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Abstract: 

The deployment of autonomous robots has increased in the agricultural industry to 

assist human labour operations and increase production yields. Autonomous robot can 

work in difficult conditions of weather for very long hours. Autonomous mobile robot 

can be an ideal vehicle for transportation and delivery of water and spraying of 

pesticides as it is one of the most labour-intensive work at agricultural field. Most 

autonomous robot has been studied with the similar approach to autonomous 

passenger car like Tesla, Waymo. However, this approach is creating problem is 

acceptance of robots by famers. Involvement of AI, machine learning and cloud 

computing are simply too expensive and sophisticated technology for farmers to 

operate. Such systems require rigorous training of machine and data collection in 

suitable environment which is mostly difficult to be executed in agricultural land.  

Drone technologies have been popular but has security, safety issues and well as 

inefficiency of delivery. The drones used are planes or multiple rotor helicopters. 

Delivery from air to ground is done at high rate without capability to spray at precise 

location of plants. Wind turbulence added by flying machine decrease the precision of 

operations. Drones are facing new issues of security as they can harm safety of people 

and infiltrate security of sensitive places, for example many north-eastern states have 

very less area permissible to fly drones due to presence of close international borders.  

Wheeled robots can deliver at very precise locations of plants at slower rate, they are 

also energy efficient machines compared to drones. 2-wheel differential drive robot is 

a good choice for agricultural purpose due to its maneuverability and simpler 

mathematical kinetic model. Farm mobile robots are slow operating machines, hence 

their kinematic model is enough for implementation of prototypes. The robot can 

orient and move to any positions based on control of its two drive wheels, supportive 

dummy castor wheels are necessary to running 2-wheel differential drive stable. Such 

type of drive is simpler and cheaper to design in hardware compared to other legged 

and crawler robots.   

In this research study an attempt to design an autonomous navigation system for a 2-

wheel differential drive agricultural robot is carried out to design a system based on 
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fast and simple geometrical algorithms using high advanced LIDAR sensors. The 

tracking algorithms popularly used are PPA, LQR and MPC controllers. These 

algorithms are compared to each other to find their suitability to my study. MPC and 

LQR are possible solutions for fast accurate tracking control but are only suited for 

ideally modelled conditions. Disturbances caused by nonlinear factors while driving 

the robot (like slippage or wheel lock) could make the system unpredictable and 

unstable. Model based algorithms also take considerable time for its operations 

challenging to be used in 8-16 bit micro controllers. PPA however has been favored 

as more suitable method due to its simplicity of computation, however it does need 

proper tunning of its lookahead distance based on size of robot and the farm rows. 

There are various kinds of sensors and methods discussed for localization and 

mapping. LIDAR has been popularly used for simultaneous localization and mapping, 

the method is interesting however is very heavy in computation, It requires continuous 

2D or 3D modelling of working space increasing load of computation and amount of 

memory required. To remove errors caused by faulty sensors and non-linearities of 

data sensed, such method also required data from several many sensors and fusion of 

those multiple data using Extended Kalman filter. All such intelligence added to the 

system increases the overall operations to the robot computer. To design a simple 

navigation system workable in a structed farm field a well-tuned obstacle avoidance 

algorithm should be sufficient.   

For the operation of obstacle avoidance very popular algorithms like RRT, Dijkstra’s 

and AVFH algorithms have been compared. Dijkstra and RRT are branching search 

algorithm where the path to avoid the obstacle is based on the knowledge of map and 

its obstacle. A global perception of the map needs to be continuously updated to such 

algorithms for overcoming obstacles. Based on the knowledge and map available, 

these algorithms will compute a plane to make a new path to avoid the obstacle and 

reach the next waypoints in the fastest shortest route. Planning is a crucial step in such 

algorithms where it takes considerable time based on the size of the area handles and 

type of parameters set to these algorithms for tunning sensitivity. Sensitive search 

algorithms in a large map take considerable time before being able to mitigate the 

obstacle. The constant demand for knowledge of the map of surrounding also adds to 
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computational load. VFH on the other hand works like a human driver where his 

knowledge of the object face become more important than knowing the whole map. 

VFH is inspired for potential force strategy where the obstacle in proximity exerts 

repulsive certainty force. The VFH algorithm converts the cartesian map of 

surrounding and obstacles to a polar form having sectors. It then helps robot find the 

closest angle or sector to given target angle, that which is having least certainty value. 

The robot can take the angle to avoid obstacle. Therefore, VFH has been proposed to 

be used with PPA for critical decision for obstacle handling. 

The pesticide spraying and irrigation requires peculiar attention even after obstacle 

avoidance. Obstacle are measured and understood only from the front face by a robot 

travelling towards it. Once obstacle detected, apart from steering away from it going 

to next waypoint, the proper application of water and pesticides on plants at the rear 

side of obstacle is very important. For efficiency in application of pesticides and water, 

a strategy to circumnavigate the obstacle is carried out using BUG algorithm. This 

strategy overcomes the problem of neglected spraying operation on plants at rear areas 

of obstacles. This negligence happens in most search plan algorithm which try to reach 

next waypoint using the shortest route possible.  

Using a combined low computation hybrid PPA-VFH-BUG algorithm, the simulation 

was successfully carried in MATLAB program environment with acceptable results 

of performance. Simulation was carried out for low-speed mobile robots with travel 

speeds up to 2.5 km/hr. 
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1.1 Introduction 

Despite being an agricultural giant, India's agricultural water management is 

inefficient. 62% of the water comes from precipitation, whereas 37% comes from 

irrigation [1]. In rural areas, around 85 percent of water is often lost. Younger 

generations are migrating away from agriculture and toward urban occupations, 

resulting in labour shortages for farmers. Consequently, autonomous navigation robots 

will play a crucial role in agriculture, With the proliferation of mobile robot 

applications, researchers have concentrated on robot navigation research. Obstacle 

avoidance increases the challenge of mobile robot navigation. Numerous navigation 

systems based on remote controls, radio frequency identification (RFID) systems, and 

wireless network devices have been created for agriculture; nevertheless, they are 

continuously improved. Simple operations, such as the application of pesticides and 

irrigation, need straightforward navigation. India's harsh climate has worsened the 

challenges of agricultural labour; extreme noon heat waves make it impossible for 

farmers to work in the field. Farmers adopt technology in a methodical, incremental 

approach. Advanced technologies based on machine learning and data science will be 

prohibitively expensive and challenging for farmers to run. The capacity of Internet 

connections in rural locations is inadequate for high-speed applications. Various kinds 

of sensor like optical, laser, odometry and electromagnetic types of sensors are used 

in autonomous robots. A proper study on such sensors and their capability needs to be 

investigated for agro-robots.   This research focuses on the best low cost computation 

algorithm for tracking, obstacle avoidance and strategies to improve precision 

farming. Some of the control system techniques used include nonlinear proportional-

integral-derivative (PID), fuzzy logic system, adaptive, machine learning, and model 

predictive control (MPC). Map-making, localization, simultaneous localization and 

mapping (SLAM) controllers, obstacle avoidance, row followers of plants, and route 

planning algorithms are all necessary for autonomous navigation in an free 

environment [1][2]. These strategies have their merits as well as significant demerits 

discussed in this study. This study is designed for the robot to move out of such pitfalls. 

This work focuses on examining an adaptive VFH algorithm to solve issues of obstacle 

avoidance. PPA algorithm The VFH and PPA hybrid systems based on a geometric 
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algorithm and utilizing modern LIDAR sensors has been tried to be sufficient 

technology for developing farmers like in India. Due to problem of oddly shaped 

obstacles that can create gaps in application of pesticides and water, the possibility of  

BUG algorithm is tested to improve the efficiency on application of pesticides. It can 

help in proper circumnavigation of obstacles when they are detected.   

1.2 Literature survey 

Certain heuristic approaches for identifying obstructions and regulating direction have 

been implemented using intelligent techniques such as fuzzy logic control technique 

[3], neural network technique, and others. Due of imprecise results, fuzzy logic control 

methods are not always applicable. Regular rule modifications and intensive testing 

and validation are necessary to enhance precision. For a suitable and optimal output, 

the neural network approach requires a vast quantity of training and data. Controlling 

heuristic algorithms also requires the assistance of a trained operator [4]. A single-

camera vision and ultrasonic sensor-based interior navigation system for mobile robots 

is described. Some agricultural robots employ computer vision in combination with 

other sensors to improve GPS data for autonomous navigation, but these methods are 

vulnerable to ambient illumination, which is a significant disadvantage in an outdoor 

setting. A gaze-controlled architecture features a fuzzy-integrated and condition-

clarified preference for robot navigation, allowing the fuzzy degree sets to be 

dynamically activated when the state next to the robot changes [5]. A quadrupole 

potential field (QPF) technique is offered [6] to prevent collisions in the planned 

trajectory 

Farmers are gradually relying on technology to deal with a number of important 

problems that the agriculture industry is now grappling with, such as the increasing 

global food scarcity and the declining agricultural labor force. Agricultural robots 

mechanize labor-intensive, dull, and slow-moving farming tasks so that farmers may 

focus on improving crop yields, boosting farm productivity, and reducing labour costs 

in general [7]. Agricultural robots provide precision agriculture, which more 

efficiently distributes resources, and reduces resource use significantly. Currently, 

weed elimination, agriculture harvesting, and picking are all done using advanced 
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robotic equipment. Numerous vehicle mobility systems, mostly for agricultural use, 

have also been developed, including center-articulated drives, four-wheel drive, 

legged robots, omnidirectional drive robot, and chain track wheels. When developing 

the mobility, different soil and topographical conditions, open-air or greenhouse 

cultivation, as well as the requirements for maneuverability, are all taken into 

consideration. Sensor with machine vision methods as image segmentation, sensor 

fusion, hough transformation, machine learning is used to produce perception in order 

to collect environmental characteristics. Models that can conduct perception at a 

reduced processing cost must be used by small mobile robots [8]. The mobile robot 

senses its environment and moves on to the next waypoint.  

Due to a probable lack of farmers in near future, research into the creation of 

autonomous mobile robots for agricultural application is crucial. The work that robots 

do on farms is repetitive and tedious. They might involve planting, weeding, and 

harvesting. The usage of mobile robots in agricultural settings may lead to cheaper 

manufacture costs and less manual labor. However, because agricultural landscapes 

are so vast and largely unstructured (unknown), robot navigation presents challenges 

including how to change tracks and targets that are challenging to find and approach. 

Crop production has a tremendous economic impact on South Asian country and India, 

where it generates millions rupees of annual revenue. A promising substitute for 

traditional farming operations like  pesticides and fertilizer application is an 

autonomous navigation robot that can maneuver through intra-row gaps [9]. Only a 

small number of researchers have, to the authors' knowledge, published their work on 

agricultural autonomous mobile robot navigation. A mobile robot with 2 wheels that 

can steer was modelled and commanded to move around farmland in. In order to 

achieve both the robot's lateral deviation from the target course and the direction 

(orientation) of the vehicle with regard to a reference position. [10] also explored the 

outside navigation of a wheeled mobile robot; the procedure involved four steps: map 

construction, laser sensor scanning and data processing, vehicle robot localization, and 

robot movement control. One of the hardest issues in guiding mobile robots in an 

uncharted and unstructured area is managing the uncertainty and changing situations. 

The artificial potential field, the edge detection, the obstacle boundary follower 
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[11][12][13], Goal-oriented recursive track planning [14], vector field histogram 

(VFH) [6],the dynamic window method [15], and the fuzzy logic as well as artificial 

intelligence based reactive techniques [16] are just a few of the approaches that have 

been proposed for robot navigation. The model-based approaches create a path for 

mobile robot to track toward the destination point by using a map or model of the 

surroundings. [17] proposed an online method for defining an obstruction-free path 

for an outdoor mobile manipulator. A map of the terrain was created using arial image 

views, and a path clear of obstacles was set forth for the robot. The combination of 

Pure pursuit algorithm with set waypoint coordinates which were to be reached 

consecutively until last point is reached. However, the PPA lookahead distance and 

speed setting for a real scenario field setting would be challenging for efficiently 

moving the mobile robot. This is due to the fact that it is frequently challenging or 

even impossible to create a precise model of a dynamic external environment. 

Different parameter settings are required for different type of farming field and robot 

design. Sensor-based techniques [18] create control orders for the movements of the 

mobile robot using data from various sensors as sonar, a laser rangefinder, or a visual 

camera. The fundamental benefit of sensor-based methods is that a robot can move 

safely through an unpredictable environment by responding to potential hazards. The 

potential field approach has issues with oscillations in tight routes, oscillations in the 

presence of several barriers, oscillations in local minima, accidental stopping between 

tightly packed obstacles, and local minima [11]. 

WMRs are the most often utilized robot among the several highly developed, mature 

robots. The body, the wheels, the wheels supporting drive system, and the wheel 

driving method make up the majority of the standard WMRs chassis [19]. The chassis 

may be classified as two-wheel, three-wheel, and four-wheel constructions depending 

on how many wheels are present. Commonly, these structures are employed. One of 

the most popular types of constructions is the four-wheel chassis. The mobile platform 

of mobile robots in the field of agricultural engineering uses a vehicle frame with such 

a structural configuration. Sometimes it is important to take into account installing a 

buffer suspension device [19] on the site, the one of the standard Agricultural WMRs 

frame, in order to provide a steady driving ability owing to the complexity of the 
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terrain structure. The driving mode of nearly all four-wheeled chassis uses 2 wheel 

differential driving and front-wheel synchronous steering to ensure the stability of the 

motion plane and streamline the operating process. Two wheeled differential steering 

has the benefits of being easy, affordable, and quicker at avoiding obstacles. 

Additionally, three-wheeled omnidirectional driving is another typical driving 

technique in the creation of WMRs.  Nevertheless, the body frame must be 

kinematically represented during the navigation process regardless of the type of 

control mode the chassis is in it. Mobile robots ability to navigate accurately is largely 

dependent on their workplace environment. Scientists have partially resolved the 

issues pertaining to robot navigation in recent decades through a significant amount 

of scientific study, analysis, and demonstration, whether in the outside world or the 

inside environment. Global Navigation Satellite System, inertial navigation, laser , 

electromagnetic navigation ,beacon navigation  radio navigation , visual navigation 

[20] and other techniques are now used to navigate robots. In the meanwhile, 

techniques for fusing different navigation technologies are also widely employed. To 

decrease the localization error and increase navigational precision, these methods 

make use of the complementing concept of multiple kinds of sensors. The GNSS has 

been used extensively outside and is backed by established technologies, the most 

popular that is the global positioning system [21]. At the moment, GPS is the entry 

level is civilian. The current range accuracy is between 2.93 m and 29.3 m, thanks to 

improvements in atomic clock precision. But in most situations, its precision falls short 

of the requirements. Some enhanced strategies have been carried out in order to 

achieve localising precision that may be measured in centimeters or even more. 

Additionally, there may be significant localization mistakes due to the surroundings, 

which includes bad weather, blockage from barriers, etc. For WMR to successfully 

complete all the many jobs of the correct navigation operation in the challenging 

environment, it must rely on every component of the robots, and its navigation control 

structure is displayed. Precise location determination will be more challenging due to 

irrevocable variables such more obstructions and quicker signal strength attenuation. 

The four components of the WMRs' navigation structure are path localization, 

planning, mapping, and obstacle avoidance control. The robots must first assess their 

position and posture in relation to the map's characteristics after obtaining the 
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navigational challenge. If the previous map is recognized, the robots utilize the sensors 

to sense their surroundings. After analyzing and processing the data from the sensors, 

the vehicles extract points, lines, and other attributes in order to establish their location 

and posture. If it is unknown, the robots must first estimate the posture by extracting, 

processing, and integrating environmental data from the sensors in order to construct 

a local map and update the global map in real time. The robots must obtain their 

location on the global map in real time, collect the characteristics of the environment 

in accordance with the map, and then correlate the maps. At this point, the robots will 

integrate the odometry and other sensors to estimate their posture. The robots must 

determine their navigation route after finishing the map building. Three issues must 

be resolved in route planning, including determining the beginning point and the goal 

position, and obstacle handling. The beginning location and the target position must 

be differentiated in practical applications. In terms of route planning, the beginning 

location and the objective location must be obtained via both the global and local path 

plans before proceeding. The accuracy of the map construction is a requirement for 

finishing the routing because both the initial position (𝑥0, 𝑦0, 𝑧0)and goal location 

(𝑥, 𝑦, 𝑧) of the native path planning both depend on the existing map environment. 

The local path definition approach and the global path planning are nearly equivalent 

in complexity. The accuracy of the global planning may be ensured as long as the local 

path planning is completed. [22]Obstacle avoidance is yet another issue that has to be 

resolved in path design. To complete the obstacle avoidance control in this situation, 

sensors like ultrasonic sensors are needed to identify the obstructions. The posture is 

then assessed and changed in real-time to lead the robots around the barriers. Robots 

must always perform localization during the navigation process, and it is a crucial 

component of path planning. Relative localization and absolute localization [23] are 

the two main processes in the localization of the WMRs. The wheels will slip during 

moving if the relative localization is employed alone. The measuring system based on 

external distance, such as GPS, is referred to as absolute localizing. In real-world 

applications, the WMRs first estimate their locations and postures using the odometer 

to acquire their relative position coordinates (X, Y, Z), and then they use an external 

measurement device to get their global positions (X, Y, Z). The localization of the 

robots is crucial, whether they are working indoors, or outside, and accurate 
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localization is a must for the timely completion of all tasks. Real-time motion control, 

which primarily focuses on regulating wheel rotation movement, is another need for 

WMRs. The wheels can come into touch with flat surfaces and uneven terrain in 

different locations, and unstable slippage might happen. This can lead to mistakes 

building up and erroneous navigation. Special considerations must be made when 

using robots in agricultural settings in addition to the mentioned job routines. The first 

issue is the selection and calibration of the sensors. The agricultural environment is 

not regular like the structured of the urban environment. As a result, there are stricter 

standards for the precision of robot sensors. In order to calibrate the sensors and ensure 

that reliable environmental data can be recorded in implementations, it is necessary 

for the sensors to have a suitably greater sensitivity and reduced latency. It can only 

offer security for further navigation inside this way. How to achieve obstacle 

avoidance is the next phase. Obstacle avoidance is a more challenging challenge to 

solve in an agricultural setting than it is in an urban one because crops have varied 

morphologies at different growth stages. This behaviour is crucial for a variety of 

navigation systems, including autonomous vehicles, unmanned mobile robots, both 

individual and for collaborative activities [24][25][26], and for automated road safety. 

Many autonomous vehicle systems achieve navigation by fusing a local obstacle 

avoidance module with a global path planner module. The obstacle avoidance method 

chooses an acceptable direction of motion based on recent sensor data, whereas the 

global path planner chooses a good path based on the map of the given field-

environment. Local obstacle avoidance is carried out to guarantee that real-time 

limitations are met. For the robot to move safely at any kind of obstacle. The obstacle 

can never be a part of the map if it can dynamic and random.  Accurate presentation 

of map is costly process that needs surveying and sensor data collection, this cost can 

be difficult achievement for the farmers. The obstacle avoidance algorithm can be 

sufficient provided sensors data is collected and processed fast at a low-cost hardware. 

Robots not only need to avoid the relatively permanent navigational obstacles, but they 

also need to stay clear of the fields. Thirdly, safety concerns are also crucial. The 

security of the crops and mobile robots in an agricultural setting requires ongoing care. 

The operator must make sure the robots can be controlled while travelling. In order to 
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protect the robots from harming the crop if they go uncontrolled, they should be able 

to quickly halt all of their operations and switch to hibernation mode. Safety concerns 

must come first, especially when using huge robots outside. There is a scarcity of 

publicly available studies on the regulation of mobile robot technology since 

commercial farms have little familiarity with autonomous equipment, and several 

autonomous agricultural technologies are still in the model or beta test drive stages 

and are thus secret. However, the usage of autonomous equipment is expanding in 

other industries (e.g., driverless automobiles, robotic milking, autonomous mining 

equipment), which might teach us some lessons on how to regulate intelligent farming 

equipment. In order to be clear about the comparison's emphasis, GPS-guided devices 

used in commercial agriculture should be distinguished as autonomous crop 

equipment. Modern GPS guidance systems may be seen as a step toward autonomy, 

although most current autosteer technology still requires a human driver. Different 

levels of autonomy has been explained in Figure 1.1 and 1.2 [27]. 

 

Figure 1.1 SAE Levels of Autonomy (Level:0-2)  
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Figure 1.2 SAE Levels of Autonomy (Level:3-5)  

Mobile, autonomous agricultural equipment is referred to by a variety of names. In 

this research, the word "robot" solely refers to machines having strong AI decision-

making power in accordance with the reasons in[27]s. On the other hand, a piece of 

technology that has autonomy of operation with a preset course or itinerary is referred 

to as autonomous equipment (or machines). The primary subjects of this research are 

levels 2 and 3 on the driving automation level scale (SAE, 2018).).  

Agriculture robots have not been explored more, for platform based on simpler 

mathematical approaches for autonomous vehicle. Most research studies on 

agriculture robot have been approached similar to passenger vehicle technologies 

which is different its purpose and environment. Conventional (data science oriented) 

technology requires large database, expert programmer/operator and advanced 

calibration systems. This can defer farmers from adopting such technology. Complex 

algorithm for localization and mapping required 3D cloud point computation and 

suffers from inconsistent results under various conditions. Like AI or Machine 
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Learning algorithms, these methods also adds more complexity and cost to the system. 

Navigation system must be robust and predictable at the expense that some 

preconditioning of farming field maybe acceptable. Though drones have become a 

popular vehicle for farming applications, several nations have come with restrictions 

of flying drones, they are limited in range of operation and its remote control, drones 

flying also require pre declaration of area of operation agreement with authorities in 

some countries. Indian govt has online digital-sky airspace map for flyability of 

drones. Northeast states like Mizoram and Sikkim have very less flyable zones due to 

international borders. Usability of mobile wheeled robots will face lesser regulations 

and adoption challenges than legged and flying machines. There is also a setback in 

autonomous robots for agriculture as no proper protocol and regulations has been 

adopted by govt to practice and manufacture them. Safety and privacy concerns for 

humans are concerning matters in flying drone operations and AI based machines. 

Cases of failures and accidents should be accountable.    

1.3 Problem statement 

For acceptance of autonomous mobile robots in agriculture, basic standard fulfilling, 

simplistic method of navigation is necessary for the robot such that the system is low 

cost design and operable by farmers. Modern autonomous vehicles controller based 

on AI/Machine learning and SLAM technology can be costly and unpredictable. Data 

processing and learning oriented autonomous vehicle technologies require very long 

distances training. Human level driving accuracy required billion kms of driving and 

training. Such practices are difficult for farming operations. Passenger vehicles ply 

across roads with different types of landmarks, road signs. Farm robots have lesser 

obstacles and traffic protocols to bother, but each farm areas have unique type of 

landmark, objects, and texture. Internet based IOT and Cloud computing system 

required significantly high bandwidth connectivity which has not yet been solved in 

developing nations. A semi-automatic agricultural mobile robot (SAE level 2-3) 

would be appropriate technology to starting practising technologies in developing 

South Asian countries. Vehicle should be based on smart yet predictable navigation 

system. Navigation system based on hybrid algorithm motivated from classical 

methods can be attempted.  
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1.4 Objectives 

 To make low computation, low data handling navigation algorithm capable of 

detecting and avoiding dynamic obstacles based on hybrid algorithm.  

 To mitigate inefficiency problem after obstacle avoidance on pesticides 

application caused by dynamic obstacles.  

 To test the navigation algorithm in MATLAB software for results and 

validation of algorithm. 

1.5 Phases of Research Work 

 Phase 1: The study was carried out for robotic platform and algorithms for 

finding a low computation, capable of detecting and avoiding dynamic 

obstacles possible in agriculture.  

 Phase2: Development of a hybrid algorithm suitable for autonomous 

navigation algorithm was carried out. Algorithm was built keeping in minding 

the energy efficiency of mobile vehicle and optimal performance for precision 

farming (w.r.t implementation in pesticide applying operation and irrigation). 

1.6 Thesis Organization: 

Chapter 1: discusses the overall introduction, the literature review of the research. 

The scope of the study is discussed, the phases and chapter of the research is explained 

in brief.  

Chapter 2: This section makes comparative study on different navigation algorithm 

and is compared with Pure Pursuit Algorithm. The suitability of differential robot is 

understood for its applicability in agricultural robot. Different kinds of tracking 

algorithms are discussed. A simulation experiment is conducted discussed to compare 

the tracking algorithms. 

Chapter 3: This part of the research deals with study on various types of sensors 

available for obstacle detection, they are studied and compared with LIDAR based 

technology. Different kinds of localization methods, types of mapping and obstacle 
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avoidance algorithms for mobile agricultural robot are reviewed. A simulation 

experiment is conducted discussed to compare the obstacle avoidance algorithms. 

Chapter 4: This chapter focuses on the hybrid algorithm developed during the 

research. The algorithm is simulated in MATLAB software, and results are analyzed 

and concluded. 

Chapter 5: Future scope and conclusion of the research is discussed. 
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CHAPTER-2 

Study on Pure Pursuit Algorithm for Differential Robot and its applicability in 

Agricultural Robot 
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2.1 Introduction 

The pure pursuit was an early method used for autonomous tracking on robots. It is 

based on preplanned coordinates called waypoints to be covered by robot one after 

another until last waypoint is reached. It is a geometrical approach where a vehicle 

assumes a lookahead point in trajectory path. The steering angle required to reach the 

path is calculated based on a curvature created between the lookahead point and 

current position of the robot. The theory behind the PPA algorithm has been discussed 

in the section. Wheel based robots has been compared with other technologies of farm 

robots. The study on differential wheel drive comparison with other farm robot 

technologies of robot will be discussed. Different types of basic tracking system for 

autonomous robots have been discussed. The comparison among PPA LQR and MPC 

model robot has been carried out with an experimental simulation.  

2.2 Theory of Pure Pursuit Algorithm 

The pure-pursuit method then first appears in the field of robotics in 1985 . [28] 

developed a system for estimating the maneuvering required to keep the vehicle on 

the road. This was done by maintaining the road's center of gravity in the onboard 

camera's view. [29] suggests the pure-pursuit approach to follow explicit paths based 

on this idea. Pure pursuit refers to the idea that the vehicle is pursuing a point on the 

path some distance in the future. The work of Coulter [30] discusses a few pure-pursuit 

algorithm implementation problems. Since then, indoor [31] and outdoor [32] 

navigation have both utilized the pure-pursuit technique for specific path monitoring. 

Additionally, pure pursuit algorithm has some suggested enhancements. [29] proposes 

a virtual objective point at the lookahead distance to address the issue of the vehicle 

being far off the path. In [30], an intrinsic correction is added to the fundamental pure-

pursuit tracker to lessen systematic path tracking errors caused by differences between 

desired and actual steering angles. A term proportional controller to the heading 

inaccuracy between the vehicle and the path was added by [33]. Based on screw 

theory, vector pursuit uses the goal point's orientation in addition to its location [34]. 

In conclusion, pure pursuit is a common strategy continuously examined by numerous 

authors. Except for previous work on human following with a rotary sonar and a 2D 
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laser scanner [35], monitoring of implicit pathways hasn't gotten much attention since 

the concept was first suggested for mobile robots [28]. Additionally, no previous 

research was investigated the method's potential for combining several implicit and 

explicit path types. Pure pursuit tracking is used in pure chasing waypoints. To 

advance the robot from its present location to a look-ahead point in front of the robot, 

it computes the necessary angular velocity instruction. The look-ahead point on the 

route is then moved by the algorithm depending on the robot's current location until it 

reaches the end of the path, the end waypoint. This may be compared to a robot that is 

always pursuing a spot in front of it. The look-ahead point's placement is determined 

by the Lookahead Distance setting. The Pure pursuit object serves as a tracking 

algorithm for path-following algorithm that can work autonomously. A given set of 

waypoints is specific to your controller. PPA algorithm can have extended possibility 

to specify the desired linear and maximum angular velocities. The specifications of 

the vehicle dimension are used to establish these characteristics setting. The 

Lookahead distance defining how far along the route to track toward, is the most 

significant attribute. 

 

Figure 2.1 Geometrical representation of PPA algorithm 
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The system is a goal-seeking algorithm known as the pure pursuit approach developed 

[29]. The control algorithm calculated the proper turning radius to provide the desired 

look-ahead coordinate based on a preset look-ahead distance. LP is the lookahead 

point in the reference to be followed by the robot. CP is the present position of robot. 

x,y is calculated position of LP with respect to the position of the robot. At a distance, 

of radius R is calculated such that it passes through the point CP and LP. The 

circumference of the circle with radius R find the desired steering angle to move 

towards point LP on the path. The connection between x, y, R, L, and dx was calculated 

using the nomenclature as in figure 1. Following equation (2.1),(2.2) and (2.3) can be 

derived from the geometrical representation 

𝑥𝑙ℎ + 𝑑𝑥 = 𝑅     (2.1) 

𝑥𝑙ℎ
2 + 𝑦𝑙ℎ

2 = 𝐿2     (2.2) 

𝑅2 = 𝑑𝑥2 + 𝑦𝑙ℎ
2     (2.3) 

By solving the equation (2.1),(2.2) and (2.3)the following expression are reduced to  

𝑅 = (𝐿2/2𝑥),corresponding to the curvature for path desirable for travel, the desired 

the curvature becomes steering angle given by 

𝛾 = (2𝑥/𝐿2)     (2.4) 

Since x was the displacement error and 2/L2 was the gain, the pure-pursuit method 

was a proportional control algorithm. The look-ahead distance L was raised to lower 

the controller's gain, and the look-ahead distance was reduced to enhance the gain. 

Flowchart of operation is explained in Figure 2.2. The pictures given below can be 

understood as effects of changing lookahead distance of the PPA algorithm. Closer 

distance produce unnecessary oscillations as seen in Figure 2.3 while very large 

lookahead distance can make the robot travel very far at large curvature at turns 

explained in Figure 2.2.  Hence it is necessary to tune the lookahead distance properly 

such that it does mobile vehicle has optimum maneuverability. The distance depends 

on the type of path and robot degree of freedom.  
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Figure 2.2 Flowchart for PPA algorithm 
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Figure 2.3 Trajectory with large lookahead distance 

 

 

Figure 2.4 Trajectory with small lookahead distance 
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2.3 Mathematical Model for 2-Wheel Differential Mobile Robot 

 

 

Figure 2.5 Differential Drive kinematics 

The robot's trajectory can be changed by adjusting the speed of its left and right 

wheels. Formulation of the following equations (2.5),(2.6)by both wheels is derived 

based on rotation about the ICOC Instantaneous Centroid of Curvature: 

ꞷ=(R + l/2) = 𝑣𝑟𝑤    (2.5) 

ꞷ=(R + l/2) = 𝑣𝑙𝑤    (2.6) 

where 𝑣𝑟𝑤,𝑣𝑙𝑤,are the right and left wheel velocities along the ground, and 𝑅 is the 

distance between the ICC to the midpoint between the wheels. 𝐿𝑛 is the wheelbase 

length. We can compute 𝑅 and at any moment by using the following formulas in 

equation (2.7) and (2.8): 

𝑅 =
(𝑣𝑟𝑤+ 𝑣𝑙𝑤)

2(𝑣𝑟𝑤− 𝑣𝑙𝑤)
     (2.7) 

ꞷ =
(𝑣𝑟𝑤− 𝑣𝑙𝑤)

𝐿𝑛
     (2.8) 
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2.4 Forward Kinematics of Mobile Robot 

Assume that the robot in figure 1 is at a position (𝑥, 𝑦) and moving in a direction that 

forms an angle with the X axis. We suppose that the wheel axle's middle serves as the 

robot's centre of gravity. The control parameters 𝑣𝑙𝑤 and 𝑣𝑟𝑤 can be changed to cause 

the robot to move to various positions and orientations. Wheel velocities along the 

ground are 𝑣𝑙𝑤 and 𝑣𝑟𝑤.We may determine the location of the ICC using equation 

(2.9) and the velocities 𝑣𝑙𝑤 and 𝑣𝑟𝑤. 

𝐼𝐶𝑂𝐶 = [𝑥 −  𝑅 𝑠𝑖𝑛(𝜃) , 𝑦 +  𝑅 𝑐𝑜𝑠(𝜃)]   (2.9) 

After a time change of 𝛿𝑡, the change value of position and orientation is given in 

equation (2.10): 

[

𝑥′

𝑦′

𝜃′

] = [
cos (ꞷ𝛿𝑡) −sin (ꞷ𝛿𝑡) 0

sin (ꞷ𝛿𝑡) cos (ꞷ𝛿𝑡) 0
0 0 1

] [

𝑥 − 𝐼𝐶𝑂𝐶𝑥

𝑦 − 𝐼𝐶𝑂𝐶𝑦

𝜃
]+[

𝐼𝐶𝑂𝐶𝑥

𝐼𝐶𝑂𝐶𝑦

ꞷ𝛿𝑡
]  (2.10) 

equation (2.11),(2.12),(2.13) represents the instantaneous values of position and 

speed 

𝑥(𝑡) = ∫ [𝑉𝑎𝑣𝑔(𝑡)cos[𝜃(𝑡)]𝑑𝑡 
𝑡

0
   (2.11) 

𝑦(𝑡) = ∫ [𝑉𝑎𝑣𝑔(𝑡)sin[𝜃(𝑡)]𝑑𝑡 
𝑡

0
   (2.12) 

𝜃(𝑡) = ∫ ꞷ(𝑡)𝑑𝑡 
𝑡

0
    (2.13) 

The inverse dynamics of capable finding the position of the robot and the orientation 

are written in equation (2.14),(2.15),(2.16) 

𝑥(𝑡) = ∫ [𝑣𝑟𝑤(𝑡) + 𝑣𝑙𝑤(𝑡)]cos[𝜃(𝑡)]𝑑𝑡 
𝑡

0
   (2.14) 

𝑦(𝑡) = ∫ [𝑣𝑟𝑤(𝑡) + 𝑣𝑙𝑤(𝑡)]sin[𝜃(𝑡)]𝑑𝑡 
𝑡

0
   (2.15) 

𝜃(𝑡) = ∫ [𝑣𝑟𝑤(𝑡) − 𝑣𝑙𝑤(𝑡)]𝑑𝑡 
𝑡

0
   (2.16) 
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Figure 2.6 Forward kinematics of the differential robot. 

 

 

Figure 2.7 2-Wheel drive different robot prototype (SWAGBOT) 

2.5 Wheel Odometry for Robot Localization 

A robot must be aware of its location to perform well in search and retrieval tasks. It 

may not seem like a difficult effort to know where you are, but as you will see, it may 
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be difficult. People can locate themselves utilizing their sharp camera system and 

awareness of their environment. It is based on the stereoscopic viewing and map 

modelling abilities which are inherent in human brains. However, simple robots do 

not naturally possess these sophisticated abilities, particularly the kind you will be 

developing for this class. Odometry is one tool available to robots to help them locate 

themselves in their surroundings. It is the use of motion sensors to calculate the change 

in the robot's location in relation to a predetermined point. For instance, if a robot is 

moving straight forward and knows the diameter of its wheels, it may calculate the 

distance travelled by counting the number of wheel spins. Drive wheels on robots 

frequently have shaft encoders connected that produce a predetermined number of 

pulses each revolution. This pulse count allows the processor to calculate the distance 

travel led. The sensor data has some drawbacks despite being a widely used position 

sensor for mobile robots. Since the measurement is continuous, any sensing 

inaccuracy will grow over time. Robots may occasionally require the use of additional 

sensors to pinpoint their position in order to avoid having too many errors accumulate. 

 

Figure 2.8 Wheel odometer sensor 

The change in position of a wheel is given by the number of ticks counted by the 

wheel encoder at a time ∆𝑡. So,∆𝑇𝑖𝑐𝑘 is the number of ticks read by the robot’s 

computer, the distance 𝐷 travelled of the wheel is given as eqn. (2.17) 

𝐷 = 2𝜋𝑅∆𝑇𝑖𝑐𝑘/𝑁    (2.17) 
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where 𝑁 is the number of slots the encoder has in one revolution. The velocity of the 

wheel is given by eqn. (2.18): 

𝑣 = 𝐷/∆𝑡    (2.18) 

2.6 Various Platforms for Ground Mobile Robots 

Although there are many other platforms for agricultural machinery, farm tractors and 

harvesters are the most popular and well-known machines. While tractors handle most 

of the farm work utilizing various implements for tillage, weeding, sowing, fertilizing, 

and irrigation, combines are employed for harvesting duties. Recently, certain airboats 

and rice transplanting machines have also been employed in rice paddies. In other 

unique situations, utility vehicles are used in transportation. 

The transporter system is an AV's and mobile platforms' primary component. The four 

types of mobile systems currently in use are wheel, half crawler, full-crawler. Each of 

these transporter systems has pros and cons and was created with a particular 

application and level of performance in mind. Before choosing the best transporter 

system, the engineers of an agricultural AV must take account of the manageableness 

of mobile robot in various farming conditions into account. Wheel-based transporters 

are the most used form of transporting technology. This kind of transporter offers good 

steering and vehicle speed and is inexpensive, lightweight, easy to design and produce, 

and repairable. The wheels' tremendous pressure on the earth, however, increases the 

likelihood of compaction. Because the wheels' contact area is less than that of crawler 

machines, there is less friction, but this can also lead to more slippage and less 

efficiency. The vehicle wheels may be built of a variety of materials and help the car 

to maneuver with accuracy. The crawlers' bigger connecting surfaces improve friction, 

lessen the likelihood of slipping, prevent long-term soil compaction, and slow down 

maneuverability. This form of transporter system has more moving parts than the 

wheel robots, which increases the cost, breakage risk, and weight. Other drawbacks 

include a shorter system lifetime and less agility, steering, and velocity. 
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Table 2.1 Comparison of characteristics of various mobile robots 

 

There are various kinds of ground robot in used in agriculture, some of popular ones 

are mentioned in the Table 2.2. The most cost effective and popular robots has been 

wheeled robot.  

 

Figure 2.9 Wheeled robot [source:https://www.ivtinternational.com/features/feature-what-is-

holding-back-agricultural-robotics.html] 

https://www.ivtinternational.com/features/feature-what-is-holding-back-agricultural-robotics.html
https://www.ivtinternational.com/features/feature-what-is-holding-back-agricultural-robotics.html
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Figure 2.10 Crawler robot [Source: https://www.roboticsbusinessreview.com/agriculture/the-

next-frontier-of-weeding-robots/] 

 

Figure 2.11 Legged robot [Source: https://www.bayer.com/en/agriculture/article/ripe-robots] 

It can be observed from the Table 2.1 that wheel robots have low complexity of 

structure hence easy for development, low cost and long durability and acceptable 

good steering control for normal conditions. Crawlers are robot with high initial cost, 

high maintenance cost, they have superior slip control and mechanical efficiency but 

are heavy machines with low precision of operation. Legged robots are very rarely 

used because of their complexity of operation and high cost of repair, foot robot do 

have speed and maneuver issue due to complex operations. Hence it can be understood 

that wheel robots have been used very often and will remain the best choice for 

https://www.roboticsbusinessreview.com/agriculture/the-next-frontier-of-weeding-robots/
https://www.roboticsbusinessreview.com/agriculture/the-next-frontier-of-weeding-robots/
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different kinds of operations. Different sizes, shape of chassis and tires have been tried 

for various kinds of applications[36].   Differential wheel robots have been the popular 

choice for autonomous robots due to easy compatibly with electric motor drives[37]. 

Table 2.2 Prototype models of several mobile robots 

Activity Reference Mobility Path Planning 

Weeding SUSAN weeding 

robot, China 

Differential drive 4 

wheel steering 

system 

Hough transform for row 

detection 

 Weeding Pheonix robot Continuous track 

vehicle 

Path Tracking process 

Spraying Bonirob, Bosch Differential drive 4 

wheel steering 

system 

Not available 

 Spraying Contadino Robot Differential drive 4 

wheel steering 

system 

Path tracking with self-

positioning method 

 Spraying AgxeedRobot,Dutch Chain track wheel Path tracking for planned 

trajectory 

Tractor 

multiple 

operations 

BRAIN GL320 4 Wheel machine For tractor operations 

Tractor 

multiple 

operations 

Yanmar CT801 Crawler  For tractor operations 

Tractor 

multiple 

operations 

MAFF EG83 4 Wheel machine For tractor operations 

 

2.7 Regulations of Drone operations  

Drones, sometimes known as “unmanned aerial vehicles” or UAVs, are essentially 

flying robots, therefore lessons learned from their regulation may be applied to the 

regulation of agriculture equipment used on the ground. Drones used in agriculture 

can be used to spray pesticides in hard-to-reach areas, repel birds, identify animals, 

https://www.mdpi.com/2624-7402/2/1/10/htm#B73-agriengineering-02-00010
https://www.mdpi.com/2624-7402/2/1/10/htm#B33-agriengineering-02-00010
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and remotely sense cropland for variable rate planting, fertilization, and crop 

protection. Some, like drones used to spray vineyards, take the role of helicopters, 

while others, like those used to identify animals, are supplemental. Space limits and 

the need for human intervention in drone operations are important regulatory issues. 

For instance, there are often higher regulations for heavier drones that carry sprayers. 

Drones that are very light are often free from several regulations. Attached cameras, 

however, may be governed by data and privacy protection laws. Drone flight space is 

often constrained by height, distance from airports, heliports, and air traffic control 

facilities, distance from crowds of people or public places on both the horizontal and 

vertical axes, and distance from nature preservation zones. This restricts the usage of 

agricultural drones, especially when people are crowded together. 

Authorization for certain applications of heavier drones, activities near airports, in 

airspace control zones, etc., is frequently achievable but expensive and only for a 

limited time. For operators, there is a usual "see-and-avoid principle." A drone pilot 

may be able to traverse longer distances provided certain restrictions, such as those 

based on the expanded visual line of sight for sparsely inhabited places, are followed. 

When another person is present and could act, exceptions from the sight regulations—

including flying while using video glasses—may be permitted. In Switzerland, for 

instance, administrative delays of at least 3 months are a result of strong demand for 

authorizations [10]. Additionally, in Switzerland, before receiving the standard 

authorization for drone usage, agricultural drones used for spraying must first have a 

spraying authorization, like that required for regular sprayers [10]. Similar practices 

have now been followed by other European nations. Regulations governing drones, 

particularly those governing on-site human supervision, may offer guidance for 

autonomous agricultural equipment. Adoption patterns for agricultural drones appear 

to be influenced by legislation. Compared the United Kingdom, where line of sight 

mandatory for drones and other aerial application is extremely constrained, the use of 

drones for other purposes besides data collection, such as pesticide spraying and the 

application of other inputs, has grown most swiftly in China and Brazil. 

Despite their weight, agricultural drones are less dangerous than other drones since 

they operate near to field surfaces rather than necessary near people or sensitive 
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airspace. The European Union proposes to establish laws that will simply need 

operators to put in a statement with beyond direct line of sight for rural regions as a 

normal scenario, but only for drones weighing upto 25 kg, in order to prevent 

administrative obstacles and authorization delays for operators [11]. A North Dakota-

based network of business, government, and academic institutions is combining 

resources to build up the infrastructure needed for bigger agricultural drones. Their 

regulatory strategy calls for publishing flight plans and "beyond-visual-line-of-sight" 

activities [12][13]. These results suggest that agricultural drone-specific legislation is 

developing, which can promote safe and legal usage. However, to meet the demands 

for monitoring, it may require more administrative expenses and staff. In reality, it is 

difficult to regulate larger drones that are required to apply physical farming inputs. 

2.8 Path Tracking Controllers 

Autonomous vehicles have become more popular as artificial intelligence has 

advanced [38]. The four components of autonomous vehicles are: sensor data 

collection, perception from data analysis, planning next move after perception , 

actuation[39]. As seen in the figure 2.12 below the important problem to be solved 

autonomous vehicles is Perceive and the plan stage. Stage[40]. The most crucial 

component of autonomous vehicles is path tracking, which aims to precisely guide the 

vehicle along the reference route provided by path planning [41]. One of the most 

widely used path tracking algorithm is pure pursuit [42]. The (PID) proportional 

integral- derivative, model predictive control (MPC) algorithms and linear quadratic 

regulator (LQR) are the other three basic geometric path tracking algorithms. Pure 

pursuit algorithm is simpler than other path tracking algorithms. 

 

Figure 2.12 Stages of navigation process 
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Pure pursuit algorithm outperforms other path tracking algorithms in terms of tracking 

accuracy and simplicity [43][44]. Many academics concentrate their efforts on pure 

pursuit algorithms. To enhance tracking performance at high speeds, M. Elbanhawi et 

al. [45] developed a model predictive effective yaw control application of pure pursuit 

path tracking. In order to reduce tracking errors, Shan et al. [46] created a novel pursuit 

algorithm called CF-Pursuit that substituted the clothoid C curve for the circle being 

used pure pursuit. Numerous researchers [47][48] modify the lookahead distance 

which is directly proportional to its operating speed. Table 2.4 makes the brief feature 

comparison of different kind of algorithms for tracking autonomous vehicles. Pure 

pursuit, Stanley and MPC controllers are the most widely accepted methods for 

geometric approach for basic navigation in mobile robots[49].  

Table 2.3 Feature comparison of different tracking controller 

 

2.9 PPA applied on Autonomous NISSAN Passenger Car 

An experiment was conducted to equip a Nissan Leaf electric car with autonomous 

features[50]. The system's prototype functioned admirably when the Zala Zone 

automobile industry testing facility opened. This vehicle can only operate on the 

university campus and proving ground, and it must go at a comparatively slow speed 

Features
Pure Pursuit 

Controller

Stanley 

Controller

Model Predictive 

Controller

Type of 

operations

Simpler geomteric 

controller

Improved 

geometric 

controller suitable 

for 2 axle vehicles

controller based on 

mathematical kinematic 

model of the system

Specific 

features

Proper lookahead 

distance tunning 

depending on shape and 

speed of vehicle

Opposite direction 

steering for heading 

error correction

MPC must be solved 

numerically and cannot 

provide a closed-form 

solution

Computation 

load
Computationally cheap

Computationally 

cheap
Computationally expensive

Limitations

Optimal lookahead 

distance may vary 

depending on robot 

design and path type

Deviations from 

reference path is 

higher

Non-linearnities can effect 

the performance.
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of 25 km/h. The multiple-goal points-based pure pursuit is the initial and very 

promising alteration. It is predicated on the straightforward premise that it considers 

several potential goal points before choosing the one that fits best. Based on its fixed 

number of discretely conceivable curvatures, the realization. The wheel angle is 

restricted by the kinematic characteristics of the vehicle, directly determines these 

curvatures. Instead of utilizing an optimizer, we employed a fixed set of discrete 

potential curves in our realization and determined the best fitting solution. The reading 

were observed as given in Table 2.3. The modified Novel pure pursuit algorithm had 

acceptable Average deviation AvgD and Maximum deviations MaxD, the error and 

deviations were improved over the classical simple pure pursuit and follow the carrot 

methods. 

 Table 2.4 Deviations caused to Nissan Leaf prototype (Sz´echenyi Istv´an University) 

 

2.10 Comparative Case Study on various Path Tracking Algorithm 

Considering a 2-wheel robot (front and wheel) was attempted to control with the help 

of three different strategies of path tracking algorithm. Geometrical depiction given in 

figure 2.13. Taking a no. of goal points as N, assume that angle 𝛼𝑖 is inside the range 

[𝛼𝑚𝑖𝑛,𝛼𝑚𝑎𝑥] of all feasible angles (presumably the wheel angle limits). It is possible 

to calculate a series of curves, each with a radius of 𝜌𝑖 = −2/𝛼𝑖 and a centre point of 

𝐶𝑖. 𝐶𝑖, 𝐺𝑘 calculates the line segment's distance from the objective point. The d-

Method
Lookahead 

Parameter

Deviation[m] ZalaZone 

racing track
Deviation[m]  School

Follow the carrot 10 AvgD: 0.65 MaxD: 2.76 AvgD: 0.55 MaxD: 2.7

Follow the carrot 10.5 AvgD: 0.74 MaxD: 3.12 AvgD: 0.63 MaxD: 2.9

Classical pure-pursuit 2 AvgD: 0.10 MaxD: 0.56 AvgD: 0.08 MaxD: 0.5

Classical pure-pursuit 2.3 AvgD: 0.12 MaxD: 0.64 AvgD: 0.09 MaxD: 0.6

Classical pure-pursuit 2.7 AvgD: 0.13 MaxD: 0.74 AvgD: 0.11 MaxD: 0.7

Classical pure-pursuit 3 AvgD: 0.15 MaxD: 0.97 AvgD: 0.13 MaxD: 0.8

Classical pure-pursuit 10 AvgD: 0.52 MaxD: 1.90 AvgD: 0.46 MaxD: 1.9

Adaptive LH distance as per speed2.33; 2.0 AvgD: 0.125 MaxD: 0.653 AvgD: 0.17 MaxD: 0.7

Adaptive LH distance as per curvatures2.33 AvgD: 0.12 MaxD: 0.636 AvgD: 0.097 MaxD: 0.6

Multiple goal 5; 6; 4 AvgD: 0.48 MaxD: 1.40 AvgD: 0.30 MaxD: 1.34
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distance from the curvature is given by 𝐺𝑘, the normalised difference between the 

length of this segment and the radius. 

𝑑𝑠𝑢𝑚 = ∑ |‖𝐶𝑖, 𝐺𝑘‖ − 𝜌𝑖|𝑁
𝑘=0     (2.19) 

The total of the difference eqn. (2.19) for each goal point serves as its metric for 

choosing a proper angle. The curvature with the lowest 𝑑𝑠𝑢𝑚is finally picked. Vehicle 

speed was increased for longer look-ahead distances while being kept low for shorter 

look-ahead distances. A brief study on different methods carried out by [49] has laid 

out the general characteristics Pure pursuit, Stanley and model predictive controller in 

following table.  Using the criteria of regulating accuracy and computing economy in 

low-speed settings, this[51] research compared to the performances of Pure Pursuit, 

Stanley, Linear Model Predictive Control, and Linear Quadratic Regulator. The 

kinematic bicycle model, which creates its location and heading angle of vehicle in 

accordance with the steering command and desired velocity, was used to build the 

vehicle model. The controller seeks to achieve zero heading angle error and minimal 

lateral offset error. The lateral offset error, measured in local coordinates, is the angle 

between the position of the vehicle and the reference path. 

2.10.1 Pure Pursuit Controller: To reduce the cross-track error 𝑑𝑒, the Pure 

Pursuit controller uses a lookahead point on the desired path at a fixed distance 𝑙𝑑.  

 

Figure 2.13 Geometrical depiction for 2-wheel robot 
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A lookahead distance from the position of the axle behind to the reference path 

determines the destination point.  

The geometry relationship is given by 𝛿 = tan−1 𝑙𝑑/𝑅, where 𝑅 is the radius 

of the curvature is determined by lookahead point (x,y) and the coordiate of its rear 

wheel, may be built using the vehicle bicycle model. There are also sin() = 𝑑𝑒/𝑙𝑑. The 

output of the Pure Pursuit controller for a bicycle model is 

𝛿 = 𝜃𝑒(𝑘) + tan−1(
𝜆𝑑𝑒(𝑘)

𝑣(𝑘)
)   (2.20) 

where λ is gain parameter. The equation (2.20) shows that the vehicle steer towards 

the reference path when its crosses the track errors 𝑑𝑒 and 𝜃𝑒 increase. 

2.10.2 The LQR Controller: Linear Quadratic regulator. It was widely used 

in autonomous wheeled mobile robotics, is simply an automated method of 

determining an acceptable state-feedback approach. The controller for track the 

reference trajectory will be constructed in this step. First, the error vector e is made up 

of the x-expressions for the position error and orientation error. The error state 

transformation formula (eqn. 2.21) is given by T, 

𝑇 =

𝑠
𝑑𝑒

𝜃𝑒

= [
−𝑐𝑜𝑠 −𝑠𝑖𝑛 0
𝑠𝑖𝑛 −𝑐𝑜𝑠 0
0 0 1

] 𝑒   (2.21) 

The linear equation eqn. (2.22) for error is obtained as below: 

 

�̇� = [
0 −𝑣
0 0

]  𝐸 +  [
0

−𝑣/𝑙
] 𝑢    (2.22) 

The aim for always optimal control issues is to establish the best control law. The 

closed-inputs loop's are therefore expressed in the following equation, where K is the 

feedback gain 

𝑢 = 𝐾𝐸    (2.23) 
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2.10.3 Model Predictive Controller: Predictive Linear Model Controller A 

trajectory error model, a system constraint, and an optimization goal make up an MPC 

controller. The tracking control system and its foundation are shown in the error 

model. The constraints of the system produce steady control signals. The system 

stability and path tracking speed are considered while building the optimization 

objective. 

The autonomous vehicle model if is given by eqn. (2.24) 

[
�̇�
�̇�

�̇�

] = [
𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝜃

𝑡𝑎𝑛 𝛿/𝑙
] 𝑣   (2.24) 

Where the error state model is given by eqn. (2.25): 

∆�̇� =  [
0 0 −𝑣 𝑠𝑖𝑛𝜃
0 0 𝑣 𝑐𝑜𝑠𝜃
0 0 0

] [

𝑥 − 𝑥𝑟

𝑦 − 𝑦𝑟

𝜃 − 𝜃𝑟

] + [
𝑐𝑜𝑠𝜃 0
𝑠𝑖𝑛𝜃 0

(𝑡𝑎𝑛 𝛿)/𝑙 𝑣/(𝑙𝑐𝑜𝑠2𝛿)
] [

𝑣 − 𝑣𝑟

𝛿 − 𝛿𝑟
] (2.25) 

The discrete model of the error becomes as in eqn. (2.26) 

∆𝑒(𝑘 + 1) = ∆𝑒(𝑘) + 𝑡𝐴∆𝑒(𝑘) + 𝑡𝐵∆𝑢(𝑘)   (2.26) 

These four control techniques govern the model. Another two distinct types of 

pathways (eight-shape path and circular path) are used to compare these controllers, 

with the results displayed in Figure 2.14-2.16. We specifically calculate the eight-

shape path's distance error those that are indicated by ex and ey respectively. The 

simulation results are shown in Table 2.5. In conclusion, the controller for Pure Pursuit 

is sensitive to setting of its lookahead distance. A short lookahead distance causes 

quick variations in the steering angle. Although the tracking is less precise with a wide 

look-ahead distance, it is more stable. On a smooth path, the Stanley controller 

performs accurately in tracking, but a sudden change at the path's curve causes 

significant tracking mistakes. The Lin-ear Quadratic Regulator controller does not 

take constraints into account, but it offers an explicit and linear solution with little 

online computational overhead. Proactive actions are taken by the Model Predictive 

Control, and restrictions are taken into account. It has fewer tracking mistakes than 
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the other controllers despite having a somewhat higher computing overhead. The 

graph plot taken by different algorithms are given in Figure 2.13,2.14,2.15[51] for 

sinusoidal, 8 and circular shape trajectory. 

Table 2.5 Error measure of different techniques 

Error 𝒆𝒙(𝒎) 𝒆𝒚(𝒎) 

MPC controller 0.050 0.471 

LQR controller 0.066 0.591 

PPA controller 0.204 0.2314 

 

 

Figure 2.14 Result of tracking in sinusoidal shaped path 
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Figure 2.15 Result of tracking in 8-shaped path.  

 

Figure 2.16 Result of tracking in circle shaped path 

2.11 Experiment for Comparison of Path Tracking Controllers 

An experimental and analysis for comparison of tracking algorithm for a different 

robot in farm field scenario was carried out in MATLAB software. The sample plot of 

the trajectory travelled by robot in given in Figure 2.15. Three different algorithms 

Pure Pursuit Algorithm, Model predictive control and Linear Quadratic Regulator 
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were tested for a differential robot of dimension wheelbase length 0.5 meters. It was 

tested for a field dimension of 40m x40m. Scale of map is 5 pixels per meter. The task 

was to cover 2 rows of plants. The plants are represented by black parts in the map. 

The a map was designed using grid occupancy map conversion of a actual plantation 

field. The simulation was carried out in a 2 D environment concerning only the lateral 

movements of the robot. Waypoints were created for the robot to travel beside 

different rows of plants. The robot was designed to perform at two levels of speed 

1.5km/hr and 2.5km/hr for all three methods.  

 

Figure 2.17 Robot trajectory for tracking analysis performed in MATLAB 

simulation. 

 

Figure 2.18 Block diagram for LQR/MPC controller. 
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Deviation caused in travelling the path was measured. The actuals base length 

covering all waypoint from start to finish was 609 pixels which is equal to 122m 

according to the scale of the map. The total time taken by each method to complete 

the task was also accounted. Time measurement is important for comparison of 

algorithm. The lookahead distance was also varied for two different settings of 4m and 

8m. This simulation is tested only for path tracking performance but the not the object 

avoidance strategy.  

2.12 Observations and Analysis for Comparison of Path Tracking Controllers 

Form the experiment important observations were conducted. Disttrv, Timeexe, Dev% 

are distance travelled, time of execution and deviations caused during travel. The three 

indicators for analyzing the performance of the algorithm. The readings are given in 

the Table 2.6. Distance travelled indicates the total path travelled by the robot to reach 

its goal. Higher Disttrv indicates more overshoot of travelling caused by the method 

hence it represents the overall oscillation and overshoots effecting the robot. Higher 

value of Disttrv implies for higher Dev% and hence inefficiency faced. As the 

agricultural path is fairly a straight the overshoots at the corners and turns causes more 

deviation than the oscillations.  

Table 2.6 Performance of comparison of tracking algorithms. 

 

PPA MPC LQR

Disttrv(m) 124 123 123

Time exe 310 410 330

Dev% 2 1 1

Disttrv(p) 128 124 125

Time exe 182 405 302

Dev% 5 2 3

PPA MPC LQR

Disttrv(p) 125 124 125

Time exe 221 405 301

Dev% 3 2 3

Vel=2(km/hr)

Disttrv(p) 129 124 125

Time exe 232 405 301

Dev% 8 2 3

Vel1=1.5(km/hr)

Vel2=2.5(km/hr)

LhD1=4m

LhD2=8m
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Figure 2.19 Performance chart at different velocities of robot 

 

Figure 2.20 Performance chart at different lookahead distance  

As it can be observed form the graph Figure that Disttrv is higher (so the deviation also) 

for PPA algorithm when the velocity is increased but time of execution Timeexe has 

remained low compared to LQR and MPC algorithms (observed in Figure 2.7). The 
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lookahead parameter is an important PPA settings that highly impact the performance 

of PPA algorithm. With change in lookahead distance (LhD) the deviation Dev% 

increase in significant and begins to impact the overall travel efficiency of the robot 

(seen in graph Figure 2.8). Performance beyond 10% of deviation can impact the 

overall energy efficiency of robot significantly. Hence a proper selection of lookahead 

distance is crucial for performance of PPA based navigation. The lookahead distance 

adjustment depends on the size of field and the size of robot.  

2.13 Conclusion 

In an agricultural setting, navigation costs. All agricultural employees are concerned 

about this issue. WMRs with advanced mapping and localization system are expensive 

. The differential drive robot is the most employed robot for agriculture operations due 

to its simplicity of kinematic and controllability. In real scenario of agriculture, the 

three wheel is less used, but the 4-wheel differential drive is more used. Even in 4W-

wheel design of mobile robots, the 2-wheel differential drive with 2 castor wheels 

placed at the rear is often used. The kinematic modeling of the mobile robot remains 

the same as castor wheel as free omnidirectional wheel. Unless the rear castor wheels 

are stopped by obstruction, the capacity of the robot remain the same. Hence study on 

differential drive robot is best and popular option for agricultural vehicles. The cost of 

agricultural robots will inevitably increase if robot navigation technology, which has 

been used in other industries, is brought straight to agricultural engineering. In the 

meantime, the real production will have an impact on the output and benefit value. 

Therefore it is important to implement cutting-edge technologies to the field of 

agricultural robots at a reasonable cost and also meet the public's need for agricultural 

robots with precise navigation. Although the PPA algorithm struggles with 

appropriately calibrating the lookahead distance, it can be used in agricultural 

applications where the path's nature is stable. It is possible to empirically determine 

the look-ahead distance that works best for general vegetable fields like object or 

potato plantations. Since agricultural robots are slow-moving machines, the PPA 

algorithm in combination with the WMRs' kinematic model can give useful results. 

High performance and high-speed vehicles require mathematical dynamic modelling 
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of the vehicles. There is some gain in performances MPC and LQR controller but PPA 

requires very less mathematical computation for its geometrical based system. The 

experiment conducted was on ideal conditions of road traction, the other tracking 

algorithms can suffer from unpredictable non linearities caused by slippage and 

minute obstructions in real scenario. Performance can also be effected by minute 

changes in the robot model, due replacement of some parts like chnaged tyre size, 

chassis.  PPA algorithm being the “reach to goal “strategy based on kinematic is    

lesser effected by parameter variations of model due as it more position oriented than 

others. However proper positions sensors and obstacle avoidance algorithms must 

assist the PPA algorithm. 
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CHAPTER-3 

Study on LIDAR sensor and Obstacle Avoidance Algorithms for Mobile 

Agricultural Robot 
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3.1 Introduction 

In order to navigate about the environment and avoid crashes while following a path 

or reaching a goal, mobile robot navigation requires obstacle avoidance method. The 

path planning techniques use such algorithms with localization, and the waypoints area 

map to determine and follow the optimum path to the target while avoiding obstacles. 

An understanding of different type of sensors and their suitability for appropriate type 

of environment and machines will be explored in this chapter.  The study comparison 

of sensors in terms of efficiency and cost is explored for such sensors utilized in 

autonomous navigation.  The several stages of localization and mapping is discussed. 

The different variety of techniques uses for SLAM technologies are explained. The 

complexity of such algorithms are explored and compared with simpler strategies of 

autonomous navigation methods. The different types of obstacle avoidance algorithm 

are compared and tried with an experiment and results are discussed.  

3.2 Sensor Technologies for Agricultural Robots 

A wide range of tasks need the use of sensors in agricultural operations, including 

localization and mapping, navigation-guidance, obstacle and plant detection, their 

recognition, and environmental data monitoring (including soil, water, air and plants). 

They help with decision-making operations, task activation or execution, and 

performance assessment of the robot. According to the data they produce, sensors can 

be categorized into the following groups: Motion measurement methods include 

odometry, millimeter-wave radar scanning, laser radar systems, inertial or artificial 

landmarks recognition, sonar and machine vision [52]. Environmental parameters can 

be measured using a variety of sensors , including infrared (IR) sensors, X-ray 

devices,  acoustic, optical, 3-D and 2-D vision systems [53]. Separating sensors 

depending on where they are or the data they are collecting, they can be internal and 

external sensors, is another option. Numerous distinct system components are 

monitored internally by sensors, such as encoders that report joint angles and wheel 

velocities, IMU accelerometers can measure linear accelerations and gyroscopes that 

monitor circular accelerations. Dead reckoning typically uses mentioned sensors. In 

order to circumvent the challenge of modelling odometer inaccuracy, inertial sensors 
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have now been utilized in a variety of automotive applications as a substitute to 

odometry data. Additionally, these sensors can be enclosed to create a sturdy 

packaging [52]. Internal sensors, however, are prone to drift and accumulate 

inaccuracies as a result of variations in climate, gravity, wheel slippage, exposure to 

close magnetic fields or magnetic materials. These sources of error can quickly result 

in significant positional drift if inertial sensor data are combined to provide position 

and orientation.  The external sensors utilized in agricultural robots and automated 

systems use IR,GPS, machine vision, laser scanners (LIDAR), ultrasonic-waves 

systems[52], hyperspectral (Zhao et al., 2016), and environmental parameters to gather 

environmental information data about the state of the robot in relation to the position 

of the mobile robot and also the local positioning for its different components [54]. 

The most successful external sensors in terms of commerce for autonomous passenger 

cars are machine vision and GPS sensors [55]. Navigation and direction are provided 

by GPS sensors, which provide the system with pure positioning. Real-time kinematic 

RTK-GPS and differential GPS (D-GPS) are two highly developed and precise GPS 

technologies that enable precise real time measurements. Their high price is one of the 

key factor driving up the price of robotic systems for early years but which is falling 

due to popularity of such technology , and according to [56], they are costly to be 

widely utilized in farm machinery. [57] showed that RTK- GPS receivers provide 

incredibly accurate findings when used in broad fields. RTK-GPS was utilized by [58] 

to guide mobile robots. Their employment as the primary sensor for agricultural 

vehicle navigation systems in steering control is justified by their high level of 

accuracy [59]. However, since its receiver is typically situated beneath any tree 

canopy, which either blocks the satellite signals due to error accumulation from 

numerous reflections on obstacles or tree canopy, the GPS is not as reliable in covered 

regions like greenhouse orchards as it is in open fields [59]. Due to the construction 

of the greenhouse, location errors are also produced there. The GPS signal is returned 

in various directions. The combination of a GPS with internal sensors used for 

navigation decreases the mistakes collected by each and serves as a reference since 

the errors of a GPS and dead-reckoning sensors are often complementary to each 

other[9]. 
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(a)   (b)    (c)    (d) 

Figure 3.1(a) LIDAR Sensor 3D LiDAR sensors MRS1000, (b)Sparkfun ZF9P RTK-

GPS, (c)SR04 Ultrasonic sensor, (d)Frequency Modulated QT 50 RT Radar Sensor 

3.3 LIDAR Sensors for Agricultural Robots 

LIDAR stands for Light detection and ranging sensor Global rules regulating the use 

of chemical products in agriculture are becoming more stringent. For instance, the 

Ecophyto 2018 programme in France seeks to significantly cut back on the use of 

phytosanitary agents. As a result, in order to preserve production rates, several farming 

operations that were made easier (though still not simple) by the use of herbicides, 

require other alternatives. The French company Naio Technologies1 created the Oz 

robot, an unsupervised weeding robot, in answer to this demand. This robot has a 

LiDAR sensor that it uses to identify the crops, enabling it to navigate the field on its 

own without destroying the product. The robot provided by its company requires some 

previous knowledge about the breadth, length and numbers of the field crop rows in 

order to perform an optimal autonomous navigation. This means that the precision of 

such in forms directly affects the navigation behavior. This work's goal is to offer a 

brand new autonomous navigation type of algorithm that doesn't need any prior field 

knowledge. Although researchers were hoping for mobile robots navigation, vision 

based methods produced the initial findings [60]. However, as noted in [61], the 

camera data are subject to lighting and climatic influences, which can affect the 

methodology robustness. A technology using GPS3-based navigation was 

considered  as an alternative strategy [62]. However, without increased precision, like 

RTK4-GPS, conventional sensors do not have enough accuracy for navigation. 

Furthermore, RTK-GPS are designed for an Oz robot price system can be pricey. 

Although weakly responsive to outdoor sunlight, the LIDAR based technique seems 
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to be a cheap option, which is why many commercial robots are taking it into 

consideration like the Oz robot and the new French robot PUMAgri5. As previously 

indicated, present robots rely on the precision of those in forms and require other 

information about the crops (size, length, etc.) in top of the sensor data. In other words, 

the focus of this research is processing LIDAR data to suggest a reliable autonomous 

navigation system not requiring those prior details. The robot needs to find the crop 

rows in order to travel on its own in the field. This can be framed as a pattern fitting 

issue: given a set of data (LiDAR measurements), we must be able to identify the set 

of straight lines (the rows) dividing the data into distinct clusters (Fig. 1). An intriguing 

LIDAR assisted autonomous navigation algorithm is reported in [61]. This method's 

fundamental doesn’t require is the necessitates to calibrate the algorithm. This can be 

related to the need for prior simulation, which we want to keep aside for the robustness 

reasons. According to Barawid et al., the method being evaluated in the study  is based 

on line detection (the crops) with 2D point cloud (LIDAR readings) [63]. The Hough 

transform and the RANSAC line fitting algorithm are two well-known methods for 

line detection. According to [64]-based methods for detecting lines in a 2D point cloud 

are typically more effective than Hough transform methods. 

 

Figure 3.2(a) LIDAR Scanner YD X2 placed with objects around the environment, (b) 

Scanned data and point cloud plotted in MATLAB software.  

A low cost 2D LIDAR mode YD X2 sensor figure 3.2(a),(b) is very popular sensor 

used by mobile robots. The description of the sensor’s details, reading method and 

math computations involved is expressed below.   
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Table 3.1 Data format for YD X2 sensor 

 

The above table specifies the byte organization of different data provided continuously 

by the sensor scanner. Data available are stream of hexadecimal numbers. Decoding 

of data is done to find angular readings and respective measurements. Correction 

calculations needed to be included to improve readings. Following table Table 3.2 will 

explain the description of every byte produced by the scanner.  

Table 3.2 Data byte description for YD X2 sensor 

 

The scanner module sends random data frame size depending on its scan time available 

for every scan operation. The angular range of sampled scan is specified by (equation 

(3.1)) the range of values denoted by FSA(starting angle) to LSA(ending angle)  

𝐴𝑛𝑔𝑙𝑒𝑠𝑐𝑎𝑛 = 𝐴𝑛𝑔𝑙𝑒𝐿𝑆𝐴 − 𝐴𝑛𝑔𝑙𝑒𝐹𝑆𝐴   (3.1) 

Angle at a particular angle indexi is given by eqn. (3.2) 

𝐴𝑛𝑔𝑙𝑒𝑖 =
𝐴𝑛𝑔𝑙𝑒𝑠𝑐𝑎𝑛

𝐿𝑆𝑁−1
∗ (𝑖 − 1) + 𝐴𝑛𝑔𝑙𝑒𝐹𝑆𝐴  (3.2) 

Due to error caused by reflection of varying distances, the correction at particular 

indexi is given byeqn(3.3) 

𝐴𝑛𝑔𝑙𝑒𝑐𝑜𝑟𝑟 = 𝑡𝑎𝑛𝑑−1(21.8 ∗
155.3−𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖

155.3+𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖
)   (3.3) 
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Starting angle is given by eqn. (3.4), last scanning angle is given by eqn. (3.5) The 

angle at every index i after the compensation of corrected angles is given byeqn. (3.6) 

𝐴𝑛𝑔𝑙𝑒𝐹𝑆𝐴 = 𝐴𝑛𝑔𝑙𝑒𝐹𝑆𝐴 + 𝐴𝑛𝑔𝑙𝑒𝑐𝑜𝑟𝑟_𝐹𝑆𝐴   (3.4) 

𝐴𝑛𝑔𝑙𝑒𝐿𝑆𝐴 = 𝐴𝑛𝑔𝑙𝑒𝐿𝑆𝐴 + 𝐴𝑛𝑔𝑙𝑒𝑐𝑜𝑟𝑟_𝐿𝑆𝐴   (3.5) 

𝐴𝑛𝑔𝑙𝑒𝑖 = 𝐴𝑛𝑔𝑙𝑒𝑖 + 𝐴𝑛𝑔𝑙𝑒𝑐𝑜𝑟𝑟_𝑖   (3.6) 

Distance values is given egn. (3.7) directly by the ith streaming bytes 

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑖 = 𝑆𝑖    (3.7) 

 

(a)                                           (b) 

Figure 3.3(a) Mobile robot in field with LIDAR scanner, (b) Obstacle perception of 

robot  

In an agricultural setting, LIDAR technology is more reliable because it is not affected 

by background illumination conditions. Additionally, the viewing area may exceed the 

capabilities of a camera. Despite these benefits, Light detection and ranging navigation 

in agriculture is not widely used, largely because of its high price. Cost savings in 

recent years have reignited interest in this technology. Using LIDAR, [63] created a 

real time guiding system for driving an automated vehicle through an farm orchard. 
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For vehicle navigation, vegetation rows are extracted using the Hough Transform. 

They said that because the algorithm can only recognize straight lines, curved rows 

provide a challenge. Another drawback of the approach is when the Hough transform 

failed to extract the proper plant rows, leading to a loss of steering system. As in the 

instance of Subramanian et al., LIDAR was also utilized to for obstacle avoidance 

while navigating. [65] created a 3D LIDAR-based navigation technique more lately, 

and they utilized a statistical model to identify the planted rows. In order to remove 

the points that belong to the ground, the LIDAR acquires a 3D point cloud. A statistical 

model then detects groups of points that correspond to the plants. Although the results 

are encouraging, because the statistical model is unique to maize plants, it will be 

difficult to scale the strategy to other plants. The cluster of 3D points that the statistical 

model is dependent on the size as well as shape of the vegetation. The system also 

places limitations on the operating circumstances, such as plant size and robot speed, 

because it is created specifically for plant phenotyping. The lack of resistance to 

disruptions in the proposed solutions is one of their key drawbacks. Agri-cultural 

environments have a number of sources of unpredictability and are dynamic and non-

deterministic. For instance, the rough terrain and the many plant types' forms, sizes, 

and colours cause noise. A robot working in such a setting will experience wheel 

slippage, measurement noise, and controller and actuator noise on top of those 

problems. Therefore, creating a navigation system that can handle various sources of 

variance is a difficult challenge. The most promising navigation techniques are the 

probabilistic ones suggested by [66]. A 2D LIDAR model was presented by them to 

characterize various environmental noise kinds. For the robot to autonomously 

navigate through an interior or outdoor urban environment, a particle filter is employed 

in conjunction with the sensor model. For row following in a maize field, this project 

attempts to build an autonomous navigation technique for a robot outfitted with a 

LIDAR. The navigation technique is based on a particle filter algorithm [66], that is 

used to assess the robot field condition of the system, robot heading position, error of 

lateral deviation, and spacing between columns of plants and the ends of rows. The 

robot is steered using these calculated values. 
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3.4 RTK-GPS Technology for Agricultural Robots 

RTK GPS is a GPS, one that uses a terrestrial base station, which already knows its 

location, to produce GPS correction information and sends them to the vehicle to 

correct GPS readings in order to gain more precise location values. As discussed 

earlier, GPS determines the position and estimates the distance using a carrier 

waveform that has been phase-modulated with P and C/A values. The carrier phase 

comparison method is used to find the correction value, which is then transmitted via 

the RTCM data format protocol. In order to define the differential data link for real-

time differential calibration of the GNSS mobile receiver, the Radio Technical 

Commission for Maritime Services (RTCM) was established [67]. The RTK-GPS 

system transmits the required data for GNSS location correction values using the 

accepted RTCM protocol. The specifics for two versions may be found in. Standards 

are mainly divided into version2 and version3 standards. Version 2 is currently seldom 

ever used, and version 3 is very popular. So, for implementation. RTCM propagation: 

Telemetry is typically heavily utilized while using RTK-GPS in UAV operations. For 

more precision, a platform like Q Ground Control must is required which needs to be 

installed base station before it can be connected to the GCS. The RTCM correction 

data is then streamed to the drone via the control board by the ground station using the 

datalink system. Due to its ability to transmit MAV Link information, telemetry is the 

most can be used type for communication when operating agro-robots. Without 

installation of the receiver near the rover or the communication equipment, this 

platform enables the user to receive and use GPS correction data information from the 

nearest mount, which means a reference station, if the Internet is connected. It uses 

the Networked Transport of RTCM over Internet Protocol (NTRIP) standard when 

supplying data [68]. NTRIP Client, its Caster, and the Server make up Network RTK. 

NTRIP Server transmits continual GPS data to its Caster after receiving data provided 

by the GPS base station.  Numerous studies have been done to deal with the scenario 

where the aforementioned RTK-GPS system is directly endangered. First, according 

to research, mounting three receivers successively increases the likelihood that an 

RTK-GPS receiver will have an uninterrupted GPS signal despite bad environmental 

factors [69][70]. Even if the received GPS signal was tampered because of the 
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multipath effect, its three receivers in a line work together and produce accurately 

computed results. This method has the drawback that it solely concentrates on 

gathering accurate GPS data for the reception stage and is therefore unable to 

withstand network latency issues. The solo RTK approach is the next option, and it 

uses observation data recorded in the receiver for dead places to calculate the RTK-

GPS data [70]. Even when the system hits a dead spot, it may still produce continuous 

RTK-GPS data by utilizing the earlier created GPS readings. But another drawback of 

this study is that it only looks on the receiver part. To make the entire  

 

Figure 3.4 Trajectory comparison of RTCM. 

RTK system robust, it is crucial to consider and improve not just the receiver end but 

also the transmitter end. Research that dynamically controls the data transfer rate at 

the transmission end of RTK-GPS positional data is also available. By managing 

packet-switching communication while taking environmental factors into account, this 

method can increase the system's effectiveness and viability from an economic 

standpoint. 
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Figure 3.5 RTCM propagation system 

 

This system can successfully transmit RTK-GPS signals in a dangerous environment 

by adapting the data rate in a flexible way. In contrast to earlier research, it increases 

the stability of the RTK-GPS system during the transmission process. However, it has 

a drawback in that it does not offer a system solution when the RTK-GPS data is not 

entirely received. As a result, there are gaps in the available research, which is left for 

future studies. 

3.5 Comparative Study on Sensor Technology for Localization of Agricultural 

Robot 

Lateral navigation (LNAV), The most popular location sensors for AVs are vision 

sensors, smooth navigation , X-ray pulsar-based navigation , global positioning system 

(GPS), differential GPS (DGPS), GNSS and real-time kinematic-GPS (RTK-GPS). 

Such sensors have varying accuracy, intervals, and methodologies. In order to operate 

the entire system using the triangulation concept, this system is made of single system 

which is uploaded onto a robotic platform and two static image sensors as subsystems 

[71]. The system uses a specified distance (L) between two subsystems and two angles 

measured from the base line to a visual marker mounted on the robot to establish the 

robot's position. Two fluorescent bulbs with red and white radii have been utilized as 
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the optical marker put on the robot since the positioning algorithm detects it based on 

chrominance. Each subsystem is made up of a computer, a stepper motor, a CCD 

camera, and a rotary encoder. The rotary encoder as well as the CCD camera, 

respectively, detect the deflection angle of the visual marker in an image (HD) and the 

angulation of the CCD camera, which together measure the angle to the visual marker 

on the robot. The controlling system uses an image analysis to determine the position 

of the robot using two different angles from the sub-systems, and it transmits the 

location data with a radio receiver (for example, a wireless modem) [71]. Power cables 

were installed all around the field for the LNAV, an off-the-wire electromagnetic 

induction system [71]. The cables that were put around the field formed a magnetic 

field, and this navigation system was created by Kubota Co. With increasing distance 

from each cable, the resultant magnetic fields become significantly deeper. Two 

magnetic field sensors were utilized on either side of the vehicle for this system. The 

robot has to be manually taught along the field boundary in order to use this 

positioning technique. This method might work well in a variety of weather 

conditions, but big fields can significantly raise the cost of building. 

The Japan Aviation Electronics Industries designed SNAV utilized DGPS, a 

Transcranial Magnetic Sensor (TMS), and an inertial measurement unit (IMU) (Fig. 

10b) [72]. To enhance the interval of positioning system, the IMU and TMS were 

utilized. The expense, information service, and reference station were the main 

drawbacks to using SNAV, even though its accuracy was adequate. Sanyo Electric Co. 

produced XNAV, which was created by BRAIN-IAM. However, this positioning 

sensor made use of an optical measurement system, despite the fact that XNAV 

typically resembles an image sensor (Fig. 10c) [72]. Its reference station was used to 

examine the mounted target on the vehicle robot (Fig. 10 (9), from which the diagonal 

length (L) and horizontal angle could then be determined. This led to the objective 

being coordinated. Four crucial positioning systems are used today: GNSS, GPS, 

DGPS, and RTK-GPS.  All share a common foundation in the global satellite 

navigation system (GNSS), but each differs slightly in approach, accuracy, 

topography, and application. GALELEO Several GNSSs, notably QZSS (Japan), 

NAV- STAR (US), IRNSS (India), BeiDou- 3 (China), GALELEO and GLONASS 
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(Russia) are currently in use (Europe). The GPS provides accuracy to within 3 m by 

using three satellites for attitude and longitude measurement and other satellite for 

height. A GNSS antenna is carried by the mobile unit (rover) to pick up GNSS signals. 

The base station used by DGPS to improve positional accuracy has a known positional 

coordination. Accuracy of 10 cm is possible with DGPS. RTK-GPS may be the most 

suitable choice because some agricultural applications need a minimum precision of 5 

cm. Using the positional coordination of a base station, which is transmitted by a 

transmitting antenna, RTK-GPS corrects the location of the readings. Several 

businesses currently offer both antennas in a single box. table 3.3 a few positional 

sensors that are frequently employed in vehicle robotics labs, along with information 

about their accuracy and sampling rates. Table 3.3 discusses the various remote 

sensing positioning sensors with comparative price and accuracy.  

Table 3.3 comparison of RTK-GPS sensor with other localizing sensors 

 

For military UAVs, laser sensors are mostly utilized in autonomous navigation (laser 

gyroscope and laser homing) due to its high accuracy in determining distance, good 

directional cues, and potent anti-jamming properties. They are rarely seen in 

agricultural devices because they require optical systems, which renders them 

inappropriate for situations with high humidity, severe light pollution, dust, or smoke 

[73].A passive detection method with high interference resilient capabilities and 

effective concealment is infrared sensing technology. Even in poor weather or at night, 

it can estimate distances and define contours [74][75]. However, because to the 

system's short detecting range and the ease with which the surroundings might 

interfere with its light output, Structured light is emitted from the laser and, after 

passing through various lens structures, is converged light rays of various forms.  

Sensor Type Brand Model Accuracy(cm) Frequency(Hz) Price range

SNAVsystem JAEI Prototype 10 2 Depends on Prototype

LNAV system Kubota Prototype 5 10 Depends on Prototype

Visual sensors Prototype Prototype 30 0.8 Depends on Prototype

RTK GPS module Sparkfun ZF 9P 10 20 $0.4k-$4k

XNAVsystem Topcon AP-L1 1-5 2 $5k-$6k

RTK GPS module Topcon Legacy-E 1 10 $5k-$16k

RTK GPS module Topcon AGI-3 2 10 $5k-$30k

RTK GPS module Trimble SPS855 0.8 20 $5k-$15k

Differential GPS Hemisphere V100 60 0.05 $3k-$8k
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Table 3.4 Characteristics of obstacle sensors 

 

Line oriented light is the name given to the linear light band. The structured light 

sensor is made up of a laser and different structure-specific lenses [76]. The line rays 

optical sensor is especially suitable for robot measurement and control tasks in 

complicated environments because of its advantages in interference immunity 

capability, high precision and real-time capability. Table 3.5 compares various 

prototypes used for different purpose of operations, with their existing 

prototypes/products available globally. One of the popular ranging techniques is time 

of flight (TOF) ranging. It is a two-way ranging technique that gauges the separation 

Sensor Type Max Range(m) Merits Demerits

RTK GPS   --- high accuracy does not work in shelter

Ultrasonic sensor range<20m Low price

not reliable for close distance readings, 

suffer from blind acoustic spots, effected 

by environment

Laser/Infrared 

sensor
range<50m

realiable due to high 

resolution

required spinning mechanism, single point 

data is unreliable for small objects, new 

solid state sensor is expensive

TOF range<10m highly reliabile
low resolution and have environmental 

interference

Structured light 

sensor
range<10m

high resolution., reliablity 

more than stereo vision

closely placed light sensors interfere with 

each other, effected by outdoor natural light

Radar system, 

Millimeter wave
range<250m

immune to weather 

conditions like heavy 

rain, dense fog. etc

low resolution with very high cost, limited 

access

Binocular(stereo) 

vision
range<100m high resolution

needing proper lighting conditions, high 

computation required

Monocular vision range<10m

low cost system with 

simple architecture, 

lesser computing 

resources than laser and 

binocular system

large sample database required
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by timing how long it takes the measuring signal to travel between the stations. It is 

better suited for situations where great ranging precision is required since it uses less 

energy and is simpler to install than other ranging techniques. The propagation speed 

of the signal, which is typically electromagnetic wave signal, is almost that of light. A 

detecting radar that operates in the microwave range is millimeter-wavelength radar. 

The range of its frequency is 30 to 300 GHz.  

Table 3.5 Suitability and Application of obstacle sensor 

 

Millimeter length of wavelength radars can operate in all climate conditions due to 

their powerful penetrating ability, longer operating distance, dependable detection, 

and electromagnetic interference immunity. In contrast, due to the complex operating 

environment of farmland, ultrasonic and other sensors based on optical principles are 

easily influenced by climatic conditions [77].  Binocular stereo vision technology 

obtains the parallax result by binocular picture acquisition from multiple cameras, 

stereo matching, and other procedures, drawing on the capacity of human eyes to 

comprehend 3D space. The 3D information of the space scene is then recreated using 

the depth information of the objects. The stereo vision technology can identify and 

Sensor Type Suitability for obstacle avoidance
Applied agricultural 

protoypes/drones

RTK GPS

on-site calibration, suitable for localisation of 

obstacles maps, not suitable for fast response 

Obstacle Avoidance

Hanhe: Venus-1, AYQF: 3WQFTX-10 

DJI: T16, GKXN: M23-E S40-E, XAG: 

P20/30 2018 P series 2019

Ultrasonic sensor
low resolution and suitable for short to mid-

range operations
XAG:P20 2017

Laser/Infrared 

sensor

can only produce discrete information, suitable 

for short-distance obstacle avoidance

DJI(consumer UAVs):Inspire 2,  

Phantom 4Pro Hanhe:CD-15,Mavic 2,

TOF
short sensing range hence suited for OA 

auxiliary device
  ---

Structured light 

sensor

only suitable for indoor OA with proper 

lighting conditions

Radar system, 

Millimeter wave

more applied to agricultural UAV machines, 

the OA systems is cost-ineffective

XAG:P series 2018/2019,  TXA:R-16, 

DJI: MG-1S GKXN: S40-E

Binocular(stereo) 

vision

suitable for most OA problem but can fail 

under optical illusional conditions

XAG:P20 2017,   DJI:consumer UAVs, 

P20/30 2018 P series 2019,Hanhe: CD-

15, Mercury-1,

Monocular vision
has no proper depth knowledge, hence suitable 

mosty for static or 1D moving objects.
DJI: Mavic2
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gauge the distance between the fuselage and the obstacles because to its effective 

camouflage, ability to gather complete information (including color and pattern of the 

obstructions), and 3D depth knowledge of the scene [78]. 

3.6 Sensor Fusion for Mobile Robots 

 

This section focuses on data fusion and several often-used terms in the literature that 

occur at the perception layer. Sensor data fusion refers to processing steps that take 

the sensor data from multiple separate sensors and combine the information from these 

sensors to produce a common and unquestionably superior result compared to what 

the processing of each individual sensor could produce. Synergy refers to the ability 

of sensor data fusion to produce better or more appropriate findings than single sensor 

processing. Beginning with the collecting of sensor data, Figure 9 depicts the 

multisensory processing procedure. The sensors processing then starts to examine the 

sensor data, breaking it down into several jobs like calibration, feature Extraction, and 

object detection, etc. This process ultimately provides the application with a more or 

less comprehensive picture of the environment. The sensors should be calibrated 

individually in both time and space prior to the sensors acquisition process. 

Consequently, a multisensory system must be synced, or the data obtained must be 

time-aligned, as compared to a single sensor. The sensors must then be "space-

aligned," which calls for the mathematical determination of displacements between 

various (spatial) sensor coordinate systems. provides a non-exhaustive illustrative 

overview of the tasks required for processing sensor data fusion. There are steps for 

following the level of abstraction in multisensory.  

For instance, low level processing tasks include calibration, temporal alignment, and 

reconstruction, but high-level tasks include "objects identification" and obstacles 

categorization. According to certain viewpoints, these categories include early and late 

sensor data fusion.  
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Figure 3.6 Block diagram of sensor fusion stages 

3.6.1 Sensor Refinement: This stage addresses the three objectives of 

Calibration, time Alignment and reconstruction of Sensor Models. They all try to use 

the most accurate sensor observations. The lowest, or initial, processing steps make 

up most of the sensor refinement. As a result, it also creates the interface between the 

sensor and the sensor processing system. Broadly speaking, low level processing jobs 

have not been examined in as much detail as processing steps that are involved in 

object and scenario improvement due to their inherent complexity. These low tier jobs 

really have to deal with a massive amount of raw sensor data relative to the refinement 

level of the item and the circumstance. The raw sensor data may also seem radically 

different due to the very varied imaging, range, and other sensor features. 

3.6.2 Calibration and Time Alignment is the process of figuring out how a 

measuring device's output (in this case, many sensors) relates to the value of the 

quantity or attribute supplied according to a standard measurement. A separate issue 

arises with time alignment. Multiple sensor systems, in general, are not synchronized, 

meaning that each sensor acquires its measurement at a different and distinct time. In 

reality, it would be challenging or pointless to develop a multisensory processing 

system and a view of the environment based on readings from various sensors acquired 
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at various times since they are likely to reveal incongruous environmental conditions. 

The sensor models and a standard way to interpret and describe raw data are two 

further groups of issues to deal with the sensor refinement level. In automotive 

applications, the phrase sensor model refers to a model of the sensor's data and how 

that data relates to the local environment, encompassing both a model of the sensor 

data and a model of the surrounding area of the vehicle. For some types of sensors, 

like RADAR sensors, this is often done separately; nevertheless, a multiple sensor 

system is not typically considered in its entirety. A single model that can describe all 

the many forms of sensor data appearing in the field of preventative safety applications 

on these low levels such as laser, laser, pictures, has not yet been discovered. The goal 

of the object refinement level is to interpret the numerous sensor observations which 

are actually subsets of the sensors' raw and weakly preprocessed data, as distinct 

objects or as elements of the environment seen (e. g. pedestrians, other vehicles, 

buildings, guard rails, trees, etc.). As seen in Figure 10, in during object refining 

process, "observations" from various sensors, which are depicted by ellipses of various 

colors, are recognized as objects (such as other cars or people). 

3.6.3 Extraction of Features might be thought of as the process of 

determining features or attention-grabbing characteristics, such segments of sensor 

data related to the same item in the environment, for example. Segmentation, contour 

extraction, etc. are some concepts or methods that are fundamentally employed in 

feature extraction. The sample below illustrates feature extraction by segmentation in 

LIDAR sensor data: We must first execute clustering before segmenting the 

environment. The proximity between each pair of successive points in the scan is 

considered when dividing the data, such as those from a LIDAR, into sets of neighbor 

points. Therefore, a cluster is a group of measurements (scan points) that are 

sufficiently close to one another and likely represent the same item because of their 

proximity (Mendes et al., 2004). 

3.6.4 Object Recognition and Filtering Methods typically approximation 

algorithms yield the values of specific physical entity properties or features that are 

especially crucial for the implementation under consideration (R. Goodman et al., 

1997). For instance, estimates might be produced for the performance parameters 
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(such as the location and the relative velocity) of the objects seen outside the host 

vehicle in automotive safety and driver aid systems. The use of several time-discrete 

estimations of the same items found at various times is beneficial in order to enhance 

the prediction of the objects' characteristics or states (from objects observed 

surrounding the vehicle). The best case scenario would be to represent how the 

characteristics of the items change over time. The sequence estimation issue is a filter 

problem in essence. The Kalman filter and its expanded variant, the extended Kalman 

filter are two of the most well-known filters used in the automobile industry to address 

these issues (see Kalman, 1960) and (Welch & Bishop, 2001) for more). 

3.7. Extended Kalman Filter 

Kalman filter dynamics is the end outcome of several cycles of filtering and prediction. 

In the context of Gaussian probability density functions, the dynamics of these cycles 

are calculated and understood. The Kalman filter dynamics condition is satisfied to a 

steady-state filter and the steady state gain is computed under additional requirements 

on the system dynamics. It introduces the innovation process connected to the filter, 

which stands for the unique information sent to the prediction by the most recent 

system measurement. The faulty ellipsoids connected to the included Gaussian pdf are 

used to analyze the filter dynamics. The conditional quantile functions that provide 

the minimal mean-square estimate are no longer Gaussian when the dynamics of the 

system state or the dynamics of the observations are neither linear nor monotonic. This 

non Gaussian method projection and mean evaluation using the best nonlinear filter 

entails a significant processing cost. The Extended Kalman filter is a suboptimal 

method for solving the issue within the context of linear filters (EKF). The initial 

nonlinear filter dynamics surrounding the earlier state estimations are linearized by 

the EKF, which then applies a Kalman filter for the system dynamics. 
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Figure 3.7 EKF sensor fusion model for autonomous vehicle. 

Kalman extension filter Because the observation equation is non-linear, estimating 

fusion employing range, range-rate, and Cartesian measurements is a nonlinear 

dynamic state estimation issue. Therefore, the Kalman filter is incorrect. The typical 

method is to employ an analogous observation matrix in the regular Kalman filter 

equations after approximating by a series expansion:  

 

Figure 3.8 EKF probability distribution 

For a first-order series expansion (linearization) of the quasi-measurement equation, 

an extended Kalman filter (EKF) is used. The relative estimated state projection is 

evaluated using the recursive equations of the EKF, which are shown below. calculates 
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the covariance matrix, which is supplied by the comparative state vector and its related 

covariance matrix. State equation of prediction is given by eqn. (3.8), 

𝑃𝑘+1/𝑘 = 𝐹𝑘𝑃𝑘𝐹𝑘
𝑡_𝐺𝑘𝑄𝑘𝐺𝑘

𝑡    (3.8) 

And the Kalman gain is given by eqn. (3.9), 

‘ 

𝐾𝑘+1
𝑚 = 𝑃𝑘+1

𝑘

(𝐻𝑘+1
𝑚 )𝑡 [𝐻𝑘+1

𝑚 𝑃
𝑘+

1

𝑘

(𝐻𝑘+1
𝑚 )𝑡 + 𝑅𝑘+1

𝑚 ]
−1

  (3.9) 

Updated state after fusion is given by eqn. (3.10) 

𝑋𝑘+1
𝑚 = 𝑋𝑘+1/𝑘

𝑚 + 𝐾𝑘+1
𝑚 (𝑧𝑘+1 − ℎ𝑚 (𝑋

𝑘+
1

𝑘

𝑚 ))   (3.10) 

3.8 Obstacle Avoidance Algorithms and Techniques 

3.8.1 Potential Field Algorithm 

[79] has suggested a robot may be subject to fictitious forces. In this technique, the 

goal exerts an attractive pull on the robot while barriers repel it. For a specific robot 

position, a resultant force vector R is calculated, consisting of the total of a target-

directed attractive force and repelling forces of obstacles. The method is then repeated 

while using R as the robot's acceleration force. The algorithm calculates the robot's 

new position for a specified amount of time. [80] has improved this idea further by 

considering the robot's speed close to obstacles. It provided a mixed methodology for 

local and global path planning that uses a potential Field approach. [81]has applied the 

potential field method to off-line path planning. By fusing distinct obstacle functions 

with logical procedures. These approaches share the presumption of a predetermined 

and known model of the world, in which impediments are represented by 

straightforward, predefined geometric shapes, and the robot's path is generated 

offline. All of the aforementioned techniques have indeed been improved upon, but 

none have been applied to a mobile robot with actual sensory data. In contrast, 

[82]used experimental robotic system that are outfitted with a circle of ultrasonic 

sensors to implement a potential field technique. Each ultrasonic range reading is 
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treated as a repulsive vector field in Brooks' approach. The robot pauses, turns into the 

direction of the resulting force vector, and continues moving if the combined strength 

of the repelling forces is greater than a predetermined threshold. However, with this 

method, only one set of range readings is considered, and earlier readings are ignored.  

3.8.2 Virtual Force Field Algorithm 

For the purpose of representing obstacles, the VFF approach employs a two-

dimensional C Cartesian histogram grid. Similar to CMU's certainty grid concept, the 

histogram grid's cells (i,j) each include a certainty value, c, which expresses the 

algorithm's level of assurance that an obstruction is present at those points. The 

construction and upkeep of the histogram grid are different from those of the 

confidence grid. The method developed by CMU projected a probability profile onto 

the cells that are impacted by a range reading; this process is computationally 

demanding and would take a long time to complete if real-time execution on an on-

board computer were tried. Contrarily, our approach just adds one cell to the histogram 

grid for each range reading, resulting in a probability distribution with minimal 

computing cost.  

 

Figure:3.8 Histogram grid probability distribution of grid values 

This cell is located on the sensor's acoustic axis and correlates to the recorded given 

distance for ultrasonic sensors. Although this method may seem oversimplified, a 

probability distribution is really obtained by swiftly and constantly sampling each 

sensor as the car moves. As can be seen in this process involves continually 

incrementing the same cell and its nearby cells. [83] This produces a histogram 
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probability distribution where high certainty values are found in cells closer to where 

the obstacle is actually located. 

Each active cell pushes the robot away with a simulated repulsive force F. The size of 

this i,j force is inversely proportional to d and inversely proportional to the certainty 

value C*, where d is the distance between the cell and the vehicle's center and x is a 

positive real number . All virtual repulsive forces are added up at each iteration to 

produce the final repulsive force F. A virtual attractive force F of constant magnitude 

is simultaneously applied to the vehicle, pulling it towards the direction of the target. 

The force vector R is produced by adding F and F together. Up to distinct repulsive 

force vectors F must be calculated and accumulated in order to calculate R. i,j 

Therefore, a specially created algorithm for the quick computing and summing of the 

repulsive force vectors serves as the computational core of the VFF method. The VFF 

technique has been used on a mobile robot equipped with a circle of 24 ultrasonic 

sensors and has been thoroughly assessed.  

3.8.3 Vector Field Histogram (VFH) Algorithm 

When the various repulsive forces from the histogram grid cells are summed up to 

generate the resulting force vector F, the VFF approach has an intrinsic flaw that 

results in an extremely harsh feature extraction. The direction and magnitude of the Fr 

are reduced from hundreds of data points to just two valus in one step. As a result, 

precise knowledge of the local barrier composition is lost.  A new technique called the 

vector field histogram to address this flaw (VFH). Instead of one step data reduction 

process employed by the VFF method, the VFH technique uses a two stage approach. 

As a result, there are three types of data representation: 

a) The most thorough description of the robot's surroundings is kept at the top 

level. In this level, range data sampled by the on-board range sensors is updated 

regularly in real-time on the 2-dimensional Cartesian histogram grid C. The 

procedure for the VFF approach is also the same. 

b)  

c) A one-dimensional polar histogram H is built around the vehicle's present 

position at the middle level. H is made up of n angular sectors with specfic 
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width. By mapping the active region C* into H by a transformation, each sector 

k now has a value h which indicates the polar obstacle density in the direction 

that sector k is related. 

d) The parameters for the vehicle's drive and steer controllers, which are the VFH 

algorithm's output, are the lowest level of data format. 

Polar Histogram Data reduction is the step where the grid coordinate based forces are 

converted to a polar form. The angle of the position eqn. (3.10) of grid coordinate(i,j) 

with respect to the sensor position is 𝛽where (𝑥𝑖, 𝑦𝑖) are position of the coordinate and 

(𝑥0, 𝑦0) is the position of sensor 

𝛽𝑖,𝑗 = tan−1(𝑦𝑖 − 𝑦0)/(𝑥𝑖 − 𝑥0)   (3.10) 

The potential magnitude of object𝑚is given by eqn. (3.9) 

𝑚𝑖,𝑗 = 𝐶𝑖,𝑗
2 (𝑎 − 𝑏𝑑𝑖,𝑗)    (3.9) 

where a,b are position constants, 𝐶 is the certainty value, d as the distance between 

object and sensor, 

a) The square of Ci,j. This demonstrates our conviction that repeated range 

readings as opposed to isolated distance readings, which could be the result of 

noise represent real impediments. 

 

b) m is proportionally related to -d. As a result, when occupied cells are close to 

the robot, they produce big vector magnitudes; when they are farther away, 

they produce smaller ones. To be more precise, a and b are selected so that a-

bd = 0. m is equal to 0 for the farthest active cell and increases linearly for 

cells that are closer. 

 

The polar density is given by eqn. (3.10):  

ℎ𝑘 = ∑ 𝑚𝑖,𝑗𝑖,𝑗     (3.10) 
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Dueto the discrete nature of the histogram grid, the result of mapped values may 

appear noisy and leading tonoisy errors in calculating the steering direction.  

Therefore, smoothing filter processing is applied to the value of h, which is defined 

by eqn. (3.11) 

ℎ𝑘
′ =

ℎ𝑘−1+2ℎ𝑘−1+1+⋯+𝑙ℎ𝑘+⋯+2ℎ𝑘−1+1+ℎ𝑘+1

2𝑙+1
  (3.11) 

 

where ℎ𝑘
′  is the smoothed polar obstacle density (POD). Value of l can be decided 

as per the smoothness required and computation expendable.  

 

The transformation and the representation can be understood by placing and robot 

in a obstacle course as in Figure 3.10(a)(b). Robot with a 360-degree scanner 

sensor placed in the center. Object A, B and C are placed around the vehicle. A is 

small sized object than B and C. Figure 3.9 

 

 

Figure 3.9 Robot in obstacle course 



67 
 

 

 
(a) 

 

` 

(b) 

Figure 3.10(a) Polar histogram in polar form, (b) Polar histogram (filtered) 

represented w.r.t robot orientation 

The breadth of the robot is was not considered by the original VFH approach. Instead, 

it adjusts for the robot width and smooths the polar histogram using anlogcially 

derived low-pass filter. The primary challenge in putting the original VFH method 

into reality is the adjustment of this filter [84]. Even for a fine-tuned filter, the robot 

still has a propensity to scrimp. In comparison, the VFH+ approach accounts for the 

breadth of the vehicle by using a low pass filter that has been computed theoretically. 
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The robot radius rr, which is the distance from the robot center to its farthest boundary 

point [85], enlarges obstacle areas on the map. 

The certainty cells are literally made larger by a radius of rr+s=rs+ ds where ds is the 

smallest distance between the robot and an obstacle, for further security. The robot 

can be thought of as a point-like vehicle because the barriers have been expanded by 

rr+s. For mobile robots whose shape can be roughly described by a disc, this method 

works well. The barriers cells must be increased in size in accordance with the 

measurements and current orientation of the robot if its shape is extremely 

asymmetrical. By growing the barriers while the principal polar histogram is 

constructed, this width adjustment approach is much effectively executed. Unlike the 

previous VFH approach, which updated just one histogram sector for respective cell, 

this method updates all histogram sectors that correspond to the expanded cell are 

updated. For each cell the enlargement angle is given by eqn. (3.12): 

𝜑𝑖,𝑗 = arcsin (
𝑟𝑠+𝑠

𝑑𝑖,𝑗
)    (3.12) 

Then the sector value h is defined by eqn. (3.13), 

ℎ𝑖,𝑗
′ = 1 𝑖𝑓 𝑘. 𝛼 𝜖 [𝛽𝑖,𝑗 − 𝜑𝑖,𝑗 , 𝛽𝑖,𝑗 + 𝜑𝑖,𝑗]  (3.13) 

Else as given by eqn. (3.14) 

ℎ𝑖,𝑗
′ = 0    (3.12) 

The VFH+ approach determines a collection of potential suitable directions after first 

locating all openings in the masked polar histogram. These potential trajectories are 

then subjected to cost function that accounts for more than simply the difference 

between the candidate and the goal direction. The new direction of motion is then 

decided upon based on which candidate direction has the lowest cost. 
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Figure 3.11 Flowchart for VFH Algorithm 
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3.8.4 Bubble Band Technique 

This technique, first out by Khatib and Quinlan in [86], establishes a "bubble" 

containing the greatest amount of open space surrounding the robot that may be 

traversed without colliding. A simplified representation of the vehicles geometry and 

the range data supplied by the sensors are used to estimate the shape and size of the 

bubble.This idea allows for the planning of a path between a starting point and a 

destination using a group of these bubbles. However, we also include it in this concise 

presentation due the concept of a bubble, viewed as a subset of empty space 

surrounding the robot. Obviously, this technique is more of a problem of offline path 

planning than one of obstacle avoidance. 

 

Figure 3.12 Bubble band strategy 

3.8.5 BUG Algorithm 

The "bug algorithm" is the most basic obstacle avoidance algorithm ever documented. 

It states that when a barrier is met, the robot entirely circles the item to determine the 

location with the closest proximity to the objective. From present location, the robot 

then will exit the barrier as an algorithmic bug Because of how ineffective this method 

is, various changes have been suggested [87].The robot begins off following the 

obstacle's border in the "bug2" method but it immediately abandons it as it crosses the 

line between the start point and the objective. Even though the bug-type algorithms 
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are extremely simple, they come with some significant drawbacks, including the 

following: (1) they only take into account the most recent sensor readings, which 

significantly reduces the overall achievement of the robot; (2) they are slow; and (3) 

they do not take into account the actual kinematics of the robot, which is important 

with non-holonomic robots.  

 

(a) 

 

(b) 

Figure 3.13 (a)BUG1 path strategy, (b) BUG2 path strategy 

There are also few of additional intriguing algorithms for avoiding obstacles. 

However, only a small portion of them is appropriate for real-time, embedded 

applications. A extension of the fuzzy route following issue discussed in [31] is the 

integration of fuzzy logic solutions like those reported in [88] 
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Table 3.6 Comparison of various avoidance algorithm 

 

3.9 Localization and Mapping Strategies of Agricultural Robots  

SLAM (simultaneous localization and mapping) is a technique for autonomous cars 

that enables simultaneous map construction and vehicle localization. The vehicle can 

map out uncharted terrain with the help of SLAM algorithms. The map data is used 

by engineers to perform activities like routing and obstacle detection and avoidance. 

 

Algorithm Merits Demerits

Bug2

As being a greedy 

search algorithm, it first 

takes what look better. 

It requires less 

computation and is 

easy to implement.

The greedy strategy can fail in 

some cases exhibiting in 

completeness.

AFF
A simplistic and easy 

method to implement

Robot cannot overcome local 

minima. Oscillations can be issue 

when tries to handle obstacles in 

narrow passage.

VFH

It removesthe problem 

of sensor noise. polar 

histogram provides the 

probability of presence 

of obstacle in particular 

direction

Local minima might not be 

negotiated if its very less 

magnitude. It ignores the 

dynamics of mobile, not suitable 

for performance vehicle

Bug1
It is complete finite 

algorithm which finds a 

Significant memory and 

computation can be utilized 

Bubble band 

technique

It can outperform VFH 

when passing through 

Output steering provided is not 

smooth operation.  It requires 
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3.9.1 Mono SLAM 

The foundation of Mono SLAM strategy, as in [11], is a probabilistic feature-based 

map that captures the position of the single camera, all relevant characteristics, and, 

most importantly, the uncertainties in those estimations at any given moment. The 

system uses only single camera for mapping. The Extended Kalman Filter updates the 

map constantly and continuously, yet it is initialized at system startup and endures 

until the operation is finished. During camera motion and feature extraction, the 

probabilistic state estimates of the camera and features are revised. The map is 

expanded with new states as new features are seen, and features may also be removed 

if required. A first order uncertainty distribution defining the number of potential 

departures from these values, as well as the propagation through time of the average 

best estimates of the camera and feature states, are what give the map its probabilistic 

nature. The map is mathematically expressed as the state vector x eqn. (3.13), and 

covariance matrix P eqn. (3.14) is a square matrix of equal dimensions that may be 

divided into submatrix parts. 

�̂� = [

�̂�𝑣

�̂�1

�̂�2

:

]     (3.13) 

𝑃 = [

𝑃𝑥𝑥 𝑃𝑥𝑦1 𝑃𝑥𝑦2 . .

𝑃𝑦2𝑥 𝑃𝑦1𝑦1 𝑃𝑦1𝑦2 . .

𝑃𝑦2𝑥 𝑃𝑦2𝑦1 𝑃𝑦2𝑦2 . .
: : : . .

]   (3.14) 

The probability distribution of the overall map is calculated is a single multivariate 

gaussian distribution in a space of size as vector size, following state vector eqn. (3.15) 

is derived 

𝑥𝑣 = [

𝑟𝑤

𝑞𝑊𝑅

𝑣𝑊

𝜔𝑅

]     (3.15) 

Where rw is the 3D position, vw is the velocity value, qwr is the orientation vector and 

𝜔𝑅is the angular velocity vector. Figures 3.10 demonstrate the manner of search 
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evolved over several frames and how the distribution typically changed over time from 

uniform to sharp peak, respectively. The distribution is securely approximated as 

Gaussian and the characteristic is initiated as a point into the map when the ratio of 

the standard deviation of depth estimates falls below a threshold (presently 0.3). As 

the camera travels and more standard measurements are taken, the depth uncertainty 

of features that have recently exceeded this threshold generally gets less which shows 

numerous randomness ellipsoids extended along the approximate camera viewing 

direction. Figure 3.14 depicts the depth perception possibility with Mono LIDAR 

which is often limited in short ranges[89]. 

 

Figure 3.14 Evolution of the probability density varying depth signified by object 

sets.  

 

3.9.2 Binocular SLAM 

On picture segmentation, binocular matching was carried out to produce depth maps 

of the objects. Multi-fruit matching and combination stereo matching were the first 

two phases in this process. The first phase included determining which object in a set 

of stereo pictures on the left matched to the object on the opposite side of the identical 

pair of stereo images. An object in the left picture can match with more than one object 

in the right image and vice versa because of this phase reducing the multiple matching 
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between items in the left image and objects in the right image. Through stereo 

matching between objects in the left picture and its corresponding object in the right 

image, different maps of various items were acquired in the second stage. The triangle 

extending method might then be used to acquire depth maps of objects. To lower the 

likelihood of multiple matching, the multi-fruit matching strategy first published in 

the literature (Plebe and Grasso, 2001) was applied. Typically, there is more than one 

object in either the left or right image in a stereo pair. Multiple screening then would 

take place. That is, using the disparity limitations, more than single object in one 

picture of this pair of stereo images was matched with an object in the other image. 

∆𝑥𝑚𝑖𝑛 ≤ ∆𝑥 ≤ ∆𝑥𝑚𝑎𝑥 (𝑤ℎ𝑒𝑟𝑒 |∆𝑦| < ∆𝑦𝑚)  (3.16) 

where ∆𝑥 and ∆𝑦, correspondingly, represent the horizontal and vertical discrepancies. 

The greatest and minimum horizontal disparities, or ∆𝑥𝑚𝑎𝑥 and ∆𝑥𝑚𝑖𝑛, correspond to 

the closest and farthest working distances, respectively. ∆𝑦𝑚 is the extreme value of 

vertical disparities because of the occlusion's fluctuation in the vertical coordinates of 

object centroids in each picture of a pair of stereo images. The disparity restrictions 

for a pair of stereo pictures might be used to generate an original difference matrix.  

 

Figure 3.15 Stereo Visual SLAM processing pipeline 

The disparity of each object in the right picture fulfilled the disparity requirements 

with a object in the left image for every element in a row of the original discrepancy. 
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In comparison, every element in a column of the original difference was equal to or 

more than a object in the right picture for each object in the left image. Eventually, 

using the triangle ranging method, depth maps were obtained. The positioning 

mistakes of the localization technique (the discrepancy between the depth value of 

aobject obtained using the localization method based on binocular stereo vision and 

the actual depth value of this object) 

3.9.3 LIDAR-SLAM 

Because optimization is preferred over filtering in the most advanced visual SLAM, 

effective management of the recorded data in the scene map is essential to the 

precision attained (can be either be Kalman filter or particle filter). By using resilient 

cost functions, it is possible to jointly optimize the sensor (robot) trajectory and its 

map, revise the linearization points, and mitigate the impacts of estimates and 

inaccurate readings. On the other hand, basic point clouds are used to describe the map 

in most LiDAR-based SLAM systems. This is frequently a sensible decision because 

the basic point-based depiction doesn't rely on the presence of any particular features 

of the environment then produces exceptionally accurate maps when paired with pose 

based optimization and loop closure detection[21]. However, real-time operation of 

methods like those in  requires enormously parallel processing on basic purpose 

graphic processing unit (GPU). The number of limitations that may be created in the 

map and then used by optimization is ultimately reduced because raw point-based 

depictions are unable to distinguish important features like objects of defined classes 

or geometric characters, which makes it difficult to track such characteristics over 

multiple scans similarly to visual tracking. The use of surfel-based map 

representations derived from LiDAR data has been attempted in a number of earlier 

research. [90] employed a voxel grid-based representation having lower resolution 

point clouds. Additionally, scan to-model registration and compact 3D model (map) 

representation were both accomplished using the normal distribution transform. Grid-

based map representations have the issue of being computationally wasteful since 

global closest neighbor’s search must be employed to determine similarities between 

the scan points and its model. The use of surface elements for map representation in 

SLAM has gained popularity. ElasticFusion's effective RGB-D implementation has 
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highly inspired work on LiDAR-based systems. A local, robot-centric multi-resolution 

grid map and the surface representation were combined by [91]. It is feasible to 

efficiently accumulate the scanned points to surfels due to the map's better resolution 

close to the LiDAR, then to employ the local maps in a multiple level graph-based 

SLAM. [92] were able to take use of the spatial data linkage between the laser scan 

and the rendered presentation from the map thanks to the surfels based depiction, 

enabling real-time mapping at a wide scale. Recent attempts to apply deep learning 

techniques to address the LiDAR-based odometry challenges also make use of 

volumetric representations. Sadly, point clouds, which are common LiDAR data 

formats, lack differentiation. Therefore, cutting-edge neural models like PointNet [93] 

or using a voxel-based approach ensure invariance to the point order permutation 

while processing range data. 2021, 21 and 3445 sensors 4 of 31 successful RGB-D-

adopted ElasticFusion techniques, which directly influenced the development of 

LiDAR-based systems. A local, robot-centric multi-resolution grid map and the surfel 

representation were combined by [91]. It is feasible to efficiently aggregate the 

scanned points to surfels thanks to the map's better resolution close to the LiDAR, then 

to employ the local maps in a multiple level graph-based SLAM. Behley and Stachniss  

were able to take use of the projective data linkage between the laser scan data and 

rendered view from the map because of the surfel based representation, enabling real-

time mapping on a wide scale. Recent attempts to apply deep learning techniques to 

address the LiDAR-based SLAM or LiDAR-based odometry challenges also make use 

of volumetric representations. Sadly, point clouds, which are common LiDAR data 

formats, lack differentiation.  

 

Figure 3.16 Block scheme for lidar Architecture 
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Modern neural models like PointNet or those that use voxel representations provide 

invariance to the point-order permutation while processing range data.  

Convolutional networks can be used to handle point clouds using the PointNet 

technique and its variations, but they are thought to consume too much computer 

power to be used for real time SLAM. The recent L3-Net system combines a light 

version of the Point Net with another neural network which accumulates the matching 

costs provided by all the features in a volumetric model, it then outputs the pose as 

one of the few attempts for solving LiDAR-based localization in a new environment 

(either odometry or SLAM) with neural network methods. transformed the pose 

estimation problem into a classification task. Unfortunately, recasting the pose 

estimation issue as cost accumulation reduces the pose estimate's accuracy since, 

depending on the data format, the output is confined to discrete values. The most 

recent Deep LO method  used an unsupervised loss function derived from the iterative 

closest points formulation and offers pose estimation accuracy on par with model-

based systems. It also makes use of the normal vectors consistency for obtaining a 

confidence map that gives the loss function weighting factors. Although unsupervised 

learning is a significant advancement for learnable LiDAR SLAM, due to the fact that 

the Deep LO had to be trained independently for each of the three different data sets 

where it was tested on highlights a drawback of fully learnable LiDAR-based SLAM: 

It can have issues if it encounters a previously undiscovered environment. 

The optimization problem in the odometry step can therefore be formulated as eqn. 

(3.17): 

𝑇∗ = 𝑎𝑟𝑔𝑚𝑖𝑛(∑ 𝑓(𝑝𝑖, 𝑡𝑖, 𝑇) + ∑ 𝑔(𝑝𝑗, 𝑡𝑗 , 𝑇)𝑗𝑖 )  (3.17) 

Where f(pi,ti,T) represents distance from point pi to the line where g(pj,tj,T) represents 

the earlier scan. T* is the best pose estimate. The lidar frame of reference during the 

measurement is pm and at the end of the scan is given by pe which is given by eqn. 

(3.18) 

𝑝𝑒 = 𝑇𝑖,𝑖+1
−1 𝑒𝑥𝑝 {

𝑡𝑖

𝑡𝑠
𝑙𝑜𝑔𝑇𝑖,𝑖+1} 𝑝𝑚   (3.18) 
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Where ti is the time of measurement at i-th turn, ts is the duration of overall scan, Ti,i+1is 

the pose by the end of the scan. 

3.10 Experiment for Comparison of Obstacle Avoidance Algorithms 

An experiment was conducted to find the performance comparison of different 

obstacle avoidance methods. The most popular three algorithms Rapid exploring 

random tree RRT, Vector Field Histogram VFH and Dijkstra’s were compared for 

tackling obstacles. Simulation comparison was carried out in MATLAB program. 

Robot used was differential 2-wheel robot of base length 0.5 meters. While VFH is a 

“face and deal obstacle” algorithm, the RRT and Dijkstra are preplanning search 

algorithms. The Fig. 3.17(a) indicates robot and obstacle position, Fig. 3.17(b)and 

search algorithm nodes created during execution. They need constant knowledge of 

map and object while moving. They also require preparation time once an obstacle is 

encountered. Performance indicators used are TimemPlan is the time taken for the robot 

to prepare strategy to overcome the obstacle. Timetrv is the time taken by the robot to 

travel the path once the planning is ready. Timetotal is sum TimemPlan + Timetrv of the 

time taken for the overall operation to complete. The performance of search algorithm 

is highly dependent on the size of area of operation and complexity of obstacle 

structure. VFH algorithm remains stable within large range of area provided the sensor 

is suitably designed for the size of the robot. The time of execution TimemPlan is 

approximate time taken for a Raspberry board computer. The processing speed of 

various CPUs and microcontrollers are given in Table 3.7[94] expressed in MIPS that 

is million instructions per second.  

Table:3.7 Speed comparison of CPUs. 

 

Processor MIPS Produce Year

ARM Cortex A7 2,850 MIPS at 1.5 GHz 2011

Texas Instruments TMS320C20 12.5 MIPS at 25 MHz 1987

Intel Core i5-2500K (Quad core) 83,000 MIPS at 3.3 GHz 2011

Intel Core i7 4770K 133,740 MIPS at 3.9 GHz 2013

Raspberry Pi 2 4,744 MIPS at 1.0 GHz 2014

Arduino Board UNO 16MIPS at 16Mhz 2009
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The experiment was conducted in i7 processor laptop computer can be compared with 

computer board Raspberry Pi board 2 a very popular compact board used for robotic. 

The speed differences come with a factor of 28. Real differences of computation may 

vary as it is dependent on several factors of an operating system software, however 

the speed of algorithm will be significantly lower than performed in CPU. 

 

     

Figure 3.17(a) Field obstacle with start-end points, (b)Plot for search algorithms  

 

3.11 Observations and Analysis for Comparison of different Obstacle Avoidance 

Algorithms 

The results were observed for reading taken at different size of the area of operations, 

where the algorithms would begin to vary significantly. As understood from Table 3.8 

the time taken by algorithm are of much significance. Search and plan algorithm 

require computation time to first plan and go over the obstacle. The algorithms are 

probabilistic method hence can give different deviations and time of travel for every 

trial, though alterations in outcome is less, one set of reading has been noted by taking 

average of 5 different trials in order to average the output effect. The branch length 

limit for search algorithm was set as 3meters.  
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Table 3.8 Performance comparison for different obstacle avoidance algorithms 

 

 

 

Figure 3.18 Performance indicators for Dijkstra vs RRT vs VFH at 900m2 area. 

 

Figure 3.19 Performance indicators for Dijkstra vs RRT vs VFH at 3600m2 area. 

TimemPlan(sec) Time trv(m) Disttrav(m) Time tot(sec) Dev% TimemPlanR(sec) Mapping req

Dijkstra 5 58 29 300 16 140 Yes

30x30m
2

RRT 3 55 26 286 4 84 Yes

VFH 0 59 30 287 20 0 No

TimemPlan(sec) Time trv(m) Disttrav(m) Time tot(sec) Dev% TimemPlanR(sec) Mapping req

Dijkstra 21 116 59 617 16 588 Yes

60x60m
2

RRT 8 114 56 595 9 224 Yes

VFH 0 118 59 588 16 0 No
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Timetot(sec)
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TimemPlan(sec)
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TimemPlanR(sec)
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As seen in graph plot of Figure 3.18 the deviations dev% for VFH is highest, Dijkstra 

and RRT have lower deviations as they optimize for the shortest path to curve the 

obstacle and reach the stop point. RRT is very fruitful algorithm in such case as it 

expands its tree branches towards the direction target point rather than other direction 

hence reaches the end point quickly. TimemPlan of Dijkstra is much higher than RRT 

due to obvious reasons that its branches expand overall directions to reach the end 

point, this can waste the time, but such Dijkstra is favorable in places of narrow path 

and complex object placements like in a labyrinth. Timetrv is mostly proportional to 

the distance explored by the robot. Timetotal becomes very high for Dijkstra as the area 

grows as it requires more time to expand it branches in all directions, the execution 

time of algorithm is dependent area of coverage. Dev% for robot rises for RRT for 

larger area as it has to grow longer, and deviation can increase with longer branches. 

Timetot total time can be higher than calculated in the simulation, as real applications 

of search algorithms need constant map information which needs computation and 

updating. Real time mapping is not taken into account for this experiment. Therefore, 

the time required for real operation to plan the map is much costly in terms of hardware 

and computation resources. 

 

3.12 Conclusion 

Study on different sensors available for mobile robots were studied. Their usage and 

capacity to be employed in a variety of perception and localization were addressed. 

LIDAR sensor can be concluded as best suitable sensor for agricultural outdoor 

operations, with a respectable range and adaptability to different environments. 

Drawbacks of other sensors have been compared and discussed in the chapter. The 

utilization of RTK-GPS can be best suitable for outdoor vehicles as it requires 

minimum setup and is very accurate. Though simulation experiment was conducted in 

different chapters, the localization of differential robot has been taken as an ideal case 

based on wheel odometry but practical operating machine in field require more 

accurate sensor to work properly. In such case a RTK-GPS would be the ideal choice 

for the robot to be localized properly in outdoor farm area. Various localization and 
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mapping methods has been discussed each with their several complexity and stages of 

computation. VFH has been compared with RRT and Dijkstra algorithm with 

simulation experiments and results. It can be understood how search algorithm are 

intelligent algorithm to reduce and tackle objects, they need significant preparation 

time and continuous map information to handle dynamic obstacles. Choosing VFH 

algorithm to be a suitable algorithm for dealing dynamic obstacles at low computation 

and design a hybrid algorithm. 
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CHAPTER-4 

Hybrid Algorithm using PPA-VFH-Bug algorithms for Autonomous Navigation 

of Agricultural Robot 
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4.1 Introduction 

A cost-effective and effective navigation system for differential wheeled mobile 

robots is essential since autonomous robots for diverse locations within the operating 

field area. It is also important that navigation system be simple, robust and predictive 

for such robots to be accepted by farmers.In this chapter, a hybrid algorithm for 

autonomous navigation system using the pure pursuit algorithm (PPA) and vector field 

histogram is proposed (VFH). While the VFH algorithm aids in avoiding obstacles, 

the PPA algorithm drives the vehicle autonomously in the direction of waypoints. For 

observation, the VFH approach employs 2-D light detection and ranging (LiDAR) 

sensors. PPA prescribes a minimal number of waypoints to simplify the map setup. 

Also too much waypoints can increase the probability of waypoints being covered by 

obstacles and hence causing problem to reach the goal point. A number of performance 

indicators, such as the robot's trip distance, the number of iterations required to finish 

the route, are assessed using the variable settings of the PPA algorithm. 

The precision application of fertilizers and pesticides by mobile unmanned vehicles is 

a requirement for agricultural automation. Further, as this study investigated method 

for avoiding barriers based on vector field histograms (VFH) it came across other 

issues. Local minima generated by U shaped traps could get the robot stuck in the 

space, a hard to recover situation. The proper tunning of VFH parameter is required to 

mitigate such traps. For effective travel and efficient pesticide application, shortest 

route strategy to waypoints is a disadvantage. The challenge is overcome by 

integrating BUG algorithm to the hybrid system. MATLAB simulation was carried 

out for expected outcomes. 

4.2 Unique Challenges of Obstacle Avoidance Algorithms for Agricultural 

Robots 

Robots must make quick collision avoidance decisions based on timely awareness of 

the nearby environment since the environment can be continually changing naturally 

to maintain crop and the body safety. Obstacle detection and collision detection control 

must be done in proper order to properly work a obstacle avoidance problem. The 

fundamental need is to calculate the least avoidance distance and the maximum 
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avoidance angle while taking into account its self-mobility and posture. The most 

widely used algorithms for obstacle avoidance control include the VFH algorithm[95]  

but is has no intelligence of objects character. Visibility technique, Artificial potential 

field method, Dynamic window method are also integrated with the recent research 

state in the field. Through various researchers' extensive effort, it is easy to see that 

each of the five approaches has a distinct advantage as well as demerits. This is just 

an application in the general environment; the dynamic window method has been 

discussed and applied to sample the speed over a predetermined time interval for the 

obstacle avoidance problem in the agricultural setting. The speed calculation problem 

is challenging when employed in the agricultural context because odometry and 

inertial measurement module mistakes would accumulate in long time, making it more 

challenging to apply the dynamic window method. Implementation of the BUG 

approach supported by visible image method in agriculture has some potential, but 

there are several issues for proper execution and proper choice of computation. The 

limited operating space of agricultural robots is a result of the crops' intensive growth. 

When obstacle avoidance is required, obstacles needs to be avoided best way possible, 

the robots must maintain relatively close proximity to the impediments before 

bypassing them, which places a high demand on the sensor's accuracy and the choice 

of decision points to turning back to the original path after diversion. The effectiveness 

of motion planning is directly impacted by this factor. Because of the thick 

impediments, the artificial potential field method cannot be used in agricultural 

settings and is ineffective due its sensitive in noisy irregular environment. The VHF 

method can be used as its primary purpose is to represent the environmental map by 

occupying the grid to represent the connection between obstacle and the robots to 

direct the robot's motion to the obstacles. However, as the requirements can become 

more stringent, such as when the quantity of obstacles increases it will place a 

significant load on the calculation, this is a problem should be fully taken into account. 

In other words, even though some obstacle avoidance algorithms have not been tried 

to use in agriculture, their positive performance traits in different environments guide 

researchers studying towards the right direction for solving the problem. 
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4.3 PPA-VFH Hybrid Algorithm 

The method presents on modeling and simulation of agriculture robot whose 

navigations is based on PPA algorithm. The system is aided for steering guidance 

using VFH algorithm. A 2D 360-degree LiDAR sensor is used to scan the field area. 

PPA is a simple algorithm following the predesignated waypoint coordinates which 

are consecutively reached till the last point. The algorithm is executable in a 16/32-bit 

microcontroller thus applicable in a modest autonomous robot system. In the real 

world waypoints for PPA is set as different target coordinate (x,y) points similar to 

GPS locations coordinates. VFH is a fast algorithm which helps robot to steer away 

when detects an obstacle with LiDAR sensors. The performance is satisfactory with 

the rare appearing smaller obstacles ahead of the robot. 

4.4 Methodology for PPA-VFH Hybrid Algorithm 

The simulation is carried out in the Matlab/SIMULINK environment. During 

execution, the real-time values of observations were logged and saved in a CSV 

(Comma separated values) data file. The loop iterations were sampled typically every 

120 milliseconds. The navigation platform toolbox is used to implement the PPA and 

VFH algorithm functions. For the LiDAR sensor application, the mobile robotic 

simulation toolbox is used. PPA is used in the simulation to achieve autonomous 

lateral navigation. The PPA the waypoint seeking system was guided by a steer 

guidance VFH algorithm against collision with obstacles. As shown in Figure 3, 

different waypoints (P1, P2, P3, P4, P5, and P6) are constructed. With a change in size 

of coordinate data, these waypoints can be converted to GPS tagged points for real-

world applications. The vehicle's robot localization is expected to be efficient, 

ignoring wheel slippage and drift. Odometry sensors, GPS, and motion sensors could 

be used in real-world models. The navigation route will cover points P1 through P6 in 

order. At the U turn of the row of plants shown in Figure 4.2, the waypoints 

coordinates are formed as tip points alternately. The robot will navigate the field while 

avoiding various items; huge unavoidable obstructions will create a strong repulsive 

force field surrounding the vehicle, which will cause the robot to become immobile. 

The flowchart in Figure 4 depicts the overall operation. The experiment is conducted 
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on a vegetable field measuring 50 x 50 m2. The robot experiment is carried out at 

various speeds. For each trial, the robot's speed was changed from 0.5 to 2.75 

km/hrwith a fixed speed. This speed range is ideal for slow operating irrigation robots 

that operate slowly. The robot will proceed in a zigzag cycle path to cover all rows of 

plants. The differential wheel robot has a 0.40 m wheelbase and a 10 cm wheel radius. 

After multiple trials and observations, the VFH parameters of histogram threshold 

value and number of angular sectors were calibrated and locked at an optimal value of 

20. Even though the LiDAR sensor is two-dimensional, a synthetic two-dimensional 

imaging approach for navigation can be constructed from popular three-dimensional 

data [96]. This method also minimizes the data and complexity associated with cloud 

point mapping. 

Using image conversion from colour to black-and-white, a field image (Figure 4.1) is 

converted to a grid occupancy map (Figure 4.2). The occupancy map is a binary map 

with black parts representing obstructions and white parts representing open moveable 

space. Different obstacles, like as stones, solid items, or overgrown plants, may be 

present on the path as the robot advances along row gaps. The VFH algorithm assists 

in detecting and tactically avoiding static and moving impediments. The algorithm is 

based on the repellent forces produced by nearby obstructions. Every trial is recorded 

with scanned LiDAR sensor readings and pre-set PPA parameter values. The total 

distance Dc traversed by the robot is used to calculate the robot's deviation while 

travelling. More oscillations with a larger average deviation are indicated by a large 

distance Dc travelled by the robot value. PPA characteristics that is desired linear 

velocity (DLV), maximum angular velocity (AVmax), and minimum radius for turn (Rmin) 

are tested in various ways. Sensor readings from location and object proximity are 

taken to determine optimal performance. The robot's total distance travelled in relation 

to time is an essential performance indicator. 
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Figure 4.1 Real field image scenario. 

 

Figure 4.2 Field image with grid occupancy map 
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Figure 4.3 Flowchart of overall operation 
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The robot was expected to follow straight trajectories along the narrow gap. Marked 

trailed behind by the mobile robot help to visualize the deviation. The robot is expected 

to drive sharp close at U turns sections to prevent overshoot.  

 

Figure 4.4. Performance plot under varying velocity of robot 

 

Figure 4.5 Performance plot under varying lookahead distance 
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Table 4.1 Performance data with lookahead distance 

 

4.5 Results and Observations for PPA-VFH Algorithm 

On various PPA settings, several sets of readings are taken. The desired linear velocity 

(DLV), Angular velocity maximum (AVmax), Lookahead distance (LD), and Minimum 

Radius are all varied in a total of 34 trials (Rmin). Real time proximity distances are 

used to measure closeness of obstacles around the vehicle: Obstacle distance average 

(ODavg), obstacle distance minimum (ODmin), and obstacle distance maximum 

(ODmax). ODmax is the robot's maximum or farthest distance maintained by vehicle 

from obstacles while travelling along the path. The nearest distance for the same is 

ODmin. The average obstacle distance maintained is ODavg. Figures 3 and 4 as well as 

Tables 4.1 and 4.2 depict observations. In each simulation, NL is the number of loops 

or iterations consumed for completion of a trial, itis an accurate indicator of the 

experiment's time consumption. It represents the time it takes the mobile robot to get 

from waypoint P1 to P6. The distance travelled by the robot as it moves across the 

field is called Dc, and a smaller value is expected as usual for movement without 

oscillations. 
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The desired linear velocity (DLV) is the speed of the moving vehicle. Slower speed 

produces lesser inertia of motion and hence lesser oscillations, however the time taken 

for completion of path is high. Such movement is suitable in slow field operations like 

watering of plants, weed removing etc. Force fields created by the obstacle objects are 

subtle, and the steering against obstacles are done smoothly, a more stable non 

deviated travel. The least obstacle distance ODavg = 0.98m when the DLV=0.5Km/Hr. 

The maximum value of ODavg =1.40m when DLV =1.5 Km/Hr. Minimum value of NL= 

973 when DLV=2.75 Km/Hr. Maximum value of NL=4988 when DLV=0.5 Km/Hr. Least 

distance DC = 249m when DLV = 0.5 Km/Hr and maximum DC =267m when DLV = 2.5 

Km/Hr.  

Maximum angular velocity (AVmax) is highest limited value of angular velocity 

for the vehicle. It has a threshold value up to which performance is not much altered, 

butis restricted beyond the limit. Mentioned observations are given in Table 4.1. The 

least value of ODavg =1.16 m when AVmax= 2, the highest ODavg =1.53m when AVmax 

=12. Minimum value of NL = 2076 at AVmax=2 rad/sec, maximum value of NL=2093 at 

AVmax =0.01 rad/sec.  

Lookahead distance (LD) is an important factor effecting the lateral behavior of 

the vehicle. LD is kept as constant value set before executing experiment. It is varied 

and tested at speed DLV = 1.5Km/Hr, an average speed chosen for the mobile robot.   

Lower value of LD produces more oscillations but distance against obstacles and plants 

are minimum. High oscillations consumes more iteration and time. Observations are 

presented in Figure. 4. Minimum value of ODavg =1.16m occurred when LD =12m. 

ODavg =1.39m (highest) when LD =45m. Maximum number of loops NL = 2286 when 

LD =8m, the minimum value of NL=1510 when LD =20m. Maximum value of DC = 

285m when LD = 8m, minimum value DC = 258 when LD = 40m. An optimum value 

of LD = 20-25m is chosen, where NL=1478 is minimum and ODavg=1.37m. 
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Minimum radius Rminis another threshold value for turning radius scale. Its value had 

no impactful effect on the mobile robot performance. Insignificant changes are 

observed under distance of 3 meters(seen on Table 4.2) after which if increased the 

robot movement is disturbed due to large turn near row-end U sections. 

Table 4.2 Performance data with minimum turning radius.

 

4.6 Specific Observations 

The nearest obstacle distance ODavg is significantly influenced by desired linear 

velocity DLV and lookahead distance LD. It is to observe oscillations with respect to the 

different values of DLV. A high value of 2 m is observed at linear velocity of 1.5 Km/Hr 

which again drops to 1.5 m at the velocity of 2.25 Km/Hr, again rising to higher value 

of 2.11m at 2.75Km/Hr. ODavg increases with respect to value of LD. ODavg(=1.39) is 

highest at LD =45m and the lowest ODavg(=1.17) at LD =10m. The shortest path taken 

by the robot is observed as 249 m low value with  DLV=0.5 m/s.  

The fastest coverage of field is conducted within NL=973 loops at DLV= 2.75 

Km/Hr. The slowest coverage is done in NL= 4988 loops achieved at a low desired 

linear velocity of 0.5 Km/Hr (Figure 3). The vehicle gives an optimum speed 

DLV=1.25km/hr with 2049 number of iteration loops. It can be seen in graph shown at 

Figure. 3, where the crossover point of two identifiers NL and DC. The NL and DC are 

intersecting for best performance results. Optimum lookahead distance is LD =20 from 

where the number of loops is low with acceptable stability in its trajectory as seen in 

Figure 4.4 

4.7 Path Planning Algorithms for Circumnavigation of Obstacles 

The algorithm of route planning is to accomplish obstacle avoidance by determining 

the ideal path, while the path planning problem of robots is a hot subject of the 
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composition approach to investigate the beginning and end path. So, the effectiveness 

of path planning directly depends on the algorithm's optimal grade. Wheeled mobile 

robots operate in low-speed environments with few dynamic difficulties, making path 

planning for them easy in terms of dynamics as it is botherless. Here, I describe and 

analyze some of the popular path planner algorithm and obstacle avoidance search 

methods. The path planner algorithm locates the destination node in accordance with 

the beginning circumstances and specific criteria, comparable to graph navigation. The 

search method is often divided into two major categories: precise algorithm and 

estimated algorithm. The depth first searching algorithm and the breadth-first 

searching algorithm  both relate to the precise algorithm, and the Dijkstra algorithm is 

an example of a breadth first searching implementation. The estimated algorithm, on 

the other hand, is represented by the relatively well-established D* algorithm and A* 

algorithm. Mentioned four techniques are based on clear maps which typically 

employs a mapping information. In addition, researchers have shown that the RRT 

algorithm may be used to design paths even if the clear map is not provided. The BFS 

algorithm spreads out from the starting point and nearby waypoints without taking the 

optimum into account. To quickly reach the targeted point, the DFS algorithm is able 

to calculate the cost for a node to that goal point. Dijkstra algorithm can obtain the 

best solution by concentrating on the closest route from the starting point to rest of the 

locations. The A* algorithm can be thought of as an enhanced Dijkstra algorithm 

because it exposes the heuristic idea of knowledge about the neighboring nodes near 

the beginning and target nodes, focusing on the closest path from one point to another. 

The RRT algorithm uses a tree structure that spreads outward from a reference point, 

with the direction of the spread being chosen at random from its modelling space. 

These algorithms Dijkstra algorithm, DFS algorithm, RRT algorithm and A* algorithm 

have four different types of uses in agriculture. The D* algorithm is not appropriate 

for an agriculture environment because the BFS algorithm absorbs too many computer 

power and significantly raises the application cost, making it impractical in 

agricultural settings. The method may be used in a field setting since its main purpose 

is to solve the optimal path issue in a volatile environment. According to recent studies, 

this algorithm is rarely used in the field of agricultural robotics for outdoor 

environmental path planning. Table 4.3 shows that these reasonably advanced search 
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algorithms had certain drawbacks in the general context and were subsequently 

improved. The original approximation method has been presented and the accuracy of 

path planning has been somewhat improved by new algorithms like Theta* and Phi* 

that have been proposed in current years. However, after summarizing and analyzing 

the traits of the abovementioned algorithms, while also combining them with the 

difficulty of the agricultural location, we provide near possibilities for the 

implementation of these enhanced algorithms and better search methodologies in 

agriculture in future. The three different kinds of algorithms that were enhanced 

inspired from A*  can be used in the facility environment. In order to identify the ideal 

path more quickly, the IDA* method combines the benefits of A* and DFS. The LPA* 

method may be utilised for local pathfinding, which is crucial in the facility context, 

despite its poor handling of path smoothing. The Bidirectional A* can accelerate 

computation and simplify the algorithm. The benefits of IDA* could also be combined 

with this approach. We can significantly increase the A* algorithm's precision and 

speed by building a two-way depth search, which is also necessary in a complicated 

agricultural context. In smart agriculture, the three different forms of better algorithms 

for D* can be momentarily disregarded. Since the field environment is dynamic but 

its versatile aim is manageable and the universal D* method is capable, we should 

concentrate on promoting and using the D* algorithm [19]. Theta* and Phi*, two novel 

search algorithms, were presented within the previous ten years but still haven't found 

widespread use. The qualities of mentioned algorithms, however, can be used in 

agriculture in near future. First off, the alteration techniques relying on A* algorithm 

can be used in different environments that A* algorithm is ideally applicable to. 

Secondly, they can be used to solve the edge as well as the angle problem of the map 

that the original path search algorithm which cannot effectively handle in practical 

uses, significantly reducing the path of error improvement. Finally, compared to the 

original, these methods' computational cost is far reduced. All of these benefits show 

that they have promising application possibilities in agricultural settings. In addition 

to the benefits of these new and enhanced techniques, their drawbacks are also 

extremely clear. Future researchers on the study on agricultural robots should focus on 

reducing or avoiding these implementation flaws. BUG algorithm can be employed to 

solve the issue of circumnavigation without having to deal mapping computations and 
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information. 

Table 4.3 Comparison of different search algorithms 

 

4.8 Efficiency Issues of Autonomous Robot and Precision Farming   

• Autonomous robot need to be more efficient during application of pesticides 

and irrigation. 

• Obstacles (others than plants in row) must not be sprayed with pesticide during 

its avoidance over a pre-planned path. 

• The distance travelled by the mobile vehicle around the obstacle must be 

minimum so that over distance in not travelled by the robot. It causes wastage 

of fuel, time, and energy. 

• Efficient way of travel is to circumnavigate the obstacle closely as possible 

until the pre-planned trajectory of the robot is reached. 

• Efficient way also improves application of pesticides/water as it reaches the 

back side of the obstacle from where more coverage of plants along the row is 

Algorithm Type Limitation

A* algorithm

evaluation function is difficult to set, 

smoothness of operation is low there 

not applicable, bi directioal search needs 

to be constrained. Load distribution is 

complex 

D* Algotihm

Node are assigned with complexity, 

difficult to decide node distribution, 

time taken for operation is high

Theta Algorithm

No gaurantee of shortest path, parent 

nodes must be closer to new node,path 

can be longer than necessary

Phi Algorithm

can oly repeat single execution for any 

orientation of path, time required for 

vertex extension is irregular
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accessed.  

• Most planning algorithm tries to reach the closest goal after obstacle avoidance 

which is not preferred for an efficient application of pesticides/water. Planning 

algorithm work based on global knowledge of the map which is required 

acquired or supplied to the system, may require to be constantly updated while 

driving, a costly computational task for simple robots. 

• The onset/offset of obstacles is detected by the activity of bug algorithm in the 

hybrid algorithm.  

The figures given below shows the comparative strategies of movement of mobile on 

encountering obstacle, Figure 4.6(a) represents path taken by conventional planner 

search algorithms while Figure 4.6(b) shows the BUG strategy which has higher 

coverage for efficient application of pesticides and water. 

 

(a)                                               (b) 

Figure 4.6 (a) Shortest reach strategy, 4.6 (b) Bug strategy, 

The figures a given below shows how in Figure 4.7 (a) the robot tend to move in local 

traps which can cause to failure, being trapped inside the local minima. The more 

efficient manner of mitigating the local miming would be to detect it and 

circumnavigate the obstacle beyond it as in figure 4.7(b). 
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Figure 4.7(a) U shaped trap local minima, (b) Avoiding local minima 

4.9 PPA-VFH-BUG Algorithm 

Vector Field Histogram (VFH+) is a popular algorithm to find avoidable directions 

against obstacles. However, since it is dependent on potential fields produced by 

barriers, it is drawn to local minima produced by U-shaped obstructions. This work is 

designed for the robot to move out of such pitfalls. This work focuses on fine-tuning 

an adaptive VFH+ algorithm to solve such issues. Until the required trajectory for the 

original route is regained, the algorithm maintains the robot near to the obstacle. It 

promises efficient travel after encountering obstacles. PPA algorithm is used to guide 

the robot from one waypoint to another. The adaptive VFH+ algorithm oversees 

controlling steering upon detection of obstacles. A 360-degree LIDAR sensor is used 

to get the position of obstacles around the robot. The data is fed to VFH+ algorithm to 

find the steerable direction.  

4.10 Methodology for PPA-VFH-BUG Algorithm 

Utilizing the Pure Pursuit algorithm, a moving trajectory for the robot to move toward 

the target point is created. PPA method provides simple steering guidance in the 

direction of the way point. The scenario is tested in converted image of Grid 

Occupancy map created out of real farm field, the black part represents the objects and 

plants, the while region implying free space for robot to travel. 
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Figure 4.8 PPA-VFH-BUG Algorithm 
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A narrow 2-wheel Differential wheeled robot with a dimension of wheelbase length 

as 30cm and radius of wheel as 20cm was considered for the simulation. The start-

destination waypoints point is preserved at the end of the plant's row. The VFH+ 

directs the robot to go straight along the row gaps. The VFH+ algorithm guides the 

robot parallel to rows even if the actual route from one way point to another is not 

vertically parallel with the rows. The approach is based on monitoring the mobile 

robot's orientation angle with respect to angle between start-destination trajectory. If 

the orientation deviates from a predetermined threshold value, the robot enters a mode 

in which the target angle value is slightly increased in the direction of the obstacle, 

causing it to steer around the side of the obstruction. The robot maintains the constant 

target angle until it reaches the obstacle's end and then returns to its original trajectory. 

In the presence of large obstacles and U-shaped obstacles, the VFH+ algorithm's lack 

of a constant target angle and low threshold values cause the robot to do U turns. 

Figure 2 explains the method of circumnavigation with fixed target angle. Such 

instances prevent the VFH+ algorithm from reaching its goal. As a result, VFH+ is 

maintained sensitive with low threshold values to enable the detection of U-shaped 

local minima using a suitable range of LIDAR sensor. Different ranges of LIDAR 

ranges were set to understand the effect and limits for avoiding local minima points 

caused by the U traps. The set of suitable values of LIDAR range was observed. 

Variations of robot’s maneuvering capability were observed for different settings of 

LIDAR ranges settings.   Figure. 3 illustrates the path travelled by the robot in 

simulation grid occupancy map.  

For measuring the parameters of the results of simulation, observations were taken at 

different AngThres. The Distcov is total distance travelled by the robot after avoiding the 

obstacle. Distobs is the average distance of proximity with obstacles and plant. Its 

higher value indicates inefficiency operation and overshooting away from obstacles 

and plants. Distover is the percentage of distance over travelled by the robot around the 

object. Higher value of overtravel indicates inefficient operation.  
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Figure 4.9 Robot control strategy with large obstacles. 

 

 

Figure 4.10 Illustration of MATLAB Simulation 
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4.12 Observations and Results for PPA-VFH-BUG Algorithm 

Optimal reading was taken between 5.7-40.1 degrees with Distobs travelled at 

consistent best possible level, Distover is also consistent at the same range of angles. 

The Distover have lower attractive results for angles greater than 74 degrees but is 

inconsistent. Inconsistent output is result shapes and position of obstacles. Some 

readings can be abrupt depending on the structure of field of operation. Data discussed 

in present in Table 4.4.  and figure 4.11 of this document. Different settings of LIDAR 

range effected the performance of the robot table 4.5. The range of successful 

travelling from start point to end point was 34-46cm. Increasing the value of the range 

or decreasing the range made the robot journey unsuccessful. They would overshoot 

or hitting and enter the obstacles region. Lidar setting of 40cm gave the best result 

with minimum over travel of 26% and 20cm obstacle distance. Observation mentioned 

in the Table 4.4.    

 

 

Figure 4.11 Graph plot for results of circumnavigation against obstacles. 

 

 

 



104 
 

 

Table 4.4: Characteristics of robot control with different AngThres values. 

 

Table 4.5 Performance readings of robot control with different LIDAR 

Range(cm)values. 
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Table 4.6 Sample of real time data reading taken in MATLAB program simuation 

 

 

 

index mn md minR maxR CPx CPy CPd LPx LPy

2 16 16 16 16 25 20 90 28.7 39.7

3 16 16 16 16 25 20.2 90 28.7 39.9

4 16 16 16 16 25 20.4 90 28.7 40

5 16 16 16 16 25 20.6 90 28.8 40.2

6 16 16 16 16 25 20.8 90 28.8 40.4

7 16 16 16 16 25 21 89 28.8 40.6

8 16 16 16 16 25 21.2 89 28.9 40.8

9 16 16 16 16 25 21.4 89 28.9 41

10 16 16 16 16 25 21.6 89 28.9 41.2

11 16 16 16 16 25 21.8 89 29 41.4

12 16 16 15.99 16 25 22 89 29 41.6

13 16 16 15.99 16 25 22.2 89 29.1 41.8

14 16 16 15.98 16 25 22.4 89 29.1 42

15 16 16 15.98 16 25 22.6 89 29.1 42.2

16 16 16 15.97 16 25 22.8 88 29.2 42.4

17 16 16 15.96 16 25 23 88 29.2 42.6

18 16 16 15.96 16 25 23.2 88 29.2 42.8

19 16 16 15.95 16 25.1 23.4 88 29.3 43

20 16 16 15.94 16 25.1 23.6 88 29.3 43.2

21 16 16 15.94 16 25.1 23.8 88 29.3 43.3

22 16 16 15.93 16 25.1 24 88 29.4 43.5

23 16 16 15.92 16 25.1 24.2 88 29.4 43.7

24 16 16 15.91 16 25.1 24.4 88 29.5 43.9

25 16 16 15.91 16 25.1 24.6 88 29.5 44.1

26 16 16 15.9 16 25.1 24.8 87 29.5 44.3

27 16 16 15.89 16 25.1 25 87 29.6 44.5

28 16 16 15.88 16 25.1 25.2 87 29.6 44.7

29 16 16 15.87 16 25.1 25.4 87 29.6 44.9

30 16 16 15.86 16 25.1 25.6 87 29.7 45.1

31 16 16 15.85 16 25.2 25.8 87 29.7 45.3

32 16 16 15.84 16 25.2 26 87 29.7 45.5

33 15.99 16 15.83 16 25.2 26.2 87 29.8 45.7

34 15.99 16 15.82 16 25.2 26.4 87 29.8 45.9

35 15.99 16 15.8 16 25.2 26.6 87 29.9 46.1

36 15.99 16 15.79 16 25.2 26.8 86 29.9 46.3

37 15.99 16 15.78 16 25.2 27 86 29.9 46.5

38 15.99 16 15.77 16 25.2 27.2 86 30 46.7

39 15.99 16 15.76 16 25.2 27.4 86 30 46.9

40 15.99 16 15.74 16 25.3 27.6 86 30 47

41 15.99 16 15.73 16 25.3 27.8 86 30.1 47.2

42 15.99 16 15.72 16 25.3 28 86 30.1 47.4

43 15.99 16 15.7 16 25.3 28.2 86 30.1 47.6

44 15.99 16 15.69 16 25.3 28.4 86 30.2 47.8

45 15.99 16 15.67 16 25.3 28.6 86 30.2 48

46 15.99 16 15.66 16 25.3 28.8 85 30.3 48.2

47 15.98 16 15.64 16 25.4 29 85 30.3 48.4

48 15.98 16 15.63 16 25.4 29.2 85 30.3 48.6

49 15.99 16 15.61 16 25.4 29.4 85 30.4 48.8

50 15.99 16 15.6 16 25.4 29.6 85 30.4 49
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Fig 4.12 Pilot scheme diagram for PPA-VFH-BUG system. 

4.13 Conclusion for Hybrid Algorithm 

PPA-VFH algorithm was used well in conjunction with PPA to avoid obstructions 

along the plantation gap. Keeping small number of waypoints reduces the mobile 

vehicle's setup time and oscillations. (2) Choosing an appropriate lookahead distance 

and velocity are important parameters which are influenced by the robot's design, path 

size, maneuverability, and field type. We did a basic performance assessment of our 

LiDAR-based navigation system based on the needs of a simplified navigation system 

for an autonomous irrigation robot. The 2D grid occupancy mapping provides a 

straightforward method for overcoming autonomous navigation with less complex 

sensor data analysis. The procedure may be carried out on 16/32-bit computer with 

minimum power usage. The range and performance of electric vehicles are largely 

dictated by their energy usage. This method may be useful for agricultural specific 

electric cars because of its low computational demand. It can increase the mileage and 
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energy contribution of other field operations, such as pump machines and robotic 

arms. 

PPA-VFH-BUG Algorithm was run using a variety of LIDAR parameter settings and 

circumnavigation algorithm threshold angles. The optimum LIDAR range for 

avoiding local minima was 40 cm, which was also closer enough to plant fields to be 

successfully applied by pesticides. The ideal stable value for the threshold angle was 

less than 40 degrees, but not less than 5 degrees, since this lead to overreaction in the 

behavior of the robots. The approach may be used for bigger scale for actual robots 

and field though the experiment was done on a smaller scale. The operator may use 

the simulation experiment for directing the robot around an agricultural farm 

effectively. The technique uses fundamental mathematical procedures to lower 

hardware costs. Additionally, it helps ease the strain on the most sophisticated, 

complicated systems utilized for most autonomous navigation.  
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5.1 Conclusion 

• Autonomous navigation system was developed effectively by traversing all 

plant rows in a zigzag pattern. Different algorithms were compared for finding 

best low-cost application. Multiple tests were conducted to evaluate the 

performance of the system. The least travel oscillations were seen at a speed 

of 0.5 km/h, while the highest speed covered was 2.75 km/h. 

• The experiment has been conducted on barriers that are straight and 

rectangular, but it should function better in the actual world. Plants have rough 

surfaces on their leaves, stems, and branches, which improve readings of laser 

reflecting sensors. Planer surface deflect light signals at higher angle of 

incidence. Ignorable objects, such as little branches or leaves, might cause 

sensors to respond with an overly acute proportion causing the robot to stop. 

This issue can be resolved by using more effective planting procedures with 

well-maintained inter-row spaces for mobile robot.  

• Remote monitoring and control override by human operator can be used to 

assist the robot in overcoming hurdles. The designed algorithm can certainly 

work for Level 2-3 autonomy of mobile robots which are more achievable than 

fully autonomous robots, the operator needs to occasionally control the robots. 

The strategy is based on “face and drive” method like humans where obstacles 

are encountered in real time with low knowledge of cloud point mapping 

required. 

• The hybrid algorithm has integrated and advanced LIDAR sensor with a 

classical mathematical approach to solve negation problem in agriculture 

robotics. There are scopes to improve the sensory readings and analyze the 

data to observe different shapes and types of obstacles. Small U-shaped 

obstacles can trap the robot, algorithms can be developed to detect and divert 

from such objects at early. Th algorithm can also be studied and improved to 

different mobile robot configuration of 4-wheel drive systems (like Bonirob 

and Harvey robots). 
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5.2 Future Scope 

 Algorithm has been tried with LIDAR and Accurate localization information. 

Real life scenario may require sensor fusion of different sensors (like RTK-

GPS, 3D Lidar, IMU etc) for proper localization. Study on and utilization of 

appropriate filters (like EKF) will be required for sensor fusion.  

 Memorization algorithm of obstacles can lead to faster navigation and obstacle 

mitigation for multiple operations in a given area. 

 Fine tuning and sensitivity need to studied for practical applications; stray 

small objects can obstruct an over sensitive mobile robot. 

 Fusion of advanced sensors based on LIDAR, Visual, EKF and other proximity 

sensor may make SLAM algorithm more robust for localisation and mapping 

in outdoor farm operations. 

 Compatibility and tunning of the algorithm need to be tested for robots with 

different shape/wheel configurations of robot. 
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Appendices 

Program code (for PPA-VFH-BUG Algorithm): 

clear all; 
clc; 
%%%%%%%load image and convert to bw grid%%%%%%%%%%%%% 
image = imread('mapsMoreObstacles.jpg'); 
grayimage = rgb2gray(image); 
grayimage = imresize(grayimage,.2); 

 
bwimage = grayimage<150; 
imshow(grayimage) 
map1 = binaryOccupancyMap(bwimage); 
%figure('Name','Bijay Rai Robot work') 
%subplot(1,2,1) 
show(map1) 
%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%WAY POINTS CREATION%%%%%%%%%%%%% 
pathWayPoints = [ 
16 11; 
23 55; 
37 11; 
53 55; 
67 11; 
74 55; 
];     

 
pause(0.0001); 
%hold on; 
%plot(pathWayPoints(:,1), pathWayPoints(:,2),'k--d') 

 
%xlim([0 13]) 
%ylim([0 13]) 
title('Waypoints Map') 
robotInitialLocation = pathWayPoints(1,:); 
%%%%%WAY POINTS CREATION ENDS%%%%%%%%%%%%% 

 
%%%%ROBOT DIMENSION%%%%%%%% 
% Define Vehicle dimension 
R = 0.05;                        % Wheel radius [m],0.05 original 
L = 0.40;                        % Wheelbase [m],0.13 original 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% %%%%%%%%VFH SETUP%%%%%%%%%%%%%%%%% 
maxRange=8; 
vfh = controllerVFH; 
% vfh.TargetDirectionWeight=8; 
% vfh.CurrentDirectionWeight=3; 
% vfh.PreviousDirectionWeight=3; 

 
%%%%%%%%%default settings VFH+%%%%%%%%% 
vfh.TargetDirectionWeight=5; 
vfh.CurrentDirectionWeight=2; 
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vfh.PreviousDirectionWeight=2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
vfh.DistanceLimits = [0.1 maxRange]; 
vfh.NumAngularSectors = 20;%36 preiousval 
vfh.HistogramThresholds = [10 20];%5 7 default 
vfh.RobotRadius = L; 
vfh.SafetyDistance = L*1.1; 
vfh.MinTurningRadius =1.2;%0.2 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%%%LIDAR SETUP%%%%%%%%%%%%%%% 
lidar = LidarSensor; 
lidar.sensorOffset = [0,0]; 
lidar.scanAngles = linspace(-pi,pi,180); 
lidar.maxRange = maxRange; 

 
viz = Visualizer2D; 
viz.hasWaypoints = true; 
viz.mapName = 'map1';%'map' 
attachLidarSensor(viz,lidar); 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%log file name logger%%%%%% 
[ctimetf] = clock; 
fileName=int2str(ctime(1)); 
fileName=strcat(fileName,'-',int2str(ctime(2))); 
fileName=strcat(fileName,'-',int2str(ctime(3))); 
fileName=strcat(fileName,'-',int2str(ctime(4))); 
fileName=strcat(fileName,'-',int2str(ctime(5))); 
fileName1=strcat(fileName,'-',int2str(ctime(6))) 
fileName=strcat(fileName1,'-','AgroLogger.CSV') 
%L = log4m.getLogger(fileName); 
%%%log file name logger%%%%%% 

 
%startLocation = pathWayPoints(1,:); 
endLocation = pathWayPoints(2,:); 
initialOrientation = 0; %initial angle of pose of robot 
robotCurrentPose = [robotInitialLocationinitialOrientation]'% 

intialpostion[ x, y, theta] 
robot = differentialDriveKinematics("TrackWidth", 1, 

"VehicleInputs", "VehicleSpeedHeadingRate"); 

 
controller = controllerPurePursuit; 
controller.Waypoints = pathWayPoints; 

 
%%%%%%FOR NON ADAPTIVE PPA Settings%%%%%%%%%%%%% 
controller.DesiredLinearVelocity = 0.8 %original 0.8 
controller.MaxAngularVelocity = 1 
controller.LookaheadDistance =20 
%%%%%%FOR NON ADAPTIVE PPA Settings%%%%%%%%%%%%% 

 

 
LinVel=controller.DesiredLinearVelocity; %0.8 original 
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AngVel=controller.MaxAngularVelocity; 
LookDis=controller.LookaheadDistance; 

 
goalRadius = 0.1; 
distanceToGoal = norm(robotInitialLocation - endLocation) 
sampleTime = 0.1; 
vizRate = rateControl(1/sampleTime); 
frameSize = robot.TrackWidth/0.8; 
frameSize = 10; 

 

initPose = [robotInitialLocation(1);robotInitialLocation(2);1.57];  
prePose=initPose 
pose(:,1) = initPose; 
msg=text(10,10,'xx') 

 
logData=sprintf('Range:%i, VfhSectors:%i, VfhRoRad:%i, 

VfhMinRad:%i,LiVel:%.1f, 

LookDis:%.1f',maxRange,vfh.NumAngularSectors,vfh.RobotRadius,vfh.Min

TurningRadius,... 
controller.DesiredLinearVelocity,controller.LookaheadDistance) 
%L.info('Settings',logData); 
startTime=tic 
sumdist=0 

 

 
foridx=2:8000 
%foridx=2:20 

 
delete(msg) 
msg=text(20,2,num2str(idx))      

 
prePose = pose(:,idx-1) 
ranges = lidar(prePose); 
id = isnan(ranges); 
ranges(id) = maxRange; 
ranges; 
mn=mean(ranges) 
md=median(ranges) 
minR=min(ranges) 
maxR=max(ranges) 
index=idx 

 
[vRef,wRef,lookAheadPt] = controller(prePose) 

 
AnglesR=lidar.scanAngles; 
degAngles=AnglesR*180/pi; 
prePose365=wrapTo2Pi(prePose(3)) 
curAngle=prePose365*180/pi 
%[ranges AnglesR' degAngles'] 

 

 
targetDir = atan2(lookAheadPt(2)-prePose(2),lookAheadPt(1)-

prePose(1)) 
targetDir365 =wrapTo2Pi(targetDir) 
targetAngle=targetDir365*180/pi 
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%code for lidar scan setting -pi/2 to pi/2, 51 setting 
if(prePose365>pi) 
approachAngle=2*pi-prePose365+targetDir365 
else 
approachAngle=targetDir365 - prePose365 
end 

 
approachAngle=targetDir365 - prePose365 
approachAngleDeg=approachAngle*180/pi 

 
vfhSteer = vfh(ranges,AnglesR,approachAngle)  
vfhSteerDeg = vfhSteer*180/pi; 
totalSteer=vfhSteer 
totalSteerDeg=totalSteer*180/pi 

 
if ~isnan(totalSteer) && abs(totalSteer-targetDir) > 0.1 
wRef = 1.0*totalSteer 
%wRef = 0.5*newSteer 
end 

 
velB = [vRef;0;wRef]                   % Body velocities [vx;vy;w] 
vel = bodyToWorld(velB,prePose)  % Convert from body to world 

 
% Perform forward discrete integration step 
pose(:,idx) = prePose + vel*sampleTime;  
nowPose = prePose + vel*sampleTime 

 

 
%%%%%%%%%%%%%%PRINTING COMMANDS%%%%%%%%%%%%%% 
loggerData1=sprintf(',ind:%i,mn:%.2f,md:%0.2f,minR:%0.2f,maxR:%0.2f,

CPx:%0.1f,CPy:%0.1f,CPd:%0.0f,LPx:%0.1f,LPy:%0.1f', 

idx,mn,md,minR,maxR,prePose(1),prePose(2),curAngle,lookAheadPt(1),lo

okAheadPt(2)) 
% 
% loggerData2=sprintf(',nowError:%.4f,preError:%.4f, S1:%.1f,  
%%%%%%%%%%%%%%END OF PRINTING COMMANDS%%%%%%%%%%%%%% 

 
xlim([0 100]) 
ylim([0 70]) 

 

 
viz(pose(:,idx),pathWayPoints,ranges) 
%     hold on; 
%     plot(lookAheadPt(1),lookAheadPt(2),'*'); 

 

 
    distRobotToLastWaypoints=norm([nowPose(1),nowPose(2)]-

[pathWayPoints(6,1),pathWayPoints(6,2)]) 

 
if(distRobotToLastWaypoints<1 | mn<1) 
        k='touched' 
break; 
end 
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%distWayPoints=distance([prePose(1),prePose(2)],[pathWayPoints(:,1),

pathWayPoints(:,2)]) 
fori=1:6 
    distWayPoints(i)=norm([nowPose(1),nowPose(2)]-

[pathWayPoints(i,1),pathWayPoints(i,2)]); 
end 
%distWayPoints 
nearestWaypoint=min(distWayPoints) 

 

prePos=[prePose(1),prePose(2)] 
nowPose(1:2) 
distStep = norm(prePos-[nowPose(1),nowPose(2)]) 
sumdist=sumdist+distStep 

 

 
waitfor(vizRate); 

 
end 
fileName=strcat(fileName1,'-','AgroLogger.png') 
processTime=toc(startTime) 
DeviationFromCSV(strcat(fileName1,'-','AgroLogger.CSV')); 
saveas(2,fileName) 

 
return 

 
%%%%%%%%%%%%%PRM CODE%%%%%%%%%%%%%%%%%% 
startLocation = pathWayPoints(1,:); 
endLocation = pathWayPoints(2,:); 
%inflate(map, robot.TrackWidth/2); 
newMap=binaryOccupancyMap(bwimage(:,1:200)); 
prm = robotics.PRM(newMap); 
prm.NumNodes = 50; 
%prm.NumNodes = 200; 
prm.ConnectionDistance = 100; 
path = findpath(prm, startLocation, endLocation) 
%distances = hypot(diff(path(:,1)), diff(path(:,2)))  
%totalDistance=sum(distances) 
hold on; 
subplot(1,2,1); 
show(prm) 
%%%%%%%%%%%%%PRM ENDS%%%%%%%%%%%%%%%%%% 

 

 

 

Program code (for PPA-VFH Algorithm): 

clear all; 
clc; 
%%%%%%%load image and convert to bw grid%%%%%%%%%%%%% 
image=imread('imageNoObstacle.jpg'); 
image=imread('imageOneObstacle3.jpg'); 



116 
 

%image=imread('preSub1.jpg'); 
grayimage = rgb2gray(image); 
grayimage = imresize(grayimage,.5); 

 
bwimage = grayimage<180; 
imshow(grayimage) 
map1 = binaryOccupancyMap(bwimage); 
%figure('Name','Bijay Rai Robot work') 
%subplot(1,2,1) 
show(map1) 
%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%4 ROWS WAY POINTS CREATION%%%%%%%%%%%%% 
pathWayPoints = [ 
25 20; 
52 165; 
110 5; 
175 160; 
]; 

 
pause(0.0001); 
%hold on; 
%plot(pathWayPoints(:,1), pathWayPoints(:,2),'k--d') 

 
title('Waypoints Map') 
robotInitialLocation = pathWayPoints(1,:); 
%%%%%WAY POINTS CREATION ENDS%%%%%%%%%%%%% 

 
%%%%ROBOT DIMENSION%%%%%%%% 
% Define Vehicle dimension 
%scale assumed is 1 pixel dist=2 cms 
R = 10;   % Wheel radius [m],0.05 original 
L = 6;   % Wheelbase [m],0.13 original 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
% %%%%%%%%VFH SETUP%%%%%%%%%%%%%%%%% 
maxRange=21;%20 original for conf2, 15 failed, 25 failed, 16 failed, 

24 failed 
vfh = controllerVFH; 
% vfh.TargetDirectionWeight=8; 
% vfh.CurrentDirectionWeight=3; 
% vfh.PreviousDirectionWeight=3; 

 
%%%%%%%%%default settings VFH+%%%%%%%%% 
vfh.TargetDirectionWeight=5; 
vfh.CurrentDirectionWeight=5; 
vfh.PreviousDirectionWeight=2; 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
HistoLowThres=20; 

 
vfh.DistanceLimits = [0.1 maxRange]; 
vfh.NumAngularSectors = 20;%36 preiousval 
vfh.HistogramThresholds = [HistoLowThres (HistoLowThres+5)];%5 7 

default 
vfh.RobotRadius = L/2; 
vfh.SafetyDistance = L*1.1/2; 
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vfh.MinTurningRadius =1.2;%0.2 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%%%%%LIDAR SETUP%%%%%%%%%%%%%%% 
lidar = LidarSensor; 
lidar.sensorOffset = [0,0]; 
lidar.scanAngles = linspace(-pi,pi,90); 
lidar.maxRange = maxRange; 

 

viz = Visualizer2D; 
viz.hasWaypoints = true; 
viz.mapName = 'map1';%'map' 
attachLidarSensor(viz,lidar); 

 
AnglesR=lidar.scanAngles; 
degAngles=AnglesR*180/pi; 

 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 
%%%log file name logger%%%%%% 
[ctimetf] = clock; 
fileName=int2str(ctime(1)); 
fileName=strcat(fileName,'-',int2str(ctime(2))); 
fileName=strcat(fileName,'-',int2str(ctime(3))); 
fileName=strcat(fileName,'-',int2str(ctime(4))); 
fileName=strcat(fileName,'-',int2str(ctime(5))); 
fileName1=strcat(fileName,'-',int2str(ctime(6))) 
fileName=strcat(fileName1,'-','AgroLogger.CSV') 
L = log4m.getLogger(fileName); 

 
%%%log file name logger%%%%%% 

 
%startLocation = pathWayPoints(1,:); 
endLocation = pathWayPoints(2,:); 
initialOrientation = 0; %initial angle of pose of robot 
robotCurrentPose = [robotInitialLocationinitialOrientation]'% 

intialpostion[ x, y, theta] 
robot = differentialDriveKinematics("TrackWidth", 1, 

"VehicleInputs", "VehicleSpeedHeadingRate"); 

 
controller = controllerPurePursuit; 
controller.Waypoints = pathWayPoints; 

 
%%%%%%FOR NON ADAPTIVE PPA Settings%%%%%%%%%%%%% 
controller.DesiredLinearVelocity = 2 %original 0.8 
controller.MaxAngularVelocity = 4 
controller.LookaheadDistance =20 %20 initial best 
%%%%%%FOR NON ADAPTIVE PPA Settings%%%%%%%%%%%%% 

 

 
LinVel=controller.DesiredLinearVelocity; %0.8 original 
AngVel=controller.MaxAngularVelocity; 
LookDis=controller.LookaheadDistance; 
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goalRadius = 0.1; 
distanceToGoal = norm(robotInitialLocation - endLocation) 
sampleTime = 0.1; 
vizRate = rateControl(1/sampleTime); 
frameSize = robot.TrackWidth/0.8; 
frameSize = 10; 

 
initPose = [robotInitialLocation(1);robotInitialLocation(2);1.57];  
oldPose =initPose 
pose(:,1) = initPose; 
msg=text(10,10,'xx') 

 
logData=sprintf('Range:%i, VfhSectors:%i, VfhRoRad:%i, 

VfhMinRad:%i,LiVel:%.1f, 

LookDis:%.1f',maxRange,vfh.NumAngularSectors,vfh.RobotRadius,vfh.Min

TurningRadius,... 
controller.DesiredLinearVelocity,controller.LookaheadDistance) 
L.info('Settings',logData); 
headerData=sprintf(',ind,mn,md,minR,maxR,CPx,CPy,CPd,LPx,LPy'); 
L.info('Settings',headerData); 

 
startTime=tic 
sumdist=0 

 
foridx=2:1000 
%foridx=2:20 

 
delete(msg) 
msg=text(20,2,num2str(idx));      

 
%prePose = pose(:,idx-1); 
prePose = oldPose 
ranges = lidar(prePose); 
id = isnan(ranges); 
ranges(id) = maxRange; 
ranges; 
mn=mean(ranges); 
md=median(ranges); 
minR=min(ranges); 
maxR=max(ranges); 
index=idx; 

 
[vRef,PPAwRef,lookAheadPt] = controller(prePose) 

 
prePose365=wrapTo2Pi(prePose(3)) 
curAngle=prePose365*180/pi; 
%[ranges AnglesR' degAngles'] 

 

 
targetDir = atan2(lookAheadPt(2)-prePose(2),lookAheadPt(1)-

prePose(1)); 
const=polyfit([pathWayPoints(1,1) 

pathWayPoints(2,1)],[pathWayPoints(1,2) pathWayPoints(2,2)],1) 
interceptC=const(2) 
CurrentInterceptC=prePose(2)-const(1)*prePose(1) 
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diffIntercept=interceptC-CurrentInterceptC 
targetDir365 =wrapTo2Pi(targetDir) 
targetAngle=targetDir365*180/pi; 
approachAngle=targetDir365 - prePose365 
approachAngleDeg=approachAngle*180/pi; 
thresAngle=0.2; 
if(approachAngle<-thresAngle || approachAngle>thresAngle) 
    targetDir365=-0.7 
end 

 
vfhSteer = vfh(ranges,AnglesR,targetDir365)  

 

 
vfhSteerDeg = vfhSteer*180/pi; 
totalSteer=vfhSteer; 
totalSteerDeg=totalSteer*180/pi; 
if ~isnan(totalSteer) && abs(totalSteer-targetDir) > 0.1 
%wRef = 0.8*totalSteer 
wRef = PPAwRef+1*totalSteer; 
end 
velB = [vRef;0;wRef];                   % Body velocities [vx;vy;w] 
vel = bodyToWorld(velB,prePose);  % Convert from body to world 
% Perform forward discrete integration step 
oldPose = prePose + vel*sampleTime; 
%pose(:,idx) = prePose + vel*sampleTime;  
%nowPose = prePose + vel*sampleTime; 
%%%%%%%%%%%%%PRINTING COMMANDS%%%%%%%%%%%%%% 
loggerData1=sprintf(',%i,%.2f,%0.2f,%0.2f,%0.2f,%0.1f,%0.1f,%0.0f,%0

.1f,%0.1f', 

idx,mn,md,minR,maxR,prePose(1),prePose(2),curAngle,lookAheadPt(1),lo

okAheadPt(2)); 

 
%logData=strcat(loggerData1,loggerData2) 
L.info('readings',loggerData1); 
%%%%%%%%%%%%%END OF PRINTING COMMANDS%%%%%%%%%%%%%% 
xlim([0 70]) 
ylim([0 180]) 
%viz(pose(:,idx),pathWayPoints,ranges) 
viz(oldPose,pathWayPoints,ranges) 
%     hold on; 
%     plot(lookAheadPt(1),lookAheadPt(2),'*'); 
   distRobotToLastWaypoints=norm([oldPose(1),oldPose(2)]-

[pathWayPoints(2,1),pathWayPoints(2,2)]); 
if(distRobotToLastWaypoints<5 | mn<1) 
        k='touched' 
break; 
end 
prePos=[prePose(1),prePose(2)] 
oldPose(1:2) 
distStep = norm(prePos-[oldPose(1),oldPose(2)]) 
sumdist=sumdist+distStep 
waitfor(vizRate); 
end 
sumdist 
RealDist = norm([pathWayPoints(1,1),pathWayPoints(1,2)]-

[pathWayPoints(2,1),pathWayPoints(2,2)]) 
return 
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Abstract: 

The deployment of autonomous robots has increased in the agricultural industry to 

assist human labour operations and increase production yields. Autonomous robot can 

work in difficult conditions of weather for very long hours. Autonomous mobile robot 

can be an ideal vehicle for transportation and delivery of water and spraying of 

pesticides as it is one of the most labour-intensive work at agricultural field. Most 

autonomous robot has been studied with the similar approach to autonomous 

passenger car like Tesla, Waymo. However, this approach is creating problem is 

acceptance of robots by famers. Involvement of AI, machine learning and cloud 

computing are simply too expensive and sophisticated technology for farmers to 

operate. Such systems require rigorous training of machine and data collection in 

suitable environment which is mostly difficult to be executed in agricultural land.  

Drone technologies have been popular but has security, safety issues and well as 

inefficiency of delivery. The drones used are planes or multiple rotor helicopters. 

Delivery from air to ground is done at high rate without capability to spray at precise 

location of plants. Wind turbulence added by flying machine decrease the precision of 

operations. Drones are facing new issues of security as they can harm safety of people 

and infiltrate security of sensitive places, for example many north-eastern states have 

very less area permissible to fly drones due to presence of close international borders.  

Wheeled robots can deliver at very precise locations of plants at slower rate, they are 

also energy efficient machines compared to drones. 2-wheel differential drive robot is 

a good choice for agricultural purpose due to its maneuverability and simpler 

mathematical kinetic model. Farm mobile robots are slow operating machines, hence 

their kinematic model is enough for implementation of prototypes. The robot can 

orient and move to any positions based on control of its two drive wheels, supportive 

dummy castor wheels are necessary to running 2-wheel differential drive stable. Such 

type of drive is simpler and cheaper to design in hardware compared to other legged 

and crawler robots.   
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In this research study an attempt to design an autonomous navigation system for a 2-

wheel differential drive agricultural robot is carried out to design a system based on 

fast and simple geometrical algorithms using high advanced LIDAR sensors. The 

tracking algorithms popularly used are PPA, LQR and MPC controllers. These 

algorithms are compared to each other to find their suitability to my study. MPC and 

LQR are possible solutions for fast accurate tracking control but are only suited for 

ideally modelled conditions. Disturbances caused by nonlinear factors while driving 

the robot (like slippage or wheel lock) could make the system unpredictable and 

unstable. Model based algorithms also take considerable time for its operations 

challenging to be used in 8-16 bit micro controllers. PPA however has been favored 

as more suitable method due to its simplicity of computation, however it does need 

proper tunning of its lookahead distance based on size of robot and the farm rows. 

There are various kinds of sensors and methods discussed for localization and 

mapping. LIDAR has been popularly used for simultaneous localization and mapping, 

the method is interesting however is very heavy in computation, It requires continuous 

2D or 3D modelling of working space increasing load of computation and amount of 

memory required. To remove errors caused by faulty sensors and non-linearities of 

data sensed, such method also required data from several many sensors and fusion of 

those multiple data using Extended Kalman filter. All such intelligence added to the 

system increases the overall operations to the robot computer. To design a simple 

navigation system workable in a structed farm field a well-tuned obstacle avoidance 

algorithm should be sufficient.   

For the operation of obstacle avoidance very popular algorithms like RRT, Dijkstra’s 

and AVFH algorithms have been compared. Dijkstra and RRT are branching search 

algorithm where the path to avoid the obstacle is based on the knowledge of map and 

its obstacle. A global perception of the map needs to be continuously updated to such 

algorithms for overcoming obstacles. Based on the knowledge and map available, 

these algorithms will compute a plane to make a new path to avoid the obstacle and 

reach the next waypoints in the fastest shortest route. Planning is a crucial step in such 

algorithms where it takes considerable time based on the size of the area handles and 

type of parameters set to these algorithms for tunning sensitivity. Sensitive search 
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algorithms in a large map take considerable time before being able to mitigate the 

obstacle. The constant demand for knowledge of the map of surrounding also adds to 

computational load. VFH on the other hand works like a human driver where his 

knowledge of the object face become more important than knowing the whole map. 

VFH is inspired for potential force strategy where the obstacle in proximity exerts 

repulsive certainty force. The VFH algorithm converts the cartesian map of 

surrounding and obstacles to a polar form having sectors. It then helps robot find the 

closest angle or sector to given target angle, that which is having least certainty value. 

The robot can take the angle to avoid obstacle. Therefore, VFH has been proposed to 

be used with PPA for critical decision for obstacle handling. 

The pesticide spraying and irrigation requires peculiar attention even after obstacle 

avoidance. Obstacle are measured and understood only from the front face by a robot 

travelling towards it. Once obstacle detected, apart from steering away from it going 

to next waypoint, the proper application of water and pesticides on plants at the rear 

side of obstacle is very important. For efficiency in application of pesticides and water, 

a strategy to circumnavigate the obstacle is carried out using BUG algorithm. This 

strategy overcomes the problem of neglected spraying operation on plants at rear areas 

of obstacles. This negligence happens in most search plan algorithm which try to reach 

next waypoint using the shortest route possible.  

Using a combined low computation hybrid PPA-VFH-BUG algorithm, the simulation 

was successfully carried in MATLAB program environment with acceptable results 

of performance. Simulation was carried out for low-speed mobile robots with travel 

speeds up to 2.5 km/hr. 
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