ χ(M). Take ξ = t.

Replacing V = ξ in (1.47) and using (Lξg)(X, Y ) = 2[g(X, Y ) + η(X)η(Y )] we

see that the soliton equation becomes

2[gii + ηi ⊗ ηi] + 2αSii + (2µ− βr)gii + 2ωηi ⊗ ηi = 0, (6.43)
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for all i ∈ {1, 2, 3, 4}. Thus the data (ξ, g, µ, ω, α, β) is a η-Ricci-Yamabe soliton

on (M4, g) where µ = 3α−4β−1 and ω = −1, which is expanding if 3α−4β > 1,

shrinking if 3α− 4β < 1 and steady if 3α− 4β = 1.

6.2 Einstein-type metric on Almost Kenmotsu

manifolds

In general relativity, obtaining the global solutions to Einstein field equations

has been an important topic for both Mathematics and Physics. One such special

solution is the static space-time which is closely connected to the general rela-

tivity’s cosmic no-hair conjecture (Boucher et al., 1984)). Recently, the authors

Leandro (2021), Qing and Yuan (2013) and Patra and Ghosh (2021) studied a

generalized version of static space that contains several well circulated critical

point equations that occur as solutions of the Euler-Lagrange equations on a

compact manifold for curvature functionals.

Definition 6.1 (Patra and Ghosh, 2021). A smooth Riemannian manifold (Mn, g)

is named an Einstein-type manifold if ψ : Mn → R solves

ψRic = ∇2ψ + σg, (6.44)

where ψ is a non-constant smooth function. Here, σ, Ric and ∇2ψ indicate a

smooth function, the Ricci tensor and the Hessian of ψ, respectively. Moreover,

contracting (6.44) yields

rψ = ∆ψ + nσ, (6.45)

where ∆ψ being the Laplacian of ψ and r denotes the scalar curvature.

As highlighted by authors Patra and Ghosh (2021) and Leandro (20210, the

above stated two equations generalize numerous fascinating geometric equations
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such as the static perfect fluid equation (Leandro and Solórzano, 2019; Coutinho

et al., 2019; Masood-ul-Alam, 1987), Miao-Tam equation (Miao and Tam, 2009,

2011; Barros et al., 2015) and critical point equation (Baltazar, 2017; Ghosh and

Patra, 2017; Qing and Yuan, 2013), Einstein equation (Hwang et al., 2016) and

static vacuum equation (Ambrozio, 2017) with null and non-null cosmological

constant, respectively.

Also, we recall the results obtained by Kanai (1983).

Lemma 6.2. Suppose that (M, g) is a complete Riemannian manifold of dimen-

sion n(≥ 2) and that k < 0. Then there is a non-trivial function f on M with a

critical point which satisfies

Hessf + kfg = 0

if and only if (M, g) is the simply connected complete Riemannian manifold

(Hn,−(1/k)g0) of constant curvature k, where g0 is the canonical metric on the

hyperbolic space of constant curvature −1.

Lemma 6.3. Let (M, g) and k be as Lemma 6.2. Then there is a function f on

M without critical points which satisfies

Hessf + kfg = 0

if and only if (M, g) is the warped product (M̃, g̃)ξ×(R, g0) of a complete Rieman-

nian manifold (M̃, g̃) and the real line (R, g0) warped by a function ξ : R → R

such that ξ̈+kξ = 0, ξ > 0, where g0 denotes the canonical metric on R; g0 = dt2.

6.2.1 Kenmotsu manifolds satisfying Einstein-type equa-

tions

Before proceeding to the main result, we construct an example of a Kenmotsu

manifold admitting a non-trivial smooth function ψ which is the solution of the
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equation (6.44).

Example 6.3. Let (N2n, J, g0) be a Kähler manifold and the WP (M, g) = (R×σ̄

N, dt2 + σ̄2g0). If we set η = dt, ξ = ∂
∂t

and the tensor field φ is defined on

R ×σ̄ N by φX = JX for any X on N and φX = 0 if X is tangent to R, then

the WP R×σ̄ N, σ̄
2 = ce2t with the structure (φ, ξ, η, g) is a Kenmotsu manifold

(Kenmotsu, 1972). Specifically, if we set N = CH2n, then N is Einstein and the

Ricci tensor of M becomes Ric = −2ng. Further, we set a smooth function as

ψ(t) = ket, k > 0. Hence, it is very easy to verify that ψ(t) solves the equation

(6.44) for σ = −(2n+ 1)ket.

Next, we establish the following:

Theorem 6.8. If (g, ψ) is a non-trivial solution of equation (6.44) in a Kenmotsu

manifold (M2n+1, φ, ξ, η, g), then it is η-Einstein manifold, provided ξψ ̸= ψ.

Moreover, if M is complete and the Reeb vector field leaves the scalar curvature

invariant, then we have

1. If ψ has a critical point which satisfies (6.44), then M is isometric to the

hyperbolic space H2n+1(−1).

2. If ψ is without critical points which satisfies (6.44), then M is isometric to

the warped product M̃ ×γ R of a complete Riemannian manifold M̃2n and

the real line R with warped function γ : R → R such that γ̈ − γ = 0, γ > 0.

Proof. Executing the covariant derivative of (6.44) along Y , we obtain

∇Y∇XDψ = (Y ψ)QX + ψ(∇YQ)X − (Y σ)X. (6.46)

As a consequence of (6.46), we get the curvature tensor as follows:

R(X, Y )Dψ = (Xψ)QY − (Y ψ)QX + ψ{(∇XQ)Y

−(∇YQ)X}+ (Y σ)X − (Xσ)Y, (6.47)
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for any X, Y on M. Executing the covariant derivative of (1.30) and using (1.27)

gives

(∇XQ)ξ = −QX − 2nX. (6.48)

Now taking an inner product of (6.47) with ξ and inserting the last expression

along with (1.30) we obtain

g(R(X, Y )Dψ, ξ) = 2n{(Y ψ)η(X)− (Xψ)η(Y )}+ (Y σ)η(X)− (Xσ)η(Y ).(6.49)

Taking an inner product of (1.29) with Dψ, then combining it with (6.49) gives

(2n+ 1){Dψ − (ξψ)ξ}+Dσ − (ξσ)ξ = 0. (6.50)

Contracting (6.47) infers

4nDσ − ψDr − 2rDψ = 0. (6.51)

Taking the trace of (6.48) and then using it in the inner product of (6.51) with

ξ, we acquire

4n(ξσ) + 2ψ(r + 2n(2n+ 1))− 2r(ξψ) = 0. (6.52)

Replacing Y by ξ in (6.47), then taking an inner product with Y gives

g(R(X, ξ)Dψ, Y ) = −2n(Xψ)η(Y )− (ξψ)Ric(X, Y )

+ψ{Ric(X, Y ) + 2ng(X, Y )}+ (ξσ)g(X, Y )− (Xσ)η(Y ). (6.53)

As a consequence of taking an inner product of (1.29) with Dψ and combining it

with (6.53) we get

g(X, (2n+ 1)Dψ +Dσ)η(Y )− (2nψ + ξψ + ξσ)g(X, Y ) = (ψ − ξψ)Ric(X, Y ).(6.54)
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Combining (6.51), (6.52) and (6.54) gives

(ψ − ξψ){( r
2n

+ 1)X − (
r

2n
+ 2n+ 1)η(X)ξ} = (ψ − ξψ)QX, (6.55)

for any X on M. Hence, M is η-Einstein or ξψ = ψ.

Let ξ leave the scalar curvature r invariant, i.e., ξr = 0 implies r = −2n(2n+

1). In view of this (6.55) gives QX = −2nX. Utilizing the fact that r is constant

in (6.51), we get σ = −(2n+1)ψ+k, where k indicates a constant. In consequence

of last equation and QX = −2nX in (6.44) infer

∇XDψ = (ψ − k)X.

By applying Kanai’s theorems (Kanai, 1983), that is, lemma 6.2 and lemma 6.3

we can conclude that if ψ has a critical point which satisfies (6.44), then M is

isometric to the hyperbolic space H2n+1(1) or if ψ is without critical points which

satisfies (6.44), then M is isometric to the warped product M̃ ×γ R of a complete

Riemannian manifold M̃2n and the real line R with warped function γ : R → R

such that γ̈ − γ = 0, γ > 0. This completes the proof.

Remark 6.3. From (6.55), we see that either M is η-Einstein or ψ − ξψ = 0.

Suppose ψ − ξψ = 0, then since Kenmotsu maifold is locally isometric to the

warped product (−ϵ, ϵ)×cetN , where N is a Kähler manifold of dimension 2n and

(−ϵ, ϵ) is an open interval (Kenmotsu, 1972). Using the local parametrization:

ξ = ∂
∂t

(where t is the coordinate on (−ϵ, ϵ)) we get

∂ψ

∂t
= ψ

Solving gives ψ = cet, where c is a constant. Therefore, assuming ξψ ̸= ψ in

Theorem 6.8, implies M is η-Einstein.
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6.2.2 Almost Kenmotsu manifolds satisfying Einstein-type

equation

Making use of Lemma 3.1 and the result by Dileo and Pastore (Theorem 4.2,

2009), we can prove subsequent:

Theorem 6.9. Let M2n+1(φ, η, ξ, g) be a (κ, µ)′-akm with the condition h′ ̸= 0. If

(g, ψ) is a non-trivial solution of the equation (6.44) then M3 is locally isometric

to the Riemannian product H2(−4)× R and M is locally isometric to the WP

Hn+1(α)×ψ̄ Rn, Bn+1(α′)×ψ̄′ Rn,

for n > 1. Here, Hn+1(α) and Bn+1(α′) are the hyperbolic space of constant

curvature α = − 2
n
− 1

n2 − 1 and space of constant curvature α′ = − 1
n2 + 2

n
− 1,

respectively. Also, ψ̄ = c1e
(1− 1

n
)t and ψ̄′ = c′1e

(1− 1
n
)t where c1, c

′
1 are positive

constants.

Proof. We first replace X by ξ in (6.47), then take its an inner product with ξ

and utilizing Lemma 3.1, infer that

g(R(ξ, Y )Dψ, ξ) = 2nκ{(ξψ)η(Y )− (Y ψ)}+ (Y σ)− (ξσ)η(Y ). (6.56)

Also, we replace X by ξ in (1.33) and after taking inner product with Dψ gives

g(R(ξ, Y )ξ,Dψ) = κ{(ξψ)η(Y )− (Y ψ)} − µh′(Y ψ). (6.57)

Since scalar curvature r = 2n(κ− 2n) is constant, in view of this (6.51) becomes

4nDσ − 2rDψ = 0. Combining (6.56), (6.57) and the last expression, we get

2n(κ+ 1){(ξψ)ξ −Dψ} = µh′Dψ. (6.58)

Operating (6.58) by h′ and using (1.34) yields −2n(κ+1)h′Dψ = µ(κ+1){−Dψ+

193



Chapter 6

(ξψ)ξ}, then combining the obtained equation with (6.58), we obtain

{µ2(κ+ 1) + 4n2(κ+ 1)2}φ2Dψ = 0. (6.59)

Thus we get the following two cases, φ2Dψ = 0 or φ2Dψ ̸= 0.

Case-I: φ2Dψ ̸= 0, then (6.59) gives κ = −1− µ2

4n2 . Since µ = −2, in view of this

in last expression yields κ = −1− 1
n2 . By using Dileo and Pastore (Theorem 4.2,

2009) we can conclude that M3 is locally isometric to the Riemannian product

H2(−4)× R and M is locally isometric to the WP

Hn+1(α)×ψ̄ Rn, Bn+1(α′)×ψ̄′ Rn,

for n > 1.

Case-II: φ2Dψ = 0 which implies Dψ = (ξψ)ξ. Taking the covariant deriva-

tive and using (6.44) and (1.31), we get

ψQX − σX = X(ξψ)ξ + (ξψ)(X − η(X)ξ − φhX). (6.60)

Replacing X by ξ in (6.60) gives ξ(ξψ) = 2nκψ − σ. In view of this in the

contraction of (6.60), we obtain ξψ = −2nψ − σ.

Comparing (6.60) with Lemma 3.1, then operating the obtained result by φ gives

(2nψ+ (ξψ))hX = 0. Making use of ξψ = −2nψ− σ and the fact that h ̸= 0, we

see that σ = 0. In consequence, (6.51) becomes (κ− 2n)Dψ = 0. As κ < −1, we

get Dψ = 0, that is, ψ is constant, a contradiction. This completes the proof.

Consider a generalized (κ, µ)′-akm of dimension three with κ < −1. If we

assume that κ is invariant along ξ, then from (Proposition 3.2 (Pastore and

Saltarelli, 2011)) we have ξ(κ) = −2(1 + κ)(µ + 2) implies µ = −2. Moreover,

from (Lemma 3.3 (Saltarelli, 2015)), we have h′(gradµ) = gradκ − ξ(κ)ξ which

implies κ is constant under our assumption. Therefore M3 becomes a (κ,−2)′-

akm. By applying Theorem 6.9, we can conclude the following:
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Corollary 6.2. Let M3(φ, η, ξ, g) be a generalized (κ, µ)′-akm with κ < −1 in-

variant along ξ. If (g, ψ) is a non-trivial solution of the equation (6.44) then M3

is locally isometric to the Riemannian product H2(4)× R.

Next, we investigate 3-dimensional akm admitting a non-trivial solution to

the equation (6.44).

Theorem 6.10. Let M3(φ, ξ, η, g) be an almost Kenmotsu 3-H-manifold equipped

with h′ ̸= 0. If (ψ, g) is a non-trivial solution of the equation (6.44) with smooth

function ψ constant along the Reeb vector field, then it is locally isometric to a

non-unimodular Lie group with a left invariant almost Kenmotsu structure.

Proof. Under our hypothesis, from the first argument of Lemma 3.3, we obtain

e(ϑ) = −2ϑc, φe(ϑ) = −ϑb. (6.61)

Taking the inner product of (6.44) with vector filed Y , the equation (6.44) can

be rewritten as the following:

g(∇XDψ, Y ) = ψRic(X, Y )− σg(X, Y ), (6.62)

for all X, Y on M. Since the smooth function ψ is constant along the Reeb vector

field ξ, we can write

Dψ = ψ1e+ ψ2φe,

for smooth functions ψ1, ψ2 on M.

Replacing X and Y by ξ in (6.62), then making use of Lemma 3.2 and Lemma

3.3 we get

σ = −2ψ(ϑ2 + 1). (6.63)

Substituting X = e and Y = ξ in (6.62) and using Lemma 3.3, Lemma 3.2 yield

ϑψ2 − ψ1 = 0. (6.64)
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Similarly, taking X = φe and Y = ξ in (6.62) gives

ϑψ1 − ψ2 = 0. (6.65)

Combining (6.64) and (6.65), we get (ϑ2 − 1)ψ1 = 0. If ψ1 = 0 then from (6.65)

we see that ψ2 = 0 which implies Dψ = 0, that is, ψ is constant, a contradiction.

Therefore, we must have ϑ2 = 1 which implies ϑ is constant. Since ϑ is a positive

function, we get ϑ = 1. Making use of the fact that ϑ = 1 in (6.61) gives b = c = 0.

Moreover, eq. (6.64) implies ψ1 = ψ2.

Now consider the following open set:

O = {p ∈ U1 : ψ1 = ψ2 ̸= 0 in a neighborhood of p}

Since Poincare’s lemma d2ψ = 0, i.e. the relation

g(∇XDψ, Y ) = g(∇YDψ,X) (6.66)

holds for any vector fields X, Y in M, letting X = ξ and Y = e in (6.66) using

Lemma 3.2, we obtain

ξ(ψ1) = aψ2. (6.67)

Also, taking X = ξ and Y = φe in (6.66) gives ξ(ψ2) = −aψ1 and combining this

with (6.67), we get 2aψ1 = 0, that is, a = 0 in O.

Making use of the fact that a = b = c = 0 and ϑ = 1 along with Lemma 3.2, we

obtain

[e, φe] = 0, [φe, ξ] = φe− e, [ξ, e] = φe− e.

According to Milnor’s theorem (Milnor, 1976), we can conclude that M3 is locally

isometric to a non-unimodular Lie group with a left invariant almost Kenmotsu

structure. This completes the proof.

Applying Wang’s Theorem (Wang, 2017) and Theorem 6.10, we can now
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establish the following:

Corollary 6.3. Let M3(φ, ξ, η, g) be an almost Kenmotsu 3-H-manifold. If (ψ, g)

is a non-trivial solution of the equation (6.44) with smooth function ψ constant

along the Reeb vector field, then it is locally isometric to either the hyperbolic

space H3(−1) or the Riemannian product H2(−4)× R.

Proof. We shall establish the theorem via the subsequent cases:

Case i: Let h = 0, then M3 be a Kenmotsu manifold. The Ricci operator of

M3 is written by (see Cho (2014))

Q = (
r

2
+ 1)id− (

r

2
+ 3)η ⊗ ξ. (6.68)

Replacing X by ξ in (6.44), then taking it inner product with ξ and using (1.30),

we get ξ(ξψ) = −2ψ+ σ. If ξψ = 0, last equation becomes σ = 2ψ which further

implies ξσ = 0. In consequence, for n = 1 Eq. (6.52) becomes r = −6, i.e.

scalar curvature is constant. Moreover, (6.68) infer Q = −2id. Clearly M3 is

conformally flat.

Case ii: h ̸= 0 on some open subset of M3. By the proof of Theorem 6.10, we

see that a = b = c = 0 and ϑ = 1. Using this in Lemma 3.3, we get

Qξ = −4ξ,

Qe = 2φe− 2e,

Qφe = 2e− 2φe.

Also, the scalar curvature is constant, i.e. r = −8. Since r is constant and by

(6.69), it is easy to see that M3 is conformally flat.

By applying Wang’s theorem (Theorem 1.6, 2017), we conclude that it is lo-

cally isometric to either the hyperbolic space H3(−1) or the Riemannian product

H2(−4)× R. This completes the proof.

Under the assumptions of Theorem 6.10, for non-Kenmotsu almost Kenmotsu
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3-H-manifold, ∇ξh = 0. Also, it is known that a akm of dimension 3 is Kenmotsu

if and only if h vanishes (see Dileo and Pastore (2009)). In regard of Corollary

3.3 (Wang, 2017) and Corollary 6.3, we can write:

Corollary 6.4. Let M3(φ, ξ, η, g) be an almost Kenmotsu 3-H-manifold. If (ψ, g)

is a non-trivial solution of the equation (6.44) with smooth function ψ constant

along the Reeb vector field, then it is locally isometric to either the WP R×cetN(κ)

(N(κ): space of constant curvature κ) or the Riemannian product H2(−4)× R.

Example 6.4. In a strictly almost Kähler Einstein manifold (M, J, ḡ), we set

η = dt, ξ = ∂
∂t

and the tensor field φ is defined on R×ψN by φX = JX for vector

field X on M and φX = 0 if X is tangent to R. Consider a metric g = g0+ σ̄
2ḡ,

where σ̄2 = ce2t, g0 indicates the Euclidean metric on R and c denotes a positive

constant. Then it is easy to verify that the WP R ×σ̄ M, σ̄2 = ce2t, with the

structure (φ, ξ, η, g) is an akm (Dileo and Pastore, 2007). Since M is Einstein

S = −2ng. If we set a smooth function ψ(x, t) = t2, then ψ solves the equation

(6.44) for σ = −2nt2 − 2.

Now, we recollect the subsequent definition:

Definition 6.2. A 3-dimensional akm is named a (κ, µ, ν)-akm if the Reeb vector

field obeys the (κ, µ, ν)-nullity condition, that is,

R(X, Y )ξ = κ(η(Y )X − η(X)Y ) + µ(η(Y )hX

−η(X)hY ) + ν(η(Y )h′X − η(X)h′Y ),

for any X, Y and µ, κ and ν indicate smooth functions.

Example 6.5. Let G3 be a non-unimodular Lie group admitting a left invariant

local orthonormal frame fields {v1, v2, v3} obeying (see Milnor (1976)):

[v2, v3] = 0, [v1, v2] = αv2 + βv3, [v1, v3] = γv2 + (2− α)v3, (6.69)

198



Chapter 6

where α, β, γ ∈ R. We define g on G by g(vi, vj) = δij for 1 ≤ i, j ≤ 3. Take

ξ = −v1 and its dual 1-form by η. Also, we define a (1, 1) tensor field φ by

φ(ξ) = 0, φ(v2) = v3 and φ(v3) = −v2. We can easily verify that (G,φ, ξ, η, g)

admits a left invariant almost Kenmotsu structure. From (Theorem 3.2 (Wang,

2016)), we get that G has a (κ, µ, ν)-almost Kenmotsu structure where

κ = −α2 + 2α− 1

4
(β + γ)2 − 2, µ = β − γ, ν = −2.

Moreover, from Wang (2016), we have

hv2 = (α− 1)v3 −
1

2
(β + γ)v2, hv3 =

1

2
(β + γ)v3 + (α− 1)v2. (6.70)

The Ricci operator is determined as follows (see Wang, 2016):

Qξ = (
1

2
(β − γ)2 − α2 − β2 − (α− 2)2 − γ2)ξ.

Clearly, taking α = β = γ = 1 in the above expressions shows that G is a

non-Kenmotsu (κ,−2)′-akm with κ = −2. In view of this, we get Qξ = −4ξ

and the scalar curvature as r = −8 ( from Lemma 3.1). We define a function

ψ = e−2t, t ≥ 0. Then by Laplace transformation, we get ∆ψ = 1
s+2

, where s is a

complex number. In view of this in (6.45) gives σ = −8e−2t. Then it is easy to

verify that ψ is a non-trivial solution of Einstein-type metric (6.44). Moreover, by

Dileo and Pastore result (Theorem 4.2, 2009), we state that G is locally isometric

to H2(−4)× R, the Riemannian product. Hence, Theorem 6.9 is verified.

Next, we produce an example of almost Kenmotsu 3-H-manifold of dimension

three ( for detail see Wang (2017)).

Example 6.6. Consider a cylindrical coordinates (r, θ, z) of R3. On M3 which

is a simply connected domain of R3 excluding the origin, we define an almost
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Kenmotsu structure as (see Blair and Yildrim (2016)):

ξ =
2

γ

∂

∂r
, η =

γ

2
dr, g =

γ2

4
(dr2 + r2dθ2 + dz2),

φ(
∂

∂z
) =

1

r

∂

∂θ
, φ(

∂

∂r
) = 0, φ(

∂

∂θ
) = −r ∂

∂z
,

where γ = 1
c1
√
r−r ,

√
r > c1 > 0 or

√
r < c1, c1 being a constant. If we set

e1 = 2
γr

∂
∂θ

and e2 = φe1 = − 2
γ
∂
∂z
, then in Wang (2017) it is shown that ξ is

an eigenvector field of the Ricci operator. Therefore M3 is an almost Kenmotsu

3-H-manifold.
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Chapter 7

Summary and Conclusion

In the present thesis, we give classification of almost contact metric manifolds

admitting some geometrical structures and also studied their submanifold. The

following objectives are taken up in the study:

1. To study semiconformal curvature tensor.

2. To study geometrical properties of (κ, µ)-contact metric manifolds.

3. To study the properties of certain Ricci solitons.

4. To characterize the invariant submanifolds of certain almost contact mani-

folds.

In Chapter 1, we give the general introduction of the study which includes

the basic definitions and formulas of differential geometry such as topological

manifolds, smooth manifolds, Riemannian manifolds, almost contact metric man-

ifolds, Kenmotsu manifolds, f -Kenmotsu manifold, almost Kenmotsu manifolds,

space forms, Lorentzian manifolds, generalized m-quasi-Einstein structure, al-

most Ricci-Yamabe soliton and Submanifolds, along with the review of the liter-

ature.
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Chapter 2 is divided into three main sections. In first section, we introduce

two types of generalized ϕ-recurrent (κ, µ)-contact metric manifolds known as hy-

per generalized ϕ-recurrent (k, µ)-contact metric manifolds and quasi generalized

ϕ-recurrent (k, µ)-contact metric manifolds, and investigate their properties. We

prove their existence by constructing non-trivial examples. In the second sec-

tion, the geometric structures of generalized (k, µ)-space forms and their quasi-

umbilical hypersurface are analyzed. First ξ-Q and conformally flat generalized

(k, µ)-space form are investigated and shown that a conformally flat generalized

(k, µ)-space form is Sasakian. Next, we prove that a generalized (k, µ)-space

form satisfying Ricci pseudosymmetry is η-Einstein. We obtain the condition

under which a quasi-umbilical hypersurface of a generalized (k, µ)-space form is

a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a quasi-

umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally, the

results obtained are verified by constructing an example of a 3-dimensional gener-

alized (k, µ)-space form. In the third section, we introduce a type of Riemannian

manifold, namely, an almost pseudo semiconformally symmetric manifold which

is denoted by A(PSCS)n. Several geometric properties of such a manifold are

studied under certain curvature conditions. Some results on Ricci symmetric

A(PSCS)n and Ricci-recurrent A(PSCS)n are obtained. Next, we consider the

decomposability of A(PSCS)n. Finally, two non-trivial examples of A(PSCS)n

are constructed.

In Chapter 3, an extension of them-Bakery-Emery Ricci tensor known as gen-

eralized m-quasi-Einstein metric is investigated. This chapter include two main

sections. In the first section, we studied the generalized m-quasi-Einstein metric

in the context of contact geometry. First, we prove if an H-contact manifold

admits a generalized m-quasi-Einstein metric with non-zero potential vector field

V collinear with ξ, then M is K-contact and η-Einstein. Moreover, it is also true

when H-contactness is replaced by completeness under certain conditions. Next,
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we prove that if a complete K-contact manifold admits a closed generalized m-

quasi-Einstein metric whose potential vector field is contact then M is compact,

Einstein and Sasakian. Finally, we obtain some results on a 3-dimensional nor-

mal almost contact manifold admitting generalized m-quasi-Einstein metric. In

the second section, we analyze the generalized m-quasi-Einstein structure in the

context of almost Kenmotsu manifolds. Firstly we showed that a complete Ken-

motsu manifold admitting a generalized m-quasi-Einstein structure (g, f,m, λ) is

locally isometric to a hyperbolic space H2n+1(−1) or a warped product M̃ ×γ R

under certain conditions. Next, we proved that a (κ, µ)′-almost Kenmotsu mani-

fold with h′ ̸= 0 admitting a closed generalized m-quasi-Einstein metric is locally

isometric to some warped product spaces. Finally, generalized m-quasi-Einstein

metric (g, f,m, λ) in almost Kenmotsu 3-H-manifold is considered and proved

that either it is locally isometric to the hyperbolic space H3(−1) or the Rieman-

nian product H2(−4)× R.

Chapter 4 is devoted to the characterization of almost Ricci-Yamabe solitons

(shortly, ARYS). In the first section, we consider ARYS in certain contact metric

manifolds such as K-contact and (κ, µ)-contact metric manifolds. Firstly, we

prove that if the metric g admits an almost (α, β)-Ricci-Yamabe soliton with α ̸=

0 and potential vector field collinear with the Reeb vector field ξ on a complete

contact metric manifold with the Reeb vector field ξ as an eigenvector of the Ricci

operator, then the manifold is compact Einstein Sasakian and the potential vector

field is a constant multiple of the Reeb vector field ξ. Next, if the complete K-

contact manifold admits gradient ARYS with α ̸= 0, then it is compact Sasakian

and isometric to unit sphere S2n+1. Finally, gradient ARYS with α ̸= 0 in non-

Sasakian (k, µ)-contact metric manifold is assumed and found thatM3 is flat and

for n > 1, M is locally isometric to En+1 × Sn(4) and the soliton vector field

is tangential to the Euclidean factor En+1. An illustrative example is given to

support the obtained result. In the second section, we examine ARYS within the
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framework of certain classes of almost Kenmotsu manifolds. Firstly, we prove that

a complete Kenmotsu manifold, admitting ARYS with α ̸= 0 is locally isometric

to hyperbolic space H2n+1(−1) when Reeb vector field leaves the scalar curvature

invariant. Secondly, we show that ARYS on the Kenmotsu manifold reduces to

Ricci-Yamabe soliton under the certain conditions on the soliton function. Next,

it is proved that if a (κ, µ)′-almost Kenmotsu manifold with h′ ̸= 0 admits gradient

ARYS then either it is locally isometric to H2n+1(−4)×Rn or potential vector field

is pointwise collinear with the Reeb vector field. Moreover, 3-dimensional non-

Kenmotsu almost Kenmotsu manifolds admitting gradient ARYS are considered.

Several examples have been constructed of ARYS on different classes of warped

product spaces.

Chapter 5 is divided into two sections. The Invariant submanifolds of f -

Kenmotsu manifolds are studied in the first section. Firstly, we show that any

invariant submanifold of f -Kenmotsu manifold is again f -Kenmotsu manifold and

minimal. Then, we give some characterizations of totally geodesic submanifolds

of the f -Kenmotsu manifolds. Moreover, we study a 3-dimensional submanifolds

and prove that a 3-dimensional submanifold of the f -Kenmotsu manifold is to-

tally geodesic if and only if it is invariant. Also, η-Ricci soliton is considered

on an invariant submanifold of f -Kenmotsu manifolds. Lastly, some non-trivial

examples are constructed to verify the obtained results. In the second section, we

derive Chen’s inequalities involving Chen’s δ-invariant δM , Riemannian invariant

δ(m1, . . . ,mk), Ricci curvature, Riemannian invariant Θk(2 ≤ k ≤ m), the scalar

curvature and the squared of the mean curvature for submanifolds of generalized

Sasakian-space-forms endowed with a quarter-symmetric connection. As an ap-

plication of the obtain inequality, we derived first Chen inequality for bi-slant

submanifold of generalized Sasakian-space-forms.

In Chapter 6, we obtained some results on spacetime. This chapter include

two sections. In the first section, we studied the geometrical aspects of a perfect
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fluid spacetime with torse-forming vector field ξ under certain curvature restric-

tions, and Ricci-Yamabe soliton and η-Ricci-Yamabe soliton in a perfect fluid

spacetime. Conditions for the Ricci-Yamabe soliton to be steady, expanding or

shrinking are also given. Moreover, when the potential vector field ξ of η-Ricci-

Yamabe soliton is of gradient type, we derive a Poisson equation and also looked

at its particular cases. Lastly, a non-trivial example of perfect fluid spacetime

admitting η-Ricci-Yamabe soliton is constructed. Then in the second section, we

classify the Einstein-type metric on Kenmotsu and almost Kenmotsu manifolds.

In Kenmotsu case, we find that it is η-Einstein and if it is complete with the scalar

curvature invariant along the Reeb vector field, then it is isometric either to the

hyperbolic space H2n+1(−1) or the warped product M̃ ×γ R, provided ξψ ̸= ψ.

Next, we investigate non-Kenmotsu (κ, µ)′-almost Kenmotsu manifolds obeying

the Einstein-type metric and give some classification. Finally, we establish that

if (ψ, g) is a non-trivial solution of Einstein-type metric with smooth function

ψ constant along the Reeb vector field on almost Kenmotsu 3-H-manifold, then

it is locally isometric to either the hyperbolic space H3(−1) or the Riemannian

product H2(−4)×R. Finally, we construct several non-trivial examples to verify

our main results.

Lastly, we conclude that most of our works are an extension of previous works

done by many geometers, some of which is A. Ghosh, U. C. De, D. M. Naik, A.

De, V. Venkatesha and D. S. Patra. Some important geometrical structures such

as generalized m-quasi-Einstein, almost Ricci-Yamabe soliton and Einstein-type

metric were studied in the context of almost contact metric manifolds and several

isometric classifications are obtained. Also, Chen’s inequalities involving the in-

trinsic and extrinsic invariants are obtained for generalized Sasakian-space-forms

by considering special connection. We also obtained some results which might

be useful in theoretical physics, especially in the study of general relativity and

spacetime. Moreover, we constructed several examples supporting our obtained
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results. Due to the abstract nature of the topic, most of our results are com-

pletely theoretical and do not have an immediate application at present but we

are hopeful that it will help in our understanding and future research in the field

of differential geometry.
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(A) LIST OF RESEARCH PUBLICATIONS/ ACCEPTED/

COMMUNICATIONS

(1) M. Khatri and J. P. Singh (2020). On a class of generalized recurrent

(κ, µ)-contact metric manifolds, Communications of the Korean Mathemat-

ical Society, 35(4), 1283-1297.

(2) J. P. Singh and M. Khatri (2020). On almost pseudo semiconformally

symmetric manifold, Differential Geometry-Dynamical Systems, 22, 233-

253.

(3) J. P. Singh and M. Khatri (2021). On the Geometric Structure of Gen-

eralized (κ, µ)-space forms, Facta Universitatis, Series Mathematics and

Informatics, 36(5), 1129-1142.

(4) J. P. Singh and M. Khatri (2021). On Ricci-Yamabe soliton and geo-

metrical structure in a perfect fluid spacetime, Afrika Matematika, 32(7),

1645-1656.

(5) Jay Prakash Singh and Mohan Khatri (2021). On semiconformal cur-

vature tensor in (κ, µ)-contact metric manifold, Conference Proceeding of

Science and Technology, 4(2), 215-225.

(6) Y. Li, M. Khatri, J. P. Singh and S. K. Chaubey (2022). Improved Chen’s

Inequalities for Submanifolds of Generalized Sasakian-space-forms, Axioms,

11(7), 324.

(7) J. P. Singh and M. Khatri (2022). On weakly cyclic B symmetric space-

time, Balkan Journal of Geometry and Application, 27(2), 122-138.

(8) J. P. Singh and M. Khatri (2022). Generalized m-quasi-Einstein metric

on certain almost contact manifolds, Accepted to Filomat.
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(9) M. Khatri and J. P. Singh (2022). Generalized m-quasi-Einstein structure

in almost Kenmotsu manifolds, Accepted to Bulletin of Korean Mathemat-

ical Society.

(10) M. Khatri and J. P. Singh (2022). Almost Ricci-Yamabe soliton on contact

metric manifolds, (Communicated).

(11) M. Khatri and J. P. Singh (2022). Almost Ricci-Yamabe soliton on almost

Kenmotsu manifolds, (Communicated).

(12) M. Khatri, S. K. Chaubey and J. P. Singh (2022). Invariant submanifolds

of f -Kenmotsu manifolds, International Journal of Geometric Methods in

Modern Physics, https://doi.org/10.1142/S0219887822502255.

(13) U. C. De, M. Khatri and J. P. Singh (2022). Einstein-type metric on

Almost Kenmotsu manifolds, (Communicated).

(14) Mohan Khatri and Jay Prakash Singh (2022). On a type of Static Equa-

tion on Certain Contact Metric Manifolds, (Communicated).

(15) Mohan Khatri, C. Zosangzuala and Jay Prakash Singh (2022). Isome-

tries on Almost Ricci-Yamabe Solitons, Arabian Journal of Mathematics,

https://doi.org/10.1007/s40065-022-00404-x.

(B) CONFERENCES/ SEMINARS/ WORKSHOPS

(1) Participated in the Instructional School for Teachers on “Mathematical

Modelling in Continuum Mechanics and Ecology” held at Mizoram UNi-

versity, Aizawl-796004 from June 03-15, 2019.

(2) Attended “National Workshop on ‘Ethics in Research and Preventing Pla-

giarism (ERPP 2019)’” organised by Department of Physics, School of Phys-

ical Sciences, Mizoram University held on 3rd October 2019.
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(3) Presented a paper “On Almost Pseudo Semiconformally Symmetric Man-

ifolds” in the “2nd Annual Convention of North East(India) Academy of

Science and Technology (NEAST) and International Seminar on Recent Ad-

vances in Science and Technology (IRSRAST)” during 16th–18th November

2020 (Virtual) organized by NEAST, Mizoram University, Aizawl-796004,

Mizoram (India) .

(4) Presented a paper “On a class of generalized recurrent (κ, µ)-contact metric

manifolds” at the “Mizoram Science Congress 2020 (online)” during Decem-

ber 3-4, 2020 organized by Mizoram Science, Technology and Innovation

Council (MISTIC) and Directorate of Science and Technology, Planning

Department, Govt. of Mizoram.

(5) Attended “NASI TMC Summer School on Differential Geometry” organised

online by the Department of Mathematics and Statistics, Central University

of Punjab, Bathinda during July 05-24, 2021.

(6) Presented a paper “On Almost Pseudo Semiconformally Symmetric Mani-

folds” during “18th International Geometry Symposium” held on July 12-13,

2021 at the Malatya/TURKEY.

(7) Attended “Six day Faculty Development Programme on Mathematics and

Statistics in Emerging Field” conducted by Department of Mathematics

KPRIET held from 05.07.2021 to 10.07.2021.

(8) Participated as a trainee in the offline “One Week Training Program on

Mathematical Modelling and Computing” organised by Department of Math-

ematics and Computer Science, Mizoram University, Aizawl-796004, Mizo-

ram (India) held during 26th April, 2022 to 2nd May, 2022.
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Aytimur, H., Kon, M., Mihai, A., Özgür, C. and Takano, K. (2019). Chen In-

equalities for Statistical Submanifolds of Kähler-Like Statistical Manifolds,

Mathematics 7(12), 1202.

Baltazar, H. (2017). On critical point equation of compact manifolds with zero

radial Weyl curvature, Geom. Dedicata 202(1), 337–355.

Barros, A. and Ribeiro Jr., E. (2012). Integral formulae on quasi-Einstein man-

ifolds and applications, Glasgow Math. J. 54, 213-223.

212



Barros, A. and Ribeiro Jr., E. (2014). Characterization and integral formu-

lae for generalized m-quasi-Einstein metrics, Bull. Braz. Math. Soc. (N.S.)

45(2), 325-341.

Barros, A. and Gomes, J. N. (2017). Triviality of compact m-quasi-Einstein

manifolds, Results Math. 71, 241-250.

Barros, A., Batista, R. and Ribeiro E. (2021). Rigidity of gradient almost Ricci

solitons, Illinois J. Math. 56(4), 1267-1279.

Barros, A., Gomes, J. N. and Ribeiro E. (2013). A note on rigidity of almost

Ricci soliton, Arch. Math. 100, 481-490.

Barros, A. and Gomes, J. N. (2013). A compact gradient generalized quasi-

Einstein metric with constant scalar curvature, J. Math. Anal. Appl.

410(2), 702-705.

Barbosa, E. and Ribeiro, E. (2013). On conformal solutions of the Yamabe

flow, Archiv de Math. 101(1), 79-89.
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Abstract. The goal of this paper is the introduction of hyper generalized

φ-recurrent (k, µ)-contact metric manifolds and of quasi generalized φ-
recurrent (k, µ)-contact metric manifolds, and the investigation of their

properties. Their existence is guaranteed by examples.

1. Introduction

The concept of a (k, µ)-contact metric manifold was introduced by Blair et
al. [4], and there are several reasons for studying it. One of its key features is
that it contains both Sasakian and non-Sasakian manifolds. Sasakian manifolds
were first studied by Sasaki [20]. A full classification of (k, µ)-spaces was given
by Boeckx [5]. Recently, the properties of (k, µ)-spaces under certain conditions
has been studied by many geometers; see [1, 2, 23] and references therein.

Cartan [6] introduced the concept of locally symmetric space, which has
been weakened and studied by many geometers throughout the years to a great
extent. The notion of locally φ-symmetric Sasakian manifolds was introduced
by Takashi [24]. The generalization of φ-symmetric Sasakian manifolds was
made by De et al. [9] and called it φ-recurrent Sasakian manifolds. Jun et al. [16]
studied φ-recurrent (k, µ)-contact metric manifolds. De et al. [14] studied φ-
Ricci symmetric (k, µ)-contact metric manifolds. Dubey [11] introduced the
notion of generalized recurrent manifold. A non-flat Riemannian manifold is
said to be a generalized recurrent manifold if its curvature tensor R satisfies

(1) ∇R = A⊗R+B ⊗G,
where A and B are non-vanishing 1-forms defined by A(X) = g(X, γ1) and
B(X) = g(X, γ2) and the tensor G is defined by

(2) G(X,Y )Z = g(Y, Z)X − g(X,Z)Y
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for any vector fields X,Y, Z. Here, ∇ denotes the covariant differentiation with
respect to the metric g. If the 1-form B vanishes, then (1) reduces to recurrent
manifold [27].

A non-flat Riemannian manifold is said to be generalized Ricci-recurrent
manifold [10] if the Ricci tensor S satisfies

(3) ∇S = A⊗ S +B ⊗ g,
where A and B are 1-forms defined in (1). If 1-form B vanishes, then it reduces
to the notion of Ricci-recurrent manifold [19].

Shaikh et al. [21] extended this concept to generalized φ-recurrent Sasakian
manifold. Hui [15] studied generalized φ-recurrent generalized (k, µ)-contact
metric manifold and obtained interesting results. A non-flat Riemannain man-
ifold is said to be generalized φ-recurrent manifold if the curvature tensor R
satisfies the condition

(4) φ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )G(X,Y )Z

for all vector fields X,Y and Z. Here, tensor G is defined as in (2).
A Riemannain manifold is said to be hyper generalized recurrent manifold

if its curvature tensor R satisfies the condition

(5) ∇R = A⊗R+B ⊗ (g ∧ S),

where A and B are 1-forms defined in (1).
Recently, Venkatesha et al. [25] extended the notion of hyper generalized

recurrent manifolds (resp. quasi generalized recurrent manifolds) to hyper gen-
eralized φ-recurrent Sasakian manifolds (resp. quasi generalized φ-recurrent
Sasakian manifolds) and obtained interesting results. Continuing this, we stud-
ied hyper generalized φ-recurrent (k, µ)-contact metric manifolds and prove its
existence by giving a proper example. Similarly, quasi generalized φ-recurrent
(k, µ)-contact metric manifolds was investigated. This paper has the following
organization. After preliminaries, in Section 3, we study hyper generalized φ-
recurrent (k, µ)-contact metric manifolds. And in Section 4, we construct an
example to prove the existence of hyper generalized φ-recurrent (k, µ)-contact
metric manifolds. Next, in Section 4, we study quasi generalized φ-recurrent
(k, µ)-contact metric manifolds. Its existence is proved in Section 5 by con-
structing an example.

2. Preliminaries

In this section, we listed some of the basic formulae and definitions on
(k, µ)-contact metric manifolds which will be used throughout the paper. It is
well known that, the concept of (k, µ)-contact metric manifold contains both
Sasakian and non-Sasakian manifolds. Recently, geometry of contact metric
manifolds under various conditions has been studied by [10,12,13,18,19,26]. A
detailed study on (k, µ)-contact metric manifolds are available in [3–5, 8] and
references therein.
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Let M be a smooth connected manifold of dimension (2n + 1). Then, M
is called an almost contact metric manifold if it is equipped with an almost
contact structure (φ, ξ, η, g) which satisfies the following relations:

(6) φ2X = −X + η(X)ξ, η(ξ) = 1, g(X, ξ) = η(X),

(7) φξ = 0, ηξ = 0, g(X,φY ) = −g(φX, Y ), g(X,φX) = 0,

(8) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

where η is a 1-form, ξ is a vector field, φ is a tensor field of type (1,1) and g
is a Riemannian metric on M . An almost contact metric manifold satisfying
g(X,φY ) = dη(X,Y ), is called a contact metric manifold. We consider on
M(φ, ξ, η, g), a symmetric (1,1) tensor field h defined by h = 1

2Lξφ, where L
denotes Lie differentiation, and satisfies hξ = 0, hφ = −φh, trh = trφh = 0.

The (k, µ)-nullity distribution on the manifold M(φ, ξ, η, g) is a distribution
[4]

N(k, µ) : p→ Np(k, µ) = {Z ∈ Tp(M) : R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y )

+ µ(g(Y,Z)hX − g(X,Z)hY )}(9)

for any X,Y ∈ TpM and k, µ ∈ R2. A contact metric manifold with ξ belong-
ings to (k, µ)-nullity distribution is called a (k, µ)-contact metric manifold. A
(k, µ)-contact metric manifold becomes Sasakian manifold for k = 1, µ = 0;
and the notion of (k, µ)-nullity distribution reduces to k-nullity distribution for
µ = 0.

In a (k, µ)-contact metric manifold the following properties are true [4]:

(10) h2 = (k − 1)φ2, k ≤ 1,

(11) ∇Xξ = −φX − φhX, (∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX),

(12) R(X,Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ],

(13) R(ξ,X)Y = k[g(X,Y )ξ − η(Y )X] + µ[g(hX, Y )ξ − η(Y )hX],

S(X,Y ) = [2(n− 1)− nµ]g(X,Y ) + [2(n− 1) + µ]g(hX, Y )

+ [2(1− n) + n(2k + µ)]η(X)η(Y ),(14)

(15) S(X, ξ) = 2nkη(X),

(16) r = 2n(2n− 2 + k − nµ),

(17) S(φX, φY ) = S(X,Y )− 2nkη(X)η(Y )− 2(2n− 2 + µ)g(hX, Y ),

where S is the Ricci tensor of type (0, 2) and r is the scalar curvature of the
manifold M . So

(18) (∇Xη(Y )) = g(X + hX, φY ),
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(∇XhY ) =
[
(1− k)g(X,φY ) + g(X,hφY )

]
ξ

+ η(Y )
[
h(φX + φhX)

]
− µη(X)φhY(19)

for all X,Y ∈ χ(M).

Definition. A (2n + 1)-dimensional (k, µ)-contact metric manifold is said to
be η-Einstein if its Ricci tensor S is of the form

S(X,Y ) = αg(X,Y ) + βη(X)η(Y ),

for any vector fields X and Y , where α and β are constants. If β = 0, then the
manifold M is an Einstein manifold.

3. Hyper generalized φ-recurrent (k, µ)-contact metric manifold

In the paper [22], the author studied hyper generalized recurrent manifolds.
Recently, the author [25] studied hyper generalized φ-recurrent Sasakian man-
ifold and obtained important results. By observing this, we extended it to
(k, µ)-contact metric manifold. In this section, we study hyper generalized
φ-recurrent (k, µ)-contact metric manifold.

Definition. A (2n + 1)-dimensional (k, µ)-contact metric manifold is said to
be a hyper generalized φ-recurrent if its curvature tensor R satisfies

(20) φ2((∇WR)(X,Y )Z) = A(W )R(X,Y )Z +B(W )H(X,Y )Z

for all vector fields X,Y and Z. Here, A and B are two non-vanishing 1-forms
such that A(X) = g(X, ρ1), B(X) = g(X, ρ2) and the tensor H is defined by

(21) H(X,Y )Z = S(Y,Z)X − S(X,Z)Y + g(Y,Z)QX − g(X,Z)QY

for all vector fields X,Y and Z. Here, Q is the Ricci operator, ρ1 and ρ2 are
vector fields associated with 1-forms A and B respectively. If the 1-form B
vanishes, then (20) reduces to the notion of φ-recurrent manifolds.

Theorem 3.1. In a hyper generalized φ-recurrent (k, µ)-contact metric mani-
fold, the 1-forms A and B satisfy the relation

kA(W ) + [n(2k − µ+ 2)− 2]B(W ) = 0.

Proof. Let us consider hyper generalized φ-recurrent (k, µ)-contact metric man-
ifold. In view of (20) and (6) we obtain

− (∇WR)(X,Y )Z + η((∇WR)(X,Y )Z)ξ

= A(W )R(X,Y )Z +B(W )H(X,Y )Z.(22)

Taking an inner product with U in (22), we get

− g((∇WR)(X,Y )Z) + η((∇WR)(X,Y )Z)η(U)

= A(W )g(R(X,Y )Z,U) +B(W )g(H(X,Y )Z,U).(23)

Contracting over X and U in (22) gives

− (∇WS)(Y, Z) + η((∇WR)(ξ, Y )Z)
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= [A(W ) + (2n− 1)B(W )]S(Y,Z) + rB(W )g(Y,Z).(24)

Taking Z = ξ in (24) and using the fact that η((∇WR)(ξ, Y )ξ) = 0 we obtain

(25) − (∇WS)(Y, ξ) = [2nk(A(W ) + (2n− 1)B(W )) + rB(W )]η(Y ).

Putting Y = ξ in above equation gives

(26) 2nk[A(W ) + (2n− 1)B(W )] + rB(W ) = 0.

Using (16) in (26), we obtain

(27) kA(W ) + [n(2k − µ+ 2)− 2]B(W ) = 0

for any vector field W . This completes the proof. �
Taking r = 0 in (26), we are in a position to state the following corollary.

Corollary 3.2. In a hyper generalized φ-recurrent (k, µ)-contact metric man-
ifold, if the scalar curvature of the manifold vanishes then, either

1. 1-forms A and B are co-directional, or

2. it is
(

0, 2(n−1)
n

)
-contact metric manifold.

Let {ei}2n+1
i=1 be an orthonormal basis of the manifold. Putting Y = Z = ei

in (24) and taking summation over i, 1 ≤ i ≤ 2n + 1, and using (6), (11) and
(15) we obtain

(28) − dr(W ) = r[A(W ) + 4nB(W )].

This led us to the following theorem.

Theorem 3.3. In a hyper generalized φ-recurrent (k, µ)-contact metric mani-
fold, if the scalar curvature of the manifold is a non-zero constant, then A(W )+
4nB(W ) = 0 for any vector field W .

Theorem 3.4. In a hyper generalized φ-recurrent (k, µ)-contact metric man-
ifold, the associated vector fields ρ1 and ρ2 corresponding to 1-forms A and B
satisfy the relation

rη(ρ1) + 2(2n− 1)(r − 2nk)η(ρ2) = 0.

Proof. Changing X,Y, Z cyclically in (23) and using Bianchi’s identity we get

A(W )g(R(X,Y )Z,U) +A(X)g(R(Y,W )Z,U)

+A(Y )g(R(W,X)Z,U) +B(W )g(H(X,Y )Z,U)

+B(X)g(H(Y,W )Z,U) +B(Y )g(H(W,X)Z,U) = 0.(29)

Contracting over Y and Z and using (9), we obtain

A(W )S(X,U)−A(X)S(W,U)− kg(X,U)A(W ) + kg(W,U)A(X)

− µg(hW,U)A(X) +B(W )[rg(X,U) + (2n− 1)S(X,U)]

+B(X)[−rg(W,U)− (2n− 1)S(W,U)] +B(QX)g(W,U)

−B(QW )g(X,U) +B(X)S(W,U)−B(W )S(X,U) = 0.(30)
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Again contracting (30) over X and U yields

(r + 2nk)A(W )−A(QW ) + µA(hW )

+ (4nr − 2r)B(W )− (4n− 2)B(QW ) = 0.(31)

Replacing W by ξ in (31) results in

(32) rη(ρ1) + 2(2n− 1)(r − 2nk)η(ρ2) = 0.

This completes the proof. �

Making use of relation g((∇WR)(X,Y )Z,U) = −g((∇WR)(X,Y )U,Z) we
obtain the following relation

g((∇WR)(ξ, Y )Z, ξ) = µ[{(1− k)g(W,φY ) + g(W,hφY )

− g(hY, φ(W + hW ))}η(Z)− µη(W )g(φhY,Z)].(33)

Considering (33) and (23) we can state the following theorem.

Theorem 3.5. A hyper generalized φ-recurrent (k, µ)-contact metric manifold
is generalized Ricci recurrent if and only if the following relation holds:

g((∇WR)(ξ, Y )Z, ξ) = µ[{(1− k)g(W,φY ) + g(W,hφY )

− g(hY, φ(W + hW ))}η(Z)− µη(W )g(φhY,Z)] = 0.

Theorem 3.6. A hyper generalized φ-recurrent (k, µ)-contact metric manifold
is an η-Einstein manifold.

Proof. Since we have

(34) (∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ).
Using (11) and (15) in (34) we get

(35) (∇WS)(Y, ξ) = −2nkg(φW + φhW, Y ) + S(Y, φW + φhW ).

From (27) and (35) we obtain

2nkg(φW + φhW, Y )− S(Y, φW + φhW )

=
[
2nk{A(W ) + (2n− 1)B(W )}+ rB(W )

]
η(Y ).(36)

Taking Y = φY in (36) gives

S(Y,W ) + S(Y, hW ) = 2nkg(Y,W ) + [2nk + 2(2n− 2 + µ)]g(Y, hW )

+ 2(2n− 2 + µ)(k − 1)g(Y,−W + η(W )ξ).(37)

Using

S(Y, hW ) = (2n− 2− nµ)g(Y, hW )− (2n− 2 + µ)(k − 1)g(Y,W )

+ (2n− 2 + µ)(k − 1)η(W )η(Y ),

and (14) in (37) led us to the following relation

(38) S(Y,W ) = αg(Y,W ) + βη(Y )η(W ),
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where

α = [2(nk+n−1)+µ(n+2)][2(n−1)−nµ]−[2(n−1)+µ][µ(1−k)+2(n−1)+2k]
2nk+µ(n+1) ,

β = [2(nk+n−1)+µ(n+2)][2(1−n)+n(2k+µ)]−(k−1)[2(n−1)+µ]2

2nk+µ(n+1) .

This completes the proof. �
Theorem 3.7. In a hyper generalized φ-recurrent (k, µ)-contact metric mani-
fold, the 1-forms A and B satisfy the relation

2nkA(φW ) + [r + 2nk(2n− 1)]B(φW ) = 0.

Proof. In view of (9), (11) and (12) we get

(∇WR)(X,Y )ξ = k[g(W + hW,φY )X − g(W + hW,φX)Y ]

+ µ[g(W + hW,φY )hX − g(W + hW,φX)hY

+ {(1− k)g(W,φX) + g(W,hφX)}η(Y )ξ

− {(1− k)g(W,φY ) + g(W,hφY )}η(X)ξ

+ µη(W ){η(X)φhY − η(Y )φhX}]
+R(X,Y )φW +R(X,Y )φhW.(39)

Using (39) in (22) results in the following relation

k[g(W + hW,φY )η(X)− g(W + hW,φY )η(Y )]ξ

+ µ[(1− k)g(W,φX)η(Y ) + g(W,hφX)η(Y )

− (1− k)g(W,φY )η(X)− g(W,hφY )η(X)]ξ

+ k[g(Y, φW )η(X)− g(X,φW )η(Y )

+ g(Y, φhW )η(X)− g(X,φhW )η(Y )]ξ

− k[g(W + hW,φY )X − g(W + hW,φX)Y ]

− µ[g(W + hW,φY )hX − g(W + hW,φX)hY

+ {(1− k)g(W,φX) + g(W,hφX)}η(Y )ξ

− {(1− k)g(W,φY ) + g(W,hφY )}η(X)ξ

+ µη(W ){η(X)φhY − η(Y )φhX}]
+R(X,Y )φW +R(X,Y )φhW

= A(W ){k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ]}
+B(W ){2nk[η(Y )X − η(X)Y ] + η(Y )QX − η(X)QY }.(40)

Putting Y = ξ in (40) we get

A(W )[k(X − η(X)ξ) + µhX] +B(W )[2nkX − 4nkη(X)ξ +QX]

+ µ2η(W )φhX = 0.(41)

Taking W = φW and contracting over X in (41) gives

(42) 2nkA(φW ) + [r + 2nk(2n− 1)]B(φW ) = 0.
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This completes the proof. �

4. Example of hyper generalized φ-recurrent (k, µ)-contact metric
manifold

In this section, we construct an example of hyper generalized φ-recurrent
(k, µ)-contact metric manifold. We consider a 3-dimensional manifold M3 =
{(x, y, z) ∈ R3 : x 6= 0} where (x, y, z) are the standard coordinates in R3. Let
{E1, E2, E3} be linearly independent vector fields in M3 which satisfy

[E1, E2] = 2xE1, [E2, E3] = 0, [E1, E3] = 0.

Let g be Riemannian metric defined by

g(E1, E1) = g(E2, E2) = g(E3, E3) = 1,

g(E1, E2) = g(E2, E3) = g(E1, E3) = 0.

Let η be the 1-form defined by

η(X) = g(X,E3)

for any vector field X. Let φ be (1,1)-tensor field defined by

φE1 = E2, φE2 = −E1, φE3 = 0.

Then we have
η(E3) = 1, φ2(X) = −X + φ(X)E3

and
g(φX, φY ) = g(X,Y )− η(X)η(Y ).

Moreover
hE3 = 0, hE1 = −E1, hE2 = E2.

Thus for E3 = ξ, (φ, ξ, η, g) defines a contact metric structure on M3. Let ∇
be the Riemannian connection of g. Using Koszul formula we obtain

∇E1E1 = −2xE2, ∇E1E2 = 2xE1, ∇E1E3 = 0,

∇E2E1 = 0, ∇E2E2 = 0, ∇E2E3 = 0,

∇E3E1 = 0, ∇E3E2 = 0, ∇E3E3 = 0.

Thus the metric M3(φ, ξ, η, g) under consideration is a (k, µ)-contact metric
manifold. Now, we will show that it is a 3-dimensional hyper generalized φ-
recurrent (k, µ)-contact metric manifold. The non-vanishing components of
curvature tensor and Ricci tensor are

R(E1, E2)E1 = 4x2E2, R(E1, E2)E2 = −4x2E1,

S(E1, E1) = S(E2, E2) = −4x2.

Since {E1, E2, E3} forms the orthonormal basis of the 3-dimensional (k, µ)-
contact metric manifold any vector fields can be expressed as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,
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Z = a3E1 + b3E2 + c3E3.

Then,

R(X,Y )Z = u1E1 + u2E2,(43)

where u1 = 4x2b3(a2b1 − a1b2) and u2 = −4x2a3(a2b1 − a1b2),
and

F (X,Y )Z = v1E1 + v2E2 + v3E3,(44)

where

v1 = 4x2[a1(a1a2 + b1b2)(a1a3 + b1b3 + c1c3)

+ b3(a2b1 − a1b2)− a2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)],

v2 = 4x2[b1(a1a3 + b1b3 + c1c3)(a1a2 + b1b2)

− a3(a2b1 − a1b2)− b2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)]

and

v3 = 4x2[c1(a1a3 + b1b3 + c1c3)(a1a2 + b1b2)− c1(a2a3 + b2b3)

+ c2(a1a3 + b1b3)− c2(a1a2 + b1b2)(a2a3 + b2b3 + c2c3)].

By virtue of (43), we have the following

(∇E1
R)(X,Y )Z = 8x3(a1b2 − a2b1)(b3E1 − a3E2),(45)

(∇E2
R)(X,Y )Z = 0,

(∇E3
R)(X,Y )Z = 0.

Form (43) one can easily obtain the following

φ2(∇EiR)(X,Y )Z = piE1 + qiE2, i = 1, 2, 3,(46)

where p1 = −8x3b3(a1b2−a2b1), q1 = 8x3a3(a1b2−a2b1), p2 = 0, q2 = 0, p3 =
0, q3 = 0.

Let the 1-forms be defined as

(47)

A(E1) =
p1v2 − v1q1
u1v2 − v1u2

, B(E1) =
u1q1 − p1u2
u1v2 − v1u2

,

A(E2) = 0, B(E2) = 0,

A(E3) = 0, B(E3) = 0,

satisfying, p1v2 − v1q1 6= 0, u1v2 − v1u2 6= 0, u1q1 − p1u2 6= 0 and v3 = 0.
In view of (43), (44) and (46) it is easy to show the following relation:

(48) φ2(∇Ei
R)(X,Y )Z) = A(Ei)R(X,Y )Z +B(Ei)F (X,Y )Z, i = 1, 2, 3.

Hence, the metric M3 under consideration is a 3-dimensional hyper generalized
φ-recurrent (k, µ)-contact metric manifold which is neither φ-symmetric nor φ-
recurrent.

We can state the following.
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Theorem 4.1. There exists a 3-dimensional hyper generalized φ-recurrent
(k, µ)-contact metric manifold which is neither φ-symmetric nor φ-recurrent.

5. Quasi generalized φ-recurrent (k, µ)-contact metric manifold

Recently, the author [25] studied quasi generalized φ-recurrent Sasakian
manifolds. A brief study on quasi generalized recurrent manifolds was done
by Shaikh [23] and obtained interesting results. In this section, we will study
quasi generalized φ-recurrent (k, µ)-contact metric manifolds.

Definition. A (2n + 1)-dimensional (k, µ)-contact metric manifold is said to
be a quasi generalized φ-recurrent if its curvature tensor R satisfies

(49) φ2((∇WR)(X,Y )Z) = D(W )R(X,Y )Z + E(W )F (X,Y )Z

for all vector fields X,Y and Z. Here, D and E are two non-vanishing 1-forms
such that D(X) = g(X,µ1), E(X) = g(X,µ2) and the tensor F is define by

F (X,Y )Z = g(Y,Z)X − g(X,Z)Y + η(Y )η(Z)X − η(X)η(Z)Y

+ g(Y,Z)η(Y )ξ − g(X,Z)η(Y )ξ(50)

for all vector fields X,Y and Z. Here, µ1 and µ2 are vector fields associated
with 1-forms D and E respectively.

Theorem 5.1. In a quasi generalized φ-recurrent (k, µ)-contact metric mani-
fold, the associated 1-forms D and E are related by kD(W ) + 2E(W ) = 0.

Proof. Consider a quasi generalized φ-recurrent (k, µ)-contact metric manifold.
From (49) we get

− ((∇WR)(X,Y )Z) + η((∇WR)(X,Y )Z)ξ

= D(W )R(X,Y )Z + E(W )F (X,Y )Z.(51)

Taking the same steps as in Theorem 3.1, we obtain the relation:

(52) kD(W ) + 2E(W ) = 0.

This completes the proof. �

Contracting over X in (51) gives

− (∇WS)(Y,Z) + η((∇WR)(ξ, Y )Z)

= D(W )S(Y,Z) + [(2n+ 1)g(Y, Z) + (2n− 1)η(Y )η(Z)]E(W ).(53)

Putting Y = Z = ei, (53) reduce to

(54) − dr(W ) = rD(W ) + 2n(2n+ 3)E(W ).

We are in a position to state the following.

Theorem 5.2. In a quasi generalized φ-recurrent (k, µ)-contact metric mani-
fold, if the scalar curvature is a non-zero constant, then

rD(W ) + 2n(2n+ 3)E(W ) = 0.
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From (53), we can state the following.

Theorem 5.3. A quasi generalized φ-recurrent (k, µ)-contact metric manifold
is a super generalized Ricci recurrent manifold if and only if

g((∇WR)(ξ, Y )Z, ξ) = µ[{(1− k)g(W,φY ) + g(W,hφY )

− g(hY, φ(W + hW ))}η(Z)− µη(W )g(φhY,Z)] = 0.

Theorem 5.4. In a quasi generalized φ-recurrent (k, µ)-contact metric mani-
fold, the scalar curvature of the manifold satisfy the relation r = k[n(5+2n2)]+
2(2n− 1)].

Proof. Changing X,Y, Z cyclically in (51) and making use of Bianchi’s identity
we get

D(W )R(X,Y )Z +D(X)R(Y,W )Z +D(Y )R(W,X)Z

+ E(W )F (X,Y )Z + E(X)F (Y,W )Z + E(Y )F (W,X)Z = 0.(55)

Contracting over X in (55) we get

D(W )S(Y,Z) +D(R(Y,W )Z)−D(Y )S(W,Z)

+ E(W )[(2n+ 1)g(Y,Z) + (2n− 1)η(Y )η(Z)] + E(Y )g(W,Z)

− g(Y, Z)E(W ) + η(W )η(Z)E(X)− η(Y )η(Z)E(W )

+ g(W,Z)η(Y )η(µ2)− g(Y,Z)η(W )η(µ2)

− E(Y )[(2n+ 1)g(W,Z) + (2n+ 1)η(Z)η(W )] = 0.(56)

Putting Y = Z = ei, 1 ≤ i ≤ 2n+ 1 in (56) we obtain

rD(W )− 2nkD(W ) + µD(hW )−D(QW ) + 2(2n2 + n− 1)E(W )

+ 2(1− 2n)η(W )η(µ2) = 0.(57)

Replacing W with ξ in (57) gives

(58) r = k[n(5 + 2n2)] + 2(2n− 1)].

This completes the proof. �
Corollary 5.5. In a quasi generalized φ-recurrent (k, µ)-contact metric man-
ifold, if k = 0, then the scalar curvature is constant.

Proceeding like in Theorem 3.6, one can easily show that the manifold is an
η-Einstein manifold. Hence, we get the following statement.

Theorem 5.6. A quasi generalized φ-recurrent (k, µ)-contact metric manifold
is an η-Einstein manifold i.e.,

S(Y,W ) = αg(Y,W ) + βη(Y )η(W ),

where

α = [2(nk+n−1)+µ(n+2)][2(n−1)−nµ]−[2(n−1)+µ][µ(1−k)+2(n−1)+2k]
2nk+µ(n+1) ,

β = [2(nk+n−1)+µ(n+2)][2(1−n)+n(2k+µ)]−(k−1)[2(n−1)+µ]2

2nk+µ(n+1) .



1294 M. KHATRI AND J. P. SINGH

6. Example of a quasi generalized φ-recurrent (k, µ)-contact metric
manifold

In this section we give an example of a quasi generalized φ-recurrent (k, µ)-
contact metric manifold. We consider a 3-dimensional manifold M = {(x, y, z)
∈ R3 : x 6= 0, y 6= 0}, where {x, y, z} are the standard coordinates in R3. Let
{E1, E2, E3} be the global coordinate frame on M given by

E1 =
∂

∂y
, E2 = 2xy

∂

∂z
, E3 =

∂

∂z
.

Hui [15] has shown that M is a 3-dimensional (k, µ)-contact metric manifold
with k = − 1

y and µ = − 1
y . We will show that the manifold M is a 3-dimensional

quasi generalized φ-recurrent (k, µ)-contact metric manifold. Any vector fields
X,Y, Z on M can be expressed as

X = a1E1 + b1E2 + c1E3,

Y = a2E1 + b2E2 + c2E3,

Z = a3E1 + b3E2 + c3E3,

where ai, bi, ci ∈ R+ (set of positive numbers). Then the Riemannian curvature
R becomes

R(X,Y )Z = v1E1 + v2E2,(59)

where v1 = − 2b3
y2 (a1b2 − a2b1) and v2 = 2a3

y2 (a1b2 − a2b1).

Also

F (X,Y )Z = (b3u1 + 2c3u2)E1 + (2c3u3 − a3u1)E2

− 2(a3u2 − b3u3)E3,(60)

where u1 = (a1b2 − b1a2), u2 = (a1c2 − a2c1), u3 = (b1c2 − b2c1).
From (59) we obtained

(61) (∇E1R)(X,Y )Z =
4

y3
(a1b2 − a2b1)(b3E1 − a3E2),

(62) (∇E2R)(X,Y )Z = 0,

(63) (∇E3
R)(X,Y )Z = 0.

Making use of (61), (62) and (63) we get the following

(64) φ2((∇EiR)(X,Y )Z) = piE1 + qiE2, i = 1, 2, 3,

where

p1 = −4b3
y3

(a1b2 − a2b1), q1 =
4a3
y3

(a1b2 − a2b1),

p2 = 0, q2 = 0, p3 = 0, q3 = 0.
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Let us define 1-forms A and B by

(65)

A(E1) =
a3p1(2c3u2 − b3u1)− q1b3(b3u1 + 2c3u2)

v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3)
,

B(E1) =
b3(q1v1 − p1v2)

v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3)
,

A(E2) = 0, B(E2) = 0,

A(E3) = 0, B(E3) = 0,

where a3p1(2c3u2 − b3u1) − q1b3(b3u1 + 2c3u2) 6= 0, b3(q1v1 − p1v2) 6= 0 and
v1a3(2c3u2 − b3u1)− b3v3u2(a3 + 2c3) 6= 0.

Using (61), (64) and (65) one can easily show that

(66) φ2((∇Ei
R)(X,Y )Z) = A(Ei)R(X,Y )Z +B(Ei)F (X,Y )Z, i = 1, 2, 3.

Hence, the manifold under consideration is a 3-dimensional quasi generalized
φ-recurrent (k, µ)-contact metric manifold. Thus we can state the following.

Theorem 6.1. There exists a 3-dimensional quasi generalized φ-recurrent
(k, µ)-contact metric manifold which is neither φ-symmetric nor φ-recurrent.
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Ser. Math. Inform. Vol. 36, No 5 (2021), 1129- 1142

https://doi.org/10.22190/FUMI210613082S

Original Scientific Paper

ON THE GEOMETRIC STRUCTURES OF GENERALIZED
(k, µ)-SPACE FORMS

Jay Prakash Singh and Mohan Khatri

Department of Mathematics and Computer Science, Mizoram University,

Aizawl-796004, India

Abstract. In this paper, the geometric structures of generalized (k, µ)-space forms and
their quasi-umbilical hypersurface are analyzed. First ξ-Q and conformally flat gener-
alized (k, µ)-space form are investigated and shown that a conformally flat generalized
(k, µ)-space form is Sasakian. Next, we prove that a generalized (k, µ)-space form satis-
fying Ricci pseudosymmetry and Q-Ricci pseudosymmetry conditions is η-Einstein. We
obtain the condition under which a quasi-umbilical hypersurface of a generalized (k, µ)-
space form is a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a
quasi-umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally, the
results obtained are verified by constructing an example of 3-dimensional generalized
(k, µ)-space form.
Keywords:(k, µ)-space form, Q curvature, Hypersurface, Sasakian, η-Einstein.

1. Introduction

The curvature tensor R of the Riemannian manifold mostly determines the nature
of the manifold and the sectional curvature of the manifold completely determines
the curvature tensor R. A Riemannian manifold having a constant sectional curva-
ture c is known as real space-form. The sectional curvature K(X,φX) of a plane
section spanned by a unit vector X orthogonal to ξ is called a φ-sectional curva-
ture. If the φ-sectional curvature of a Sasakian manifold is constant, then it is called
Sasakian space form. Alegre et al. [2] introduced the notion of generalized Sasakian
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space forms and gave many examples of it. Throughout the years, many geometers
[3, 4, 13, 15, 16, 17] focused on generalized Sasakian space forms under different
geometric conditions.

Blair et al. [5] introduced the notion of (k, µ)-contact metric manifolds. Follow-
ing this, Koufogiorgos [23] introduced and studied (k, µ) space forms. The (k, µ)
space forms are studied by [1, 14, 23, 30]. Carriazo et al. [8] introduced generalized
(k, µ) space form which generalizes the notion of (k, µ) space forms. An almost
contact metric manifold (M2n+1, φ, ξ, g, η) is said to be a generalized (k, µ) space
form if there exists differentiable functions f1, f2, f3, f4, f5, f6 on the manifold whose
curvature tensor R is given by

R = f1R1 + f2R2 + f3R3 + f4R4 + f5R5 + f6R6,(1.1)

where R1, R2, R3, R4, R5, R6 are the following tensors:

R1(X,Y )Z = g(Y,Z)X − g(X,Z)Y,

R2(X,Y )Z = g(X,φZ)φY − g(Y, φZ)φX + 2g(X,φY )φZ,

R3(X,Y )Z = η(X)η(Z)Y − η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y,Z)η(X)ξ,

R4(X,Y )Z = g(Y,Z)hX − g(X,Z)hY + g(hY,Z)X − g(hX,Z)Y,

R5(X,Y )Z = g(hY, Z)hX − g(hX,Z)hY + g(φhX,Z)φhY − g(φhY,Z)φhX,

R6(X,Y )Z = η(X)η(Z)hY − η(Y )η(Z)hX + g(hX,Z)η(Y )ξ − g(hY, Z)η(X)ξ,

for any X,Y, Z ∈ χ(M). Here, h is a symmetric tensor given by 2h = Lξφ, where
L is Lie derivative. In particular, for f4 = f5 = f6 = 0 it reduces to the generalized
Sasakian space form [2]. It is obvious that (k, µ) space form is an example of
generalized (k, µ) space form when

f1 =
c+ 3

4
, f2 =

c− 1

4
, f3 =

c+ 3

4
− k, f4 = 1, f5 =

1

2
, f6 = 1− µ

are constants. In [8], the author studied generalized (k, µ) space forms in con-
tact metric and Trans-Sasakian manifolds. Carriazo and Molina [9] studied Dα-
homothetic deformations of generalized (k, µ)-space forms and found that deformed
spaces are again generalized (k, µ)-space forms in dimension 3, but not in general.
In recent years, many geometers studied generalized (k, µ)-space forms under sev-
eral conditions [21, 28, 22, 20, 27, 29].

In [26], Mantica and Suh introduced and studied Q curvature tensor. In a
(2n+ 1)-dimensional Riemannian manifold (M, g), the Q curvature tensor is given
by

Q(X,Y )Z = R(X,Y )Z − v

2n

[
g(Y,Z)X − g(X,Z)Y

]
,(1.2)

for any X,Y, Z ∈ χ(M) and v is an arbitrary scalar function on M . If v = r
2n+1 ,

then Q curvature tensor reduces to concircular curvature tensor [32]. In [13], De
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and Majhi studied Q curvature tensor in a generalized Sasakian space form.

One of the most important curvature tensors for analyzing the intrinsic proper-
ties of Riemannian manifold is the conformal curvature tensor introduced by Yano
and Kon [33]. This curvature is invariant under conformal transformation. The con-
formal curvature C of type (1,3) on a (2n + 1)-dimensional Riemannian manifold
(M, g), n > 1, is defined by

C(X,Y )Z = R(X,Y )Z − 1

2n− 1

[
S(Y,Z)X − S(X,Z)Y + g(Y,Z)PX

−g(X,Z)PY
]

+
r

2n(2n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
,(1.3)

where R,S, P, r denote the Riemannian curvature tensor, the Ricci tensor, Ricci-
operator and the scalar curvature of the manifold respectively. Kim [25] studied
conformally flat generalized Sasakian space forms. De and Majhi [15] studied φ-
conformal semisymmetric generalized Sasakian space forms.

Cartan [10] first initiated and completely classified complete simply connected
locally symmetric spaces. A Riemannian manifold is said to be locally symmetric
if the curvature tensor satisfies ∇R = 0. The notion of local symmetry is weak-
ened by many authors throughout the years. One such notion is pseudosymmetric
spaces introduced by Deszcz [19]. It should be noted that pseudosymmetric spaces
introduced by Deszcz is different from those introduced by Chaki [11]. In [31], au-
thors obtained the necessary and sufficient condition for a Chaki pseudosymmetric
manifold to be Deszcz pseudosymmetric. De and Samui [14] studied Ricci pseu-
dosymmetric (k, µ)-contact space forms and show that it is an η-Einstein manifold.

The authors in [14], studied quasi-umbilical hypersurface on (k, µ)-space forms.

A hypersurface (M̃2n+1, g̃) of a Riemannian manifoldM2n+1 is called quasi-umbilical
[12] if its second fundamental tensor has the form

Hρ(X,Y ) = αg(X,Y ) + βω(X)ω(Y ),(1.4)

where ω is the 1-form, α, β are scalars and the vector field corresponding to the
1-form ω is a unit vector field. Here, the second fundamental tensor Hρ is defined
by Hρ(X,Y ) = g̃(Aρ, Y ), where A is (1,1) tensor and ρ is the unit normal vector
field and X,Y are tangent vector fields.
A Riemannian manifold is called a generalized quasi-Einstein manifold [18] if its
Ricci tensor S satisfies

S(X,Y ) = ag(X,Y ) + bη(X)η(Y ) + cλ(X)λ(Y ),

where a, b and c are non-zero scalars and η, λ are 1-forms. If c = 0, then the mani-
fold reduces to a quasi-Einstein manifold.
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The paper is organized as follows: After preliminaries, ξ-Q and conformally flat
generalized (k, µ)-space forms are investigated in section 3. Next in section 4, it is
shown that Q-Ricci pseudosymmetric and Ricci pseudosymmetric generalized (k, µ)-
space forms are η-Einstein under certain conditions. Moreover, conformal Ricci
pseudosymmetric generalized (k, µ)-space forms are studied. In section 5, quasi-
umbilical hypersurface of generalized (k, µ)-space form are investigated and shown
that it is a generalized quasi Einstein hypersurface. Also ξ-sectional curvature of a
quasi-umbilical hypersurface of generalized (k, µ)-space form is obtained. Finally,
the obtained results are verified by using an example of a 3-dimensional generalized
(k, µ)-space form.

2. Preliminaries

In this section, we highlight some of the formulae and statements which will be used
later in our studies.

A (2n + 1)-dimensional smooth manifold M is said to be a contact metric
manifold if there exists a global 1-form η, known as the contact form, such that
η ∧ (dη)n 6= 0 everywhere on M and there exists a unit vector field ξ, called the
Reeb vector field, corresponding to 1-form η such that dη(ξ, ·) = 0, a (1, 1) tensor
field φ and Riemannian metric g such that

φ2X = −X + η(X)ξ, η(X) = g(X, ξ), dη(X,Y ) = g(X,φY ),(2.1)

for all X,Y ∈ χ(M), where χ(M) is the Lie-algebra of all vector fields on M . The
metric g is called the associate metric and the structure (φ, ξ, η, g) is called con-
tact metric structure. A Riemannian manifold M together with contact structure
(φ, ξ, η, g) is called contact metric manifold. It follows from (2.1) that

φ(ξ) = 0, η · φ = 0, g(X,φY ) = −g(φX, Y ),

g(φX, φY ) = g(X,Y )− η(X)η(Y ),(2.2)

for any X,Y ∈ χ(M). Further we define two self-adjoint operators h and l by
h = 1

2 (Lξφ) and l = R(·, ξ)ξ respectively, where R is the Riemannian curvature of
M . These operators satisfy

hξ = lξ = 0, hφ+ φh = 0, T r.h = Tr.hφ = 0.(2.3)

Here, “Tr.” denotes trace. When unit vector ξ is Killing (i.e. h = 0 or Tr.l = 2n)
then contact metric manifold is called K-contact. A contact structure is said to
be normal if the almost complex structure J on M × R defined by J(X, f d

dt ) =

(φX − fξ, η(X) ddt ), where t is the coordinate of R and f is a real function on
M × R, is integrable. A normal contact metric manifold is called Sasakian. A
Sasakian manifold is K-contact but the converse is true only in dimension 3. The
(k, µ)-nullity distribution of a contact metric manifold M(φ, ξ, η, g) is a distribution

N(k, µ) : p→ Np(k, µ) = {Z ∈ χ(M) : R(X,Y )Z = k{g(Y, Z)X

−g(X,Z)Y }+ µ{g(Y, Z)hX − g(X,Z)hY }},
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for any X,Y, Z ∈ χ(M) and real numbers k and µ. A contact metric manifold M
with ξ ∈ N(k, µ) is called a (k, µ)-contact metric manifold.
In a generalized (k, µ)-space form (M2n+1, g) the following relations hold [2]:

R(X,Y )ξ = (f1 − f3){η(Y )X − η(X)Y }
+ (f4 − f6){η(Y )hX − η(X)hY },(2.4)

PX = (2nf1 + 3f2 − f3)X − (3f2 + (2n− 1)f3)η(X)ξ

+ ((2n− 1)f4 − f6)hX,(2.5)

r = 2n{(2n+ 1)f1 + 3f2 − 2f3},(2.6)

S(φX, φY ) = S(X,Y )− 2n(f1 − f3)η(X)η(Y ).(2.7)

where, R,S, P, r are respectively the curvature tensor of type (1,3), the Ricci tensor,
the Ricci operator i.e. g(PX, Y ) = S(X,Y ), for any X,Y ∈ χ(M) and the scalar
curvature of the manifold respectively.

3. Flatness of generalized (k, µ)-space form

De and Samui [14] studied conformally flat (k, µ) space form and De and Majhi
[13] analyzed ξ-Q flatness of generalized Sasakian space form. Generalizing the
results obtained, in this section we studied ξ-Q flat and conformally flat generalized
(k, µ)-space form.

3.1. ξ-Q flat generalized (k, µ)-space form

Definition 3.1. A generalized (k, µ)-space form (M2n+1, g), is said to be ξ-Q flat
if Q(X,Y )ξ = 0, for any X,Y ∈ χ(M) on M .

We have, from (1.2)

Q(X,Y )ξ = R(X,Y )ξ − v

2n

[
η(Y )X − η(X)Y

]
,(3.1)

for any X,Y ∈ χ(M). Using (2.4) in (3.1) we get

Q(X,Y )ξ =
(
f1 − f3 −

v

2n

)[
η(Y )X − η(X)Y

]

+ (f4 − f6)[η(Y )hX − η(X)hY ].(3.2)
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Suppose non-Sasakian generalized (k, µ)-space form is ξ −Q flat. Then from (3.2)
we get

(
f1 − f3 −

v

2n

)[
η(Y )X − η(X)Y

]
+ (f4 − f6)[η(Y )hX − η(X)hY ] = 0.(3.3)

Taking X = φX in (3.3), we obtain

{(
f1 − f3 −

v

2n

)
φX + (f4 − f6)hφX

}
η(Y ) = 0.(3.4)

Since η(Y ) 6= 0 and taking inner product with U in (3.4) gives

(
f1 − f3 −

v

2n

)
g(φX,U) + (f4 − f6)g(φX, hU) = 0.(3.5)

Since g(φX,U) 6= 0 and g(φX, hU) 6= 0, we see that f1 − f3 = v
2n and f4 = f6.

Conversely, taking f1−f3 = v
2n and f4 = f6, and putting these values in (3.2) gives

Q(X,Y )ξ = 0 and hence M is ξ −Q flat. Therefore, we can state the following:

Theorem 3.1. A non-Sasakian generalized (k, µ)-space form (M2n+1, g), is ξ-Q
flat if and only if f1 − f3 = v

2n and f4 = f6.

In particular, if v = r
2n+1 then Q tensor reduces to concircular curvature tensor.

Making use of (2.6) in the forgoing equation gives v = 2n{(2n+1)f1+3f2−2f3}
2n+1 . In

regard of Theorem 3.1, for ξ-concircularly flat we obtain f3 = 3f2
1−2n and hence we

can state the following corollary:

Corollary 3.1. A non-Sasakian generalized (k, µ)-space form (M2n+1, g), is ξ-
concircularly flat if and only if f3 = 3f2

1−2n and f4 = f6.

We can easily see that Theorem 3.1 and Corollary 3.1 obtained by the geome-
ters in [13], are particular cases of Theorem 3.1 and Corollary 3.1 respectively for
f4 = f5 = f6 = 0.

Substituting the values, f4−f6 = µ and f1−f3 = k in Theorem 3.1, we obtained
the following corollary:

Corollary 3.2. A (k, µ)-space form (M2n+1, g), is ξ-Q flat if and only if k = v
2n

and µ = 0.

3.2. Conformally flat generalized (k, µ)-space form

Definition 3.2. A generalized (k, µ)-space form (M2n+1, g), n > 1, is said to be
conformally flat if C(X,Y )Z = 0, for any X,Y, Z ∈ χ(M) on M .
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Suppose generalized (k, µ)-space form is conformally flat. Then from (1.3), we
get

R(X,Y )Z − 1

2n− 1

{
S(Y,Z)X − S(X,Z)Y + g(Y, Z)PX − g(X,Z)PY

}

+
r

2n(2n− 1)

{
g(Y,Z)X − g(X,Z)Y

}
= 0.(3.6)

In consequence of taking X = ξ in (3.6) and using (2.1), (2.4) and (2.5). Eq.(3.6)
becomes

(f1 − f3){g(Y,Z)ξ − η(Z)Y }+ (f4 − f6){g(hY, Z)ξ − η(Z)hY }

− 1

2n− 1

{
S(Y, Z)ξ − 2n(f1 − f3)η(Z)Y + 2n(f1 − f3)g(Y,Z)ξ

−η(Z)PY
}

+
r

2n(2n− 1)

{
g(Y, Z)ξ − η(Z)Y

}
= 0.(3.7)

Putting Z = φZ in (3.7) and making use of (2.4), (2.5) and (2.6) results in the
following

2(n+ 1)f6g(hY, φZ) = 0.(3.8)

This shows that either f6 = 0 or φh = 0. In the second case, from (2.1) we have
h = 0. Therefore, we can state the following:

Theorem 3.2. A generalized (k, µ)-space form (M2n+1, g), n > 1, is conformally
flat, then either f6 = 0 or M is Sasakian.

Corollary 3.3. A (k, µ)-space form (M2n+1, g), n > 1, is conformally flat, then
µ = 1 or M is Sasakian.

4. Pseudosymmetric generalized (k, µ)-space form

In this section certain pseudo symmetry such as Ricci pseudo symmetry, Q-Ricci
pseudo symmetry and conformal Ricci pseudo symmetry in the context of general-
ized (k, µ)-space form are studied. First, we review an important definition

Definition 4.1. [19, 31] A Riemannian manifold (M, g), n ≥ 1, admitting a (0, k)-
tensor field T is said to be T -pseudosymmetric if R · T and D(g, T ) are linearly
dependent, i.e., R · T = LTD(g, T ) holds on the set UT = {x ∈M : D(g, T ) 6= 0 at
x}, where LT is some function on UT .

In particular, if R·R = LRD(g,R) and R·S = LSD(g, S) then the manifold is called
pseudosymmetric and Ricci pseudosymmetric respectively. Moreover, if LR = 0 (
resp., LS = 0) then pseudosymmetric (resp., Ricci pseudosymmetric) reduces to
semisymmetric (resp., Ricci semisymmetric) introduced by Cartan in 1946.
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4.1. Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.2. A generalized (k, µ)-space form (M2n+1, g), is said to be Ricci
pseudosymmetric if its Ricci curvature satisfies the following relation,

R · S = fS2D(g, S),

holds on the set US2
= {x ∈ M : D(g, S) 6= 0 at x}, where fS2

is some function on
US2

.

Suppose a generalized (k, µ)-space form (M2n+1, g), is Ricci pseudosymmetric
i.e.,

R · S = fS2D(g, S),

which can be written as

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = −fs
[
S(Y, V )g(X,U)

−S(X,V )g(Y, U) + S(U, Y )g(X,V )− S(U,X)g(Y, V )
]

(4.1)

Taking X = U = ξ in (4.1) and using (2.4), (2.5) and (2.7), we get

(
f3 − f1 + fS2

)
S(Y, V ) +

[
2n(f1 − f3)(f1 − f3 − fS2)− (k − 1)(f4

−f6)((2n− 1)f4 − f6)
]
g(Y, V )− (k − 1)(f4 − f6)

(
(2n− 1)f4

−f6
)
η(Y )η(V ) + (f4 − f6)

(
(1− 2n)f3 − 3f2

)
g(hY, V ) = 0.(4.2)

Considering fS2 6= f1 − f3 and further taking (1 − 2n)f3 − 3f2 = 0 in (4.2), the
manifold is η-Einstein. Hence we can state the following:

Theorem 4.1. A Ricci pseudosymmetric generalized (k, µ)-space form (M2n+1, g),
with fS2

6= f1 − f3, is η-Einstein manifold if f3 = 3f2
1−2n .

If fS2
= 0, then Ricci pseudosymmetric generalized (k, µ)-space form reduces

to Ricci semisymmetric generalized (k, µ)-space form. In view of Theorem (4.1) we
obtain the following:

Corollary 4.1. A Ricci semisymmetric generalized (k, µ)-space form (M2n+1, g),
with f1 − f3 6= 0 is η-Einstein manifold if f3 = 3f2

1−2n .

4.2. Q-Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.3. A generalized (k, µ)-space form (M2n+1, g), is said to be Q-Ricci
pseudosymmetric if

Q · S = fS3
D(g, S),

holds on the set US3 = {x ∈ M : D(g, S) 6= 0 at x}, where fS3 is any function on
US3

.
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Proceeding similarly as in Theorem 4.1, one can easily obtain the following
relation:

Theorem 4.2. A Q-Ricci pseudosymmetric generalized (k, µ)-space form (M2n+1, g),
with fS3

6= f3 − f1 − v
2n is η-Einstein manifold if f3 = 3f2

1−2n .

Taking fS3 = 0 in Theorem 4.2, we easily obtain the following:

Corollary 4.2. A Q-Ricci semisymmetric generalized (k, µ)-space form (M2n+1, g),
with f3 − f1 6= v

2n is η-Einstein manifold if f3 = 3f2
1−2n .

4.3. Conformal Ricci pseudosymmetric generalized (k, µ)-space form

Definition 4.4. A generalized (k, µ)-space form (M2n+1, g), n > 1, is said to be
conformal Ricci pseudosymmetric if

C · S = fS4D(g, S),

holds on the set US4
= {x ∈ M : D(g, S) 6= 0 at x}, where fS4

is any function on
US4 .

Suppose a generalized (k, µ)-space form is conformal Ricci pseudosymmetric.
Then, we have

S(C(X,Y )U, V ) + S(U,C(X,Y )V ) = −fS4

[
S(Y, V )g(X,U)

−S(X,V )g(Y, U) + S(U, Y )g(X,V )− S(U,X)g(Y, V )
]
.(4.3)

Taking X = U = ξ and f4 = f6 in (4.3) and making use of (1.3),(2.1) and (2.5), we
obtain

S2(Y, V ) =
(
4nf1 + 3f2 − (2n+ 1)f3 + 2n(2n− 1)fS4

)
S(Y, V )

−(2n− 1)fS4
η(Y )η(V )−

(
2nf1 + 3f2 − f3

)
g(Y, V ).(4.4)

Thus, we can state the following:

Theorem 4.3. If a generalized (k, µ)-space form (M2n+1, g), n > 1, is conformal
Ricci pseudosymmetric with f4 = f6, then the relation(4.4) holds.

5. Quasi-umbilical hypersurface of generalized (k, µ)-space form

Let us consider a quasi-umbilical hypersurface M̃ of a generalized (k, µ)-space form.
From Gauss [12], for any vector fields X,Y, Z,W tangent to the hypersurface we
have

R(X,Y, Z,W ) = R̃(X,Y, Z,W )− g(H(X,W ), H(X,Z))

+ g(H(X,Z), H(Y,W )),(5.1)
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where, R(X,Y, Z,W ) = g(R(X,Y )Z,W ) and R̃(X,Y, Z,W ) = g(R̃(X,Y )Z,W ).

Here, H is the second fundamental tensor of M̃ given by

H(X,Y ) = αg(X,Y )ρ+ βω(X)ω(Y )ρ,(5.2)

where, ρ is the only unit normal vector field. Here, ω is the 1-form, the vector field
corresponding to the 1-form ω is a unit vector field and α, β are scalars.
Using (5.2) in (5.1), we obtain the following result

f1
[
g(Y,Z)g(X,W )− g(X,Z)g(Y,W )

]
+ f2

[
g(X,φZ)g(φY,W )

−g(Y, φZ)g(φX,W ) + 2g(X,φY )g(φZ,W )
]

+ f3
[
η(X)η(Z)g(Y,W )

−η(Y )η(Z)g(X,W ) + g(X,Z)η(Y )η(W )− g(Y, Z)η(X)η(W )
]

+f4
[
g(Y,Z)g(hX,W )− g(Y,Z)g(hY,W ) + g(hY,Z)g(X,W )

−g(hX,Z)g(Y,W )
]

+ f5
[
g(hY, Z)g(hX,W )− g(hX,Z)g(hY,W )

+g(φhX,Z)g(φhY,W )− g(φhY,Z)g(φhX,W )
]

+ f6
[
η(X)η(Z)g(hY,W )

−η(Y )η(Z)g(hX,W ) + g(hX,Z)η(Y )η(W )− g(hY, Z)η(X)η(W )
]

= R̃(X,Y, Z,W )− α2g(X,W )g(Y, Z)− αβg(X,W )ω(Y )ω(Z)

−αβg(Y,Z)ω(X)ω(W ) + α2g(Y,W )g(X,Z) + αβg(Y,W )ω(X)ω(Z)

+αβg(X,Z)ω(Y )ω(W ).(5.3)

Contracting over X and W in (5.3), we obtain

S̃(Y, Z) =
(
2nf1 + 3f2 − f3 + 2nα2 + αβ

)
g(Y,Z)

−
(
3f2 + (2n+ 1)f3

)
η(Y )η(Z) +

(
(2n− 1)f4 − f6

)
g(hY, Z)

+αβ(2n− 1)ω(Y )ω(Z).(5.4)

Hence, we can state the following:

Theorem 5.1. A quasi-umbilical hypersurface of a generalized (k, µ)-space form
is a generalized quasi Einstein hypersurface, provided f4 = f6

2n−1

In particular, for a (k, µ)-space form, the above Theorem 5.1 reduces to the
following:

Theorem 5.2. [14] A quasi-umbilical hypersurface of a (k, µ)-contact space form
is a generalized quasi-Einstein hypersurface, provided µ = 2− 2n.

Corollary 5.1. A quasi-umbilical hypersurface of a generalized Sasakian space
form is a generalized quasi-Einstein hypersurface.

For any vector fields X,Y , the tensor field K(X,Y ) = R̃(X,Y, Y,X) is called

the sectional curvature of M̃ given by the sectional plane {X,Y }. The sectional
curvature K(X, ξ) of a sectional plane spanned by ξ and vector field X orthogonal

to ξ is called the ξ-sectional curvature of M̃ .
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Theorem 5.3. A ξ-sectional curvature of a quasi-umbilical hypersurface of gen-
eralized (k, µ)-space form is given by

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX, φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).

Proof. Taking W = X and Z = Y in (5.3) results in following

f1
[
g(Y, Y )g(X,X)− g(X,Y )g(Y,X)

]
+ f2

[
g(X,φY )g(φY,X)

−g(Y, φY )g(φX,X) + 2g(X,φY )g(φY,X)
]

+ f3
[
η(X)η(Y )g(X,Y )

−η(Y )η(Y )g(X,X)− g(X,Y )η(X)η(Y )− g(Y, Y )η(X)η(X)
]

+f4
[
g(Y, Y )g(hX,X)− g(X,Y )g(hY,X) + g(hY, Y )g(X,X)

−g(hX, Y )g(Y,X)
]

+ f5
[
g(hY, Y )g(hX,X)− g(hX, Y )g(hY,X)

+g(φhX, Y )g(φhY,X)− g(φhY, Y )g(φhX,X)
]

+ f6
[
η(x)η(Y )g(hY,X)

−η(Y )η(Y )g(hX,X) + g(hX, Y )η(Y )η(X)− g(hY, Y )η(X)η(X)
]

= K(X,Y )− α2g(X,X)g(Y, Y )− αβg(X,X)ω(Y )ω(Y )

−αβg(Y, Y )ω(X)ω(X) + α2g(X,Y )g(X,Y ) + αβg(X,Y )ω(X)ω(Y )

+αβg(X,Y )ω(Y )ω(X).(5.5)

Putting Y = ξ in (5.5) gives

K(X, ξ) =
(
f1 − f3 + α2

)
g(φX, φX) + (f4 − f6)g(hX,X)

+αβ
[
(ω(ξ))2 + (ω(X))2

]
− 2αβη(X)ω(X)ω(ξ).

This completes the proof.

6. Examples of generalized (k, µ)-space forms

Now we will show the validity of obtained result by considering an example of
a generalized (k, µ)-space form of dimension 3. Koufogiorgos and Tsichlias [24]
constructed an example of generalized (k, µ)-space of dimension 3 which was later
shown by Carriazo et al. [8] to be a contact metric generalized (k, µ)-space form
M3(f1, 0, f3, f4, 0, 0) with non-constant f1, f3, f4.

Example 6.1: Let M3 be the manifold M = {(x1, x2, x3) ∈ R3|x3 6= 0} where
(x1, x2, x3) are standard coordinates on R3. Consider the vector fields

e1 =
∂

∂x
, e2 = −2x2x3

∂

∂x1
+

2x1
x23

∂

∂x2
− 1

x23

∂

∂x3
, e3 =

1

x3

∂

∂x2
,

are linearly independent at each point of M and are related by

[e1, e2] =
2

x23
e3, [e2, e3] = 2e1 +

1

x33
e3, [e3, e1] = 0.
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Let g be the Riemannian metric defined by g(ei, ej) = δij , i, j = 1, 2, 3 and η be the
1-form defined by η(X) = g(X, e1) for any X on M . Also, let φ be the (1, 1)-tensor
field defined by φe1 = 0, φe2 = e3 φe3 = −e2. Therefore, (φ, e1, η, g) defines a
contact metric structure on M . Put λ = 1

x2
3
, k = 1 − 1

x4
3

and µ = 2(1 − 1
x2
3
), then

symmetric tensor h satisfies he1 = 0, he2 = λe2, he3 = −λe3. The non-vanishing
components of the Riemannian curvature are as follows:

R(e1, e2)e1 = −(k + λµ)e2, R(e1, e2)e2 = (k + λµ)e1,

R(e1, e3)e1 = (−k + λµ)e3, R(e− 1, e3)e3 = (k − λµ)e1,

R(e2, e3)e2 = (k + µ− 2λ3)e3, R(e2, e3)e3 = −(k + µ− 2λ3)e2.

Therefore, M is a generalized (k, µ)-space with k, µ not constant. As a contact
metric generalized (k, µ)-space is a generalized (k, µ)-space form with k = f1 − f3
and µ = f4−f6 (Theorem 4.1, [8]), the manifold under consideration is a generalized
(k, µ)-space form M3(f1, 0, f3, f4, 0, 0) where

f1 = −3 +
2

x23
+

1

x43
+

2

x63
,

f3 = −4 +
2

x23
+

2

x43
+

2

x63

f4 = 2(1− 1

x23
).

Next we obtain the non-vanishing components of Q-curvature tensor for arbitrary
function v as follows:

Q(e1, e2)e1 = −(k + λµ− v

2
)e2, Q(e1, e2)e2 = (k + λµ− v

2
)e1,

Q(e1, e3)e1 = (−k + λµ+
v

2
)e3, Q(e1, e3)e3 = (k − λµ− v

2
)e1,

Q(e2, e3)e2 = (k + µ− 2λ3 +
v

2
)e3, Q(e2, e3)e3 = −(k + µ− 2λ3 +

v

2
)e2.

From the above equations we see that Q(X,Y )e1 = 0 for all X,Y on M if and only
if v = 2(1− 1

x4
3
) and x23 = 1. Hence, Theorem 3.1 is verified.

Example 6.2: In [2], it was shown that the warped product R×f Cm with

f1 = − (f ′)2

f2
, f2 = 0, f3 = − (f ′)2

f2
+
f ′′

f
,

is a generalized Sasakian space form. Since every generalized Sasakian space form
is a particular case of generalized (k, µ)-space form, R×f Cm with f1, f2, f3 define
as above and f4 = f5 = f6 = 0 is a generalized (k, µ)-space form.
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Abstract
In this paper, we studied the geometrical aspects of a perfect fluid spacetime with torse-
forming vector field ξ under certain curvature restrictions, and Ricci–Yamabe soliton and
η-Ricci–Yamabe soliton in a perfect fluid spacetime.Conditions for theRicci–Yamabe soliton
to be steady, expanding or shrinking are also given. Moreover, when the potential vector field
ξ of η-Ricci–Yamabe soliton is of gradient type, we derive a Poisson equation and also looked
at its particular cases. Lastly, a non-trivial example of perfect fluid spacetime admitting η-
Ricci–Yamabe soliton is constructed.

Keywords Ricci–Yamabe soliton · Perfect fluid · Poisson equation · Semiconformal
curvature · Einstein’s field equation
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1 Introduction

Geometric flows plays a significant role in analyzing the geometric structures in Riemannian
geometry. In 1982, Hamilton [12] introduced the concept of Ricci flow, defined as follows:

∂

∂t
g(t) = −2S(t), t ≥ 0, g(0) = g, (1)

where g is the Riemannian metric and S denotes the (0, 2)-symmetric Ricci tensor. Solitons
are physically the waves that propagate with little loss of energy and retains its shape and
speed after colliding with another such wave. Solitons are important in the analytic treatment
of initial-value problems for nonlinear partial differential equations describing wave prop-
agation. It also explained the recurrence in the Fermi–Pasta–Ulam system. A Ricci soliton
emerges as the limit of the solution of Ricci flow if it moves only by a one-parameter group
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of diffeomorphism and scaling. A Riemannian manifold (Mn, g) is said to be a Ricci soliton
if there exists a vector field V and a constant μ such that

LV g + 2S = 2μg, (2)

where LV denotes the Lie derivative along V .
To tackle theYamabeproblemoffinding ametric on a given compactRiemannianmanifold

(Mn, g) which is conformal to g such that it has a constant scalar curvature, Hamilton [11]
introduced the concept of Yamabe flow, defined as follows:

∂

∂t
g(t) = −rg(t), t ≥ 0, g(0) = g. (3)

Like Ricci soliton, Yamabe soliton is a self-similar solution to Yamabe flow and is defined
as follows:

1

2
LV g = (μ − r)g, (4)

The Ricci soliton and Yamabe soliton are the same in the two-dimensional study, but in a
higher dimension, Yamabe soliton preserves the conformal class of the metric but the Ricci
soliton does not in general. In the last two decades, the theory of geometric flows such as Ricci
flow and Yamabe flow and their soliton has been the focus of attraction of many geometers.

Recently, Guler and Crasmareanu [10] introduced a new geometric flow which is a scalar
combination of Ricci flow and Yamabe flow, and called it as Ricci–Yamabe map. The Ricci–
Yamabe flow of type (α, β) is defined as follows:

Definition 1 [10] The map RY (α,β,g) : I → T s
2 (M) given by:

RY (α,β,g) = ∂g

∂t
(t) + 2αS(t) + βr(t)g(t),

is called the (α, β)-Ricci–Yamabe map of the Riemannian manifold (M, g). If

RY (α,β,g) ≡ 0,

then g(.) will be called an (α, β)-Ricci–Yamabe flow.

The Ricci–Yamabe flow can also be a Riemannian or semi-Riemannian or singular Rieman-
nian flow due to the sign of the two scalars α and β. This flexibility of multiple choices
can be useful in analyzing geometry or when dealing with the physical model of relativistic
theories. The notion of (α, β)-Ricci–Yamabe soliton or simply Ricci–Yamabe soliton [9] is
defined as follows:

Definition 2 A Riemannian or pseudo-Riemannian manifold (Mn, g) is said to be a Ricci–
Yamabe soliton (g, V , μ, α, β) if

LV g + 2αS = (2μ − βr)g. (5)

If μ > 0, μ < 0 or μ = 0, then the Ricci–Yamabe soliton is expanding, shrinking or steady
respectively. This is said to be a gradient Ricci–Yamabe soliton if there exists a smooth
function f : M → R such that V = Df , where D denotes the gradient operator of g. The
Ricci–Yamabe soliton is a generalization of Ricci and Yamabe soliton. Also, (1,−1)-type of
Ricci–Yamabe soliton is a well-known Einstein soliton (for details see [5,26]). Therefore, it is
worthwhile to studyRicci–Yamabe soliton as it generalizes a large groupof solitons.Recently,
in [9], the author studied Ricci–Yamabe soliton on almost Kenmotsu manifolds. He showed
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that a (k, μ)′-almost Kenmotsu manifolds admitting a Ricci–Yamabe soliton or gradient
Ricci–Yamabe soliton is locally isometric to the Riemannian product Hn+1(−4) × Rn .

Extending the notion of Ricci soliton, Cho and Kimura [1] introduced η-Ricci soliton
which is obtained by perturbing the equation (2) by a multiple of a certain (0, 2)-tensor field
η⊗η. Amore general extension is obtained by Siddiqi and Akyol [22] and called such soliton
as η-Ricci–Yamabe soliton of type (α, β) which is defined as:

LV g + 2αS + (2μ − βr)g + 2ωη ⊗ η = 0. (6)

It isworth remarking thatη-Ricci soliton [1] andη-Yamabe soliton [6] areη-Ricci–Yamabe
soliton of type (1, 0) and (0, 2) respectively. Ifω = 0 in equation (6) then it reduces to Ricci–
Yamabe soliton. Formore details on η-Ricci soliton and η-Yamabe soliton see [3,4,7,8,18,19]
and references therein.

In the last decade, a great deal of work had been done on η-Ricci soliton and η-Yamabe
soliton in the framework of Riemannian geometry. Recently, geometric flows are initiated in
the investigation of the cosmological model such as perfect fluid spacetime. In [2] , Blaga
studied η-Ricci and η-Einstein soliton in perfect fluid spacetime and obtained the Poisson
equation from the soliton equation when the potential vector field ξ is of gradient type.
Kumara and Venkatesha [25] analyzed Ricci soliton in perfect fluid spacetime with torse-
forming vector field. Also, Conformal Ricci soliton in perfect fluid spacetime [23] is studied.
Praveena et al. [20] studied solitons in Kählerian space-time manifolds. As Ricci–Yamabe
soliton is a scalar combination of Ricci and Yamabe soliton, it is fruitful to study it in the
context of perfect fluid spacetime and obtain results that generalize the previously known
results in perfect fluid spacetime.

The paper is organized as follows: Sect. 2 is devoted to the investigation of the geometrical
structure of perfect fluid spacetime with torse-forming vector field ξ under certain curvature
restrictions. Next in Sect. 3, the conditions under which it is expanding, steady and shrinking
are obtained for Ricci–Yamabe soliton in perfect fluid spacetime. Generalizing the results
obtained by Blaga [2], in Sect. 4, we analyzed η-Ricci–Yamabe soliton in perfect fluid
spacetime and obtained the Poisson equation satisfied by function f where ξ = grad f .
Section 5 is about the application of Poisson equation in Physics. Lastly, in Sect. 6, we
constructed an example of perfect fluid spacetime admitting η-Ricci–Yamabe soliton.

2 Geometrical structure of perfect fluid spacetime with torse-forming
vector field

According to Einstein’s field equation, the energy-momentum tensor describes the curvature
of the spacetime and hence plays a crucial role in the theory of relativity. Spacetime of general
relativity is regarded as a connected four dimensional semi-Riemannian manifold (M4, g)
with Lorentzian metric g with signature (−,+,+,+). A spacetime is said to be a perfect
fluid spacetime if the Ricci tensor is of the form:

S = ag + bη ⊗ η, (7)

where a, b are scalars and η is non-zero 1-form.
The general form of energy-momentum tensor T for a perfect fluid is [17]

T (X , Y ) = ρg(X , Y ) + (σ + ρ)η(X)η(Y ), (8)

for any X , Y ∈ χ(M), where σ is the energy density, ρ is the isotropic pressure, g is the
metric tensor ofMinkowski spacetime, η(X) = −g(X , ξ) is 1-form, equivalent to unit vector
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ξ and g(ξ, ξ) = −1. If ρ = ρ(σ ) then perfect fluid spacetime is called isentropic [13] and
if σ = 3ρ then it is a radiation fluid.

The Einstein’s field equation [17] governing the perfect fluid motion is defined as:

S(X , Y ) +
(
λ − r

2

)
g(X , Y ) = kT (X , Y ), (9)

for any X , Y ∈ χ(M), where λ is the cosmological constant, k(≈ 8πG, where G is universal
Gravitational constant) is the gravitational constant.

Combining (8) and (9) we obtain

S(X , Y ) = −
(
λ − r

2
+ kρ

)
g(X , Y ) + k(σ + ρ)η(X)η(Y ). (10)

Taking trace of (10), the scalar curvature becomes r = 4λ + k(σ − 3ρ), using in (10) we
infer

S(X , Y ) = ag(X , Y ) + bη(X)η(Y ), (11)

where a = λ + k(σ−ρ)
2 and b = k(σ + ρ).

Definition 3 A vector field ξ is called torse-forming [1] if it satisfies

∇X ξ = X + η(X)ξ, (12)

for any X ∈ χ(M) and 1-form η.

Lemma 1 [1,23,25] In perfect fluid spacetime with torse-forming vector field ξ , the following
relations hold:

η(∇ξ ξ) = 0, ∇ξ ξ = 0,

(∇Xη)(Y ) = g(X , Y ) + η(X)η(Y ),

R(X , Y )ξ = η(Y )X − η(X)Y ,

(Lξ g)(X , Y ) = 2[g(X , Y ) + η(X)η(Y )],
R(X , ξ)ξ = −X − η(X)ξ.

In [15,16], Kim introduced curvature like tensor which is a scalar combination of confor-
mal and conharmonic curvature tensor which is defined as follows:

P(X , Y )Z = αR(X , Y )Z − α

2
[S(Y , Z)X − S(X , Z)Y + g(Y , Z)QX

−g(X , Z)QY ] − βr

3
[g(Y , Z)X − g(X , Z)Y ], (13)

for scalar α and β. Here, Q is the symmetric endomorphism of the tangent space at each
point corresponding to the Ricci tensor S, that is, S(X , Y ) = g(QX , Y ). If P vanishes then
the spacetime is said to be semiconformally flat.

Let (M4, g) be a semiconformally flat perfect fluid spacetime with torse-forming vector
field ξ . As P = 0, we have divP = 0 where “div" is the divergent. Since r is constant,
implies X(r) = 0 for any X ∈ χ(M). From (13) for divP = 0 we obtain

k(σ + ρ)[η(Y )X − η(X)Y ] = 0. (14)

As k 
= 0, in this case the equation of state ρ + σ = 0 emerges. This is the characteristic
equation of state for dark energy in the universe and corresponds to the cosmological constant
[24]. Essentially, as density cannot be negative, the pressureρmust be negativewhich is useful
in explaining the observed accelerated expansion of the universe problem.
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Making use of ρ = −σ in (11) and (13) gives

R(X , Y )Z = 1

3α
(3α − 4β)(λ + kσ)[g(Y , Z)X − g(X , Z)Y ]. (15)

Therefore, the spacetime has constant curvature. As de-Sitter space is a Lorentzian manifold
of constant curvature with implied negative pressure driving cosmic inflation (see [21]) we
can state the following:

Theorem 1 If perfect fluid spacetime with torse-forming vector field ξ is semiconformally
flat, then the spacetime represents de-Sitter space, provided α 
= 0.

We know that manifold of constant curvature is Einstein. Also from (15) we easily see
that R · R = 0. A perfect fluid spacetime satisfying R · R = 0 and R · S = 0 are called
semi-symmetric and Ricci semi-symmetric respectively. A semi-symmetric implies Ricci
semi-symmetric but conversely not true.

Proposition 1 A semiconformally flat perfect fluid spacetime with torse-forming vector field
ξ is

(i) Einstein.
(ii) semi-symmetric and Ricci semi-symmetric.

According toKarchar [14], a Lorentzianmanifold is called infinitesimal spatially isotropic
relative to timelike unit vector field ρ if its curvature tensor R satisfies relations

R(X , Y )Z = l[g(Y , Z)X − g(X , Z)Y ],
for all X , Y , Z ∈ ρ⊥ and

R(X , ρ)ρ = mX ,

for all X ∈ ρ⊥, where l,m are real-valued functions on the manifold.
Let ξ⊥ denote the 3-dimensional distribution in a semiconformally flat perfect fluid space-

time orthogonal to torse-forming vector field ξ , then from (15) we get

R(X , Y )Z = 1

3α
(3α − 4β)(λ + kσ)[g(Y , Z)X − g(X , Z)Y ], (16)

for all X , Y , Z ∈ ξ⊥. Also taking Y = Z = ξ in (16) gives

R(X , ρ)ρ = − 1

3α
(3α − 4β)(λ + kσ)X , (17)

for every X ∈ ξ⊥. Hence we can state the following:

Theorem 2 A semiconformally flat perfect fluid spacetime with a 
= 0 and torse-forming
vector field ξ is infinitesimally spatially isotropic relative to unit vector field ξ .

Theorem 3 Let (M4, g) be a general relativistic perfect fluid spacetime with torse-forming
vector field ξ .

1. If P(ξ, ·) · S = 0 then ρ = −σ or ρ = 3α(λ−1)+β(4λ+kσ)
3k(α−β)

.

2. If S(ξ, ·) · P = 0 then ρ = λ
k or ρ = 3α(λ−1)+β(4λ+kσ)

3k(α−β)
.
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Proof 1. Suppose perfect fluid spacetime with torse-forming vector field ξ satisfies
P(ξ, X) · S(U , V ) = 0, implies

S(P(ξ, X)U , V ) + S(U , P(ξ, X)V ) = 0, (18)

for all X ,U , V ∈ χ(M). Inserting (11) and (13) in (18) results in

−2αk(σ + ρ)

(
λ + k

2
(σ − ρ)

)
η(X)η(U )η(V ) + k(σ + ρ)

(
α − βr

3

−α(λ − kρ)

)
[−g(X ,U )η(V ) − 2η(X)η(U )η(V ) − g(X , V )η(U )]

+2αk2(σ + ρ)2η(X)η(U )η(V ) = 0. (19)

Replacing U by ξ in (19) we obtain that either ρ = −σ or ρ = 3α(λ−1)+β(4λ+kσ)
3k(α−β)

.
2. Suppose perfect fluid spacetime satisfies S(ξ, X) · P(U , V )W = 0, implies

S(X , P(U , V )W )ξ − S(ξ, P(U , V )W )X + S(X ,U )P(ξ, V )W

−S(ξ,U )P(X , V )W + S(X , V )P(U , ξ)W − S(ξ, V )P(U , X)W

+S(X ,W )P(U , V )ξ − S(ξ,W )P(U , V )X = 0, (20)

for all X ,U , V ,W ∈ χ(M).
Taking V = W = ξ in (20) and using (11) and (13), we obtain the following relation

(λ − kρ)

(
α − βr

3
− α(λ − kρ)

)
[g(X ,U ) + η(X)η(U )] = 0.

Thus either ρ = λ
k or ρ = 3α(λ−1)+β(4λ+kσ)

3k(α−β)
.

This completes the proof. �


3 Ricci–Yamabe soliton in a perfect fluid spacetime

In this section, we study Ricci–Yamabe soliton in the framework of perfect fluid spacetime
admitting a torse-forming vector field ξ .

Taking potential vector field, V = ξ in (5) and using Lemma 1 we obtain

αS(X , Y ) =
[
μ − βr

2
− 1

]
g(X , Y ) − η(X)η(Y ). (21)

Inserting X = Y = ξ in (21) yields

μ = λ(α + 2β) + βk

2
(σ − 3ρ) − αk

2
(σ + 3ρ). (22)

Hence we can state the following:

Theorem 4 If a perfect fluid spacetimewith torse-forming vector field ξ admits Ricci–Yamabe
soliton (g, ξ, μ, α, β), then the Ricci–Yamabe soliton is expanding, steady or shrinking
according to as λ > k

2(α+2β)
{α(σ +3ρ)−β(σ −3ρ)}, λ = k

2(α+2β)
{α(σ +3ρ)−β(σ −3ρ)}

or λ < k
2(α+2β)

{α(σ + 3ρ) − β(σ − 3ρ)} respectively, provided α + 2β 
= 0.

Remark 1 Now we will look at some of the particular cases of Theorem 4. If a perfect fluid
spacetime with torse-forming vector field ξ admits:

123



On Ricci–Yamabe soliton and geometrical structure... 1651

1. Ricci soliton (α = 1, β = 0), then the Ricci soliton is expanding, steady or shrinking
according as λ > k

2 (σ + 3ρ), λ = k
2 (σ + 3ρ) or λ < k

2 (σ + 3ρ) respectively. This was
shown by Venkatesha [25].

2. Yamabe soliton (α = 0, β = 2), then the Yamabe soliton is expanding, steady or
shrinking according as λ > k

4 (3ρ − σ), λ = k
4 (3ρ − σ) or λ < k

4 (3ρ − σ) respectively.
3. Einstein soliton (α = 1, β = −1), then μ = −λ − kσ implies Einstein soliton is

expanding if λ < −kσ , steady if λ = −kσ and shrinking if λ > −kσ .

Theorem 5 If a perfect fluid spacetimewith torse-forming vector field ξ admits Ricci–Yamabe
soliton (g, V , μ, α, β), then either every perfect fluid spacetime with torse-forming vector
field ξ is a spacetime with the equal associated scalar or the Ricci–Yamabe soliton is expand-
ing, steady or shrinking according to as Theorem 4.

Proof Inserting (11) in (5) we get

(LV g)(X , Y ) = 2

(
μ − βr

2
− aα

)
g(X , Y ) − 2αbη(X)η(Y ). (23)

Taking Lie-differentiation of (11) and using it in (23) yields

(LV S)(X , Y ) = 2a

(
μ − βr

2
− aα

)
g(X , Y ) − 2aαbη(X)η(Y )

+b[(LV η)(X)η(Y ) + (LV η)(Y )η(X)]. (24)

Differentiating covariantly (11) along vector field Z and using Lemma 1 infer

(∇Z S)(X , Y ) = b[g(Z , X)η(Y ) + g(Z , Y )η(X) + 2η(X)η(Y )η(Z)]. (25)

According to Yano [27], we have the following commutative formula:

(LV∇Z g − ∇ZLV g − ∇[V ,Z ](X , Y )

= −g((LV∇)(Z , X), Y ) − g((LV∇)(Z , Y ), X). (26)

Combining (5) and (26) we obtain

g((LV∇)(X , Y ), Z) = (∇Z S)(X , Y ) − (∇X S)(Y , Z) − (∇Y S)(X , Z). (27)

Inserting (25) in (27), we get the form

(LV∇)(X , Y ) = −2b[g(X , Y )ξ + η(X)η(Y )ξ ]. (28)

Again considering the commutative formula given by Yano [27]:

(LV R)(X , Y )Z = (∇XLV∇)(Y , Z) − (∇YLV∇)(X , Z). (29)

Taking covariant differentiation of (28) and using it in (29), yields

(LV R)(X , Y )Z = 2b[g(X , Z)Y − g(Y , Z)X

+η(X)η(Z)Y − η(Y )η(Z)X ]. (30)

Contracting (30) with respect to X gives

(LV S)(Y , Z) = −6b[g(Y , Z) + η(Y )η(Z)]. (31)

Putting Y = Z = ξ in (31), we have

(LV S)(ξ, ξ) = 0. (32)
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Inserting X = Y = ξ in (24) we obtain

− 2a

(
μ − βr

2
− aα

)
− 2aαb + 2b(LV η)(ξ) = 0. (33)

Also, taking X = ξ in (23) infer

(LV g)(X , ξ) =
[
2

(
μ − βr

2
− aα

)
+ 2αb

]
η(X). (34)

Taking Lie-differentiation of η(X) = g(X , ξ) and using it in (34) give us the relation:

(LV η)(X) − g(LV ξ, X) −
[
2

(
μ − βr

2
− aα

)
+ 2bα

]
η(X) = 0. (35)

Again, taking Lie-differentiation of g(ξ, ξ) = −1 along V and using (24) gives

η(LV ξ) = μ − βr

2
− aα + αb. (36)

Making use of (36), (33) and substituting the values of a and b we obtain the following
relation:

[2λ − k(σ + 3ρ)]
[
μ − λ(α + 2β) + βk

2
(σ − 3ρ) − αk

2
(σ + 3ρ)

]
= 0. (37)

Thus we see that either λ = k
2 (σ + 3ρ) or μ = λ(α + 2β) + βk

2 (σ − 3ρ) − αk
2 (σ + 3ρ). We

obtain the following two cases:
Case I If λ 
= k

2 (σ + 3ρ), then μ = λ(α + 2β) + βk
2 (σ − 3ρ) − αk

2 (σ + 3ρ). In this case
Ricci–Yamabe soliton is expanding, steady or shrinking accordingly as Theorem 4.
Case II If λ = k

2 (σ + 3ρ) and μ 
= λ(α + 2β) + βk
2 (σ − 3ρ) − αk

2 (σ + 3ρ), implies
μ 
= 3βk(σ + 3ρ). Then we get

S(X , Y ) = k(σ + ρ)[g(X , Y ) + η(X)η(Y )], (38)

i.e. perfect fluid spacetime is a spacetime with equal associated scalar constant. This com-
pletes the proof. �


Taking X = Y = ξ in (28) yields

(LV∇)(ξ, ξ) = 0. (39)

Using the commutative formula:

(LV∇)(X , Y ) = ∇X∇Y V − ∇∇XY V + R(V , X)Y . (40)

Replacing X , Y by ξ in (40) and using (39) gives

∇ξ∇ξV − ∇∇ξ ξV + R(V , ξ)ξ = 0. (41)

Since ξ is torse-forming vector field, ∇ξ ξ = 0 then (41) becomes

∇ξ∇ξV + R(V , ξ)ξ = 0. (42)

This implies that potential vector field V is a Jacobi vector field along the geodesic of ξ .
Hence we can state the following:

Theorem 6 If a perfect fluid spacetime with torse-forming vector field ξ admits a Ricci–
Yamabe soliton (V , g, μ, α, β), then the potential vector field V is a Jacobi vector field
along the geodesics of ξ .
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4 �-Ricci–Yamabe soliton in a perfect fluid spacetime

In this section we consider η-Ricci–Yamabe soliton in the context of perfect fluid spacetime
admitting torse-forming vector field ξ and obtain the Poisson equation.

Writing explicitly the Lie derivative Lξ g and taking potential vector V = ξ in (6) we get

[g(∇X ξ, Y ) + g(X ,∇Y ξ)] + 2αS(X , Y )

+(2μ − βr)g(X , Y ) + 2ωη(X)η(Y ) = 0, (43)

for any X , Y ∈ χ(M). Contracting (43) yields

div(ξ) + αr +
(

μ − βr

2

)
dim(M) = ω. (44)

Let (M4, g) be a general relativistic perfect fluid spacetime and (g, ξ, μ, ω, α, β) be η-Ricci–
Yamabe soliton in M . From (6) and (11) we get

1

2
[g(∇X ξ, Y ) + g(X ,∇Y ξ)] +

(
aα + μ − βr

2

)
g(X , Y )

+(αb + ω)η(X)η(Y ) = 0. (45)

Consider {ei }1≤i≤4 an orthonormal framefield and let ξ = Σ4
i=1ξ

i ei ,wehaveΣ4
i=1εi i (ξ

i )2 =
−1 and η(ei ) = εi iξ

i .
Multiplying (45) by εi i and summing over i for X = Y = ei we obtain

4μ − ω = (2β − α)r − div(ξ). (46)

Taking X = Y = ξ in (45) gives

ω − μ = α(a − b) − βr

2
. (47)

Therefore,

μ = (2β − α)λ + βk

2
(σ − 3ρ) − αk

2
(σ − ρ) − div(ξ)

3
(48)

ω = −αk(σ + ρ) − div(ξ)

3
(49)

Hence we can state the following:

Theorem 7 Let (M, g) be a 4-dimensional pseudo-Riemannian manifold and let η be the
g-dual 1-form of the gradient vector field ξ = grad( f ) with g(ξ, ξ) = −1. If (6) defines an
η-Ricci–Yamabe soliton in M, then the Poisson equation satisfies by f is

Δ( f ) = −3[ω + αk(σ + ρ)].
In view of (6), taking α = 0 and β = 1 it gives η-Yamabe soliton. Thus we can state the

following:

Corollary 1 Let (M, g) be a 4-dimensional pseudo-Riemannian manifold and let η be the
g-dual 1-form of the gradient vector field ξ = grad( f ) with g(ξ, ξ) = −1. If (6) defines an
η-Yamabe soliton in M, then the Poisson equation satisfies by f is

Δ( f ) = −3ω.
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Remark 2 Now we look at some of the particular cases of Theorem 7. Under similar hypoth-
esis as in Theorem 7, if g admits:

1. η-Ricci soliton (α = 1, β = 0), then the Poisson equation satisfies by f is Δ( f ) =
−3[ω + k(σ + ρ)].

2. η-Einstein soliton (α = 1, β = −1), then the Poisson equation becomes Δ( f ) =
−3[ω + k(σ + ρ)]. These results were obtained by Blaga [1].

Example 1 An η-Ricci–Yamabe soliton (g, ξ, μ, ω, α, β) in a radiation fluid is given by

μ = (4β − α)λ − αkp − div(ξ)

3

ω = −4αkp − div(ξ)

3

From this example, we deduce that Ricci–Yamabe soliton in radiation fluid is steady if
p = (α−4β)λ

3αk , expanding if p >
(α−4β)λ

3αk and shrinking if p <
(α−4β)λ

3αk for α 
= 0.

5 Applications of Poisson equation in physics

The fundamental forces of nature such as gravity and electrostatic forces could be modeled
using functions called gravitational potential and electrostatic potential both of which satisfy
the Poisson equation. For example, Gauss’s law of gravitational in differential form is

∇ψ = −4πGρ, (50)

where ψ is the gravitational field, ρ the mass density and G the gravitational constant. Since
ψ is conservative and can be expressed as the negative gradient of gravitational potential i.e.
ψ = −grad f then the Poisson equation of gravitation is

∇2 = 4πGρ. (51)

Similarly, Poisson’s equation for electrostatics is

∇2ϕ = −ρ

ε
, (52)

where ρ is charge distribution, ε permittivity of the medium and ϕ is gradient scalar function
such that E = −∇ϕ for electric field E . Solving the Poisson equation amounts to finding
the electric potential ϕ for a given charge distribution.

These physical phenomenon’s are directly identical to above Theorem 7which is a Poisson
equation with potential vector field of gradient type.

6 Example of �-Ricci–Yamabe soliton in a perfect fluid spacetime

In this section, we constructed a non-trivial example of a perfect fluid spacetime admit-
ting η-Ricci–Yamabe soliton in a 4-dimensional pseudo-Riemannian manifold. Let M =
{(x, y, z, t) ∈ R4; t 
= 0}, where (x, y, z, t) are the standard coordinates of R4. Consider a
Lorentzian metric g on M is given by

ds2 = e2t [dx2 + dy2 + dz2] − dt2. (53)
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The non-vanishing components of the Christoffel symbol, the curvature tensor and Ricci
tensor are

Γ 4
11 = Γ 4

22 = Γ 4
33 = e2t , Γ 1

14 = Γ 2
24 = Γ 3

34 = 1,

R1441 = R2442 = R3443 = e2t , R1221 = R1331 = R2332 = −e4t ,

S11 = S22 = S33 = −3e2t , S44 = 3.

Therefore, the scalar curvature of the manifold is r = −12. Thus, (M4, g) is a perfect fluid
spacetime whose isotropic pressure and energy density are ρ = 1

k (λ+3) and σ = − 1
k (λ+3)

respectively.
Let η be the 1-form defined by η(Z) = −g(Z , t) for any Z ∈ χ(M). Take ξ = t .

Replacing V = ξ in (6) and using (Lξ g)(X , Y ) = 2[g(X , Y ) + η(X)η(Y )] we see that the
soliton equation becomes

2[gii + ηi ⊗ ηi ] + 2αSii + (2μ − βr)gii + 2ωηi ⊗ ηi = 0, (54)

for all i ∈ {1, 2, 3, 4}. Thus the data (ξ, g, μ, ω, α, β) is η-Ricci–Yamabe soliton on (M4, g)
where μ = 3α − 4β − 1 and ω = −1, which is expanding if 3α − 4β > 1, shrinking if
3α − 4β < 1 and steady if 3α − 4β = 1.

7 Conclusions

This work is an extension of previous work done on perfect fluid spacetime by Blaga [2]
and Venkatesha and Kumara [25]. Blaga [2] obtained the Poisson equations in perfect fluid
spacetime admitting η-Ricci soliton and η-Einstein soliton.We generalized the result of Blaga
in Sect. 4 and obtained a more general expression of the Poisson equation in perfect fluid
spacetime admitting η-Ricci–Yamabe soliton. The significance of this result is that it holds
for a large group of solitons. Next, the conditions under which a perfect fluid spacetime
admitting torse-forming vector field ξ is expanding, shrinking and steady Ricci–Yamabe
soliton is obtained. Further, it is shown that the results in [2,25] are particular cases. Ricci–
Yamabe soliton in the context of Riemannian and semi-Riemannian manifolds need further
research.
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On weakly cyclic B symmetric spacetime

J.P. Singh, M. Khatri

Abstract. The object of the present paper is to investigate some geo-
metric and physical properties of weakly cyclic B symmetric (WCBS)4
spacetime under certain conditions. At first, the existence of (WCBS)4
spacetime is showed by constructing a non-trivial example. Then it is
shown that a (WCBS)4 spacetime with harmonic Weyl tensor is a Yang
Pure space or the integral curve of vector field ρ are geodesic and vector
field ρ is irrotational, provided r = b

a . Moreover some geometric properties
of (WCBS)4 spacetime satisfying certain curvature restrictions are inves-
tigated and shown that conformally flat (WCBS)4 spacetime is infinites-
imally spatially isotropic relative to the unit timelike vector field ρ. Next
we characterize viscous fluid, dust and perfect fluid (WCBS)4 spacetimes
and obtained interesting results. Finally, we showed that in a (WCBS)4
spacetime with non-constant scalar curvature satisfying divC = 0 and ful-
filling the condition r = b

a , if ρ is Killing vector then it is Weyl compatible,
purely electric spacetime and its possible Petrov types are I or D.

M.S.C. 2010: 53B30, 53C50, 53C80.
Key words: B tensor; Einstein’s field equation; perfect fluid spacetime; weakly cyclic
symmetry; Weyl tensor.

1 Introduction

A Lorentzian manifold is a special case of pseudo-Riemannian manifold. A pseudo-
Riemannian manifold of dimension n is a smooth n-dimensional differentiable manifold
equipped with a pseudo-Riemannian metric of signature (p, q) where n = p+q. Due to
non-degeneracy of Lorentzian metric, the tangent vector can be classified into timelike,
null or spacetime vector. A Lorentzian manifold has many applications especially in
the field of relativity and cosmology. The casuality of the vector fields plays an
important role and hence it becomes a convenient choice for researchers for the study
of General Relativity. If a Lorentzian manifold admits a globally timelike vector field,
it is called time oriented Lorentzian manifold, physically known as spacetime. In
general, a Lorentzian manifold may not have a globally timelike vector field. For
more details see [1, 8, 23, 4, 17] and references therein.

*Balkan Journal of Geometry and Its Applications, Vol.27, No.2, 2022, pp. 122-138.
© Balkan Society of Geometers, Geometry Balkan Press 2022.
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In [6], it is showed that a generalistic spacetime with covariant constant energy
momentum tensor is Ricci symmetric, that is, ∇S = 0, where S is the Ricci tensor of
the spacetime and ∇ denotes the covariant differentiation with respect to the metric
tensor g. If however, ∇S ̸= 0, then such a spacetime may be called weakly Ricci
symmetric [26]. De and Ghosh [9] studied weakly Ricci symmetric spacetimes and
proved that if in a weakly Ricci symmetric spacetime of non-zero scalar curvature the
matter distribution is perfect fluid, then the acceleration vector and the expansion
scalar are zero and such a spacetime can not admit heat flux. A non-flat Riemannian
or pseudo-Riemannian manifold (Mn, g)(n > 2) is called weakly Ricci symmetric if
the Ricci tensor S is of the form

(∇XS)(U, V ) = A(X)S(U, V ) +D(U)S(V,X)

+ E(V )S(X,U),(1.1)

whereA,D and E are 1-forms which are non-zero simultaneously. Such an n-dimensional
Riemannian manifold is denoted by (WRS)n. If A = B = D = 0, then the manifold
reduces to a Ricci symmetric manifold.

A (0,2) symmetric tensor is a generalized Z tensor if

Zij = Sij + ϕgij ,(1.2)

where ϕ is an arbitrary scalar function. Recently, Mantica and Molinari [19] intro-
duced weakly Z symmetric manifolds. It is further weaken by De et al. [10] into
weakly cyclic Z symmetric manifolds and it is denoted by (WCZS)n. A non-flat
Riemannian or pseudo-Riemannian manifold (Mn, g)(n > 2) is called weakly cyclic Z
symmetric if the Z tensor is non-zero and satisfies the following condition

(∇XZ)(U, V ) + (∇UZ)(V,X) + (∇V Z)(X,U)

= A(X)Z(U, V ) +D(U)Z(V,X) + E(V )Z(X,U),(1.3)

for all vector fields X, U and V. Here, Z is the generalized Z tensor. De et al.
[11] studied weakly cyclic Z symmetric spacetimes and showed that if a (WCZS)4
spacetime satisfies divC = 0 and fulfills the condition r = a, then the spacetime is the
Robertson-Walker spacetime. De et al. [20] introduced a new symmetric (0,2) tensor
Bij as

Bij = aSij + brgij ,(1.4)

where a and b are non-zero arbitrary scalar functions and r is the scalar curvature.
For a = 1 and b = ϕ

r the tensor reduces to generalized Z tensor. Thus generalized
Z tensor is a particular case of B tensor and hence it give us a reason to study B
tensor. Contracting (1.4) we get, scalar B as B = (a + nb)r. In [20], the authors
introduced pseudo B symmetric manifold which is a generalization of pseudo Z sym-
metric manifold [21]. Motivated by this we introduced weakly cyclic B symmetric
manifold. A non-flat Riemannain or pseudo-Riemannain manifold (Mn, g)(n > 1) is
called a weakly cyclic B symmetric manifold of dimension n if the B tensor is non-zero
and satisfies the condition

(∇XB)(Y, Z) + (∇Y B)(Z,X) + (∇ZB)(X,Y )

= A(X)B(Y,Z) +D(Y )B(Z,X) + E(Z)B(X,Y ),(1.5)
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where A, D and E are non-zero 1-forms. It will be denoted by (WCBS)n manifold.
In [11], the authors investigated weakly cyclic Z symmetric spacetime and obtained
interesting results. This inspired us to study weakly cyclic B symmetric spacetime.

The notion of quasi Einstein manifolds arose during the study of exact solutions
of the Einstein’s field equation as well as during the considerations of quasi-umbilical
hypersurfaces of semi-Euclidean spaces. Chaki and Maity [5] introduced the notion
of quasi Einstein manifolds as a generalization of the Einstein manifolds. A pseudo-
Riemannain manifold (Mn, g)(n > 2) is said to be a quasi Einstein manifold if its
Ricci curvature is non-zero and satisfies the condition

S(X,Y ) = αg(X,Y ) + βA(X)A(Y ),(1.6)

where α and β are real valued non-zero scalar functions on M . In [12], it is proved
that a quasi Einstein manifolds can be taken as a model of perfect fluid spacetime in
General Relativity. Also, the Robertson-Walker spacetimes are quasi Einstein mani-
folds. Thus quasi Einstein manifolds are important in theoretical physics, especially
in General Relativity and cosmology.

The Weyl (or conformal curvature) tensor plays an important role in differential
geometry and also in General Relativity providing curvature to the spacetime when
the Ricci tensor is zero. The Weyl conformal tensor C in a Lorentzian manifold
(Mn, g)(n > 3) is defined by [29]

C(X,Y )U = R(X,Y )U − 1

n− 2
[g(Y, U)QX − g(X,U)QY

+ S(Y, U)X − S(X,U)Y ]

+
r

(n− 1)(n− 2)
[g(Y,U)X − g(X,U)Y ],(1.7)

where Q is the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci tensor S, that is, g(QX,Y ) = S(X,Y ). The Lorenzian manifold
of dimension n(n > 3) is said to be conformally flat if the conformal curvature tensor
C is identically zero. In [16], Endean studied cosmology in conformally flat spacetime.

Ahsan and Siddiqui [1] proved that a concircularly flat perfect fluid spacetime ad-
mits a conformal Killing vector field if and only if the energy-momentum tensor has
a symmetry inheritance property. The concircular curvature tensor in a Lorentzian
manifold (Mn, g)(n > 3) is defined by

C̃(X,Y )U = R(X,Y )U

+
r

n(n− 1)
[g(U,X)Y − g(Y, Z)X],(1.8)

for all vector fields X,Y, Z in M . For n = 3, the Weyl tensor as well as concircular
curvature tensor vanishes identically. The Lorenzian manifold of dimension n(n > 3)

is said to be concircularly flat if the concircular curvature tensor C̃ is identically zero.
The paper is organized as follows:
In Section 2, the existence of (WCBS)4 spacetime is established by constructing a

non-trivial example. Next in Section 3 it is shown that a (WCBS)4 spacetime is quasi
Einstein spacetime. Moreover conformally flat (WCBS)4 spacetime and (WCBS)4
spacetime with divC = 0 are studied and prove that a (WCBS)4 spacetime satisfying
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divC = 0 with assumption r = b
a , the integral curve of vector field ρ are geodesic

and vector field ρ is irrotational or the spacetime is Yang Pure space. In the next
section, we investigate some geometric and physical properties of this spacetime under
certain curvature conditions. The last section deal with the application of (WCBS)4
spacetime in General Relativity. We prove that if a perfect fluid (WCBS)4 spacetime
with vanishing scalar B obeys Einstein’s field equation without cosmological constant
then the spacetime is characterized by the following cases:
(i) The spacetime represents inflation and the fluid behaves as a cosmological constant.
This is also termed as a phantom barrier.
(ii) The spacetime represents quintessence barrier and the fluid behaves as exotic
matter.
The energy density and isotropic pressure for viscous fluid (WCBS)4 spacetime are
obtained and also we prove that a relativistic fluid (WCBS)4 spacetime obeying
Einstein’s field equation with the cosmological constant admit heat flux, provided
λ + kσ ̸= 3B−2br

2a . Finally, it is shown that in a (WCBS)4 spacetime with non-

constant scalar curvature satisfying divC = 0 and fulfilling the condition r = b
a , if ρ

is Killing vector then it is Weyl compatible, purely electric spacetime and its possible
Petrov types are I or D.

2 Existence of (WCBS)4 spacetime

In this section, we prove the existence of the (WCBS)4 spacetime by constructing a
non-trivial example (see [24]). Now, we shall consider a Lorentzian metric g on the
4-dimensional real number space R4 by

ds2 = e2z[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2,(2.1)

where z = x4 ̸= 0 and x1, x2, x3, x4 are the standard coordinates of R4. Then the
non-vanishing components of the Christoffel symbol, the curvature tensor and the
Ricci tensor are

Γ4
11 = Γ4

22 = Γ4
33 = e2z, Γ1

14 = Γ2
24 = Γ3

34 = 1,(2.2)

R1441 = R2442 = R3443 = e2z, R1221 = R1331 = R2332 = −e4z,(2.3)

S11 = S22 = S33 = −3e2z, S44 = 3,(2.4)

and the components which can be obtained from this by symmetric properties. One
can easily show that the scalar curvature r of the manifold is r = −12.
Let us choose an arbitrary scalar function as a = e−z and b = e−2z. Making use
of (1.4) the non-vanishing components of symmetric B tensor and their covariant
derivatives are as follows

B11 = B22 = B33 = −3(ez + 4), B44 = 3(e−z + 4e−2z,(2.5)

B11,4 = B22,4 = B33,4 = −3, B44,4 = −3(e−z + 8e−2z).(2.6)

Let us choose the associate 1-forms as follows:

Ai(x) =





1

ez + 4
for i = 4

0 , otherwise,
(2.7)
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Di(x) =





−37ez

(ez + 4)2
for i = 4

0 , otherwise
(2.8)

and

Ei(x) =





−3e2z − 13

(ez + 4)2
for i = 4

0 , otherwise,

(2.9)

at any point x ∈ R4. In consequence of (2.5), (2.6), (2.7), (2.8) and (2.9) we obtain

B11,4 +B14,1 +B14,1 = A4B11 +D1B41 + E1B14,(2.10)

B22,4 +B24,2 +B24,2 = A4B22 +D2B42 + E2B24,(2.11)

B33,4 +B34,3 +B34,3 = A4B33 +D3B43 + E3B34,(2.12)

B44,4 +B44,4 +B44,4 = A4B44 +D4B44 + E4B44,(2.13)

for all other cases (1.5) holds trivially. Therefore, this proves that the manifold (R4, g)
under consideration is a (WCBS)4 spacetime with non-zero scalar curvature. Hence
we can state that:

Theorem 2.1. Let (R4, g) be a Lorentzian manifold endowed with the metric given
by

ds2 = gijdx
idxj = e2z[(dx1)2 + (dx2)2 + (dx3)2]− (dx4)2

where z = x4 ̸= 0 and x1, x2, x3, x4 are the standard coordinates of R4. Then (R4, g)
is an (WCBS)4 spacetime with non-zero scalar curvature r = −12.

3 (WCBS)4 spacetime

A Lorentzian manifold (M4, g) is said to be weakly cyclic B symmetric (WCBS)4
spacetime if the B tensor is non-zero and satisfies

(∇XB)(Y,Z) + (∇Y B)(Z,X) + (∇ZB)(X,Y )

= A(X)B(Y,Z) +D(Y )B(Z,X) + E(Z)B(X,Y ),(3.1)

for all vector fields X,Y, Z in M4. Here, 1-forms A,D and E are given by

A(X) = g(X, ρ1), D(X) = g(X, ρ2), E(X) = g(X, ρ3),

where ρ1, ρ2, ρ3 are timelike vector fields, that is, g(ρi, ρi) = −1, i = 1, 2, 3 corre-
sponding to 1-forms A,D and E respectively.
Interchanging Y and Z in (3.1) we obtain

(∇XB)(Z, Y ) + (∇ZB)(Y,X) + (∇Y B)(X,Z) =

A(X)B(Z, Y ) +D(Z)B(Y,X) + E(Y )B(X,Z).(3.2)
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Combining (3.1) and (3.2) yields

[D(Y )− E(Y )]B(X,Z) = [D(Z)− E(Z)]B(X,Z).(3.3)

Define a 1-form as H(X) = D(X) − E(X) = g(X, ρ) for all vector fields X. Using
this in (3.3) gives

H(Y )B(X,Z) = H(Z)B(X,Y ).(3.4)

Taking a frame field and contracting X = Z = ei where {ei} is the orthonormal basis
of the tangent space at each point in spacetime we get

BH(Y ) = B(ρ, Y ).(3.5)

Taking Z = ρ in (3.4) gives

H(Y )[aS(X, ρ) + brH(X)] = −B(X,Y ).(3.6)

Replacing X by ρ in (1.4) in using it in (3.5) we obtain

aS(ρ, Y ) = (a+ 3b)rH(Y ).(3.7)

In regard of (3.6) and (3.7), we see that

S(X,Y ) = αg(X,Y ) + βH(X)H(Y ),(3.8)

where α = − br
a and β = −B

a . Hence we can state the following:

Theorem 3.1. A (WCBS)4 spacetime is a quasi Einstein spacetime.

Theorem 3.2. A conformally flat (WCBS)4 spacetime is infinitesimally spatially
isotropic relative to the unit timelike vector field ρ.

Proof. Suppose (WCBS)4 spacetime is conformally flat. Making use of (3.8) and
(1.7) in conformally flat (WCBS)4 spacetime we obtain

R(X,Y )Z =
1

2

[
− 2br

a
g(Y,Z)X − B

a
H(Y )H(Z)X

+
2br

a
g(X,Z)Y +

B

a
H(X)H(Z)Y

− B

a
H(X)g(Y,Z)ρ+

B

a
H(Y )g(X,Z)ρ

]

− r

6

[
g(Y, Z)X − g(X,Z)Y

]
.(3.9)

Let ρ⊥ denote the 3-dimensional distribution in a conformally flat (WCBS)4 space-
time orthogonal to ρ, then from (3.9) we get

R(X,Y )Z =
(br
a

− r

6

)
[g(Y, Z)X − g(X,Z)Y ],(3.10)

for all X,Y, Z ∈ ρ⊥. Also taking Y = Z = ρ in (3.9) gives

R(X, ρ)ρ =
r

6a
(6b+ a)X,(3.11)
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for every X ∈ ρ⊥.
According to Karchar [18], a Lorentzian manifold is called infinitesimal spatially
isotropic relative to timelike unit vector field ρ if its curvature tensor R satisfies
relations

R(X,Y )Z = l[g(Y,Z)X − g(X,Z)Y ],

for all X,Y, Z ∈ ρ⊥ and
R(X, ρ)ρ = mX,

for all X ∈ ρ⊥, where l,m are real valued functions on the manifold. Thus in view of
(3.10) and (3.11) we see that a conformally flat (WCBS)4 spacetime is infinitesimal
spatially isotropic relative to timelike unit vector field ρ.
This completes the proof. □

Theorem 3.3. In a (WCBS)4 spacetime satisfying divC = 0 with assumption r = b
a ,

the integral curve of vector field ρ are geodesic and vector field ρ is irrotational or the
spacetime is Yang Pure space.

Proof. Suppose (WCBS)4 spacetime has harmonic conformal curvature, that is,
divC = 0. Then (1.7) gives

(∇XS)(Y, U) − (∇US)(Y,X)

=
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].(3.12)

Making use of (3.8) in (3.12) we obtain

{adr(U)− rda(U)

a2

}
[bg(X,Y ) + (a+ 4b)H(X)H(Y )]

+
r

a

[
db(U)g(X,Y ) + {da(U) + 4db(U)}H(X)H(Y )

+(a+ 4b){(∇UH)(X)H(Y ) + (∇UH)(Y )H(X)}
]

−
{adr(X)− rda(X)

a2

}
[bg(Y, U) + (a+ 4b)H(Y )H(U)]

− r

a

[
db(X)g(Y, U) + {da(X) + 4db(X)}H(Y )H(U)

+(a+ 4b){(∇XH)(Y )H(U) + (∇XH)(U)H(Y )}
]

=
1

6
[g(Y,U)dr(X)− g(X,Y )dr(U)].(3.13)

Taking a frame field and contracting (3.13) over X and Y gives

−
(
1 +

b

a

)
dr(U) +

br

a2
da(U)− (a+ 4b)

a2
[
adr(ρ)

−rda(ρ)
]
H(U)− r

a
db(U)− r

a

[
da(ρ)H(U)

+4db(ρ)H(U)
]
− B

a

[
(δH)H(U)

+(∇ρH)(U)
]
= −1

2
dr(U),(3.14)
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where (δH) = Σn
i=1ϵi(∇eiH)(ei). Putting X = Y = ρ in (3.13) we get

{adr(U)− rda(U)

a2

}
(a+ 3b) +

r

a

[
3db(U) + da(U)

]

− b

a2
{
adr(ρ)− rda(ρ)

}
H(U) +

(a+ 4b)

a2
{
adr(ρ)

−rda(ρ)
}
H(U) +

r

a

{
adb(ρ) + da(ρ)

}
H(U)

+
B

a
(∇ρH)(U) =

1

6

[
dr(ρ)H(U) + dr(U)

]
.(3.15)

Combining (3.14) and (3.15) yields

−2br

a2
da(U) +

2r

a
db(U)− r

a
db(ρ)H(U)

−B

a
(δH)H(U) +

(4
3
− b

a

)
dr(U)

−
(1
6
+

b

a

)
dr(ρ)H(U) +

br

a2
da(ρ)H(U) = 0.(3.16)

Replacing U by ρ in (3.16) and using it in (3.16) results in the following

2r

a

[adb(U)− bda(U)

a

]
+

2r

a

[adb(ρ)− bda(ρ)

a

]
H(U)

+
(4
3
− b

a

)[
dr(U) + dr(ρ)H(U)

]
= 0.(3.17)

If possible, suppose r = b
a , then

dr(U) =
adb(U)− bda(U)

a2
,(3.18)

for any vector field U . In consequence of (3.17) and (3.18) we see that either 4a+3b = 0
or dr(U) = −dr(ρ)H(U). Considering the case when 4a+3b = 0, we see that r = −4

3
is a constant, and hence dr = 0. Using this facts in (3.12) gives

(∇XS)(Y,U)− (∇US)(Y,X) = 0.

This means that (WCBS)4 spacetime is a Yang Pure space [30].
Suppose 4a + 3b ̸= 0. Replacing Y by ρ in (3.13) and using dr(U) = −dr(ρ)H(U)
yields

(∇XH)(U)− (∇UH)(X) = 0.(3.19)

This means that the 1-form H is closed. Thus we get

g(∇Xρ, U) = g(∇Uρ,X)

for all X,U . Taking U = ρ gives

g(∇ρρ,X) = g(∇Xρ, ρ).

Since g(∇Xρ, ρ) = 0 implies g(∇ρρ,X) = 0 for all X. Hence ∇ρρ = 0. This means
that the integral curve of the vector field ρ are geodesic and vector field is irrotational.
This completes the proof. □
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A vector field ρ is a Killing vector if

g(Y,∇ρX) + g(∇ρY,X) = 0,(3.20)

for any vector fields X,Y . Hence we can state the following:

Corollary 3.4. If a (WCBS)4 spacetime with non-constant scalar curvature satisfies
divC = 0 and fulfills the condition r = b

a , then the vector field ρ is a Killing vector if
and only if ρ is parallel vector.

4 Some geometrical properties of (WCBS)4
spacetime

The k-nullity distribution N(k) of a pseudo-Riemannian manifold Mn is defined by
[27]

N(k) : p → Np(k)

= {Z ∈ Tp(M)|R(X,Y )Z = k[g(Y,Z)X − g(X,Z)Y ]}

for all X,Y ∈ TM , where k is some smooth function. If the generator ρ of the quasi-
Einstein manifold Mn belongs to the k-nullity distribution N(k) for some smooth
function k, then Mn is called N(k)-quasi Einstein manifold [28].

According to Deszcz [2, 13, 14], for (0,4)-tensor field T if R · T and Q(g, T ) are
linearly dependent, that is, R · T = LTQ(g, T ) holds on the set UT = {x ∈ M :
Q(g, T ) ̸= 0 at x}, where LT is some function on UT . In particular, if T = R(resp.,

S,C, C̃) then the manifold is called pseudosymmetric (resp., Ricci-pseudosymmetric,
conformally pseudosymmetric, concircularly pseudosymmetric). De and Velimirović
[8] studied spacetimes with semisymmetric Energy-Momentum tensor and showed
that such a spacetime is Ricci semisymmetric.

In this section, (WCBS)4 spacetime under certain curvature conditions such as Ricci-
pseudosymmetric, conformal Ricci semisymmetric and concircular
Ricci-pseudosymmetric are studied.

Theorem 4.1. Every Ricci-pseudosymmetric (WCBS)4 spacetime with non-vanishing
scalar B is an N(B−br

3a )-quasi Einstein spacetime.

Proof. Suppose (WCBS)4 spacetime is Ricci-pseudosymmetric, that is, R · S =
LSQ(g, S) holds on Us and LS is a certain function on US . Thus we get

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) =

LS [g(Y, U)S(X,V )− g(X,U)S(Y, V )

+g(Y, V )S(U,X)− g(X,V )S(Y, U)].(4.1)

In consequence of (3.8) in (4.1) we obtain

H(R(X,Y )U)H(V ) +H(U)H(R(X,Y )V ) =

LS [g(Y,U)H(X)H(V )− g(X,U)H(Y )H(V )

+g(Y, V )H(X)H(U)− g(X,V )H(Y )H(U)].(4.2)
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Contracting (4.2) over X and V and using (3.8) yields

R(ρ, Y )U = LSg(Y, U)ρ+
[B
a

− br

a
− 4LS

]
H(Y )U.(4.3)

Substituting Y = U = ρ in (4.3) we get the following relation

LS =
(B − br)

3a
.(4.4)

Taking U = ρ in (4.2) gives

R(X,Y )ρ = LS [H(Y )X −H(X)Y ].(4.5)

Making use of (4.4) in (4.5) we obtain

R(X,Y )ρ =
B − br

3a
[H(Y )X −H(X)Y ].(4.6)

This means that the vector field ρ belongs to the (B−br
3a )-nullity distribution. This

completes the proof. □

If we take LS = 0, then the manifold satisfies the condition R · S = 0 and so it is
Ricci semisymmetric. In this case, we see that B = br implies a = −3b. Hence we
can state the following:

Corollary 4.2. In a Ricci semisymmetric (WCBS)4 spacetime with non-vanishing
scalar B the relation a+ 3b = 0 holds.

Theorem 4.3. In a (WCBS)4 spacetime with non-vanishing scalar B satisfying

C(X,Y ) · S = 0,
(

5B−8br
12a

)
is an eigenvalue of the Ricci operator Q.

Proof. Proceeding similarly as in Theorem 4.1, we obtain the following relation

g(R(X,Y )U, ρ) =
(5B − 8br

12a

)
[g(Y,U)H(X)

− g(X,U)H(Y )].(4.7)

Contracting (4.7) over X and U yields

S(Y, ρ) =
(5B − 8br

12a

)
g(Y, ρ),(4.8)

i.e., QY =
(

5B−8br
12a

)
Y for all vector field Y . Thus

(
5B−8br

12a

)
is an eigenvalue of the

Ricci operator Q. This completes the proof. □

Suppose (WCBS)4 spacetime is concircularly pseudosymmetric, that is, R · C̃ =
LSQ(g, S). Then proceeding similarly as in Theorem 4.1 and Theorem 4.3 one can
easily obtained the following:

Theorem 4.4. In a (WCBS)4 spacetime with non-vanishing scalar B satisfying

R · C̃ = LSQ(g, S), 3(B−br)
5a is an eigenvalue corresponding to Ricci operator Q and

the timelike vector field ρ belongs to the N(B−br
5a )-quasi Einstein spacetime.
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5 Application of (WCBS)4 spacetime in General Rel-
ativity

The general theory of relativity postulate that the spacetime should be described as a
curved manifold. The Einstein’s field equation [23] relate the geometry of spacetime
with the distribution of matter within it. Einstein’s field equation is conferred by

S(X,Y )− r

2
g(X,Y ) + λg(X,Y ) = kT (X,Y ),(5.1)

for all vector fields X,Y where S is the Ricci tensor of type (0,2), r is the scalar
curvature, λ is the cosmological constant and k is the gravitational constant. Eq.
(5.1) imply that the matter detrmines the geometry of spacetime and conversely that
the motion of matter is determined by the metric tensor of the space which is not
flat. Here, T is the energy momentum tensor which is a symmetric (0, 2)-tensor with
divergence zero.

The energy momentum tensor is said to describe a perfect fluid [23] if

T (X,Y ) = (σ + p)H(X)H(Y ) + pg(X,Y ),(5.2)

where σ is the energy density and p is the isotropic pressure of the fluid, H is a
non-zero 1-form such that

g(X, ρ) = H(X),

for all X, ρ being the velocity vector field of the fluid which is a timelike vector, that
is, g(ρ, ρ) = H(ρ) = −1.
Combining (3.8) and (5.1), the energy momentum tensor can be written as

T (X,Y ) =
r[a(2λ− 1)− 2b]

2ak
g(X,Y )− B

ak
H(X)H(Y ),(5.3)

Thus we can state the following:

Proposition 5.1. A (WCBS)4 spacetime satisfying Einstein’s field equation with
cosmological constant can be considered as a model of perfect fluid spacetime, in Gen-
eral Relativity.

Inserting (5.2) in (5.1) without cosmological constant, we obtain

S(X,Y ) = k(σ + p)H(X)H(Y ) + (kp+
r

2
)g(X,Y ).(5.4)

Comparing (3.8) and (5.4), we see that in a perfect fluid (WCBS4) spacetime the
following relations hold

α = −br

a
= (kp+

r

2
) and β = −B

a
= k(σ + p).(5.5)

Replacing X by QX in (5.4) and using (3.8) gives

S2(X,Y ) = k(σ + p)(α− β)H(X)H(Y )

+
k

2
(σ − p)[αg(X,Y ) + βH(X)H(Y )],(5.6)
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where S2(X,Y ) = S(QX,Y ). Taking a frame field and contracting (5.6) over X and
Y yields

||Q||2 = k2(σ2 + 2p2 − σp).(5.7)

Hence we can state the following:

Theorem 5.2. If a perfect fluid (WCBS)4 spacetime obeying Einstein’s field equation
without cosmological constant, then the square of the length of the Ricci operator is
k2(σ2 + 2p2 − σp).

In view of (5.4), if perfect fluid (WCBS)4 spacetime satisfies the timelike conver-
gence condition, that is, S(ρ, ρ) ≥ 0 then σ+3p ≥ 0, thus the spacetime obeys cosmic
strong energy condition. Thus we can state

Proposition 5.3. If a perfect fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion without the cosmological constant satisfies timelike convergence condition, then
the spacetime obeys strong energy condition.

In cosmology we know that when σ = −p this lead to rapid expansion of the
spacetime which is termed as inflation. Also σ + p = 0 is known as Phantom Barrier
[7]. Here the fluid behaves as a cosmological constant [25]. And if σ + 3p = 0 then
strong energy condition begins to violate and fluid behaves as exotic matter. This
is termed as a Quintessence Barrier. Recent observations have indicated that our
universe is in quintessence era [3].

In consequence of (5.5), we get σ + p = − B
ak and σ + 3p = − r

k .
Suppose that the scalar B vanishes, it follows that either (i) a+ 4b = 0 or (ii) r = 0.
Now (i) a+4b = 0 implies σ+p = 0. Thus the spacetime represents phantom barrier.
Again (ii) r = 0 implies σ + 3p = 0. Thus the spacetime represents quintessence
barrier. Hence we can state the following:

Theorem 5.4. If a perfect fluid (WCBS)4 spacetime with vanishing scalar B obeys
Einstein’s field equation without cosmological constant then the spacetime is charac-
terized by the following cases:
(i) The spacetime represents inflation and the fluid behaves as a cosmological con-
stant. This is also termed as a phantom barrier.
(ii) The spacetime represents quintessence barrier and the fluid behaves as exotic mat-
ter.

Next we state and proof the following:

Theorem 5.5. A relativistic fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion with the cosmological constant admit heat flux, provided λ+ kσ ̸= 3B−2br

2a .

Proof. For a relativistic fluid matter distribution, the energy momentum tensor is as
follows [15]

T (X,Y ) = pg(X,Y ) + (σ + p)A(X)A(Y )

+ A(X)B(Y ) +B(Y )A(Y ),(5.8)
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where A(X) = g(X, ρ), A(ρ) = −1, B(X) = g(X,µ), B(µ) > 0, g(ρ, µ) = 0. Here ρ is
the velocity vector field and µ is the heat conduction vector field.
Making use of (5.8), the Einstein’s field equation becomes

S(X,Y ) = (kp− λ+
r

2
)g(X,Y ) + k(σ + p)A(X)A(Y )

+ k[A(X)B(Y ) +B(X)A(Y )].(5.9)

Inserting (3.8) in (5.9) gives

(
α − kp+ λ− r

2

)
g(X,Y ) + [β − k(σ + p)]A(X)A(Y )

− k[A(X)B(Y ) +B(X)A(Y )] = 0.(5.10)

Replacing X by ρ in (5.10) we obtain

B(Y ) =
1

k

(br
a

− B

a
− kσ +

r

2
− λ

)
A(Y ).(5.11)

Thus the spacetime admit heat flux if λ+ kσ ̸= 3B−2br
2a . This completes the proof. □

Next we consider viscous fluid matter, under which the energy momentum tensor
is of form:

T (X,Y ) = pg(X,Y ) + (σ + p)H(X)H(Y ) + P (X,Y ),(5.12)

where P denotes the anisotropic pressure tensor of the fluid.
Combining (5.12), (5.1) and (3.8) yields

(α− r

2
− kp)g(X,Y ) + [β − k(σ + p)]H(X)H(Y )

= kP (X,Y ).(5.13)

Replacing X and Y by ρ in (5.13) we get

−(α− r

2
− kp) + β − k(σ + p) = kI,(5.14)

where I = P (ρ, ρ). Contracting (5.13) over X and Y gives

4(α− r

2
− kp)− β + k(σ + p) = kJ,(5.15)

where J = Trace of P . Adding (5.14) and (5.15) the expression for isotropic pressure
is given by

p =
1

k

{
λ− br

a
− r

2
− k(I + J)

3

}
.(5.16)

In consequence of (5.16) in (5.14) the expression for energy density is given by

σ =
1

k

(br
a

+
r

2
− λ− B

a

)
.(5.17)

Thus we can state the following:
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Theorem 5.6. In a viscous fluid (WCBS)4 spacetime obeying Einstein’s field equa-
tion with cosmological constant the energy density and isotropic pressure are given by
(5.17) and (5.16) respectively.

For a pressureless fluid spacetime (dust), the energy momentum tensor is of form
T (X,Y ) = σH(X)H(Y ). Proceeding similarly as in Theorem 5.6 one can easily
obtain the follow:

Proposition 5.7. A dust (WCBS)4 spacetime obeying Einstein’s field equation with
cosmological constant is vacuum if and only if scalar B vanishes.

Definition 5.1. A symmetric tensor bij is Weyl compatible if

bimCm
jkl + bjmCm

kil + bkmCm
ijl = 0.(5.18)

Now we examine the Weyl compatibility of (WCBS)4 spacetime. In accordance
of Corollary 3.4, suppose ρ is Killing vector field then ρ is parallel vector and hence
we get

R(X,Y )ρ = [∇X ,∇Y ]ρ−∇[X,Y ]ρ = 0.(5.19)

Contracting (5.19) over X and using (3.8) we see that (a + 3b)r = 0. But, r ̸= 0,
hence a+ 3b = 0. Making use of this in (3.8) yields

S(X,Y ) = −1

9
[g(X,Y ) +H(X)H(Y )].(5.20)

In consequence of (5.20) the Weyl tensor is of the form

Cijkl = Rijkl +
1

12
[gjkgil − gikgjl] +

1

18
[gilHjHk

−gjlHiHk + gjkHiHl − gikHjHl].(5.21)

Since the generator ρ is parallel so transvecting (5.21) by H l we get

H lCijkl =
1

36
[gjkHi − gikHj ].(5.22)

In view of (5.22) we can obtain the following relation

(HiCjklm +HjCkilm +HkCijlm)Hm = 0.(5.23)

Thus we can state the following:

Theorem 5.8. In a (WCBS)4 spacetime with non-constant scalar curvature sat-
isfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then the
spacetime is Weyl compatible.

In General Relativity, given a timelike vector field u with uiui = −1, then the
electric and magnetic components of Weyl tensor are defined by

Ekl = ujumCjklm,(5.24)
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Hkl =
1

2
εjkrsu

jumCrs
lm,(5.25)

where the components Crs
lm is of type (2,2) of the Weyl tensor and εjkrs denotes

the completely skew-symmetric Levi-Civita symbol. In [22] it is shown that on a
4-dimensional spacetime a timelike vector field is Weyl compatible if and only if the
magnetic part of the Weyl tensor vanishes i.e., Hkl = 0. In regard of Theorem 5.8
and above result we obtain the following:

Proposition 5.9. In a (WCBS)4 spacetime with non-constant scalar curvature sat-
isfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then it is a
purely electric spacetime.

If the electric and magnetic parts of the Weyl tensor are proportional i.e., γE = µH
for some scalar fields γ and µ including the case when one of them is zero, then the
space is of type I,D or O. But Ekl =

Rkl

4 ̸= 0, the Weyl tensor is non-vanishing so
the space cannot be of type O. Thus we can state

Proposition 5.10. In a (WCBS)4 spacetime with non-constant scalar curvature
satisfying divC = 0 and fulfilling the condition r = b

a , if ρ is Killing vector then the
possible Petrov types are I or D.
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Abstract: In this article, we derive Chen’s inequalities involving Chen’s δ-invariant δM, Riemannian
invariant δ(m1, . . . , mk), Ricci curvature, Riemannian invariant Θk(2 ≤ k ≤ m), the scalar curvature
and the squared of the mean curvature for submanifolds of generalized Sasakian-space-forms en-
dowed with a quarter-symmetric connection. As an application of the obtain inequality, we first
derived the Chen inequality for the bi-slant submanifold of generalized Sasakian-space-forms.

Keywords: Chen inequalities; quarter-symmetric connection; generalized Sasakian-space-form;
bi-slant; Riemannian invariants

1. Introduction

In submanifold theory, obtaining the relationship between an intrinsic invariant and
an extrinsic invariant has been the primary goal of many geometers in recent decades. Chen
invariants were introduced by B.Y. Chen [1] to tackle the question raised by Chen concern-
ing the existence of minimal immersions into a Euclidean space of arbitrary dimension [2].
Chen’s δ-invariant δM of a Riemannian manifold M introduced by Chen is

δM(x) = τ(x)− inf{K(Π)|Π is a plane section ⊂ Tx M}, (1)

where τ is the scalar curvature of M.
In [1], Chen obtained an inequality for a Riemannian submanifold Mm of a real space

form M̃ with constant sectional curvature c as

δM ≤
m2(m− 2)
2(m− 1)

‖ H ‖2 +
1
2
(m + 1)(m− 2)c, (2)

where H is the mean curvature of the submanifold Mm. Equation (2) is known as the first
Chen inequality.

Then in [3], Chen gave the inequality for a Riemannian submanifold Mm of complex-
space-form M̃n(4c) as follows:

δM ≤
m2(m− 2)
2(m− 1)

‖ H ‖2 +
1
2
(m + 1)(m− 2)c +

3
2
‖ P ‖2 c− 3Θ(π)c. (3)

Afterward, many authors obtained Chen’s inequalities for different submanifolds in
various ambient spaces, such as the Kenmotsu space form [4], the Sasakian-space-form [5],
the Cosympletic space form [6], the Riemannian manifold of quasi-constant curvature [7],
generalized space forms [8,9], Statistical manifolds [10–12], quaternionic space forms [13]
and the GRW spacetime [14].
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Qu and Wang [15] introduced the notion of a special type of quarter-symmetric connec-
tion as a generalization of a semi-symmetric metric connection [16] and a semi-symmetric
non-metric connection [17]. They studied the Einstein warped product and multiple warped
products with a quarter-symmetric connection [15]. In [18], the authors obtained Chen’s
inequalities for submanifolds of real space forms endowed with a quarter-symmetric
connection. Mihai and Özgür [19] obtained the Chen inequalities for submanifolds of
complex space forms and Sasakian-space-forms with a semi-symmetric metric connec-
tion. Wang [20] obtained Chen inequalities for submanifolds of complex space forms and
Sasakian-space-forms with quarter-symmetric connections which improved the results of
Mihai and Özgür [19]. Sular [21] obtained Chen inequalities for submanifolds of general-
ized space forms with a semi-symmetric metric connection. Al-Khaldi et al. [22] obtained
the Chen–Ricci inequalities Lagrangian submanifold in generalized complex space form
and a Legendrian submanifold in a generalized Sasakian-space-form endowed with the
quarter-symmetric connection.

As a continuation of their studies, we obtained Chen inequalities for submanifolds of
generalized Sasakian-space-form admitting a quarter-symmetric connection. The signifi-
cance of this study is that it generalizes a large number of previously obtained results, some
of which are [20,21]. The paper is organized as follows. In Section 2, we recall the properties
of the quarter-symmetric connection. In Section 3, we establish the B.Y. Chen inequalities
for submanifolds of a generalized Sasakian-space-form endowed with a quarter-symmetric
connection. First, we prove the following inequality and also look at its equality case.

Theorem 1. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.

Next, we obtain bounds for the Riemannian invariant δ(m1, . . . , mk) and a Ricci curva-
ture in terms of the scalar curvature of the r-plane section L, squared mean curvature and
some special functions. Among others, we obtain the inequality involving the Riemannian
invariant Θk, 2 ≤ k ≤ m, as follows:

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2

+
λ

m
(ψ1 + ψ2) +

µ

m
ψ2(ψ1 − ψ2) + (ψ1 − ψ2)Λ(H).

Using Theorem 1 in Section 4, we derive Chen inequalities for the bi-slant submanifold
of generalized Sasakian-space-forms.

2. Preliminaries

Suppose that M̃m+p is an (m+ p)-dimensional Riemannian manifold with Riemannian
metric g. A linear connection ∇ is known as a quarter-symmetric connection if its torsion
tensor T is presented by

T(X1, X2) = ∇X1 X2 −∇X2 X1 − [X1, X2]
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satisfies
T(X1, X2) = Λ(X2)ϕX1 −Λ(X1)ϕX2,

where Λ is a 1-form, P is a vector field given by Λ(X1) = g(X1, P), and ϕ is (1, 1)-tensor.
In [15], the authors introduced a special type of quarter-symmetric connection defined as:

∇X1 X2 = ∇̂X1 X2 + ψ1Λ(X2)X1 − ψ2g(X1, X2)P, (4)

where ∇̂ denote the Levi–Civita connection. It is easy to see that the quarter-symmetric
connection ∇ includes the semi-symmetric metric connection (ψ1 = ψ2 = 1) and the
semi-symmetric non-metric connection (ψ1 = 1, ψ2 = 0). Let the curvature tensor of ∇ be

R(X1, X2)X3 = ∇X1∇X2 X3 −∇X2∇X1 X3 −∇[X1,X2]
X3.

Similarly, the curvature tensor R̂ of ∇̂ can be defined as the same.
Let Mm be an m-dimensional submanifold of an (m + p)-dimensional Riemannian

manifold M̃m+p endowed with the quarter-symmetric connection ∇ and the Levi–Civita

connection ∇̂. Let ∇ and ∇̂ denote the induced quarter-symmetric connection and the
induced Levi–Civita connection on the submanifold M. The Gauss formula with respect to
∇ and ∇̂ can be presented as

∇X1 X2 = ∇X1 X2 + h(X1, X2), X1, X2 ∈ Γ(TM)

∇̂X1 X2 = ∇̂X1 X2 + ĥ(X1, X2), X1, X2 ∈ Γ(TM)

where h and ĥ are the second fundamental forms associated with the quarter-symmetric
connection ∇ and the Levi-Civita connection ∇̂, respectively, and are related as follows:

h(X1, X2) = ĥ(X1, X2)− ψ2g(X1, X2)P⊥, (5)

where P⊥ is the normal component of the vector field P on M. If PT represents that tangent
component of the vector field P on M, then P = PT + P⊥.

The curvature tensor R with respect to the quarter-symmetric connection ∇ on M̃m+p

can be expressed as [15]:

R(X1, X2, X3, X4) = R̂(X1, X2, X3, X4) + ψ1β1(X1, X3)g(X2, X3)

−ψ1β1(X2, X3)g(X1, X4) + ψ2g(X1, X3)β1(X2, X4)− ψ2g(X2, X3)β1(X1, X4)

+ψ2(ψ1 − ψ2)g(X1, X3)β2(X2, X4)− ψ2(ψ1 − ψ2)g(X2, X3)β2(X1, X4), (6)

where β1 and β2 are symmetric (0, 2)-tensor fields defined as

β1(X1, X2) = (∇̂X1 Λ)(X2)− ψ1Λ(X1)Λ(X2) +
ψ2

2
g(X1, X2)Λ(P),

and

β2(X1, X2) =
Λ(P)

2
g(X1, X2) + Λ(X1)Λ(X2).

Moreover, we assume that tr(β1) = λ and tr(β2) = µ.
Suppose that R and R̂ are the curvature tensors of ∇ and ∇̂, respectively. Then the

Gauss equation with respect to the quarter-symmetric connection is as follows [15]:

R(X1, X2, X3, X4) = R(X1, X2, X3, X4)− g(h(X1, X4), h(X2, X3))

+g(h(X2, X4), h(X1, X3)) + (ψ1 − ψ2)g(h(X2, X3), P)g(X1, X4)

+(ψ2 − ψ1)g(h(X1, X3), P)g(X2, X4). (7)
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Let {e1, . . . , em} and {em+1, . . . , em+p} be an orthonormal frame of Tx M and T⊥x M at the
point x ∈ M. Then the mean curvature vector of M associated with∇ is H = 1

m ∑m
i=1 h(ei, ej).

Similarly, the mean curvature vector of M associated to ∇̂ is Ĥ = 1
m ∑m

i=1 ĥ(ei, ej). In addition,
the squared length of h is ‖ h ‖2= ∑m

i,j=1 g(h(ei, ej), h(ei, ej).
Now, we recall some of the Riemannian invariants introduced by Chen [23] in a

Riemannian manifold. Let L be an r-dimensional subspace of Tx M, x ∈ M, r ≥ 2 and
{e1, . . . , er} an orthonormal basis of L. The scalar curvature τ of the r-plane section L is
given by

τ(L) = ∑
1≤i<j≤r

Kij, (8)

where Kij is the sectional curvature of the plane section spanned by ei and ej at x ∈ M.
Suppose that Π ⊂ Tx M is a two-plane section and K(Π) is the sectional curvature of M for
a plane section Π in Tx M, x ∈ M. Then

K(Π) =
1
2
[R(e1, e2, e2, e1)− R(e1, e2, e1, e2)]. (9)

The scalar curvature τ(x) of M at the point x is presented by

τ(x) = ∑
i<j

Kij, (10)

where {e1, . . . , em} is an orthonormal basis for Tx M.

3. B. Y. Chen Inequalities

First, we recall the well-known lemma obtained by Chen [1], which is as follows:

Lemma 1. If a1, . . . , am, am+1 are m + 1 (m ≥ 2) real numbers such that

( m

∑
i=1

ai

)2
= (m− 1)

( m

∑
i=1

a2
i + am+1

)
,

then 2a1a2 ≥ am+1, with equality holding if and only if a1 + a2 = a3 = . . . = am.

Now, let M̃ be a (2n + 1)-dimensional almost contact metric manifold with the struc-
ture (ϕ, η, g, ξ) where ϕ is a (1, 1)-tensor, η is a 1-form which is dual to the Reeb vector field
ξ, and g is a Riemannian metric on M̃ which satisfies the follows [24]:

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, g(ϕX1, ϕX2) = g(X1, X2)− η(X1)η(X2).

Because of these conditions, we have

ϕξ = 0, η · ϕ = 0, η(X1) = g(X1, ξ),

for any vector fields X1, X2 ∈ Γ(TM̃).
An almost contact metric manifold (M̃, ϕ, η, ξ, g) whose curvature tensor satisfies

R̂(X1, X2)X3 = f1{g(X2, X3)X1 − g(X1, X3)X2}+ f2{g(X1, ϕX3)ϕX2

−g(X2, ϕX3)ϕX1 + 2g(X1, ϕX2)ϕX3}+ f3{η(X1)η(X3)X2

−η(X2)η(X3)X1 + g(X1, X3)η(X2)ξ − g(X2, X3)η(X1)ξ}, (11)

for any vector field X1, X2, X3 ∈ Γ(TM̃) and f1, f2, f3 being differentiable functions on M̃ is
said to be a generalized Sasakian-space-form denoted by M̃( f1, f2, f3). The notion of a general-
ized Sasakian-space-form M̃( f1, f2, f3) was introduced by Alegre et al. [25], generalizing three
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important contact space forms, that is, the Sasakian-space-form ( f1 = c+3
4 , f2 = f3 = c−1

4 ),
the Kenmotsu space form ( f1 = c−3

4 , f2 = f3 = c+1
4 ) and the Cosympletic space form

( f1 = f2 = f3 = c
4 ).

From (6) and (11), we obtain

R(X1, X2, X3, X4) = f1{g(X2, X3)g(X1, X4)− g(X1, X3)g(X2, X4)}
+ f2{g(X1, ϕX3)g(ϕX2, X4)− g(X2, ϕX3)g(ϕX1, X4)

+2g(X1, ϕX2)g(ϕX3, X4)}+ f3{η(X1)η(X3)g(X2, X4)

−η(X2)η(X3)g(X1, X4) + g(X1, X3)η(X2)η(X4)

−g(X2, X3)η(X1)η(X4)}+ ψ1β1(X1, X3)g(X2, X3)

−ψ1β1(X2, X3)g(X1, X4) + ψ2g(X1, X3)β1(X2, X4)

−ψ2g(X2, X3)β1(X1, X4) + ψ2(ψ1 − ψ2)g(X1, X3)β2(X2, X4)

−ψ2(ψ1 − ψ2)g(X2, X3)β2(X1, X4), (12)

Let Mm be a submanifold of a generalized Sasakian-space-form M̃( f1, f2, f3) of dimen-
sion (2n + 1). For any tangent vector field X1 on M, we can write ϕX1 = T X1 + FX1,
where T X1 is the tangential component, and FX1 is the normal component of ϕX1. The
squared norm of T at x ∈ M is defined as

‖ T ‖2=
m

∑
i,j=1

g2(ϕei, ej), (13)

where {e1, . . . , em} is any orthonormal basis of the tangent space Tx M and decomposing
the structural vector field ξ = ξT + ξ⊥, where ξT and ξ⊥ denotes the tangential and normal
components of ξ. Moreover, we set Θ2(Π) = g2(T e1, e2) = g2(ϕe1, e2), where {e1, e2} is
the orthonormal basis of two-plane section Π.

Theorem 2. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.
If in addition, P is a tangent vector field on Mm, then H = Ĥ and the equality case holds

at a point x ∈ M if and only if there exists an orthonormal basis {e1, . . . , em} of Tx M and an
orthonormal basis {em+1, . . . , e2n+1} of T⊥x M such that the shape operators of M in M̃( f1, f2, f3)
at x have the following forms:

Aem+1 =




hm+1
11 0 0 . . . 0
0 hm+1

22 0 . . . 0
0 0 hm+1

11 + hm+1
22 . . . 0

...
...

...
. . .

...
0 0 0 . . . hm+1

11 + hm+1
22



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Theorem and

Aer =




hr
11 hr

12 0 . . . 0
hr

12 −hr
11 0 . . . 0

0 0 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . 0




, m + 2 ≤ r ≤ 2n + 1

Proof. Let x ∈ M and {e1, e2, . . . , em}, {em+1, . . . , e2n+1} be an orthonormal basis of Tx M
and T⊥x M, respectively, then from (7), (10) and (12) we obtain

2τ(x) = m2 ‖ H ‖2 − ‖ h ‖2 +m(m− 1) f1 + 3 f2 ‖ T ‖2 −2(m− 1) f3 ‖ ξT ‖2

−(ψ1 + ψ2)λ(m− 1)− ψ2(ψ1 − ψ2)µ(m− 1)−m(m− 1)(ψ1 − ψ2)Λ(H). (14)

We set,

c = 2τ(x)− m2(m− 2)
m− 1

‖ H ‖2 −m(m− 1) f1 − 3 f2 ‖ T ‖2 +2(m− 1) f3 ‖ ξT ‖2

+(ψ1 + ψ2)λ(m− 1) + ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H), (15)

then (14) becomes

m2 ‖ H ‖2= (m− 1)
(
‖ h ‖2 +c

)
. (16)

For a chosen orthonormal basis, (16) can be written as:

( m

∑
i=1

hm+1
ii

)2
= (m− 1)

[ m

∑
i=1

(hm+1
ii )2 + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 + c
]
,

then using Lemma 1, we have

2hm+1
11 hm+1

22 ≥ ∑
i 6=j

(hm+1
ij )2 +

2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 + c. (17)

Now, let Π = span{e1, e2}, then from (7) and (12) we obtain

R(e1, e2, e2, e1) =
2n+1

∑
r=m+1

[hr
11hr

22 − (hr
12)

2]− (ψ1 − ψ2)g(h(e2, e2), P)

+ f1 + 3 f2g2(ϕe1, e2)− f3(η
2(e1) + η2(e2))

−ψ1β1(e2, e2)− ψ2β1(e1, e1)− ψ2(ψ1 − ψ2)β2(e1, e1). (18)

and

R(e1, e2, e1, e2) =
2n+1

∑
r=m+1

[(hr
12)

2 − hr
11hr

22] + (ψ1 − ψ2)g(h(e1, e1), P)

− f1 − 3 f2g2(ϕe1, e2) + f3(η
2(e1) + η2(e2))

+ψ1β1(e1, e1) + ψ2β1(e2, e2) + ψ2(ψ1 − ψ2)β2(e2, e2). (19)

Making use of (18) and (19) in (9), we obtain
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K(Π) =
2n+1

∑
r=m+1

[hr
11hr

22 − (hr
12)

2]− (ψ1 − ψ2)

2
Λ(tr(h |Π))

+ f1 + 3 f2Θ2(Π)− f3(‖ ξΠ ‖2)

−ψ1

2
tr(β1 | Π)− ψ2

2
tr(β1 |Π)− ψ2

2
(ψ1 − ψ2)tr(β2 |Π). (20)

Combining (14) and (20) gives

τ(x)− K(Π) = (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)

+
2n+1

∑
r=m+1

[
∑

1≤i<j≤m
hr

iih
r
jj − hr

11hr
22 − ∑

1≤i<j≤m
(hr

ij)
2 + (hr

12)
2
]
. (21)

Making use of Lemma 2.4 [26], we have

2n+1

∑
r=m+1

[
∑

1≤i<j≤m
hr

iih
r
jj − hr

11hr
22 − ∑

1≤i<j≤m
(hr

ij)
2 + (hr

12)
2
]
≤ m2(m− 2)

2(m− 1)
‖ H ‖2 . (22)

In view of the last expression in (21), we obtain

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
. (23)

Now, if P is a tangent vector field on M, then (5) implies h = ĥ and H = Ĥ. If the
equality case (23) holds at a point x ∈ M, then the equality cases of (17) and (22) hold,
which gives

hm+1
11 = hm+1

22 = hm+1
33 = · · · = hm+1

mm

hm+1
1j = hm+1

2j = 0, j > 2

hr
11 + hr

22 = 0, r = m + 2, . . . , 2n + 1

hr
ij = 0, i 6= j, r = m + 1, . . . , 2n + 1

hm+1
ij = 0, i 6= j, i, j > 2

Therefore, choosing a suitable orthonormal basis, the shape operators take the de-
sired forms.

Corollary 1. Under the same arguments as in Theorem 2,
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1. If the structure vector field ξ is tangent to M, we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1)

)
f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

2. If the structure vector field ξ is normal to M, we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
++

(ψ1 + ψ2)

2

(
tr(β1 |Π)

−λ(m− 1)
)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
.

Remark 1. It should be noted that Theorem 2 generalizes the Theorem 6 obtained in [20]. Moreover,
taking different values of fi, i = 1, 2, 3, we can obtain similar inequalities as Theorem 1 for the
Kenmotsu space form and the Cosympletic space form endowed with certain types of connections by
restricting the values of ψi, i = 1, 2.

Remark 2. If in Theorem 2, we take ψ1 = ψ2 = 1 then we obtain Theorem 5.1 [21].

Corollary 2. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric non-metric connection, then

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+
(

3 ‖ T ‖2 −6Θ2(Π)
) f2

2
+
(
‖ ξΠ ‖2 −(m− 1) ‖ ξT ‖2

)
f3

+
1
2

(
tr(β1 |Π)− λ(m− 1)

)
+

1
2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

where Π is a two-plane section Tx M, x ∈ M.

For an integer k ≥ 0, we denote by S(m, k) the set of k-tuples (m1, . . . , mk) of integers
≥ 2 satisfying m1 < m and m1, . . . , mk ≤ m. In addition, let S(m) be the set of unordered
k-tuples with k ≥ 0 for a fixed m. Then, for each k-tuple (m1, . . . , mk) ∈ S(m), Chen
introduced a Riemannian invariant δ(m1, . . . , mk) as follows [23]

δ(m1, . . . , mk)(x) = τ(x)− in f {τ(L1) + · · ·+ τ(Lk)}, (24)

where L1, . . . , Lk run over all k mutually orthogonal subspaces of Tx M such that dimLj =
mj, j ∈ {1, . . . , k}. For simplicity, we set
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Ψ1(Lj) = ∑
1≤i<j≤r

g2(T ei, ej), Ψ2(Lj) = ∑
1≤i<j≤r

[g(ξT , ei)
2 + g(ξT , ej)

2]

Ψ3(Lj) = ∑
1≤i<j≤r

[β1(ei, ei) + β1(ej, ej)], Ψ4(Lj) = ∑
1≤i<j≤r

[β2(ei, ei) + β2(ej, ej)]

Ψ5(Lj) = ∑
1≤i<j≤r

Λ(h(ei, ei) + h(ej, ej))

As the generalization of Theorem 2, we state and prove the following results using the
methods used in [26].

Theorem 3. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

δ(m1, . . . , mk) ≤ b(m1, . . . , mk) ‖ H ‖2 +a(m1, . . . , mk) f1

+3 f2

(‖ T ‖2

2
−

k

∑
j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ‖ ξT ‖2 −

k

∑
j=1

Ψ2(Lj)
)

− (ψ1 + ψ2)

2

(
(m− 1)λ−

k

∑
j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k

∑
j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k

∑
j=1

Ψ5(Lj)
)

,

for any k-tuples (m1, . . . , mk) ∈ S(m). If P is a tangent vector field on M, the equality case holds at
x ∈ Mm if and only if there exists an orthonormal basis {e1, . . . , em} of Tx M and an orthonormal
basis {em+1, . . . , e2n+1} of T⊥x M such that the shape operators of M in M̃( f1, f2, f3) at x have the
following forms:

Aem+1 =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . am


, Aer =




Ar
1 . . . 0 0

...
. . .

...
...

0 . . . Ar
k 0

0 . . . 0 ςr I


, r = m + 2, . . . , 2n + 1,

where a1, . . . , am satisfy

a1 + · · ·+ am1 = · · · = am1+···+mk−1+1 + · · ·+ am1+···+mk+1 = · · · = am

and each Ar
j is a symmetric mj ×mj submatrix satisfying tr(Ar

1) = · · · = tr(Ar
k) = ςr, I is an

identity matrix.

Proof. Chooseanorthonormalbasis{e1, . . . , em}of Tx M andanorthonormalbasis{em+1, . . . , e2n+1}
of T⊥x M such that mean curvature vector H is in the direction of the normal vector to em+1.
We set

ai = hm+1
ii , i = 1, . . . , m

b1 = a1, b2 = a2 + · · ·+ am1 , b3 = am1+1 + · · ·+ am1+m2 , . . . ,

bk+1 = am1+···+mk−1+1 + · · ·+ am1+···+mk−1+mk , . . . , bγ+1 = am,

and consider the following sets

D1 = {1, . . . , m1}, D2 = {m1 + 1, . . . , m1 + m2}, . . . ,

Dk = {(m1 + · · ·+ mk−1) + 1, . . . , (m1 + · · ·+ mk−1) + mk}.
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Let L1, . . . , Lk be a mutually orthogonal subspace of Tx M with dimLj = mj, defined by

Lj = Span{em1+···+mj−1+1, . . . , em1+···+mj}, j = 1, . . . , k.

From (7), (8) and (12), we obtain

τ(Lj) =
mj(mj − 1)

2
f1 + 3 f2Ψ1(Lj)− f3Ψ2(Lj)

− (ψ1 + ψ2)

2
Ψ3(Lj)−

ψ2

2
(ψ1 − ψ2)Ψ4(Lj)−

(ψ1 − ψ2)

2
Ψ5(Lj)

+
2n+1

∑
r=m+1

∑
αj<β j

[
hr

αjαj
hr

β j β j
− (hαj β j)

2]. (25)

We set

ε = 2τ − 2b(m1, . . . , mk) ‖ H ‖2 −m(m− 1) f1 − 3 f2 ‖ T ‖2

+2(m− 1) f3 ‖ ξT ‖2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H), (26)

where

b(m1, . . . , mk) =

m2
(

m + k− 1−
k

∑
j=1

mj

)

2
(

m + k−
k

∑
j=1

mj

) ,

for each (m1, . . . , mk) ∈ S(m).

In addition, let γ = m + k −
k

∑
j=1

mj. Then in view of this and (26), Equation (14)

becomes

m2 ‖ H ‖2= (‖ h ‖2 +ε)γ,

which can be written as

( γ+1

∑
i=1

bi

)2
= γ

[
ε +

γ+1

∑
i=1

b2
i + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2

−2 ∑
α1<β1

aα1 aβ1 − · · · − 2 ∑
αk<βk

aαk aβk

]
, (27)

where αj, β j ∈ Dj for all j = 1, . . . , k.
Now applying Lemma 2.3 [26] in (27), we obtain

∑
α1<β1

aα1 aβ1 + · · ·+ ∑
αk<βk

aαk aβk ≥

1
2

[
ε + ∑

i 6=j
(hm+1

ij )2 +
2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2
]
,

which further implies
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k

∑
j=1

2n+1

∑
r=m+1

∑
αj<β j

[
hr

αjαj
hr

β j β j
− (hr

αj β j
)2
]
≥ ε

2

+
1
2

2n+1

∑
r=m+1

∑
(α,β)/∈D2

(hr
αβ)

2 +
2n+1

∑
r=m+2

∑
αj∈Dj

(hr
αjαj

)2 ≤ ε

2
, (28)

where D2 = (D1 × D1) ∪ · · · ∪ (Dk × Dk). Combining (14), (25) and (28) gives

τ −
k

∑
j=1

τ(Lj) ≤ b(m1, . . . , mk) ‖ H ‖2 +a(m1, . . . , mk) f1

+3 f2

(‖ T ‖2

2
−

k

∑
j=1

Ψ1(Lj)
)
− f3

(
(m− 1) ‖ ξT ‖2 −

k

∑
j=1

Ψ2(Lj)
)

− (ψ1 + ψ2)

2

(
(m− 1)λ−

k

∑
j=1

Ψ3(Lj)
)
− ψ2

2
(ψ1 − ψ2)

(
(m− 1)µ

−
k

∑
j=1

Ψ4(Lj)
)
+

(ψ1 − ψ2)

2

(
m(m− 1)Λ(H)−

k

∑
j=1

Ψ5(Lj)
)

, (29)

where, a(m1, . . . , mk) =
1
2

[
m(m− 1)−

k

∑
j=1

mj(mj − 1)
]
.

The equality case (29) at a point x ∈ M holds if and only if all the previous inequalities
hold; thus, the shape operators take the desired forms.

Remark 3. Restricting the values of fi, i = 1, 2, 3 and ψi for i = 1, 2, we can obtain similar bounds
as Theorem 3 for certain contact space forms endowed with certain connections.

Theorem 4. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇, then

(i) For each unit vector X1 in Tx M, we have

Ric(X1) ≤ (m− 1) f1 + 3 f2

m

∑
j=2

g2(ϕX1, ej) + f3
(
(2−m)η2(X1)− ‖ ξT ‖2 )

+[ψ1 + (1−m)ψ2]β1(X1, X1)− ψ1λ + ψ2(ψ1 − ψ2)(1−m)β2(X1, X1)

−(ψ1 − ψ2)[mΛ(H)−Λ(h(X1, X1))] +
m2

4
‖ H ‖2 . (30)

(ii) If H(x) = 0, then a unit tangent vector X1 at x satisfies the equality case of (30) if and only if
X1 ∈ M(x) = {X1 ∈ Tx M | h(X1, X2) = 0, ∀X2 ∈ Tx M}.

(iii) The equality of (30) holds for all unit tangent vectors at x if and only if either

1. m 6= 2, hr
ij = 0, i, j = 1, 2 . . . , m.r = m + 1, . . . , 2n + 1, or

2. m = 2, hr
11 = hr

22, hr
12 = 0, r = 3, . . . , 2n + 1.

Proof. Choosing the orthonormal basis {e1, . . . , em} such that e1 = X1, where X1 ∈ Tx M is
a unit tangent vector at the point x on M. In view of (7) and (12), then proceeding similarly
as the proof of Theorem 4 in [20], one can easily obtain the desire results.
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By choosing an orthonormal frame {e1, . . . , ek} of L such that e1 = X1, a unit tangent
vector, Chen [23] defined the k-Ricci curvature of L at X1 by

RicL(X1) = K12 + K13 + · · ·+ K1k. (31)

For an integer k, 2 ≤ k ≤ m, the Riemannian invariant Θk on M is defined by

Θk(x) =
1

k− 1
in f {RicL(X1) | L, X1}, x ∈ M

where L runs over all k-plane sections in Tx M and X1 runs over all unit vectors in L.
From [26], we have

τ(x) ≥ m(m− 1)
2

Θk(x). (32)

Let us choose {e1, . . . , em} and {em+1, . . . , e2n+1} as an orthonormal basis of Tx M and
T⊥x M, x ∈ M, respectively, where em+1 is parallel to the mean curvature vector H. In
addition, let {e1, . . . , em} diagonalize the shape operator Aem+1 . Then,

Aem+1 =




a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . am




and

Aer = hr
ij, i, j = 1, . . . , m, r = m + 2, . . . , 2n + 1, trAer = 0.

(33)

In consequence of the above assumptions, Equation (14) can be written as follows:

m2 ‖ H ‖2= 2τ +
m

∑
i=1

a2
i +

2n+1

∑
r=m+2

m

∑
i,j=1

(hr
ij)

2 −m(m− 1) f1

−3 f2 ‖ T ‖2 +2(m− 1) f3 ‖ ξT ‖2 +(ψ1 + ψ2)λ(m− 1)

+ψ2(ψ1 − ψ2)µ(m− 1) + m(m− 1)(ψ1 − ψ2)Λ(H). (34)

Using the Cauchy–Schwartz inequality, we have

m

∑
i=1

a2
i ≥ m ‖ H ‖2 . (35)

Combining (32) and (34), we can state the following:

Theorem 5. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional general-
ized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric connection ∇. Then for
any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2

+
λ

m
(ψ1 + ψ2) +

µ

m
ψ2(ψ1 − ψ2) + (ψ1 − ψ2)Λ(H).

As a particular case of Theorem 5, we obtained Theorem 6.2 [21] which is as follows:
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Corollary 3 ([21]). Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional
generalized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric metric connection.
Then for any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2 +

2λ

m
.

Corollary 4. Let Mm, m ≥ 3 be an m-dimensional submanifold of a (2n + 1)-dimensional gener-
alized Sasakian-space-form M̃( f1, f2, f3) endowed with a semi-symmetric non-metric connection.
Then for any integer k, 2 ≤ k ≤ m and any point x ∈ M, we have

‖ H ‖2 (x) ≥ Θk(x)− f1 −
3 f2

m(m− 1)
‖ T ‖2 +

2 f3

m
‖ ξT ‖2 +

λ

m
+ Λ(H).

Remark 4. Restricting function fi, i = 1, 2, 3, we can easily obtain similar inequality in the case of
the Sasakian, Kenmotsu and Cosympletic space forms.

4. Some Applications

The notion of slant submanifolds in almost contact geometry was introduced by
Lotta [27]. A submanifold M of an almost contact metric manifold (M̃, ϕ, ξ, η, g) tangent to
the structure vector field ξ is said to be a contact slant submanifold if, for any point x ∈ M
and any vector X1 ∈ Tx M linearly independent on ξx, the angle between the vector ϕX1
and the tangent space Tx M is constant. This angle is known as the slant angle of M. The
concept of slant submanifold is further generalized as follows:

Definition 1 ([28]). A submanifold M of an almost contact metric manifold M is called a bi-slant
submanifold, whenever we have

1. TM = Dθ1 ⊕Dθ2 ⊕ ξ
2. ϕDθ1 ⊥ Dθ2 and ϕDθ2 ⊥ Dθ1 .
3. For i = 1, 2, the distribution Di is slant with slant angle θi.

Now, as a consequence of Theorem 2, we can state the following:

Theorem 6. Let M be a (m = 2d1 + 2d2 + 1)-dimensional bi-slant submanifold of a (2n + 1)-
dimensional generalized Sasakian-space-form M̃( f1, f2, f3) endowed with a quarter-symmetric
connection ∇, then we have

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+3
(
(d1 − 1)cos2θ1 + d2cos2θ2

) f2

2
− (m− 1) f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,

for any plane Π invariant by T and tangent to slant distribution Dθ1 and

τ(x)− K(Π) ≤ (m− 2)
( m2

2(m− 1)
‖ H ‖2 +(m + 1)

f1

2

)

+3
(

d1cos2θ1 + (d2 − 1)cos2θ2

) f2

2
− (m− 1) f3

+
(ψ1 + ψ2)

2

(
tr(β1 |Π)− λ(m− 1)

)
+

ψ2(ψ1 − ψ2)

2

(
tr(β2 |Π)

−µ(m− 1)
)
+

(ψ1 − ψ2)

2

(
Λ(tr(h |Π))−m(m− 1)Λ(H)

)
,
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for any plane Π invariant by T and tangent to slant distribution Dθ2 . Moreover, the ideal case is
the same as Theorem 2.

Proof. Let M be a bi-slant submanifold of a generalized Sasakian-space-form M̃( f1, f2, f3)
of dimension (m = 2d1 + 2d2 + 1) and let {e1, . . . , em = ξ} be an orthonormal frame of
tangent space Tx M at a point x ∈ M, such that

e1, e2 = secθ1T e1, . . . , e2d1−1, e2d1 = secθ1T e2d1−1, e2d1+1, e2d1+2

= secθ2T e2d1+1, . . . , e2d1+2d2−1, e2d1+2d2 = secθ2T e2d1+2d2−1, e2d1+2d2+1 = ξ,

which gives

g2(ϕei+1, ei) =

{
cos2θ1, for i = 1, 2, . . . , 2d1 − 1
cos2θ2, for i = 2d1 + 1, . . . , 2d1 + 2d2 − 1.

Thus we have
‖ T ‖2= 2{d1cos2θ1 + d2cos2θ2}

Making use of the above facts in Theorem 2, the proof is straightforward.

In a similar manner, Theorems 3, 4 and 5 can be stated for a bi-slant submanifold of
a generalized Sasakian-space-form. Moreover, restricting the values of θi, i = 1, 2, similar
results can be obtained for a large class of submanifolds such as slant, semi-slant, hemi-slant,
semi-invariant submanifolds. Moreover, by taking different values of fi, i = 1, 2, 3, we can
derive similar inequalities for the Sasakian, Kenmotsu and Cosympletic space forms.

5. Conclusions and Future Work

In this article, we established the general form of Chen’s inequalities are obtained for
generalized Sasakian-space-forms endowed with a special type of quarter-symmetric connec-
tion. This work is in continuation of the previous works by Wang [20], Mihai and Özgür [19],
Sular [21] and Wang and Zhang [18]. By using the obtained inequality, we derived the Chen
inequality for the bi-slant submanifold of generalized Sasakian-space-forms. Recently, Chen
inequality for lightlike hypersurfaces of GRW spacetime was obtained by Poyraz [14]. For
future research, we would try to combine the methods and results in [29–52] to obtain the
Chen inequalities for submanifolds of indefinite space forms such as spacelike and lightlike.
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On almost pseudo semiconformally

symmetric manifolds

J. P. Singh and M. Khatri

Abstract. The object of the present paper is to study a type of Rie-
mannian manifold, namely, an almost pseudo semiconformally symmetric
manifold which is denoted by A(PSCS)n. Several geometric properties of
such a manifold are studied under certain curvature conditions. Some re-
sults on Ricci symmetric A(PSCS)n and Ricci-recurrent A(PSCS)n are
obtained. Next, we consider the decomposability of A(PSCS)n. Finally,
two non-trivial examples of A(PSCS)n are constructed.

M.S.C. 2010: 53C25, 53C35.
Key words: Pseudo semiconformally symmetric manifold; symmetric manifold; con-
formal curvature tensor; semiconformal curvature tensor; conharmonic curvature ten-
sor.

1 Introduction

Riemannian symmetric spaces have an important role in differential geometry. They
were first classified by Cartan [4] in the late twenties and he also gave a classification
of Riemannian symmetric spaces. In 1926, Cartan [4] studied the certain class of
Riemannian spaces and introduced the notation of a symmetric space. According to
him, an n-dimensional Riemannian manifold M is said to be locally symmetric if its
curvature tensor R satisfies Rhijk,l = 0, where “,” represent the covariant differentia-
tion with respect to the metric tensor and Rhijk are the components of the curvature
tensor of the manifold M. This condition of locally symmetry is equivalent to the fact
that the local geodesic symmetry F (P ) is an isometry [20] at every point P ∈ M .

After Cartan, the notation of locally symmetric manifolds has been reduced by
many authors in several ways to a different extent such as pseudo symmetric manifolds
introduced by Chaki [6], recurrent manifolds introduced by Walker [27], conformally
symmetric manifolds introduced by Chaki and Gupta [5], conformally recurrent man-
ifolds introduced by Adati and Miyazawa [2], weakly symmetric manifolds introduced
by Tamássy and Binh [26], etc.

In 1967, Sen and Chaki [24] obtained an expression for the covariant derivative of
the curvature tensor while studying conformally flat space of class one with certain

Differential Geometry - Dynamical Systems, Vol.22, 2020, pp. 233-253.
c⃝ Balkan Society of Geometers, Geometry Balkan Press 2020.
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curvature restrictions on the curvature tensor, which is as follows:

(1.1) Rh
ijk,l = 2λlR

h
ijk + λiR

h
ljk + λjR

h
ilk + λkR

h
ijl + λhRl

ijk ,

where Rh
ijk are the components of the curvature tensor R, Rlijk = ghlR

h
ijk, λi is

a non-zero covariant vector. Later in 1987, Chaki [6] introduced a manifold whose
curvature tensor satisfies (1.1) and called it a pseudo symmetric manifold. In the
index-free notation this can be defined as:

(∇ER)(X,Y )W = 2A(E)R(X,Y )W +A(X)R(E, Y )W

+ A(Y )R(X,E)W +A(W )R(X,Y )E

+ g(R(X,Y )W,E)ρ,(1.2)

where A is a non-zero 1-form called the associate 1-form of the manifold. Here, ρ is
a vector field corresponding to 1-form A and is defined by

(1.3) g(E, ρ) = A(E),

for all vector field E, and ∇ represents the operator of covariant differentiation with
respect to the metric tensor g. Taking A = 0 in (1.2) the manifold reduces to a
symmetric manifold in the sense of Cartan. An n-dimensional pseudo symmetric
manifold is denoted by (PS)n. It should be taken into account that the notation of
pseudo symmetric manifold studied in particular by Deszez([3],[8],[9],[10]) differ from
that of Chaki [6].

In 2008, De and Gazi [11] introduced a type of Riemannian manifold which is
a generalization of pseudo symmetric manifolds. Such manifold is called an almost
pseudo symmetric manifold and is denoted by (APS)n. A Riemannian manifold
(Mn, g), (n > 2) is said to be an almost pseudo symmetric [11] if its curvature tensor
R of type (0, 4) satisfies the following relation:

(∇ER)(X,Y,W, V ) = [A(E) +B(E)]R(X,Y,W, V ) +A(X)R(E, Y,W, V )

+ A(Y )R(X,E,W, V ) +A(W )R(X,Y,E, V )

+ A(V )R(X,Y,W,X),(1.4)

where A,B are non-zero 1-forms given by

(1.5) g(E, ρ) = A(E), g(E, σ) = B(E),

for all vector fields E. In the paper ([12],[13]) it has been mentioned that (PS)n is a
particular case of an (AP )n.

Gray[16] introduced two groups of Riemannian manifolds based on the covariant
differentiation of the Ricci tensor. The first group contains all Riemannian manifolds
whose Ricci tensor S is a Codazzi tensor, that is,

(1.6) (∇ES)(X,Y ) = (∇XS)(E, Y ).

The second group contains all Riemannian manifolds whose Ricci tensor S is cyclic
parallel, that is,

(1.7) (∇ES)(X,Y ) + (∇XS)(E, Y ) + (∇Y S)(E,X) = 0.
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In 1952, Patterson [22] introduced the notion of Ricci-recurrent manifolds. A non-
flat Riemannian manifold (M, g), (n > 2) is said to be a Ricci-recurrent manifold [22]
if its non-zero Ricci tensor S of type (0,2) satisfies the following condition

(∇ES)(X,Y ) = H̃(E)S(X,Y ),(1.8)

where H̃ is non-zero 1-form called 1-form of recurrence, which is defined by

(1.9) g(E, µ) = H̃(E).

In 2016, Kim [18] introduced a type of curvature tensor which is a combination of
conformal and conharmonic curvature tensor, called semiconformal curvature tensor.
The semiconformal curvature tensor of type (1, 3) remains invariant under conhar-
monic transformation [1]. More precisely, the semiconformal curvature tensor P̃ of
type (1, 3) on a Riemannian manifold (Mn, g) is defined as follows:

(1.10) P̃ (X,Y )W = −(n− 2)bC(X,Y )W + [a+ (n− 2)b]H(X,Y )W,

where a, b are constants not simultaneously zero, C(X,Y )W denotes the conformal
curvature tensor of type (1, 3), and H(X,Y )W denotes the conharmonic curvature
tensor of type (1, 3). The conformal curvature tensor and the conharmonic curvature
tensor[25] are given as follows:

C(X,Y )W = R(X,Y )W − 1

(n− 2)

[
S(Y,W )X − S(X,W )Y + g(Y,W )LX

− g(X,W )LY
]
+

r

(n− 1)(n− 2)

[
g(Y,W )X − g(X,W )Y

]
,(1.11)

and,

H(X,Y )W = R(X,Y )W − 1

(n− 2)

[
S(Y,W )X − S(X,W )Y + g(Y,W )LX

− g(X,W )LY
]
,(1.12)

where L is the symmetric endomorphism of the tangent space at each point corre-
sponding to the Ricci tensor S, that is, g(LE,X) = S(E,X) and r is the scalar
curvature of the manifold. From equations (1.10),(1.11) and (1.12) we obtain an
expression for semiconformal curvature tensor P (X,Y,W, V ) of type (0,4) as follows:

P (X,Y,W, V ) = aR(X,Y,W, V )− a

(n− 2)

[
S(Y,W )g(X,V )

− S(X,W )g(Y, V ) + S(X,V )g(Y,W )− S(Y, V )g(X,W )
]

− br

(n− 1)

[
g(Y,W )g(X,V )− g(X,W )g(Y, V )

]
,(1.13)

where P (X,Y,W, V ) = g(P̃ (X,Y )W,V ).

For a = 1 and b = − 1

(n− 2)
, the semiconformal curvature becomes conformal

curvature tensor and for a = 1 and b = 0, such a tensor reduces to conharmonic
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curvature tensor. A Riemannian manifold (Mn, g) of dimension n ≥ 4 is said to be
pseudo semiconformally symmetric [17] if its semiconformal curvature tensor P of
type (0, 4) satisfies the relation

(∇EP )(X,Y,W, V ) = 2A(E)P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )P (X,Y,W,E).(1.14)

The semiconformal curvature tensor is further studied in the recent paper by De
and Suh [14]. An almost pseudo symmetric manifold introduced by De and Gazi
[11] is an important generalization of symmetric space which is studied by several
geometers ([15],[7],[21],[19]), and many others. Motivated by there studies in an
almost pseudo symmetric manifold and semiconformal curvature tensor, in the present
paper, we introduced a type of non-flat Riemannian manifold (Mn, g), (n ≥ 4) whose
semiconformal curvature tensor P of type (0, 4) satisfies the condition

(∇EP )(X,Y,W, V ) = [A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )R(X,Y,W,E),(1.15)

where A and B are non-zero 1-forms and are called the associated 1-forms, defined
as in (1.5), and ∇ has the meaning previously introduced. The vector fields ρ and σ
corresponding to the associated 1-forms A and B respectively shall be called the basic
vector fields of the manifold. We shall be calling such a manifold as an almost pseudo
semiconformally symmetric manifold and an n-dimensional manifold of this kind shall
be denoted by A(PSCS)n. If in (1.15) A = B, then the manifold becomes a pseudo
semiconformally symmetric manifold defined by (1.14). The manifold A(PSCS)n
includes an almost pseudo conformally symmetric manifold [13] and an almost pseudo
conharmonically symmetric manifold [21].

The present paper is organized as follows: After preliminaries, in section 3 we in-
vestigated some geometric properties of A(PSCS)n with non-zero constant scalar cur-
vature and Codazzi type of Ricci tensor. In section 4, Ricci symmetric A(PSCS)n and
Ricci recurrent A(PSCS)n are studied. Section 5 deals with an Einstein A(PSCS)n.
In section 6, it is concerned with the decomposition of A(PSCS)n and exactly defined
each product manifolds of an A(PSCS)n. Finally, we constructed two non-trivial ex-
amples of A(PSCS)n.

2 Preliminaries

Let r and S denote the scalar curvature and the Ricci tensor of type (0,2) respectively
and L has the meaning already mentioned, that is,

(2.1) g(LE,X) = S(E,X).

In this section, we will derive some formulas, which we will be using in the study of
A(PSCS)n throughout this paper. Let {ei} be an orthonormal basis of the tangent
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space at each point of the manifold where 1 ≤ i ≤ n.
Now from equation (1.13), we have

(2.2)

n∑

i=1

P (X,Y, ei, ei) = 0 =

n∑

i=1

P (ei, ei, X, Y ),

and,

(2.3)

n∑

i=1

P (ei, Y,W, ei) =

n∑

i=1

P (Y, ei, ei,W ) = −{a+ (n− 2)b}r
(n− 2)

g(Y,W ),

where, r =
∑n

i=1 S(ei, ei) is the scalar curvature.

Making use of equation (1.13) we obtain the following relations:

(i) P (X,Y,W, V ) = −P (Y,X,W, V ),

(ii) P (X,Y,W, V ) = −P (X,Y, V,W ),

(iii) P (X,Y,W, V ) = P (W,V,X, Y ),

(iv) P (X,Y,W, V ) + P (Y,W,X, V ) + P (W,X, Y, V ) = 0.(2.4)

3 An A(PSCS)n, (n ≥ 4) with non-zero constant scalar
curvature and Codazzi type of Ricci tensor.

Theorem 3.1. In A(PSCS)n, (n ≥ 4) the scalar curvature is a non-zero constant if
and only if (4 + n)A(E) + nB(E) = 0, provided [a+ (n− 2)b] ̸= 0.

Proof. Taking covariant derivative of equation (1.13) with respect to E we get,

a(∇ER)(X,Y,W, V ) = (∇EP )(X,Y,W, V ) +
a

(n− 2)

{
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+

b dr(E)

(n− 1)

{
g(Y,W )g(X,V )

− g(X,W )g(Y, V )

}
.(3.1)

Inserting equation (1.15) in equation (3.1) we obtain,

a(∇ER)(X,Y,W, V ) = [A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V )

+ A(Y )P (X,E,W, V ) +A(W )P (X,Y,E, V )

+ A(V )R(X,Y,W,E) +
a

(n− 2)

{
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W )

}
+
b dr(E)

(n− 1)

{
g(Y,W )g(X,V )

− g(X,W )g(Y, V )

}
.(3.2)
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Putting X = V = ei, (i = 1, 2, ..., n) and λ =
{a+ (n− 2)b}r

(n− 2)
in equation (3.2), we

obtain

a(∇ES)(Y,W ) = [A(E) +B(E)]
[
−λrg(Y,W )

]
+A(P̃ (E, Y )W )

+ A(Y )
[
−λrg(E,W )

]
+A(W )

[
−λrg(Y,E)

]
−A(P̃ (W,E)Y )

+
a

(n− 2)

[
n(∇ES)(Y,W )− (∇ES)(W,Y ) + dr(E)g(Y,W )

− (∇ES)(Y,W )
]
+ b dr(E)g(Y,W ).(3.3)

Contracting over Y and W in equation (3.3), the above equation reduces to

n[a+ (n− 2)b] dr(E) = [a+ (n− 2)b]r[(4 + n)A(E) + nB(E)].(3.4)

Assuming [a+ (n− 2)b] ̸= 0, then equation (3.4) reduces to

(3.5) ndr(E) = r[(4 + n)A(E) + nB(E)].

Clearly if [(4 + n)A(E) + nB(E)] = 0 then r is a non-zero constant.
Conversely, if r is a non-zero constant then [(4 + n)A(E) + nB(E)] = 0.
This completes the proof. �

Theorem 3.2. If Ricci tensor in A(PSCS)n is of Codazzi type then the semiconfor-
mal curvature tensor P satisfies Bianchi’s second identity.

Proof. Making use of equation (1.13) we can obtain

(∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V )

= a
[
(∇ER)(X,Y,W, V ) + (∇XR)(Y,E,W, V )

+ (∇Y R)(E,X,W, V )
]
− a

(n− 2)

[
(∇ES)(Y,W )g(X,V )

− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

− (∇ES)(Y, V )g(X,W ) + (∇XS)(E,W )g(Y, V )

− (∇XS)(Y,W )g(E, V ) + (∇XS)(Y, V )g(E,W )

− (∇XS)(E, V )g(Y,W ) + (∇Y S)(X,W )g(E, V )

− (∇Y S)(E,W )g(X,V )− (∇Y S)(X,V )g(E,W )

+ (∇Y S)(E, V )g(X,W )
]
− b

(n− 1)

[
dr(E){g(Y,W )g(X,V )

− g(X,W )g(Y, V )}+ dr(X){g(E,W )g(Y, V )

− g(Y,W )g(E, V )}+ dr(Y ){g(X,W )g(E, V )

− g(E,W )g(X,V )}
]
.(3.6)

Since the Ricci tensor is of Codazzi type, S satisfies the relation:

(3.7) (∇ES)(X,Y ) = (∇XS)(E, Y ),
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implies r = constant.
Moreover, inserting equation (3.7) in equation (3.6), we have

(3.8) (∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) = 0.

Hence, the theorem is proved. �

Theorem 3.3. In A(PSCS)n, if the semiconformal curvature tensor P satisfies
Bianchi’s second identity then A(PSCS)n reduces to a pseudo semiconformally sym-
metric manifold, provided [a+ (n− 2)b] ̸= 0 and r ̸= 0.

Proof. Suppose that the semiconformal tensor P in A(PSCS)n satisfies Bianchi’s
second identity. Then making use equation (1.15), we get

[B(E)−A(E)]P (X,Y,W, V ) + [B(X)−A(X)]P (Y,E,W, V )

+[B(Y )−A(Y )]P (E,X,W, V ) = 0.(3.9)

Let Q(E) = B(E)−A(E) and ρ1 be a basic vector such that

(3.10) g(E, ρ1) = Q(E),

for all E. Equation (3.9) with the help of equation (3.10) may be written as

(3.11) Q(E)P (X,Y,W, V ) +Q(X)P (Y,E,W, V ) +Q(Y )P (E,X,W, V ) = 0.

Putting X = V = ei in equation (3.11), the above equation reduces to

Q(E)

{
− [a+ (n− 2)b]r

(n− 2)
g(Y,W )

}
+Q(P̃ (Y,E)W )

−Q(Y )

{
− [a+ (n− 2)b]r

(n− 2)
g(E,W )

}
= 0,(3.12)

and contracting over Y and W , we infer

(3.13) [a+ (n− 2)b]rQ(E) = 0.

Suppose r ̸= 0 and [a+ (n− 2)b] ̸= 0 in above equation implies Q(E) = 0.
This completes the proof. �

Theorem 3.4. If A(PSCS)n satisfies Bianchi’s second identity then the scalar cur-
vature is constant provided [a+ (n− 2)b] ̸= 0.

Proof. Suppose A(PSCS)n satisfies Bianchi’s second identity. Then, from equation
(1.13), we obtain

a

(n− 2)

{
(∇ES)(Y,W )g(X,V )− (∇ES)(X,W )g(Y, V ) + (∇ES)(X,V )g(Y,W )

−(∇ES)(Y, V )g(X,W ) + (∇XS)(E,W )g(Y, V )− (∇XS)(Y,W )g(E, V )

+(∇XS)(Y, V )g(E,W )− (∇XS)(E, V )g(Y,W ) + (∇Y S)(X,W )g(E, V )

−(∇Y S)(E,W )g(X,V )− (∇Y S)(X,V )g(E,W ) + (∇Y S)(E, V )g(X,W )

}

+
b

(n− 1)

{
dr(E){g(Y,W )g(X,V )− g(X,W )g(Y, V )}+ dr(X){g(E,W )g(Y, V )

−g(Y,W )g(E, V )}+ dr(Y ){g(X,W )g(E, V )− g(E,W )g(X,V )}
}

= 0.(3.14)
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Contracting equation (3.14) over Y and W , the equation reduces to

a

(n− 2)

[
1

2
dr(E)g(X,V ) + (n− 2)(∇ES)(X,V ) + (2− n)(∇XS)(E, V )

−1

2
dr(X)g(E, V )− (∇ES)(X,V ) + (∇XS)(E, V )

]
+ bg(X,V )dr(E)

−bg(E, V )dr(X) +
b

(n− 1)

[
dr(X)g(E, V )− dr(E)g(X,V )

]
= 0.(3.15)

Substituting X = V = ei in equation (3.15) yields

(3.16) [a+ (n− 2)b] dr(E) = 0.

This completes the proof. �

4 Ricci Symmetric A(PSCS)n, (n ≥ 4) and Ricci-recurrent
A(PSCS)n, (n ≥ 4).

Theorem 4.1. In a Ricci symmetric A(PSCS)n, (n ≥ 4), the Bianchi’s second iden-
tity holds for semiconformal curvature tensor.

Proof. Since A(PSCS)n is Ricci symmetric, the Ricci tensor S satisfies the condition

∇S = 0

and dr = 0.
Using this, we have

(∇EP )(X,Y,W, V ) = a(∇ER)(X,Y,W, V ).

Hence,

(∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) =

a[(∇ER)(X,Y,W, V ) + (∇XR)(Y,E,W, V ) + (∇Y R)(E,X,W, V )],(4.1)

implies,

(4.2) (∇EP )(X,Y,W, V ) + (∇XP )(Y,E,W, V ) + (∇Y P )(E,X,W, V ) = 0.

Hence, the theorem is proved. �

Theorem 4.2. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the vector fields corre-
sponding to the 1-forms A and B are in opposite direction, provided r ̸= 0 and
[a+ (n− 2)b] ̸= 0.

Proof. Contracting equation (1.15) over E, we get

(divP̃ )(X,Y )W = A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}

g(Y,W ) +A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) +A(P̃ (X,Y )W ).(4.3)
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Moreover we have,

(divP̃ )(X,Y )W =
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}

−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
.(4.4)

Combining equations (4.3) and (4.4), the above equations reduces to

A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}

g(Y,W ) +A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) +A(P̃ (X,Y )W )

=
a(n− 3)

(n− 2)

{
(∇XS)(Y,W )− (∇Y S)(X,W )

}

−
{
[a(n− 1) + b(n− 2)]

2(n− 1)(n− 2)

}{
dr(X)g(Y,W )− dr(Y )g(X,W )

}
.(4.5)

Suppose the manifold is Ricci symmetric, then equation (4.5) becomes

2A(P̃ (X,Y )W ) +B(P̃ (X,Y )W )−A(X)

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,W )

+A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(X,W ) = 0.(4.6)

Inserting Y = W = ei in equation (4.6) and taking summation over 1 ≤ i ≤ n, we
obtain

(4.7) [a+ (n− 2)b]r[(n+ 1)A(X) +B(X)] = 0.

If r ̸= 0 and [a+ (n− 2)b] ̸= 0, then above equation gives B(X) = −(n+ 1)A(X).
Therefore, this led to the statement of the above theorem. �

Corollary 4.3. In a Ricci symmetric A(PSCS)n, (n ≥ 4) the scalar curvature van-
ishes if [(n+ 1)A(X) +B(X)] ̸= 0, provided [a+ (n− 2)b] ̸= 0.

Theorem 4.4. In a Ricci-recurrent A(PSCS)n, (n ≥ 4), if the scalar curvature is
non-zero and [a+ (n− 2)b] ̸= 0, then H̃(E) = 3A(E) +B(E), for all E.

Proof. Equation (1.13) making use of (1.15) results in the following

[A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V ) +A(Y )P (X,E,W, V )

+A(W )P (X,Y,E, V ) +A(V )R(X,Y,W,E) = a(∇ER)(X,Y,W, V )

− a

(n− 2)

{
(∇ES)(Y,W )g(X,V )− (∇ES)(X,W )g(Y, V )

+(∇ES)(X,V )g(Y,W )− (∇ES)(Y, V )g(X,W )

}

−b dr(E)

(n− 1)

{
g(Y,W )g(X,V )− g(X,W )g(Y, V )

}
.(4.8)
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Now, contracting above equation yields

(4.9) dr(E) = rH̃(E).

The use of equations (1.8) and (4.9) in equation (4.8) gives

[A(E) +B(E)]P (X,Y,W, V ) +A(X)P (E, Y,W, V ) +A(Y )P (X,E,W, V )

+A(W )P (X,Y,E, V ) +A(V )R(X,Y,W,E) = a(∇ER)(X,Y,W, V )

− a

(n− 2)

{
S(Y,W )g(X,V )− S(X,W )g(Y, V )

+S(X,V )g(Y,W )− S(Y, V )g(X,W )

}
H(E)

−brH̃(E)

(n− 1)

{
g(Y,W )g(X,V )− g(X,W )g(Y, V )

}
.(4.10)

Putting X = V = ei in equation (4.10), we get

[A(E) +B(E)]

{
− [a+ (n− 2)b]r

(n− 2)

}
g(Y,W ) +A(P̃ (E, Y )W )

−A(Y )

{
[a+ (n− 2)b]r

(n− 2)

}
g(E,W )−A(W )

{
[a+ (n− 2)b]r

(n− 2)

}
g(Y,E)

−A(P̃ (W,E)Y ) = −r

{
[a+ (n− 2)b]

(n− 2)

}
g(Y,W )H̃(E).(4.11)

Moreover, inserting Y = W = ei in equation (4.11), the above equation becomes

(4.12) [(n+ 4)A(E) + nB(E)] = nH̃(E).

Similarly, taking E = Y = ei in equation (4.11) gives,

(4.13) (1 + n)A(W ) +B(W ) = H̃(W ),

and replacing W = E in above equation, we get

(4.14) (1 + n)A(E) +B(E) = H̃(E).

Again, contracting the equation (4.11) over E and W , we infer

(4.15) (n+ 1)A(Y ) +B(Y ) = H̃(Y ).

Substituting Y = E in equation (4.15) gives

(4.16) (1 + n)A(E) +B(E) = H̃(E).

Combining equations (4.12),(4.14) and (4.16), we obtain

(4.17) H̃(E) = 3A(E) +B(E).

Hence, H̃(E) = 3A(E) +B(E) provided r ̸= 0 and [a+ (n− 2)b] ̸= 0. �
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5 Einstein A(PSCS)n, (n ≥ 4)

Theorem 5.1. If an Einstein A(PSCS)n, (n ≥ 4) is an A(PS)n and 2a(n − 1) −
bn(n − 2) ̸= 0 and 3A(E) + B(E) ̸= 0, then its scalar curvature vanishes, provided
a ̸= 0.

Proof. In Einstein manifold the Ricci tensor is given by

(5.1) S(E,X) =
r

n
g(E,X),

implies,

(5.2) dr(E) = 0 and (∇ES)(X,Y ) = 0.

Using equations (1.13),(5.1) and (5.2), we obtain

P (X,Y,W, V ) = aR(X,Y,W, V ) − r

[
2a(n− 1)− bn(n− 2)

n(n− 1)(n− 2)

][
g(Y,W )g(X,V )

− g(X,W )g(Y, V )
]
.(5.3)

The covariant derivative of equation (5.3) gives

(5.4) (∇EP )(X,Y,W, V ) = a(∇ER)(X,Y,W, V ).

Now, inserting equation (5.4) in equation (1.13), we obtain

a(∇ER)(X,Y,W, V ) = [A(E) +B(E)]

{
aR(X,Y,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(X,V )

− g(X,W )g(Y, V )
]}

+A(X)

{
aR(E, Y,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(E, V )

− g(E,W )g(Y, V )
]}

+A(Y )

{
aR(X,E,W, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(E,U)g(Y, V )

− g(Y, U)g(E, V )
]}

+A(W )

{
aR(Y, Z,E, V )

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,E)g(X,V )

− g(X,E)g(Y, V )
]}

+A(V )

{
aR(X,Y,W,E)

− r
{ [2a(n− 1)− bn(n− 2)]

n(n− 1)(n− 2)

}[
g(Y,W )g(X,E)

− g(X,W )g(Y,E)
]}

.(5.5)
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Assume a ̸= 0. Suppose that an Einstein A(PSCS)n is an A(PS)n. Then equation
(5.5) becomes

[
r{2a(n− 1)− bn(n− 2)}

n(n− 1)(n− 2)

][
{A(E) +B(E)}

[
g(Y,W )g(X,V )

−g(X,W )g(Y, V )
]
+A(X)

[
g(Y,W )g(E, V )− g(E,W )g(Y, V )

]

+A(Y )
[
g(E,W )g(X,V )− g(X,W )g(E, V )

]
+A(W )

[
g(Y,E)g(X,V )

−g(X,E)g(Y, V )
]
+A(V )

[
g(Y,W )g(X,E)− g(X,W )g(Y,E)

]]
= 0.(5.6)

Putting X = V = ei in equation (5.6), the above equation reduces to

r
[
2a(n− 1)− bn(n− 2)

][
{A(E) +B(E)}(n− 1)g(Y,W ) +A(E)g(Y,W )

−A(Y )g(E,W ) +A(Y )(n− 1)g(E,W ) +A(W )(n− 1)g(Y,E)

+A(E)g(Y,W )−A(W )g(Y,E)
]
= 0.(5.7)

Moreover, taking Y = W = ei in equation (5.7) gives

(5.8) r[2a(n− 1)− bn(n− 2)][(n+ 4)A(E) + nB(E)] = 0.

Similarly, contracting equation (5.7) over Y and E we infer

(5.9) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(W ) +B(W )] = 0.

Substituting W = E in equation (5.9) gives

(5.10) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(E) +B(E)] = 0.

Again, putting W = E = ei in equation (5.7), we get

(5.11) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(Y ) +B(Y )] = 0,

and substituting Y = E in equation (5.11) gives,

(5.12) r[2a(n− 1)− bn(n− 2)][(n+ 1)A(E) +B(E)] = 0.

Combining the equations (5.8),(5.10) and (5.12), we obtain the following result

(5.13) r[2a(n− 1)− bn(n− 2)][3A(E) +B(E)] = 0.

Hence, the theorem is proved. �

Suppose r = 0 in equation (5.5) then Einstein A(PSCS)n is an A(PS)n, provided
a ̸= 0. Thus, we can state the following:

Theorem 5.2. If a ̸= 0 and scalar curvature vanishes in Einstein A(PSCS)n, (n ≥ 4)
then such a manifold is an A(PS)n.



On almost pseudo semiconformally symmetric manifolds 245

Theorem 5.3. If the vector field ρ1 defined by g(E, ρ1) = B(E)−A(E), for all E, is
a parallel vector field in an Einstein A(PSCS)n, (n ≥ 4) with a ̸= 0 and ||ρ1||2 ̸= 0,
then it is an A(PS)n.

Proof. Let us consider that the vector field ρ1 defined in equation (3.10) is parallel in
an Einstein A(PSCS)n. Then, we get

(5.14) ∇Eρ1 = 0,

for all E.
Which gives,

R(E,X, ρ1, V ) = 0.

Contracting the above equation we get

S(X, ρ1) = 0.

Then, from equation (5.1), we have

(5.15) rg(X, ρ1) = 0.

If ||ρ1||2 ̸= 0, then above equation follows that r = 0.
Therefore, by equation (5.5), Einstein A(PSCS)n reduces to A(PS)n, provided a ̸= 0.
Hence, this completes the theorem. �

6 Decomposition of A(PSCS)n, (n ≥ 4)

A Riemannian manifold (Mn, g) is said to be decomposable or a product manifold[23]
if it can be written as Mp

1 ×Mn−p
2 for 2 ≤ p ≤ (n − 2), that is, in some coordinate

neighborhood of the Riemannian manifold (Mn, g) the metric can be expressed as

(6.1) ds2 = gijdx
idxj = ḡabdx

adxb + g∗αβdx
αdxβ ,

where ḡab are functions of x
1, x2, ..., xp denoted by x̄ and g∗αβ are functions of xp+1, xp+2, ..., xn

denoted by x∗ : a, b, c, ...run from 1 to p and α, β, γ, ...., run from p+1 to n. In (6.1),
ḡab and g∗αβ are the matrices of Mp

1 (p ≥ 2) and Mn−p
2 (n− p ≥ 2) respectively, which

are called the components of the decomposable manifold Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤
n− 2).

We will assume throughout this section that all objects indicated by a ‘bar’ belong
to M1 and all objects indicated by a ‘star’ belongs to M2.

Let Ē, X̄, Ȳ , W̄ , V̄ ∈ χ(M1) and E∗, X∗, Y ∗,W ∗, V ∗ ∈ χ(M2). Then in a decom-
posable Riemannian manifold Mn = Mp

1 × Mn−p
2 (2 ≤ p ≤ n − 2), the following

relations hold

R(E∗, X̄, Ȳ , W̄ ) = 0 = R(Ē,X∗, Ȳ ,W ∗) = R(Ē,X∗, Y ∗,W ∗),

(∇E∗R)(X̄, Ȳ , W̄ , V̄ ) = 0 = (∇ĒR)(X̄, Y ∗, W̄ , V ∗) = (∇E∗R)(X̄, Y ∗, W̄ , V ∗),

R(Ē, X̄, Ȳ , W̄ ) = R̄(Ē, X̄, Ȳ , W̄ );R(E∗, X∗, Y ∗,W ∗) = R∗(E∗, X∗, Y ∗,W ∗),

S(Ē, X̄) = S̄(Ē, X̄);S(E∗, X∗) = S∗(E∗, X∗),

(∇ĒS)(X̄, Ȳ ) = (∇̄ĒS)(X̄, Ȳ ); (∇E∗S)(X∗, Y ∗) = (∇∗
E∗S)(X∗, Y ∗),

(6.2)
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where r̄,r∗ and r are scalar curvature of M1,M2 and M respectively and are related
as r = r̄ + r∗. Also S(Ē,X∗) = 0 and g(Ē,X∗) = 0.

Theorem 6.1. Let an A(PSCS)n be a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 on M2, the manifold M2 is Ricci symmetric and scalar

curvature r∗ is constant in M2, provided dr̄(E∗) = 0 and
a(n− p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
.

ii) when M1 is semiconformally flat, then M1 is an Einstein manifold.

Proof. Let us consider a Riemannian manifold (Mn, g) which is a decomposable
A(PSCS)n, then

Mn = Mp
1 ×Mn−p

2 (2 ≤ p ≤ n− 2).

Now from equation (1.13), we obtain

P (X∗, Ȳ , W̄ , V̄ ) = 0 = P (X̄, Y ∗,W ∗, V ∗)

= P (X̄, Y ∗, W̄ , V̄ ) = P (X̄, Ȳ ,W ∗, V̄ );

P (X∗, Ȳ , W̄ , V ∗) = − a

(n− 2)

[
S(Ȳ , W̄ )g(X∗,W ∗) + S(X∗, V ∗)g(Ȳ , W̄ )

]

− rb

(n− 1)

[
g(Ȳ , W̄ )g(X∗, V ∗)

]
;

P (X∗, Y ∗, W̄ , V̄ ) = 0 = P (X̄, Ȳ ,W ∗, V ∗);

P (X∗, Ȳ ,W∗, V̄ ) =
a

(n− 2)

[
S(Ȳ , V̄ )g(X∗,W ∗) + S(X∗,W ∗)g(Ȳ , V̄ )

]

+
rb

(n− 1)

[
g(Ȳ , V̄ )g(X∗,W ∗)

]
.(6.3)

Further simplifying the above equation, we get

(∇ĒP )(X̄, Ȳ , W̄ , V̄ ) = [A(Ē) +B(Ē)]P (X̄, Ȳ , W̄ , V̄ ) +A(X̄)P (Ē, Ȳ , W̄ , V̄ )

+A(Ȳ )P (X̄, Ē, W̄ , V̄ ) +A(W̄ )P (X̄, Ȳ , Ē, V̄ ) +A(V̄ )P (X̄, Ȳ , W̄ , Ē)(6.4)

Putting X̄ = X∗ in equation (6.4) gives

(6.5) A(X∗)P (Ē, Ȳ , W̄ , V̄ ) = 0.

Also, inserting Ē = E∗ in equation (6.4), we have

(6.6) [A(E∗) +B(E∗)]P (X̄, Ȳ , W̄ , V̄ ) = 0.

Similarly inserting Ē = E∗ and X̄ = X∗ in equation (6.4), we infer

(6.7) A(W̄ )P (X∗, Ȳ , E∗, V̄ ) +A(V̄ )P (X∗, Ȳ , W̄ , E∗) = 0.

Putting Ē = E∗ and W̄ = W ∗ in equation (6.4), we get

(6.8) A(X̄)P (E∗, Ȳ ,W ∗, V̄ ) +A(Ȳ )P (X̄, E∗,W ∗, V̄ ) = 0.
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And, taking X̄ = X∗, Ȳ = Y ∗ and W̄ = W ∗ in equation (6.4) results in

(6.9) A(X∗)P (Ē, Y ∗,W ∗, V̄ ) +A(Y ∗)P (X∗, Ē,W ∗, V̄ ) = 0.

Substituting Ȳ = Y ∗, W̄ = W ∗ and V̄ = V ∗ in equation (6.4), we have

(6.10) A(W ∗)P (X̄, Y ∗, Ē, V ∗) +A(V ∗)P (X̄, Y ∗,W ∗, Ē) = 0.

Moreover, using equation (1.13) gives

(∇E∗P )(X∗, Y ∗,W ∗, V ∗) = [A(E∗) +B(E∗)]P (X∗, Y ∗,W ∗, V ∗)

+A(X∗)P (E∗, Y ∗,W ∗, V ∗) +A(Y ∗)P (X∗, E∗,W ∗, V ∗)

+A(W ∗)P (X∗, Y ∗, E∗, V ∗) +A(V ∗)P (X∗, Y ∗,W ∗, E∗).(6.11)

From equation (6.11), we obtain

(6.12) [A(Ē +B(Ē)]P (X∗, Y ∗,W ∗, V ∗) = 0,

and,

(6.13) A(X̄)P (E∗, Y ∗,W ∗, V ∗) = 0.

Putting Ē = E∗, X̄ = X∗ and V̄ = V ∗ in equation (6.4) gives

(∇E∗P )(X∗, Ȳ , W̄ , V ∗) = [A(E∗) +B(E∗)]P (X∗, Ȳ , W̄ , V ∗)

+A(X∗)P (E∗, Ȳ , W̄ , V ∗) +A(V ∗)P (X∗, Ȳ , W̄ , E∗).(6.14)

Similarly, putting E∗ = Ē,X∗ = X̄ and V ∗ = V̄ in equation (6.11) gives

(∇ĒP )(X̄, Y ∗,W ∗, V̄ ) = [A(Ē) +B(Ē)]P (X̄, Y ∗,W ∗, V̄ )

+A(X̄)P (Ē, Y ∗,W ∗, V̄ ) +A(V̄ )P (X̄, Y ∗,W ∗, Ē).(6.15)

In regard of equations (6.5) and (6.6), we have the following two cases:

i) A = B = 0onM2.

ii) M1 is semiconformally flat.

First, we consider the case (i). Then, equation (6.14) becomes

(6.16) (∇E∗P )(X∗, Ȳ , W̄ , V ∗) = 0,

implies,

a(∇E∗R)(X∗, Ȳ , W̄ , V ∗)− a

(n− 2)
(∇E∗S)(X∗, V ∗)g(Ȳ , W̄ )

−b dr(E∗)
(n− 1)

g(Ȳ , W̄ )g(X∗, V ∗) = 0.(6.17)

Now, Putting Ȳ = W̄ = ēα, 1 ≤ α ≤ p in equation (6.17), we get

(6.18)
a(n− p− 2)

(n− 2)
(∇E∗S)(X∗, V ∗)− b dr(E∗)

(n− 1)
pg(X∗, V ∗) = 0.
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Also, taking X∗ = V ∗ = e∗i , p+ 1 ≤ i ≤ n in equation (6.18) gives

(6.19)
a(n− p− 2)

(n− 2)
dr∗(E∗)− bp(n− p)

(n− 1)
dr(E∗) = 0.

If possible let dr̄(E∗) = 0. The equation (6.19) becomes

(6.20)

[
a(n− p− 2)

(n− 2)
− bp(n− p)

(n− 1)

]
dr∗(E∗) = 0.

Thus r∗ is constant in M2 provided,
a(n− p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
. Then from equation

(6.18), we get
(∇E∗S)(X∗, V ∗) = 0.

Therefore, M2 is Ricci symmetric.
Secondly, we will consider the case (ii). Since M1 is semiconformally flat, we get

aR(X̄, Ȳ , W̄ , V̄ )− a

(n− 2)

[
S(Ȳ , W̄ )g(X̄, V̄ )− S(X̄, W̄ )g(Ȳ , V̄ )

+S(X̄, V̄ )g(Ȳ , W̄ )− S(Ȳ , V̄ )g(X̄, W̄ )
]

− br

(n− 1)

[
g(Ȳ , W̄ )g(X̄, V̄ )− g(X̄, W̄ )g(Ȳ , V̄ )

]
= 0.(6.21)

Putting X̄ = V̄ = ēα in equation (6.21), the above equation becomes

(6.22) S(Ȳ , W̄ ) =

[
ar̄(n− 1) + br(p− 1)(n− 2)

a(n− p− 2)

]
g(Ȳ , W̄ ).

Therefore, M1 is an Einstein manifold.
Hence, the theorem is proved. �

Theorem 6.2. Let an A(PSCS)n be a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n− 2), then the following holds:

i) In the case of A = B = 0 on M1, the manifold M1 is Ricci symmetric and scalar

curvature r̄ is constant in M1, provided dr∗(Ē) = 0 and
a(p− 2)

(n− 2)
̸= bp(n− p)

(n− 1)
.

ii) when M2 is semiconformally flat, then M2 is an Einstein manifold.

Proof. Making use of equations (6.12) and (6.13), we get the following two cases:

i) A = B = 0onM1.

ii) M2 is semiconformally flat.

Proceeding in a similar manner as in Theorem 6.1,
Hence, we will obtain the required result. �

Corollary 6.3. If A(PSCS)n is a decomposable space such that Mn = Mp
1 ×

Mn−p
2 for (2 ≤ p ≤ n − 2), then one of the decomposed manifold is semiconformally

flat while on other manifold both the associate 1-form A and B vanishes.
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7 Examples of A(PSCS)4

In this section, we have constructed two examples of an A(PSCS)4 on coordinate
space R4 (with coordinates(x1, x2, x3, x4)) and obtain all the non-vanishing compo-
nents of the curvature tensor, the Ricci tensor, the scalar curvature and the semi-
conformal curvature tensor along with its covariant derivatives. Then we verified the
relation (1.15).

Example 7.1. Let us consider a Riemannian metric g defined on 4-dimensional
manifold M4 = {(x1, x2, x3, x4) ∈ R4 : x1 ̸= −1} given by

(7.1) ds2 = (x1 + 1)(x4)2(dx1)2 + 2dx1dx2 + (dx3)2 + (dx4)2.

A similar Riemannian metric g is given by De and Gazi[13].
Then the covariant and contravariant components of the metric are as follows

g11 = (x1 + 1)(x4)2, g12 = g21 = 1, g33 = g44 = 1

g11 = 0, g12 = g21 = 1, g33 = g44 = 1, g22 = −(x1 + 1)(x4)2(7.2)

All non-vanishing components of the Christoffel symbols and the curvature tensor in
the considered metric are as follows:

Γ4
11 = −(x1 + 1)(x4),Γ2

11 =
1

2
(x4)2,Γ2

14 = (x1 + 1)(x4)

R1441 = (x1 + 1)(7.3)

From equations (7.2) and (7.3), the non-vanishing components of Ricci tensor are

(7.4) S11 = x1 + 1.

The scalar curvature of metric considered is given by,

(7.5) r = 0.

The only non-vanishing components of the semiconformal curvature tensor are

(7.6) P1441 =
a

2
(x1 + 1) ̸= 0.

Clearly, the only non-vanishing term of ∇lPhijk are

(7.7) ∇1P1441 =
a

2
̸= 0.

In term of the local coordinate system, let us define the components of the 1-form A
and B as

Ai =





1

6(x1 + 1)
for i = 1

0, otherwise

and,

Bi =





1

2(x1 + 1)
for i = 1

0 , otherwise
(7.8)
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at any point in M4.
In (M4, g) the considered 1-form reduces the equation (1.15) in the following equations

∇1P1441 = (3A1 +B1)P1441 +A4P1141 +A4P1411.(7.9)

(7.10) ∇4P1141 = [A4 +B4]P1141 +A1P4141 +A1P1441 +A4P1141 +A1P1144.

(7.11) ∇4P1411 = [A4 +B4]P1411 +A1P4411 +A4P1411 +A1P1441 +A1P1414.

In all other cases excluding (7.9),(7.10), and (7.11), the relation (1.15) either holds
trivially or the components of each term vanishes identically.
By (7.8), we get

RHS of (7.9) = (3A1 +B1)P1441 +A4P1141 +A4P1411

=

[
3

6(x1 + 1)
+

1

2(x1 + 1)

]
a

2
(x1 + 1)

=
a

4
+

a

4

=
a

2
= ∇1P1441

= LHS of (7.9).(7.12)

By proceeding in a similar manner, it can be shown that the equations (7.10) and
(7.11) are also true.
Thus, (M4, g) is an A(PSCS)4.

Example 7.2. Let us consider a Riemannian metric g defined on 4-dimensional
manifold M4 = (x1, x2, x3, x4) ∈ R4 given by

(7.13) ds2 = (1 + 2q)[(dx1)2 + (dx2)2] + (dx3)2 + (dx4)2,

where q =
ex

1

k2
, where k is non-zero constant.

Then the covariant and contravariant components of the metric are as follows:

g11 = g22 = 1 + 2q, g33 = g44 = 1

g11 = g22 =
1

1 + 2q
, g33 = g44 = 1(7.14)

All the non-vanishing components of the Christoffel symbols and the curvature tensor
in the considered metric are

Γ1
11 = Γ2

12 =
q

1 + 2q
, Γ1

22 = − q

1 + 2q

R1221 =
q

1 + 2q
(7.15)

By (7.14) and (7.15), the non-vanishing components of Ricci tensor are

(7.16) S11 =
q

(1 + 2q)2
.
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The Scalar curvature is given by

r = gijSij = g11S11 + g22S22 + g33S33 + g44S44

=
q

(1 + 2q)3
.(7.17)

The only non-vanishing components of semiconformal curvature tensors are

(7.18) P1221 =
q

1 + 2q

{
a

2
− b

3

}
.

From equation (7.18), it can be shown that only non-zero term of ∇lPhijk are

(7.19) ∇1P1221 =
1

(1 + 2q)2

{
a

2
− b

3

}
,

and all other components of ∇lPhijk vanishes identically.
In term of the local coordinate system, let us consider the components of the 1-form
A and B as

Ai =





1

6q(1 + 2q)
for i = 1

0, otherwise

and,

Bi =





1

2q(1 + 2q)
for i = 1

0 , otherwise
(7.20)

at any point in M4.
In (M4, g), the considered 1-form reduces equation (1.15) into the following equations

∇1P1221 = (3A1 +B1)P1221 +A2P1121 +A2P1211.(7.21)

(7.22) ∇2P1121 = (A2 +B2)P1121 +A1P2121 +A1P1221 +A2P1121 +A1P1122.

(7.23) ∇2P1211 = [A2 +B2]P1211 +A1P2211 +A2P1211 +A1P1221 +A1P1212.

The relation (1.15) either holds trivially or the components of each term vanishes
identically excluding the above cases.
By (7.21) we get

RHS of (7.21) = (3A1 +B1)P1221 +A2P1121 +A2P1211.

=

[
3

6q(1 + 2q)
+

1

2q(1 + 2q)

]
q

(1 + 2q)

{
a

2
− b

3

}

=
1

(1 + 2q)2

{
a

2
− b

3

}

= ∇1P1221

= LHS of (7.21).(7.24)

By proceeding similarly it can be shown that the equations (7.22) and (7.23) also
holds.
Thus, (M4, g) is an A(PSCS)4.
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Sci. Budapest. Eötvös Sect. Math. 51 (2008), 53-68.

[12] U. C. De and A. K. Gazi, On conformally flat almost pseudo Ricci symmetric
manifolds, Kyunpook Math. J. 19,2 (1971), 97-103.

[13] U. C. De and A. K. Gazi, On almost pseudo conformally symmetric manifolds,
Demonstratio Math. 42,4 (2009), 507-520.

[14] U. C. De and Y. J. Suh, On Weakly Semiconformally symmetric manifolds, Acta.
Math. Hungar. 157, 2 (2019), 503-521.

[15] U. C. De and S. Mallick, On almost pseudo concircularly symmetric manifolds,
The Journal of Mathematics and Computer Science, 4, 3 (2012), 317-330.

[16] A. Gray, Einstein-like manifolds which are not Einstein, Geom. Dedicata, 7
(1978), 259-280.

[17] J. Kim, On pseudo semiconformally symmetric manifolds, Bull. Korean Math.
Soc. 54 (2017), 177-186.

[18] J. Kim, A type of conformal curvature tensor, Far East J. Math. Soc. 99, 1
(2016),61-74.

[19] C. Lalmalsawma and J. P. Singh, On almost pseudo m-projectively symmetric
manifolds, Novi Sad J. Math. 48, 2 (2018), 81-95.



On almost pseudo semiconformally symmetric manifolds 253

[20] B. O’Neill, Semi-Riemannian Geometry, Pure and Applied Mathematics, 103,
Academic Press, Inc., New York, 1983.

[21] P. Pal, On almost pseudo conharmonically symmetric manifolds, Kyungpook
Math. J. 54 (2014), 699-714.

[22] E. M. Patterson, Some theorems on Ricci-recurrent spaces. J. London Math. Soc.
27 (1952), 287-295.

[23] J. A. Schouten, Ricci-Calculus. An introduction to tensor Analysis and its Geo-
metrical Applications,Springer-Virlay (Berlin-Gottingen-Hindelberg, 1954.

[24] R. N. Sen and M. C. Chaki, On curvature restrictions of a certain kind of confor-
mally flat Riemannian space of class one, Proc. Nat. Inst. Sci. India, 33 (1967),
100-102.

[25] S. A. Siddiqui and Z. Ahsan, Conharmonic curvature tensor and the spacetime
of general relativity, Differ. Geom. Dyr. Syst. 12 (2010), 213-220.

[26] L. Tamaássy and T. Q. Binh, On Weakly symmetric and Weakly projectively
symmetric Riemannian manifolds, Colloq. Math. Soc. Janos Bolyai, 56 (1989),
663-670.

[27] A. G. Walker, On Rusis space of recurrent curvature, Proc. London Math. Soc.
52 (1951), 36-64.

Authors’ address:

Jay Prakash Singh, Mohan Khatri
Department of Mathematics and Computer Sciences, Mizoram University,
Tanhril, Aizawl, 796004, Mizoram, India.
E-mail: jpsmaths@gmail.com, mohankhatri1996@gmail.com



PARTICULARS OF THE CANDIDATE

NAME OF CANDIDATE : MOHAN KHATRI

DEGREE : DOCTOR OF PHILOSOPHY

DEPARTMENT : MATHEMATICS AND COMPUTER

SCIENCE

TITLE OF THESIS : A STUDY ON CERTAIN ALMOST

CONTACT MANIFOLDS AND

INVARIANT SUBMANIFOLDS

DATE OF ADMISSION : 26.02.2019

APPROVAL OF RESEARCH PROPOSAL :

1. DRC : 02.06.2020

2. BOS : 08.06.2020

3. SCHOOL BOARD : 12.06.2020

MZU REGISTRATION NO. : 3466 of 2013

Ph. D. REGISTRATION NO. : MZU/Ph.D./1402 of 26.02.2019

AND DATE

EXTENSION : NIL

Prof. JAY PRAKASH SINGH

(Head of Department)

Dept. Maths. & Comp. Sc.

Mizoram University

328


	1 Title_1.pdf
	2 Preliminary Pages_1.pdf
	3 Content_1.pdf
	4 Abstract.pdf
	5 Chapter 1_1.pdf
	6 Chapter 2_1.pdf
	7 Chapter 3_1.pdf
	8 Chapter 4_1.pdf
	9 Chapter 5_1.pdf
	10 Chapter 6_1.pdf
	11 Chapter7_1.pdf
	12 Annexure_1.pdf

