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Chapter-1 

 INTRODUCTION 

1.1. BACKGROUND 

Statistical Mechanics is the fundamental branch of science which provides a 

framework for studying large collection of molecules and tells us how to average 

over positions and velocities to properly simulate the distribution of particles. The 

framework of Statistical Mechanics also provides efficient equations for computing 

thermodynamic properties from molecular properties. The subject has been applied 

with success to the study of matter in solids, liquids and gaseous states under 

different conditions of temperature and pressure etc. 

 The kinetic theory of gases is the study of the microscopic behavior of 

molecules and their interactions, which lead to macroscopic relationships like the 

ideal gas law, and hence this theory is one of the most pioneering studies of 

Statistical Mechanics and one can arrive at powerful quantitative conclusions. At 

very low pressure and at very high temperatures the gases tend to behave in 

accordance with the ideal systems. Under these conditions it is found that the mean 

free path is much larger than the diameter of molecules of gases, i.e. the gaseous 

molecules spend most of their time far from one another (Clark, 1989). In crystalline 

solids there is absence of translatory motion of the particles. The force of attractions 

between the particles of crystals is quite large and they rarely move from one lattice 

site to another. 

 A liquid, unlike a crystal may be regarded as if a finite fraction of lattice sites 

to be empty. Clearly crystals have a systematic arrangement of particles and the 

introduction of disorder over a small region cause disturbance in the long range and 

destroy the crystalline arrangement and its long-range order. The liquid may 

therefore be considered to have an ordered pattern over a short range instead of the 

entire mass i.e. short-range order and long-range disorder and a particle can migrate 

through it relatively rapidly. It must however be emphasized that short-range order in 

the liquid structure is continuously changing because of the thermal motion of the 

particles. In solids as the temperature of the crystal is increased the frequencies with 

which the particles vibrate about their mean positions increase and further if the  
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temperature is increased the kinetic energy of the particles increase so much that it 

overcomes the potential energy which keeps the particles in their positions. Particles, 

which have kinetic energy greater than their potential energy leave their lattice sites 

and create vacancies, thus forming defects. If number of such defects are increased 

by increasing the temperature the lattice collapse and becomes liquid.  

 However, in the liquid each particle is always interacting with many other 

neighboring particles, so that the simplification of kinetic theory of gases is not 

simply applicable to liquids nor liquids could be considered as having a systematic 

long – range arrangement of particles as in solids. But liquids do not have a simple 

interpolated status between gases and solids, although features adjacent to both the 

phases can be detected. 

 The structure of a liquid is investigated by means of X-rays scattering 

techniques and it was found that liquids survived some features of lattice structure of 

solids. The structure of liquids can be described by – g(r), known as Radial 

Distribution Function. Hence an understanding of liquid is possible if the distribution 

function is clearly perceived. 

 Examining the various degrees of freedom, it is necessary to consider the 

energy contribution in calculating the canonical partition function. The partition 

function is more generally written in terms of Hamiltonian. The Hamiltonian 

operator is separated into two parts, one involving only the center of mass i.e. cm

^

H  

and the other involving the intra molecular degrees of freedom i.e. int

^

H , so that the 

total Hamiltonian 
^

H  is written as  

 int

^

cm

^^

H     H     H                            (1.1) 

 For a conservative system 
^

H  is equal to E the total energy of the system. The 

transformation into wave mechanical form is as follows 

   Eψ      ψ   U   ψ
2m

N

2

i

i

2
                       (1.2) 

or 
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 Eψ    ψH
^

                            (1.3) 

 Substituting eqn. (1.1) in eqn. (1.3) and solving the resulting equation will 

give two separate wave equations for the centre of mass and internal co-ordinates. 

Solution of these two wave equations yields two independent sets of quantum states, 

one for translational degrees of freedom and one for internal degrees of freedom. The 

canonical partition function (QT) according to the assumption can be separated and is 

given as  

 










 


ji, B

int

j

cm

i

T
Tk

E   E
 exp    Q  

         









i B

cm

i

Tk

E
 exp      














j B

int

j

Tk

E
 exp  

        =  Qcm (N, V, T)         Qint (N, T)                       (1.4) 

where kB is the Boltzmann constant, T is the absolute temperature and rests of the 

symbols have their usual connotation. It is to be noted that the internal degrees of 

freedom depend only on the intra molecular structure (hence effect of vibrational, 

rotational etc. are to be considered) and is independent of volume or density, where 

as, translational degrees of freedom depend on center of mass (cm). 

 The translational Hamiltonian cm

^

H  for the system of ‘N’ particles in which 

the potential energy depends only on positions r1, r2,……….., r3N molecular center of 

mass is given by 

 )r,........,r,(r U
m 2

P  P    P
       H 3N21N

i

2

iz

2

iy

2

ix
cm

^




                       (1.5) 

Pix, Piy, and Piz are the three components of momentum vector Pi. 

Assuming that the translational degrees of freedom are evaluated classically, Qcm is 

given by 

 3N3N

B

cm

3Ncm ....drdp   
Tk

H
  exp..  

h N!

1
        Q   








                                      (1.6) 

 Substituting eqn. (1.5) and integrating we get 
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N! Λ

Z
     Q

3N

N
cm                             (1.7) 

where 

 

1/2

B

2

T k m  π2

h
       Λ 








                          (1.8) 

 is called thermal de Broglie wave length and 

 


 N1

B

N
N dr......dr  )

Tk

U
(  exp......   Z                        (1.9) 

Here UN is the potential energy of interaction, which depends on the relative 

positions of N atoms or molecules. ZN is called the configurational integral, which is 

involved in various distribution functions. 

 

1.2. THEORY OF DISTRIBUTION FUNCTIONS 

 Radial distribution function is used to describe the probability of finding a 

particle at a distance r if a particle is placed at the origin in the liquid. 

 Let us consider a liquid with ‘N’ particles at temperature ‘T’ and in a 

Volume ‘V’. If the probability of a particle ‘1’ is in the volume element 


1dr  at 


1r , 

particle ‘2’ is in 


2dr  at 


2r  ……….. and the particle ‘N’ is in 


Ndr  at 


Nr  is given by  

 N N B 1 2 N
1 2 N 1 2 N

N

exp( U /k T)dr dr ........dr
P (r , r .............., r )dr ,dr .............dr

Z

  
      

     (1.10) 

This is called specific distribution function. The probability that a particle ‘1’ 

is in the volume element 


1dr  at 


1r , particle ‘2’ is in 


2dr  at 


2r , and the particle ‘n’ is 

in 


ndr  at 


nr  irrespective of the configuration of the remaining particles is given by 
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  N B n 1 Nn
1 2 n n 1 N

N

.... exp( U /k T)  dr .........dr
P (r , r .............., r )dr ..............dr  

Z

 

    






 

 

                 

(1.11)

 The generic distribution function )r........,r,r(ρ n21

(n)


 is the probability that 

any particle is in the volume element 


1dr  at 


1r , any other particle is in 


2dr  at 


2r

…..………. and an nth particle is in 


ndr  at 


nr  irrespective of the configuration of the 

rest of the particles is given by  

  )r,..............r,r( P   
! n)(N

N!
      )r........r,r( ρ n21

n

n21

(n)



                  (1.12) 

The correlation function )r,......r,r( g n21

(n)


 is given by 

  )r........r,r( g   ρ       )r........r,r( ρ n21

nn

n21

(n)


                      (1.13) 

  )r........r,r( ρ   
ρ

1
       )r........r,r( g n21

(n)

nn21

n


  

N

N1nBN

n

n

Z

dr.........dr  T)/kUexp(....
   

! n)(N N

N! V
  

 





                         (1.14)

 Here  is the number density and is equal to N/V. It may be pointed out that 

the two particles correlation function )r,r( g 21

2


 plays a very important role in 

understanding liquid state properties, which is given by 

  )r,r( ρ   
ρ

1
     )r,r( g 21

(2)

221

2


                         (1.15) 

Here )r,r( ρ 21

(2)


 is designated as the pair distribution function. If particle at 



1r  exerts a spherically symmetrical force field then   )r,r( g 21

2


 and )r,r( ρ 21

(2)


 

depend on the relative distance between particles ‘1’ and ‘2’ i.e upon r12, so we write 

as 
  )(r g 12

2
 which for convenience is written as g(r). Further it is the Fourier 

transformation of experimentally measurable quantity called structure factor S(k). 

Important features of g(r) are: 
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(1) There is zero probability of the two particles occupying the same space, 

hence g(r) at r = 0 is zero. 

(2) At a distance r0, which is the minimum of the potential energy curve 

between two particles, there is maximum probability of finding a particle and hence 

g(r) is expected to be maximum as a first approximation. 

(3) As r  , there is no long – range order, and so g(r)  1. 

(4) g(r), the pair correlation function which when multiplies with number 

density gives local density (r) i.e. (r)   =    g(r) 

(5) Since 4r2 g(r) is the particle distribution function in a unit volume and this 

multiplied by dr gives the average number of particles between r and r  + dr 

(6) The Fourier inverse transformation of g(r) gives the function S(k), the 

structure factor in k – space, where k  =  (4 /) sin. [Here 2 is the scattering angle 

and  is the wavelength of the incident beam]. This function S(k) allows us to 

calculate various properties of metals and liquids. 

 

1.3. INTEGRAL EQUATIONS  

 For simple liquids, which are characterized by spherically symmetric 

interactions, it is assumed that the forces act through the center of gravity and are 

pair wise decomposable i.e. total ‘N’ body configurational energy can be represented 

as a sum of pair interactions and hence it may be written as 







N

ji

ijN21N )r( U    )r........r,r( U                        (1.16) 

and the radial distribution function is given by 

)r,r( ρ
ρ

1
      (r) g 21

(2)

2



    

  





 N3BN

N

2
dr.........dr  T)/kUexp(....  

! 2)(N  Zρ

N!
                               (1.17) 

On differentiating the above equation and using eqn. (1.16) it can be found 

that 
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  












 


0   dr   )r,r,(r g  

r

)U(r
 ρ    )(r g  

r

)U(r
    

r

)(r g
  Tk

31323123

1

13

12

1

12

1

12

B
 

(1.18 (1.18) 

 Eqn. (1.18) is an integro differential equation coupled with (N-1) equations 

and forms a hierarchy of equations. This can be solved using superposition 

approximation, which according to Kirkwood, states that the probability of observing 

some particular configuration of three molecules occupying positions 1, 2, and 3 

equals the product of the probability of observing the three pairs of occupancies 12, 

23 and 13 separately i.e. 

  )g(r   )g(r )g(r    )r,r,(rg 132312132312(3)                                 (1.19) 

So that eqn. (1.18) reduces to 

 
















0 dr   )(r g   )(r g   )(r g   

r

)U(r
 ρ  )(r g  

r

)U(r
    

r

)(r g
 Tk

-

3132312

1

13

12

1

12

1

12
B

                            (1.20) 

 The eqn. (1.20) is called Yvon-Born-Green (YBG) equation. Actually, the 

first structural theory of the fluid state is the work of Yvon (Yvon, 1935) and 

Kirkwood (Kirkwood, 1935) and then independently formulated by Bogoliubov 

(Bogoliubov, 1946), and, Born and Green (Born and Green, 1946). The superposition 

approximation is valid only at low densities and gives second and third virial 

coefficients correctly but not higher virial coefficients. The discrepancy at high 

densities is due to superposition approximation. The approximations together with 

improvements have been discussed by Henderson (Henderson, 1967), and, Rice and 

Gray (Rice and Gray, 1965). The general equation is given by 

 

 

























0     dr g  

r

)U(r
 ρ      g  

r

)U(r
    

r

g
  Tk 1h) 1h (

1

1h  1,
h

1j

(h)

1

ij

1

(h)

B            (1.21)              
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 The important four theories involving integral equations are the YBG theory, 

the hyper-netted chain (HNC) theory, the Percus Yevick (PY) theory and the 

perturbation theory (Reed and Gubbins, 1973). The YBG is the simplest of these and 

least accurate among the rest. 

The HNC and PY equations make use of C(r), the direct correlation function 

(DCF) introduced first by Ornstein and Zernike (Ornstein and Zernike, 1914). The 

importance of it, in fluids is due to the following reasons. 

(a) It can be calculated directly from experimental data and can be used to 

determine g(r) and S(k). 

(b) The range of C(r) is shorter in comparison with h(r), the total correlation 

function defined by (Mikolaj and Pings, 1967; Mikolaj and Pings, 1967) 

 h(r) = g(r) – 1                          (1.22) 

The PY and HNC approximations give expressions for C(r) in terms of g(r) and the 

potential function U(r). These are given by (Percus, 1962; Percus and Yevick, 1957) 

PY: }]
Tk

U(r)
exp{  -  [1 g(r)      C(r)

B

              (1.23) 

HNC: 
Tk

U(r)
   -  g(r)ln   -  1  -  g(r)      C(r)

B

             (1.24) 

Using these forms of C(r) in Ornstein-Zernike equation, which is given by

   rd   )(rh   )C(r ρ      )C(r      )h(r 323131212                        (1.25) 

one gets the integral equations as  

 PY:

   rd   }]
Tk

)U(r
exp{  -  [1 )g(r   1]  -  )[g(r  ρ    1    ]

Tk

)U(r
  [ exp  )g(r 3

B

13
1323

B

12
12

 

                                                                                                        (1.26) 

 HNC:

   rd   ]
Tk

)U(r
  -  1 - )g(rln  - )[g(r   1]  -  )[g(r  ρ      

Tk

)U(r
     )g(rln 3

B

13
131323

B

12
12  

(1.27) 
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 It is possible to improve the PY and HNC approximations (Verlet, 1964) in a 

systematic manner, at the expense of increasing computational difficulty.  

 Understanding and detailed examining the above theories depicts various 

conclusions. The conclusions are: 

(1) The theories work well at low and moderate densities but fail to give 

quantitative agreement at high densities. 

(2) The failure at high densities is noticeable in calculating pressure, which 

depends in a sensitive way on details of g(r). 

 The PY and HNC theories are distinctly better than YBG (except in 

predicting the phase transition). Under most conditions, PY equation is superior to 

HNC. However HNC seems to be superior at low temperatures and moderate 

densities and also its application to electrolyte solutions. The PY theories have an 

unexpected advantage (Thiele, 1963; Wertheim, 1963; Wertheim, 1964; Baxter, 

1967) as the equation can be solved exactly for a fluid of hard spheres. 

 When an approximate theory of g(r) is used to calculate the pressure, two 

different answers are obtained from pressure equations and compressibility equation. 

The discrepancy is an indication of the inaccuracy of the theory. Otherwise g(r) 

would give the same calculated pressure from both the equations. (pair wise 

additivity is assumed but even when pair wise additivity does not hold, the 

compressibility equation is still valid but not pressure equation of state). 

According to self consistent approach (SCA) (Rowlinson, 1965), the equation 

for C(r) is written involving an unknown function , which depends on temperature 

and density (and composition in mixtures) but not on the separation r. The function  

is so chosen that pressure and compressibility equations yield the same pressure at 

every state. 

 C(r) for pure fluid is given by 

 T) ρ, d(r,        T) ρ, (r,C    T) ρ, (r,C PYSC                           (1.28) 

where CPY is given by PY approximation and d is a function to be determined.

 T]k /  U(r)- g(r)ln  - 1 - T}k / exp{U(r)  [g(r) T) φ(ρ,    T) ρ, d(r, BB            (1.29) 
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When function  = 0 eqn. (1.28) reduces to PY approximation, where as 

when function  = 1, it gives HNC approximation. Self-Consistent results are better 

than HNC or PY results in general. 

 The following are other types of integral equations. The energy equation of 

state for N molecules is given by 

 



0

2

B dr r  π4 g(r) U(r) N ρ 
2

1
  TNk 

2

3
    E                       (1.30) 

The pressure equation of state is given by  

  drr  π4 g(r) 
dr

dU
r  

T6k

ρ
  -  1      

Tk ρ

p

0

2

BB




                       (1.31) 

While the compressibility equation of state is given by 

  dr r  π4 1] - g(r) [         1   Tkχ ρ
0

2

BT 


                        

(1.32)where, Tχ , is the compressibility and is given by T]
dp

dv
[ 

v

1
 . Further it is 

possible to relate transport properties to g(r), which are described in chapter 4. 

 

1.4. PERTURBATION THEORIES 

 The simplest model potential is the hard sphere potential function. The hard 

sphere potential has no attractive part and simulates the steep part (repulsive) of 

realistic potential. If  is defined as the diameter of the molecules, then the potential 

function is given by  

 









σ  r              ;                0   

σ  r              ;                  
      U(r)                       (1.33) 

i.e. the potential is zero when the distance between molecules is greater than the 

diameter of the molecules and infinity for distances less than the diameter. 

Much evidence points to the fact that the structure of a liquid is primarily 

determined by short range repulsive forces and that the relatively long range 

attractive part of the potential provides a net force that gives a uniform attractive  
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background (Handerson, 1971) . So the repulsive part of the potential function 

determines the structure of a liquid and the attractive part holds the molecules 

together at some specified density. In the case of hard sphere potential the absence of 

attractive forces means that there is only a single fluid phase (Lebowitz and Percus, 

1966). It is important to note that the PY equation is solved exactly for a fluid of hard 

spheres by Wertheim and Thiele (Thiele, 1963; Wertheim, 1963; Wertheim, 1964). 

The PY equation for this potential requires 

 C(r)    =    0                        ;  r                              (1.34) 

In the hard-core region C(r) is found to be [17,18] 

- C(r)   =      +     (r/)   +    (r/)3                    ;   r                         (1.35) 

where 

 
4

2

) η  -  1 (

) η 2    1 (
      α


  

 
4

2

) η  -  1 (

) 2 / η   1 (  6η
-       β


  

 
2

α η
      γ   

where  is called packing fraction and is given by  

 
6

σ ρ π
      η

3

                            (1.36) 

 

 

 

 

 

 

 

 

 

 



12 

 

Chapter-1 

 

 

Figure 1.1: Square-Well potential function 

 The square well potential is an extension of hard sphere potential as it retains 

hard sphere repulsive properties but allows the particles to attract one another and 

this potential function is defined by 

 

















λσ r              ;             0  

        λσr      σ    ;            ε- 

σ r             ;              

             U(r)                     (1.37) 

where σ
 
is the diameter of the particles, r is the separation between the particles,  

and  are the breadth and depth of the potential well. We emphasize that square well 

potential gives analytical expressions in which numerical computations dominate 

relatively and hence even other potentials, if attempted to solve structure and 

associated properties we feel that analytical expressions are more appropriate and 

hence the applicability of square well potential to be more superior than the rest 

especially for liquid metals and alloys.   

 An important model system is the mean spherical model approximation 

(MSMA) and was first proposed by Lebowitz and Percus (Lebowitz and Percus, 

1966) and is expressed as 

 

   r            ;             Tk /  U(r)-      C(r)

   

 r            ;                             0       g(r)

B 







  




                                     (1.38) 

U 







( )U r

r
0
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 Hard sphere potential function given by eqn. (1.33) lacks the realistic aspects, 

as the attraction between the particles are not considered at all though this potential 

function explains fairly many properties of liquids. 

 The general theory of perturbation treatment was first described by Zwanzig 

(Zwanzig, 1954). This treatment gives a power series in UN
(1) / kBT, where UN

(1) is 

the perturbing potential. So theories have since been developed to relate the hard 

sphere properties of liquids with realistic potentials based on perturbation theories 

(Zwanzig, 1954; Barker and Henderson, 1967; Barker and Henderson, 1971; Barker 

and Henderson, 1972; Smith et al., 1970; Barker and Henderson, 1967; Barker and 

Henderson, 1968; Barker and Henderson, 1971; Chandler and Weeks, 1970; Weeks 

et al., 1971; Adersen et al., 1972; Mansoori and Canfield, 1969, 1969, 1969, 1970; 

Mansoori and Canfield, 1970; Stell, 1971; Snider, 1966, 1967; Hiroike, 1972) 

 The reference system is usually taken to be hard sphere system (but this is not 

a necessary condition). We can write the real potential UN as a sum of two terms 

namely the reference potential UN
(0) and the perturbing potential UN

(1). Thus we have 

 UN   =   UN
(0)   +   UN

(1)                                                                           (1.39) 

 Substituting UN from eqn. (1.39) in eqn. (1.9), ZN, the configurational integral 

is obtained. The configurational integral of the hard spheres is given by ZN
(0), which 

is expressed as  

  


 N1

B

(0)

N(0)

N dr......dr  ] 
Tk

U
 [  exp......   Z                        (1.40) 

So 

 
(0)

N

N(0)

NN
Z

Z
   Z Z   

  0B

(1)

N

(0)

N T}k / {-U exp Z                                  (1.41)  

<     >0   =   indicates a canonical average in the unperturbed system. 
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In perturbation theory the Helmholtz function is described from a reference 

system plus a perturbation terms which are obtained from the radial distribution 

function of the reference system. The Helmholtz free energy ‘A’ is given as  

A  =  -kB T ln Q                                                                                         (1.42) 

 Here 

  
 ! N

Z
    Q

3N

N


                                                                                             (1.43) 

Substituting eqn. (1.41) into eqn. (1.43) and then putting the value of Q into 

eqn. (1.42) we get 

0B

(1)

N3N

(0)

N

B

T}k / {-U expln   )
 ! N

Z
ln(    

Tk

A
- 


                                      (1.44) 

 Using the perturbation approach, the Helmholtz function of a system can be 

expressed as an expansion in inverse temperature in addition to the Helmholtz 

function of a reference system whose structure and thermodynamic properties are 

computed. 

  
Tk

A
  

Tk

A
    

Tk

A

B

(1)

B

0

B

                                                                           (1.45)   

where A0 is the free energy of the reference system and A(1) is the perturbation free 

energy: 

 ]T}k / {-U exp[ ln Tk-    A 0B

(1)

NB

(1)                                                   (1.46) 

we can rearrange eqn. (1.46) as 

 0B

(1)

N

B

(1)

T}k / {-U exp    )
Tk

A
exp(-                         (1.47) 

and now we expand A(1) in powers of 1/T we get  

 0

(1)

N

(1) U    A   + Higher order terms of inverse temperature        (1.48)              

we further assume that (1)

NU  is pair-wise additive and is of the form 
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





0

0

(1)

0

ji

ij

(1)

0

(1)

N rd  (r)(r)gU
2

N ρ
       )(rU    U                (1.49) 

 However higher order terms in the expansion of eqn. (1.47) contain at least 

three and four body correlation functions, which even for hard spheres are not well 

known. An alternative to truncating the series after the first term is to write the exact 

relationship 

  rd (r)(r)gU
2

Nρ
  A  A  

σ

0

(1)

0 


                        (1.50) 

 Barker and Henderson (Barker and Henderson, 1967; Barker and Henderson, 

1971; Barker and Henderson, 1972; Smith et al., 1970; Barker and Henderson, 1967; 

Barker and Henderson, 1968; Barker and Henderson, 1971) were the first to consider 

the higher order terms in (1/T) in expansion of eqn. (1.44) and obtained the 

Helmholtz function up to the second order perturbation terms as  

 















σ

3

B00

2(1)

B

σ

0

(1)

0

  T)(1/k 0     rd  (r)g  )
P

ρ
( ] (r) U[

Tk 4

Nρ
  -        

  rd  (r)(r)gU
2

Nρ
  A  A  

                    (1.51) 

 We can use local compressibility term in eqn. (1.51), related to the pressure 

derivative of the density at a distance r from a given molecule at origin; i.e., on 

replacing (/p)0 (r)g0  by (r)]g (ρ
P

[ 0



. This is the so-called local compressibility 

approximation given by 

 















σ

3

B0
02(1)

B

σ

0

(1)

0

  T)(1/k 0     rd  )
P

(r)]g [ρ 
( ] (r) U[

Tk 4

Nρ
  -       

  rd  (r)(r)gU
2

Nρ
  A  A  

                    (1.52) 
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where N is the number of molecules, kB is Boltzmann’s constant, P, V and T are 

pressure, volume and absolute temperature respectively, 
V

N
  ρ   and (r)g0 is the pair 

correlation function for hard spheres. 

 In applying this equation to a square well fluid, Barker and Henderson took 

the hard sphere repulsive part as their unperturbed potential and the square well 

attractive part as perturbing potential. The expression for Helmholtz free energy of a 

square well fluid worked out to the second order in the Barker Henderson 

perturbation theory ((Barker and Henderson, 1967) is given by

 

]dr (r)gr ρ [ 
ρ

 )
Tk

ε
(      x            

ρ  π
4η4η1

η)-(1
 -dr  (r)gr )

Tk

ε
( ρ  π2-    

TNk

AA

λσ

σ

0

22

B

λσ

σ

2

4

O

2

BB

0














                           (1.53) 

 The Barker-Henderson theory was the first successful perturbation theory and 

showed that perturbation theory is probably most appealing approach to the liquid 

state. The Chandler-weeks-Andersen model (CWA) (Chandler and Weeks, 1970; 

Weeks et al., 1971; Adersen et al., 1972) is an important and widely cited 

perturbation theory. In common with the Barker and Hendrson approach, Chandler 

et. al. also divided the intermolecular (pair) potential into a reference system pair 

potential and a perturbation potential part. Thus the intermolecular potential, 

according to CWA theory is given by 

 (r)  U  (r)  U  U(r) P0                                                                               (1.54) 

 The differences between Barker – Henderson and CWA approaches are in the 

definition of the reference potential and the density dependence of the size of 

representative hard spheres. Chandler et. al. assumed that the reference potential 

includes all the repulsive forces in the Lennard-Jones (LJ) potential and the 

perturbation potential includes all the attractions and proposed the choice 
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



















min

minminP

min

minmin0

r r         ;                                        U(r)            

r r         ;                                )   U(r   (r)U

r r        ;                                         0               

r r        ;                      )  U(r-     U(r)   (r)U

                     (1.55) 

where rmin = 21/ 6  is the distance to the minimum in the LJ 6-12 potential. This 

theory establishes that the two effects (repulsive and attractive) are best understood 

on Fourier transform of h(r), the total correlation function i.e. 

 rde 1] - [g(r)    h(k) r . k -i

                                                                (1.56)  

 Chandler and weeks proposed a hypothesis on the behaviour of the function 

h(k) and empirically verified on the system of LJ 6-12 molecules. This hypothesis is 

based on the results of Verlet’s studies and is summarized as follows: 

(1) At intermediate and large wave vectors, the quantitative behaviour of the 

function h(k) is dominated by the repulsive forces and the attractive forces are 

manifested in the small wave vector region (k < ). 

(2) For high densities the behaviour of h(k), even at small wave vectors, is 

determined at least quantitatively by the repulsive forces. 

According to the first order perturbation theory, the Helmholtz function was shown 

by CWA as 

   dr  (r)g (r)U 
2

Nρ
  A  A  0P0       (1.57) 

Both these approaches are very appealing and are numerically quite satisfactory. 

 

1.5. STRUCTURE FACTOR IN LIQUIDS 

Electromagnetic radiations X-rays, neutrons and electrons, diffracted from 

fluid samples, yield information on the structures of the fluid through the relationship 

of the intensity of diffracted beam, I, with the angle  by which it has been 

diffracted. The properties of atoms as scattering centers differ for neutron and for 

electron ray diffraction, occurring from nuclei and from electrons, respectively. 

Furthermore the  
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inelastic or incoherent scattering process is approximately independent of the 

scattering angle. 

 The knowledge of the atomic structure of condensed matter results from X-

ray diffraction studies is of extreme importance. The structural information about the 

liquid state can be obtained by X-ray diffraction techniques and has been known 

since Debye (Debye, 1915) and Ehrenfest (Ehrenfest, 1915). These scientists have 

shown that the periodicity of a crystal structure is not required for the production of 

diffraction effects. Debye and Menke (Debye and Menke, 1930) made the first 

quantitative application to liquid Hg. 

The individual atoms work as scattering centers and the scattering results are 

presented as angle dependent scattering intensities, I(), where instead of the angle 

the variable k is used 

2) / sin( θ 
λ

4π
  k                            (1.58) 

The intensity in electron units scattered by a non-crystalline array of atoms at 

an angle  is given by ‘Debye’s equation’ 

nm

nm

n m

mn

coh

eu
kr

krsin 
 ff    (k)I                         (1.59) 

where fn, fm are the atomic scattering factors for the nth and mth atoms respectively, 

rnm is the magnitude of the vector separating these two atoms. For monatomic liquids 

fn = fm = f. The summation in Debye’s eqn. (1.59) should be performed at first for the 

atom at the origin and next extending to all atoms of the liquid specimen over all 

distances. Summation for the atom at the origin lead to unity, since in the limit as rnm 

 0, (sin krnm / krnm)  1. If N is the total number of atoms,

  ]
kr

krsin 
      [1Nf    (k)I

n' nm

nm2coh

eu                         (1.60) 

where the 
n'

excludes the atom at the origin. If it is assumed that there is 

continuous distribution of atoms, then the above summation may be replaced by an 

integral. If (r) is the density of atoms at distance r from the atom at the origin, then  
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the number of atoms in the spherical shell of radius r and thickness dr is 4r2(r)dr, 

then  eqn. (1.60) can be written as 

  ]dr 
kr

krsin 
(r) ρr 4π      [1Nf    (k)I

O nm

nm22coh

eu 


                      (1.61) 

 If we take  as the constant average density of atoms, then eqn. (1.61) can be 

written as 





0 nm

nm2

0 nm

nm22coh

eu dr 
kr

krsin 
 ρr 4π  ]dr 

kr

krsin 
ρ] - (r) [ρr 4π  [1Nf  (k)I  

                (1.62) 

The second integral is negligible since it corresponds to forward scattering (Hansen 

and Mc Donald, 1976). 

 Hence eqn. (1.62) can be written as 

 ]dr 
kr

krsin 
ρ] - (r) [ρr 4π  [1Nf  (k)I

0 nm

nm22coh

eu 


                           (1.63) 

 The structure factor of a liquid S(k), which is the autocorrelation function of 

the Fourier  components of density of particles is defined as  

 
2

coh

eu

Nf

(k)I
      S(k)                         (1.64) 

so that 

 

 

0

dr 

nm
kr

nm
krsin 

 ρ 1]- (r) [g
2

r 4π  1           

 

0

dr 

nm
kr

nm
krsin 

ρ] - (r) [ρ
2

r 4π  1    S(k)











                      (1.65) 

 Due to lacking of long range order in liquids, the best way to characterize the 

structure of a liquid is through correlation functions. The pair correlation function or 

radial distribution function is one of the important parameter to explain the structural 

features of a liquid. This is also formed as density-density correlation which is 

defined as the probability of finding an atom at a distance ‘r’ at time ‘t’ from an atom 

at origin at time t=0. The average number of nearest neighbor to first coordination  
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cells which is called coordination numbers are reported in recent years due to its 

importance in explaining the local structure of liquid metals and alloys. These local 

structural functions are correlated with important macroscopic properties of liquid 

metals and alloys like diffusion 

 The Fourier inversion of S(k) gives, the radial distribution function, g(r), and 

it is given by 

 



0 nm

nm2

2
dk 

kr

krsin 
1]-[S(k)k  

 ρ2π

1
    1     g(r)                    (1.66) 

Thus from the measured values of S(k) it is possible to compute g(r). It can 

be shown that the structure factor in the long wave limit (i.e. when k = 0) is give by

 TBTβρk    S(0)                            (1.67) 

The structure factor calculations using model potential requires a set of 

potential parameters, which can be further used to calculate various transport 

properties of liquids. Transport properties of liquids, together with structural and 

thermodynamic information, provide the basis for the theories of liquid state. 

 

1.6. TRANSPORT, SURFACE AND SCALING PROPERTIES IN LIQUID 

BINARY ALLOYS 

Statistical mechanics provides equations relating the thermodynamic and 

transport properties of liquids. Since the development of perturbation theories 

(Barker and Henderson, 1967; Barker and Henderson, 1971; Barker and Henderson, 

1972; Smith et al., 1970) there have been rapid advances in methods for calculating 

liquid state properties from statistical mechanics. 

Self-diffusion coefficients, which are related to the simple translational 

movements of species within a liquid, uncomplicated by concentration gradients, are 

important measurable properties of liquids. Many theories give reasonable agreement 

with experiment, have been put forward to describe diffusion in simple liquids (Rice 

and Gray, 1963) and thus have contributed much to our understanding of liquid 

structure. 
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 One of the most widely used approaches is to attempt to relate the movement 

of particles in fluid to the theory of Brownian motion. The best known of this theory 

is due to Kirkwood (Kirkwood, 1946) and is similar to the distribution function 

approach to the equilibrium theory. In an extension of the Brownian motion concepts 

(War, 2014) to the description of classical non-equilibrium processes in dense fluids, 

the friction coefficients, , in the well known Einstein formulation of the diffusion 

coefficient, D, for monatomic liquids 

 
ξ

Tk
D B                           (1.68) 

plays a role of central importance. Much effort has been devoted to the calculation of 

the friction coefficient (Rice and Gray, 1963). Of all the analyses, we prefer to use 

thelinear trajectory (LT) approximation (Helfand, 1961). 

Helfand (Helfand, 1961) has analysed friction coefficient  in liquid on the 

assumption that interparticle pair potential, U(r) can be divided conveniently into two 

parts.  

(r)   U   (r)   U   U(r) SH                          (1.69) 

Accordingly, the force may be divided into two parts, FH a hard-core 

contribution, and FS, a soft force, and one can write the friction constant in the form

 ]ξ[ξξξ SHSH                           (1.70) 

 The first term in the above expression, H, has been explained by several 

investigators (Toole and Dahler, 1960), the second, S, by Hefand (Helfand, 1961) 

and the third term, SH, by Davis and Polyvos (Davis and Polyvos, 1967). Rao and 

Murthy (Gopala Rao and Murthy, 1975) used square well potential linear trajectory 

calculations. Polivos and Davis (Polyvos and Davis, 1967; Rice et al., 1968) 

extended the LT approximation of Helfand for binary mixture. 

The square-well potential model has been successfully used for the 

computation of relation between structure and dynamic properties of various liquid  
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metals and binary melts (Gopala Rao and Venkatesh, 1989; Venkatesh et al., 2003; 

Venkatesh and Mishra, 2005; Dubinin et al., 2009; Yu et al., 2001). 

It has been reported that the concentration-dependent viscosity is related to 

intermetallic compounds present in various metallic systems (Mudry et al., 2013) 

The diffusion coefficient of Brownian particles and the shear viscosity of fluids can 

be related through the Stokes-Einstein relation (Meyer et al., 2019; Trybula, 2016; 

Souto et al., 2013)  

B

max

k T
η = 

2π r D
                              (1.71) 

 Several authors have studied the correlation between surface tension and self-

diffusion coefficients (Lu et al., 2005; Blairs, 2016). The values of surface tension 

are not well known even for many simple metals as reported by Lu et al.. The 

concentration-dependent surface tension of liquid can be determined by 

incorporating modified Stokes-Einstein relation in the equation for binary system 

(Venkatesh et al., 2003). The computed results of surface tension were compared 

with available experimental values which gives us confidence in our square-well 

model calculations. 

 Dzugutov (Dzugutov, 1996) and Rosenfeld scaling law relating the transport 

coefficients and the excess entropy of a liquid have been examined by several 

workers using embedded atom method (EAM) through ab initio molecular dynamic 

simulations (Jakse and Pasturel, 2015; Jakse and Pasturel, 2016; Hoyt et al., 2000; 

Samanta et al., 2004; Li et al., 2005). The square-well model potential as well is used 

for investigating the relationship between the dimensionless diffusion coefficient, D* 

and viscosity coefficient ƞ* as a function of excess entropy Sex/kB for the 

investigated binary melts. 

   

1.7. THERMODYNAMIC PROPERTIES OF LIQUID BINARY ALLOYS 

 Study on the thermodynamic properties of binary alloys is important from the 

point of view of process metallurgy and also for an understanding of the 

thermochemical behavior of materials. Experimental procedure for some systems can 

be very complicated and may also require utmost care since these systems can be  
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very reactive and they may also be very expensive. Therefore, theoretical or 

empirical methods for their studies are of great interest (Arzpeyma et al., 2013). 

Several authors explain the composition dependent thermodynamic mixing 

parameters of liquid binary alloys using various experimental methods, thus drawing 

the attention of theoreticians to extract further microscopic information of binary 

alloys (Lalnuntluanga et al., 2021; Akinlade et al., 2000; Akinlade and Singh, 2002). 

The computation of thermodynamic properties of an alloy is a difficult task and the 

model calculations are not universally applicable. Hence, the investigation of 

transport and thermodynamic properties through microscopic structural functions in 

liquid alloys is always interesting and opens a new door to the applicability of alloys. 

 

1.8. TEMPERATURE EFFECT ON STRUCTURAL AND TRANSPORT 

COEFFICIENT OF LIQUID COPPER  

 The knowledge of the structure and transfer properties of liquid metals and 

alloys helps physists, chemists and technologists in their applications for various 

useful purposes. The structure factor S(k) of liquid Cu was investigated in the 

temperature range from 1370 K to 1873 K, using square-well (SW) potential 

perturbation over hard sphere reference system. Computed S(k) and SW potential 

were applied to determine the self diffusion of liquid Cu within the available 

experimental temperature range by using well known Einstein’s equation 
B

D=k T/ξ . 

Then the computed results were compared with available experimental results 

obtained by Quasielastic Neutron Scattering (QNS). Also, the viscosity coefficient, 

co-ordination number and the coefficient of thermal expansion were computed from 

the equation of states for square-well fluids within the temperature range for 

investigation of structure factor.   

 

1.9. OUTLINES OF PRESENT WORK 

 After a general introduction, a detailed understanding of the structural 

features of binary alloys is described in the second chapter. Using the Lebowitz 

solution of hard sphere mixtures as a reference system, and perturbed the hard sphere  
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direct correlation function with square well attractive tail the partial and total 

structure factors, radial distribution functions and associated derived properties of 

Cu-In and Fe-Al alloys at different compositions have been calculated and compared 

with the available experimental values. There is an excellent agreement between 

theoretical and experimental results. We also obtained partial and total coordination 

numbers from partial and total pair correlation functions respectively. Finally we 

emphasize that square-well potential is an appealing model in understanding the 

structural aspects of binary alloys. 

 In the third chapter, thermodynamically important Bhatia-Thornton 

correlation functions and in specific the concentration-concentration correlation 

functions at various compositions of the Cu-In and Fe-Al alloys in the entire 

momentum space with special emphasis on the values at long wave limit of the same 

alloys are calculated. The chemical short-range order parameter has been computed 

as a function of composition for the same systems through structural studies in the 

long wave limit, which gives valuable information regarding the nature of the liquid 

alloys at various compositions. 

The fourth chapter describes the calculation of diffusion coefficients of 

binary alloys through their structural studies. A detailed investigation on transport 

properties of binary alloys is considered. The diffusion coefficient of the alloys is 

calculated through the use of Helfand’s linear trajectory principle. Equations have 

been derived for the temperature variation of diffusion coefficients, which were 

applied successfully to the investigated binary alloys. The viscosity coefficients of 

pure components in liquid binary alloys are determined by assuming Stokes-Einstein 

(SE) form of equations. The concentration-dependent surface tension of liquid binary 

alloys is derived by extending the equation for binary system. Further, Dzugutov and 

Rosenfeld universal scaling law has been tested for the investigation of correlation 

between atomic dynamics and thermodynamics with square-well model potential.  

In fifth chapter, we deduce information on thermodynamic mixing parameters 

of binary alloys such as, Gibbs free energy of mixing, enthalpy of mixing and 

entropy of mixing through investigated square-well model structural functions and 

transport  
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coefficients of liquid binary alloys. The Romanov-Kozlov-Petrov (RKP) model, 

which correlates the viscosity with enthalpy of mixing, has been used for estimating 

the enthalpy of mixing. The entropy of mixing has been calculated using a SW model 

of pair correlation function under two body approximations. The Gibbs free energy 

of mixing was the computed from the difference between the computed enthalpy of 

mixing and entropy of mixing. 

In sixth chapter, we investigated a detailed effect of temperature on structure 

and transport properties of liquid Cu using a square-well model potential under 

random phase approximation. Computed structure factor and square-well potential 

were applied to determine the self diffusion of liquid Cu within the available 

experimental temperature range by using well known Einstein’s equation. Then the 

computed results were compared with available experimental results obtained by 

Quasielastic Neutron Scattering (QNS). Also, the viscosity coefficient, co-ordination 

number and the coefficient of thermal expansion were computed from the equation 

of states for square-well fluids within the temperature range for investigation of 

structure factor.    
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PARTIAL AND TOTAL STRUCTURAL CHARACTERISTICS OF  LIQUID 

BINARY ALLOYS 

2.1. INTRODUCTION 

It is now a fact in condensed matter research that the transport and thermodynamic 

properties of matter can be derived through their microscopic structural functions. It 

is a well known fact that the structure of materials along with their physicochemical 

properties helps to understand their utility for useful purposes.  

Various factors like intermolecular forces and the arrangement of constituent atoms 

in a liquid state make their studies much more complicated than solids or gases. 

Works on the atomic scale correlations and derive associated properties of Al-Fe 

metallic melts have been performed through theoretical calculations, atomistic 

simulation techniques, and experimental approaches  (Roik et al., 2014; Bel’tyukov 

et al., 2015; Dubinin et al., 2014; Trybula, 2016; Trybula et al., 2014). Knowledge of 

structure and physicochemical properties of liquids provides a better understanding 

of their nucleation process, glass formation, metallurgy and technological 

applications (Yuan et al., 2013; Jakse and Pasturel, 2008; Yan, 2018; Dubinin, 

2019).  

 The techniques of X-ray and neutron diffraction help to understand the 

distribution of atoms in a liquid by the Fourier transforming of how they scatter 

incident radiation. This idea of using X-ray diffraction for liquid structural studies 

were first carried out by Gringrich (Gringrich, 1952), Gingrichet, et al. (Gingrich and 

Henderson, 1952) and others (Orton et al., 1960; Enderby and North, 1968).   

 To determine structure functions and derived physicochemical properties, we 

use square-well (SW) potential parameters of pure components under Mean 

Spherical Model Approximation (MSMA). Partial and total correlation functions and 

coordination numbers are important sources for understanding the change in 

interatomic bonding due to alloying of metals and hence the change in 

thermodynamic properties of the alloys.  

 

 

 

https://www.sciencedirect.com/science/article/abs/pii/S0927025616302646?via%3Dihub#!
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The total structure factor, S(k) which determines the main characteristic 

properties of a binary fluid, depends on three partial structure factors (PSFs). For ‘l’ 

and ‘m’ types of species in a binary melts, we derived the Ashcroft-Langreth (AL) 

type PSFs (Ashcroft and Langreth, 1967) S (k)
ll

,
 

S (k)
mm

 and S (k)
lm

 in momentum 

space of the SW interatomic potentials by obtaining the direct correlations between   

l-l, m-m, and l-m in repulsive and attractive regions of SW potential in momentum 

space (Cromer, 1965). Fourier transform of the three PSFs gives its corresponding 

three partial radial distribution functions,
 
g (r)

ll
, g (r)

mm
and g (r)

lm
in binary melts. 

 The liquid Cu-In alloy is a compound forming system and can be used for 

various industrial purposes like lead-free soldering materials and provides a new 

dimension for investigating the properties of ternary alloy like In-Bi-Cu and Cu-In-

Sb etc.(Mudry et al., 2013; Akinlade and Singh, 2002). Fe-Al alloys possess low 

density and significantly better corrosion resistance as compared to stainless steel 

and thus highly applicable for industrial purposes (Morris and Gunther, 1996; 

Il'inskii et al., 2002), as well as considered as a starting material for many important 

alloys. 

 In this chapter, a detailed discussion on the microscopic structural functions 

of Cu-In and Fe-Al liquid binary alloys is presented. In recent times, several 

theoretical and atomistic simulation techniques have been reported to establish the 

relationship between thermodynamic, transport, and atomic-level structural functions 

in metallic melts; for liquid Cu-In alloys (Mudry et al., 2013; Akinlade and Singh, 

2002; Dubinin et al., 2014; Wang et al., 2015; Meyer et al., 2019; Trybula, 2016; 

Trybula, 2014); for liquid Fe-Al alloys (Il'inskii et al., 2002; Roik et al., 2014; 

Bel’tyukov et al.,2015; Akinlade et al., 2000).  

Recently, Mudry et al. (Mudry et al., 2013) reported X-ray diffraction studies 

on liquid Cu-In alloys at five different compositions. The total structure factors S(k) 

and radial distribution functions g(r) in liquid Cu-In alloys have been computed as a 

function of In concentration from 0.25 to 0.35 atomic fraction of In. The computed 

values are in good agreement with the experimental results obtained by X-ray 

scattering method (Mudry et al., 2013). Roik et al. (Roik et al., 2014) reported X-ray  

https://aip.scitation.org/author/Meyer%2C+N


28 

 

Chapter-2 

diffraction studies on liquid Fe-Al alloys at six different compositions. We find a fair 

agreement between values obtained through theoretical formulation and computation 

of total structure factor with X-ray diffraction data of liquid Fe-Al alloys (Roik et al., 

2014) at all investigated compositions and in the entire momentum space (k-space).  

 Although, various efforts on theoretical/computational or experimental data 

of atomic structures and transport coefficients measurements of liquid Cu-In and Fe-

Al alloys have been performed, their microscopic structural functions and their 

relation with thermo-physical and thermodynamic properties of the liquids are still 

not well understood. 

 The radial distribution function (RDF) which is the Fourier transform of 

structure factors (SFs), gives the probability of finding a particle from the origin, and 

thus employed in the structural description at the atomic scale of liquid metals and 

alloys. In this chapter, we present three PSFs, total structure factors (TSFs) and their 

corresponding partial and radial distribution functions along with partial and total co-

ordination number for both Cu-In and Fe-Al alloys as function of temperature and 

composition. 

 

2.2. THEORY 

For a system containing more than one kind of atoms, the intensity of the X-ray 

scattering can be written as 

   
22 2coh

o

0

I
= f + f 4πr ρ(r)-ρ j r dr

N



                                                     (2.1)
 

where  o
j r is the Bessel function of the zeroth order. Further 

 

l

n

1
l

l=

f = c f                                                                                                  (2.2)

 

l
l

n
2

=1
l
2f = c f                                                                                              (2.3)

 

and 
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 
n n

l=1 m=1
2

l

l

l

l m

l

m

=

l

n

1

c f f ρ r

ρ(r)=

c f
 
 
 

 



                                                                          (2.4)

 

where lc is the atomic percent of lth atom in the alloy, lf  and mf  are the scattering 

factors of lth and mth -type atoms respectively, lmρ (r) is the number of m-type atoms 

per unit volume at the distance r from an l-type atom and n is the number of atoms.  

-2

2 1
2 2

1 1 11 2 22 122 1 2 1 1 1ρ(r)= (r)+c (r)+2c c f f (rρ ) c f +c f ρ f ρ c f     
           (2.5)

 

Considering 1 12 2 21(r)= (r)c ρ c ρ the total structure factor binary system can be 

written as  

2 2 2 2
1 1 2 2 1 2 1 2

11 22 122 2 2

c f c f 2c c f f
S(k)= I (k)+ I (k)+ I (k)

f f f
            (2.6) 

where 

   11

2 11
o

10

ρ (r)
I k =1+ 4πr -ρ j kr dr

c


 
 
 

              (2.7) 

   2
22

2

2
o

0

ρ (r)2I k =1+ 4πr -ρ j kr dr
c

  
 
 

              (2.8) 

   1
12

2

2 2
o

0

ρ (r)
I k =1+ 4πr -ρ j kr dr

c

  
 
 

               (2.9)

 

As mentioned earlier we use hard sphere reference system as it dominates in 

deciding the structural aspects of liquids but we note that this reference system lacks 

realistic properties and hence the hard sphere solution of Percus-Yevicks’s equation 

obtained by Lebowitz is perturbed with square-well attractive tail under Mean 

Spherical Model Approximation (MSMA) to obtain the direct correlation function 

(DCF) between ‘l’ and ‘m’ species in a binary mixture and can be given as  
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0
lm lm

lm lm B lm lm lm

lm lm

C (r)                  ;          0 < r <σ

C (r)= -ε /k T            ;          σ  < r <λ σ

0                         ;          r >λ σ    







         (2.10) 

where 0
lmC (r) stands for Hard Sphere solution of Percus-Yevick’s equation, lmσ , 

lmλ and lmε  are the hard sphere diameter, potential energy breadth and depth 

respectively of the square-well potential. Lorentz-Berthelot (LB) rule (Gopala Rao 

and Das, 1987) is applied to obtain mixed parameter for this work as follows 
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                      (2.11)

                                                                                   

 

 

The radial distribution function ( )lmg r is related to the correlation function, 

lmh (r)   as given equation
 

 
 lm lmh =g(r) (r)-1              (2.12) 

Further, lmh (r) is related to DCF through the generalized OZ equation (Mc. Quarrie, 

1976) for a system containing more than one species can be written as 
 

 

n

n=1,2

lm lm ln mnh =C + ρ C (r -r(r) (r) ( '')h r )dr                                    (2.13)
 

where nρ is the bulk density of nth species. Fourier transforming the OZ equation and 

using convolution theorem lmh (k) can be obtained as 

 

mn

n=1,

lm lm n n

2

lh =C + ρ C (k)h (k)(k) (k)               (2.14) 

For a binary system with 

l=1, m=1
 

11 11 1 11 11 12 12 2(k) (k) (k) (k)+ρ (k) (k)h =C +ρ C h C h           (2.15) 

l=1, m=2
 

12 12 1 11 21 2 12 22(k) (k) (k) (k)+ (k) (k)h =C +ρ C h ρ C h           (2.16) 
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l=2, m=1
 

21 21 1 21 11 2 22 12(k) (k) (k) + (k) (k)h =C +ρ C h ρ C h            (2.17) 

l=2, m=2
 

22 22 1 21 21 2 22 22(k) (k) (k) (k)+ (k) (k)h =C +ρ C h ρ C h           (2.18) 

These equations on solving for lmh (k) give rise to 
 

  2 -1
11 11 2 22 2 12(k) (k) (h k) (C k)+ ][=[C 1-ρ ρ C B(k)]           (2.19)

 

  2 -1
22 22 1 11 1 12(k) (k) (h k) (C k)+ +[=[C 1-ρ ρ C B(k)]           (2.20)

 
-1

12 21 12h (k) (k) (kC=h [B()= k)]              (2.21)
 

where B(k) is given 
 

2
1 11 2 22 1 2 11 22 1 2 12(k)- (k)+ (k) (k)- (k)]B(k)=[1-ρ C ρ C ρ ρ C C ρ ρ C          (2.22) 

Further, we have the result connecting the partial structure factor lmS (k) and lmh (k)

as
 

l
1/

lm lm m lm
2S ](k)= (k)+ ρ (δ (ρ [) hk) (k)             (2.23)

 

where lmδ is the kronecker delta and is defined as 
 

lm

1 for l=m
δ =

0      for l m





                         (2.24) 

The partial structure factors  11S k ,  22S k and 12S (k) were solved by taking the 

Fourier transformation of lm )h (k  given by (Gopala Rao and Satpathy, 1990)
 

        
-1

2
11 1 11 1 2 12 2 22S k = 1-ρ C k ρ ρ C k / 1-ρ C k                                      (2.25)

 

       22 1 11 11 2 22S k = 1-ρ C k S k / 1-ρ C k                                                  (2.26)
 

   1/2
1l12 12 1 2m 22S ((ρ ρ ) C S k / 1(k)= -ρ C kk)                                               (2.27)

 

lm l
3

llC =-[a +b d(r) ]r+ r ; r <σ                                                          (2.28)
 

 12 1 λC r =- a ; r <                                                                        (2.29) 
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    3 42
1 12= da (r λ- + b + /-λ) +4λd r- ;λ r- < r <σr λ 

  
               (2.30)

 

12=0 ; r >σ                                                                                 (2.31)
 

2 1 2λ=(σ σ )/-                                                                                               (2.32)
 

3
l l

l

π ρ  σ
η    =   

6
                                                                                         (2.33)

 

1 2η = η +η                                                                                                  (2.34) 

1 2α = σ /σ                                                                                                    (2.35)
 

 3 2 2
1 1 2 2 1 2 1 2

3 2 2 -4
1 2

a ={(η +a η )(4+4η+η )-3η (1-α) 1+η +α(1+η ) (1+2η +η )

+(1-η )-3η η (1-η)(1-η) (1-α) }(1-η)
           (2.36)

 

 3 3 2 2
2 1 2 1 1 2 1 2

3 3 2 2 -4
1 2

α a ={(η +a η )(4+4η+η )-3η (1-α) 1+η +α(1+η ) (1-η +2η )

+(1-η )α -3η η (1-η)(1-η) (1-α) α}(1-η)
         (2.37)

 

2 2 2
1 1 1 1 11 2 12β =b σ =-6 η g +η (1+α) αg /4 

 
                                                        (2.38)

 

2 2 2 3
2 2 2 2 22 1 12β =b σ =-6 η g +η (1+α) αg /4α 

 
                                                  (2.39)

 

3 3 3
1 1 1 1 2 2 2γ =dσ = η a +α η a 2=α γ 

 
                                                             (2.40)

 

  2
2 1 11 2 22 12bσ =-3 1+α η g /α +η g g 

 
                                                          (2.41)

 

  -2
11 2g = 1+η/2 +3η (α-1)/2 (1-η)                                                              (2.42)

 

  -2
22 1g = 1+η/2 +3η (α-1)/2α (1-η)                          (2.43) 

  -2
12 1 2g = 1+η/2 +3(1-α)(η -η )/2(1+α) (1-η)                        (2.44)

 

And finally obtaining the total structure factor 

 
1/2 ml

ml lm2 2
1 1 2 2

2 2 f (k)f (k)
S(k)= C C S (k)

C f (k)+C f (k)l=1 m=1

                                         (2.45)
 

where lf (k) and mf (k)  are the atomic scattering factors taken from literature 

(Venkatesh et al., 2003) and lC and mC  are the atomic fractions of the lth and mth 

species respectively.
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Thus for the binary alloy, the total structure factor can be written as 
 

-1
2 1/2 2 2 2

1 1 11 1 2 1 2 12 2 2 22 1 1 2 2S(k)= C f S (k)-2(C C ) f f S (k)+C f S (k) × C f +C f   
   

    (2.46) 

The Fourier analysis of partial and total correlation functions gives their 

corresponding partial and total radial distribution function, which can be defined by 

the following equation 

 1
g (r) - 1   =   [S (k)-δ ] k sin (kr) dr

lm lm lm2 1/2
2π (ρ ρ ) 0

l m



                          (2.47) 

Here, δ
lm

 is the Kronecker delta and is given in Eqn. (2.24) 

Co-ordination numbers in liquid binary alloys were obtained by integrating 

the pair correlation functions g (r)
lm

up to the first minimum (rmin)  

min
2

lm lm lm

r
ψ =4πρ g (r) r dr

0
                                                                  (2.48) 

 

2.3. RESULTS AND DISCUSSIONS 

2.3.1. Concentration dependent structural characteristics in Cu-In alloys 

2.3.1.1. Partial and Total Structure factors in Cu-In alloys: 

Table 2.1. Input parameters of liquid Cu-In alloys with σ  as the diameter, Bε/k  as 

the depth, λ as the breadth of the square well and ρ
n

as the number density 

 Metals o

σ( A )

 
Bε/k

 
λ ρ

n
 

Cu 2.36 300.00 1.60 0.07408 

In 2.83 173.76 1.65 0.03686 

As seen from Table 2.2, the first peak positions of partial and total structure 

factors are invariant of In and Cu atoms in the melts. However, the first peak height 

of S(k) decreases by around 7.5 % with increasing concentration of In from 25%  to 

34% In, whereas Cu-Cu partial correlation decreases by about 11% with increasing 

In composition in the melts.  
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Table 2.2. Partial and total structure factors with the first peak position, k and peak 

heights S(k) of Cu-In alloys at different compositions of  In 

It means that increasing Cu-Cu correlation with increasing percent of In is 

controlling the total correlation functions. Further, the first peak height of pure liquid 

Cu and In are 2.5 and 2.7 respectively, however, the first peak height of the total 

structure factor of liquid Cu-In alloys was observed in between 2.6 to 2.8 for 

investigated compositions. This is a clear indication of the mixing of components at 

the atomic level in liquid Cu-In alloys. 

Extensive computations have been carried out for the liquid Cu-In alloys at 

five different atomic fractions of In at two different temperatures (950 K and 963 K) 

with SW parameters of pure components as given in Fig. 2.1. These temperatures 

and compositions were taken under investigation based on the estimation of atomic 

structures via X-ray diffraction by Mudry et al. (Mudry et al., 2013). Three Partial 

structure factors required for a full description of total atomic structures in liquid    

Cu-In are determined by Eqns. (2.25) to (2.27) and are illustrated in Figs. 2.1 (a)       

to (c).  

 

 

 

 

 

 

% In in 

Cu-In 

Temp 

(K) 

kCu−Cu 

(Ȧ−1) 

SCu−Cu(k) kIn−In 

(Ȧ−1) 

SIn−In(k) kCu−In 

(Ȧ−1) 

SCu−In(k) k 

(Ȧ−1) 

S(k) 

25 950 2.80 2.33 2.60 1.57 2.70 0.93 2.70 2.78 

27 950 2.80 2.25 2.60 1.61 2.70 0.93 2.70 2.75 

29 950 2.70 2.18 2.60 1.65 2.70 0.92 2.70 2.71 

32 963 2.70 2.11 2.60 1.70 2.70 0.90 2.70 2.63 

34 963 2.70 2.07 2.60 1.72 2.70 0.88 2.70 2.57 
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(a)                           (b) 

 

            (c) 

Figure 2.1: Partial structure factors of liquid Cu-In alloys, (a) S (k)
Cu-Cu

, (b) S (k)
In-In

,  

(c)S (k)
Cu-In
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We observe from Fig. 2.1 (a) to (c) that with an increasing concentration of 

In, the first peak intensity of S (k)
Cu-Cu

 decreases where as that of S (k)
In-In

 increases, 

which may be due to larger size of In. Very small fluctuations in S (k)
Cu-In

were 

observed and its first peak intensity decreases from 0.93 to 0.88 with an increasing 

composition of In from 25% to 34 %. It must be noted that no experimental data of 

PSFs of liquid Cu-In alloys have been reported till now in the literature. 

 

Figure 2.2: Composition dependent total structure factor of liquid Cu-In alloys; 

    (       ) theoretical values; (o o o o) experimental values (Mudry et al., 2013). 

 Mudry et al. (Mudry et al., 2013) recently reported the total structure factor 

S(k) and pair correlation function g(r) of liquid Cu-In alloys at five different 

compositions of In using X-ray diffraction technique. In Fig. 2.2 we illustrate the 

comparison between the computed and experimental values (Mudry et al., 2013) of  

total structure factor as a function of In compositions in the considered liquid alloys. 

The computed values of total structure factors are in fair agreement with 

experimental values. In addition, the computed values of the structure factor of pure 

liquids are also given in Fig. 2.2 to understand the change in atomic-level structural 

features of the melts on alloying 
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It should be noted that the position of the principal peak of the partial and 

total structure factors are independent of both composition and temperature. Fig. 2.2 

also indicates that the shifting of binary peaks towards pure In peak with increasing 

In concentration in Cu-In mixtures. The position and intensity of the principal peak 

are the main structural parameters of considered alloys are given in Table 2.2. 

 

2.3.1.2. Partial and Total radial distribution functions in Cu-In alloys: 

 In Fig. 2.3 we compare the computed and experimental values (Mudry et al., 

2013) of total radial distribution function (RDF) as a function of In compositions at 

two temperatures as obtained from Fourier transform of total structure factors of 

respective alloys. 

 

Figure 2.3: Composition dependent radial distribution function g(r) of liquid Cu-In 

alloys; (       ) theoretical values; (o o o o) experimental values (Mudry et al., 2013). 

It can be seen that the computed values of the pair correlation function 

reproduce the shape and position of the X-ray measured data (Mudry et al., 2013). 

 Since the microscopic structural features are mainly characterized by the 

principal peak of structure factor and RDF hence these features of the investigated  
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alloys are given in Table 2.3 The separation between Cu-Cu, In-In, and Cu-In pairs 

in the considered alloys, r
Cu-Cu

 ,
 

r
In-In

and, r
Cu-In

 were estimated from the first peak 

of each partial pair correlation function and are shown in Table 2.3. 

Table 2.3. Partial and total radial distribution functions with the first peak position, r 

and peak heights g(r) of Cu-In alloys at different compositions of In 

It can be observed from Table 2.3 that the principal peak height of the partial 

and pair correlation functions are changeable with In concentration whereas peak 

positions are independent of concentration and temperature. The nearest neighbor 

distance for Cu-Cu varies between 2.52 and 2.54 Å while In-In varies between 2.88 

to 2.90 Å can be interpreted as the larger size of In atom in comparison of liquid Cu 

atom.  

It must be noted that inter-atomic separation in liquid alloys also infers the 

average distance between atoms in the first coordination shell. The average value of 

inter-atomic separation between Cu and In is less than the sum of radii of pure Cu 

and In. It supports the existence of chemical ordering between Cu and In in liquid 

Cu-In alloys.   

 

 

 

 

 

% In in 

Cu-In 

Temp 

(K) 

gCu−Cu(r) 

 

rCu−Cu 

(Å) 

gIn−In(r) rIn−In 

(Å) 

gCu−In(r) rCu−In 

(Å) 

g(r) rmax(Å) 

25 950 2.78 2.54 2.99 3.00 2.86 2.77 2.13 2.76 

27 950 2.77 2.54 2.98 3.01 2.84 2.77 2.12 2.78 

29 950 2.76 2.54 2.96 3.00 2.83 2.77 2.12 2.82 

32 963 2.74 2.54 2.94 3.00 2.81 2.77 2.11 2.83 

34 963 2.73 2.54 2.92 3.00 2.80 2.78 2.11 2.85 
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Figure 2.4: The effective radius of first peak position ( ) vs atomic percent of In. 

From Fig. 2.4 one can see that In-In separation is always greater than Cu-Cu 

separation for all considered concentrations. It is interesting to note that, r
Cu-In

always lies between r
Cu-Cu

and r
In-In

whatever the composition and invariant with 

composition.  

 

2.3.1.3. Partial and Total Coordination number in Cu-In alloys: 

 Coordination numbers of an atom surrounded by similar or different atoms in 

a binary mixture are obtained by integrated computed of Eqn. (2.48) and are 

illustrated in Fig. 2.5. Coordination provides atomic-level structural changes in 

binary liquids through chemical short-range ordering parameters (Trybula, 2016; 

Trybula et al., 2018; Das et al., 2005).  Fig. 2.5 illustrates the number of Cu atoms 

around Cu, ψ
Cu-Cu

, the number of In atom around In, ψ
In-In

, hetero coordination of 

Cu and In, ψ
Cu-In

as well as the total coordination number, ψ
total

computed as a 

weighted average of atomic composition as a function of In% in liquid Cu-In alloys.  

 

m ax
r

https://www.sciencedirect.com/science/article/abs/pii/S0927025616302646?via%3Dihub#!
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Table 2.4. Partial and total coordination number of Cu-In alloys at different 

compositions of In 

% In in 

Cu-In 
Temp (K) 

ψ
Cu-Cu

 ψ
In-In

 ψ
Cu-In

 ψ
Total

 

25 950 9.89 3.47 13.72 13.36 

27 950 9.53 3.70 14.06 13.24 

29 950 9.18 3.97 13.87 13.13 

32 963 8.68 4.36 13.84 13.04 

34 963 8.39 4.58 14.10 12.98 

One can see that ψ
Cu-Cu

 is always greater than ψ
In-In

 at all investigated 

compositions and their difference is decreasing with increasing atomic % of In in the 

melts. ψ
Cu-In

and ψ
total

were observed between 13 and 14 and all most unchangeable 

with composition.  

 

Figure 2.5: Partial and total coordination number of liquid Cu-In alloys at different  

 percentage of In. 

Due to the unavailability of experimental or simulation data of coordination 

numbers of liquid Cu-In alloy yet in literature, comparison of the current data could 

not be demonstrated.  
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2.3.2. Concentration dependent structural characteristics in Fe-Al alloy 

2.3.2.1. Partial and total structure factor in Fe-Al alloys: 

S(k) of liquid Fe-Al alloys was computed at four different concentrations of Al, at a 

temperature of 500 K which is higher than the corresponding liquidus temperature. 

All the input parameters for the present calculations are given in Table 2.5.
 

Table 2.5.  Potential parameters of liquid Fe and Al. 

Metals o

σ( A )

 
Bε/k

 
λ ρ

n
 

Fe 2.18 425.67 1.76 0.07560 

Al 2.32 160.00 1.30 0.06459 

ll
 and 

mm
 corresponds to the diameter of Fe and Al respectively. 

 As seen from Table 2.6, the first peak positions of partial and total structure 

factors are invariant of Fe and Al atoms in the melts. However, the first peak height 

of S(k) increases  by around 2.4 % with increasing concentration of Al from 70%  to 

86% Al, whereas Al-Al partial correlation increases by about 9.8% with increasing 

Al composition in the melts. 

Table 2.6. Partial and total structure factors with the first peak position, k and peak  

 height, S(k) of Fe-Al alloys at different compositions of  Al 

It means that increasing Al-Al correlation with increasing percent of In is 

controlling the total correlation functions. Further, the first peak height of pure liquid 

Fe and Al are 2.85 and 2.38 respectively, however, the first peak height of the total 

structure factor of liquid Fe-Al alloys was observed in between 2.42 to 2.48 for 

investigated compositions. This is a clear indication of the mixing of components at 

the atomic level in liquid Fe-Al alloys. 

%  Al in 

Fe-Al 

Temp 

(K) 

kFe−Fe 

(Å
−1

) 

SFe−Fe(k) kAl−Al 

(Å
−1

) 

SAl−Al(k) kFe−Al 

(Å
−1

) 

SFe−Al(k) k 

(Å
−1

) 

S(k) 

70 1493 2.90 1.38 2.90 2.10 2.90 0.68 2.90 2.42 

78 1453 2.90 1.29 2.90 2.22 2.90 0.62 2.90 2.46 

82 1463 2.90 1.23 2.90 2.27 2.90 2.57 2.90 2.46 

86 1433 2.90 1.18 2.90 2.33 2.90 0.52 2.90 2.48 
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Figure 2.6: PSFs against k at different atomic % of Al: (a) SFe - Fe(k), (b) SAl - Al(k) 

and, (c) SFe - Al(k). 
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Fig. 2.6 (a) to (c) show the PSFs of liquid Fe-Al alloys at different 

concentrations of Al from 70 to 86 %. We observe that the first peak intensities of   

SFe - Fe(k) and SFe – Al decreases whereas that of SAl - Al(k) increases, which may be due 

to the larger size of Al.  

Fig. 2.7 shows the total structure factor S(k) which was derived through the 

computed values of PSFs. We find a fair agreement between computed values with 

experimentally observed S(k) using X-ray diffraction studies(Roik et al., 2014). The 

S(k) values of pure Fe and Al are also plotted to understand the change in atomic-

level structural features of the melts on alloying. It can be seen from Fig. 2 that the 

first peak position of pure Al at 973 K occurred at a lower momentum vector than 

pure Fe at 1833 K. Roik et al. experimentally (Roik et al., 2014) observed the same 

pattern for pure liquid Fe and Al. 

 

Figure 2.7: Total structure factor against k at different atomic % of Al; 

(       ) theoretical values; (o o o o) experimental values (Roik et al., 2014). 
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Fig. 2.7 shows that the intensity of the first peak and its positions are almost 

independent of concentrations and temperatures, however, the intensity of the first 

peak of S(k) increases by around 2.4 % with increasing concentration of Al from 

70% Al to 86% Al, whereas the first peak height of Al-Al partial correlation 

increases by about 9.8% with increasing Al composition in the melts. X-ray 

diffraction data (Roik et al., 2014),  and our computed values of liquid Fe and Al 

show that the first peak intensity of these two are 2.90 and 2.20 respectively whereas, 

the first peak of mixture was observed in between 2.42 to 2.48.  

  

2.3.2.2. Partial and total radial distribution function in Fe-Al alloys: 

 

Figure 2.8: Composition dependent radial distribution function g(r) of Fe-Al 

      liquid alloys; (       ) theoretical values; (o o o o) experimental values
 

      (Roik et al., 2014).        

 Fig. 2.8 shows that the first peak position for partial radial distribution 

function of gFe –Fe(r)  and  gAl – Al(r) occurs at 2.37 and 2.51Å respectively while first  
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peak position for pure Fe and Al occurs at 2.57 and 2.83Å respectively. This shows 

that the peak position in alloy corresponds to that of the pure component i.e. the 

nearest neighbor distance between Fe-Fe atoms is 2.37 Å and that of Al-Al atoms is 

2.51 Å.  
  

Table 2.7 indicates that the positions of the first peak of partial and total pair 

correlation functions are independent of composition and temperature in binary Fe-

Al alloys. The first peak position of the partial radial distribution function, gFe –Fe(r)  

and gAl – Al(r) occurs at 2.37 Å and 2.51Å respectively, whereas the first peak position 

of the radial distribution function of pure Fe and Al occur at 2.57 Å and 2.83Å 

respectively. Al-Al correlation in all the investigated alloys is independent of 

composition and temperature, whereas Fe-Fe, Fe-Al, and total correlations are 

changing in the same pattern in the formation of liquid Fe-Al alloys.   

 Table 2.7 Pair correlation functions characteristics as function of atomic % of Al. 

The average value of inter-atomic separation between Fe and Al is less than 

the sum of radii of pure Fe and Al. It supports the existence of chemical ordering 

between Fe and Al in liquid Fe-Al alloys.   

 

 

 

 

 

 

 

 

%  Al 

 in Fe-Al 

Temp 

(K) 

rFe−Fe 

(Å) 

gFe−Fe(r) rAl−Al 

(Å) 

gAl−Al(r) rFe−Al 

(Å) 

gFe−Al(r) r 

(Å) 

g(r) 

70 1493 2.37 2.38 2.51 2.43 2.44 2.36 2.48 2.33 

78 1453 2.37 2.39 2.51 2.43 2.44 2.37 2.48 2.35 

82 1463 2.37 2.40 2.51 2.43 2.44 2.37 2.48 2.36 

86 1433 2.37 2.40 2.51 2.43 2.44 2.38 2.48 2.37 
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Figure 2.9: Effective radius of first peak position ( ) vs atomic percent of In. 

From Fig. 2.9 one can see that Al-Al separation is always greater than Fe-Fe 

separation for all considered concentrations. It is interesting to note that, r
Fe-Al

always lies between r
Fe-Fe

and r
Al-Al

whatever the composition and invariant with 

composition.  

 

2.3.2.3. Partial and total coordination number in Fe-Al alloys: 

 Fe in solid state has a coordination number of 6. From Table 2.8 and Fig. 

2.10, it can be seen that the partial coordination number of Fe-Fe varies from 3.29 to 

1.06 at 1873 K. This shows that there is a good miscibility of Fe in Fe-Al alloy at this 

working temperature. The partial coordination number of Al-Al increases from 8.13 

to 10.03 with increase in Al concentration. 

Table 2.8. Coordination numbers of pure component and alloys of Fe-Al as a 

function of atomic % of Al. 

%  Al in Fe-Al Temp (K) ψ
Fe−Fe

 ψ
Al−Al

 ψ
Fe−Al

 ψ
Total

 

70 1873 3.29 8.13 11.88 11.42 

78 1873 2.34 8.84 11.81 11.19 

82 1873 1.96 9.24 11.68 11.20 

86 1873 1.47 9.64 11.87 11.12 

90 1873 1.06 10.03 11.70 11.11 

m ax
r
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One can assume that Al which has a coordination number of 12 and a face 

center cubic structure (fcc) in its solid-state also shows a good miscibility nature and 

retains a fraction of its fcc lattice in Fe-Al alloy.  

 

Figure 2.10: Coordination numbers of pure component and alloys as a function of 

atomic % of Al. 

The total coordination number varies between 11.42 to 11.11 throughout the 

whole concentration range, which is very close to coordination number equal to12 

used in quasi-lattice (QL) formalism (Akinlade et al., 2000). 
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BHATIA-THORNTON FLUCTUATIONS AND ASSOCIATED PROPERTIES 

OF LIQUID BINARY ALLOYS  

3.1. INTRODUCTION 

The knowledge of structure functions, atomic dynamics, and thermophysical 

properties of metallic melts are important for two fundamental reasons. Firstly, to 

understand the metallurgical processing of solid alloys and secondly, to model new 

materials required for sophisticated purposes. During alloying of metallic melts at 

different compositions and temperatures, some structural changes and properties of 

individual metals get suppressed and evolve with new properties. Various authors 

investigated the composition-dependent thermodynamic and surface properties of the 

compound forming liquid binary alloys (Meyer et al., 2019; Ning et al., 2010; Gruner 

and Hoyer, 2008; Bossa et al., 2017; Hultgren et al., 1973; Okamoto, 2005; Knott 

and Mikula, 2006; Itabashi et al., 2001;). However, there are very few manuscripts 

on the microscopic structure functions of liquid binary alloys either in theoretical or 

experimental studies.  

 Recently, Mudry et al.(Mudry et al., 2013) reported X-ray diffraction studies 

on liquid Cu-In alloys at five different compositions and confirmed the existence of 

Warren-Cowley chemical short-range order (CSRO) parameter, '  in Cu-In alloys. 

Investigations in free energy of mixing and composition fluctuations in the long-

wavelength limit using quasi-lattice (QL) theory by Akinlade and Singh (Akinlade 

and Singh, 2002) suggest clearly that the hetero coordination occurs in Cu rich 

region, where as homo coordination is favorable in indium rich region of Cu-In 

melts. Roik et al. (Roik et al., 2014) and Il'inskii et al. (Il'inskii et al., 2002) reported 

X-ray diffraction studies on liquid Fe-Al alloys. Akinlade et al. (Akinlade et al., 

2000) reported the existence of CSRO, '  in Fe-Al alloys. 

A well-established statistical mechanics model using Percus-Yevick (PY) 

hard-sphere reference system invoked with square-well (SW) attractive part has been 

successfully applied to investigate structure functions, transport coefficients, 

thermodynamic and thermophysical properties of liquid metals and binary liquid  
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alloys (Gopala Rao and  Venkatesh,1989; Gopala Rao and Venkatesh, 1989; Dubinin 

et al., 2014; Dubinin, 2019; Mishra et al., 2015; Mishra and Venkatesh, 2008; 

Lalneihpuii et al. 2019; Mishra and Shrivastava et al., 2017). SW model calculation 

is an efficient method to study the complexities in binary liquids (Lalnuntluanga et 

al., 2021; Mishra and Venkatesh, 2008; Mishra et al., 2020). (0)
CC

S and  '  have 

been derived through the long-wavelength limit of partial structure factors to analyze 

the chemical ordering binary melts. Bhatia and Thornton (BT) (Bhatia and Thornton, 

1970; Bhatia et al., 1974; Bhatia, 1977) proposed thermodynamically important three 

correlation functions which depend on the fluctuations in number and concentration 

using a linear combination of Ashcroft-Langreth (AL) partial structure factors (PSFs) 

(Ashcroft and Langreth, 1967) 

In this chapter, we compute the detailed analysis of  the BT structure factors 

for Cu-In and Fe-Al liquid binary alloys using AL-PSFs derived by considering SW 

interatomic interactions between the particles (Venkatesh et al., 2003) The 

composition-dependent concentration fluctuation at zero momentum vector i.e., 

SCC(0) computed from the long-wavelength limit of partial structure factors 

(Akinlade and Singh, 2002; Akinlade et al., 2000; Odusote, 2008) is less than the 

ideal values for both Cu-In and Fe-Al alloys within the investigated compositions. 

This indicates the formation of a chemical bond between unlike atoms and the 

existence of strong chemical ordering in the investigated alloys (Dubinin, 2019; 

Mishra and Venkatesh, 2008). The direct investigation of thermodynamically 

important (0)CCS
 
using molecular dynamic simulations has not been given till now, 

and its experimental determination is not an easy task. Thus, theoretical derivation 

and computation of  (0)CCS
 

for such compound forming alloys is important 

information to analyze the complexities in the investigated alloys.   
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3.2. THEORY 

The BT partial structure factor were calculated using AL type partial structure factors 

of Cu-In and Fe-Al liquid alloys. The BT correlation functions in binary alloys are 

linearly relate to the partial structure factors Slm(k)(Gopal Rao and Satpathy, 1990; 

Venkkatesh  et al., 2003) as follows 

        1/2S k = C  S k  + C S k +2 (C C )  S k
NN 1 12 1 22 1 2 12

 
  

                      (3.8)

        1/2S k = C C  C  S k  + C S k -2 (C C )  S k
CC 1 2 1 11 1 22 1 2 12

 
  

          (3.9)

        1/2S k = C C  S k  - C C S k -(C -C ) (C C )  S k
NC 1 2 11 1 2 22 2 1 1 2 12

 
           

(3.10) 

where C1 and C2 are the atomic fractions of the component 1 and 2 respectively. 

 The concentration fluctuation, SCC(0), which is an important parameter to 

understand the structure and the binding of atoms at the microscopic level, is related 

to ordering effetcs in binary liquid alloys (Singh, 1987; Singh, 1993). Further SCC(0) 

can be calculated through the computed PDFs in the long wavelength limits. 

1 2
S (0)   =    C C  [C  S (0)  +  C S (0)  -  2 (C C )  S (0)]

CC 1 2 2 11 1 22 1 2 12
           (3.11)

 

Here S (0)
11

, S (0)
22

and, S (0)
12

are the long wavelength limit of AL type 

correlation functions presented in chapter 2 by Eqns. (2.25) to (2.27)  in the limit  of 

0k    

-1
2[1 - ρ C (0)-ρ  ρ  C (0) ]

11 11 1 2 12S (0) = 
11 1   -  ρ  C (0)

2 22

 
 
 
 
 

                   (3.12)

 

[1 - ρ  C (0)]  S (0)
1 11 11S (0) =  

22 1 - ρ  C (0)
2 22

            (3.13)

 

1/2(ρ ρ )  C (0) S (0)
1 2 12 11S (0)   =   

12 1   -   ρ  C (0)
2 22

           (3.14)
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where 

33 8η ε (λ -1)a b σ dσ 1 11 111 1 1 1ρ C (0)=-24η + + +
1 11 1 3 4 6 k T

B

 
 
 
 
 

                     (3.15)

 

33 8η ε (λ -1)a b σ dσ 2 22 222 2 2 2ρ C (0)=-24η + + +
2 22 2 3 4 6 k T

B

 
 
 
 
 

         (3.16)

 

3 3 3-4πε σ (λ -1) 4πa σ
12 12 12 1 12C (0)= - -

12 3k T 3
B

2dσ (2σ +3σb(σ +2σ ) πdσ (3σ +5σ ) 1 1 2)3 1 2 1 1 24πσ + +
1 12 10 30

 
  
 
 
  

         (3.17) 

Warren-Cowley CSRO parameter, '   indicates chemical ordering or 

segregating behavior in binary liquid alloys. An interesting relationship between 

(0)S
CC

and '   for the first neighbor shell can be given as 

idS (0) -  S (0) S
CC CC 1α'  =       =    
ψ S (0) - S ψ S (0) - S

CC 1 CC 1

                   (3.18)

 

Here idS (0)=C ×C
CC 1 2

and S
1

is the deviation of the S (0)
CC

from its ideal 

value, Z is the total coordination number. 

The concentration dependent isothermal compressibility χ
T

has been 

calculated through the Kirkwood-Buff’s equation (Mishra and Venkatesh, 2008), 

which is given by   
 

1/2  -1ρ k T χ =[1- C ρ  C (0) + C ρ C (0)- 2 C C (ρ ρ ) C (0)]
B T 1 11 11 2 22 22 1 2 1 2 12

        (3.19) 
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3.3. RESULTS AND DISCUSSIONS 

We compute Bhatia-Thornton (BT) correlation functions namely number-number

S (k)
NN

, concentration-concentration S (k)
CC

 and number-concentration S (k)
NC

 

using AL PSFs with SW model potential function. S (k)
NN

and S (k)
CC

are 

thermodynamically important functions to understand complexities of binary 

mixtures. Thus, the BT structure factors can be derived from theoretically or 

experimentally generated AL or Faber-Ziman (FZ) types partial structure factors 

using Eqns. (3.8) to (3.10). These correlation functions are very useful in binary 

liquids because they are directly linked with various thermodynamic parameters. 

 SNN(k) gives the overall static structure factor of the melts and which can be 

measured directly. It means that SNN(k) deals with the number of scattering sites 

present in the melts and does not concern with the chemical identity of those sites. 

 SCC(k) and its Fourier transform provide information on the segregation or 

chemical ordering of constituent chemical species in the melts. SCC(k) fluctuates 

around the product of the concentrations in binary melts and can be measured 

directly in a neutron diffraction experiment.  

 SNC(k) and its Fourier transform is the correlation between sites of the 

scattering nuclei and the constituting elements which occupy those sites. For an ideal 

solution SNC(k)=0 and global structure of binary melts is present in SNN(k). Long 

wavelength limit of BT correlation functions are readily linked with the important 

thermodynamic parameters of the alloys and also helpful to explain the chemical 

complexities in the binary mixture. 

 

3.3.1. Cu–In alloys 

 The potential parameters of the pure components for the evaluation of partial 

structure factors are given in Table 2.1 in Chapter 2. The computed values of BT 

correlation functions as a function of In composition are given in Figs. 3.1 (a-c).  
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             (a)                                                                    (b) 

 

         (c) 

Figure 3.1: Bhatia-Thornton correlation functions; (a) SNN(k) versus k  (b) SCC(k) 

versus k (c) SNC (k) versus k 
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S (k)
NN

provides global non-crystalline structural functions. The values of 

S (k)
NN

 varies comparably as the total structure factor S(k) such that their first peak 

position occurs at the same position i.e., 2.70Å
−1

 , and the intensities of the first peak 

of S (k)
NN

decreases with increasing In concentration as in S(k) (Mudry et al., 2013) 

The S (k)
CC

 oscillates about the product of the concentration of Cu and In i.e., 

C C
Cu In

as shown in Fig.3.1 (b).The ideal values of S (k)
CC

is equal to C C
Cu In

 and as 

is observed from Fig. 3.1 (b), it is found that at around 2.7Å
−1

 the graph show 

minimum deviation from ideal behavior for all investigated melts. S (k)
CC

is also 

related to charge-charge structure factors in ionic liquids and which is also linked 

with S (k)
NC

(Venkatesh and Mishra, 2005)   

S (k)=C C S (k)
CC M X qq

,                         (3.20)
                                              

 
S (k)=(C /Z )S (k)

NC X M Nq
                        (3.21)

                                                    

 

 
here q is the charge on chemical species

 
 

From Fig.3.1 (c) it can be inferred that S (k)
NC

 oscillates around zero. 

Further, S (k)
NC

 shows a significant decrease at or around the first peak position of 

S(k)  for liquid Cu-In alloys. The small fluctuation in S (k)
NC

 around zero indicates 

weak correlation between number-concentration fluctuations in the melts. 

Thus, from Fig. 3.1(a), (b), and (c) it can be concluded that the values of 

S (k)
NN

 have been the highest weighing factor amongst BT correlations in the 

expression of the total structure factorS(k) .  

S (k)
CC

 has been computed for various liquid Cu-In alloys for entire k region  

and especially in the long-wavelength limit at k tends to zero, S (0)
CC

provides 

important information on Cu-Cu co-ordination, In-In co-ordination and Cu-In           

co-ordination in the Cu-In melts. This information cannot be withdrawn from the      

X-ray scattering studies of the melts (Salmon and Zeidler, 2013). S (0)
CC

 can be  
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obtained experimentally (Akinlade and Singh, 2002) through activity data of liquid 

binary alloys. The computed values of concentration-concentration fluctuation at the 

long wavelength limit, S (0)
CC

and idS (0)
CC

at different atomic fractions of In in Cu-In 

melts are given in Table 3.1. 

Table 3.1 The concentration-concentration fluctuation at the long wavelength limit 

S (0)
CC

 and its ideal value, idS (0)
CC

, Co-ordination number, ψ and Chemical short 

range order parameter, α' of Cu-In alloys at different compositions of In.  

% 

In 

S (0)
CC

(Cal.)
 

S (0)
CC

(Exp.)
 

idS (0)
CC

 
ψ

 
α'

 
(Square-Well) 

α'
 

(Quasi-Lattice)  

25 0.098 0.102 0.187 11.420 -0.064 -0.071 

27 0.107 0.114 0.197 11.190 -0.061 -0.062 

29 0.114 0.122 0.205 11.208 -0.058 -0.054 

32 0.124 0.131 0.217 11.123 -0.055 -0.042 

34 0.130 0.143 0.224 11.110 -0.053 -0.034 

 Table 3.1 shows an excellent agreement between the computed values of 

S (0)
CC

with experimental values (Akinlade and Singh, 2002). Further, a compound 

forming tendency between Cu and In atoms at all investigated compositions can also 

be observed from Table 3.1. 

Deviation of S (0)
CC

from its ideal value i.e., 
id
CC CCS (0) >S (0) indicates the 

formation of chemical compound between Cu and In atoms in Cu rich Cu-In melts.  

The computed results of the composition dependent (0),  S
CC

its ideal values (0)idS
CC

and experimental value derived from activity data (Akinlade and Singh, 2002) are 

plotted in Fig.3.2. The results obtained by using our theoretical model calculations 

without any experimental parameters unlike others (Akinlade and Singh, 2002) show 

a very close agreement with the experimental values 
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Figure 3.2: Theoretical, ideal, Quasi-Lattice and experimental (Akinlade and Singh, 

2002) values of concentration dependence of SCC(0) in Cu-In melts 

Fig. 3.2 shows the comparison between α' obtained through SW model and 

QL model (Akinlade and Singh, 2002). The negative values of α'  show the existence 

of chemical ordering in liquid Cu-In alloys at all the investigated compositions. 

  

 

Figure 3.3: Warren-Cowley short range order parameter, α'  versus atomic percent of  

In at 1073 K 
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The values of α'  can be used as a scale to measure the complex forming or 

segregating nature of the alloy. The values of α' < 0 refers to the complex forming 

nature of the alloy i.e. pairing of unlike atoms as the nearest neighbors whereas the 

values of α' > 0 refer to the segregating nature of the alloy i.e. pairing of like atoms 

as the nearest neighbors. 

The isothermal compressibility, ( χ
T

) at different composition of the melts 

has been computed from the well-known Kirkwood-Buff’s equation using a long 

wavelength limit of partial structure factorsS (k 0)
lm

 . The computed values of  

S (0)
Cu-Cu

,
 
S (0)

In-In
,S (0)

Cu-In
and χ

T
  are  shown in Table  3.2.

 
 

Table 3.2. S (0)
Cu-Cu

, S (0)
In-In

and S (0)
Cu-In

 , and isothermal compressibility, 
T

χ of 

Cu-In alloys at different compositions of In 

% In S (0)
Cu-Cu

 S (0)
In-In

 S (0)
Cu-In

 -12 2 -1
(10 m Nm )

T
χ  

25 0.507 0.614 -0.538 2.832 

27 0.535 0.588 -0.541 2.929 

29 0.562 0.561 -0.542 3.024 

32 0.600 0.524 -0.540 3.160 

34 0.624 0.500 -0.537 3.249 

The computed values of the isothermal compressibility ( χ
T

) increases 

linearly with atomic percent of In beyond liquidus temperature. This implies that as 

the concentration of In increases in the melts, the void space between the particles 

increase or the existence of deform nature of the alloy is indicated.    

 

3.3.2. Fe-Al alloys 

 The potential parameters of the pure components of Fe-Al liquid binary 

alloys for the evaluation of partial structure factors are given in Table 2.5 in Chapter 

2. The computed values of BT correlation functions as a function of Al composition 

are given in Figs. 3.4 (a-c).  
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                     (a)                 (b) 

 

        (c) 

Figure 3.4: Bhatia-Thornton correlation functions; (a) SNN(k) versus k,  (b) SCC(k) 

versus k and (c) SNC (k) versus k 
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NN
S (k)   fluctuates in resemblance to the total structure factor S(k) , their peak 

intensity increases with increase in concentration of Al and their first peak position 

occurs at the same position i.e. 2.90 Ȧ−1. 
CC

S (k)  oscillates about the product of  pure 

components concentration i.e., C C
Fe Al

. As is observed from Fig. 3.5 (b) the ideal 

value i.e. C C
Fe Al

 shows a maximum deviation from ideal behavior at around 1.60 

Ȧ−1. Massobrio et al.(Massobrio et al., 2004) shows that 
CC

S (k)  is proportional to 

charge-charge structure factor, 
qq

S (k)  when point like charge (PLC) approximation is 

adopted in a binary system.   

PLC -1
S (k)=(C C ) S (k)qq M X CC

                                                             (3.22) 

here q is the charge on chemical species.
 
 

The cross correlation function S (k)
NC

 oscillates around zero. Fig. 3.4 (c) 

display that  S (k)
NC

 shows a significant decrease at or around the first peak position 

of S(k)  for liquid Fe-Al alloys. The small fluctuation in S (k)
NC

 around zero 

indicates weak correlation between number-concentration fluctuations in the melts. 

Based on the observations from Fig. 3.4 (a), (b) and (c), we conclude that amongst 

the three BT partial correlation functions, 
NN

S (k) is the highest weighing factor 

contributing to the total structure factorS(k) .   

 
S (k)

CC
 has been computed for various liquid Fe-Al alloys for entire k region  

and especially in the long-wavelength limit as k tends to zero, S (0)
CC

provides 

important information on Fe-Fe coordination, Al-Al coordination and Fe-Al 

coordination in the Fe-Al melts. This information cannot be withdrawn from the      

X-ray scattering studies of the melts (Salmon and Zeidler, 2013). S (0)
CC

 can be 

obtained experimentally (Akinlade et al., 2000) through activity data of liquid binary 

alloys. The computed values of partial structure factors in the long wavelength limit  
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of ( S (0)
Fe-Fe

,S (0)
Al-Al

and S (0)
Fe-Al

) along with S (0)
CC

and idS (0)
CC

at different 

atomic fractions of Al in Fe-Al melts are given in Table 3.3.    

Table 3.3 The concentration-concentration fluctuation at the long wavelength limit 

S (0)
CC

 and its ideal value, idS (0)
CC

, Co-ordination number, ψ and Chemical short 

range order parameter, α'of Fe-Al alloys at different compositions of Al.  

% Al 
CC

S (0)

(Cal.)

 

CC
S (0)

(Exp.)

 

id

CC
S (0)

 

ψ  α'
 

(Square-Well)
 

α'
 

(Quasi-Lattice) 

70 0.129 0.090 0.21 11.420 -0.052 -0.050 

78 0.074 0.075 0.17 11.190 -0.103 -0.090 

82 0.051 0.052 0.14 11.208 -0.147 -0.120 

86 0.031 0.040 0.12 11.123 -0.205 -0.194 

90 0.020 0.039 0.09 11.110 -0.239 -0.219 

 Table 3.3 shows a good agreement between the computed values of S (0)
CC

with experimental values (Akinlade et al., 2000). Further, it can observe from Table 

3.3 that the compound forming tendency between Fe and Al atoms increases with 

increase in Al concentration. Deviation of S (0)
CC

from its ideal value i.e., 

id
CC CCS (0) >S (0) indicates the formation of chemical compound between Fe and Al 

atoms in Al rich Fe-Al melts.  

 In order to determine thermodynamic contribution of interdiffusion 

coefficient, we derive   (0)
CC

S as a function of Al concentration in liquid Fe-Al 

alloys.
 
Our model calculations gave quite similar (0)

CC
S function behavior as that of 

quasi-lattice (QL) model and experimental values (Akinlade et al., 2000).   

 The comparison between computed results of the composition dependent 

(0),  S
CC

its ideal values (0)idS
CC

, Quasi-Lattice (QL) and experimental value derived 

from activity data (Akinlade et al., 2000) are plotted in Fig.3.5. 
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Figure 3.5: Square-well, quasi-lattice, experimental (Akinlade et al., 2000) and, 

ideal values of (0)CCS as a function of atomic % of Al. 

  It can be seen from Fig. 3.5 that the computed values of (0)CCS   at all 

investigated concentrations are lower than their corresponding ideal values, (0)id
CCS , 

which suggest hetero-coordination is more favorable than homo-coordination in the 

considered melts. 

.  Fig. 3.6 shows the comparison between 'α obtained through SW model and 

QL model (Akinlade et al., 2000). The negative values of α'  show the existence of 

chemical ordering in liquid Fe-Al alloys at all the investigated compositions 

 

Figure 3.6: '  versus atomic % of Al at 1873 K. 
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 Our study on Cowley-Warren short range order parameter, ' and 

(0) (0)id
CC CCS S  confirm the compound forming behavior in the liquid Fe-Al alloys. 

Fig. 3.6 illustrates that the minimum value of min' -0.052,  while the lowest 

possible value of min' 1   , which is an indication of chemical ordering where as the 

maximum possible value of max' 1   indicates segregation in the liquid binary 

alloys. ' 0 
 
implies an irregular distribution of atoms.  

The partial structure factors in the long wavelength limit S (k 0)
lm

 were used 

to obtain isothermal compressibility, ( χ
T

). The computed values of S (0)
Fe-Fe

,

S (0)
Al-Al

, S (0)
Fe-Al

and χ
T

are presented in Table 3.4.  

Table 3.4. S (0)
Fe-Fe

, S (0)
Al-Al

and S (0)
Fe-Al

 , and isothermal compressibility, 
T

χ of  

Fe-Al alloys at different compositions of In 

% Al S (0)
Fe-Fe

 S (0)
Al-Al

 S (0)
Fe-Al

 -11 2 -1
(10 m Nm )

T
χ  

70 1.107 0.352 -0.583 0.249 

78 1.097 0.243 -0.471 0.241 

82 1.085 0.195 -0.411 0.235 

86 1.070 0.152 -0.350 0.228 

90 1.052 0.113 -0.284 0.221 

The computed values of the isothermal compressibility ( χ
T

) decreases 

linearly with atomic percent of Al beyond liquidus temperature. This shows that the 

void space between the particles decrease and the existence of compact nature of the 

alloy as the concentration of Al increases. 
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TRANSPORT, SURFACE AND SCALING PROPERTIES OF LIQUID 

BINARY ALLOYS 

 4.1. INTRODUCTION 

The concentration dependent self and mutual diffusion coefficients of liquid binary 

alloys also provide important information on various structural changes like crystal 

nucleation, crystal growth rate and glass transition (Liu et al., 2010; Wang et al., 

2015). The concentration dependent inter diffusion coefficients were determined by 

using kinetic contribution as discussed by Mishra and Venkatesh (Mishra and 

Venkatesh, 2008) and thermodynamic contribution through SCC(0) in modify 

Darken’s equation (Trybula et al., 2018; Jakse and Pasturel, 2016; Souto et al., 2013; 

Zhang et al., 2010). It is interesting to study the influence of chemical ordering on 

atomic dynamics in binary liquid alloys (Meyer et al., 2019; Yan et al., 2018; Das et 

al., 2005). Speedy et al. (Speedy et al., 1988) noticed the differences in self 

diffusivity of liquids using a square-well (SW) and hard-sphere potential functions. 

Thus, to study the liquid binary alloys, using SW attractive part as a perturbation 

over hard sphere reference system is more convincing to predict the structure 

functions and their associated properties.   

 It has been reported that the concentration dependent viscosity is related with 

intermetallic compounds present in various metallic systems (Mudry et al., 2013). 

There are few articles with theoretical/computational or experimental data of atomic 

structures and transport coefficients measurements of liquid Cu-In alloy. The 

diffusion coefficient of Brownian particles and the shear viscosity of fluids can be 

related through the SE relation (Meyer et al., 2019; Trybula, 2016; Souto et al., 

2013). In fact, it works for many metallic melts (Wang et al., 2015; Trybula, 2016; 

Trybula et al., 2014; Brillo et al., 2008; Trybula et al., 2018; Lalneihpuii et al., 

2019).  We use SE relation to compute the shear viscosity at five compositions in 

particular Cu-rich composition region of the Cu-In melts. Our computed results 

indicate a non linear dependence of the shear viscosity as a function of composition 

and in fair agreement with available experimental data (Mudry et al., 2013) in 

particular beyond 31% of In in Cu-In system. Also, we find the difference of our 

computed values from  
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experimental values decreases with increase of In composition in the melts. Thus, we 

illustrate that this breakdown of the SE relation can be related to the detailed 

discussion of local microscopic chemical ordering of unlike atoms in the high Cu-

rich composition range which become feeble with increase of In atoms in the liquid       

Cu-In alloys   

Knowledge of transport coefficients like diffusivity and viscosity of liquid 

metals and alloys in the bulk state has been improved dramatically over the past 

decades (Roik et al., 2014; A.L. Bel’tyukov et al., 2015; Lihl et al., 1964; Trybula    

et al., 2014; Peng et al., 2015; Van der Ven and Ceder, 2005; Wang et al., 2015; 

Jakse and Pasturel, 2015; Lalnuntluanga et al., 2021; Jakse and Pasturel, 2016). 

Akinlade et al. (Akinlade et al., 2000) have reported interdiffusion coefficients of Fe-

Al melts using complex formation approximation which gives based on a 

thermodynamic contribution only (Jakse and Pasturel, 2015). Thus, detailed 

knowledge of self diffusivity of pure components and interdiffusion coefficients of 

liquid Fe-Al alloys is required to understand atomic interaction at a microscopic level 

and rate a mechanism of non-equilibrium phenomena in such alloys (Van der Ven 

and Ceder, 2005). 

 The investigation of transport coefficients has been reported based on 

Stokes-Einstein (SE) relation, which is given as max / 2  BD k T r  , where  is the 

shear viscosity, Bk  is the Boltzmann constant, T is the working temperature, and 

maxr is the first peak position of the pair correlation function (Jakse and Pasturel, 

2016). The validity of the SE relation has been successfully reported for monoatomic 

liquids (Hansen and McDonald, 1986), binary liquid alloys (Jakse and Pasturel, 

2016), and molecular liquids (Jonas and Akaii, 1997). We agree with Jakse and 

Pasturel (Jakse and Pasturel, 2016) that the SE relation must be tested for many 

liquid alloys to get a clear understanding of its applicability in dense liquids.  
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4.2. THEORY 

4.2.1. Evaluation of diffusion coefficients in liquid binary alloys 

 We define composition-dependent mutual diffusion coefficient D
lm

 using BT 

structure factors (Lalneihpuii et al., 2019) as follows: 

  

 C ξ +C ξ
m ml l

D = ×D D
mlm lk T

B

             (4.10)

                                     

Here, D
lm

is the interdiffusion or mutual diffusion coefficient, D
l
 and D

m
are the 

self-diffusivity of l and m species respectively in the liquid binary alloys and   is the 

thermodynamic factor due to the second derivative of Gibb's free energy.   

Here,  

id id2 mixS (0) S (0)1 GCC CC
k T C C S (0)

B m CCl



 

 
            (4.11) 

where mixG  is the Gibbs free energy of mixings. C ξ +C ξ
l l m m  

can be computed as 

follows (Lalneihpuii et al., 2019) 

1 3C ξ +C ξ k (k)[S (k) 1]d
l l m m NN1 236(2π k T) 0

B

3 3(k)[S (k) 1]dk 2 (k)S (k)dk
CC NC

0 0

k
NN

k k
CC NC



 


   



  
   



          (4.12)

             

 

where ( )k
CC
 is the Fourier transform of the ordering potential. ( )k

NN
  and ( )k

NC
  

are computed as given by (Nath and Joarder, 2005). 

  The self diffusivities D
l
and D

m
 were determined using the famous Einstein 

equation linear trajectory (LT) approximation given by the equation  

 

k T
BD =
ξ

                (4.13) 

where ξ is the friction coefficient experienced by the particles. In a binary melts 

under SW interatomic interaction ξ can be estimated from contributions due to the  
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repulsive part ( Hξ ), attractive well ( Sξ ) and beyond the attractive well called as 

hard-soft part ( HSξ ). 

 The friction coefficients were computed by solving time integral function 

under linear trajectory principle. Thus, 

t t t1
ξ= ds F (t).F (t+s) + ds F (t).F (t+s) + ds F (t).F (t+s)

H H S S S H3k T
0 0 0B

  
  
 

 
   

           (4.14)

 H S HS=ξ +ξ +ξ                                      (4.15)

  
Here, Hξ , Sξ and HSξ are the friction coefficient due to hard sphere, soft and 

hard-soft part respectively (Gopala Rao and Sathpathy, 1990; Gopala Rao and 

Velkatesh, 1989). The friction coefficients arise due to hard and soft part of the force 

under SW interaction were solved under linear trajectory principle (Helfand, 1961). 

Thus the interparticle pair potential ( )U r
lm

for model potential is assumed to 

be seperable into two parts (Gopala Rao and Das, 1987; Mishra and Venkatesh, 

2008) i.e. as a pair potential for hard spheres and other for the attractive part (soft 

part).

 
H S

U (r)=U (r)+U (r)
lm lm lm

             (4.16)
 

Where 
H

U (r)
lm

is the contribution from the hard spheres and 
S

U (r)
lm

from the 

soft part. 

These are represented as  

; r<σ
lmH

U (r)
lm 0 ; r>σ

lm







            (4.17)

 

 

and
 

0 ; r<σ
lmS

U (r)
lm U (r) ; r>σ

lm lm






            (4.18)
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Similarly, the force can also be divided into two parts 

 (a) H'F the hard sphere contribution  

 (b) S'F the soft potential contribution  

Thus,  

2 8H 2 1/2ξ =   σ  g  (σ ) ρ  (2πμ k T)
m Bl lm lm lm lm3b=1

           (4.19)

 

The contribution from the soft part is given by (Shimoji and Itami, 1986; Gopala Rao 

and Satpathy, 1982; Polyvos and Davis, 1967) 

 

2 ρ 2πμ 1S 3 Sm lmξ =- k U (k)h (k)dk
l lm lm23 k T 2πb=1 0B


 

 
 
  

                     (4.20)

 

While HS
lξ , the cross contribution (Polyvos and Davis, 1967) is given by

 

1/2
2

HS Sm lm
l lm lm lm lm lm lm

b=1 0B

2μρ
ξ =- g (σ ) kσ cos(kσ )-sin(kσ ) U (k)dk

3 πk T

 
    

 
 

                   (4.21)

  Here mρ is the number density of the bth species, h (k)
lm

 and S
lmU (k)  are the 

Fourier transform s of the total correlation function h (r)
lm

and the soft part of the 

potential S
lmU (r) respectively. Further lmμ  is the reduced mass and is given by

 

m m
mlμ =

lm m +m
ml

                          (4.22)

 

The quantities h (k)
lm

and S
lmU (k) are given by

 

 

 
-1/2

h (k)= S (k)-δ ρ ρ
mlm lm lm l

 
  

            (4.23) 

4πε
S lmU (k)= A kσ cos(A kσ )-sin(A kσ )-kσ cos(kσ )+sin(kσ )
lm lm lm lm lm lm lm lm lm lm3

k

 
 

   

                            (4.24)

 
 Here δ

lm
is the Kronecker delta function already defined in Chapter-2, σ

lm
,

ε
lm

and A
lm

are the cross correlation due to hard core diameter, depth and breadth of  
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the square well potential. The mixed parameters are discussed in Chapter-2. The 

partial structure factors which were already discussed in Chapter-2 for Cu-In and    

Fe-Al alloys are used in the evaluation of the friction coefficients. According to 

Darken’s thermodynamic formalism, the diffusion is directly related to S (0)
CC

as 

      
CC

CC

idS (0)D
lm =

D S (0)
id

                          (4.24)   

Here idS (0)
CC

and S (0)
CC

are concentration-concentration correlations in the limit 

k 0.  D
lm

is the mutual diffusion and  D
id

 is the intrinsic diffusion can be defined 

as 

D =c D +c D
id l m m l                                                                     (4.25)

 
 Here, D

l
and D

m
 are the self-diffusivity of l and m species respectively in 

the melts. 
 

                                                                                                   

4.2.2. Evaluation of viscosity coefficients in liquid binary alloys 

 Further, the viscosity coefficients of pure components in liquid binary alloys 

can be determined by assuming Stokes-Einstein (SE) form of equations where 

hydrodynamic length is replaced by the first peak position of the partial correlation 

function of the pure component in binary melts (Mishra et al., 2020) as follow:             

 

 

k T
Bη = 

l max2π r D
ll l

              (4.25)

          

        

k T
Bη = 

m max2π r D
mm m

                         (4.26)

                   

Here k T
B

is product of Boltzmann constant and the working temperature, maxr
ll

and 

maxr
mm

 are the first peak positions of the PCFs, g (r)
ll

 and g (r)
mm

in Fe-Al binary 

melts 

 



69 

 

Chapter-4 

Hence, the total shear viscosity coefficient of the binary melts can be written 

in terms of partial viscosity coefficient of the constituent atoms ( η
l
and η

m
) as   

η =C η +C η
m mlm l l                                                         (4.27) 

 

4.2.3. Evaluation of surface tension in liquid binary alloys  

 Prasad et al. considered the existence of layer structure near the surface of 

binary liquid alloys in their structural mechanical formalism (Prasad et al., 1998; 

Prasad et al., 1991). They also pointed out that the surface of binary liquid alloys is 

in thermodynamically equilibrium with the bulk and, surface properties are 

influenced by thermodynamic properties of the bulk. 

  Detailed studies of the surface properties of condensed matter help in 

understanding their metallurgical processing. The surface tension, γ for series of 

liquid metals has been studied by statistical mechanical approach under zeroth order 

approximation (Fowler, 1937). It is further extended for binary alloys.  In present 

work, γ in binary melts has been computed by using mutual diffusion coefficient 

values at different concentrations. 

 Transport and surface properties are useful parameters in metallurgical 

science and surface tension in particular contributes significantly in crystal growth 

(Sharma et al., 2014). Recently authors have reported surface tension of binary 

square-well liquid in terms of interdiffusion coefficient which can be given as 

(Mishra et al., 2020) 

1

k T k T215 B Bγ = ×
Alloy max16 μ 2 π r Dlm lm m

 
 
 
 

              (4.28) 

where D
m

is the mutual diffusion coefficient, μ
lm

 is the reduced atomic 

mass, maxr
lm

 is the first peak position of the pair correlation function and k T
B

 is the 

Boltzmann constant times temperature.  
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4.2.4. Scaling properties in liquid binary alloys  

 Atomic dynamics in metallic melts depends on structural relaxation and its 

chemical thermodynamics. Recently Dzugutov (Dzugutov, 1996) advances our 

present knowledge of transport coefficients by proposing entropy-diffusion scaling 

law through pair correlation function g(r). The universality of proposed law have 

been investigated for series of metallic liquids by using molecular dynamic 

simulation with embedded atomic model potential function (Dzugutov, 1996; Hoyt et 

al., 2000 ; Samanta et al., 2004 ; Pasturel  and Jakse, 2015) and with SW model 

potential ( Mishra and Lalneihpuii, 2016; Mishra and Shrivastava, 2017). 

The reduced inter diffusion in binary mixture can be defined using self 

diffusivity of pure component (Hoyt et al., 2000; Pasturel and Jakse, 2015) as: 

  

C C
l mD D

* l mD   = 
χ χ

l m

   
   
   
   

             (4.29)

 

 

where 
l

 and 
m

 are the scaling factors (Kanibolotsky et al., 2002; Yang et al., 2008; 

Dzugutov, 1996) defined as 

 

πk T
max 4 max max 4 maxBχ = 4(r ) ρ x g (r  ) +  4(r ) ρ x g (r )
ll l l ll lm l m lmml l

π(m +m )k T
l m B

m m
l m

        (4.30)

    

  

 

πk T
max 4 max max 4 maxBχ = 4(r ) ρ x g (r  ) +  4(r ) ρ x g (r )
mm m m mm lm l l lmmm m

π(m +m )k T
l m B

m m
l m

                (4.31)

 

 

where 
maxr  is the first peak position of the corresponding partial pair-correlation 

functions, g
ll

, g
mm

and g
lm

respectively.
 

x
l
and x

m
are the are the atomic fractions of 

l and m type of species,  m
l
and m

m
are the atomic masses of the constituents of 

investigated melts. 

Two body excess entropies of pure components were obtained through 

Dzugutov’s scaling law as follows  
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D
ex lS /k =log
l B 0.049χ

l

              (4.32)

 

D
ex mS /k =log
m B 0.049χ

m

                         (4.33)

 

Here, χ
l
and χ

m
are reducing parameters as given in Eqns. (4.30) and (4.31) 

respectively. 

Now the pair wise excess entropy of liquid binary alloys can be computed through 

the following equation  

 ex ex exS =x ×S +x ×S
M l l m m

                         (4.34)

 

where exS
l

and exS
m

 are the partial molar entropies of  l and m species in the binary 

melts and exS
M

 is the total molar entropy. We define the reduced viscosity in the light 

of Rosenfeld scaling law of viscosity (Rosenfeld, 1999)  

 
 

-2

3ηρ*η =
1

2mk T
B

                                                                                        (4.35)

 

 

η* *η = D
Dρm

               (4.36)

 
 
Finally, total reduced viscosity as a function of concentration in liquid binary 

alloys were computed by incorporating  partial reduced viscosities from Eqn. (4.36) 

into Eqn. (4.27). 
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4.3. RESULTS AND DISCUSSION 

4.3.1. Cu-In alloys 

4.3.1.1. Friction coefficients and diffusion coefficients of Cu-In alloys 

  Various friction coefficients ( ,H Sξ ξ and HSξ ) in Cu-In melts as a function of 

composition at 1073 K were computed through Eqns. (4.19), (4.20) and (4.21)  and 

are given in Table 4.1 

Table 4.1. Friction coefficients ξ
H

, ξS
and ξ

HS
 of Cu-In alloys at different 

compositions of In at    1073 K. 

The values of friction coefficients due to hard, soft, and hard-soft parts have 

been shown in Table 4.1. It illustrates friction coefficient due to hard-sphere 

repulsive force is much higher than that of the soft part and hard-soft part, which is 

expected. 

Table 4.2.  Diffusion coefficients of liquid Cu-In binary alloys at 1073 K 

% In in 

Cu-In 

DCu 

(10-9 m2/s) 

DIn 

(10-9 m2/s) 

DIn/DCu Dm 

(10-9 m2/s) 

Did 

(10-9 m2/s) 

Dm/Did 

25 6.29 4.88 0.77 9.93 5.23 1.90 

27 6.41 4.96 0.77 9.85 5.35 1.84 

29 6.52 5.05 0.77 9.83 5.49 1.79 

32 6.69 5.18 0.77 9.90 5.66 1.75 

34 6.80 5.26 0.77 9.95 5.78 1.72 

 

% In in 

Cu-In  

ξ
H

x10-13(Kg/s) 

Cu             In 

ξ
S
x10-13(Kg/s) 

Cu                 In 

ξ
HS

x10-13(Kg/s) 

Cu            In 

25 14.19 20.73 4.06 3.51 5.25 6.08 

27 13.94 20.38 4.02 3.48 5.13 5.94 

29 13.70 20.04 3.98 3.44 5.01 5.81 

32 13.35 19.55 3.92 3.39 4.85 5.62 

34 13.14 19.25 3.87 3.36 4.75 5.50 
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DIn and DCu regularly increase with increasing In composition in the 

investigated alloy whereas the ratio DIn/DCu is independent of In composition. The 

constant ratio DIn/DCu value (around 0.77) is also reported by other authors for 

different liquid alloys and attributed as regular solution behavior of alloys (Gopala 

Rao and Bandyopadhyay, 1989; Mishra and Venkatesh, 2008).  

 

Figure 4.1: Diffusion versus atomic percent of In in Cu-In melts at 1073 K. 

The study of mass and momentum transport in liquid alloys is a tedious task 

due to the existence of atomic level disorders in the system. Thermal transports in 

liquid alloys propagate heat via vibration between the bonds of the components and  

thus show complexities. Thermal motion in liquid alloys causes segregation which as 

is observed (Mudry et al., 2013) effect viscosities of liquid alloys. The self, mutual, 

interdiffusion coefficients and the viscosity coefficients of liquid Cu-In alloys have 

been computed for a wide range of concentration and temperature through BT 

correlation functions and are given in Table 4.2 and Table 4.3. 
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Table 4.3. Diffusion coefficients of Cu-In alloys at 950, 1150, 1350 and 1550 K 

% In Temp(K) D
Cu

 (10- 9m2/s) D
In

 (10-9m2/s) D
m

 (10-9m2/s) /D D
Cu In

 

25 950 5.60 4.39 4.69 1.28 

 1150 6.71 5.17 5.55 1.30 

 1350 7.74 5.88 6.34 1.32 

 1550 8.70 6.54 7.08 1.33 

27 950 5.70 4.47 4.80 1.28 

 1150 6.83 5.26 5.68 1.30 

 1350 7.88 5.98 6.49 1.32 

 1550 8.85 6.65 7.25 1.33 

29 950 5.80 4.55 4.91 1.28 

 1150 6.95 5.35 5.81 1.30 

 1350 8.01 6.09 6.65 1.32 

 1550 9.01 6.77 7.42 1.33 

32 950 5.95 4.66 5.07 1.28 

 1150 7.13 5.48 6.00 1.30 

 1350 8.22 6.24 6.87 1.32 

 1550 9.23 6.94 7.67 1.33 

34 950 6.05 4.74 5.18 1.28 

 1150 7.25 5.57 6.14 1.30 

 1350 8.35 6.34 7.02 1.32 

 1550 9.39 7.05 7.84 1.33 

 From Table 4.3 we inferred that with the change in composition of 

investigated liquid Cu-In alloys at a constant temperature, the ratio of self diffusivity 

of Cu and In remains the same. Further, it can also be seen that self and mutual 

diffusion coefficients increase with increasing temperature at all investigated 

compositions. It means that under the cooling effect, these diffusion coefficients will 

decrease and control the structure of Cu-In alloys in their solid-state. The most 

striking feature is the continuous increase of self and mutual diffusion coefficients 

with increase of temperature and concentration of In in the melts. 
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Figure 4.2: Values of the ratio Dm/Did versus atomic percent of In at 1073 K. 

Fig. 4.2 shows a constant ratio of mutual diffusion coefficient to the ideal 

value computed by square-well (SW) model and quasi-lattice (QL) theory (Akinlade 

and Singh, 2002) in liquid Cu-In alloys at 1073K. Thus, the variation in D
Cu

and D
In

 

with In composition within the investigated range are almost similar as observed by 

Akinlade and Singh using QL theory (Akinlade and Singh, 2002). 

 

4.3.1.2. Viscosity coefficients and surface tension of Cu-In alloys 

The composition-dependent partial and total viscosity coefficients of Cu-In 

liquid alloys were calculated through Eqns. (4.25) to (4.27) at 1173 K and are shown 

in Table 4.4. It can be observed that the partial, as well as the total shear viscosity 

coefficients, decreases with an increasing percentage of In. Also, Mudry et al. 

observed a decrease in experimentally measured and theoretically calculated data via 

the RKP equation for the viscosity of liquid Cu-In alloys (Mudry et al., 2013).  
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Table 4.4. Viscosity coefficients of liquid Cu-In binary alloys at 1173 K. 

%  In 

in Cu-In 

ȠCu ȠIn ȠTotal(Computed) ȠTotal(Experimental) 

20 1.55 1.71 3.20 3.68 

29 1.42 1.57 2.74 3.20 

31 1.40 1.54 2.62 2.80 

40 1.30 1.44 2.23 1.98 

67 1.09 1.20 1.52 1.20 

Fig 4.3 shows the comparison between the computed viscosity data using SE relation 

with experimental data given in Fig. 3 of reference (Mudry et al., 2013). 

 

Figure 4.3: Square-Well and experimental (Mudry et al., 2013 ) values of the 

concentration dependence of viscosity in liquid Cu-In alloy at 1173 K. 

 We find a very good agreement between computed and experimental values 

(Mudry et al., 2013 ) which also confirms the applicability of SE relation for such 

dense fluids. 

The Fourier inversion of three partial structure factors and total structure 

factor provide partial and total radial distribution functions of liquid Cu-In alloys. 

Thus 
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1
g (r) -1   =   [S (k)-δ ] k sin (kr) dr

Cu-In Cu-In Cu-In2 1/2
2π (ρ ρ ) 0

Cu In



         (4.33) 

 Here δ  is a Kronecker delta, which takes a value of one for similar 

components and is equal to zero for different components in a binary system. 

In Fig. 4.4 we demonstrate the concentration-dependent first peak position of 

partial pair correlation functions in the considered melts. It can be seen that the first 

peak positions of  gCu-Cu(r), gIn-In(r) and gCu-In(r) are independent of composition. This 

supports the validity of SE relation in the investigated melts.         

 

Figure 4.4: Effective radius of first peak position ( ) versus atomic percent of In. 

Thus, we use partial inter atomic separation in SE relation  
max2  

k T
BD
r




  to 

estimate the shear viscosity coefficient of constituent elements using its self-

diffusion coefficient data, and finally, the viscosity coefficient of the alloys is 

obtained by using Eqn. (4.27).  

 The computed results of coefficient of viscosity as a function of temperatures 

and compositions in the compound forming Cu-In binary liquids provide various 

important information like effective size of the particles and changes in liquid  

m ax
r
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structure at liquidus temperature. The viscosity coefficient of Cu-In liquid alloys as a 

function of In composition and temperature are listed in Table 4.5.  The computed 

viscosity decreases with increasing In concentration which was also observed by 

Mudry et al. (Mudry et al., 2013 ).   

Table 4.5. Viscosity coefficient of Cu-In alloys at 950, 1150, 1350, and 1550 K. 

 The temperature effect on the viscosities of Cu-In melts is also given in Table 

4.5. The viscosity of alloys increase with an increase in temperature at constant 

composition. It can be seen from Table 4.5 that the viscosity of the melts decreases 

with an increase of In concentration which indicates the decrease in momentum  

 

% In Temp (K)   
Cu

 (mPa.s) 
In

  (mPa.s) 
Cu In




 (mPa.s) 

25 950 1.465 1.581 1.552 

 1150 1.480 1.627 1.590 

 1350 1.507 1.679 1.636 

 1550 1.540 1.733 1.684 

27 950 1.439 1.554 1.522 

 1150 1.454 1.599 1.559 

 1350 1.480 1.650 1.604 

 1550 1.513 1.704 1.652 

29 950 1.414 1.554 1.513 

 1150 1.429 1.572 1.530 

 1350 1.455 1.622 1.573 

 1550 1.487 1.675 1.620 

32 950 1.379 1.490 1.454 

 1150 1.394 1.536 1.490 

 1350 1.419 1.583 1.530 

 1550 1.451 1.634 1.575 

34 950 1.356 1.466 1.428 

 1150 1.371 1.509 1.462 

 1350 1.396 1.557 1.502 

 1550 1.427 1.609 1.547 
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transfer as well. It may be due to the increase of chemical ordering in In rich liquid 

Cu-In alloys.  

 Mutual diffusion coefficients and shear viscosities of liquid Cu-In alloys at 

different compositions and temperatures were computed using SW model potential. 

The product of mutual diffusion coefficient and shear viscosity of liquid Cu-In alloys 

at different temperatures for five compositions have been plotted in Fig. 4.5 (a to e)  

 

             (a) 

 

             (b) 
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               (c) 

 

             (d) 
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            (e) 

Figure 4.5: D  versus temperature (a) 25% In (b) 27% In (c) 29% In (d) 32% In 

 (e) 34% In. 

Further, we demonstrate from Fig. 4.5 (a-e) that D  linearly depends on 

temperature which indicates the SE relation holds in the considered liquid alloys.  

Surface tension, surface energy, and surface entropy are important parameters 

to understand various metallurgical processes. Recently Bossa et al. investigated 

surface tension of a Yukawa fluid using mean field theory and finally concludes that 

the proposed model was not able to predict a correct value for the surface tension of 

phase boundary fluids (Bossa et al., 2017). Surface tension of ten liquid metals was 

thoroughly investigated by using SW potential under mean spherical model 

approximation (MSMA) (Mishra et al., 2015) 

 In this section, we determine the concentration-dependent surface tension of 

liquid Cu-In alloys (
Cu In



) from Eqn. (4.28) by extending the equation for binary 

system (Venkatesh et al., 2003).  

Fig. 4.6 shows the comparison between the computed values of surface 

tension as a function of In composition with the data obtained by Akinlade and Singh 

using the QL model approach (Akinlade and Singh, 2002).  
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Figure 4.6: Surface tension versus atomic percent of In alloys at 1073 K. 

We find that our computed values of surface tension by SW model are in 

close agreement with the results obtained from QL model (Akinlade and Singh, 

2002) at all the investigated compositions. It can be seen from Fig. 4.6 that the 

surface tension of Cu-In melts decreases linearly with increase of In composition for 

the SW model. As we know that the applicability of materials is decided by their 

properties, hence the surface properties of liquid Cu-In alloys have been investigated. 

Due to the unavailability of any experimental data on the surface tension of this 

alloy, we compared our computed results with available QL model data (Akinlade 

and Singh, 2002). 

Since the change in interatomic binding due to alloying of metallic melts in 

the considered liquid binary alloys is relatively small, which are also reflected in the 

thermodynamic properties of the melts. 

 

4.3.2. Fe-Al alloys 

4.3.2.1. Friction coefficients and diffusion coefficients of Fe-Al alloys 

Given in Table 4.6, the friction coefficient from the equation of self diffusion 

calculation is approximately the combination of hard-core interaction, soft  
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interaction and the cross effect of hard-soft interactions. The friction contribution due 

to the hard-core interaction dominates over the soft and hard-soft interactions. 
 

Table 4.6. Computed values of friction coefficients at different atomic % of Al in 

Fe-Al melts at 1873 K. 

%Al in Fe-

Al 

ξHx10-13(Kg/s) 

Fe                 Al 

ξSx10-13(Kg/s)     Fe            

Al 

ξSHx10-13(Kg/s) 

Fe             Al 

70 11.09 10.34 2.44 1.66 2.65 1.39 

78 10.85 10.19 2.35 1.60 2.47 1.29 

82 10.74 10.12 2.31 1.56 2.38 1.25 

86 10.62 10.05 2.26 1.53 2.29 1.20 

90 10.50 9.97 2.21 1.49 2.20 1.16 

In the intermediate step for the computation of self and mutual diffusion 

coefficient, have determined friction coefficients in the repulsive region (
H ), 

attractive region (
S ), and beyond the attractive region (

HS ) of the SW potential 

under the linear trajectory principle. 

 It can be inferred from Table 4.6 that the hard part, soft part, and hard-soft of 

the friction coefficients decrease with an increase in the concentration of Al in the   

Fe-Al melts. The reverse trend is seen for Fe composition. This is to be noted that 

metallic melts with smaller diameters have high values of friction coefficients in the 

entire range of potential function. Further, it is worth mentioning here that the 

contribution of the repulsive region of friction coefficients for both components plays 
 

an important role in the computation of diffusion parameters of the alloys. To the 

best of our knowledge, no literature data is available for the comparison of friction 

coefficients for the concerned alloys.  

As can be seen from Table 4.7, the ratio DFe / DAl is almost a constant 

irrespective of compositions with an average value of 0.837. Thus, Fe-Al binary 

liquid was predicted to form a regular solution and justify that the structure and its  
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associated properties together with the transport properties can be calculated with 

just the potential parameters of pure liquid metals (Gopala Rao and Bandyopadhyay, 

1989; Mishra and Venkatesh, 2008).
  

Table 4.7. Diffusion coefficients of liquid Fe-Al binary alloys at 1873 K. 

% Al in 

Fe-Al 

 DFe 

(10-9 m2/s) 

DAl 

(10-9 m2/s) 

DFe DAl⁄   Did Dm Dm/Did 

70  15.96 19.30 0.82  16.96 18.86 1.09 

78  16.48 19.74 0.83  17.19 19.51 1.13 

82  16.75 19.97 0.84  17.32 20.21 1.16 

86  17.03 20.21 0.84  17.45 21.32 1.22 

90  17.31 20.45 0.85  17.26 21.76 1.26 

In Fig. 4.7 we plot the self diffusivity of pure components as well as, intrinsic 

and mutual diffusion coefficients as a function of Al compositions in the considered 

liquid alloys at 1873 K. Unfortunately no experimental data for self and mutual 

diffusion coefficients are not available for the concerned liquid alloys. The high 

value of DAl as compared to DFe is expected due to the lower atomic mass of Al. This 

trend suggests that atomic liquid with a smaller diameter is more responsible for 

generating friction in the liquid alloys which is also observed by Bhuiyan et al. in 

their study on liquid Ag-In alloys (Bhuiyan et al., 2003) 

 

Figure 4.7: Self and mutual diffusion coefficient of Fe-Al melts as a function of Al 

compositions at 1873 K. 
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 It was observed that both DFe and DAl increase with an increase in the atomic 

percent of Al.  It can be seen from Fig. 4.7 that Dm is greater than Did (Dm > Did) at 

all investigated compositions, which is an indication of hetero-coordination in Al-

rich Fe-Al melts.  

  

4.3.2.2. Viscosity coefficients and surface tension of Fe-Al alloys 

The computed values of self and mutual diffusion coefficients have been 

employed to determine the viscosity coefficients of pure components and binary 

mixtures as a function of Al concentration in liquid Fe-Al alloys at 1173 K. In Fig. 

4.8 we report the comparison between our computed values of shear viscosity at five 

different compositions of liquid Fe-Al alloys with available experimental data 

(Bel’tyukov et al., 2015; Lihl et al., 1964) with different approaches. It can be 

inferred from Fig. 4.8 that the computed values of shear viscosity using SW potential 

function are in excellent agreement with experimental results reported in reference 

(Bel’tyukov et al., 2015; Lihl et al., 1964).
 

  

Figure 4.8: Square-well and experimental (Bel’tyukov et al., 2015; Lihl et al., 1964) 

values of concentration dependent coefficient in liquid Fe-Al alloy at 1173 K. 

In Fig. 4.9 we plot D values against atomic % of Al. D under SE relation 

can be given as inverse of
maxr . The constant value of D  against temperature and  
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concentration indicates that the nearest neighbor distance of metal-metal pairs, 

which, is obtained by Fourier transform of computed partial and total structure 

factors are independent of compositions and validate the applicability of the SE 

relation in such melts.  

Non linearity in case of liquid Al and liquid Fe-Al alloys can be addressed as 

dependency of separation between Al-Al and Fe-Al on Al concentration in melts.  

We observe a sharp change beyond 86% of Al in alloy which refers to that 

breakdown of SE relation around this composition. 
 

 

Figure 4.9: D  as a function of Al compositions in Fe-Al melts at 1873 K. 

Brillo and Pommrich (Brillo and Pommrich, 2011) also observed a 

breakdown of SE relation in the experimental study on Ni-Zr alloys. For pure 

component and four out of five investigated alloys, D  is roughly independent of 

compositions, which means that nearest neighbor distance of homo and hetero metal 

pairs display a very weak composition dependency within the investigated range. As 

we know that the breakdown of the SE relation is associated with a temperature 

evolution or unusual values of the metal-metal pair separation in the binary melts 

(Pasturel and Jakse, 2015). D under SE relation can be given as  inverse of 
maxr  . 

The constant value of D  indicates that the nearest neighbor distance of metal-metal 

pairs (
max
Fe Fer  ,

max
Al Alr  and 

max
Al Fer  ) which is obtained by Fourier transform of computed  
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partial and total structure factors are not changing in the considered alloys, which 

shows the applicability of the SE relation in considered melts.  

The calculated values of concentration dependent surface tension for liquid 

Fe-Al alloys are shown in Fig. 4.10. It is observed that surface tension of mixture  

gradually decreases with the addition of Al component and exhibits linearity with 

concentration. A similar trend was observed for Hg-Na liquid alloys obtained by 

Sharma et al.( Sharma et al., 2014). 

 

Figure 4.10: Surface tension versus atomic percent of Al alloys at 1873 K. 

 This decreasing nature of surface tension in Fe-Al melts is due to increase in 

chemical ordering with increase in Al concentration in considered alloys. We do not 

find any experimental data on surface tension of liquid Fe-Al alloys for comparing 

our theoretical results. 

 

4.3.3. Scaling properties of binary liquids  

 To find a correlation between atomic structure and transport coefficient in 

terms of scaling law is reported by several researchers with different theoretical and 

simulation approaches (Wang et al., 2015; Mishra and Lalneihpuii, 2016; Mishra and 

Shrivastava, 2017; Dzugutov, 1996; Hoyt et al., 2000; Samanta et al., 2004; Pasturel 

and Jakse, 2015; Rosenfeld, 1999). Dzugutov (Dzugutov, 1996) correlated dynamic  
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behavior (diffusion) of liquid with static structural parameter exS , excess entropy 

under two body approximations. The computed values of SE as a function of 

composition as well as SE
Cu

 and SE
In  calculated at 1073 K are given in Table 4.8. The 

scaling factor (χCu and χIn), the dimensionless diffusion coefficient, D* of liquid Cu-

In binary alloys at different compositions of In at 1073 K are also given in Table 4.8.   

 

Table 4.8. Scaling factors, D*, partial and total excess entropy of liquid Cu-In binary 

alloys at different compositions of In at 1073 K. 

 Fig. 4.11 and Fig.4.12 illustrate the reduced values of diffusion coefficient D* 

and viscosity coefficient ƞ* as a function of pair wise entropy exS  at 1073 K 

temperature. It is interesting to note that the reduced values of D* and ƞ* are scaled 

with exponential of exS  for all the compositions with a slope of -0.056 and 0.244 

respectively. Further, the regression coefficients R2 values of two cases are 0.975 and 

0.996 respectively. For the sake of comparison we compare our computed results 

with Dzugutov law and observe a close relation (Dzugutov, 1996).  

 

 

 

 

 

 

 

% In in 

Cu-In 

χCu 

(10-6m2/s) 

χIn 

(10-6m2/s) 

D*x10-3 −SE
Cu kB⁄  −SE

In kB⁄  −SE kB⁄  

25 2.74 1.99 2.331 3.061 2.996 3.045 

27 2.79 1.97 2.352 3.060 2.970 3.036 

29 2.77 1.94 2.422 3.035 2.935 3.006 

32 2.81 1.91 2.478 3.024 2.898 2.984 

34 2.77 1.90 2.551 2.994 2.878 2.954 
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 Figure 4.11: D* versus exS of Cu-In melts at different concentrations of In. 

One can demonstrate from Figs. 4.11 and 4.12 the scaling laws diffusion and 

viscosity for the SW binary liquid and can be tested for binary liquid with different 

potential functions. We demonstrate in Fig. 4.12 a linear relationship between two 

body excess entropy with the shear viscosities of pure components and liquid Cu-In 

alloys.   

 

Figure 4.12: ƞ* versus exS of Cu - In melts at different concentrations of In. 
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The computed values of SE as a function of composition as well as SE
Fe

 and 

SE
Al  calculated at 1873 K are given in Table 4.9. The scaling factor (χFe and  χAl), the 

dimensionless diffusion coefficient, D* of liquid Fe-Al binary alloys at different 

compositions of In at 1073 K are also given in Table 4.9.  

Table 4.9. Scaling factors, D*, partial and total excess entropy of liquid Fe-Al binary 

alloys at different compositions of Al at 1873 K. 

In a condensed system, the constancy of the internal structural relaxation 

which defines the rate of diffusion is proportional to the number of its available 

arrangement (per atom). In an equilibrium system due to the force caused by the 

structural correlations, this number is reduced by a factor of eS, where S is pairwise 

excess entropy (Dzugutov, 1996). So obviously, there is a relationship between the 

dimensionless diffusion coefficient, D*, and excess entropy Sex.  

 

Figure 4.13: D* versus exS of Fe-Al melts at different concentrations of Al.  

% Al in  

Fe-Al alloy 

χFe 

(10-6m2/s) 

χAl 

(10-6m2/s) 

D*x10-3 −SE
Fe kB⁄  −SE

Al kB⁄  −SE kB⁄  

70 3.46 3.32 5.42 2.363 2.131 2.201 

78 3.68 3.32 5.59 2.392 2.104 2.167 

82 3.84 3.42 5.54 2.418 2.123 2.176 

86 3.92 3.41 5.67 2.422 2.111 2.154 

90 3.88 3.34 5.93 2.395 2.080 2.112 
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Figs. 4.13 and 4.14 illustrate the comparison of a plot for Dzugutov scaling 

law (Dzugutov, 1996) between the dimensionless diffusion coefficient, D* and 

viscosity coefficient ƞ* as a function of excess entropy Sex/kB at 70, 78, 82, 86 and 

90% Al concentration in liquid Fe-Al binary alloys.   

 

Figures 4.14: ƞ* versus exS of Fe-Al melts at different concentrations of Al. 

It was observed that the slope of the line for scaled D* and ƞ* are respectively 

-0.11 and 0.017. Further, the regression coefficients R2 are found to be 0.832 and 

0.938 respectively. 
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THERMODYNAMICS OF LIQUID BINARY ALLOYS  

5.1. INTRODUCTION 

The knowledge of structural functions, transport coefficients, chemical ordering, 

thermodynamic properties and surface phenomena of metallic melts is of great 

importance for various metallurgical processes like phase transition, glass formation 

and crystal growth (Dubinin, 2019; Mishra et al., 2015; Gopala Rao, U. 

Bandyopadhyay, 1989; Mc. Quarrie, 1976; Yakymovych et al., 2014; Sharma et al., 

2014; Liu et al., 2010; Brillo et al., 2008; Wang et al., 2015; Venkatesh et al., 2003; 

Odusote, 2008). The computation of thermodynamic properties of alloy is a difficult 

task and the model calculations are not universally applicable. Hence, the 

investigation of transport and thermodynamic properties through microscopic 

structural functions in liquid alloys is always interesting and open new door to the 

applicability of alloys. 

 Thermodynamic mixing parameters like (enthalpy, free energy, entropy) are 

very important quantities, which decide the metallurgical processes and control over 

the alloying of metals. In recent years, various techniques have been studied to 

estimate such thermodynamic properties of alloys (Kanibolotsky et al., 2002; Yang 

et al., 2008). One of the purposes of this study is to estimate the thermodynamic 

mixing parameters through investigated SW model of structural functions and 

transport coefficients of liquid Cu-In and liquid Fe-Al binary alloys. 

 

5.2. THEORY 

5.2.1. Evaluation of enthalpy of mixing in liquid binary alloys 

 The Romanov-Kozlov-Petrov (RKP) model, which correlates the viscosity 

with enthalpy of mixing, has been used for estimating the enthalpy of mixing (Mudry 

et al., 2013). Mudry et al. also used this equation to estimate viscosity using 

experimental enthalpy data.  

 

M
n H

lnη = x lnη -
l-m i i 3RTi=1

                           (5.1)
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 Here, x
i

 and η
i
 are the atomic fractions and viscosity of the ith component 

respectively, MH  is the integral enthalpy of mixing, R and T are the ideal gas 

constant, and the working temperature respectively. 

 

5.2.2. Evaluation of entropy of mixing in liquid binary alloys 

 All entropies are expressed in terms of per atom unit i.e.
B

exS

Nk
. Here exS is the 

total excess entropy (Dubinin et al., 2014) which can be obtained via scaling 

properties defined as: 

 
2

ex bin Pure idS =S - x S -S
i i

i=1
                          (5.2)

    

 

where binS is the total entropy of the system per atom and idS  is the entropy per atom 

of an ideal gas system, which can be given as 

 idS =-k (x lnC +x lnC )
B m ml l

                                 (5.3)                                                                                                 

 
The excess entropy of the liquid Cu-In system has been calculated using a 

SW model of pair correlation function under two body approximations
 
(Dzugutov, 

1996)      
2

ex 2S =-2πρ x x g (r)ln g (r) - g (r)-1 r dr
l-m l m l-m l-m l-m

1 0


        

          (5.4)

            

 

 

5.2.3. Evaluation of free energy of mixing in liquid binary alloys 

 The molar Gibbs free energy of mixing in the binary melt is obtained as a 

function of composition as follows 

 M
ex ex

M M
G =H -TS                 (5.5)     

where the enthalpy of mixing, 
mixH  is obtained through the RKP equation, Eq. 

(5.1). 
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5.3. RESULTS AND DISCUSSION 

5.3.1. Cu-In 

5.3.1.1. Enthalpy of mixing 

The thermodynamic approach namely the RKP equation has been applied for the 

investigation of the correlation between the enthalpy of mixing and the viscosity of 

the melts.  

 

Figure 5.1: Theoretical and experimental (Hultgren, 1973) values of the        

concentration dependence of enthalpy of mixing in liquid Cu-In alloy at 1073 K. 

As shown in Fig. 10, the enthalpy of mixing calculated from the RKP 

equation is in good agreement with the experimental value (Hultgren, 1973) and so 

we used the computed results for the calculating free energy of mixing. 

 

5.3.1.2. Entropy of mixing 

 The pair wise excess entropy of liquid Cu-In alloy and partial excess 

entropies exS
Cu

and exS
In

 of pure components were computed using Eqns. (4.32) to 

(4.34) in chapter 4 and illustrated in Fig. 12 as a function of In composition. Fig. 12 

shows an excellent agreement between the computed and experimentally measured 

(Hultgren, 1973) values for the pair wise excess entropy /exS R
M

 of Cu-In melts. We  
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observe a high value of partial and total exS  in In rich region which also reflects 

chemical ordering in this region.  

 

Figure 5.2: Theoretical and experimental (Hultgren, 1973) values of the concen- 

tration dependence of excess entropy of mixing in liquid Cu-In alloy at 1073 K. 

The partial excess entropies were linearly related with the self-diffusion 

coefficient and therefore the self-diffusion coefficient values were used to calculate 

the partial excess entropies of Cu and In in the investigated alloys through Eqns. 

(4.32) and (4.33) in Chapter-4. The total excess entropy of mixing was obtained from 

the partial excess entropies through Eqn. (4.34) and was shown in Fig. 5.2. It can be  

seen from Fig. 5.2 that the computed partial as well as the total entropy of mixing 

were having negative values and were found to increase slightly with an increase in 

the atomic percent of In. The negative values of entropies show that the mixing of Cu 

and In were found to be thermodynamically exothermic at the working temperature 

i.e.1073 K.  
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5.3.1.3. Free energy of mixing 

 The computed and observed values from activity data (Hultgren, 1973) for 

the Gibbs free energy of mixing, exG
M

as a function of In concentration, are shown  

Fig. 5.3. It must be noted that a negative value for exG
M

 was observed for investigated 

compositions of Cu-In melts at 1073 K.  

 

Figure 5.3: Theoretical and experimental (Hultgren, 1973) values of concentration 

dependence of the free excess energy of mixing in liquid Cu-In alloy at 1073 K.  

 We observe a positive deviation of the computed data from experimental 

values (Hultgren, 1973) and it increases with In concentration. The computed 

thermodynamic parameters are in good agreement in Cu-rich regions of the alloys. 

 

5.3.2. Fe-Al 

5.3.2.1. Enthalpy of mixing 

RKP equation, Eqn. (5.1) for the correlation between viscosity and enthalpy of 

mixing ( )MH  was used for the investigation of MH as a function of Al concentration. 

The computed values of viscosity coefficients from the modified SE relation were 

used in this investigation.   
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Figure 5.4: Square-Well, Quasi-Lattice (Akinlade et al., 2000) and experimental 

(Batalin et al., 1973) values of concentration dependence of enthalpy of mixing in 

liquid Fe-Al alloys at 1873 K. 

 As observed from Fig. 5.4, the enthalpy of mixing obtained from square-well, 

quasi-lattice (Akinlade et al., 2000) and experimental results (Batalin et al., 1973)  at 

all concentrations of Al are showing negative values. This is a clear indication that 

Fe-Al is a chemically ordered system. Although our computed results is showing 

more difference from the experimental MH  values as compared to the QL model, it 

follows the same trend as experimental results (Batalin et al., 1973)  with an average 

difference  of 0.34 J mol-1.      

 

5.3.2.2. Entropy of mixing 

The pair wise excess entropy of liquid Fe-Al and partial excess entropies ex
Fe

S  and 

ex
Al

S  were computed using Eqns. (4.32) and (4.33) in chapter 4 and presented in Fig. 

5.5 as a function of Al compositions. It can be seen that the computed and 

experimental values of total excess entropy of mixing were having negative values at 

all investigated compositions of Al.  
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Figure 5.5: Square-Well, Quasi-Lattice (Akinlade et al., 2000) and experimental 

(experimental points obtained from the difference between MH and MG )  values of 

concentration  dependence of excess entropy of mixing in liquid Fe-Al alloys at  

1873 K.   

 Theoretical and experimental (experimental points obtained from the 

difference between MH and MG ) values of the concentration dependence of excess 

entropy of mixing in liquid Cu-In alloy at 1073 K. 

 The negative values of entropies show that the mixing of Fe and Al were 

found to be thermodynamically exothermic at the working temperature i.e.1873 K. 

We find that the values of /M
exS R computed from SW model and experimental 

results are in better agreement then the QL model.     

 

5.3.2.3. Free energy of mixing 

 The values of Gibbs free energy of mixing, ex
M

G  as a function of Al 

composition observed from SW model computation, QL model (Akinlade et al., 

2000) and experimental results (Belton and Fruehan, 1969) were plotted in Fig. 5.6. 
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Figure 5.6: Square-Well, Quasi-Lattice (Akinlade et al., 2000) and experimental 

(Belton and Fruehan, 1969) values of concentration dependence of free energy of 

mixing in liquid Fe-Al alloys at 1873 K. 

 It can be seen that all the observed ex
M

G  values are showing positive 

deviations with increase in atomic percent of Al. The computed values of ex
M

G  are 

showing fair agreement with experimental values (Belton and Fruehan, 1969) except 

for 78 to 82 % of Al. This may due to existence of eutectic composition in this range.  
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TEMPERATURE EFFECT ON STRUCTURAL AND TRANSPORT 

COEFFICIENT OF LIQUID COPPER 

6.1. INTRODUCTION 

Due to lacking of long range order in liquids, the best way to characterize the 

structure of a liquid is through correlation functions. The pair correlation function or 

radial distribution function is one of the important parameter to explain the structural 

features of a liquid. This is also formed as density-density correlation which is 

defined as the probability of finding an atom at a distance ‘r’ at time ‘t’ from an atom 

at origin at time t=0. The average number of nearest neighbor to first coordination 

cells which is called coordination numbers are reported in recent years due to its 

importance in explaining the local structure of liquid metals and alloys. These local 

structural functions are correlated with important macroscopic properties of liquid 

metals and alloys like diffusion. 

 Super heating of crystals has been one of the highly interest work out in the 

advancement of material sciences (Xiufang and Weimin, 2000). For the complete 

understanding of various liquid state properties like molecular structure, dynamic 

behavior at the atomic level, it is highly essential to study the local atomic structure 

and observing how it changes as a function temperature (Wang et al., 2009). 

 The structure factor for pure liquid metals closely resemble to those for the 

hard sphere atomic structure (Khaleque et al., 2002). In the effort to understand 

liquid metal structure factors, S(k), we take into consideration an attractive part with 

the hard sphere reference system. The square well fluid is the simplest one 

possessing the basic characteristics of a real fluid (Wu et al., 2004).The square-well 

(SW) system thereby serves as a very efficient reference system, where liquid state 

theoreticians gives an effort from different approaches like DFT, Gaussian, 

integration by the perturbation of hard sphere model by the SW potential system 

(Lang et al., 2009).  

 The study of transport coefficients such as diffusion and viscosity coefficients 

of liquid metals is of crucial importance for understanding of liquid dynamics, 

nucleation, nitrification and crystal growth and serves as one of the main thermo  
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physical parameter for the production of new materials. For the microstructure 

development, diffusion coefficient plays a key role and serves as a crucial parameter 

for the results of molecular dynamics (MD) simulation (Meyer and Kargl, 2013). The 

critical cooling rates for glass transition for a liquid depend on their viscosity 

parameter. However it is not well understood how the structure and thermodynamic 

properties of liquid metals has an effect on the viscosity (Sonvane et al., 2012).  

 The self diffusion coefficients of liquid Cu at different temperatures has been 

obtained by using Einstein equation for diffusion coefficients (Venkatesh et al., 

2003). A model calculation provides a way to compute three friction coefficients 

arising from the forces of hard core and soft part of the potential function. 

 The viscosity coefficient of liquid Cu has been obtained by replacing the 

hydrodynamic radius in the Stokes-Einstein relation by the first peak position of g(r) 

and computed values of diffusion coefficients, D. 

 The study of coordination number, diffusion coefficients and viscosity of 

liquid metals is of fundamental importance and the better understanding of these 

properties is helpful in material processing technology. Co-ordination of liquid 

metals is determined by integrating g(r) functions between first two minima. The 

understanding of liquid state theories depends on the information available for the 

structure, transport and thermodynamic properties of the liquid (Fima and Sobezak, 

2010). 

 

6.2. THEORETICAL MODEL 

6.2.1. Evaluation of Structure Factor and Radial Distribution Function 

The square well potential can be given as  

U(SW) = {
   ∞             ;             r   < σ                                       

−ε            ;             σ  < r < 𝜆𝜎                           
 0            ;             r > 𝜆𝜎                                    

                       (6.1)                         

where λ and ε  are the breadth and depth of the potential well respectively and σ is 

the hard sphere diameter. 

The Direct Correlation Function (DCF) of square well fluid is given as  
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       C(k) = CSW(k) + CHS(k)                                                                     (6.2) 

Where, 

                   (6.3) 

                     

                                                        (6.4) 

 

 

and x = k,  is the number density,  and  represent depth and breadth 

respectively of the SW.  

Wertheim’s (Wertheim, 1963) solution of Percus-Yevick’s equation for hard 

spheres reference system perturbed with a square well attractive tail to evaluate the 

structure factors as (Mishra and Venkatesh, 2008)   

                 S(k) = 1 1 − ρC(k)⁄                                                                               (6.5)                                                                                        

 Here ρ is the number density and C(k) is the total correlation function of liquid 

metals. The Fourier inversion of S(k) gives, the radial distribution function, g(r)  

                 g(r) = 1 +
1

2π2ρ
∫ k2[S(k) − 1]

sinkrnm

krnm

∞

0
dk                                          (6.6)   

 

6.2.2. Evaluation of Transport Coefficients 

6.2.2.1. Self Diffusion Coefficient 

The self diffusion coefficient of pure metal can be given by Einstein’ equation as 

   D =  kBT ξ⁄                                                                                         (6.7) 

Here kB is the Boltzmann constant, ξ is the friction coefficient, which is a sum of 

the friction coefficients arising from the forces of hard-core, soft-part and hard-soft 

part as (Mishra and Venkatesh, 2005). 

ξ = ξHP + [ξSP + ξSHP]                                                                      (6.8)                    

 The contribution from ξHP, ξSP and   ξSHP which incorporate the radial and 

structural aspects, are given as follows  

 ξHP =  
8

3
ρg(σ)σ2(πmkBT)1 2⁄                                              (6.9) 

 

 

] (x)sin     (x) cosx   λx) ( cosλx    λx) ([sin   (x)   T]k / ε η [24(k)C ρ 3

BSW


 

  24}].- x cos  24) x12(x  -  xsin                    

  x)24   x{(4   γ  2} - x cos 2)(x - sin{2x                    

 (x) β    (x)}  cos x - (xσx{sin  (x) [α ](x) / η [24      (k)C ρ

24

32

236

HS







x
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ξSP = −
1

3

ρ

4π2 (
πm

kBT
)

1 2⁄

∫ k3us(k)G(k)dk         
∞

0
                             (6.10)                        

ξSHP = −
1

3
ρg(σ) (

m

πkBT
)

1 2⁄

× ∫ [kσ cos(kσ) − sin(kσ)]
∞

0
us(k)          (6.11) 

   usw(k) =
4πξ

k3
[Akσ cos(Akσ) − sin(Akσ) − kσ cos(kσ) + sin(kσ)]    (6.12) 

              G(k)  =
1

ρ
[S(k)1]                                                                                    (6.13) 

The logarithmic variation of the diffusion coefficient with temperature is 

evaluated from Einstein’s equation and it is given by 

                 
dlnD

dT
=

1

T
−

dlnξ

dT
                                                                                 (6.14) 

Hence to evaluate 
dlnD

dT
 we have to evaluate 

dlnξ

dT
.Thus the gradient of the hard 

sphere part with respect to temperature is given by 

 
dξHP

dT
=

ξHP

2T
− kξHP +

8

3
ρσ2(πmkBT)

1
2⁄  × {

2k

3
[g(σ) − 1] +

k

6π2ρ
∫ k2 [S(k) −

∞

0

1] cos(kσ) dk +
1

2π2ρσ
∫ ksin(kσ)S(k)dk

∞

0
}                  (6.15)   

     The temperature derivative of the soft-part and hard-soft part of the friction 

coefficients are given by the following equations                                                                             

                 
dξSP

dT
= −

ξSP

2T
− (

πm

kBT
)

1 2⁄

∫ k3∞

0
us(k)S(k)                                            (6.16) 

 dξ
SHP

dT
=    −

ξ
SHP

2T
− kξ

SHP −
1

3
ρ (

m

πkBT
)

1 2⁄

× ∫ [kσ cos(kσ) −
∞

0

sin(kσ)]uS(k)dk    {
2k

3
[g(σ) − 1] +

k

6π2ρ
∫ k2[S(k) −

∞

0

1] cos(kσ) dk +
1

2π2ρσ
∫ ksin(kσ)S(k)dk

∞

0
}           (6.17) 

       

Here, 

   S(k) =
dS(k)

dT
      

= k[S(k)] {[1 − S(k)] +
24ηS(k)

(kσ)6
[

4X1αη(2+η)

(1+2η)(1−η)
] +

X2β(η2+9η+2)

(2+η)(1−η)
 +

                                       
 X3γ(2η2+9η+1)

(2+η)(1−η)
−

εX4

κkBT2
}                             (6.18) 
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The other coefficients that enter in Eq. (5.16) are given by the following equation 

α =
(1+2η)2

(1−η)4                                                                                                             (6.19) 

β = −
6η(1+

η

2
)2

(1−η)4                                                                                                  (6.20)    

γ =
η(1+2η)2

2(1−η)4                            (6.21)         

X1 = (kσ)3[sin(kσ) − k σcos(kσ)]                                                                     (6.22)                                     

X2 = (kσ)2[2kσ sin(kσ) − (k2σ2 − 2) cos(kσ) − 2]                                         (6.23)              

X3 = (4k3σ3 − 24kσ)sin(kσ) − (k4σ4 − 12k2σ2 + 24) cos(kσ) + 24           (6.24)    

X4 = (kσ)3[sin(Akσ) − Akσ cos(Akσ) + kσ cos(kσ) − sin (kσ)]                     (6.25)                                                               

 

6.2.2.2. Viscosity Coefficient 

 The shear viscosity coefficient, ηv is obtained under the SW model with the 

Stokes-Einstein relation 

 ηv =
kBT

2πrmaxD
                                                                                           (6.26) 

 Where kB is the Boltzmann’s constant, rmax is the first peak position of g(r) 

and D is the diffusion coefficient. 

 

6.2.3. Evaluation of coordination number 

 The nearest-neighbor coordination number, ψ, can be obtained by integrating 

the g(r) function between the first two minimum i.e. the left edge of the first peak to 

the first minimum on the right hand side of the first peak, rmin. ψ characterizes 

several types of short-range order present in the liquids. The microstructure of liquids 

can also be characterized by ψ. 

ψ = 4πρ ∫ g(r)r2dr
rmin

0
                                                                          (6.27) 

 

6.2.4. Evaluation of Coefficient of Thermal Expansion  

Equation of states for square-well fluids 

𝛂𝟏  =  
𝟏

𝐕

𝐝𝐕

𝐝𝐓
 = coefficient of thermal expansion                      (6.28) 
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dη

dT
= −ηα1                                                                                                           (6.29) 

PV

RT
 =

1+η+η2

(1−η)3  − 
4ϵη(λ3−1)

kBT
                                                                                    (6.30)                          

𝐏𝐕

𝐑
=

(𝟏+𝛈+𝛈𝟐)𝐓

(𝟏−𝛈)𝟑 −
𝟒𝛜𝛈(𝛌𝟑−𝟏)

𝐤𝐁
                       (6.31) 

P

R
( 

dV

dT
)P =

1+η+η2

(1−η)3

dT

dT
 +  

T

(1−η)3 (0 +
dη

dT
+ 2η

dη

dT
) + T(1 + η + η2)

(−3)

(1−η)4
(−1)

dη

dT
−

4ϵη(λ3−1)

kB

dη

dT
                                                            (6.32) 

1 + η + η2

(1 − η)3
+

T

(1 − η)3
(– ηα1 + 2η × −ηα1) + T(1 + η + η2)

(−3)

(1 − η)4
× −ηα1 − 

4ϵη(λ3−1)

kB
×  −ηα1                                          (6.33) 

P

R

dV

VdT
  =  

(1+η+η2)

(1−η)3 −
–ηα1T(2η+1)

(1−η)3 −
3T(1+η+η2)α1η

(1−η)4 +  
4ϵ(λ3−1)

kB
ηα1                        (6.34) 

PV

R
× α1 =

(1+η+η2)

(1−η)3 −
–(2η+1)ηα1T

(1−η)3 −
3Tηα1(1+η+η2)

(1−η)4 +  
4ϵ(λ3−1)ηα1

kB
                        (6.35) 

=
(1+η+η2)

(1−η)3 −
(2η+1)(1−η) η α1T+3Tηα1(1+η+η2)

(1−η)4 +  
4ϵ(λ3−1)ηα1

kB
                                (6.36) 

=
(1+η+η2)

(1−η)3 −
(2η2−2η3+η−η2) α1T+α1T(3η+3η2+3η3)

(1−η)4 +
4ϵ(λ3−1)ηα1

kB
                        (6.37) 

=
(1+η+η2)

(1−η)3 −
 α1T(2η2−2η3+η−η2+3η+3η2+3η3)

(1−η)4 +
4ϵ(λ3−1)ηα1

kB
                                  (6.38) 

=
(1+η+η2)

(1−η)3 −
(η3+4η2+4η)α1T

(1−η)4 +
4ϵ(λ3−1)ηα1

kB
                                                        (6.39) 

α1T [
(1+η+η2)

(1−η)3 −
4ϵη(λ3−1)

kBT
] +

α1Tη(η+2)2

(1−η)4 −
α1η4ϵ(λ3−1)

kB
=  

(1+η+η2)

(1−η)3             (6.40) 

α1T [
(1+η+η2)

(1−η)3 −
4ϵη(λ3−1)

kBT
+

η(η+2)2

(1−η)4
] −

α1η4ϵ(λ3−1)

(1−η)4 =  
(1+η+η2)

(1−η)3                 (6.41) 

α1T [
(1+η+η2)

(1−η)3 −
4ϵη(λ3−1)

kBT
+

η(η+2)2

(1−η)4 −
4ϵη(λ3−1)

kBT
] =  

(1+η+η2)

(1−η)3                      (6.42)   

α1T [
(1+η+η2)(1−η)+η(η+2)2

(1−η)4 −
8ϵη(λ3−1)

kBT
] =  

(1+η+η2)

(1−η)3                                  (6.43) 

α1T [
1−η+η−η2+η2−η3+η3+4η2+4η

(1−η)4 −
8ϵη(λ3−1)

kBT
] =  

(1+η+η2)

(1−η)3                                  (6.45)     

α1T [
(2η+1)2

(1−η)4 −
8ϵη(λ3−1)

kBT
] =  

(1+η+η2)

(1−η)3                          (6.46) 
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α1T =
 (1+η+η2)/(1−η)3

(2η+1)2

(1−η)4  − 
8ϵη(λ3−1)

kBT

                          (6.47)

                 

6.3. RESULTS AND DISCUSSION 

 The input parameters for liquid Cu are taken for this computation from 

Mishra and Venkatesh (Mishra and Venkatesh, 2008) as (σ = 2.253;  λ =

1.68;  ε/kB = 300).  Figure 6.1 shows the total structure factor S(k) of liquid Cu in 

the temperature range from 1097 to 1600 °C, here k is diffraction vector, equal to 

 4π sin θ/λ1, where θ is the scattering angle and λ1  is the wave length. With 

increasing temperature up to 1247 °C, the peak height of the first maximum of S(k) 

progressively decreases, and then becomes constant in the range between 1192 to 

1247 °C, after which it decreases gradually with increasing temperature. The change 

in height of the first peak of S(k) versus temperature is shown in Figure 6.2. 

 

 

Figure 6.1: The total structure factor S(k) of liquid Cu at different temperatures, (    )  

theoretical  values; (o o o)  experimental values. 

   The experimental values available for the structure factors S(k) and pair 

correlation function g(r) at temperature 1150, 1300, 1500, 1600 °C (Waseda, 1980)  

1-(Å )
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agree well with the computed results and are shown in Figures 6.1 and 6.3 

respectively.  

 

Figure 6.2: Height of first peak in S(k) of liquid Cu against temperature. 

 The height of the S(k) and g(r) peaks have a nonlinearity decrease and their 

positions does not change with increasing temperature. Similar trends were observed 

by Xiufang and Weimin (Xiufang and Weimin, 2000) for liquid Al-13 wt% Si alloy. 

 

 

Figure 6.3: The pair correlation function g(r) of liquid Cu at different 

temperatures, (      ) theoretical results; (o o o) experimental results. 

  

(Å)
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 Figures 6.2 and 6.4 show that the peak height of both S(k) and g(r) decreases 

gradually at first with increasing temperature up to 1192 °C. These suggest that the 

break of bonds happens in the melt and that Cu atoms diffuse from Cu-Cu cluster. 

The peak height does not change within the temperature range 1192 to 1247 °C 

suggests that the rate of diffusion of Cu atoms from Cu-Cu clusters is the same to the 

rate of that Cu atoms to form a new Cu-Cu clusters, meaning that the amount of 

destroyed bond is exactly the same to that of produced bonds. 

 

Figure 6.4: Height of first peak in g(r) of liquid Cu against temperature. 

 Similar trends were observed by Xiufang and Weimin (Xiufang and Weimin, 

2000) for liquid Al-13 wt% Si alloy. Then onward as the temperature increases 

further high beyond 1297 °C the peak height of both S(k) and g(r) keeps on 

decreasing gradually with increasing temperature. This is due to the fact that, the 

diffusion process of Cu-Cu clusters reached a limit, and the structure change of the 

melt is such that a new fewer bonds will be formed from the destroyed original 

bonds. 

     ξHP, ξSPand ξSHPwere computed through Eqns. (6.9) to (6.11) which 

incorporate temperature derivative of S(k) and g(r). These computed values are 

presented in Table 6.1. It is revealed from Table 6.1 that the contribution of ξHPin the 

calculation of ξ is dominating at all temperatures. Further hard part ξHPis increasing 

with increasing temperature, however, ξSP soft part decreases by a small amount with 

increasing temperature. 
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Table 6.1. Friction coefficients 𝛏𝐇𝐏, 𝛏𝐒𝐏 and 𝛏𝐒𝐇𝐏(𝟏𝟎−𝟏𝟑Kg/s) and D ( 𝟏𝟎−𝟗𝐦𝟐/𝐬) 

 Figure 6.5 shows a satisfactory agreement of self-diffusion, D at different 

temperatures between computed and experimental values (Meyer and Kargl, 2013). 

It is worth to mention here that at higher temperature 1620 K, we find a very good 

agreement between theory and experiment (Meyer and Kargl, 2013). However, in the 

lower temperature range especially between 1370 and 1570 K, there may be 

existence of few Cu-clusters which is not predicted by proposed model. 

 

Figure 6.5: Self-diffusion coefficients in liquid Cu from Quasielastic Neutron 

Scattering (QNS) and computer simulated results 
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1570 33.57 4.94 3.61 5.14 4.85 
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 The mechanism of the thermal expansion is determined by an increase in free 

volumes of holes and not on the change in the interatomic distances due to the 

anharmonicity in the potential energy of the interatomic interaction as the 

temperature rises (Bar'yakhtar et al., 1989).  

 

Figure 6.6: Thermal expansion coefficients (αT) (K−1), co-ordination number (ψ) 

and viscosity(η) (m Pas). 

 Figure 6.6 demonstrate an increase in the thermal expansion coefficients of 

liquid Cu with increase in temperature when the position of the first maxima on the 

radial distance, rmax = 0.246       remains constant with change in temperature. 

While the shear viscosity shows an increase with increase in temperature, Waseda 

(Waseda, 1980) tells us that the overall coordination number decreases with 

increase in temperature for liquid Tn which we find the same for liquid Cu as 

shown in Figure 6.6. 
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CONCLUSIONS 

The thermodynamic and transport coefficients of Cu-In binary melts have been 

determined by using SW inter-atomic potential of pure metals under random phase 

approximation. Theoretical formalisms and computations establish the correlation 

between kinetics, thermodynamics of the SW liquid with microscopic structural 

parameters without using any adjustable and experimental parameters. The RKP 

model is suitable for the description of concentration dependent enthalpy of mixing 

of SW mixtures. It is worth to mention here that the chemical ordering between 

unlike atoms decreases in the mixture with In concentration and shows a good 

agreement with experimental data for all the investigated compositions of Cu-In 

melts. The Cu-Cu coordination number is decreasing with increasing atomic percent 

of In and hence increase in self diffusion of Cu with increasing atomic percent of In 

was observed.  

Current viscosity data are in fair agreement with experimental data [1] and an 

excellent agreement of these two data were observed beyond 31 atomic percent of In 

in liquid Cu-In alloys validate the Stokes-Einstein relation for this alloy. 

First time detailed diffusivity parameters of Cu-In melts were computed and 

presented in this letter. The constant ratio of DIn / DCu is an indication of the 

formation of regular solution in the considered melt. A new correlation is observed 

between the ratios of self diffusivities and two body excess entropies of pure 

components as 

exD S
In Cu

exD SCu In

 . This study established a very good correlation 

between atomic scale structure with dynamics and thermodynamics of liquid Cu-In 

alloys. The model calculations can be extended to study the high entropy alloys of 

desirable properties.  

 Theoretically formulated and computed results of Cu-In binary melts show 

good coherence with available experimental data which supports the model 

calculations and its physical basis. Furthermore, most of the computed atomic 

structures, transport coefficients and thermodynamic properties via different 

approaches confirm the compound forming tendency in the investigated alloys.  
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 The theoretically formulated and computed BT correlation functions have 

been employed to investigate the mass (diffusion) and momentum transfer (viscosity) 

in the binary melts as a function of In composition. We find an excellent agreement 

between the computed and experimental data of 
(0)S

CC which infers about the 

compound forming tendency in the liquid Cu-In alloys. It is worth mentioning here 

that 
(0)S

CC is computed without using any adjustable data. The constant first peak 

position of the partial radial distribution functions throughout the whole 

concentration range of In and the linearity dependence of Dƞ as a function of 

temperature proves that SE relation holds for the considered liquid binary alloys.  

Further, transport coefficients, surface tension, and all other results presented in this 

manuscript provide an understanding of the effect of microscopic structural functions 

on these properties.   

 The structure and derived associated properties like diffusion coefficients 

(mass transport), viscosity (momentum transport), chemical ordering parameters and 

pair wise excess entropy of  liquid Fe-Al alloys as a function Al concentration have 

been theoretically investigated using square-well model potential function under 

Mean Spherical Model Approximation. Moreover, we have evidenced that the 

investigated alloys are compound forming melts.
 
It is worth to mention here that the 

computed values of concentration dependent S(k) are in fair agreement with results 

reported by using X-ray diffraction data. Stokes-Einsten (SE) relation is verified by 

computing shear viscosity values using diffusion data. Two sets of experimental data 

suggest that the SE relation is suitable for considered melts. 

 Finally, we conclude that thermodynamic perturbation model calculations 

quickly covered a wide concentration range compared to molecular dynamic 

simulation under ab initio calculations. 

 Temperature effect on structure and transport properties of liquid Cu has been 

investigated by using a square well model under random phase approximation. These 

model calculations show a fair agreement with experimental results. Analytical 

expressions of temperature derivative of diffusion coefficient and friction  
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coefficients in repulsive and attractive region were determined and computed using 

Fortran 77 codes.  

 Einstein’s form of diffusion of liquid Cu has been computed under a thermal 

gradient. We find satisfactory result in high temperature regions. 

  

Future perspective: 

Part A: Work will be taken immediate after submission of my thesis 

1. Establish a new correlation between microscopic structural functions obtained 

through square-well (SW) model potential with various thermodynamic properties. 

2. Extend the theory to three component system. 

Part B: Work plan for after Ph.D. 

1. Try to establish a link between SW model calculations with molecular volume 

interaction model (MVIM). 

2. Learn ab initio molecular dynamic simulation for metallic melts. 

3. Work on high entropy alloys (high demand in defense industry) using ab initio 

molecular dynamic simulation. 
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Abstract 

 The present study used a thermodynamic perturbation theory in which 

square-well (SW) potential is perturb over hard-sphere reference system to compute 

structure, transport and thermodynamic properties of liquid binary alloys and metals. 

Knowledge of the structure, transport and thermodynamic properties of liquid state is 

crucial for understanding their applications in nucleation of crystals, glass formation, 

metallurgy, medical and other industrial technologies. The SW potential is an 

extension of hard sphere potential and has been successfully applied for metallic 

liquids, colloidal particles, hetero-chain molecules and complex systems. The SW 

potential is completely solvable and applicable for real liquids. The SW potential 

gives analytical expressions in which numerical computations dominate relatively.  

Analytical expressions are more appropriate and hence the applicability of SW 

potential is superior then other potentials for different theoretical techniques, such  as 

integral equations or perturbation theories.  

  In binary alloys, the structure factor and its Fourier transform, the radial 

distribution function and other related structural properties like coordination number, 

transport properties like diffusion coefficients and shear viscosity coefficients were 

determined and compared with available experimental data. The concentration-

concentration fluctuation in long wavelength limit is an important parameter to 

explain the complexity in binary liquid mixtures. In present investigation, the 

theoretical and computational values of SCC(0)  are in excellent agreement with 

experimental values at all the investigated compositions. The surface tension and 

chemical short range order parameter were also computed and compared with Quasi-

Lattice (QL) model results. Further, we performed the test on Dzugutov’s universal 

scaling law by establishing a link between reduced diffusion and viscosity with 

respect to the computed excess entropy. Other then the structural properties, the 

diffusion coefficient, viscosity coefficient, co-ordination number and the coefficient 

of thermal expansion were computed from the equation of states for square-well 

fluids within the temperature range for investigation of structure factor. The 

following objectives are taken up in the thesis: 



2 
 

 

 To determine the structure of square-well fluids and the study of 

concentration and temperature effect on it. 

 To derive and evaluate a wide variety of thermo-physical and thermodynamic 

properties of liquid metals and alloys using structure factor, radial distribution 

function and potential function. 

 To derive and evaluate atomic transport properties like self, mutual, inter-

diffusion coefficients and shear viscosity and their variation with composition 

and temperature in binary liquid alloys.  

 The comparison between simulation results and those of analytical models 

essentially allow us to test the models, whereas the comparison of simulation results 

with experimental results is the ultimate test to judge the efficiency of proposed 

model.  

 The first chapter is the general introduction of the thesis which include 

background, theory of distribution functions, integral equations, perturbation 

theories, structure factor in liquids, transport, surface and scaling properties in liquid 

binary alloys, thermodynamic properties of liquid binary alloys, temperature effect 

on structural and transport coefficient of liquid copper, outlines of present work. 

 In chapter-2 a detailed understanding of the structural features of binary 

alloys is described. Using the Lebowitz solution of hard sphere mixtures as a 

reference system, and perturbed the hard sphere direct correlation function with 

square well attractive tail the partial and total structure factors, radial distribution 

functions and associated derived properties of Cu-In and Fe-Al alloys at different 

compositions have been calculated and compared with the available experimental 

values. There is an excellent agreement between theoretical and experimental results. 

We also obtained partial and total coordination numbers from partial and total pair 

correlation functions respectively. Finally we emphasize that square-well potential is 

an appealing model in understanding the structural aspects of binary alloys. 
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 In the third chapter, thermodynamically important Bhatia-Thornton 

correlation functions and in specific the concentration-concentration correlation 

functions at various compositions of the Cu-In and Fe-Al alloys in the entire 

momentum space with special emphasis on the values at long wave limit of the 

same alloys are calculated. The chemical short-range order parameter has been 

computed as a function of composition for the same systems through structural 

studies in the long wave limit, which gives valuable information regarding the 

nature of the liquid alloys at various compositions. 

 The fourth chapter describes the calculation of diffusion coefficients of 

binary alloys through their structural studies. A detailed investigation on transport 

properties of binary alloys is considered. The diffusion coefficient of the alloys is 

calculated through the use of Helfand’s linear trajectory principle. Equations have 

been derived for the temperature variation of diffusion coefficients, which were 

applied successfully to the investigated binary alloys. The viscosity coefficients of 

pure components in liquid binary alloys are determined by assuming Stokes-

Einstein (SE) form of equations. The concentration-dependent surface tension of 

liquid binary alloys is derived by extending the equation for binary system. Further, 

Dzugutov and Rosenfeld universal scaling law has been tested for the investigation 

of correlation between atomic dynamics and thermodynamics with square-well 

model potential.  

 In fifth chapter, we deduce information on thermodynamic mixing parameters 

of binary alloys such as, Gibbs free energy of mixing, enthalpy of mixing and 

entropy of mixing through investigated square-well model structural functions and 

transport coefficients of liquid binary alloys. The Romanov-Kozlov-Petrov (RKP) 

model, which correlates the viscosity with enthalpy of mixing, has been used for 

estimating the enthalpy of mixing. The entropy of mixing has been calculated using a 

SW model of pair correlation function under two body approximations. The Gibbs 

free energy of mixing was the computed from the difference between the computed 

enthalpy of mixing and entropy of mixing. 

 In sixth chapter, we investigated a detailed effect of temperature on structure 

and transport properties of liquid Cu using a square-well model potential under 

random phase approximation. Computed structure factor and square-well potential 
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were applied to determine the self diffusion of liquid Cu within the available 

experimental temperature range by using well known Einstein’s equation. Then the 

computed results were compared with available experimental results obtained by 

Quasielastic Neutron Scattering (QNS). Also, the viscosity coefficient, co-ordination 

number and the coefficient of thermal expansion were computed from the equation 

of states for square-well fluids within the temperature range for investigation of 

structure factor.   

 Chapter-7 is conclusion. Finally, list of references is given at the end.  
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