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PREFACE

The present thesis entitled “p-adic Valuations of Certain Classes of Stir-

ling Numbers of the Second Kind” is an outcome of the research carried out

under the supervision of Prof. S. Sarat Singh, Department of Mathematics &

Computer Science, Mizoram University, Aizawl - 796 004, Mizoram, INDIA.

The thesis consists of various approaches to determine the p-adic valuations

of certain classes of Stirling numbers of the second kind for an odd prime p. The

p-adic valuations are mainly obtained through congruence relations. Some cases

are also tackled through an algebraic and combinatorial approach. It consists

of six chapters. The first chapter is General Introduction which contains ba-

sic definitions, divisibility and congruence, p-adic Valuation, Stirling Numbers,

Periodicity, applications of Stirling numbers and review of literature.

The second chapter deals with the problem of divisibility of certain classes of

Stirling numbers of the second kind. It includes the derivation of a new identity

of Stirling numbers of the second kind. A combinatorial approach helps to obtain

the lower bounds of p-adic valuations of some classes of S(n, k) for an odd prime

p. We also extend an existing congruence relation in modulo of a power of an

odd prime, which is useful in determining the lower bound of vp(S(p
n, kp)) when

k is odd and less than p− 1. We obtain the lower bound of vp(S(p
2, kp)) when k

is even and its value is greater than the one when k is odd. We also discuss the

congruence behaviour of S(pn, k) and the involvement of p-adic digits of k on the

congruence when k is not divisible by p.

In Chapter 3, we study the p-adic valuations of S(n, k) when n is a power of a

prime. We find that the results when k is divisible by p (or pm) are quite different

from the ones where k is not divisible by p. We have proved that vp(S(p
2, kp)) ≥ 5

when k is even, which confirms the lower bound of the Conjecture 2.3.1 in Chapter

2. Furthermore, we find that the values of vp(S(n, kp
m)) are affected by the

v



parity of n and k. In fact, if n and k are opposite in parity, i.e., n − k is odd,

then vp(S(n, kp
m)) ≥ 2m when (p − 1) ∤ (n − k) and vp(S(n, kp

m)) ≥ m when

(p − 1) | (n − k). However, if the parity of n and k are the same, i.e., n − k

is even, then vp(S(n, kp
m)) ≥ m when (p − 1) ∤ (n − k). We further investigate

the divisibility of S(pn, k) when p does not divide k and we have found that the

divisibility depends on the sum of the p-adic digits of k.

The fourth chapter focuses on the congruence relation between Stirling num-

bers of the first and the second kind. Their generating function is the bridge

between the two numbers. We present their congruence relations with sums in-

volving binomial coefficients for the two numbers. We also express the first kind

in terms of sums involving the second kind modulo a power of a prime and vice

versa. The congruence obtained helps to acquire the p-adic valuations of some

classes of the two numbers. We even establish a congruence relation between the

two numbers in modulo pn for any positive integer n.

In the fifth chapter, the relationship between minimum periods and p-adic

valuations of Stirling numbers of the second kind has been studied. We discuss the

periodicity, period, and minimum period of the sequence {S(n, k) (mod pN)}n≥0

for some fixed positive integers N and k. We find that the cycle of the sequence

sometimes starts even when n is less than k. We present some results about

the divisibility of a partial Stirling number, which is effective in evaluating some

classes of S(n, k). The periodicity and minimum periods help to determine a class

of S(n, k) holding the same p-adic valuation.

Chapter 6 is the summary and conclusions of the thesis.

A list of references is presented at the end.
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Chapter 1

General Introduction

1.1 Introduction

Combinatorics is a branch of mathematics that can be interpreted as a study

of counting and its technique. This subject is related to many other areas of

mathematics and has many applications from logic to statistical physics and from

evolutionary biology to computer science. Currently, combinatorics has tremen-

dous growth due to its application and major impact on the computers. We

know that computers can solve large-scale problems with the increase of their

speed, which previously would not possible. But computers do not function in-

dependently and they need to be programmed to perform. The bases for these

programs are often combinatorial algorithms. The analysis of these algorithms

for efficiency and storage requirements, demand more concepts of combinatorics.

The study of combinatorics includes the concept of permutations, combina-

tions and partitions. An ordered set, {a1, a2, ... , ar} of r distinct objects selected

from a set of n objects is called a permutation of n things taken r at a time. The

number of permutations is given by

P (n, r) = n(n− 1)(n− 2) · · · (n− r + 1). (1.1)
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Chapter 1

A set of r objects selected from a set of n objects without regard to order is called

a combination of n things taken r at a time. The number of combination is given

by

C(n, r) =
n!

r!(n− r)!
. (1.2)

A partition of a positive integer n is a representation of n as a sum of positive

integers

n = x1 + x2 + · · ·+ xk, xi ≥ 1, i = 1, 2, · · · , k. (1.3)

The numbers, xi are called the parts of the partition. The number of ordered

partitions, n into k parts is
(
n−1
k−1

)
, which is the number of ways of putting k − 1

separating marks in the n − 1 spaces between n dots in a row. A standard

unordered partition is represented by listing all the parts in a non-increasing

order, say

n = x1 + x2 + · · ·+ xk, x1 ≥ x2 ≥ · · · ≥ xk ≥ 1. (1.4)

One of the basic problems of combinatorics is determining the number of pos-

sible configurations for graphs, designs or arrays. Enumeration may be difficult

even when the rules specifying the configuration are relatively simple. It is the

mathematician who may have to be content with finding an approximate answer

or at least a good lower and upper bound. An important and interesting sub-

ject of pure mathematics is Number theory which is one of the oldest branches.

The mystery of Number theory has captivated many mathematicians. A basic

understanding of Number theory is a critical precursor to cutting-edge software

engineering, specifically security-based software. Number theory is at the heart

of cryptography, which is experiencing a fascinating period of rapid evolution,

ranging from the famous RSA (Rivest-Shamir-Adleman) algorithm to the wildly-

popular blockchain world (Kraft and Washington, 2018). It may be noted that

one of the oldest and most interesting topics of number theory is the divisibility

2



Chapter 1

of sequences of integers and rational numbers.

1.2 Divisibility and Congruence

In this section, we present some definitions and well-known results which are

used in the present work.

Definition 1.2.1. An integer b is said to be divisible by another integer a ̸= 0 if

there exists an integer c such that b = ac and denoted by a | b, otherwise a ∤ b.

We have the following important properties (Niven et al., 1999):

1. a | b and b | c imply a | c, i.e., divisibility is associative.

2. a | b and a | c imply a | (bx+ cy) for any integer x and y.

3. a | b implies a | bc for any integer c.

4. a | b and b | a for a ̸= 0 and b ̸= 0 if and only if a = ±b,

5. If m ̸= 0, then a | b implies ma | mb.

Definition 1.2.2. Given any integers a and b, with a > 0, there exist unique

integers q and r such that b = qa + r, 0 ≤ r < a. The integers q and r in the

expression of b are called quotient and remainder, respectively.

Definition 1.2.3. An integer a is called a common divisor of b and c in case

a | b and a | c. Since there is only a finite number of divisors of any non-zero

integer, there is only a finite number of common divisors of b and c. If at least

one of b and c is not 0, then the greatest among their common divisors is called

greatest common divisor of b and c and is denoted by gcd(b, c) or simply (b, c).

Similarly, we denote the greatest common divisor g of the all non-zero integers,

b1, b2, · · · and bn as (b1, b2, · · · , bn).

3
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Definition 1.2.4. If a non-zero integer m divides the difference a− b, then a is

said to be congruent to b modulo m and we write a ≡ b (mod m). If a− b is not

divisible by m, we say that a is not congruent to b modulo m and is denoted by

a ̸≡ b (mod p).

The following properties hold for congruences:

1. a ≡ b (mod m), b ≡ a (mod m) and a− b ≡ 0 (mod m) are equivalent.

2. If a ≡ b (mod m) and b ≡ c (mod m), then a ≡ c (mod m).

3. a ≡ b (mod m) and c ≡ d (mod m) imply a+ c ≡ b+ d (mod m).

4. a ≡ b (mod m) and c ≡ d (mod m) imply ac ≡ bd (mod m).

5. If a ≡ b (mod m) and d | m, d > 0, then a ≡ b (mod d).

6. If a ≡ b (mod m), then ac ≡ bc (mod mc) for c > 0.

7. If a ≡ b (mod m), then f(a) ≡ f(b) (mod m) for a polynomial f over Z.

Theorem 1.2.1. If p is a prime, then for any non-zero integer a such that

(a, p) = 1,

ap−1 ≡ 1 (mod p). (1.5)

The above theorem is called Fermat’s little theorem and an alternate version of

the theorem can be written as

ap ≡ a (mod p), a ∈ Z. (1.6)

Fermat’s theorem is a special case of Euler’s theorem:

Theorem 1.2.2. If a and m are integers such that (a,m) = 1, then

aϕ(m) ≡ 1 (mod m),

4
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where ϕ(m) is the Euler’s phi function which counts the number of positive inte-

gers less than m and relatively prime to m.

One of the important classical result related with congruence is Wilson’s theorem

which states as

Theorem 1.2.3. If p is a prime, then

(p− 1)! ≡ −1 (mod p).

1.3 p-adic Valuation

Sequences of integers and their divisibility properties are interesting topic in

number theory. There are many Mathematicians who have been introducing

different results, particularly powers of primes dividing integers. Nowadays, the

divisibility properties of integers and more general, rational numbers are expressed

in terms of p-adic valuations.

Definition 1.3.1. Let p be a prime, and a be any non-zero integer. The p-adic

valuation of a, denoted by vp(a), is defined as the exponent of the highest power

of p dividing a. Note that vp(0) = ∞. Thus, vp(a), for a non-zero integer a, is a

non-negative integer.

Example 1.3.1. Since 3 ∤ 25, v3(25) = 0, whereas v5(25) = 2 since 52 | 25 and

53 ∤ 25.

Note that for any prime p, vp(±1) = 0.

It is easy to see that for any two integers a and b, the following inequality and

equality hold:

vp(a+ b) ≥ min{vp(a), vp(b)} (1.7)

and

vp(ab) = vp(a) + vp(b). (1.8)

5
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The p-adic valuation vp can further be extended to the field of rational numbers.

Given any rational number r such that r = a
b
, where a, b ∈ Z and b ̸= 0, then

vp(r) = vp(a)− vp(b). (1.9)

It can be easily verified that vp(r) is independent of the representation of r as a

ratio of integers. It can further be confirmed that inequality (1.7) and equality

(1.8) still hold for rational numbers. Also, note that vp(r) = vp(−r) for any

rational number r. The inequality (1.7), for rational number, is known as the

non-archimedean property or the triangle inequality of the p-adic valua-

tion and this, however, can still be strengthened to the isosceles triangle property

of the p-adic valuation:

vp(r + s) = min{vp(r), vp(s)} (1.10)

if vp(r) ̸= vp(s) for any r, s ∈ Q.

The properties of p-adic valuations of rational numbers show that if

| r |p= p−vp(r) (1.11)

for any rational number r, then | |p is a norm on the field Q of rational numbers.

The p-adic norm on Q, unlike the usual absolute norm, is a non-archimedean

norm due to inequality (1.7). This p-adic norm on Q give rises to the p-adic

metric dp on Q as follows:

dp(r, s) =| r − s |p (1.12)

and (Q, dp) is a metric space. A complete metric space can be constructed, which

results a p-adic field Qp containing Q as a sub-field. Moreover, the p-adic norm

on Q can be extended to a non-archimedean norm, denoted by | |p, on Qp. The

resultant metric space structure on Qp allows us to do analysis in Qp. This is

known as p-adic analysis. For more details, one can refer to Koblitz (1977) and

6
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Gouvea (1993).

It is a well-known fact that every element α ∈ Qp has a unique p-adic expan-

sion in the following sense:

α =
∞∑

k=n

akp
k, (1.13)

where n = vp(α) and 0 ≤ ak ≤ p− 1 for all k with an ̸= 0. This series converges

in Qp with respect to the p-adic norm. Moreover, α determines the coefficients

ak uniquely(Koblitz, 1977). In particular, any integer a has a unique finite p-adic

expansion.

Definition 1.3.2. For a unique p-adic expansion

a = a0 + a1p+ · · ·+ anp
n

(0 ≤ ai ≤ p− 1) of a positive integer a, the coefficients a0, a1, . . . , an are called

the p-adic digits of a. The sum of the p-adic digits of the integer a is denoted by

sp(a). Thus,

sp(a) =
n∑

i=0

ai. (1.14)

Example 1.3.2. For a = 20 and p = 3, the 3-adic expansion of 20 is

20 = 2 · 32 + 0 · 31 + 2 · 30.

Thus, a0 = 2, a1 = 0 and a2 = 2. Therefore, s3(20) = 2 + 0 + 2 = 4.

In 1808, Legendre proved that the p-adic valuation of n! (where n! = n(n −

1) · · · 3 ·2 ·1 if n > 0 and 0! = 1), for a positive integer n, can be expressed neatly

in terms of the sum sp(n) of the p-adic digits of n. This result has been referred

to as Legendre’s Theorem (Mihet, 2010). It is also known as Legendre’s

formula though some authors named it as de Polignac’s formula:

vp(n!) =
∞∑

i=1

⌊
n

pi

⌋
, (1.15)

7
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where ⌊ ⌋ is the greatest integer function, sometimes called the floor function.

An alternate version of Legendre’s formula, in terms of the p-adic digits of n, is

given as

vp(n!) =
n− sp(n)

p− 1
. (1.16)

Definition 1.3.3. Let n ∈ Z and x be an indeterminate. Then the expansion

(1 + x)n =
∑

k≥0

ckx
k,

where ck’s are integers, is called the binomial expansion of (1 + x)n. The coeffi-

cients ck’s are called binomial coefficients and are denoted by
(
n
k

)
. The binomial

coefficient has the following explicit formula:

(
n

k

)
=

n!

k!(n− k)!
.

If n is a positive integer, then
(
n
k

)
is equal to the number of ways one can choose

k objects from n distinct objects.

Application of Legendre’s formula to the binomial coefficient gives a handy

tool for p-adic valuation:

vp

((
n

k

))
=

sp(k) + sp(n− k)− sp(n)

p− 1
. (1.17)

for any two integers n and k such that n ≥ k. The above formula is sometimes re-

ferred to as Kummer’s formula after the great German number theorist Ernst

Kummer. The p-adic valuation of the binomial coefficient
(
n
k

)
is simply the num-

ber of carry-overs when one adds the p-adic expansions of k and n− k, or, equiv-

alently, the number of borrows required when subtracting the p-adic expansion

of m from n(Kummer, 1852).

The following basic results give an equivalent statement of congruence relation in

terms of p-adic valuation.

8
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Proposition 1.3.1. Let p be a prime and N be a positive integer. If any two

integers a and b satisfy the congruence, a ≡ b (mod pN), then the following results

hold:

a) vp(a) ≥ N, if b = 0, (1.18)

b) vp(a− b) ≥ N, (1.19)

c) vp(a) = vp(b), if vp(b) < N , (1.20)

d) ac ≡ bc (mod pN+M), if c ∈ Q and vp(c) ≥ M , (1.21)

e) ap
M ≡ bp

M

(mod pN+M), if M is a non-negative integer. (1.22)

The following results about binomial coefficients are also easy to obtain:

Proposition 1.3.2. If p is an odd prime, then

a) p |
(
p

k

)
, if 0 < k < p, (1.23)

b)

(
pN − 1

k

)
≡ (−1)k (mod p), if 0 ≤ k < pN , (1.24)

c) vp

((
n

k

))
= vp(n)− vp(k), if vp(k) < vp(n) and k ≤ n. (1.25)

Lucas (1878) introduced a congruence property for binomial coefficients known as

Lucas congruence: if a =
∑

i≥0 aip
i and b =

∑
i≥0 bip

i are the p-adic expansion

of non-negative integers a and b, respectively, then

(
a

b

)
≡

∏

i≥0

(
ai
bi

)
(mod p). (1.26)

Sagan (1985) employed the concept of group action on abelian groups and ob-

tained the following congruence: if a and b are integers, then

(
ap

bp

)
≡

(
a

b

)
(mod p2). (1.27)

Later, using sums of binomial coefficients, Bailey (1990) obtained a stronger

9
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version of the above congruence in modulo p3 as

(
ap

bp

)
≡

(
a

b

)
(mod p3). (1.28)

Davis and Webb (1993) obtained another stronger result for p > 3, which is

(
ap

bp

)
≡

(
a

b

)
(mod pe), (1.29)

where e = 3 + vp(n) + vp(k) + vp(n− k) + vp(
(
n
k

)
).

1.4 Stirling Numbers

Stirling numbers of the first and second kind were introduced by Scottish

Mathematician, James Stirling (1692-1770) in his book Methodus Differentialis

(Stirling, 1730). Since then, these numbers have been found to be of great utility

in various branches of Mathematics, such as combinatorics, number theory, calcu-

lus of finite differences, theory of algorithms, etc. The name “Stirling numbers”

was first used by a Danish Mathematician, Niels Nielsen (1865-–1931) (Nielsen,

1906). For details about Stirling numbers, we refer to Comtet (1974), Graham et

al. (2007), and Quaintance and Gould (2015).

Definition 1.4.1. For a positive integer n, the nth rising factorial of x denoted

by xn̄, is defined as

xn = x(x+ 1)(x+ 2) · · · (x+ n− 1). (1.30)

Similarly, the nth falling factorial of x denoted by xn, is represented as

xn = x(x− 1)(x− 2) · · · (x− n+ 1). (1.31)

We extend the notation to non-negative integers by setting, x0 = x0 = 1.

Definition 1.4.2. Given a non-negative integer n and k, not both zero, Stirling

10
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numbers of the second kind S(n, k) is defined as the number of ways one can

partition a set with n elements into exactly k non-empty subsets. By convention,

S(0, 0) = 1 and S(0, k) = 0 for k ≥ 1.

Thus, S(n, k) is the number of ways of distributing n distinct balls into k indis-

tinguishable boxes (the order of the boxes does not count) such that no box is

empty. From the definition, it is clear that S(n, k) = 0 if 1 ≤ k ≤ n, S(n, k) = 0

if 0 ≤ n < k and S(n, n) = 1 for all n ≥ 0. It is easy to work out the exact value

of S(n, k) for small values of k. Since there is only one way of putting n elements

in a single non-empty set, S(n, 1) = 1 if n > 0.

Using a combinatorial approach, we can derive the following particular values:

S(n, 2) = 2n−1 − 1, S(n, n− 1) =

(
n

2

)
, S(n, n− 2) =

(
n

3

)
+ 3

(
n

4

)

for any positive integer n.

For a fixed positive integer n, the sum
∑n

k=0 S(n, k) of Stirling numbers of

the second kind is called Bell number and is denoted by Bn. The number

S(n, k) rapidly increases as n and k increase. For example, while S(4, 2) = 7

has only one digit in base 10, S(400, 200) has as many as 531 digits in base

10, which is almost impossible to compute with pen and paper. Therefore, it is

difficult to work with these numbers without the help of modern computers. We

use PARI/GP, a software specific for number theoretical computations, which

is very helpful in cross-checking results and estimating the valuations. Stirling

numbers of the second kind may be denoted as S(n, k) (Stanley, 1986) or
{
n
k

}

(Marx, 1962; Salmeri, 1962). Stirling numbers of the second kind, S(n, k) have

an explicit formula known as Euler’s formula for Stirling numbers (Quaintance

and Gould, 2015, p. 118)

S(n, k) =
1

k!

k∑

i=0

(
k

i

)
(−1)k−iin =

k∑

i=0

(
k

i

)
(−1)i(k − i)n. (1.32)
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It is also known that S(n, k) satisfies the following recurrence:

S(n+ 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1). (1.33)

There are several generating functions for S(n, k):

1. Rational generating function which generates S(n, k) vertically:

1

(1− x)(1− 2x)(1− 3x) · · · (1− kx)
=

∞∑

n=0

S(n+ k, k)xn. (1.34)

This generating function can be easily modified in the following form:

1

(1 + x)(1 + 2x)(1 + 3x) · · · (1 + kx)
=

∞∑

n=0

(−1)nS(n+ k, k)xn. (1.35)

2. Exponential generating function which also generates vertically:

1

k!
(et − 1)k =

∞∑

n=k

S(n, k)
tn

n!
. (1.36)

3. There are two horizontal generating functions, namely

xn =
n∑

k=0

(−1)n−kS(n, k)xk (1.37)

and

xn =
n∑

k=0

S(n, k)xk. (1.38)

The Stirling numbers of the second kind have the following important identities:

a)

(
a+ b

b

)
S(n, a+ b) =

n∑

j=0

(
n

j

)
S(j, a)S(n− j, b), (1.39)

b) S(n+m, k) =
k∑

i=0

k∑

j=i

(
j

i

)
(k − i)!

(k − j)!
S(n, k − i)S(m, j), (1.40)

c) S(n+ 1, k + 1) =
n∑

j=k

(
n

j

)
S(j, k). (1.41)

For more details about Stirling numbers of the second kind, we refer to Stirling

(1730), Nielsen (1906), Gould (1972), Comtet (1974), Aigner and Axler (2007),

Graham et al. (2007) and Quaintance and Gould (2015).
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We define Stirling numbers of the first kind from the combinatorial approach.

Definition 1.4.3. The unsigned Stirling numbers of the first kind denoted by

c(n, k) or
[
n
k

]
are defined as the number of permutations of n symbols with exactly

k cycles. By convention, c(0, 0) = 1.

From the definition, c(0, n) = c(n, 0) = 0 for n > 0.

The unsigned Stirling numbers of the first kind satisfy the following recurrence:

c(n+ 1, k + 1) = c(n, k) + nc(n, k + 1). (1.42)

Comparing the above recurrence with the recurrence (1.33) for Stirling numbers

of the second kind and then comparing with recurrence for binomial coefficients

(
n+ 1

k + 1

)
=

(
n

k

)
+

(
n

k + 1

)
, (1.43)

we can observe that the recurrences of the three sequences of integers differ only

in the multiplier. Consequently, these three numbers have some similarities in

various identities and properties. Thus, the Stirling numbers have a deep impact

and importance in the heart of combinatorics.

Definition 1.4.4. Stirling numbers of the first kind denoted by s(n, k) are defined

as

s(n, k) = (−1)n−kc(n, k). (1.44)

The following particular values are easy to calculate:

s(n, n) = 1, s(n, 1) = (−1)n−1(n− 1)!, s(n, n− 1) = −
(
n

2

)
,

s(n, n− 2) =
1

4
(3n− 1)

(
n

3

)
, s(n, n− 3) = −

(
n

2

)(
n

4

)
.

From recurrence (1.42), it is trivial that

s(n+ 1, k + 1) = s(n, k)− ns(n, k + 1). (1.45)
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Stirling numbers of the first kind have the following generating functions:

xn =
n∑

i=0

s(n, i)xi, (1.46)

xn =
n∑

i=0

(−1)n−is(n, i)xi, (1.47)

and

n−1∏

i=1

(1− ix) =
n−1∑

i=0

s(n, n− i)xi, (1.48)

n−1∏

i=1

(1 + ix) =
n−1∑

i=0

(−1)is(n, n− i)xi. (1.49)

Observing the generating functions of S(n, k) and s(n, k), we can see the simi-

larity and the difference. The generating functions are useful in constructing the

congruence relation between the two numbers. We have the following identities

between the two numbers:

n∑

j=0

S(n, j)s(j, k) =

(
0

n− k

)
, (1.50)

n∑

j=0

s(n, j)S(j, k) =

(
0

n− k

)
. (1.51)

The preceding two identities are known as orthogonality relations for Stirling

numbers. These two equations led to the following two inversion formulas:

a) For any two sets of constants, aj and bj, both independent of n,

an =
n∑

j=0

S(n, j)bj if and only if bn =
n∑

j=0

s(n, j)aj, (1.52)

b) For any two sets of constants, aj and bj, both independent of n and m is an

integer such that m ≥ n, then

an =
m∑

j=0

S(j, n)bj if and only if bn =
m∑

j=0

s(j, n)aj. (1.53)

Interestingly, some sequences of numbers are similar to Stirling numbers in cer-
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tain ways regarding definitions, generating functions and properties. Now, we

introduce sequences of integers arising from Stirling numbers.

Definition 1.4.5. For an integer n and variable q, let [n]q be defined as

[n]q =
1− qn

1− q
. (1.54)

It follows that [n]q = 1 + q + · · · + qn−1. Note that [n]1 = n. We call [n]q as the

q-integer n. Next, we define factorials as

[n]q! = [n]q[n− 1]q · · · [1]q (1.55)

with [0]q! = 1.

For integers n and k with n ≥ k ≥ 0, the Gaussian coefficient,
[
n
k

]
q
can be

obtained as [
n

k

]

q

=
[n]q!

[n− k]q![k]q!
. (1.56)

Definition 1.4.6. For a non-negative integer n, the polynomial gn(x) = (x −

1)(x − q) · · · (x − qn−1) with g0(x) = 1 is called a Gaussian polynomial. The

coefficients ak of gk(x) in the expression

xn =
n∑

k=0

akgk(x) (1.57)

are called Gaussian coefficients or q-binomial coefficients and are denoted by
[
n
k

]
q

or
(
n
k

)
q
(Aigner and Axler, 2007).

Now, we define the q-falling and q-rising factorial polynomials respectively as

xn
q = x[x− [1]q](x− [2]q) · · · (x− [n− 1]q),

xn
q = x[x+ [1]q](x+ [2]q) · · · (x+ [n− 1]q).
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In the following expansions:

xn =
n∑

k=0

S(n, k; q)xk
q ,

xn
q =

n∑

k=0

s(n, k; q)xk,

S(n, k; q) is called q-Stirling numbers of the second kind and s(n, k; q)

is called q-Stirling numbers of the first kind. It should be noted that

S(n, k; 1) = S(n, k) and s(n, k; 1) = s(n, k). More details of q-Stirling numbers

can be seen from Gould (1961), Leroux (1990), Wachs and White (1991), Park

(1994), Bennett et al. (1994), Ehrenborg (2003), Balogh and Schlosser (2016),

Cai and Readdy (2017), and Duran et al. (2017).

There is another sequence arising from the normal Stirling numbers called the

r-Stirling numbers (Broder, 1984).

Definition 1.4.7. The r-Stirling numbers of the first kind denoted by sr(n, k) are

defined as the number of permutations of the set {1, 2, · · · , n} having k cycles,

such that the numbers 1, 2, · · · , r are in distinct cycles. Note that sr(0, 0) = 1.

Definition 1.4.8. The r-Stirling numbers of the second kind for positive integers

n and k are the number of ways to partition the set {1, 2, · · · , n} into k non-

empty disjoint subsets, such that the numbers 1, 2, · · · , r are all in distinct

subsets. It is denoted by Sr(n, k). It may be noted that Sr(0, 0) = 1.

It is clear that s1(n, k) =| s(n, k) |= c(n, k) and S1(n, k) = S(n, k). For more

details, one can explore from Corcino et al. (1990), Mező (2008a), Mező (2008b),

Corcino and Fernandez (2014), Kim and Kim (2014), Bényi et al. (2018), Morrow

(2020), and Ma and Wang (2023).

The next sequences of integers are called generalized Stirling numbers. The

generalized Stirling numbers deviate from the normal ones by simply modifying

Identity (1.32). Some of the generalized Stirling numbers and their notations are
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given below (Cakic and Milovanovic, 2004):

S(α)(n, k) =
1

k!

k∑

j=0

(
k

i

)
(−1)k−j(α + j)n,

S(α)(n, k, r) =
1

k!

k∑

j=0

(
k

i

)
(−1)k−j(α + rj)n,

S(α,λ)(n, k, r) =
1

k!

k∑

j=0

(
k

i

)
(−1)k−j(α + j)(λ−1,n),

where

a(λ−1,n) =

(
a

λ− 1

)n

(λ− 1)n.

More details about the generalized Stirling numbers can be found in d’Ocagne

(1887), Chak (1956), Toscano (1949), Singh (1967), Sinha and Dhawan (1969),

Wang (1969), Shrivastava (1970), Toscano (1970), Carlitz (1975), Singh Chandel

and Dwiwedi (1979), Singh Chandel (1977), Cakic (1980), and Milovanovic and

Cakic (1994).

1.5 Periodicity

Definition 1.5.1. A sequence {xn}n≥0 is said to be periodic of period π if there

exists a non-negative integer γ such that xn = xn+π for every integer n ≥ γ.

The period of a sequence is not unique. It is easy to verify that any multiple of

a period is also a period.

Example 1.5.1. a) The sequence of integers

0, − 2, 8, 9, − 3, 2, 8, 9, − 3, 2, 8, 9, − 3, 2, · · ·

is periodic with periods 4, 8, and so on, and the periodicity begins from the third

term.
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b) However, the sequence

0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, · · ·

is not periodic.

Definition 1.5.2. For a given periodic sequence {xn}n≥0, the smallest positive

integer π such that xn = xn+π for any integer n ≥ γ for some positive integer γ

is called a minimum period of {xn}n≥0.

If the sequence is periodic from the µ-th term, then any ordered set

(xn, xn+1, xn+2, · · · , xn+π−1)

for any integer n ≥ µ is called a cycle of the sequence {xn}n≥0.

The minimum period of a given sequence is unique and divides any other

period of the given sequence.

Example 1.5.2. The minimum period of the sequence

a, a, a, b, a, b, a, b, a, b, a, b, a, b, · · ·

is 2, which is unique and divides the other periods 4, 6, and so on. The cycle of

the sequence is (a, b) or (b, a).

Carlitz (1955) showed that if k > p > 2 and pb−1 < k ≤ pb, where b ≥ 2,

(p− 1)pN+b−2 is a period for {S(n, k) (mod pN)}n≥0.

1.6 Applications of Stirling Numbers

Stirling numbers of the second kind appear in various literature in many

branches of Mathematics. The numbers S(n, k) has several applications to the

partition of numbers and sets (Merca, 2016). Another simple example of its

application is to represent the total number of rhyme schemes for a poem of n
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lines. S(n, k) gives the number of possible rhyming schemes for n lines using k

unique rhyming syllables. As an example, for a poem of three lines, there is one

rhyme scheme using just one rhyme (aaa), three rhyme schemes using two rhymes

(aab, aba, abb), and one rhyme scheme using three rhymes (abc).

In finite differences, the kth forward difference of a function f(x) is given by

∆kf(x) =
k∑

i=0

(
k

i

)
(−1)k−if(x+ i). (1.58)

There are similarities between Equations (1.32) and (1.58). Thus, S(n, k) plays a

vital role in finite differences. If X is a random variable of a Poisson distribution

with expected value λ, then its nth moment is

E(Xn) =
n∑

k=0

S(n, k)λk. (1.59)

In particular, the nth moment of the Poisson distribution with 1 as the expected

value is the nth Bell number, which is equal to
∑n

k=0 S(n, k) and this fact is

also called Dobiñski’s formula (Dobiñski, 1877). More applications in the same

area can be found in Singh (1975), Berg (1975), Koutras (1982), Sibuya (1988),

Hennecart (1994), Quaintance and Gould (2015), and Adell (2022).

In Zeon Algebra, Neto and dos Anjos (2014) evaluated the integrals in term of

Stirling number as

1

k!

∫
[log(1 + φn)]

kdvn = s(n, k),

and
1

k!

∫
(eφn − 1)kdvn = S(n, k).

More applications in calculus can be seen in Butzer et al. (2003), Boyadzhiev

(2012), and Komatsu and Simsek (2017).

In Graph Theory, Stirling numbers of the second kind are used to determine

explicitly the chromatic polynomial of certain graphs (Mohr and Porter, 2009).

Other applications to graph theory were discussed in Duncan and Peele (2009),

Duncan (2010), Galvin and Thanh (2013) and Balogh and Nyul (2014).
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In Linear Algebra, the 2-adic valuations of certain ratios of factorials are used

to prove the conjecture of Falikman-Friedland-Lowery (Falikman et al., 2002)

based on the parity of degrees of projective varieties of n×m complex symmetric

matrices (Friedland and Krattenthaler, 2007).

In Algebraic Topology, Davis (2012) used p-adic valuations of Stirling numbers

of the second kind to obtain significant results related to James numbers, periodic

homotopy groups, and exponents of SU(n). More details about applications to

Algebraic topology can be found in Lundell (1974), Selick (1984), Crabb and

Knapp (1988), Bendersky and Davis (1991), Davis and Potocka (2007), Davis

and Sun (2007), and Davis (2008).

1.7 Review of Literature

The study of sequences of special types of integers and their divisibility prop-

erties have led to enormous advances in number theory. The work of German

Mathematician, Johann Peter Gustav Lejeune Dirichlet in the presence of prime

in arithmetic progression (Dirichlet, 1837) has opened up new areas in ana-

lytic and algebraic number theory. The p-adic numbers were first introduced

by Hensel (1897). The study of p-adic valuations and p-adic analysis can be ex-

plored through the following books; Bachman (1964), Koblitz (1977), Borevich

and Shafarevich (1986), Gouvea (1993), Escassut (1995) and Robert (2000).

Kummer’s result about the p-adic valuation of binomial coefficients in Equa-

tion (1.17) was generalized by Knuth and Wilf (1989) using Fibonacci numbers.

Lengyel (1995) characterized the p-adic valuations vp(Fn) and vp(Ln), where Fn

and Ln are Fibonacci and Lucas numbers respectively. It was found that the

method employed by Knuth and Wilf (1989) can be modified to include Lucas

numbers too. Later, Sanna (2016a) generalized the result of Lengyel (1995). The

results of periodic property and divisibility of Fibonacci and Lucas numbers can
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be found in Wall (1960), Robinson (1963), Wilcox (1986), and Ribenboim (1990).

Bell (2007) found that the sequence {vp(f(n))}, where f is a polynomial over

Z, is periodic if f has no zeros in the ring of the p-adic integers and obtained a

bound for the length of the minimal period. Medina et al. (2017) strengthened the

results of Bell and confirmed that f is either periodic or unbounded; {vp(f(n))} is

periodic if and only if f has no zeros in Zp, in which case, the minimal period is a

power of p. Castro et al. (2015) constructed a tree whose nodes contain informa-

tion about the p-adic valuation of Eulerian numbers. The tree constructed and

some classical results for Bernoulli numbers are then used to compute the exact p

divisibility of the Eulerian numbers for some specific cases. The p-adic valuations

of sequences of integers and rational numbers were discussed in Somer (1980),

Cohen (1999), Cohn (1999), Young (1999), Lengyel (2003), Postnikov and Sagan

(2007), Amdeberhan et al. (2008b), Straub et al. (2009), Sun and Moll (2009),

Sun and Moll (2010), Beyerstedt et al. (2011), Heuberger and Prodinger (2011),

Marques (2012), Pan and Sun (2012), Amdeberhan et al. (2013), Lengyel (2013),

Renault (2013), Lengyel (2014), Marques and Lengyel (2014), Medina and Row-

land (2015), Sanna (2016b), Katz et al. (2017), Lengyel and Marques (2017),

Sobolewski (2017), Murru (2018), Choi (2019), Boultinghouse et al. (2021), Bun-

der and Tonien (2020), Bayarmagnai et al. (2022), and Cao (2022).

Several sequences of integers, especially those involving factorials, can be

linked to Stirling numbers of the second kind. Such relations have been studied

over many years and frequently appear in literature (Riordan, 1979; Srivastava,

2000; Boyadzhiev, 2012). For a fixed positive integer n, determining the value of

Kn which satisfies

S(n, 1) < · · · < S(n,Kn) ≤ S(n,Kn + 1) > S(n,Kn + 2) > · · · > S(n, n)

is one of the interesting old problem(Dobson, 1968; Kanold, 1968a). Wegner

(1973) presented a long-standing conjecture, i.e., there is no integer n > 2 such
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that S(n,Kn) = S(n,Kn + 1). Some problems related with sequences of integers

and Stirling numbers are Kanold (1968b), Harborth (1968), Bach (1968), Kanold

(1969), Menon (1973), Canfield (1978), Canfield and Pomerance (2002), Kemkes

et al. (2008), and Adell and Cardenas-Morales (2021).

Katsuura (2009) extended the Identity (1.32): For any two complex numbers

x and y, and any two positive integers k and m, the following result holds:

k∑

i=1

(
k

i

)
(−1)i(ix+ y)m =





0, if m < k;

(−1)kxkk!, if m = k.

(1.60)

This result is independently obtained by Ruiz (1996) using induction. However,

Identity (1.60) is not new as a generalized version was already given by Gould

(1972).

Guo and Qi (2014a) obtained the following two identities on Stirling numbers of

the second kind for any positive integer k:

2k + 1

2k + 2

2k+1∑

m=1

S(2k + 1,m)S(2k + 2, 2k −m+ 2)(
2k+1
m−1

)

−
2k∑

m=1

S(2k + 2,m+ 1)S(2k + 1, 2k −m+ 1)(
2k+1
m

) = 1,

k+1∑

m=1

S(k + 2,m)S(k + 2, k −m+ 2)(
k+1
m−1

)

−
k∑

m=1

S(k + 3,m+ 1)S(k + 1, k −m+ 1)(
k+1
m

) = 1.

Guo and Qi (2014b) established the following formula for computing a two-

parameter Euler polynomials, En(x;α, λ) in terms of Stirling numbers of the

second kind, S(n, k). Davis (2013a) defined the partial Stirling numbers, Tn(k)

22



Chapter 1

for integers n > 0 and k with n positive as

Tn(k) =
∑

i odd

(
n

i

)
ik.

Certain results related with Tn(k) can be seen from the work; Lundell (1978),

Davis (1990), Clarke (1995), Young (2003), and Sun and Davis (2007).

Nijenhuis and Wilf (1987) proved that s(n, k) is divisible by the odd part of

n− 1 if n+k is odd. Later, Howard (1990a) improved the result by showing that

s(n, k) is divisible by
(
n
2

)
if n+ k is odd. Howard (1990b) obtained the following

congruences for 0 < 2r < 2p− 2 and 0 < m < 2p− 2:

s(n, n− 2r) ≡ −n

2r

(
n− 1

2r

)
B2r (mod p2vp(n)),

s(n, n− 2r − 1) ≡ −n2(2r + 1)

4r

(
n− 1

2r + 1

)
B2r (mod p3vp(n)),

s(n+m,n) ≡ n

m

(
n+m

m

)
(−1)mB(m)

m (mod p2vp(n)),

where Bn is the n
th Bernoulli number and B

(m)
m is a higher order Bernoulli number.

For a polynomial f(x) with integral coefficients and positive integers n and m,

Cao and Pan (2008) obtained

vp


 ∑

k≡r (mod p−1)

s(n, k)f(k)ak


 ≥ vp(n!)− logp

((
n

l

))
,

where l = min(deg f, ⌊n
p
⌋), a and r are arbitrary integers. Lengyel (2015)

investigated the problem of p-adic properties of Stirling numbers of the first kind

and obtained the following valuation; for integers a, b, and k such that a ≥ 1

with (a, p) = 1 and 2 ≥ k + 1 ≥ b,

vp(s(ap
n + b, apn + b− k)) = vp(s(b, b− k))

if n is sufficiently large. He also presented a conjecture that for any integer a ≥ 1
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with (a, p) = 1, k ≥ 3 odd, and n ≥ n1 with some sufficiently large n1,

vp(s(ap
n, apn − k)) = vp(s(ap

n1 , apn1 − k)) + 2(n− n1).

Hong and Qiu (2020) partially proved the preceding conjecture for p ≥ 5 by giving

a restrictions on n1 such that n1 > 3 logp(k−1)+ logp a and vp(s(ap
n1 , apn1 −k+

1)) < n1.

Leonetti and Sanna (2017) defined H(n, k) =
∑

1
(i1i2···ik) , where the sum ex-

tended over all positive integers i1 < i2 < · · · < in ≤ n, and showed a re-

lation with the Stirling numbers of the first kind by H(n, k) = s(n+1,k+1)
n!

. If

k ≥ 2, they proved that the p-adic valuation of H(n, k) is strictly greater than

−(k − 1)(logp(
n

k−1
) − 1), for all positive integers n ∈ [(k − 1)p, x] whose base p

representation starts with the base p representation of k − 1, but at most 3x0.835

exceptions. For a non-negative integer k and n = kpr +m such that 0 ≤ m < pr,

Komatsu and Young (2017) proved that

vp(s(n+ 1, k + 1)) = vp(n!)− vp(k!)− kr.

Adelberg (2018) confirmed the result that, if p − 1 | n − k and p ∤
(
k−1
r

)
, where

r = n−k
p−1

, then

vp(s(n, k)) =
sp(k − 1)− sp(n− 1)

p− 1
.

Qiu and Hong (2019) obtained the following valuations for arbitrary integers n,

m, and k such that 2 ≤ m ≤ n and 2 ≤ k ≤ 2m−1 + 1;

v2(s(2
n, 2m − k)) = 2n − 2m − (n−m)(2m −

⌊
k

2

⌋
)+m− 2− v2(

⌊
k

2

⌋
)+ (n− 1)ϵk,

where ϵk = 0 if k is even and ϵk = 1 if k is odd.

Bell (1939) obtained the following results using the generalized Stirling num-
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bers as ζ
(k,r)
n with ζ

(k,1)
n = S(n, k) and ζ

(k,−1)
n = s(n, k):

ζ(k,r)p ≡ 0 (mod p), if 1 < k < p; ζ
(k,r)
p+1 ≡ 0 (mod p), if 2 < k < p+ 1;

ζ
(k,r+1)
p+1 − ζ

(k,r)
p+1 ≡ ζ

(k,r+1)
2 (mod p); ζ

(k,r)

p2 ≡ δp2,k + rδp,k (mod p), if k > 1;

ζ
(k,r)
2p ≡ ζ

(k,r+1)
2p − 2ζ

(k,r+1)
p+1 + ζ

(k,r+1)
2 (mod p),

where δi,j denotes the usual Kronecker delta function. Becker and Riordan (1948)

studied the arithmetic properties of Bell and Stirling numbers and proved the

following results using S(n, k) as S(k, n):

S(p+ r, c) ≡ S(r + 1, c) + S(r, c− p) (mod p);

S(c+ ip+ r + j(p− 1), c+ ip) ≡
(
i+ j

i

)
S(c+ r, c) (mod p);

S(r + pi, c) ≡ S(r + 1, c) + S(r, c− p) + · · ·+ S(r, c− pi) (mod p).

Lundell (1978) evaluated the p-adic valuations of g.c.d.(k!S(n, k) : m ≤ k ≤ n)

which have some applications to certain problems in algebraic topology concerned

with the calculation of e-invariants and formulas relating different characteristic

classes in K-theory. Sagan (1985) obtained the following congruence using group

action on abelian groups;

r∑

i=0

(−1)i
(
r

i

) i∑

j=0

S(i, j)[−p(p− 1)]i−j

j∑

l=0

(
j − 1 + δij

l

)

× S(n+ (r − i)p+ l, k − (j − l)p) ≡ 0 (mod pr).

Nijenhuis and Wilf (1987) used the generating function to show that S(n, k) is

divisible by the odd part of k if n+k is odd. Howard (1990a) improved the result

by showing that S(n, k) is divisible by
(
k+1
2

)
if n+k is odd. Sved (1988) obtained

the following congruence, of the Lucas congruence type, for Stirling numbers of
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the second kind; if p ∤ k and n′ = ⌊np−p⌊ k
p
⌋−1

p−1
⌋, then

S(n, k) ≡
(
ah
bh

)(
ah−1

bh−1

)
· · ·

(
a1
b1

)
S(a0, b0) (mod p),

where ai and bi are the (i + 1)th p-adic digits of n′ and k respectively. Tsumura

(1991) obtained the following congruence for integers n, m, and k such that

n ≥ m ≥ 0, n ≡ m (mod (p− 1)pe), and N(k) = Min{m, e+ 1} > 0:

S(n, k) ≡ S(m, k) (mod pN(k)).

Lengyel (1994) conjectured that v2(S(2
n, k)) = s2(k) − 1 if 1 ≤ k ≤ 2n and

confirmed that there exists a function f(k) such that v2(S(c2
n, k)) = s2(k) − 1

if n ≥ f(k) and c is odd. This conjecture was later confirmed by Wannemacker

(2005) using the Identity (1.32). Lengyel (2009) extended the same result to

v2(S(c2
n, k)) = s2(k)−1 for any integer c and 1 ≤ k ≤ 2n. Hong et al. (2012) also

proved that v2(S(2
n +1, k+1)) = s2(k)− 1 if 1 ≤ k ≤ 2n. Clarke (1995) applied

a version of Hensel’s lemma to analytic functions on the p-adic integers and the

results were used to determine the divisibility properties of Stirling numbers of

the second kind.

For n = a(p − 1)pq, p ∤ a and 1 ≤ k ≤ n, Gessel and Lengyel (2001) proved

that

vp(S(n, k)) =

⌊
k − 1

p− 1

⌋
+ τp(k),

if q is sufficiently large, k
p
is not an odd integer and τp(k) is a non-negative integer

which vanishes if k is a multiple of p − 1. Cao and Pan (2008) proved that for

any positive integer α;

vp(k!S(n, k)) ≥ vp

(⌊
n

pα−1

⌋
!

)
−
⌊

n− k

(p− 1)pα−1

⌋
.

Amdeberhan et al. (2008a) analyzed the 2-adic properties of S(n, k) and found
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the following exact valuations;

v2(S(n, 3)) =





0, if n is odd;

1, if n is even,

v2(S(n, 4)) =





1, if n is odd;

0, if n is even.

They introduced the concept of m-level dividing the set N into 2m classes so that

the classes, Cm,j = {2mi + j : i ∈ N} form a partition of N into different classes

modulo 2m. They also proposed a conjecture that the class C5,7 is exceptional

and v2(S(4i, 5)) ̸= v2(S(4i + 3, 5)) if i belongs to class C5,7. This conjecture

was proved by Hong et al. (2012). Davis (2008) determined the set of integers n

satisfying the valuation

v2(S(2
L + n− 1, n)) =

⌊
n− 1

2

⌋
,

where L = n − 1 + ⌊n/2⌋. Chan and Manna (2010) used a rational generating

function to obtain the congruences for S(n, kpm) (mod pm). Zhao et al. (2014)

obtained the following result for 2-adic valuation; for positive integers a, c, n with

c odd, n ≥ 2 and 1 ≤ a ≤ 2n,

v2(S(c2
n, (c− 1)2n + a)) = s2(a)− 1.

Zhao et al. (2015) proved that if c is odd and 2 ≤ m ≤ n, then

v2(S(c2
n+1, 2m − 1)− S(c2n, 2m − 1)) = n+ 1 (1.61)

except when m = n = 2 and c = 1, in which case v2(S(8, 3)− S(4, 3)) = 6. This

settled Lengyel’s conjecture (Lengyel, 2009, Conj. 2.). Miska (2018) proved, for
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any prime p,

vp(S(n, k)) = vp(S(a+ pm0−1(p− 1), k)) + vp(n− a)−m0 + 1,

wherem0, n, k, and a are integers such that a < k < p and n ≡ a (mod pm0−1(p−

1)). Adelberg (2018) defined minimum zero case (MZC) as the case when p− 1

divides n−k, and p does not divide
(
n+n−k

p−1
n

)
and obtained the following important

results using higher order Bernoulli number:

(i) If n ≥ k, then

vp(S(n, k)) ≥
⌈
sp(k)− sp(n)

p− 1

⌉
. (1.62)

(ii) If S(n, k) is a minimum zero case, then

vp(S(n, k)) =
sp(k)− sp(n)

p− 1
. (1.63)

(iii) If S(n, k) is a minimum zero case, then so is S(np, kp) and

vp(S(n, k)) = vp(S(np, kp)). (1.64)

Feng and Qiu (2020) confirmed that the formula, vp(S(n, n− k)) depends on the

value of S2(i, i− k) for k+2 ≤ i ≤ 2k, where Sr(n, k) is the r-associated Stirling

number of the second kind. They also gave the formula to compute vp(S(n, n−k)),

which enables to show vp((n− k)!S(n, n− k)) < n for 0 ≤ k ≤ min{7, n− 1} and

p ≥ 3. Adelberg (2021) concentrated on a 2-adic analysis of S(n, k) and classified

the results by the following cases; Minimum zero case (MZC), Almost minimum

zero case (AMZC), Shifted minimum zero case (SMZC), and Shifted almost

minimum zero case (SAMZC). More improved results for the same cases and

extension to odd primes and s(n, k) can be found in Adelberg and Lengyel (2022).

Some interesting results about divisibility properties of Stirling numbers of the

second kind are available in Carlitz (1953), Carlitz (1955), Polya et al. (1980),

Clarke (1981), Peele (1988), Davis (1990), Howard (1990b), Young (1999), Sun
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(2007), Demaio (2008), Berrizbeitia et al. (2010), and Davis (2013b).

1.8 Conclusion

In this chapter, we have presented basic definitions of divisibility, congruence,

p-adic valuations and Stirling numbers of the first and second kinds. We have

also presented the periodicity, applications of Stirling numbers and review of

literature.
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Divisibility of Certain Classes of

Stirling Numbers of the Second

Kind1

2.1 Introduction

Various approaches and techniques have been appearing in the literature to

formulate the p-adic valuation of Stirling numbers of the second kind. An inter-

esting formula to evaluate v2(S(c2
n, k)) is given by Lengyel (2009)

v2(S(c2
n, k)) = s2(k)− 1

for any positive integer n, c, and 1 ≤ k ≤ 2n. The immediate consequence of this

formula is to find whether this pattern still holds for an odd prime, p.

This chapter deals with some interesting results of the p-adic valuations of

S(n, k), including the case when n is a power of prime, p. We have developed

an alternate formula for evaluating Stirling numbers of the second kind and also

prove certain results like vp(S(p
2, kp)) ≥ 2, vp(S(p

n, kp)) ≥ 2, vp(S(2p, p)) ≥ 2,

vp(S(2p, p − 1)) = 1, vp(S(2p, p − 1)) ≥ 2 and vp(S(2p, p + 2)) ≥ 1. Primality of

p using S(p, k) and divisibility of S(n, p) are also discussed.

1Journal of Combinatorics and Number Theory, 12(2), 63-–77 (2022)
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2.2 Tools and Identity of S(n, k)

In order to formulate S(n, k), we divide partitions into different classes based

on the number of subsets with same cardinality in the partitions. Let {ni : 1 ≤

i ≤ t} and {ei : 1 ≤ i ≤ t} be two sets of positive integer such that
∑t

i=1 niei = n

and
∑t

i=1 ei = k, where n′
is are distinct and e′is need not to be distinct. We define

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) as the number of those partitions of n objects into

k non-empty subsets containing exactly ei subsets with cardinality ni. So, we

introduce

S(n, k) =
∑

∑
ei=k,

∑
niei=n

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)). (2.1)

In the partition of 6 objects into 3 non-empty subsets, we see

S(6, 3) = s(1(2), 4(1)) + s(1(1), 2(1), 3(1)) + s(2(3)),

where s(1(2), 4(1)) counts the number of those partitions containing exactly two

singleton subsets and one subset with four elements, s(1(1), 2(1), 3(1)) counts those

partitions containing exactly one singleton subset, one subset with two elements

and one subset with three elements and s(2(3)) is the number of those partitions

containing exactly three subsets with two elements.

Kwong (1989a) proved that the sequence of Stirling numbers of the second

kind S(n, k) modulo M for any positive integer M > 1 is cyclic and gave the

minimum periods for different values of k and M . One of the interesting result

that he mentioned is

π(k; pN) = (p− 1)pN+b−2 if pb−1 < k ≤ pb, (2.2)

where π(k; pN) denotes the minimum period of {S(n, k) (mod pN)}n≥1 for an odd

prime p. Adelberg (2018) obtained the following important results:
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1. If n ≥ k, then

vp(S(n, k)) ≥
⌈
sp(k)− sp(n)

p− 1

⌉
. (2.3)

2. If S(n, k) is a minimum zero case, i.e., (p− 1)|(n− k) and p ̸ |
(
n+n−k

p−1
n

)
), then

vp(S(n, k)) =
sp(k)− sp(n)

p− 1
. (2.4)

3. If S(n, k) is a minimum zero case, then so is S(np, kp) and

vp(S(n, k)) = vp(S(np, kp)). (2.5)

The above results about minimum zero case gives an exact p-adic valuations for

a large class of S(n, k).

2.3 Results

In this section, we introduce an alternate formula to find the Stirling numbers of

the second kind and p-adic valuations of some classes of S(n, k). Some of these

results have been generalized using minimum periods.

Lemma 2.3.1. If n and k are two positive integers, then

s(n(k)) =
k−1∏

i=0

(
n(k − i)− 1

n− 1

)
.

Proof. The case for n = 1 is trivial.

We provide the proof for n > 1 by using induction hypothesis on k.

We know that s(n(k)) counts the number of partitions of nk objects into k subsets

such that each k subsets contains exactly n objects.

The case for k = 1 is trivial since s(n(1)) = 1.
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Assume that the theorem holds for every positive integer less than k. Let

a1 a2 a3 · · · an

an+1 an+2 an+3 · · · a2n

· · · · · · · · · · · · · · ·

a(k−1)n+1 a(k−1)n+2 a(k−1)n+3 · · · akn

be the nk objects. The order of the subsets in the partition does not count as

each subsets have the same cardinality. We can now safely assume that the first

object a1 always belongs to the first subset of the partition. Thus, the number

of choices for the first subset is equal to the number of choices of the remaining

n − 1 objects from nk − 1, i.e.,
(
nk−1
n−1

)
. Now, the remaining nk − n = n(k − 1)

objects are partition into k − 1 subsets each containing n elements. The number

of such partitions are s(n(k−1)) and hence

s(n(k)) =

(
nk − 1

n− 1

)
s(n(k−1)).

By induction hypothesis, we get

s(n(k−1)) =
k−2∏

i=0

(
n(k − 1− i)− 1

n− 1

)
.

It follows that

s(n(k)) =
k−1∏

i=0

(
n(k − i)− 1

n− 1

)
.

Using the binomial coefficients in terms of factorials, the above result may be

written as

s(n(k)) =
(nk)!

k!(n!)k
.

This completes the proof.

Theorem 2.3.1. Let {ni : 1 ≤ i ≤ t} and {ei : 1 ≤ i ≤ t} be two sets of positive
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integers and n′
is are distinct. If

∑t
i=1 niei = n and

∑t
i=1 ei = k, then

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
t∏

j=1

(
n−∑j−1

i=0 niei

njej

)
s(n

(ej)
j ) (if n0 = e0 = 0)

=
n!∏t

j=1 ej!(nj!)ej
.

Proof. We first choose n1e1 objects from n objects and the number of such choices

is
(

n
n1e1

)
. These n1e1 objects are then partition into e1 subsets containing n1

objects each. The total number of such partitions is

s(n1
(e1)) =

(n1e1)!

e1!(n1!)e1
.

Now we partition the remaining n−n1e1 objects into k−e1 subsets such that each

partition contains ei number of subsets with cardinality ni for each 2 ≤ i ≤ t.

The total number of such partitions is s(n2
(e2), n3

(e3), ..., nt
(et)). Thus,

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
n

n1e1

)
s(n1

(e1))s(n2
(e2), n3

(e3), ..., nt
(et)).

Similarly, we can see that

s(n2
(e2), n3

(e3), ..., nt
(et)) =

(
n− n1e1
n2e2

)
s(n2

(e2))s(n3
(e3), n4

(e4), ..., nt
(et)).

Therefore,

s(n1
(e1), n2

(e2), ..., nt
(et)) =

(
n

n1e1

)(
n− n1e1
n2e2

)
s(n1

(e1))s(n2
(e2))

× s(n3
(e3), n4

(e4), ..., nt
(et)).
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Repeating the same process over and over, we get

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
n

n1e1

)(
n− n1e1
n2e2

)
· · ·

(
n−∑t−2

i=1 niei
nt−1et−1

)

× s(n1
(e1)) · · · s(nt

(et)) (2.6)

=s(nt
(et))

t−1∏

j=1

(
n−∑j−1

i=0 niei
njej

)
s(nj

(ej))

=
t∏

j=1

(
n−∑j−1

i=0 niei
njej

)
s(nj

(ej)), (2.7)

since n−∑t−1
i=0 niei = ntet when n0 = e0 = 0.

The above expression may be expressed as

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
n!

(n1e1)!(n2e2)! · · · (ntet)!

t∏

j=1

s(nj
(ej))

=n!
t∏

j=1

s(nj
(ej))

(njej)!
.

By using the results of Lemma 2.3.1, we have

s(nj
(ej))

(njej)!
=

1

ej!(nj!)ej
.

It follows that

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =n!
t∏

j=1

1

ej!(nj!)ej

=
n!∏t

j=1 ej!(nj!)ej
. (2.8)

Hence the theorem follows.

We come to an alternate formula for evaluation of S(n, k) with the help of (2.1)

and (2.7).

Corollary 2.3.1. Let n and k are two positive integers such that n ≥ k, then

S(n, k) =
∑

∑
ei=k,

∑
niei=n

n!∏
ei!(ni!)ei

,
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where the sum runs over every pair of sets of positive integer {ni} and {ei} with

same cardinality satisfying
∑

ei = k and
∑

niei = n provided n′
is are distinct.

It is easy to verify from the above theorem that the p-adic valuations of S(p, k)

is always greater than or equal to 1 if p is an odd prime and k lies between 2 and

p− 1.

Now we introduce some results about divisibility of Stirling numbers2:

Theorem 2.3.2. A positive integer n is a prime if and only if n | S(n, k) for all

2 ≤ k ≤ n− 1.

Proof. The generating function of S(n, k) in terms of falling powers is given by

xn =
n∑

k=o

S(n, k){x}k (2.9)

for any non-negative integer n.

If n is a positive integer such that n|S(n, k) for all 2 ≤ k ≤ n − 1, put x = n in

Equation (2.9)

nn =
n∑

k=o

S(n, k){n}k

= {n}n + {n}1 +
n−1∑

k=2

S(n, k){n}k

= n(n− 1)(n− 2) · · · 3 · 2 · 1 + n+
n−1∑

k=2

n(n− 1) · · · (n− (k − 1))S(n, k).

It follows that

nn−1 = (n− 1)(n− 2) · · · 3 · 2 · 1 + 1 +
n−1∑

k=2

(n− 1)(n− 2) · · · (n− (k − 1))S(n, k)

Since n|S(n, k) for all 2 ≤ k ≤ n− 1, we get

0 ≡ (n− 1)! + 1 (mod n)

2On the p-adic valuations of Stirling numbers of the second kind, Contemporary Mathemat-
ics, 12(2), 63-–77(2022)
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or

(n− 1)! ≡ −1 (mod n).

Hence n is prime.

The proof of the converse is straight forward.

The next result is a congruence relation on binomial coefficients and will be used

in the proof of the subsequent theorem.

Lemma 2.3.2. If p is a prime, then

vp

((
p− 1

i

)
− (−1)i

)
≥ 1 or vp

((
p− 1

i

))
= 0.

Proof. For i = 0, the case is trivial.

We assume that i > 0. The binomial coefficient
(
p−1
i

)
is given by

(
p− 1

i

)
=

(p− 1)!

(p− 1− i)!i!
.

Therefore,

i!

(
p− 1

i

)
= (p− 1)(p− 2)...(p− i+ 2)(p− i+ 1)(p− i)

≡ (−1)(−2)...(−i) (mod p)

≡ (−1)ii! (mod p).

Since 0 < i < p, gcd(p, i) = 1. Then,

(
p− 1

i

)
≡ (−1)i (mod p).

Theorem 2.3.3. Let p be an odd prime. For any positive integer n ≥ p,

vp(S(n, p)) = 0

if and only if (p− 1)|(n− 1).
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Proof. Using the above Lemma, we have

p!S(n, p) =

p∑

i=1

(
p

i

)
(−1)p−iin

≡
p∑

i=1

(
p

i

)
(−1)p−iin (mod p).

Since
(
p
i

)
=

(
p−1
i−1

)
p
i
, we get

(p− 1)!S(n, p) ≡
p−1∑

i=1

(−1)i−1(−1)p−iin−1.

Using Wilson’s theorem, the preceding congruence reduces to

S(n, p) ≡
p−1∑

i=1

in−1 (mod p),

as p is odd.

Now, we use the following well known results

p−1∑

i=1

in−1 ≡





0 (mod p), if (p− 1) ̸ |(n− 1)

−1 (mod p), if (p− 1)|(n− 1).

Hence the theorem follows.

Theorem 2.3.4. Let p be an odd prime and c be a positive integer such that

1 ≤ c ≤ p− 1. Then, for positive integers n and k such that k ≤ n,

vp(S(cp
n, cpk)) = 0.

Proof. The theorem is a special case of (Adelberg, 2018, Th. 2.2).

We have

cpn − cpk = c(pn − pk) = c(p− 1)
n−k−1∑

j=0

pj+k

which implies that cpn − cpk is divisible by p − 1. We also have 1 ≤ c ≤ p − 1

and 1 ≤ cpk ≤ cpn. It follows that S(cpn, cpk) is a minimum zero case and hence
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we have

vp(S(cp
n, cpk)) =

sp(cp
k)− sp(cp

n)

p− 1
= 0, (2.10)

since sp(cp
n) = sp(cp

k) = sp(c) = c.

Theorem 2.3.5. Let p be an odd prime, then

vp(S(p
n, 2p)) ≥ n

for every integer n ≥ 2.

Proof. Using identity (1.32)

(2p)!S(pn, 2p) =

2p∑

i=0

(
2p

i

)
(−1)2p−iip

n

which can also be written as

(2p)!S(pn, 2p) =

2p∑

i=0

(
2p

2p− i

)
(−1)i(2p− i)p

n

=

2p∑

i=0

(
2p

i

)
(−1)2p−i(2p− i)p

n

.

Since
(
m
i

)
=

(
m

m−i

)
for every integers 0 ≤ i ≤ m and 2p− i ≡ i (mod 2), we have

2(2p)!S(pn, 2p) =

2p∑

i=0

(
2p

i

)
(−1)2p−i(ip

n

+ (2p− i)p
n

). (2.11)

If p ̸ |i for 0 ≤ i ≤ 2p, then

2p− i ≡ −i (mod p),

which also yields the congruence

(2p− i)p
n ≡ −(i)p

n

(mod pn+1).

It follows that

(
2p

i

)
(−1)2p−i((2p− i)p

n

+ (i)p
n

) ≡ 0 (mod pn+2), since p |
(
2p
i

)
. (2.12)
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Thus, each term of the right-hand side of Equation (2.11) is divisible by pn+2 and

hence

(2p)!S(p2, 2p) ≡ 0 (mod pn+2).

Therefore

vp(2(2p)!S(p
2, 2p)) ≥ n+ 2

vp(S(p
2, 2p)) ≥ n.

Hence the theorem follows.

Theorem 2.3.6. Let p be a prime and n and k be two positive integers with

k ≤ p− 1, then there exists a positive integer m in 1 ≤ m < p− 1 such that

S(n, k) ≡





S(m, k) (mod p), if n ̸≡ 0 (mod p− 1),

(p− 1− k)! (mod p), if n ≡ 0 (mod p− 1).

Proof. By division algorithm, we have

n = (p− 1)q +m

where q is the quotient and m is the remainder such that 0 ≤ m < p− 1.

Now

k!S(n, k) =
k∑

i=1

(
k

i

)
(−1)k−iin

=
k∑

i=1

(
k

i

)
(−1)k−ii(p−1)q+m

≡
k∑

i=1

(
k

i

)
(−1)k−iim (mod p)

since ip−1 ≡ 1 (mod p) for 1 ≤ i ≤ k ≤ p− 1 by Fermat’s little theorem.

If m ̸= 0, we have

k!S(n, k) ≡ k!S(m, k) (mod p).
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Since k is less than p, it follows that p ̸ |k! which results

S(n, k) ≡ S(m, k) (mod p),

for every n such that n ̸≡ 0 (mod p− 1).

Next, if m = 0, we have

k!S(n, k) ≡
k∑

i=1

(
k

i

)
(−1)k−i (mod p)

≡
k∑

i=0

(
k

i

)
(−1)k−i − (−1)k (mod p)

≡ (−1)k+1 (mod p).

We also know that

(
p− 1

k

)
≡ (−1)k (mod p)

yields

1

k!
≡ (−1)k+1(p− 1− k)! (mod p),

which implies that

S(n, k) ≡ (p− 1− k)! (mod p),

which completes the proof.

From the above theorem, we see that, if 1 ≤ m < k,

S(n, k) ≡ 0 (mod p) since S(m, k) = 0.

However, the case for m = k results

S(n, k) ≡ 1 (mod p).

Corollary 2.3.2. Let p be an odd prime and k be a positive integer less than p,

41



Chapter 2

then

S(n, k) ≡





1 (mod p), if n ≡ k (mod p− 1),

0 (mod p), if n ≡ i (mod p− 1) for 1 ≤ i ≤ k − 1.

If we apply the above theorem and corollary to the special cases for k = p−1, p−2

and p− 3, we get

S(n, p− 1) ≡





1 (mod p), if n ≡ 0 (mod p− 1),

0 (mod p), otherwise.

S(n, p− 2) ≡





1 (mod p), if n ≡ 0, p− 2 (mod p− 1),

0 (mod p), otherwise.

S(n, p− 3) ≡





2 (mod p), if n ≡ 0 (mod p− 1),

3 (mod p), if n ≡ p− 2 (mod p− 1),

1 (mod p), if n ≡ p− 3 (mod p− 1),

0 (mod p), if otherwise.

We have calculated the values of vp(S(p
2, kp)) for different values of (p, k) within

the range 2 ≤ p ≤ 100 and 2 ≤ k ≤ p− 1. The following values are obtained;

vp(S(p
2, kp)) =





7, if (p, k) = (7, 4)

6, if (p, k) = (37, 4), (59, 14), (67, 8)

3, if k = p− 1 and (p, k) = (37, 5), (59, 15), (67, 9)

5, if k is even and (p, k) ̸= (7, 4), (37, 4), (59, 14), (67, 8)

2, if k is odd and (p, k) ̸= (37, 5), (59, 15), (67, 9).

(2.13)

Based on these calculations, we propose the following conjecture:
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Conjecture 2.3.1. If k is an integer such that 1 < k < p− 1, then

vp(S(p
2, kp)) =





5 or 6, if k is even;

2 or 3, if k is odd,

(2.14)

for any prime p > 7.

Theorem 2.3.7. Let p be an odd prime and k be an integer such that 2 ≤ k ≤

p− 1, then

vp(S(p
2, kp)) ≥ 2.

Proof. We know (due to (2.1))

S(p2, kp) =
∑

∑
ei=pk,

∑
niei=p2

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)).

To prove the theorem, we divide each term of the sum over the partitions con-

taining ei subsets with cardinality ni into the following cases depending on the

divisibility of niei by p.

Case 1: p ̸ |niei for some i, 1 ≤ i ≤ t

If p ̸ |niei, re-arrange the index by interchanging i and 1 so that p ̸ |n1e1.

Using Equation (2.7), we have

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
p2

n1e1

)
s(n1

(e1))
t∏

j=2

(
n−∑j−1

i=0 niei
njej

)
s(nj

(ej))

which implies that

(
p2

n1e1

)
|s(n1

(e1), n2
(e2), n3

(e3), ..., nt
(et)).

We also know that p2|
(

p2

n1e1

)
if p ̸ |n1e1. It follows that

p2|s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)).
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Therefore,

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) ≥ 2

if p ̸ |niei for some i, 1 ≤ i ≤ t.

Case 2: p|niei for every i, 1 ≤ i ≤ t

In this case, either p|ni or p|ei for all 1 ≤ i ≤ t. We divide this case into two

sub-cases, where the first sub-case deals with p|ei for all 1 ≤ i ≤ t and the second

sub-case deals with p ̸ |ei for some i, 1 ≤ i ≤ t.

Case 2.1: p|ei for every i, 1 ≤ i ≤ t

It is clear that there exists a positive integer ai for each 1 ≤ i ≤ t such that

ei = pai. By the given condition, we have

t∑

i=1

ei = kp,

which implies that
t∑

i=1

ai = k.

Now, we have

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
p2!∏t

i=1 ei!(ni!)ei
,

which yields

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = vp(p
2!)− vp(

t∏

i=1

ei!(ni!)
ei)

= p+ 1−
t∑

i=1

vp(ei!)−
t∑

i=1

eivp(ni!). (2.15)

Since
∑t

i=1 niei = p2 and by replacing ei = pai, we get

t∑

i=1

niai = p,
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which implies that 1 ≤ ni < p for every 1 ≤ i ≤ t since
∑t

i=1 ai = k ≥ 2. It

follows that

vp(ni!) = 0.

We also have

vp(ei!) = vp((aip)!)

= ai.

Now Equation (2.15) reduces to

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = p+ 1−
t∑

i=1

ai

= p+ 1− k

≥ p+ 1− (p− 1) since k ≤ p− 1

= 2.

Thus, it follows that vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) ≥ 2 if p|ei ∀ 1 ≤ i ≤ t.

Case 2.2: p ̸ |ei for some i, 1 ≤ i ≤ t

Let α be the number of e′is which are divisible by p.

Then, 0 ≤ α < t.

If α = 0, then each e′is are not divisible by p which means p divides each ni and

we can write ni = pmi for each i. Therefore

∑
pmiei = p2 ⇒

∑
miei = p,

which implies
∑

ei ≤ p as each m′
is are positive integers. This is a contradiction

as
∑

ei = kp with k ≥ 2. Thus, we must have α > 0.

Now, we re-arrange the index in such a manner that p|ei if 1 ≤ i ≤ α and p ̸ |ei
if α < i ≤ t, which implies that ei = pbi for some positive integer bi for all

1 ≤ i ≤ α.
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We also have ni = pmi for some positive integer mi and for all α + 1 ≤ i ≤ t. It

follows that

kp =
t∑

i=1

ei

=
α∑

i=1

ei +
t∑

i=α+1

ei

=
α∑

i=1

pbi +
t∑

i=α+1

ei,

which implies that p|∑t
i=α+1 ei. Since α < t, and e′is are positive integers, we

must have
t∑

i=α+1

ei ≥ p.

We also have

p2 =
t∑

i=1

niei =
α∑

i=1

niei +
t∑

i=α+1

niei = p
α∑

i=1

nibi + p
t∑

i=α+1

miei,

which implies that

p =
α∑

i=1

nibi +
t∑

i=α+1

miei

≥
α∑

i=1

nibi +
t∑

i=α+1

ei (since m′
is are positive)

≥
α∑

i=1

nibi + p.

Thus, we get

α∑

i=1

nibi ≤ 0,

which is a contradiction as each term is positive and α ̸= 0. Therefore, this case

cannot happen.

We conclude that p2 divides s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) for each case where
∑t

i=1 niei = p2 and
∑t

i=1 ei = kp.
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So,

p2|S(p2, kp) if 2 ≤ k ≤ p− 1.

The preceding theorem confirms that the lower bound of vp(S(p
2, kp)) for 2 ≤

k < p − 1 is 2, as mentioned in the Conjecture 2.3.1. The next theorem is a

generalization of the above theorem.

Theorem 2.3.8. Let p be an odd prime and k be an integer 2 ≤ k ≤ p− 1, then

vp(S(p
n, kp)) ≥ 2

for any integer n ≥ 2.

Proof. Replace N = 2 in Equation (5.4), we get

π(kp; p2) = (p− 1)pb if pb−1 < kp ≤ pb.

Since 2 ≤ k ≤ p− 1, we also have p < kp < p2 and hence b = 2. Therefore,

π(kp; p2) = (p− 1)p2.

It follows that

S(a+ d(p− 1)p2, kp) ≡ S(a, kp) (mod p2) (2.16)

for every positive integer a and d.

Now, we prove the theorem by induction on n. The previous theorem states that

our hypothesis is true for n = 2, i.e.,

vp(S(p
2, kp)) ≥ 2,

which can be written as

S(p2, kp) ≡ 0 (mod p2).
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Assume that the theorem holds for all n ≤ m for some positive integer m ≥ 2 so

that

vp(S(p
n, kp)) ≥ 2 for all 2 ≤ n ≤ m,

which implies

S(pm, kp) ≡ 0 (mod p2).

Putting a = pm and d = pm−2 in Equation (2.16), we get

S(pm+1, kp) ≡ 0 (mod p2).

Thus the theorem is also true for n = m+ 1.

It follows that the theorem is true for every integer n ≥ 2.

Theorem 2.3.9. Let p an odd prime, then

vp(S(2p, p)) ≥ 2.

Proof. Using Equation (2.1) and Theorem 2.3.1, we have

S(2p, p) =
∑

∑
ej=p,

∑
njej=2p

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) (2.17)

and

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
2p!∏t

j=1 ej!(nj!)ej

for some positive integer t.

It follows that

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = 2−
t∑

j=1

vp(ej!)−
t∑

j=1

ejvp(nj!).

Now we consider the following cases in Equation (2.17):

Case 1: nj < p and ej < p for every j

It is easy to see that vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = 2 if each e′js and n′
js
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are less than p and we get

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) ≡ 0 (mod p2) (2.18)

if both ej and nj are less than p.

Case 2: ej ≥ p for some j

We know that
∑

ej = p which implies each e′js are less than p unless for the case

t = 1, e1 = p so that n1e1 = 2p or n1 = 2. In this case, the term is

s(2(p)) =
(2p)!

p!(2!)p

and can be written as

s(2(p))

p
=
(p+ 1)(p+ 2) · · · (p+ p− 1)

2p−1

≡ (p− 1)! ≡ −1 (mod p),

or

s(2(p)) ≡ −p (mod p2). (2.19)

Case 3: nj ≥ p for some j

If nj ≥ p for some j, then ej = 1 due to
∑

ej = p and
∑

njej = 2p. The upper

bound for the value of nj is p+ 1 since the remaining 2p− nj objects cannot fill

the remaining empty p− 1 subsets if nj > p+ 1.

Case 3.1: nj = p+ 1 for some j

If nj = p + 1 for some j, all the remaining p − 1 subsets must contain a single

object and the corresponding term for this case is s((p+ 1)(1), 1(p−1)), i.e., t = 2,

n1 = p+ 1, e1 = 1 = n2 and e2 = p− 1. Then

s((p+ 1)(1), 1(p−1)) =
(2p)!

(p− 1)!(p+ 1)!
,
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which can also write as

s((p+ 1)(1), 1(p−1))

p
≡ 2 (mod p)

or

s((p+ 1)(1), 1(p−1)) ≡ 2p (mod p2). (2.20)

Case 3.2: nj = p for some j

In this case, one subset contains p elements, one another subset contains two ele-

ments and remaining p−2 subsets must contain a single object. The correspond-

ing term for this case is s(p(1), 2(1), 1(p−2)), i.e., t = 3, n1 = p, e1 = 1 = e2 = n3,

n2 = 2 and e3 = p− 2.

Using (2.8), we have

s(p(1), 2(1), 1(p−2)) =
(2p)!

(p− 2)!p!2!

which reduces to

s(p(1), 2(1), 1(p−2))

p
≡ −1 (mod p)

or

s(p(1), 2(1), 1(p−2)) ≡ −p (mod p2). (2.21)

Combining the results in (2.17), (2.18), (2.19), (2.20) and (2.21), we get

S(2p, p) ≡ 0 (mod p2).

This completes the proof.

Theorem 2.3.10. For any prime p ≥ 5,

vp(S(2p, p− 1)) = 1
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or more specifically

S(2p, p− 1) ≡ 1

6
p (mod p2).

Proof. We look into the following cases where p2 does not divide s(n1
(e1), n2

(e2),

n3
(e3), ..., nt

(et)) as in the preceding theorem:

1. ni = p for some i

2. ni = p+ 1 for some i

3. ni = p+ 2 for some i.

In the first case, there are two possible terms namely, s(p(1), 3(1), 1(p−3)) and s(p(1),

2(2), 1(p−4)). So

s(p(1), 3(1), 1(p−3)) =
(2p)!

(p− 3)!p!3!
≡ 2

3
p (mod p2)

and

s(p(1), 2(2), 1(p−4)) =
(2p)!

2!(p− 4)!p!(2!)2
≡ −3

2
p (mod p2).

For the second case, the only possible term is s((p+ 1)(1), 2(1), 1(p−3)) and

s((p+ 1)(1), 2(1), 1(p−3)) =
(2p)!

(p− 3)!(p+ 1)!2!
≡ 2p (mod p2).

The final case also contains only one term, s((p+ 2)(1), 1(p−2)) and

s((p+ 2)(1), 1(p−2)) =
(2p)!

(p− 2)!(p+ 2)!
≡ −p (mod p2).

Thus, we have

S(2p, p− 1) ≡ 2

3
p− 3

2
p+ 2p− p (mod p2)

≡ 1

6
p (mod p2).

This completes the proof.
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Using the results of minimum periods in Equation (5.4) and exploiting the same

technique as in the proof of Theorem 2.3.8, we generalize Theorem 2.3.9 and

Theorem 2.3.10 as

Theorem 2.3.11. Let p an odd prime, then

vp(S(2p
n, p)) ≥ 2.

Theorem 2.3.12. For any prime p ≥ 5,

vp(S(2p
n, p− 1)) = 1

or more specifically

S(2pn, p− 1) ≡ 1

6
p (mod p2).

The proofs of Theorems 2.3.11 and 2.3.12 are similar to the proofs of Theorems

2.3.9 and 2.3.10 respectively.

Theorem 2.3.13. For any odd prime p,

vp(S(2p, p+ 1)) = 0 (2.22)

or

S(2p, p+ 1) ≡ 2 (mod p2). (2.23)

Equation (2.22) is a special case of (2.4) since S(2p, p + 1) is a minimum zero

case. Hence

vp(S(2p, p+ 1)) =
sp(p+ 1)− sp(2p)

p− 1
= 0,

where sp(n) is the sum of p-adic digits of n.

Using Equation (2.5), we can also say that

vp(S(2p
n+1, (p+ 1)pn)) = 0

for any positive integer n.
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The second result (2.23) can be obtained using the same method as in Theorem

2.3.10.

Theorem 2.3.14. For any odd prime p,

vp(S(2p, p+ 2)) ≥ 1

or

S(2p, p+ 2) ≡ 2p − 2 (mod p2).

Proof. There are two cases where p2 does not divide s(n1
(e1), n2

(e2), · · · , nt
(et)).

The first case is s(1(p), i(1), (p− i)(1)) for 2 ≤ i ≤ (p− 1)/2 and

s(1(p), i(1), (p− i)(1)) =
(2p)!

p!i!(p− i)!
≡ 2

(
p

i

)
(mod p2).

It follows that

p−1
2∑

i=2

s(1(p), i(1), (p− i)(1)) ≡ 2p − 2− 2p (mod p2).

The second case is s(1(p+1), (p− 1)(1)) and

s(1(p+1), (p− 1)(1)) =
(2p)!

(p+ 1)!(p− 1)!
≡ 2p (mod p2).

Now, we have

S(2p, p+ 2) ≡ 2p − 2− 2p+ 2p ≡ 2p − 2 (mod p2).

This completes the proof.

It is well-known that 2p − 2 is always divisible by p using Fermat’s theorem.

The result for mod p2 is, however, not known in general. Numerical evidence

suggests that there are some primes p greater than 1000 where p2 divides 2p − 2.

So, this leads to an interesting problem in finding out those primes p such that

vp(S(2p, p+ 2)) ̸= 1 or, equivalently, p2 ∤ 2p − 2.
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2.4 Conclusions

This chapter introduces an alternate formula for evaluating Stirling numbers of

the second kind, S(n, k). This formula is used to determine the lower bound of

the p-adic valuations of Stirling numbers of the second kind of the class S(p2, kp),

where p is an arbitrary odd prime and k is a positive integer such that 2 ≤ k ≤

p−1. Some generalized results for the p-adic valuation of S(pn, kp), S(2pn+1, (p+

1)pn) and S(2pn, p) are also proved using minimum periods. The estimated values

of the p-adic valuation for S(2p, p− 1), S(2p, p), S(2p, p+1) and S(2p, p+2) are

also obtained.
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Some Congruence Properties of

Stirling Numbers of the Second

Kind2

3.1 Introduction

An interesting congruence relation between Stirling numbers of the second

kind and binomial coefficients is given by Chan and Manna (2010) as

S(n, a2m) ≡ a2m−1

(⌊n−1
2
⌋ − a2m−2 − 1

⌊n−1
2
⌋ − a2m−1

)

+
1 + (−1)n

2

(
n
2
− a2m−2 − 1
n
2
− a2m−1

)
(mod 2m),

where n, a, and m are positive integers such that m ≥ 3 and n ≥ a2m + 1.

From the above congruence, we can easily verify that v2(S(4n + 3, k)) ≥ v2(k)

for any two positive integers n and k such that k < 4n + 3 and v2(k) ≥ 3. The

generalizations of the result to modulo pm for odd prime p are discussed in the

second and third sections of this chapter.

In this chapter, we obtain the p-adic valuations of Stirling numbers of the

second kind using congruence property. The main results include the congruence

2The Journal of the Indian Mathematical Society, 91(1-2), 111–128 (2024)
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recursion of S(n, k) (mod p) for different cases of k, equivalence of S(n, kpm) in

terms of binomial coefficient for opposite parity of n and k, congruence recurrence

relation of S(n + kp, kp) for different conditions of n and the lower bounds of

vp(S(p
n−1, kp)) and vp(S(p

n, kp)). We confirm the results that S(pn, k) ≡ S(p, k)

(mod p2) if 1 ≤ k ≤ p and S(p2, k) ≡
(
p
k1

)
S(p− k1, k0) (mod p2) if k = k1p + k0

and k0 ̸= 0.

3.2 Preliminaries

In this section, we provide the necessary background material to state and

prove our main results in the next section. Throughout this chapter, p denotes

an odd prime number. Whenever p − 1 divides n − k, we denote the binomial

coefficient
(n−k

p−1
−1

n−kp
p−1

)
by Ak,n,p for convenience. If m, n, and k are positive integers

such that p ∤ k and n ≥ kpm, then the following holds (Chan and Manna, 2010)

S(n, kpm) ≡





Akpm−1,n,p (mod pm), if n ≡ k (mod p− 1);

0 (mod pm), otherwise.

(3.1)

Sagan (1985) obtained the following congruence using group action on abelian

groups:

S(n+ 2p, k) ≡
1∑

i=0

S(n+ p+ i, k + (i− 1)p)−
2∑

i=0

(
2

i

)
S(n+ i, k + (i− 2)p)

+ p(p− 1)S(n, k − p) (mod p2); n > 0, n+ 2p ≥ k. (3.2)

Observe that on eliminating the terms containing k − p and k − 2p in (3.2), we

have

S(n, k) ≡ 2S(n− p+ 1, k)− S(n− 2p+ 2, k) (mod p2); k ≤ p, n > 2p. (3.3)
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Consequently, using induction, one arrives at the following:

S(n, k) ≡ (r + 1)S(n− r(p− 1), k)− rS(n− (r + 1)(p− 1), k) (mod p2) (3.4)

if n− (r + 1)(p− 1) > 2.

From Equations (3.3) and (3.4), we get

S(n, k) ≡





2S(n− p+ 1, k) (mod p2), if 2p < n < 2p+ k − 2;

(r + 1)S(n− r(p− 1), k) (mod p2), if 2 < n− (r + 1)(p− 1) < k.

(3.5)

Feng and Qiu (2020) employed a combinatorial approach and proved the following

result:

vp(S(n, n− k)) = vp

((
n

k + 1

))
+ tp(n, k); n ≥ k + 1, (3.6)

where

tp(n, k) =





0, if k = 1;

vp(3n− 5)− vp(4), if k = 2;

vp(n
2 − 5n+ 6)− vp(2), if k = 3;

vp(15n
3 − 150n2 + 485n− 502)− vp(48), if k = 4;

vp(3n
4 − 50n3 + 305n2 − 802n+ 760)− vp(16), if k = 5;

vp(63n
5 − 1575n4 + 1543n3 − 73801n2 + 171150n

− 156296)− vp(576), if k = 6.

(3.7)

3.3 Main Results

This section is divided into various cases. We first divide into divisibility of

S(n, k) by p and pn in general. We further divide into divisibility of k by p. We

begin by providing the following results;
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Theorem 3.3.1. For an odd prime p and an integer n, we have

a) vp(S(p
n − 1, kp− 1)) ≥ 2; 2 ≤ k < p− 1; vp(S(p

n − 1, (p− 1)p− 1)) = 1.

b) S(p+ n, k) ≡ S(n+ 1, k) + S(n, k − p) (mod p).

Proof. (a) Using Equation (1.33) and the fact that p2 divides S(pn, kp), we have

S(pn−1, kp−1) = S(pn, kp)−kpS(pn−1, kp) ≡ kpS(pn−1, kp) (mod p2). (3.8)

So, it is enough to prove that p divides S(pn − 1, kp). Taking m = 1, n = pn − 1

in (3.1), we get

S(pn − 1, kp) ≡





Akp,pn,p (mod p), if k = p− 1;

0 (mod p), if 2 ≤ k ≤ p− 2,

(3.9)

where from (3.9), the result (a) follows when 2 ≤ k ≤ p − 2. To prove (a) for

the case when k = p − 1, we observe using Lucas congruence for n ≥ 2 that

A(p−1)p,pn−1,p ≡ −1 (mod p). Consequently, from (3.9), we have

S(pn − 1, (p− 1)p) ≡ −1 (mod p). (3.10)

Equation (3.10), in view of (3.8), proves that vp(S(p
n − 1, (p− 1)p− 1)) = 1.

(b) From Equation (1.40), we get

S(p+ n, k) =
k∑

i=0

k∑

j=i

(
j

i

)
(k − i)!

(k − j)!
S(p, k − i)S(n, j). (3.11)

The terms within the summation in (3.11), except those with indices such that

(i, j) ∈ {(k − 1, k − 1), (k − 1, k), (k − p, k − p)},

are all divisible by p. This observation, along with (1.33), gives

S(p+ n, k) ≡ S(n, k − 1) + kS(n, k) + S(n, k − p) (mod p)

≡ S(n+ 1, k) + S(n, k − p) (mod p).

58



Chapter 3

Thus, the result (b) follows.

3.3.1 Divisibility of S(n, k) by p

Chan and Manna (2010) obtained a congruence for S(n, k) when k is divisible

by p and not divisible by p. The result when k is divisible by p is simple for

acquiring the divisibility of S(n, k). We further look into the case when k is not

a multiple of p, say k = cpm + b, where b ̸= 0 and p ∤ b.

We will utilize the following result while proving Theorem 3.3.2.

Lemma 3.3.1. Let p be a prime and n and k be two positive integers such that

n > 0 and k ≤ p− 1, then there exists a positive integer 1 ≤ m < p− 1 such that

S(n, k) ≡





S(m, k) (mod p), if n ̸≡ 0 (mod p− 1);

(p− 1− k)! (mod p), if n ≡ 0 (mod p− 1),

(3.12)

where m is the remainder when n is divided by p.

The following theorem is a generalization of Lemma 3.3.1 in which k is restricted

to an integer less than or equal to p − 1 for a given prime p. This theorem,

however, provides the congruence for S(n, k) modulo p for any integer k less than

or equal to n.

Theorem 3.3.2. For an odd prime p and integer k with p ∤ k, let b be the last

p-adic digit of k. Let m = vp(k− b), c = (k− b)p−m, and a is the remainder when

n− k is divided by p− 1. Then

S(n, k) ≡





S(a, b)

(⌊n−k
p−1

⌋+ cpm−1

cpm−1

)
(mod p), if n ̸≡ c (mod p− 1);

(p− 1− b)!

(⌊n−k
p−1

⌋+ cpm−1

cpm−1

)
(mod p), otherwise.

Proof. The result for k < p is trivial since c = 0. Due to Chan and Manna (2010,
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Theorem 5.3), we have for m ≥ 1 and n ≥ cpm + b that

S(n, cpm + b) ≡
n∑

i≡c (mod p−1)

S(i, cpm)S(n− i, b) (mod pm)

≡
n∑

i≡c (mod p−1)

( i−cpm−1

p−1
− 1

i−cpm

p−1

)
S(n− i, b) (mod pm). (3.13)

The index i in the last summation runs through i ≡ c (mod p − 1); so i =

c + (p− 1)j for some j with cpm ≤ c + (p− 1)j and b ≤ n− c− (p− 1)j. If we

define A = ⌊n−cpm−b
p−1

⌋, then (3.13) reduces to the form:

S(n, cpm + b) ≡
A∑

i=0

( cpm+i(p−1)−cpm−1

p−1
− 1

cpm+i(p−1)−cpm

p−1

)
S(n− cpm − i(p− 1), b) (mod pm)

≡
A∑

i=0

(
cpm−1 + i− 1

i

)
S(n− cpm − i(p− 1), b) (mod pm).

(3.14)

If 1 ≤ b ≤ p− 1, then by Lemma 3.3.1, there exists an integer a such that

S(n− cpm − i(p− 1), b) ≡





S(a, b) (mod p), if n ̸≡ c (mod p− 1);

(p− 1− b)! (mod p), otherwise.

(3.15)

Here, a is the remainder when n− cpm − i(p− 1) is divided by p− 1, that is, the

remainder when n− c is divided by p− 1. So, for n ̸≡ c (mod p− 1), we have

S(n, cpm + b) ≡
A∑

i=0

(
cpm−1 + i− 1

i

)
S(a, b) ≡ S(a, b)

(
A+ cpm−1

cpm−1

)
(mod p),

and for the other case, that is, when n ≡ c (mod p− 1), we have

S(n, cpm + b) ≡ (p− 1− b)!

(
A+ cpm−1

cpm−1

)
(mod p),

as desired.

Remark 3.3.1. Taking n = p2 in the proof of Theorem 3.3.2, we see that A =
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p− c. Hence, for an odd prime p and k > p with p ∤ k, we have vp(S(p
2, k)) ≥ 1,

which can also be deduced using Equation (1.62).

3.3.2 Divisibility of S(n, k) by pm with p | k

The following theorem extends the result of Chan and Manna (2010, Theorem

5.2) when n and k of S(n, kpm) are of opposite parity.

Theorem 3.3.3. If p is an odd prime and n and k are of opposite parity, then

S(n, kpm) ≡





(−1)n−1nk

2
Akpm−1,n−1,pp

m (mod p2m), if n− 1 ≡ k (mod p− 1);

0 (mod p2m), otherwise.

(3.16)

Proof. Using Equation (1.32) and the hypothesis of parity and k ≡ kpm (mod 2),

we have

2(kpm)!S(n, kpm) =

kpm∑

i=0

(
kpm

i

)
(−1)i

(
(−1)kin + (kpm − i)n

)

=

kpm∑

i=0

(
kpm

i

)
(−1)i

{
(−1)kin + (−1)nin

+
n∑

j=1

(
n

j

)
(−1)n−jkjin−jpmj

}

=

kpm∑

i=0

(
kpm

i

)
(−1)i

n∑

j=1

(
n

j

)
(−1)n−jkjin−jpmj

=
n∑

j=1

(
n

j

)
(−1)n−jkjpmj(kpm)!S(n− j, kpm), (3.17)

where we have used (−1)kin + (−1)nin = 0. Thus, S(n, kpm) ≡ 0 (mod pm) if n

and k are opposite parity. It then follows from (3.17) that

2S(n, kpm) ≡
t∑

j=1

(
n

j

)
(−1)n−jkjpmjS(n− j, kpm) (mod pm(t+1)) (3.18)

holds for 1 ≤ t ≤ n. Since n and k are of opposite parity, so are n − 2 and
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k. Consequently, S(n − 2, kpm) ≡ 0 (mod pm). This observation together with

(3.18) for t = 2 gives us the following;

2S(n, kpm) ≡ (−1)n−1nkpmS(n− 1, kpm)

+

(
n

2

)
(−1)n−2k2p2mS(n− 2, kpm) (mod p3m)

≡ (−1)n−1nkpmS(n− 1, kpm) (mod p3m), (3.19)

which is also true for modulo p2m. Thus, applying Equation (3.1) to S(n−1, kpm)

and combining it with Equation (3.19) produces Equation (3.16).

Corollary 3.3.1. For an odd prime p and two positive integers n and k,

(a) If k is even and pn ≥ kpm, then S(pn, kpm) ≡ 0 (mod p2m).

(b) If n and k are of opposite parity such that sp(kp
m−1 + α − 1) = sp(k) +

sp(α− 1); n− 1 ≡ k (mod p− 1); and α = n−1−kpm

p−1
, then vp(S(n, kp

m)) =

2m− vp(α)− 1.

Proof. (a) Follows from Equation (3.16).

(b) If sp(x + y) = sp(x) + sp(y), then by Kummer’s theorem (see Mihet, 2010),

vp

((
x+ y

y

))
= vp(x)− vp(y + 1), which in view of (3.16) proves (b).

Remark 3.3.2. If k is even, then replacing n by pn in (3.18), we get

2S(pn, kpm) =

pn∑

i=1

(
pn

i

)
(−1)p

n−ikipmiS(pn − i, kpm). (3.20)

The i-th term within the summation in (3.20) is divisible by pn+mi if p ∤ i. How-

ever, if p | i, then the corresponding term within the summation in (3.20) is

divisible by pn−vp(i)+mi. Then for all t with 1 ≤ t ≤ pn with p ∤ (t + 1), we have

the following key congruence:

2S(pn, kpm) ≡
t∑

i=1

(
pn

i

)
(−1)p

n−ikipmiS(pn − i, kpm) (mod p(t+1)m+n). (3.21)
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Theorem 3.3.4. Let p be an odd prime. Let m, n, and k be positive integers

such that n > m, k is even, and p ∤ k. Then vp(S(p
n, kpm)) ≥ n + 2m, unless

m = 1 and k = p− 1, in which case vp(S(p
n, (p− 1)p)) = n+ 1.

Proof. Taking t = 1 in (3.21), we have for even k that

2S(pn, kpm) ≡ kpn+mS(pn − 1, kpm) (mod p2m+n), (3.22)

where we have

S(pn − 1, kpm) ≡





Akpm−1,pn−1,p (mod pm), if k = p− 1;

0 (mod pm), if 1 ≤ k ≤ p− 2.

(3.23)

The binomial coefficient on the right-hand side follows

Akpm−1,pn−1,p ≡





−1 (mod p), if m = 1 < n;

0 (mod pm), if 2 ≤ m < n.

(3.24)

Using (3.24) in (3.23) and then (3.23) in (3.22) proves the desired assertion.

Theorem 3.3.5. If p > 3 is prime; n, m, k are positive integers with m < n and

k < p, then

S(pn, kpm) ≡





kpn+1

2
S(pn − 1, kp)− 9pn+3

4
(mod pn+4), if m = 1, k = p− 3;

kpn+m

2
S(pn − 1, kpm) (mod p4m+n), otherwise.

(3.25)

Proof. Taking t = 2 in (3.21) for even k, we get

2S(pn, kpm) ≡ kpn+mS(pn − 1, kpm)

− pn+2m

(
pn − 1

2

)
k2S(pn − 2, kpm) (mod p3m+n).

Since pn − 2 and k are opposite parity, S(pn − 2, kpm) ≡ 0 (mod pm), and so

2S(pn, kpm) ≡ kpn+mS(pn − 1, kpm) (mod p3m+n). (3.26)
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Similarly, on taking t = 3 in (3.21), we have for p > 3 that

2S(pn, kpm) ≡ kpn+mS(pn − 1, kpm)− 1

2
(pn − 1)k2pn+2mS(pn − 2, kpm)

+
1

6
(pn − 1)(pn − 2)k3pn+3mS(pn − 3, kpm) (mod pn+4m). (3.27)

If k is even, k ̸= p− 3, and 1 ≤ k ≤ p− 1, then by Theorem 3.3.3 and (3.27), we

have

S(pn, kpm) ≡ k

2
pn+mS(pn − 1, kpm) (mod p4m+n). (3.28)

For the case k = p− 3, we have from Theorem 3.3.3 that

S(pn − 2, (p− 3)pm) ≡





−3p (mod p2), if m = 1;

0 (mod p)2m, if m > 1.

(3.29)

Also, from (3.1), we have

S(pn − 3, (p− 3)pm) ≡





−1 (mod p), if m = 1;

0 (mod pm), if m > 1.

(3.30)

Combining (3.27)–(3.30), we get (3.25).

Remark 3.3.3. Identity (1.39) gives rise to the following relation;

(
kp

p

)
S(kp+ n, kp) =

n∑

i=0

(
kp+ n

(k − 1)p+ i

)

× S((k − 1)p+ i, (k − 1)p)S(n+ p− i, p). (3.31)

If n = t(p − 1), then the i-th term within the summation in (3.31) is divisible

by p2 in case i ̸≡ 0 (mod p − 1) since p divides both S((k − 1)p + i, (k − 1)p)

and S(n + p − i, p). On the other hand, if i ≡ 0 (mod p − 1) and 0 ̸= i ̸= n,

then p divides
(

kp+n
(k−1)p+i

)
. Using Equation (3.1) for i ≡ 0 (mod p− 1), we get the
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following equations:

S((k − 1)p+ i, (k − 1)p) ≡
(
k − 2 + i

p−1

i
p−1

)
(mod p),

S(n+ p− i(p− 1), p) ≡ 1 (mod p).

We also know that
(
kp
p

)
≡ k (mod p2) due to Equation (1.27). It follows that

kS(kp+ n, kp) ≡
(

kp+ n

(k − 1)p

)
S(n+ p, p)

+

(
kp+ n

(k − 1)p+ n

)
S((k − 1)p+ n, (k − 1)p)

+
t−1∑

i=1

(
(k + t)p− t

(t− i)p+ p− t+ i

)(
k − 2 + i

i

)
(mod p2) (3.32)

for n = t(p− 1).

Theorem 3.3.6. If p is an odd prime, 0 ≤ k + t < p, n = tp + j, and 0 ≤ j <

p− t− 1, then

S(kp+ n, kp) ≡ r

k

(
k + t

k − 1

)
S(n+ p, p)

+

(
k+t
r

)
(
k
r

) S((k − r)p+ n, (k − r)p) (mod p2) (3.33)

for 1 ≤ r ≤ k − 1.

Proof. We analyze (3.31) for the case when (p − 1) ∤ n and t(p − 1) < n <

(t + 1)(p − 1). If i ≡ 0 (mod p − 1), then S(n + p − i, p) ≡ 0 (mod p) but

S((k − 1)p + i, (k − 1)p) ≡
(k−2+ i

p−1
i

p−1

)
(mod p). On the other hand, if n ≡ i

(mod p− 1), then S((k − 1)p+ i, (k − 1)p) ≡ 0 (mod p) and S(n+ p− i, p) ≡ 1

(mod p). The rest of the terms where i ̸≡ 0 (mod p− 1) and n ̸≡ i (mod p− 1)
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are divisible by p2. It follows that

(
kp

p

)
S(kp+ n, kp) ≡

t∑

i=0

(
kp+ n

(k − 1)p+ i(p− 1)

)(
k − 2 + i

i

)
S(n+ p− i(p− 1), p)

+

t∑

i=0

(
kp+ n

(k − 1)p+ n− i(p− 1)

)
S((k − 1)p+ n− i(p− 1), (k − 1)p) (mod p2).

(3.34)

Further, we restrict n to n = tp+ j, 0 ≤ j < p− t− 1, and 0 ≤ k+ t < p. In this

case, the binomial coefficients in both sums of the right-hand side of (3.34) are

divisible by p because of Lucas congruence. So, all the terms except when i = 0

in both summations are divisible by p2. Equation (3.34) thus reduces to the form

(
kp

p

)
S(kp+ n, kp) ≡

(
kp+ n

(k − 1)p

)
S(n+ p, p)

+

(
kp+ n

(k − 1)p+ n

)
S((k − 1)p+ n, (k − 1)p) (mod p2).

(3.35)

If we also apply Lucas congruence to the binomial coefficients, we have

kS(kp+ n, kp) ≡
(
k + t

k − 1

)
S(n+ p, p)

+ (k + t)S((k − 1)p+ n, (k − 1)p) (mod p2). (3.36)

The theorem follows by using induction on r together with Equation (3.36).

Corollary 3.3.2. If p is an odd prime, 0 ≤ k + t < p, n = tp + j, and 0 ≤ j <

p− t− 1, then

S(kp+ n, kp) ≡
(
t+ k

t+ 1

)
S(p+ n, p) (mod p2). (3.37)

Proof. Take r = k − 1 in (3.31).

Theorem 3.3.7. Let p be an odd prime, k, t, and n be positive integers with
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4 ≤ k + 2 ≤ k + t < p and n = tp− 1. Then for 1 ≤ r ≤ k − 1, we have

S(kp+ n, kp) ≡ r

k

(
k − 1 + t

k − 1

)
S(n+ p, p) +

(
k+t−1

r

)
(
k
r

) S((k − 1)p+ n, (k − 1)p)

+
2rk − r(r + 1)

k(k − 1)

(
k − 1 + t

k − 2

) t∑

i=1

(−1)i−1

(
t+ 1

i

)
S(n+ p− i(p− 1), p) (mod p2).

(3.38)

Proof. We analyze (3.34) for the case when n = tp − 1, t + k ≤ p, and t ≥ 2 so

that (p− 1) ∤ (tp− 1). In this case, S(n+ p− i(p− 1), p) ≡ 0 (mod p) and

(
kp+ n

(k − 1)p+ i(p− 1)

)
≡ (−1)i−1

(
k − 1 + t

k − 2 + i

)
(mod p), i ̸= 0,

(
kp+ n

(k − 1)p

)
≡

(
k − 1 + t

k − 1

)
(mod p) when i = 0.

Also, S((k − 1)p + n − i(p − 1), (k − 1)p) ≡ 0 (mod p),
(

kp+n
(k−1)p+n−i(p−1)

)
≡

(−1)i−1
(
k−1+t

i

)
(mod p) if i ̸= 0 and

(
kp+n

(k−1)p+n

)
≡ k + t − 1 (mod p) for i = 0.

Consequently, (3.34) reduces to

kS(kp+ n, kp) ≡
(
k − 1 + t

k − 1

)
S(n+ p, p) + (k + t− 1)S((k − 1)p+ n, (k − 1)p)

+
t∑

i=1

(−1)i−1

(
k − 1 + t

k − 2 + i

)(
k − 2 + i

i

)
S(n+ p− i(p− 1), p)

+
t∑

i=1

(−1)i−1

(
k − 1 + t

i

)
S((k − 1)p+ n− i(p− 1), (k − 1)p) (mod p2).

(3.39)

By Corollary 3.3.2, we have

S((k−1)p+n−i(p−1), (k−1)p) ≡
(
k − 1 + t− i

t− i+ 1

)
S(p+n−i(p−1), p) (mod p2).

(3.40)
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Combining (3.39) and (3.40), we get

S(kp+ n, kp) ≡ 1

k

(
k − 1 + t

k − 1

)
S(n+ p, p) +

k + t− 1

k
S((k − 1)p+ n, (k − 1)p)

+
2

k

(
k − 1 + t

k − 2

) t∑

i=1

(−1)i−1

(
t+ 1

i

)
S(n+ p− i(p− 1), p) (mod p2).

(3.41)

The theorem follows by using induction on r and utilizing the preceding congru-

ence (3.41).

Corollary 3.3.3. Let p be an odd prime, k, t, and n be positive integers such

that 4 ≤ k + 2 ≤ k + t < p and n = tp− 1. Then

S(kp+ n, kp) ≡
(
t+ k − 1

k − 1

)
S(p+ n, p)

+
t∑

i=1

biS(p+ n− i(p− 1), p) (mod p2), (3.42)

where bi = (−1)i−1 (t+k−1)!
(t−i+1)!(k−2)!i!

.

Proof. Take r = k − 1 in (3.41).

Theorem 3.3.8. If p > 3 is a prime and 2 ≤ k < p − 1, where k is even, then

vp(S(p
2 − 1, kp)) ≥ 2.

Proof. For an even integer k with 2 ≤ k < p − 1, letting n = p2 − kp − 1 and

t = p− k in Theorem 3.3.7 generates the following relation:

S(p2 − 1, kp) ≡ (−1)k−1S(p2 + p− kp− 1, p)

−
p−k∑

i=1

(
p− 1− i

k − 2

)
S(p2 + p− kp− 1− i(p− 1), p) (mod p2). (3.43)

Replacing k, n, and r by p, p+ p2 − kp− 1, and p− k − 1, respectively, in (3.4),
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we get

S(p+ p2 − kp− 1, p) ≡ (p− k)S(3p− k − 2, p)

− (p− k − 1)S(2p− k − 1, p) (mod p2). (3.44)

Similarly, for 1 ≤ i < p− k − 1, we have

S(p+ p2 − kp− 1− i(p− 1), p) ≡ (p− k − i)S(3p− k − 2, p)

− (p− k − i− 1)S(2p− k − 1, p) (mod p2). (3.45)

The preceding three congruences together lead to the following:

S(p2 − 1, kp) ≡(−1)k−1[(p− k)S(3p− k − 2, p)− (p− k − 1)S(2p− k − 1, p)]

− (k − 1)S(2p− k − 1, p)−
(
k

2

)
S(3p− k − 2, p)

−
p−k−2∑

i=1

(
p− 1− i

k − 2

)
(p− k − i)S(3p− k − 2, p)

+

p−k−2∑

i=1

(
p− 1− i

k − 2

)
(p− k − i− 1)S(2p− k − 1, p) (mod p2).

(3.46)

Now using the identities
∑y

i=0

(
x+i
x

)
=

(
x+y+1
x+1

)
and

(
p−1−i
k−2

)
≡

(
k+i−2
k−2

)
(mod p) for

even k, it follows that

p−k∑

i=1

(
p− 1− i

k − 2

)
(p− k − i) ≡ k + 1 (mod p), (3.47)

p−k∑

i=1

(
p− 1− i

k − 2

)
(p− k − i− 1) ≡ k + 3 (mod p). (3.48)

From Equations (3.46) and (3.47), we get

S(p2 − 1, kp) ≡ 2S(2p− k − 1, p)− S(3p− k − 2, p) (mod p2). (3.49)
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Since 2p < 3p− k − 2 < 3p− 2, we obtain from Equation (3.5) that

S(3p− k − 2, p) ≡ 2S(2p− k − 1, p) (mod p2), (3.50)

and the theorem follows.

The following theorem settles the lower bound of vp(S(p
2, kp)) for even k in

Conjecture 2.3.1.

Theorem 3.3.9. If p > 3 is a prime and k is even with 2 ≤ k < p− 1, then

vp(S(p
2, kp)) ≥ 5. (3.51)

Proof. Taking n = 2 and m = 1 in (3.25), we get

S(p2, 2kp) ≡





(
p− 3

2

)
p3S(p2 − 1, (p− 3)p)− 9p5

4
(mod p6), if k = p−3

2
;

kp3S(p2 − 1, 2kp) (mod p6), otherwise.

(3.52)

From (3.52), we have the following weaker congruence:

S(p2, 2kp) ≡ kp3S(p2 − 1, 2kp) (mod p5). (3.53)

The theorem follows from (3.53) and Theorem 3.3.8.

3.3.3 Divisibility of S(pn, k) when p ̸ |k

From Equation (1.62), we get

vp(S(p
n, k)) ≥

⌈
sp(k)− 1

p− 1

⌉
, (3.54)

which shows that S(pn, k) is divisible by p unless k is a power of p (i.e., k = pm

for some positive integer m). Now we have the following result.
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Theorem 3.3.10. Let p be an odd prime and 1 ≤ k ≤ p − 1. Then for any

positive integer n,

S(pn, k) ≡ S(p, k) (mod p2). So, vp(S(p
n, k)− S(p, k)) ≥ 2. (3.55)

Proof. Taking n = p2 and r = p− 1 in (3.4), we get

S(p2, k) ≡ pS(2p− 1, k)− (p− 1)S(p, k) (mod p2). (3.56)

Using the minimum period from Equation (5.4) for S(2p − 1, k), the theorem

follows at once.

Theorem 3.3.11. Let p be an odd prime and p < k < p2. If k = k1p + k0 and

k0 ̸= 0, then

S(p2, k) ≡
(
p

k1

)
S(p− k1, k0) (mod p2). (3.57)

Proof. From Equation (1.39), we get

(
k1p+ k0

k0

)
S(p2, k1p+ k0) =

p2∑

i=0

(
p2

i

)
S(i, k1p)S(p

2 − i, k0)

≡
p−1∑

i=k1

(
p2

ip

)
S(ip, k1p)S(p

2 − ip, k0) (mod p2) (3.58)

since vp(
(
pn

i

)
) = n− vp(i).

Since p divides
(
p2

ip

)
for k1 ≤ i ≤ p− 1 and p divides S(ip, k1p) unless i = k1, we

have

(
k1p+ k0

k0

)
S(p2, k1p+ k0) ≡

(
p2

k1p

)
S(p2 − k1p, k0) (mod p2). (3.59)

Also, S(p2, k1p + k0) ≡ 0 (mod p) and
(
k1p+k0

k0

)
≡ 1 (mod p). Moreover,

(
p2

k1p

)
≡

(
p
k1

)
(mod p2). Consequently,

S(p2, k1p+ k0) ≡
(
p

k1

)
S(p2 − k1p, k0) (mod p2). (3.60)

Now using the minimum periods on the preceding congruence, the theorem fol-
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lows.

Remark 3.3.4. Theorem 3.3.11 gives an exact p-adic valuation for some special

cases.

Corollary 3.3.4. Let p be an odd prime and k = k1p+ k0 > p, where k1 and k0

are the p-adic digits of k. If sp(k) = p or sp(k) < p and tp(p− k1, p− sp(k)) = 0,

then

vp(S(p
2, k)) = 1. (3.61)

Different values of tp are mentioned in Equation (3.7). The following theorem is

a generalization of Theorem 3.3.11.

Theorem 3.3.12. If k is a positive integer not divisible by an odd prime p with

p < k < pn for some positive integer n ≥ 2, then

S(pn, k) ≡





0 (mod p2), if sp(k) > p;

( p

knτ ,··· ,kn1 ,p−
∑τ−1

r=1 knr

)
S(p−∑τ−1

r=0 knτ−r , k0) (mod p2), otherwise,

(3.62)

where knτ , knτ−1 , · · · , kn1 are the non zero p-adic digits of k.

Proof. For n = 2, the result follows from Theorem 3.3.11. So, let n > 2. Let

k =
∑t

r=0 krp
r such that for each 1 ≤ r ≤ t, kr is the r-th p-adic digit of k

and k0 ̸= 0 ̸= kt. Removing all the zero digits from the expression of k, we can

re-write

k =
τ∑

r=0

knrp
nr , (3.63)

where knr ̸= 0 for every r with 1 ≤ r ≤ τ . Then from (1.39), we have

(
k

knτp
nτ

)
S(pn, k) =

pn∑

i=0

(
pn

i

)
S(i, knτp

nτ )S(pn − i,
τ−1∑

r=0

knrp
nr). (3.64)

The binomial coefficients on the right-hand side in (3.64) are divisible by p2 unless
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i is divisible by pn−1 and hence the preceding equation reduces to

S(pn, k) ≡
p∑

i=0

(
pn

ipn−1

)
S(ipn−1, knτp

τ )S(pn − ipn−1,
τ−1∑

r=0

knrp
nr) (mod p2).

(3.65)

Here,
(

pn

ipn−1

)
≡

(
p
i

)
(mod p2) and each of these binomial coefficients are divisible

by p unless i = 0 or p. Using (3.1), we observe that S(ipn−1, knτp
τ ) is divisible

by pnτ if i ̸= knτ . Moreover, S(knτp
n−1, knτp

nτ ) ≡ 1 (mod p), and so,

S(pn, k) ≡
(

p

knτ

)
S(pn − knτp

n−1,
τ−1∑

r=0

knrp
nr) (mod p2). (3.66)

Let Uj = S((p−∑j
r=0 knτ−r)p

n−1,
∑τ−j−1

r=0 knrp
nr), we then have

(∑τ−1
r=0 knrp

nr

knτ−1p
nτ−1

)
U0 =

(p−knτ )p
n−1∑

i=0

(
(p− knτ )p

n−1

i

)
S(i, knτ−1p

nτ−1)

× S((p− knτ )p
n−1 − i,

τ−2∑

r=0

knrp
nr). (3.67)

Using the same technique as in the proof of Theorem 3.3.11, we obtain

U0 ≡
p−knτ∑

i=0

(
(p− knτ )p

n−1

ipn−1

)
S(ipn−1, knτ−1p

nτ−1)

× S((p− knτ )p
n−1 − ipn−1,

τ−2∑

r=0

knrp
nr) (mod p) (3.68)

which also yields the following:

U0 ≡





0 (mod p), if knτ + knτ−1 ≥ p;

(
p−knτ
knτ−1

)
U1 (mod p), otherwise.

(3.69)

Combining (3.66) with the preceding congruence, we get

S(pn, k) ≡





0 (mod p2), if knτ + knτ−1 ≥ p;

(
p

knτ ,knτ−1 ,p−knτ−knτ−1

)
U1 (mod p2), otherwise.
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We employ the same technique recursively to get the congruence

S(pn, k) ≡





0 (mod p2), if
∑τ−1

r=0 knτ−r ≥ p;

( p

knτ ,··· ,kn1 ,p−
∑τ−1

r=1 knr

)
Uτ−1 (mod p2), otherwise.

(3.70)

Now applying the minimum period on Uτ−1 = S((p − ∑τ−1
r=0 knτ−r)p

n−1, k0), we

get the desired result.

Corollary 3.3.5. Let p be an odd prime.

(a) Let k =
∑t

i=0 kip
i > p be the p-adic expansion of k with k0 ̸= 0. If sp(k) ≤ p

and tp(p− sp(k) + k0, p− sp(k)) = 0, then vp(S(p
2, k)) = 1.

(b) If n ≥ 2, sp(k) < p, and 1 < kp+ 1 < pn, then vp(S(p
n, kp+ 1)) = 1.

(c) If p ∤ k and k < pm ≤ pn, then S(pn, k) ≡ S(pm, k) (mod p2).

Remark 3.3.5. From Corollary 3.3.5(a), we observe that tp(p− sp(k) + k0, p−

sp(k)) = 0 when sp(k) = p−1; sp(k) = p−2 and vp(3p−3k1−5) = 0; sp(k) = p−3;

sp(k) = p− 4 and vp(15n
3 − 150n2 + 485n− 502) = 0 and so on.

3.4 Conclusions

We study the congruence properties of Stirling numbers of the second kind to

obtain their p-adic valuations. We extend the results of Chan and Manna (2010)

(for S(n, kpm) (mod pm)) to a higher congruence for some special cases. If n and k

are opposite parity, we find out that vp(S(n, kp
m)) is always greater than or equal

to m and the estimates of the valuation gets doubled when p− 1 | n− 1− k, i.d.,

vp(S(n, kp
m)) ≥ 2m. We prove that for even integer k, vp(S(p

n, kpm)) ≥ n+ 2m

unless k = p− 1 and m = 1, in which case the p-adic valuation is exactly n+ 1;

the same result is then strengthened to congruence modulo p4m+n. We establish

a congruence recurrence for S(n + kp, kp) in k for different classes of n. The
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recurrence for the case n = tp − 1 with t = p − k is used to evaluate the p-adic

valuation vp(S(p
2, kp)) ≥ 5, this confirms the lower bound of Conjecture 2.3.1 is

true.
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Congruence Relation Between

Stirling Numbers of the First and

Second Kind3

4.1 Introduction

Stirling numbers of the second kind are known to have various relations with

the first kind. Stenlund (2019) derived some interesting relations, which include

the following:

N =
N∑

m=1

m∑

j=1

s(m, j)

j∑

k=1

S(j, k) =
N∑

m=1

m∑

j=1

S(m, j)

j∑

k=1

s(j, k)

and

(S(N + 1,m)− S(N,m− 1))s(m,n) = (s(m,n− 1)− s(m+ 1, n))S(N,m).

This chapter studies the congruence relations between Stirling numbers of the

first and second kind. The main results include the congruences for S(n, kpm)

and s(kpm, n) explicitly in terms of binomial coefficient when n ≡ k (mod p−1).

We further obtain congruences for S(n, k) and s(k, a) in modulo p, pm and pn

where m = ⌊logp(k)⌋ and n ≥ m. We express the congruences to more simpler

3Indian Journal of Pure and Apllied Mathematics, (2024)
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forms in certain cases. The exact values of vp(S(n, k)) and vp(s(n, k)) for some

special cases are obtained. We also discuss the cases of same congruence property

for S(n, k) and S(n− 1, k − 1).

4.2 Preliminaries

The generating functions of S(n, k) and s(n, k) play a significant role in ob-

taining their congruence properties. We will assume p as an odd prime unless

stated otherwise. We use the congruence property of the polynomial (Chan and

Manna, 2010)
kpm∏

i=1

(1− ix) ≡ (1− xp−1)kp
m−1

(mod pm). (4.1)

If we replace x with 1/y, we get

kpm∏

i=1

(1− ix) =
1

ykpm

kpm∏

i=1

(y − i) and (1− xp−1)kp
m−1

=
1

yk(p−1)pm−1 (y
p−1 − 1)p

m−1

.

It follows that

kpm∏

i=1

(y − i) ≡ ykp
m−1

(yp−1 − 1)kp
m−1

(mod pm). (4.2)

We can also write this result as

xkpm ≡ xkpm−1

(xp−1 − 1)kp
m−1

(mod pm). (4.3)

Replacing x by −x in Equations (4.1) and (4.3), we obtain

kpm∏

i=1

(1 + ix) ≡ (1− xp−1)kp
m−1

(mod pm) (4.4)

and

xkpm ≡ (−1)kxkpm−1

(xp−1 − 1)kp
m−1

(mod pm). (4.5)
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Davis and Webb (1993) proved, for a prime p > 3, that

(
np

kp

)
≡

(
n

k

)
(mod pe), (4.6)

where e = 3 + vp(n) + vp(k) + vp(n − k) + vp(
(
n
k

)
). With the help of Equation

(4.6), it is easy to confirm

(1− x)p
n ≡ (1− xpn−m

)m (mod pm+1) (4.7)

for any integers n and m such that 0 ≤ m ≤ n.

4.3 Main Results

In this section, we prove the main results of this chapter which are presented

in theorems and corollaries. The first theorem gives the congruence relations

between Stirling numbers of the first kind and Binomial coefficients.

Theorem 4.3.1. If p is an odd prime and k is a positive integer not divisible by

p, then for any positive integer m, the following congruences hold:

a) s(kpm, kpm − b) ≡ (−1)ks(kpm, kpm−1 + b) (mod pm),

b) s(kpm, kpm − b) ≡
(
kpm−1

b
p−1

)
(−1)

b
p−1 (mod pm),

if b ≡ 0 (mod p− 1) and b ≤ k(p− 1)pm−1.

c) s(kpm, b) ≡ 0 (mod pm),

if b ≤ kpm−1 or kpm−1 − b ̸≡ 0 (mod p− 1).

d) s(kpm, b) ≡ s(kpm + 1, b+ 1) (mod pm),

for any integer b such that 1 ≤ b ≤ kpm − 1.
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Proof. We know that

kpm−1∏

i=1

(1− ix) =

kpm−1∑

i=0

s(kpm, kpm − i)xi

xkpm =

kpm∑

i=0

s(kpm, i)xi.

Due to Equations (4.1) and (4.3), we get

kpm−1∏

i=1

(1− ix) ≡ (1− xp−1)kp
m−1

(mod pm);

xkpm ≡ xkpm−1

(xp−1 − 1)kp
m−1

(mod pm).

It follows that

kpm−1∑

i=0

s(kpm, kpm − i)xi ≡
kpm−1∑

j=0

(
kpm−1

j

)
(−1)jxj(p−1) (mod pm);

kpm∑

i=0

s(kpm, i)xi ≡ xkpm−1

kpm−1∑

j=0

(
kpm−1

j

)
(−1)k−jxj(p−1) (mod pm).

Comparing the coefficients of xb, we get the first three results, and the last result

is obtained from the congruence

kpm∏

i=1

(1− ix) ≡
kpm−1∏

i=1

(1− ix) (mod pm). (4.8)

Hence, the theorem follows.

Corollary 4.3.1. Let n = kpm, m ≥ 1, be an integer with only one non-zero

p-adic digit, and p > 3 be a prime. Then, s(n, a) is divisible by p if and only if

n ̸≡ a (mod (p− 1)pm−1). Further, s(n, a) is divisible by pt+1, 0 ≤ t ≤ m− 1, if

and only if n− a < kpm−1 or n ̸≡ a (mod (p− 1)pm−1−t).

Proof. Follow the proof of Theorem 4.3.1 and use Equation (4.7).

Corollary 4.3.2. For an odd prime p and integers k and m such that p ∤ k and
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m ≥ 1, we have

vp(s(kp
m + 1, a+ 1)) = vp(s(kp

m, a)) = m− 1− vp(a), (4.9)

whenever m− 1 > vp(a), kp
m−1 ≤ a ≤ kpm, and k ≡ a (mod p− 1).

Proof. The proof is based on the equality vp(
(
apn

bpm

)
) = n − m when p ∤ a, p ∤ b,

and n > m.

Remark 4.3.1. If n ≥ m, the p-adic valuation of the binomial coefficient
(
apn

bpm

)
is

equal to vp(
(

a
bpm−n

)
). It follows that if m− 1 ≤ vp(a) and vp(

(
k

kp−ap1−m

)
) ≤ m− 1,

we have

vp(s(kp
m + 1, a+ 1)) = vp(s(kp

m, a)) = vp

(( k

kp− ap1−m

))
. (4.10)

It is also trivial from Theorem 4.3.1 that

Min{vp(s(kpm + 1, a+ 1)), vp(s(kp
m, a))} ≥ m (4.11)

when a < kpm−1 or kpm−1 − a ̸≡ 0 (mod p− 1).

The following theorem is a generalization of Theorem 4.3.1.

Theorem 4.3.2. For an odd prime p and positive integers k, m, a, and b, the

following congruences hold;

s(kpm+a, kpm−1+b) ≡
∑

i

(−1)k−i

(
kpm−1

i

)
s(a, b− i(p−1)) (mod pm) (4.12)

if b ≤ a+ k(p− 1)pm−1, and

s(kpm + a, b) ≡ 0 (mod pm). (4.13)

if b ≤ kpm−1.

Proof. We have

xkpm+a =

kpm+a∑

i=0

s(kpm + a, i)xi (4.14)
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and

xkpm+a =

kpm∏

i=0

(x− i)
a−1∏

i=1

(x− (kpm + i))

≡ xkpm−1

(xp−1 − 1)kp
m−1

xa (mod pm)

≡ xkpm−1

kpm−1∑

i=0

(
kpm−1

i

)
(−1)k−ixi(p−1)

a∑

j=0

s(a, j)xj (mod pm). (4.15)

Comparing the coefficients of xkpm−1+b in the RHS of Equations (4.14) and (4.15),

we obtain

s(kpm + a, kpm−1 + b) ≡
∑

i(p−1)+j=b

(−1)k−i

(
kpm−1

i

)
s(a, j) (mod pm). (4.16)

Changing the index j to b− i(p− 1) confirms the first result of the theorem. The

coefficient of xn on the right-hand side of Equation (4.15) vanishes if n ≤ kpm−1;

hence, the second result follows.

The following corollaries are special cases of the preceding theorem.

Corollary 4.3.3. For an odd prime p and positive integers k, m, a, and b;

(i) λk,pm

a,b ≡ (−1)ks(a, b) (mod pm) if b ≤ p− 1,

(ii) vp(λ
k,pm

p−1,b) =





m− 1− vp(⌊ b
p−1

⌋), if (p− 1) ∤ b and ⌊ b
p−1

⌋ < pm−1;

m− 1− vp(
b

p−1
− 1), if (p− 1) | b and b

p−1
< pm−1,

where λk,pm

a,b = s(kpm + a, kpm−1 + b).

Proof. On observation of Equation (4.16), we can see that;

(i) If b ≤ p− 1, then the only solution of i(p− 1) + j = b for (i, j) is (0, b), unless

b = p − 1, in which case there are two solutions, namely (0, p − 1) and (1, 0).

The corresponding term for the solution (1, 0) vanishes as s(a, 0) = 0. Hence, (i)

follows.

(ii) Let b = q(p−1)+r such that 0 ≤ r < p−1. The only solution of i(p−1)+j =
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q(p− 1) + r with j ≤ p− 1 is (i, j) = (q, r), if r ̸= 0. Thus, we get

s(kpm + p− 1, kpm−1 + b) ≡ (−1)k−q

(
kpm−1

q

)
s(p− 1, r) (mod pm). (4.17)

Now, we obtain the congruence for s(p− 1, b):

We have

xp−1 =
xp

x− p+ 1
≡ (xp − x)(1− x+ x2 − · · · ) (mod p).

It follows that

p−1∑

i=0

s(p− 1, i)xi ≡ −x+ x2 − x3 + · · ·+ xp−1 (mod p)

and

s(p− 1, i) ≡ (−1)i (mod p) (4.18)

if 1 ≤ i ≤ p− 1.

Therefore, the valuation of the binomial coefficient
(
kpm−1

q

)
is m− 1− vp(q) and

s(p− 1, r) is not divisible by p. Thus, the first case of (ii) follows.

On the other hand, if r = 0 or b = q(p − 1), then there are two solutions of

i(p− 1) + j = q(p− 1), namely (q, 0) and (q− 1, p− 1). The corresponding term

for the index (q, 0) is zero since s(p − 1, 0) = 0. Following the proof of the first

result, we get the second case of (ii).

Corollary 4.3.4. For an odd prime p and positive integers k, m, a, and b;

s(kpm + a, kpm−1 + b) ≡ (−1)q
(
kpm−1

q

)
s(a, r) (mod pm)

if a < p− 1 and b = q(p− 1) + r with 0 ≤ r < p− 1.

Proof. Given Equation (4.16), the only solution of i(p− 1) + j = q(p− 1) + r is

(i, j) = (q, r). Hence the result follows.

Remark 4.3.2. The p-adic valuations of large classes of Stirling numbers of the

first kind can be obtained using Theorem 4.3.1, Corollaries 4.3.3, and 4.3.4. The
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first result of Corollary 4.3.4 yields the following exact p-adic valuation,

vp(s(kp
m + a, kpm−1 + b)) = m− 1− vp

(⌊ b

p− 1

⌋)
, (4.19)

if b ≡ 1, a, a−1 or a−3 (mod p−1), assuming conditions of the corollary apply.

Theorem 4.3.3. Let p be an odd prime and k, a, b, m, and t be positive integers

such that max{k, a} ≤ p− 1, t < m, and b ≤ apt. Then,

ηkp
m

apt,b ≡





s(apt, b) (mod pm), if a ̸≡ b (mod p− 1) or b < apt−1;

s(apt, b) (mod pm−vp(b)−1), otherwise,

(4.20)

where ηka,b = s(k + a, k + b).

Proof. Replace a and b in Equation (4.16) with apt and k(p− 1)pm−1+ b, respec-

tively; we obtain

s(kpm+apt, kpm+b) ≡
∑

i(p−1)+j=k(p−1)pm−1+b

(−1)k−i

(
kpm−1

i

)
s(apt, j) (mod pm).

If we replace the index j with (kpm−1 − i)(p− 1) + b, we get

s(kpm+a, kpm+b) ≡
∑

i

(−1)k−i

(
kpm−1

i

)
s(a, (kpm−1−i)(p−1)+b) (mod pm).

By reversing the index, we get

s(kpm+apt, kpm+ b) ≡
∑

i

(−1)i
(
kpm−1

i

)
s(apt, b+ i(p−1)) (mod pm). (4.21)

Using Theorem 4.3.1, s(apt, b + i(p − 1)) is divisible by pt if a ̸≡ b (mod p − 1)

or b < apt−1. The valuation of
(
kpm−1

i

)
is m − 1 − vp(i) unless i = 0. Thus, the

valuation of the i−th terms, i ̸= 0, of the right-hand side of Equation (4.21) is

greater than or equal to m− 1+ t− vp(i). The range of the index i is determined

by the inequality b ≤ b + i(p − 1) ≤ apt, which implies that 0 ≤ i ≤ a
∑t−1

r=0 p
r.

It follows that vp(i) ≤ t− 1 and consequently m− 1 + t− vp(i) ≥ m. Hence, pm

divides all the i − th terms except the term with i = 0. Thus, the first case of

83



Chapter 4

the theorem follows.

Now, we assume that a ≡ b (mod p− 1) and apt−1 ≤ b ≤ apt. Therefore, we can

express b as apt − q(p− 1) with 0 ≤ q < apt−1. Equation (4.21) becomes

s(kpm+ apt, kpm+ b) ≡
∑

i

(−1)i
(
kpm−1

i

)
s(apt, apt− (q− i)(p− 1)) (mod pm).

(4.22)

Given Theorem 4.3.1, the valuation of the i-th term on the RHS of the preceding

congruence is m+ t− 2− vp(i)− vp(q− i) if i > 0. Therefore, two sub cases arise,

namely vp(q) < vp(i) and vp(i) ≤ vp(q);

If vp(q) < vp(i), we have vp(q − i) = vp(q) and

m+ t− 2− vp(i)− vp(q − i) = m− 1− vp(q) + (t− 1− vp(i)) ≥ m− 1− vp(q),

since vp(i) ≤ t− 1.

If vp(i) ≤ vp(q), we get

m+ t− 2− vp(i)− vp(q− i) ≥ m− 1− vp(q)+ (t− 1− vp(q− i)) ≥ m− 1− vp(q),

since vp(q − i) ≤ t− 1.

The equality b = apt − q(p− 1) also implies that vp(b) = vp(q) for the given con-

dition. It follows that all the terms except when i = 0 are divisible by pm−1−vp(b).

Hence, the second case of the theorem follows.

4.3.1 Valuations of S(n, kpm)

Using Equations (4.38) and (4.1), we have the following result (see Chan and

Manna (2010));

∞∑

n=0

S(n+ kpm, kpm)xn ≡
∞∑

j=0

(
kpm−1 + j − 1

j

)
xj(p−1) (mod pm), (4.23)
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which implies S(n, kpm) ≡ 0 (mod pm) if n ̸≡ k (mod p− 1); otherwise,

S(kpm + a, kpm) ≡
(
kpm−1 + a

p−1
− 1

kpm−1 − 1

)
(mod pm) (4.24)

for any non-negative integer a with a ≡ 0 (mod p− 1).

Due to Equation (4.8), we also have the congruence

S(kpm + a− 1, kpm − 1) ≡ S(kpm + a, kpm) (mod pm). (4.25)

The following theorem is a consequence of Equations (4.23), (4.24), and (4.25).

Theorem 4.3.4. Let p be an odd prime and k be an integer not divisible by p.

For any positive integer n such that n ≡ k (mod p−1) and n < kpm+(p−1)pm−1

with m > 1;

vp(S(n− 1, kpm − 1)) = vp(S(n, kp
m)) = m− 1− vp(n). (4.26)

If n ̸≡ k (mod p− 1), then

min{vp(S(n, kpm)), vp(S(n− 1, kpm − 1))} ≥ m. (4.27)

Proof. The second result is trivial from Equations (4.23) and (4.25).

We assume n ≥ kpm and let n = kpm + b(p− 1) with b < pm−1. From Equations

(4.24) and (4.25), we have

S(kpm + b(p− 1)− 1, kpm − 1) ≡ S(kpm + b(p− 1), kpm) (mod pm)

≡
(
kpm−1 + b− 1

b

)
(mod pm).

The p-adic valuation of the above binomial coefficient is given as

vp

((kpm−1 + b− 1

b

))
=

sp(b) + sp(kp
m−1 − 1)− sp(kp

m−1 + b− 1)

p− 1
, (4.28)
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and we have

sp(kp
m−1 − 1) = sp((k − 1)pm−1 + pm−1 − 1)

= sp((k − 1)pm−1) + sp(p
m−1 − 1)

= sp(k − 1) + (m− 1)(p− 1). (4.29)

Further, k is not divisible by p and then sp(k−1) = sp(k)−1. Therefore, Equation

(4.29) reduces to

sp(kp
m − 1) = sp(k) + (m− 1)(p− 1)− 1. (4.30)

Since m > 1 and b < pm−1, we have

sp(kp
m−1 + b− 1) = sp(kp

m−1) + sp(b− 1)

= sp(k) + sp(b− 1). (4.31)

Let b = b′pvp(b), p ∤ b′, for some positive integer b′. Replacing kpm with b in

Equation (4.30), we get

sp(b− 1) = sp(b)− 1 + vp(b)(p− 1) (4.32)

since sp(b) = sp(b
′). Therefore, combining Equations (4.28), (4.30), (4.31), and

(4.32), we get

vp

((kpm−1 + b− 1

b

))
= m− 1− vp(b).

It is also trivial from our assumption of b that vp(b) = vp(n). Hence the theorem

follows.

Definition 4.3.1. Let a be a positive integer whose p-adic expansion is given by

a = a0 + a1p+ a2p
2 + · · ·+ atp

t.
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For a fixed integer k, 1 ≤ k ≤ p− 1, we define ρp,k,m(a) as

ρp,k,m(a) =





0 if k + am < p,

1 + n if k + am ≥ p and am+1 = · · · = am+n = p− 1 ̸= am+n+1.

(4.33)

Here, ρp,k,m(a) is the number of carries when adding a and kpm in base p. Using

Kummer’s theorem, we can see that ρp,k,m(a) is, in fact, vp(
(
a+kpm

a

)
).

The preceding theorem restricts the value of n to less than some particular value.

The following theorem gives an alternate result of Theorem 4.3.4 when there is

no restriction on the values of n but restrict k < p.

Theorem 4.3.5. Let p be an odd prime and k be a positive integer less than p.

For positive integers m and n such that n ≡ k (mod p− 1);

vp(S(n− 1, kpm − 1)) = vp(S(n, kp
m)) = ρp,k−1,m−1

(n− kpm

p− 1

)
, (4.34)

if ρp,k−1,m−1(
n−kpm

p−1
) ≤ m − 1 ≤ vp(n). However, if ρp,k,m−1(

n−kpm

p−1
) ≤ vp(n) <

m− 1, then

vp(S(n− 1, kpm − 1)) = vp(S(n, kp
m)) = m− 1− vp(n) + ρp,k,m−1

(n− kpm

p− 1

)
.

(4.35)

Proof. Since n ≡ k (mod p − 1), we can write n = kpm + a(p − 1). Let a =
∑q

i=0 aip
i be the p-adic expansion of a = n−kpm

p−1
for some positive integer q. To

prove the theorem, it is enough to obtain vp(
(
kpm−1+a−1

a

)
) for both cases. For the

first case, we have

a = a′pt

for some positive integers a′ and t such that p ∤ a′ and t ≥ m− 1. Therefore,

sp(kp
m−1 + a′pt − 1) = sp(k + a′pt−m+1 − 1) + sp(p

m−1 − 1)

87



Chapter 4

and

sp(kp
m−1 − 1) = k − 1 + sp(p

m−1 − 1).

Thus, the valuation of the binomial coefficient is

vp

((kpm−1 + a− 1

a

))
=

sp(a
′)− sp(k − 1 + a′pt−m+1) + k − 1

p− 1
. (4.36)

Suppose t > m−1, the sum of the digits sp(k−1+a′pt−m+1) can be split into the

sum sp(k−1)+sp(a
′) since we assume 1 ≤ k ≤ p−1. In this case, the valuation of

the binomial coefficient becomes zero, which is also equal to ρp,k,m−1(a), since the

(m− 1)-th p-adic digit of a is zero and k + am−1 = k < p. Now, we assume that

vp(a) = m− 1, which means that t = m− 1 and a′ = am−1 + amp+ am+1p
2 + · · · .

It follows that if k − 1 + am−1 < p, then

sp(kp
m−1 + a− 1) = sp(a) + sp(kp

m−1 − 1)

and vp(
(
kpm−1+a−1

a

)
) = 0 = ρp,k−1,m−1(a).

If k − 1 + am−1 > p, then

a = am−1p
m−1 + (p− 1)

m−2+ρp,k−1,m−1(a)∑

i=m

pi +

q∑

i=m−1+ρp,k−1,m−1(a)

aip
i,

kpm−1 + a− 1 = (am−1 + k − 1− p)pm−1

+ (am−1+ρp,k−1,m−1(a) + 1)pm−1+ρp,k−1,m−1(a)

+

q∑

i=m+ρp,k−1,m−1(a)

aip
i,

which implies

sp(a) = am−1 + (p− 1)(ρp,k−1,m−1(a)− 1) +

q∑

i=m+ρp,k−1,m−1(a)

ai,
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sp(kp
m−1 + a− 1) = k − p+ am−1 +

q∑

i=m+ρp,k−1,m−1(a)

ai

= sp(a)− (p− 1)ρp,k−1,m−1(a) + k − 1.

Therefore, we get

vp

((kpm−1 + a− 1

a

))
=

sp(a)− sp(k − 1 + a) + k − 1

p− 1

= ρp,k−1,m−1(a).

Using this valuation in Equation (4.24), the first result of the theorem follows.

The second result of the theorem can be obtained through the same method.

Remark 4.3.3. If there is no restriction on the value of k and vp(a) < m − 1,

we can write a as a = cpm−1 + b, where b < pm−1. Therefore,

vp

((kpm−1 + a− 1

a

))
= m− 1− vp(b) + vp

((k + c

c

))
.

For vp(a) ≥ m− 1, we have a = cpm−1 for some integer c and hence

vp

((kpm−1 + a− 1

a

))
= vp

((k + c− 1

c

))
.

If the valuations obtained are less than m − 1 for both cases, then they are the

valuations of S(kpm + a(p− 1), kpm) for both cases.

Theorem 4.3.6. Let p be a prime greater than 3 and n, k, and m be positive

integers. Then, p divides S(n, kpm) if n ̸≡ k (mod (p− 1)pm−1). More precisely,

pt+1, 0 ≤ t ≤ m− 1, divides S(n, kpm) if n ̸≡ k (mod (p− 1)pm−1−t).

Proof. The theorem can be proved using Equations (4.38), (4.1), and (4.7).

4.3.2 Congruence relation between S(n, k) and s(n, k)

Now, we establish congruence relations between Stirling numbers of the first

and the second kind using their generating functions. The next theorem gives
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the results for S(n, k) modulo p. We use the notation [n] to denote the set

{0, 1, 2, · · · , n} for simplicity.

Theorem 4.3.7. Let p be an odd prime and n, k, a, and d are positive integers

such that a < p and 0 ≤ d < p− 1, then

S(n, kp+ a) ≡ (−1)ds(p− a, p− a− d)

(n−k−a−d
p−1

k

)
(mod p)

if n− k − a ≡ d (mod p− 1) for some d ∈ [p− 1− a], and

S(n, kp+ a) ≡ 0 (mod p)

if n− k − a ̸≡ d (mod p− 1) for any d ∈ [p− 1− a].

Proof. We have

1∏kp+a
i=1 (1− ix)

=

∏(k+1)p
i=kp+a+1(1− ix)
∏(k+1)p

i=1 (1− ix)
,

and we get the following congruences:

1∏kp+a
i=1 (1− ix)

≡
∏p−a−1

i=0 (1 + ix)

(1− xp−1)k+1
(mod p),

∞∑

n=0

S(n+ a′, a′)xn ≡
p−a−1∑

i=0

sp−a
i (−1)ixi

∞∑

j=0

(
k + j

j

)
xj(p−1) (mod p),

where a′ = kp+ a and sp−a
i = s(p− a, p− a− i).

It follows that if n ≡ d (mod p− 1) for d ∈ [p− a− 1], then

S(n+ kp+ a, kp+ a) ≡ (−1)d
(
k + n−d

p−1

k

)
s(p− a, p− a− d) (mod p), (4.37)

and if n ̸≡ d (mod p− 1) for any d ∈ [p− a− 1], then

S(n+ kp+ a, kp+ a) ≡ 0 (mod p). (4.38)

If we replace n+kp+a with n in Equations (4.37) and (4.38), we get the required

results.
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Remark 4.3.4. The following results are consequences of Theorem 4.3.7, specif-

ically for the prime p = 3 and p = 5:

For p = 3, we have two classes (since p− 1 = 2) for each a ∈ {0, 1, 2}. We get

the following congruences:

S(n, 3k) ≡





(n−k
2
k

)
(mod 3), if n− k is even;

0 (mod 3), if n− k is odd,

S(n, 3k + 1) ≡





(n−k−1
2
k

)
(mod 3), if n− k is odd;

(n−k−2
2
k

)
(mod 3), if n− k is even,

S(n, 3k + 2) ≡





(n−k−2
2
k

)
(mod 3), if n− k is even;

0 (mod 3), if n− k is odd.

For p = 5, we have four classes (since p − 1 = 4) for each a ∈ {0, 1, 2, 3, 4}.

We get the following congruences:

S(n, 5k) ≡





(n−k
4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ̸≡ k (mod 4),

S(n, 5k + 1) ≡





s(4, 4)
(n−k−1

4
k

)
≡

(n−k−1
4
k

)
(mod 5), if n ≡ k + 1 (mod 4);

s(4, 3)
(n−k−2

4
k

)
≡

(n−k−2
4
k

)
(mod 5), if n ≡ k + 2 (mod 4);

s(4, 2)
(n−k−3

4
k

)
≡

(n−k−3
4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

s(4, 1)
(n−k−4

4
k

)
≡

(n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4),

91



Chapter 4

S(n, 5k + 2) ≡





s(3, 3)
(n−k−2

4
k

)
≡

(n−k−2
4
k

)
(mod 5), if n ≡ k + 2 (mod 4);

s(3, 2)
(n−k−3

4
k

)
≡ 3

(n−k−3
4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

s(3, 1)
(n−k−4

4
k

)
≡ 2

(n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1 (mod 4),

S(n, 5k + 3) ≡





s(2, 2)
(n−k−3

4
k

)
≡

(n−k−3
4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

s(2, 1)
(n−k−4

4
k

)
≡

(n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1 or k + 2 (mod 4),

S(n, 5k + 4) ≡





(n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1, k + 2, or k + 3 (mod 4).

In the case of S(n, 5k), the multiplier s(5, 5−d) where d ∈ {0, 1, 2, 3} is divisible

by 5 except when d = 0. It is also easy to see that the binomial coefficients on

the RHS of the above equations reduce to 1 if k = 0. This observation leads us to

acquire the following exact p-adic valuations:

For a prime p = 3 and any positive integer n,

a) v3(S(2n, 2)) = 0,

b) v3(S(6n+ 3, 3)) = v3(S(6n+ 5, 3)) = 0,

c) v3(S(6n, 4)) = v3(S(6n+ 1, 4)) = v3(S(6n+ 4, 4)) = v3(S(6n+ 5, 4)) = 0,

d) v3(S(6n+ 1, 5)) = v3(S(6n+ 1, 5)) = 0,

e) v3(S(6n, 6)) = 0,

f) v3(S(6n+ 1, 7)) = v3(S(6n+ 2, 7)) = 0,

g) v3(S(6n, 6)) = 0.

92



Chapter 4

For a prime p = 5, we have the following p-adic valuations:

a) v5(S(4n, 2)) = v5(S(4n+ 2, 2)) = v5(S(4n+ 3, 2)) = 0,

b) v5(S(4n, 3)) = v5(S(4n+ 3, 3)) = 0,

c) v5(S(4n, 4)) = 0,

d) v5(S(20n+ r, 5)) = 0, if r ∈ {5, 9, 13, 17},

e) v5(S(20n+ r, 6)) = 0, if r ∈ [19] \ {2, 3, 4, 5},

f) v5(S(20n+ r, 7)) = 0, if r ∈ [19] \ {2, 3, 4, 5, 6, 10, 14, 18},

g) v5(S(20n+ r, 8)) = 0, if r ∈ {0, 1, 8, 9, 12, 13, 16, 17},

h) v5(S(20n+ r, 9)) = 0, if r ∈ {1, 9, 13, 17}.

The following theorem gives a generalization of Theorem 4.3.7 from modulo p to

modulo pm.

Theorem 4.3.8. For an odd prime p and positive integers k, b, m, and n such

that b < pm−1, the following congruences hold;

S(n+ b′, b′) ≡
∑

j

(−1)n
(
(k + 1)pm−1 + j − 1

j

)
s(c, c− n+ j(p− 1)) (mod pm)

(4.39)

and

s(b′, b′−n) ≡
∑

j

(−1)n+j

(
(k + 1)pm−1

j

)
S(n−j(p−1)+c, c) (mod pm), (4.40)

where c = pm − b and b′ = kpm + b.

Proof. We have

1∏kpm+b
i=1 (1− ix)

=

∏(k+1)pm

i=kpm+b+1(1− ix)
∏(k+1)pm

i=1 (1− ix)
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and

kpm+b−1∏

i=1

(1− ix) =

∏(k+1)pm

i=1 (1− ix)
∏(k+1)pm

i=kpm+b(1− ix)
.

We obtain the following two congruences

1∏kpm+b
i=1 (1− ix)

≡
∏pm−b−1

i=1 (1 + ix)

(1− xp−1)(k+1)pm−1 (mod pm), (4.41)

and

kpm+b−1∏

i=1

(1− ix) ≡ (1− xp−1)(k+1)pm−1

∏pm−b
i=0 (1 + ix)

(mod pm). (4.42)

Equations (4.41) and (4.42) generate Equations (4.39) and (4.40), respectively.

Hence the theorem follows.

Theorem 4.3.9. For an odd prime p and positive integers k, a, m, and n such

that kpm < pn and m+ 1 ≤ n, the following congruences hold;

S(a+kpm, kpm) ≡ (−1)a
∑

j

(
pn−1 + j − 1

j

)
s(bpm, bpm−a+j(p−1)) (mod pn)

(4.43)

and

s(kpm, kpm − a) ≡
∑

j

(−1)a+j

(
pn−1

j

)
S(a− j(p− 1) + bpm, bpm) (mod pn),

(4.44)

where b = pn−m − k.

Proof. Using the same technique as in the proof of Theorem 4.3.8, we obtain the

following two congruences;

1∏kpm

i=1 (1− ix)
≡

∏(pn−m−k)pm−1
i=1 (1 + ix)

(1− xp−1)pn−1 (mod pn) (4.45)

and

kpm−1∏

i=1

(1− ix) ≡ (1− xp−1)p
n−1

∏(pn−m−k)pm

i=0 (1 + ix)
(mod pn). (4.46)
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These two congruences generate the required results. Hence the theorem follows.

Remark 4.3.5. In the second result of the preceding theorem, the generating

function on the RHS of Equation (4.46) generates an infinite term. In contrast,

the LHS generates kpm − 1 terms only. It follows that the sum vanishes when

a ≥ kpm, i.e.,

∑

j

(−1)s
p−a
i ≡ (−1)a[S(a+ bpm, bpm)

− S(a− pm(p− 1) + bpm, bpm)] (mod pm+1), (4.47)

whenever p− 1 ∤ a. Moreover, if a < pm(p− 1) and p− 1 ∤ a, we obtain

s(kpm, kpm − a) ≡ (−1)aS(a+ bpm, bpm) (mod pm+1). (4.48)

We can utilize Theorem 4.3.9 to obtain some values of vp(S(n, kp
m)), which are

greater than or equal to m. Although Theorem 4.3.5 deals with vp(S(n, kp
m)),

the theorem is restricted to valuations less than or equal to m since the key con-

gruences used in Theorem 4.3.5 are in modulo pm. The congruences obtained in

Theorem 4.3.9 are in modulo pn for arbitrary n, usually greater than or equal to

m of S(n, kpm); the next theorem is an application of such congruence.

Theorem 4.3.10. Let p be an odd prime and a, u, k, and m be positive integers

such that p ∤ a and a ≡ 0 (mod p−1). If pm−1 ≤ u = a
p−1

< pm and u
pm−1 +k ≥ p,

then

vp(S(kp
m + a, kpm)) = m. (4.49)

Proof. Replace n and a in the first result of Theorem 4.3.9 withm+1 and u(p−1),
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respectively; we get

S(a+ kpm, kpm) ≡
∑

j

(
pm + j − 1

j

)
s(bpm, bpm − (u− j)(p− 1)) (mod pm+1)

(4.50)

where b = p− k.

Let u =
∑m−1

i=0 uip
i be the p-adic expansion of u. We know that s(bpm, bpm− (u−

j)(p− 1)) is divisible by pm if bpm − (u− j)(p− 1) < bpm−1 or j <
∑m−1

i=0 uip
i −

bpm−1 = α (say). We can also confirm that p divides
(
pm+j−1

j

)
if j < α, unless

j = 0, in which case s(bpm, bpm − (u − j)(p − 1)) = 0 since bpm − u(p − 1) < 0.

Thus, all the j-th terms with 0 ≤ j < α are divisible by pm+1, and we obtain

S(a+ kpm, kpm) ≡
u∑

j=α

(
pm + j − 1

j

)
s(bpm, bpm − (u− j)(p− 1)) (mod pm+1).

(4.51)

From Theorem 4.3.1(b), we have

s(bpm, bpm − (u− j)(p− 1)) ≡
(
bpm−1

u− j

)
(−1)u−j (mod pm). (4.52)

It follows that the p-adic valuation of each term on the RHS of Equation (4.51)

is m − vp(j) + m − 1 − vp(u − j). If p ∤ j and j ̸= u, then the valuation is

2m − 1 − vp(u − j), which is greater than or equal to m + 1 unless vp(u − j) =

m − 1. On the other hand, if p | j, then p ∤ (u − j), and the valuation becomes

2m− 1− vp(j), which is greater than or equal to m+ 1 unless vp(j) = m− 1. If

vp(u− j) = m− 1, then u− j = rpm−1 for some r, p ∤ r. If vp(j) = m− 1, then

j = tpm−1 for some t, p ∤ t. The only remaining term whose p-adic valuation is
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less than m+ 1 is the term with j = u. Thus, Equation (4.51) reduces to

S(a+ kpm, kpm) ≡
b∑

r=1

(
pm + u− rpm−1 − 1

pm − 1

)
s(bpm, bpm − r(p− 1)pm−1)

+

(
pm + u− rpm−1 − 1

pm − 1

)
s(bpm, bpm − r(p− 1)pm−1)

+

um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
s(bpm, bpm − (u− tpm−1)(p− 1)) (mod pm+1),

(4.53)

which can be written as

S(a+ kpm, kpm) ≡
b∑

r=0

(
pm + u− rpm−1 − 1

pm − 1

)
s(bpm, bpm − r(p− 1)pm−1)

+

um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
s(bpm, bpm − (u− tpm−1)(p− 1)) (mod pm+1).

(4.54)

Now, we have the following congruences

(
pm + u− rpm−1 − 1

pm − 1

)
=

pm

pm + u− rpm−1

(
pm + u− rpm−1

pm

)

≡ pm

u
(mod pm+1), (4.55)

s(bpm, bpm − rpm−1(p− 1)) ≡
(
bpm−1

rpm−1

)
(−1)r ≡

(
b

r

)
(−1)r (mod p), (4.56)

(
pm + tpm−1 − 1

pm − 1

)
=

pm

pm + tpm−1

(
pm + tpm−1

pm

)

≡ p

t
(mod p2), (4.57)
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and

s(bpm, θ) ≡
(

bpm−1

u− tpm−1

)
(−1)u−t (mod pm)

≡ bpm−1

u− tpm−1

(
bpm−1 − 1

u− tpm−1 − 1

)
(−1)u−t (mod pm)

≡ bpm−1

u

(
b− 1

um−1 − t

)
(−1)sp(u)−um−1−1(−1)u−t (mod pm)

≡ bpm−1

u

(
b− 1

um−1 − t

)
(−1)t−um−1−1 (mod pm), (4.58)

where θ = bpm − (u− tpm−1)(p− 1).

Let

X =
b∑

r=0

(
pm + u− rpm−1 − 1

pm − 1

)
s(bpm, bpm − r(p− 1)pm−1) (4.59)

and

Y =

um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
s(bpm, bpm − (u− tpm−1)(p− 1)). (4.60)

From Equations (4.55), (4.56), and (4.59), we get

X ≡ pm

u

b∑

r=1

(
b

r

)
(−1)r (mod pm+1)

≡ 0 (mod pm+1). (4.61)

From Equations (4.57), (4.58), and (4.60), we get

Y ≡ pm

u

um−1∑

t=um−1−b+1

b

t

(
b− 1

um−1 − t

)
(−1)t−um−1−1 (mod pm+1)

≡ pm

u

b−1∑

t=0

b

um−1 − t

(
b− 1

t

)
(−1)t−1 (mod pm+1)

≡ pm

u

b−1∑

t=0

b− t

um−1 − t

(
b

t

)
(−1)t−1 (mod pm+1). (4.62)
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Using partial fraction decomposition, we get

b−1∑

t=0

b− t

um−1 − t

(
b

t

)
(−1)b−t−1 =

1(
um−1

b

) . (4.63)

From Equations (4.54) and (4.59) – (4.63), we obtain

S(a+ kpm, kpm) ≡ (−1)bpm

u
(
um−1

b

) (mod pm+1). (4.64)

Since p ∤ u
(
um−1

b

)
,

vp(S(a+ kpm, kpm)) = m. (4.65)

Hence, the theorem holds.

The following theorem gives a generalization of Theorem 4.3.8 to congruence

modulo pn for any positive integer n greater than m.

Theorem 4.3.11. For an odd prime p and positive integers a, u, and n such that

a ≤ pn, the following two congruences holds;

S(u+a, a) ≡ (−1)u
∑

j

(
pn−1 + j − 1

j

)
s(pn−a, pn−a−u+ j(p−1)) (mod pn)

(4.66)

and

s(a, a−u) ≡
∑

j

(−1)u+j

(
pn−1

j

)
S(u−j(p−1)+pn−a, pn−a) (mod pn). (4.67)

Proof. The proof is similar to the proof of Theorems 4.3.8 and 4.3.9.

Remark 4.3.6. It follows from Theorem 4.3.11 that if 0 ≤ u < p − 1, then the

index j has only one possible value, which is j = 0. Therefore,

S(u+ a, a) ≡ (−1)us(pn − a, pn − a− u) (mod pn) (4.68)

and

s(a, a− u) ≡ (−1)uS(u+ pn − a, pn − a) (mod pn). (4.69)
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4.4 Conclusions

We study the congruence relationship between Stirling numbers of the first

and second kinds using their generating functions. We have developed some

powerful congruences for both S(n, k) and s(n, k) separately. The congruence

connecting the two numbers are also obtained. One of the interesting result is

that the congruence properties of S(n− 1, kpm − 1) and S(n, kpm) are the same.

We also find that some congruences developed in this chapter are effective in

finding their p-adic valuations. It is evident from the results that the congruence

obtained are more effective in evaluating p-adic valuations of S(n, k) when vp(k) is

non-zero (vp(n) in the case of s(n, k)). We even establish that a super congruence

in modulo pm for any m ∈ Z+ can be obtained for any S(n, k) in terms of a sum

containing products of Stirling numbers of the first kind and binomial coefficient

and vice versa.
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Periodicity and Divisibility of

Stirling Numbers of the Second

Kind4

5.1 Introduction

The sequence of Stirling numbers of the second kind, S(n, k) for a fixed k,

is periodic in modulo pN for a positive integer N and a prime p. Generally,

π(k; pN) denotes the minimum period of the sequence {S(n, k) (mod pN)}n≥0.

Trivially, π(1, pN) = 1 for any N ≥ 1. We denote γ(k; pN) as the greatest positive

integer such that S(γ(k; pN)−1, k) ̸≡ S(γ(k; pN)−1+π(k; pN), k) (mod pN) and

γ(k; pN) = 0 if there exists no such positive integer. Carlitz (1955) proved that

the period of Bell(r, s) (mod pk) is a divisor of

pk−l(pp
m − 1), pm−1 ≤ s < pm;

for s = 1, there is a slightly better period pk(pp− 1)/(p− 1) corresponding to the

known result (pp − 1)/(p − 1) in the case k = 1. Kwong (1989a) confirmed the

4Journal of Science and Technology, 11(01), 82–89 (2023)
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following minimum period:

1) π(1; 2N) = π(2; 2N) = 1, (5.1)

2) π(3, 2N) = π(4, 2N) =





2, if N = 1 or 2;

2N−1, if N ≥ 3,

(5.2)

3) π(k; pN) = 2N+b−2 if 2b−1 < k ≤ 2b, b ≥ 3, (5.3)

4) π(k; pN) = (p− 1)pN+b−2 if k > p > 2 and pb−1 < k ≤ pb. (5.4)

In this chapter, we use the periodicity properties and partial Stirling numbers

to obtain results about the divisibility of Stirling numbers of the second kind.

The main results include different congruence results of S(n, k) (mod pN), N ∈

Z+, where n and k are classified into different cases. We classify n base on its

divisibility relation with (p− 1)pN−1 or (p− 1)pN . On the other hand, different

cases of k are 1 ≤ k ≤ p, k = p, p ≤ k < 2p and k > p. The main results also

include evaluation of different values of vp(S(n, k)) in terms of sp(k) for different

classes of n and k. We present some applications of the results for primes p = 2

and p = 3.

5.2 Materials and Methods

Definition 5.2.1. For any prime p and positive integer k, the partial Stirling

numbers αp(n, k) and βp(n, k) are defined as

αp(n, k) =
∑

p|i

(
k

i

)
(−1)iin

and

βp(n, k) =
∑

p∤i

(
k

i

)
(−1)iin.
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Thus,

(−1)kk!S(n, k) = αp(n, k) + βp(n, k),

which follows

αp(n, k) ≡ 0 (mod pm) (5.5)

and

βp(n, k) ≡ (−1)kk!S(n, k) (mod pm), (5.6)

whenever m ≥ n.

Guo and Zhang (2014) proved the following identity

∞∑

k=−∞

(
2n

n+ 3k

)
(−1)k = 2 · 3n−1. (5.7)

Bach (1968) generalized the above identity as

∞∑

k=−∞

(
2n+ r

n+ 3k

)
(−1)k = 2 · 3n−1+ r

2 cos
rπ

6
(5.8)

for positive integers n and r.

Theorem 5.2.1. (Lundell, 1978) Let p be an odd prime. For positive integers r

and k such that r < k,

∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ 0 (mod pmax{⌊ k−r−1

p−1
⌋+vp(k),r}). (5.9)

The notation ⌊x⌋ denotes the greatest integer function of x. A stronger result

for the above result with a restriction on k such that r − (p − 1)⌊ r
p−1

⌋ − 1 ≤

k − (p− 1)⌊ k
p−1

⌋ and k > r > p is

∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ 0 (mod pmax{⌊ k

p−1
⌋−⌊ r

p−1
⌋+vp(k),r}). (5.10)

Another result analogous to Theorem 5.2.1 with restricted k to k−(p−1)⌊ k
p−1

⌋ <

r − (p− 1)⌊ r
p−1

⌋ − 1 is

Theorem 5.2.2. (Lundell, 1978) Let k = q(p− 1) + a = up+ b, 0 ≤ b < p, and
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1 ≤ r < p− 1. If 0 ≤ a < r − 1, then

i) for b = 0 or b > a+ 1:

∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ 0 (mod pq−1+vp(k)). (5.11)

ii) for b = a+ 1:

∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ (−1)a(−p)q−1[(a+ 1)!(S(r + 1, a+ 1)

− bS(r, a+ 1))] (mod pq). (5.12)

iii) for b = a > 0:

∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ (−1)a(−p)q−1a!S(r, a) (mod pq). (5.13)

iv) for 0 < b < a:
∑

i≥0

(−1)i
(
k

ip

)
(ip)r ≡ 0 (mod pq). (5.14)

Theorem 5.2.3. (Gessel and Lengyel, 2001) Let p be an odd prime and m be an

integer with 0 < m < min{k, p} such that r = k−m
p−1

is an integer. We set r ≡ r′

(mod p) with 1 ≤ r′ ≤ p. If r′ > m, then for any integer t

∑

i≡t (mod p)

(
k

i

)
(−1)iim ≡ (−1)m+ k−m

p−1
−1m!

(
k

m

)
p

k−m
p−1

−1 (mod p
k−m
p−1

+vp(m!( k
m))).

(5.15)

The above results are employed in the next section to determine the p-adic valu-

ations of S(n, k).

5.3 Results and Discussion

This section presents our main results in theorems. We begin with the divis-

ibility of S(n, k) by power of a prime, p when k < p.
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Theorem 5.3.1. Let p be an odd prime and k be a positive integer such that

k < p. For any positive integer N , the following congruence holds:

i) If n ≡ 0 (mod (p− 1)pN−1) with n > 0, then

S(n, k) ≡ (−1)k−1

k!
(mod pN). (5.16)

ii) If n ≡ m (mod (p− 1)pN−1) for some integer m such that 1 ≤ m < k, then

S(n, k) ≡ 0 (mod pN). (5.17)

iii) If n ≡ k (mod (p− 1)pN−1) with n > m, then

S(n, k) ≡ 1 (mod pN). (5.18)

Proof. Using Equation (1.32), we have

S(m, k) =
1

k!

k∑

i=1

(
k

i

)
(−1)k−iim.

Since k < p, for any i, 1 ≤ i ≤ k, we have

im+(p−1)pN−1 ≡ im (mod pN)

for any positive integer N and m. It follows that

S(m, k) ≡ 1

k!

k∑

i=1

(
k

i

)
(−1)k−iim+(p−1)pN−1 ≡ S(m+ (p− 1)pN−1, k) (mod pN).

If 1 ≤ m < k, S(m, k) = 0, and the second result follows.

If we put m = k, we obtain the third result.

The first result is the consequence of the following congruence

1

k!

k∑

i=1

(
k

i

)
(−1)k−ii(p−1)pN−1 ≡ 1

k!

k∑

i=1

(
k

i

)
(−1)k−i (mod pN)

≡ 1

k!
[(1− 1)k − (−1)k] ≡ (−1)k−1

k!
(mod pN).
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Remark 5.3.1. We know that (p− 1)pN−1 is the period of the sequence {S(n, k)

(mod pN)} when k ≤ p. However, the minimum period of the sequence is the

least common multiple of the orders of i modulo pN for 1 ≤ i ≤ k. Theorem

5.3.1 still holds if we replace (p − 1)pN−1 with π(k; pN). From the theorem, we

can observe that γ(k; pN) = 1 if k ≤ p.

The next theorem presents the divisibility properties of S(n, p) for an odd prime

p.

Theorem 5.3.2. Let p be an odd prime and n be an integer such that n ≥ p.

The following congruences hold:

i) If n ≡ 0 (mod (p− 1)pN−1) for any positive integer N , then

S(n, p) ≡ 0 (mod pN). (5.19)

ii) If 1 ≤ m < p, then

S(n, p) ≡ pm−1 (mod pm), (5.20)

for any integer n with n ≡ m (mod (p− 1)pm−1) and n > m. Consequently,

vp(S(n, p)) = m− 1. (5.21)

Proof. For any positive integer m, we have

S(m, p) =
1

p!

p∑

i=1

(
p

i

)
(−1)p−iim =

pm

p!
+

1

p!

p−1∑

i=1

(
p

i

)
(−1)p−iim.

Let N be any positive integer. Then

S(m, p) ≡ pm

p!
+

1

p!

p−1∑

i=1

(
p

i

)
(−1)p−iim+(p−1)pN−1

(mod pN).

Since p > 2, N ≤ m+ (p− 1)pN−1 for any positive integer m, we obtain

S(m, p) ≡ pm

p!
+ S(m+ (p− 1)pN−1, p) (mod pN).
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Replacing N with m in the preceding equation, we get the second result.

To obtain the first result, we have

S((p− 1)pN−1, p) =
1

p!

p∑

i=1

(
p

i

)
(−1)p−ii(p−1)pN−1

≡ 1

p!

p−1∑

i=1

(
p

i

)
(−1)p−i (mod pN)

≡ 0 (mod pN).

Hence the theorem follows.

Remark 5.3.2. The proof of the preceding theorem also confirms that γ(p; pN) =

N .

We now discuss the divisibility of S(n, k) when k is greater than a given odd

prime p.

Lemma 5.3.1. Let p be an odd prime, k and N be positive integers such that

k > p, then

N + vp(k) ≤ π(k; pN). (5.22)

Proof. The proof is straightforward.

Theorem 5.3.3. For an odd prime p and non negative-integers n, k, m, and N

such that k > p and min{N, m} ≥ 1, the following congruence holds:

S(n+mπ(k; pN), k) ≡





(−1)k

k!
βp(n, k) (mod pN), if n < N + vp(k!);

S(n, k) (mod pN) if n ≥ N + vp(k!).

(5.23)

If n < k, then

S(n+mπ(k; pN), k) ≡





(−1)k−1

k!
αp(n, k) (mod pN), if n < N + vp(k!);

0 (mod pN) if n ≥ N + vp(k!).

(5.24)
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Proof. We have

S(n, k) =
1

k!

k∑

i=1

(
k

i

)
(−1)k−iin.

Let vp(k!) = t, then

ptS(n, k) =
pt

k!

k∑

i=1

(
k

i

)
(−1)k−iin.

If p ∤ i, it is well known that

in+pr(p−1) ≡ in (mod pr+1).

However, if p | i, the preceding congruence holds only when n ≥ r + 1. Thus, we

get

ptS(n, k) ≡ pt

k!

∑

p∤i

(
k

i

)
(−1)k−iin+pr(p−1) +

pt

k!

∑

p|i

(
k

i

)
(−1)k−iin (mod pr+1)

≡ ptS(n+ pr(p− 1), k) +
pt

k!

∑

p|i

(
k

i

)
(−1)k−iin (mod pr+1).

Choose r such that r + 1 = vp(k!) +N for some positive integer N . Therefore,

S(n, k) ≡ S(n+ µ, k) +
(−1)k

k!
αp(n, k) (mod pN), (5.25)

where µ = (p − 1)pt+N−1 and αp(n, k) =
∑

p|i
(
k
i

)
(−1)k−iin. The term 1

k!
αp(n, k)

vanishes if n ≥ N + vp(k!), and it follows

γ(k; pN) ≤ N + vp(k!). (5.26)

Using the concept of minimum periods and the fact that γ(k; pN) ≤ N +vp(k!) ≤

π(k; pN), it is easy to confirm that

S(n+ µ, k) ≡ S(n+mπ(k; pN), k) (mod pN), (5.27)

for any positive integers m and n. Hence, Equations (5.25) and (5.27) confirm

the first result of the theorem.

108



Chapter 5

If we restrict the value of n strictly less than k, then S(n, k) = 0 and the second

result follows immediately.

Remark 5.3.3. Observing the theorem, it can be seen that

vp(S(n, k)) = vp(S(m, k)) (5.28)

whenever n ≡ m (mod π(k; p1+vp(S(n,k))).

Equation (5.25) confirms that γ(k; pN) is the greatest non-negative integer n such

that

1

k!
αp(n− 1, k) ̸≡ 0 (mod pN).

Equation (5.24) confirms that for any positive integer N ,

vp(S(n, k)) ≥ N (5.29)

if n ≡ r (mod π(k; pN)) for some positive integer r such that N+vp(k!) ≤ r < k.

Theorem 5.3.4. For an odd prime p and integers n, m, N , and k such that

p ≤ k < 2p and 1 ≤ m < N + 1,

S(n, k) ≡ (−1)kpm−1

(p− 1)!(k − p)!
(mod pN), (5.30)

whenever n ≡ m (mod (p − 1)pN) with n > m. Hence, the corresponding exact

p-adic valuation is

vp(S(n, k)) = m− 1, (5.31)

whenever n ≡ m (mod (p− 1)pm) with n > m.

Proof. Here, vp(k!) = 1. Let m be a positive integer such that m < N + 1 =

N + vp(k!) and m < k, then using Theorem 5.3.3, we have

S(n, k) ≡ (−1)k−1

k!
αp(m, k) (mod pN) (5.32)

for any positive integer n satisfying n ≡ m (mod π(k; pN)) with π(k; pN) =
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(p− 1)pN . Since p < k < 2p, we have

αp(m, k) =

(
k

p

)
(−1)ppm. (5.33)

It follows that

S(n, k) ≡ (−1)kpm

p!(k − p)!
(mod pN)

≡ (−1)kpm−1

(p− 1)!(k − p)!
(mod pN). (5.34)

Hence, the first result holds. If we replace N = m, we get the second result.

Theorem 5.3.5. Let p be an odd prime, k and m be positive integers such that

m ≥ k and p > k, then for any integers a and n ̸= m with n ≡ m (mod (p −

1)pm−k+1),

S(n, kp+ a) ≡ (−1)k+a−1pm

(kp+ a)!
k!S(m, k) (mod pm−k+1). (5.35)

Furthermore, if p ∤ S(m, k), then

vp(S(n, kp+ a)) = m− k. (5.36)

Proof. In this case, vp((kp+a)!) = k. Replace N with m−k+1 and k with kp+a

in Theorem 5.3.3, then we get m < vp((kp + a)!) +N = k +m− k + 1 = m + 1

and

S(n, k) ≡ (−1)kp+a−1

(kp+ a)!
αp(m, kp+ a) (mod pm−k+1) (5.37)

if n ≡ m (mod π(kp+ a; pm−k+1)), where π(kp+ a; pm−k+1) = (p− 1)pm−k+1.
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Now, we have

(−1)kp+a−1

(kp+ a)!
αp(m, kp+ a) =

(−1)k+a−1

(kp+ a)!

k∑

i=1

(
kp+ a

ip

)
(−1)ip(ip)m

≡ (−1)k+a−1pm

(kp+ a)!

k∑

i=1

(
k

i

)
(−1)i(i)m (mod pm−k+1)

≡ (−1)k+a−1pm

(kp+ a)!
k!S(m, k) (mod pm−k+1). (5.38)

Combining Equations (5.37) and (5.38), the theorem follows.

Theorem 5.3.6. Let p be an odd prime, N , m, and k be integers such that

m < ⌊k−m−1
p−1

⌋+ vp(k) = N , k > m, and sp(k − 1) > m. Then

vp(S(n, k)) ≥
⌊
sp(k − 1)−m

p− 1

⌋
(5.39)

for any positive integer n > m, such that n ≡ m (mod π(k; pN)).

Proof. Taking N = ⌊k−n−1
p−1

⌋ + vp(k), m < N , and m < k, it is trivial that

m < N + vp(k!). Therefore, using Theorem 5.3.3, we have

S(n, k) ≡ (−1)k−1

k!
αp(m, k) (mod pN), (5.40)

if n ≡ m (mod π(k; pN)).

From Theorem 5.2.1, we also have

αp(m, k) ≡ 0 (mod pN) (5.41)

since we assume N > m.

Combining Equations (5.40) and (5.41), we get

S(n, k) ≡ 0 (mod pN−vp(k)), (5.42)

assuming N > vp(k!). It follows that

vp(S(n, k)) ≥ N − vp(k!), (5.43)
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with the given condition of n.

Now, we have

N − vp(k!) =

⌊
k −m− 1

p− 1

⌋
+ vp(k)− vp(k!)

=

⌊
k −m− 1

p− 1

⌋
− vp((k − 1)!)

=

⌊
sp(k − 1)−m

p− 1

⌋
.

Hence the theorem follows.

Theorem 5.3.7. Let p be an odd prime, N , k, a, b are non-negative integers such

that k > p, k ≡ a (mod p − 1), k ≡ b (mod p), 0 ≤ b < p, and 1 ≤ r < p − 1.

If 0 ≤ a < r − 1 < N + vp(k!) − 1, n > r and n ≡ r (mod π(k; pN)), then the

following results hold:

i) for b = 0 or b > a+ 1, and N = ⌊ k
p−1

⌋ − 1 + vp(k), then

vp(S(n, k)) ≥
⌊
sp(k − 1) + 1

p− 1
− 1

⌋
. (5.44)

ii) for b = a+ 1, and N = ⌊ k
p−1

⌋, then

vp(S(n, k)) =

⌊
sp(k)

p− 1

⌋
− 1 (5.45)

if S(r + 1, b) ̸≡ bS(r, b) (mod p).

iii) for b = a > 0, and N = ⌊ k
p−1

⌋, then

vp(S(n, k)) =

⌊
sp(k)

p− 1

⌋
− 1 (5.46)

if p ∤ S(r, a).

iv) for 0 < b < a, and N = ⌊ k
p−1

⌋, then

vp(S(n, k)) ≥
⌊
sp(k)

p− 1

⌋
. (5.47)

Proof. We use Theorems 5.2.2 and 5.3.3 to prove the theorem.
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i) Following the proof of Theorem 5.3.6, we have

N − vp(k!) =

⌊
k

p− 1

⌋
− 1 + vp(k)− vp(k!)

=

⌊
k

p− 1
− vp((k − 1)!)

⌋
− 1

=

⌊
1 + sp(k − 1)

p− 1

⌋
− 1,

where N = ⌊ k
p−1

⌋ − 1 + vp(k).

ii), iii), and iv). If N = ⌊ k
p−1

⌋, then

N − vp(k!) =

⌊
k

p− 1

⌋
− vp(k!)

=

⌊
k

p− 1
− vp(k!)

⌋

=

⌊
sp(k)

p− 1

⌋
− 1.

Theorem 5.3.8. Let p be an odd prime, k and m be integers with k > p and

0 < m < p such that k ≡ m (mod p− 1) and k−m
p−1

≡ r (mod p) with 1 ≤ r ≤ p.

If r > m, then

vp(S(n, k)) =

⌊
sp(k −m)

p− 1

⌋
(5.48)

for any integer n satisfying n ≡ m (mod π(k; pN)), where N = k−m
p−1

+vp(m!
(
k
m

)
).

Proof. We use Theorems 5.2.3 and 5.3.3 to prove the theorem. Following the

proof of Theorem 5.3.6 and the preceding theorem, it is easy to show that

N − vp(k!) =

⌊
sp(k −m)

p− 1

⌋
. (5.49)

Hence the theorem follows.
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5.3.1 The case for prime p = 3

In this case, we can classify k into six different equivalent classes, namely, 6m,

6m + 1, · · · , 6m + 5. Using Equations (5.7) and (5.8), we obtain the following

results for m > 0,

α3(0, 6m+ r) =





(−1)m2 · 33m−1, if r = 0;

(−1)m33m, if r = 1 or 2;

0, if r = 3;

(−1)m+133m+1, if r = 4;

(−1)m+133m+2, if r = 5.

(5.50)

Using the binomial identity of the form

(
k

ip

)
(ip) = k

[(
k

ip

)
−
(
k − 1

ip

)]
,

we get the following recursion relation for αp(n, k) as

∑
(−1)i

(
k

ip

)
(ip)n = k

[∑
(−1)i

(
k

ip

)
(ip)n−1 −

∑
(−1)i

(
k − 1

ip

)
(ip)n−1

]
.

The above identity can also be written as

αp(n, k) = k[αp(n− 1, k)− αp(n− 1, k − 1)]. (5.51)

Using Equations (5.50) and (5.51), we obtain the following tables for the values

of α3(n, 6m+ r) within the range n ∈ {1, 2, 3} and 0 ≤ r ≤ 5. The entry (r, n)

gives the value of (−1)mα3(n,6m+r)
33m−1 .

Table-I: (r, n) −→ (−1)mα3(n,6m+r)
33m−1
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n = 1 n = 2 n = 3

r = 0 6m 4m(3m+ 1) 36m2

r = 1 (6m+ 1) (6m+ 1) −(6m+ 1)(12m2 − 2m− 1)

r = 2 0 −(6m+ 1)(6m+ 2) −3(6m+ 1)(6m+ 2)(2m+ 1)

r = 3 −9(2m+ 1) −27(2m+ 1)2 −3(2m+ 1)(72m2 + 90m+ 25)

r = 4 −9(6m+ 4) −9(6m+ 4)(4m+ 3) −9(6m+ 4)(12m2 + 22m+ 9)

r = 5 −18(6m+ 5) −54(6m+ 5)(m+ 1) −9(6m+ 5)(12m2 + 32m+ 18)

If we set N = v3(α3(n, 6m+ r))− v3((6m+ r)!) + 1, then n < N + v3((6m+ r)!)

for m ≥ 1, n = 1, 2, or 3, and 0 ≤ r ≤ 5 but (r, n) ̸= (2, 1). It follows that if

u ≡ n (mod π(6m+ r; pN)), the exact 3-adic valuations can be expressed by

v3(S(u, 6m+ r)) = v3(α3(n, 6m+ r))− v3((6m+ r)!).

=
s3(6m+ r)− r

2
+ fr,n(m), (5.52)

for some function fr,n. The values of fr,n(m) for n = 1, 2, and 3 are given in the

following table:

Table-II: (r, n) −→ fr,n(m)

n = 1 n = 2 n = 3

r = 0 v3(m) v3(m)− 1 2v3(m) + 1

r = 1 −1 −1 v3(12m
2 − 2m− 1)− 1

r = 2 NA −1 v3(2m+ 1)

r = 3 v3(2m+ 1) + 1 2v3(2m+ 1) + 2 v3(2m+ 1)

r = 4 1 v3(4m+ 3) + 1 v3(12m
2 + 22m+ 9) + 1

r = 5 1 v3(m+ 1) + 2 v3(12m
2 + 32m+ 18) + 1

From Table-I, we can see that α3(1, 6m+ 2) = 0. It follows that

v3(S(u, 6m+ 2)) ≥ N, (5.53)
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whenever u ≡ 1 (mod π(6m + 2; pN)) for any positive integer N and u ≥ N +

v3((6m+ 2)!).

5.3.2 The case for prime p = 2

The minimum periods, for this case, are obtained by Kwong (1989a) as

π(k; 2N) =





1, if k = 1 or 2;

2, if k = 3 or 4 and N = 1 or 2;

2N−1, if k = 3 or 4 and N > 2;

2N+b−2 if 2b−1 < k ≤ 2b and b ≥ 3.

(5.54)

Unlike the above case, the sum α2(n, k) does not have the alternating sign as

α2(n, k) =
∑

2|i

(
k

i

)
in,

which gives

α2(0, k) =
∑

2|i

(
k

i

)
= 2k−1. (5.55)

Using Equation (5.51), we obtain the following identities:

α2(1, k) = k2k−2, (k > 2) (5.56)

α2(2, k) = k(k + 1)2k−3, (k ≥ 3) (5.57)

α2(3, k) = k2(k + 3)2k−4, (k ≥ 4) (5.58)

α2(4, k) = k(k + 1)(k2 + 5k − 2)2k−5, (k ≥ 5) (5.59)

α2(5, k) = k2(k3 + 10k2 + 15k − 10)2k−6, (k ≥ 6) (5.60)

α2(6, k) = k(k + 1)(k4 + 14k3 + 31k2 − 46k + 16)2k−7, (k ≥ 7) (5.61)
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and so on. It follows that α2(n, k), where k ≥ n, can be written in the form

α2(n, k) = gn(k)2
k−n−1, (5.62)

where gn(k) is a polynomial over Z of degree n. The polynomial gn can be

generated by the recursion

gn+1(k) = k[2gn(k)− gn(k − 1)]. (5.63)

with initial polynomial g1(k) = k.

Let us take k = 3 and k = 4. The second result of Theorem 5.3.3 is also valid for

an even prime p = 2 if we add a condition n+mπ(k; pN) ≥ vp(k!) +N . In case,

k = 4 and N = 2, we get

v2(k!) +N = 5.

We also know that π(4; 22) = 2 and it follows that

S(n, 4) ≡ (−1)3

4!
α2(0, 4) (mod 4) ≡ −23

4!
(mod 4) ≡ 1 (mod 4)

if n ≥ 5 and n ≡ 0 (mod 2). On the other hand, if n ≡ 1 (mod 2) or n is odd

and n ≥ 5, then

S(n, 4) ≡ (−1)3

4!
α2(1, 4) (mod 4) ≡ −4 · 22

4!
(mod 4) ≡ 2 (mod 4).

It follows that

v2(S(n, 4)) =





0, if n is even,

1, if n is odd.

(5.64)

The case for k = 3 can be tackled similarly as

S(n, 3) =





1 (mod 4), if n is odd;

2 (mod 4), if n is even.

(5.65)
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Thus, the exact p-adic valuation is given by

v2(S(n, 3)) =





0, if n is odd,

1, if n is even.

(5.66)

If we take N = 3, then the minimum period is 4 for both k = 3 and 4. The

periodicity starts from n = 5, i.e., γ(4; 8) = 5 and the cycle of the sequence

{S(n, 4) (mod 8)}n≥0 is (2, 1, 6, 5). Thus, the sequence looks like

{0, 0, 0, 0, 1, 2, 1, 6, 5, 2, 1, 6, 5, · · · }.

The sequence for {S(n, 3) (mod 8)}n≥0 takes the following form

{0, 0, 0, 1, 6, 1, 2, 5, 6, 1, 2, 5, · · · }.

The periodicity starts from n = 4 = N + v2(3!), and the cycle of the sequence is

(6, 1, 2, 5).

From Equation (5.56) for k > 4, we get

v2(S(n, k)) = s2(k − 1)− 1 (5.67)

if n ≡ 1 (mod π(k; 2N)) with N = s2(k − 1) and n ≥ v2(k!) +N .

The generalization of Equation (5.67) can be obtained using Equation (5.62) as

v2(S(n, k)) = s2(k − 1)−m+ v2(
gm(k)

k
), (5.68)

where k > 4, n ≥ v2(k!) +N > m, N = v2(
gm(k)

k
) + s2(k− 1)−m+ 1 and n ≡ m

(mod π(k; 2N)). Looking into the fact in Equations (5.56) to (5.61), we confirm

that gn(k) is always even if 2 ≤ n ≤ 6.
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5.4 Conclusions

The partial sum of Stirling numbers αp(n, k) plays a key role in obtaining

vp(S(n, k)). The minimum periods help us determine a class of Stirling numbers

of the second kind, {S(m, k)}m∈∧, for some indexing set ∧, which share the same

p-adic valuation. We have found that the periodicity of the sequence, {S(n, k)

(mod pN)}n≥0 sometimes starts before the k-th term, i.e., γ(k; pN) < k. We have

proved that γ(k; pN) ≤ N+vp(k!) when γ(k; pN) < k, the first k−γ(k; pN) entries

of the cycle of {S(n, k) (mod pN)}n≥0 are zeros.
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Summary and Conclusions

We study the p-adic valuations of Stirling numbers of the second kind through

different approaches. The existing results in the literature mostly account for

2-adic valuations and certain results for the odd prime p. The exact p-adic valua-

tions of S(n, k) estimate and lower bound for vp(S(n, k)) are obtained for various

classes of n and k. These results are usually accompanied with congruences mod-

ulo prime power. Some of the results are the generalization and extension of

existing theorems and lemmas. We introduce alternate approach and material to

obtain certain results. We also develop a new formula to count S(n, k) which is

very useful in obtaining the divisibility properties of S(n, k).

The first chapter is the general introduction of the thesis, which includes a

review of classical results, basic definitions, a brief introduction of p-adic analy-

sis, applications of p-adic valuations and Stirling numbers, and a review of the

literature.

Chapter 2 introduces a new formula for S(n, k) using a combinatorial ap-

proach. The new formula is utilized to obtain some p-adic valuations and con-

gruence properties of S(n, k) for different classes of n and k. These results are

then extended and generalized using minimum periods. We have also proved that

the lower bound of vp(S(p
2, kp)), 2 ≤ k ≤ p − 1, is 2, which confirms a part of

120



Chapter 6

Conjecture 2.3.1.

Chapter 3 presents the p-adic valuations of S(n, k) when n is a power of

a prime. We find that the results when k is divisible by p (or pm) are quite

different from the ones where k is not divisible by p. We have proved that

vp(S(p
2, kp)) ≥ 5 when k is even, which confirms the lower bound as in Conjecture

2.3.1. Furthermore, we find that the values of vp(S(n, kp
m)) are affected by the

parity of n and k. In fact, if n and k are opposite in parity, i.e., n − k is odd,

then vp(S(n, kp
m)) ≥ 2m when (p − 1) ∤ (n − k) and vp(S(n, kp

m)) ≥ m when

(p − 1) | (n − k). However, if the parity of n and k are the same, i.e., n − k

is even, then vp(S(n, kp
m)) ≥ m when (p − 1) ∤ (n − k). We further investigate

the divisibility of S(pn, k) when p does not divide k and we have found that the

divisibility depends on the sum of the p-adic digits of k.

In Chapter 4, we study a series of congruence relations between Stirling num-

bers of the first kind and the second kind. Certain congruence properties are

obtained from the rational generating functions. We also obtain congruences for

S(n, k) and s(k, n) in terms of certain sums involving binomial coefficients. We

even introduce a super congruence modulo pn for the Stirling numbers. These

congruences are also utilized to determine the p-adic valuations of some classes

of Stirling numbers of the first and second kinds. The application of these results

for specific primes, p = 3 and p = 5 are also presented.

Chapter 5 develops a method to utilize the periodicity and minimum periods

of the sequence {S(n, k) (mod pN)}n≥0 to obtain the p-adic valuations of some

classes of Stirling numbers of the second kind. We obtain p-adic valuations of Stir-

ling numbers of the second kind using partial Stirling numbers. We also find that

some specific terms of the cycle of the periodic sequence {S(n, k) (mod pN)}n≥0

are always zero which confirm N as the lower bound of the p-adic valuations of

the Stirling numbers. These results are confirmed for the case of p = 2 and p = 3.

Chapter 6 is a summary and conclusion.
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Finally, a list of references is given at the end.
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Abstract: In this paper, we introduced certain formulas for p-adic valuations of Stirling numbers of the second 
kind S(n, k) denoted by vp(S(n, k)) for an odd prime p and positive integers k such that n ≥ k. We have obtained the 
formulas, vp(S(n, n − a)) for a = 1, 2, 3 and vp(S(cpn, cpk)) for 1 ≤ c ≤ p − 1 and primality test of positive integer n. We 
have presented the results of vp(S( p2, kp)) for 2 ≤ k ≤ p − 1, 2 < p < 100 and a table of vp(S( p, k)). We have posed the 
following conjectures from our analysis: 
1. Let p ≠ 7 be an odd prime and k be an even integer such that 0 < k < p − 1. Then

2 2( ( , )) ( ( , ( 1)) 3.p pv S p kp v S p p k− + =

2. If k be an integer such that 1 < k < p − 1, then the p-adic valuations satisfy

2 5 or 6,    is even
( ( , ))

2 or 3,    is oddp

if k
v S p kp

if k


= 


for any prime p > 7.
3. For any primes p and positive integer k such that 2 ≤ k ≤ p − 1, then

vp(S( p, k )) ≤ 2.

Keywords: p-adic valuations, stirling numbers of the second kind, congruence, primes, minimum period

MSC: 05A18,11A51,11B73, 11E95

1. Introduction
Stirling numbers of the first and second kinds were introduced by James Stirling [1]. These numbers have been 

found to be of great utility in various branches of Mathematics such as combinatorics, number theory, calculus of finite 
differences, theory of algorithms, etc. The p-adic valuations of Stirling numbers of the second kind appear frequently 
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in algebraic topology by Davis [2] to obtain new results related to James numbers, v1-periodic homotopy groups and 
exponents of SU(n). More details of Stirling numbers of the second kind may be seen on Comtet [3] and Graham et al. [4].

Stirling numbers of the second kind are more interesting than the first kind by their intrinsic nature. There are 
many interesting results of 2-adic valuations of Stirling numbers of the second kind in the open literature. Recently, 
Wannemacker’s proof [5] of Lengyel’s conjecture [6], results of v2(k!S(c − 2n + u, k)) for c > 0 by Lengyel [7], the proof 
of Wannemacker’s conjecture by Hong [8], the works of Amdeberhan et al. [9] and Zhao et al. [10] are other notable 
results of 2-adic valuation. Gessel and Lengyel [11] proved that for an arbitrary prime p and n = a(p − 1)pq, 1 ≤ k ≤ n

1( ! ( , )) ( ) ,
1p

kv k S n k k
p

 τ
 −

= + − 

where a and q are positive integers such that (a, p) = 1, q is sufficiently large, k
p  is an odd integer and τ(p) is a non-

negative integer.
Strauss [12] and Pan [13] discussed the problems of 3-adic valuations and 2-adic valuations of certain sums of 

binomial coefficients respectively. Sun [14] also presented the results of p-adic valuations for multinomial coefficients. 
Friedland [15] used 2-adic valuations of certain ratios of factorials to prove a conjecture of Falikman-Friedland-Lowery 
on the parity of degrees of projective varieties of n × n complex symmetric matrices of rank at most k. Some more 
results of p-adic valuations are also given in Gouvea [16], Koblitz [17] and Adelberg [18].

This paper consists of some interesting results about p-adic valuations for a few class of Stirling numbers of the 
second kind S(n, k). This number vp(S(n, k)), where either n or k is related to p, has been obtained independently for 
some values of p, n and k. The values of vp(S(n, k)) are computed by using GP/PARI software and they are presented in 
Table 1.

2. Materials and methods
Definition 2.1 Let p be a prime. For any non-zero integer a, the p-adic valuation of a, denoted by vp(a), is defined 

as the exponent of the highest power of p dividing a.
It may be noted that vp(0) = ∞ and vp(a) for a non-zero integer a, is a non-negative integer.
So, v3(25) = 0, v5(25) = 2.
Note that, for any prime p, vp(±1) = 0. For a given prime p and any two integers a and b, we have

( ) { ( ), ( )},?   ( ) ( ) ( ).p p p p p pv a b min v a v b v ab v a v b+ ≥ = +

The p-adic valuation vp can further be extended to the field of rational numbers, r = a
b , a, b ∈ Z and b ≠ 0 as

( ) ( ) ( ).p p pv r v a v b= −

Definition 2.2 Given two non-negative integers n and k, not both zero, the Stirling number of the second kind S(n, k) 
is defined as the number of ways one can partition a set with n elements into exactly k non-empty subsets.

Example 2.1 All partitions of the set {1, 2, 3, 4} into 2 non-empty subsets are {1}, {2, 3, 4}; {2}, {1, 3, 4}; {3}, {1, 
2, 4}; {4}, {1, 2, 3}; {1, 2}, {3, 4}; {1, 3}, {2, 4} and {1, 4}, {2, 3}. Hence, S(4, 2) = 7.

By convention, we set S(0, 0) = 1 and S(0, k) = 0 for k ≥ 1. Thus, S(n, k) is the number of ways of distributing n 
distinct balls into k indistinguishable boxes (the order of the boxes does not count) such that no box is empty.

It is clear that S(n, k) = 0 if 1 ≤ n < k and S(n, n) = 1 for all n ≥ 0.
We use the following properties to prove the results of vp(S(n, k)):

0

1( , ) ( 1) ,
!

k
k i n

i

k
i

S n k i
k

−

=

 
 
 

= −∑ (1)



Contemporary Mathematics 26 | S. S. Singh, et al.

which gives

1( , 2) 2 1,  ( ,1) 1,  ( ,0) 0.nS n S n S n−= − = =

It is easy to derive the following specific identities of S(n, k) using the results of ([19] p. 115-116).

( , 1)  2,  
2
n

S n n if n 
 
 

− = ≥

3( , 2)
4

  4,
3

  
n n

S n n if n   
= +   


−


≥

 

10 15   
4

( , 3)  6
6

.
5

S n n f n
n n n

i     
= + +     

    
≥


−

3. Results
In this section, we present some basic results of the p-adic valuations of Stirling numbers starting with S(n, n − 1) 

for n > 1.
Proposition 3.1 For any positive integer n > 1 and an odd prime p

( )( ) ( ) ( ), 1 1 .p p pv S n n v n v n− = + −

Proof. Using the identity (3), we have

( 1)( , 1) .
22

n n nS n n  
 =

−

 
− =

The multiplicative property of vp(a) implies that

vp(S(n, n − 1)) = vp(n) + vp(n − 1) − vp(2)

            = vp(n) + vp(n − 1)

as vp(2) = 0, p being odd.
Applying Kummer’s theorem [20] to the binomial coefficient 2

n 
 
 

 = S(n, n − 1), the above result can be put in the 
following form

( 2) ( ) 2
( ( , 1)) ,

1
p p

p

s n s n
v S n n

p
− − +

− =
−

where sp(n) denotes the sum of the p-adic digits of n.
Corollary 3.1 Let p be an odd prime. For any positive integer n and c such that gcd( p, c) = 1,

( ( , 1)) .n n
pv S cp cp n − =

Proof. By the proposition, we have

(2)

(3)

(4)

(5)

(6)



Contemporary MathematicsVolume 2 Issue 1|2021| 27

( ( , 1)) ( ) ( 1).n n n n
p p pv S cp cp v cp v cp− = + −

Since vp(cpn − 1) = 0 and using the multiplicative property of vp(a), we can obtain

( ( , 1)) ( )n n n
p pv S cp cp v cp − =

( ).pn v c= +

As gcd( p, c) = 1, it is clear that vp(c) = 0. This completes the proof.
Proposition 3.2 For any positive integer n ≥ 2 and an odd prime p,

3 3 3

( ) ( 1) ( 2) (3 5),    3,  
( ( , 2))

( ) ( 1) ( 2) 1,                   3. 
p p p p

p

v n v n v n v n if p
v S n n

v n v n v n if p
+ − + − + − >

− =
+ − + − − =





These results can be proved in the similar manner.
Corollary 3.2 For any positive integer n and an odd prime p,

,         5,                 
( ( , 2)) 1,    5    1,

1,    3,                 

n n
p

n if p
v S cp cp n if p and n

n if p
 

>
− =


+ = >
− =






if c is a positive integer not divisible by p.
Proposition 3.3 Let p be an odd prime. For any positive integer n ≥ 6,

( ) ( 1) 2 ( 2) 2 ( 3),   5,
( ( , 3))

( ) ( 1) 2 ( 2)
  

2 ( 3) 1
     

  ,   3.
p p p p

p
p p p p

v n v n v n v n if p
v S n n

v n v n v n v n if p
+ − + − + − ≥

− =
+ − + −


+ − − =





Proof. Using the identity (5), we have

( , 3) 10 15 ,   if  6.
4 5 6
n n n

S n n n     
     
    

+ +


− = ≥

It can also be expressed as

2 5 6( , 3)
4 2

[ ]n n nS n n  


−



+


− =

( 2)( 3)
4 2

[ ]n n n− −



=
 



2 2

4

( 1)( 2) ( 3)
2 3

[ ]n n n n− − −
=

⋅

The multiplicative property of vp(−) implies that

( )( ) ( ) ( ) ( ) ( ) ( ), 3   1 2 2 2 3  3p p p p p pv S n n v n v n v n v n v− = + − + − + − −
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as vp(2) = 0 and p being odd.
Using Kummer’s theorem [20] to 4

n 
 
 

, we get the following result,

( 4) ( ) (4)
( ( , 3)) ( 2) ( 3).

1
p p p

p p p

s n s n s
v S n n v n v n

p
− − +

− = + − + −
−

where sp(n) denotes the sum of the p-adic digits of n. This completes the proof.
Corollary 3.3 For any positive integer n and odd prime p, the following result holds

       ,   3,
( ( , 3))

1,   3,  
n n

p

n if p
v S cp cp

n if p
>

− =
+ =





if p does not divides c (provided cpn ≠ 3 if p = 3).
Proof. By the proposition, we have

( ( , 3)) ( ) ( 1) ( 2) 2 ( 3) (3).n n n n n n
p p p p p pv S cp cp v cp v cp v cp v cp v− = + − + − + − −

Since vp(cpn − 1) = vp(cpn − 2) = vp(cpn − 3) = vp(3) = 0 if p ≥ 5, we get

vp(S(cpn, cpn − 3)) = vp(cpn)

                                  = n + vp(c).

As gcd(p, c) = 1, it is clear that vp(c) = 0.
For the case p = 3, 2v3(c3n − 3) − v3(3) = 1 and v3(c3n − 1) = v3(c3n − 2) = 0 and hence

v3(S(c3n, c3n − 3)) = vp(c3n) + 1

                    = n + 1

This completes the proof.
Now, we give an alternate proof of the primality of integer n by divisibility of S(n, k) given by Deamio and Touset 

[21]. The proof of corollary 2 in their paper is not correct if we take n = 4 and p = 2, then S(4, 3) = 6  /≡ 1 mod 2 and 
2 | S(4, 3). We tackled this problem, in this paper, more simpler manner. This problem with an alternate solution also 
appears in Pólya et al. [22].

Theorem 3.1 If p is an odd prime, then p | S(n, k) if sp(k) > sp(n).
The above theorem is an immediate consequence of ([18], Lemma 2.1) which states that

( ) ( )
( ( , )) .

1
p p

p

s k s n
v S n k

p
−

≥
−

Replacing n by an odd prime p in the above theorem, we get the following results.
Corollary 3.4 If p is an odd prime, then p | S( p, k) if 2 ≤ k ≤ p − 1. 
The problem in the above Corollary 3.4 appears in Graham et al. [4] and proof was given by Demaio and Touset [21].
Theorem 3.2 A positive integer n is a prime if and only if n | S(n, k) for all 2 ≤ k ≤ n − 1.
Proof. The generating function of S(n, k) in terms of falling powers is given by

( , ){ }
n

n
k

k o
x S n k x

=

= ∑

(7)

(8)

(9)
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for any non-negative integer n.
If n is a positive integer such that n | S(n, k) for all 2 ≤ k ≤ n − 1, put x = n in Equation (9)

( , ){ }
n

n
k

k o
n S n k n

=

= ∑

1

1
2

{ } { } ( , ){ }
n

n k
k

n n S n k n
−

=

= + + ∑

1

2
( 1)( 2) 3 2 1 ( 1) ( ( 1)) ( , ).

n

k
n n n n n n n k S n k

−

=

= − − ⋅ ⋅ + + − − −∑ 

It follows that

1
1

2
( 1)( 2) 3 2 1 1 ( 1)( 2) ( ( 1)) ( , )

n
n

k
n n n n n n k S n k

−
−

=

= − − ⋅ ⋅ + + − − − −∑ 

Since n | S(n, k) for all 2 ≤ k ≤ n − 1, we get

0 ≡ (n − 1)! + 1 mod n

or

(n − 1)! ≡ −1 mod n.

Hence, n is prime.
The converse follows from Corollary 3.4.
Lemma 3.1 If p is a prime, then

1 1
( 1) 1  or  0.i

p p

p p
v v

i i
      
      
      

− −
− − ≥ =

Proof. For i = 0, the case is trivial.
We assume that i > 0. The binomial coefficient  

1p
i

 
 
 

−
 is given by

1 ( 1)! .
( 1 )! !

p p
i p i i

 − −
=

− −


 
 

Therefore,

1
! ( 1)( 2)...( 2)( ( ) 1)

p
i p p p i p i p i

i
−

= − − −
 
 
 

+ − + −

( 1)( 2)...( ) mod  i p≡ − − −

( 1) ! mod  .i i p≡ −

Since 0 < i < p, gcd( p, i) = 1. Then,
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1
( 1) m od .ip

p
i
−

≡ −
 
 
 

Theorem 3.3 Let p be an odd prime. For any positive integer n ≥ p,

vp(S(n, p)) = 0

if and only if ( p − 1) | (n − 1).
Proof. Using the above Lemma 3.1, we have

1
! ( , ) ( 1) 

p
p i n

i

p
p S n p i

i
−

=

 
 
 

= −∑

1
( 1) mod .

p
p i n

i

p
i p

i
−

=

≡ −
 
 
 

∑

Since 
1

,
1

p p p
i i i

   
   
   

−
=

− , we get

1
1 1

1
( 1)! ( , ) ( 1) ( 1) .

p
i p i n

i
p S n p i

−
− − −

=

− ≡ − −∑

Using Wilson’s theorem, the preceding congruence reduces to

1
1

1
( , ) mod ,

p
n

i
S n p i p

−
−

=

≡  ∑

as p is odd.
Now, we use the following well-known results

1
1

1

0 mod ,         ( 1) | ( 1)
1 mod ,       ( 1) | ( 1).

p
n

i

p if p n
i

p if p n

−
−

=

 − −/
≡

−  − −




∑

Hence, the theorem follows.
Theorem 3.4 Let p be an odd prime and c be a positive integer such that 1 ≤ c ≤ p − 1. Then, for positive integers n 

and k such that k ≤ n,

vp(S(cpn, cpk)) = 0.

Proof. The theorem is a special case of ([18], Th. 2.2).
We have

1

0
( ) ( 1)

n k
n k n k j k

j
cp cp c p p c p p

− −
+

=

− = − = − ∑

which implies that cpn − cpk is divisible by p − 1. We also have 1 ≤ c ≤ p − 1 and 1 ≤ cpk ≤ cpn.
It follows that S(cpn, cpk) is a minimum zero case and hence we have
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( ) ( )
( ( , )) 0,

1

k n
p pn k

p

s cp s cp
v S cp cp

p
−

= =
−

since sp(cpn) = sp(cpk) = sp(c) = c.
Theorem 3.5 Let p be an odd prime, then

( ( , 2 ))n
pv S p p n≥

for every integer n ≥ 2.
Proof. Using identity (1)

2
2

0

2
(2 )! ( , 2 ) ( 1)

n
p

n p i p

i

p
p S p p i

i
−

=

 
− 

 
= ∑

which can also be written as

2

0

2
(2 )! ( , 2 ) ( 1) (2 )

2
n

p
n i p

i

p
p S p p p i

p i=

 
 − −
 

=
−∑

2
2

0

2
( 1) (2 ) .

n
p

p i p

i

p
p i

i
−

=

 



− −


= ∑

Since 
m m
i m i

=
−

   
   
   

 for every integers 0 ≤ i ≤ m and 2p − i ≡ i mod 2, we have

2
2

0

2
2(2 )! ( , 2 ) ( 1) ( (2 ) ).

n n
p

n p i p p

i

p
p S p p i p i

i
−

=

 
 + −


= −


∑

If p /| i for 0 ≤ i ≤ 2p, then

2p − i ≡ −i  mod p,

which also yields the congruence

1  (2 ) ( ) mod . 
n np p np i i p +− ≡ −

It follows that

2 22 2
( 1) ((2 ) ( ) ) 0 mod ,  since | .

n np i p p np p
p i i p p

i i
− +   

   
  

− −


+ ≡

Thus, each terms of the right hand side of (11) is divisible by pn +2 and hence

2 2(2 )! ( , 2 ) 0 mod np S p p p +≡

Therefore

2(2(2 )! 2 ) ( , ) 2pv p S p p n≥ +

2( ( ,  2 ))pv S p p n≥

(10)

(11)

(12)
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Hence, the theorem follows.
Theorem 3.6 Let p be a prime and n and k be two positive integers with k ≤ p − 1, then there exists a positive 

integer m in 1 ≤ m < p − 1 such that

( , ) mod ,           0 mod ( 1),
( , )

( 1 )! mod ,    0 mod ( 1). 
S m k p if n p

S n k
p k p if n p

≡ − /
≡  − − ≡ −

Proof. By division algorithm, we have

n = ( p − 1)q + m

where q is the quotient and m is the remainder such that 0 ≤ m < p − 1.
Now

1
! ( , ) ( 1)

k
k i n

i

k
k S n k i

i
−

=

 
 
 

= −∑

( 1)

1
( 1)

k
k i p q m

i

k
i

i
− − +

=

= −
 
 
 

∑

1
(  1) mod

k
k i m

i

k
i p

i
−

=

≡ −
 
 
 

∑

since i p−1 ≡ 1 mod p for 1 ≤ i ≤ k ≤ p − 1 by Fermat’s little theorem.
If m ≠ 0, we have

k!S(n, k) ≡ k!S(m, k) mod p.

Since k is less than p, it follows that p /| k! which results

S(n, k) ≡ S(m, k) mod p.

for every n such that n  /≡ 0 mod p − 1.
Next, if m = 0, we have

1
! ( , ) ( m d 1) o

k
k i

i

k
k S n k p

i
−

=





≡ −





∑

0
( 1) ( mod 1)

k
k i k

i

k
p

i
−

=

 
 


≡ −


− −∑

1( 1) mod , k p+≡ −

We also know that

1
( 1) mod r    okp

p
k
−

≡ −
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 ( 1)! ( 1) mod   or
( 1 )! !

 kp p
p k k

−
≡ −

− −

11 ( 1) ( 1 )! mod  
!

k p k p
k

+≡ − − −

which implies that

S(n, k) ≡ ( p − 1 − k)! mod p,

which completes the proof.
From the above theorem, we see that if 1 ≤ m < k

S(n, k) ≡ 0 mod p since S(m, k) = 0.

However, the case for m = k results

S(n, k) ≡ 1  mod p.

We can write the following results
Corollary 3.5 Let p be an odd prime and k be a positive integer less than p, then

1  mod ,           mod ( 1),                        
( , )

0 mod ,          mod ( 1)   1 1.
p if n k p

S n k
p if n i p for i k

 ≡ −  
≡  ≡ − ≤ ≤ −

If we applied the above theorem and corollary to the special cases for k = p − 1, p − 2 and p − 3, we get

1  mod ,         0 mod ( 1),
( , 1)

0 mod ,      otherwise.
p if n p

S n p
p

≡ −
− ≡ 



1  mod ,          0, 2 mod ( 1),
( , 2)

0 mod ,        otherwise.
p if n p p

S n p
p

≡ − −
− ≡ 



2 mod ,           0 mod ( 1),
3 mod ,           2 mod ( 1),

( , 3)
1 mod ,           3 mod ( 1),
0 mod ,           otherwise.

p if n p
p if n p p

S n p
p if n p p
p if

≡ −
 ≡ − −− ≡  ≡ − −


assuming p ≠ 3 for the last two cases.

4. Discussions
We have computed vp(S( p2, kp)) for primes 3 ≤ p ≤ 100 and 2 ≤ k ≤ p − 1 using PARI/GP software.
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Table 1. ( p, k) such that vp(S(p, k)) = 2 for 3 ≤ p ≤ 1000 and 2 ≤ k ≤ p − 1

( p, k) ( p, k) ( p, k) ( p, k) ( p, k) ( p, k) ( p, k)

(5, 3) (167, 7) (307, 12) (463, 340) (653, 429) (857, 592) (947, 204)

(13, 5) (167, 103) (307, 146) (467, 278) (659, 457) (859, 300) (947, 478)

(19, 14) (173, 52) (317, 188) (499, 63) (661, 417) (859, 357) (953, 391)

(29, 14) (181, 166) (331, 20) (499, 320) (677, 367) (859, 558) (977, 476)

(31, 16) (193, 23) (337, 261) (509, 324) (683, 271) (863, 712) (991, 953)

(41, 13) (193, 45) (353, 162) (521, 169) (683, 401) (877, 77) (997, 786)

(42, 12) (197, 85) (359, 96) (521, 180) (691, 468) (877, 204)

(47, 12) (211, 62) (359, 316) (521, 479) (709, 330) (877, 542)

(53, 5) (211, 159) (373, 230) (523, 343) (709, 371) (881, 63)

(53, 41) (223, 61) (379, 253) (523, 483) (709, 669) (881, 72)

(53, 45) (227, 187) (383, 323) (569, 123) (733, 47) (881, 408)

(59, 35) (229, 25) (397, 27) (569, 348) (743, 23) (881, 625)

(73, 8) (233, 7) (397, 78) (569, 363) (751, 744) (887, 149)

(79, 14) (239, 134) (401, 198) (577, 119) (761, 54) (887, 208)

(89, 32) (239, 219) (409, 45) (577, 434) (773, 143) (887, 443)

(89, 34) (241, 15) (409, 80) (593, 498) (773, 262) (907, 611)

(107, 16) (251, 233) (419, 133) (601, 303) (787, 228) (911, 560)

(127, 8) (251, 247) (419, 256) (601, 515) (797, 290) (919, 163)

(139, 28) (257, 131) (419, 310) (607, 173) (809, 119) (929, 347)

(149, 5) (269, 98) (431, 25) (607, 242) (811, 733) (929, 469)

(151, 50) (271, 211) (431, 112) (607, 518) (821, 533) (929, 801)

(151, 58) (283, 91) (431, 116) (617, 209) (827, 257) (937, 528)

(157, 45) (283, 201) (433, 91) (647, 117) (827, 765) (941, 342)

(163, 101) (293, 76) (439, 308) (647, 309) (839, 50) (947, 85)

(163, 127) (293, 162) (461, 341) (653, 369) (839, 744) (947, 116)

The obtained values of vp(S( p2, kp)) for different values of ( p, k) are

2

7,   ( , ) (7, 4)
6,   ( , ) (37,4), (59,14), (67,8)

( ( , ) 3,   1 and  ( , ) (37,5), (59,15), (67,9)
5,   and  ( , ) (7, 4), (37,4), (59,14), (67,8) is even 

 is odd 2,   and  ( , ) (37,5), (59,15)

p

if p k
if p k

v S p kp if k p p k
if p k
i

k
p kkf

=
=

= = − =
≠

≠ , (67,9).









We also provide in Table 1, the pairs of p and k where vp(S( p, k)) = 2 for 3 ≤ p ≤ 1000 and 2 ≤ k ≤ p − 1. It should 
be noted that vp(S( p, k)) = 1 for all the remaining pairs (p, k).

After a closed examinations of the output, we have observed that the arrays of vp(S( p2, kp)) follow certain patterns 
which interpret as conjectures.

1. Let p > 7 be an odd prime and k be an even integer such that 0 < k < p − 1. Then

2 2( ( , )) ( ( , ( 1)) 3.p pv S p kp v S p p k− + =

2. If k be an integer such that 1 < k < p − 1, then the p-adic valuations satisfy

(13)
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2 5 or 6,   is even
( ( , )

2 or
   
   3,   is odd   p

if k
v S p kp

if k


= 


for any prime p > 7.
3. For any odd prime p and a positive integer k such that 2 ≤ k ≤ p − 1,

vp(S( p, k)) ≤ 2.

5. Conclusions
This paper deals with some results of p-adic valuations of Stirling number of the second kind, S(n, k) for odd prime p. 

We have derived the formulas for vp(S(n, n − 1)), vp(S(cpn, cpn − 1)), vp(S(n, n − 2)), vp(S( pn, pn − 2)), vp(S(n, n − 3)) and 
vp(S( pn, pn − 3)). It has been shown the primality test of n using divisibility of n to S(n, k), 1 < k < n. We have obtained 
the results that vp(S(n, p)) depends on the divisibility of n − 1 by p − 1 and vp(S(cpn, cpk)) = 0 for every integer n ≥ k ≥ 1 
and p − 1 ≥ c ≥ 1. We also posed three conjectures after analyzing Table 1 and computational results of (13).
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Abstract

In this paper, we introduce and prove an alternate formula of Stirling numbers of
the second kind as

S(n, k) =
∑

∑
ei=k,

∑
niei=n

n!∏t
i=1 ei!(ni!)ei

.

We have obtained some results of p-adic valuations of S(p2, kp) for 2 ≤ k ≤ p − 1,
S(2p, p − 1), S(2p, p), S(2p, p + 1) and S(2p, p + 2) and also expressed in terms of
congruence mod p2. The generalization of the p-adic valuations and congruences mod
p2 of S(pn, kp) for 2 ≤ k ≤ p − 1 and S(2pn, k) for k = p − 1, p are also presented.

Keywords: congruence, divisibility, primes, p-adic valuations, Stirling numbers
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1. INTRODUCTION

Stirling numbers of the second kind S(n, k) counts the number of partitions of n objects

into k non-empty distinct subsets as [S]

S(n, k) =
1

k!

k∑

j=1

(
k

j

)
(−1)k−jjn.

It has a well known recurrence relation

S(n + 1, k + 1) = S(n, k) + (k + 1)S(n, k + 1).

Various results and patterns of p-adic valuations of Stirling numbers of the second kind have

been developed through recent years. Lengyel [L] proved that there exists a function f such

∗E-mail address: saratcha32@yahoo.co.uk.
†E-mail address: abchhak@gmail.com.
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that v2(S(c2n, k)) = s2(k) − 1 for n > f(k) and positive integer c, where vp(r) with p
prime is sup{a ! 0 : pa | r} and s2(k) is the sum of the digits in the binary representation

of k. He proposed a conjecture stating that it holds for every positive integer n and for

c = 1. This conjecture was later proved by Wannemacker [W] using the induction hypoth-

esis. Some notable problems about 2-adic valuation of Striling numbers of the second kind

are Amdeberhan et al. [AMM], Davis [D], Friedland and Krattenthaler [FK], Hong et al.

[HZZ] and Zhao et al. [ZHZ].

The results of 2-adic valuations of S(n, k), where n is a power of 2, tempted many

researchers to look into the results for odd primes p. A few results of vp(S(n, k)) have

been developed for some specific classes and found that the patterns and results are quite

different from the case when p = 2. Gessel and Lengyel [GL] proved that the order of

divisibility by prime p of k!S(a(p − 1)pq, k) does not depend on a and q is sufficiently

large and k/p is not an odd integer. Recently, Singh et al. [SLS] proposed a conjecture

which states that for k = 2, . . . , p − 2 we have

vp(S(p2, kp)) =

{
2 or 3 if k is odd,

5 or 6 if k is even.

Miska [M] proved, for any prime p,

vp(S(n, k)) = vp(S(a + pm0−1(p − 1), k)) + vp(n − a) − m0 + 1

for any positive integers m0, n, k and a such that a < k < p and n ≡ a mod (pm0−1(p −
1)).

Feng and Qiu [FQ] concluded that the formula of vp(S(n, n−k)) depends on the value

of S2(i, i−k), where k +2 ≤ i ≤ 2k (The r-associated Stirling number of the second kind

denoted by Sr(n, k) is defined as the number of ways to partition a set of n elements into k
non-empty subsets such that each of the k subsets has at least r elements). They also give a

formula to compute vp(S(n, n − k)), which enables to show vp((n − k)!S(n, n − k)) < n
with 0 ≤ k ≤ min{7, n − 1} and p ≥ 3. Certain useful results of Stirling numbers may

be explored in Clarke [C], Comtet [Co], Graham et al. [GKP], Nijenhuis [NW], Sun [Su]

Tsumura [T], Young [Y] and Zhao [ZZH].

This paper deals with some interesting results of p-adic valuations of S(n, k) for n as a

power of prime p. We have developed an alternate formula for evaluating Stirling number

of second kind and also proved certain results like vp(S(p2, kp)) ≥ 2, vp(S(pn, kp)) ≥
2, vp(S(2p, p)) ≥ 2, vp(S(2p, p−1)) = 1, vp(S(2p, p−1)) ≥ 2 and vp(S(2p, p+2)) ≥ 1.

2. TOOLS AND IDENTITY OF S(n, k)

In order to formulate S(n, k), we divide partitions into different classes based on the number

of subsets with same cardinality in the partitions. Let {ni : 1 ≤ i ≤ t} and {ei : 1 ≤ i ≤ t}
be two sets of positive integer such that

∑t
i=1 niei = n and

∑t
i=1 ei = k, where n′

is are

distinct and e′
is need not to be distinct. We define s(n1

(e1), n2
(e2), n3

(e3), ..., nt
(et)) as the

number of those partitions of n objects into k non-empty subsets containing exactly ei
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subsets with cardinality ni. So, we introduce

S(n, k) =
∑

∑
ei=k,

∑
niei=n

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)). (2.1)

In the partition of 6 objects into 3 non-empty subsets, we see

S(6, 3) = s(1(2), 4(1)) + s(1(1), 2(1), 3(1)) + s(2(3)),

where s(1(2), 4(1)) counts the number of those partitions containing exactly two singleton

subsets and one subset with four elements, s(1(1), 2(1), 3(1)) counts those partitions contain-

ing exactly one singleton subset, one subset with two elements and one subset with three

elements and s(2(3)) is the number of those partitions containing exactly three subsets with

two elements.

Kwong [K] proved that the sequence of Stirling numbers of the second kind S(n, k)
modulo M for any positive integer M > 1 is cyclic and gave the minimum periods for

different values of k and M . One of the interesting result that he mentioned is

π(k; pN ) = (p − 1)pN+b−2 if pb−1 < k ≤ pb, (2.2)

where π(k; pN ) denotes the minimum period of the sequence {S(n, k) mod pN}n≥1 for

an odd prime p. Adelberg [A] obtained the following important results:

1. If n ≥ k, then

vp(S(n, k)) ≥
⌈sp(k) − sp(n)

p − 1

⌉
.

2. If S(n, k) is a minimum zero case, i.e., (p − 1)|(n − k) and p !
(n+n−k

p−1
n

)
), then

vp(S(n, k)) =
sp(k) − sp(n)

p − 1
. (2.3)

3. If S(n, k) is a minimum zero case, then so is S(np, kp) and

vp(S(n, k)) = vp(S(np, kp)). (2.4)

The above results about minimum zero case gives an exact p-adic valuations for a large

class of S(n, k).

3. RESULTS

In this section, we introduce an alternate formula to find the Stirling numbers of the second

kind and p-adic valuations of some classes of S(n, k). Some of these results have been

generalized using minimum periods.

Lemma 3.1. If n and k are two positive integers, then

s(n(k)) =
k−1∏

i=0

(
n(k − i) − 1

n − 1

)
.
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Proof. The case for n = 1 is trivial.

We provide the proof for n > 1 by using induction hypothesis on k.

We know that s(n(k)) counts the number of partitions of nk objects into k subsets such

that each k subsets contains exactly n objects.

The case for k = 1 is trivial since s(n(1)) = 1.

Assume that the theorem holds for every positive integer less than k. Let

a1 a2 a3 · · · an

an+1 an+2 an+3 · · · a2n

· · · · · · · · · · · · · · ·
a(k−1)n+1 a(k−1)n+2 a(k−1)n+3 · · · akn

be the nk objects. The order of the subsets in the partition does not count as each subsets

have the same cardinality. We can now safely assume that the first object a1 always belongs

to the first subset of the partition. Thus, the number of choices for the first subset is equal

to the number of choices of the remaining n − 1 objects from nk − 1, i.e.,
(
nk−1
n−1

)
. Now,

the remaining nk − n = n(k − 1) objects are partition into k − 1 subsets each containing

n elements. The number of such partitions are s(n(k−1)) and hence

s(n(k)) =

(
nk − 1

n − 1

)
s(n(k−1)).

By induction hypothesis, we get

s(n(k−1)) =
k−2∏

i=0

(
n(k − 1 − i) − 1

n − 1

)
.

It follows that

s(n(k)) =
k−1∏

i=0

(
n(k − i) − 1

n − 1

)
.

Using the binomial coefficients in terms of factorials, the above result may be written as

s(n(k)) =
(nk)!

k!(n!)k
.

This completes the proof.

Theorem 3.1. Let {ni : 1 ≤ i ≤ t} and {ei : 1 ≤ i ≤ t} be two sets of positive integers

and n′
is are distinct. If

∑t
i=1 niei = n and

∑t
i=1 ei = k, then

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
t∏

j=1

(
n−∑j−1

i=0 niei

njej

)
s(n

(ej)
j ) (if n0 = e0 = 0)

=
n!∏t

j=1 ej !(nj !)ej
.
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Proof. We first choose n1e1 objects from n objects and the number of such choices is(
n

n1e1

)
. These n1e1 objects are then partition into e1 subsets containing n1 objects each.

The total number of such partitions is

s(n1
(e1)) =

(n1e1)!

e1!(n1!)e1
.

Now we partition the remaining n−n1e1 objects into k−e1 subsets such that each partition

contains ei number of subsets with cardinality ni for each 2 ≤ i ≤ t. The total number of

such partitions is s(n2
(e2), n3

(e3), ..., nt
(et)). Thus,

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
n

n1e1

)
s(n1

(e1))s(n2
(e2), n3

(e3), ..., nt
(et)).

Similarly, we can see that

s(n2
(e2), n3

(e3), ..., nt
(et)) =

(
n − n1e1

n2e2

)
s(n2

(e2))s(n3
(e3), n4

(e4), ..., nt
(et)).

Therefore,

s(n1
(e1), n2

(e2), ..., nt
(et)) =

(
n

n1e1

)(
n − n1e1

n2e2

)
s(n1

(e1))s(n2
(e2))

× s(n3
(e3), n4

(e4), ..., nt
(et)).

Repeating the same process over and over, we get

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
n

n1e1

)(
n − n1e1

n2e2

)
· · ·
(

n −∑t−2
i=1 niei

nt−1et−1

)

× s(n1
(e1)) · · · s(nt

(et)) (3.1)

=s(nt
(et))

t−1∏

j=1

(
n −∑j−1

i=0 niei

njej

)
s(nj

(ej))

=

t∏

j=1

(
n −∑j−1

i=0 niei

njej

)
s(nj

(ej)), (3.2)

since n −∑t−1
i=0 niei = ntet when n0 = e0 = 0.

The above expression may be expressed as

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
n!

(n1e1)!(n2e2)! · · · (ntet)!

t∏

j=1

s(nj
(ej))

=n!
t∏

j=1

s(nj
(ej))

(njej)!
.

By using the results of Lemma 3.1, we have

s(nj
(ej))

(njej)!
=

1

ej !(nj !)ej
.
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It follows that

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =n!
t∏

j=1

1

ej !(nj !)ej

=
n!∏t

j=1 ej !(nj !)ej
. (3.3)

Hence the theorem follows.

We come to an alternate formula for evaluation of S(n, k) with the help of (2.1) and (3.3).

Corollary 3.1. Let n and k are two positive integers such that n ≥ k, then

S(n, k) =
∑

∑
ei=k,

∑
niei=n

n!∏
ei!(ni!)ei

,

where the sum runs over every pair of sets of positive integer {ni} and {ei} with same

cardinality satisfying
∑

ei = k and
∑

niei = n provided n′
is are distinct.

It is easy to verify from the above theorem that the p-adic valuations of S(p, k) is always

greater than or equal to 1 if p is an odd prime and k lies between 2 and p − 1. We can also

state the following results:

Theorem 3.2. Let p be an odd prime and k be an integer such that 2 ≤ k ≤ p − 1, then

vp(S(p2, kp)) ≥ 2.

Proof. We know (due to (2.1))

S(p2, kp) =
∑

∑
ei=pk,

∑
niei=p2

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)).

To prove the theorem, we divide each terms of the sum over the partitions containing ei

subsets with cardinality ni into the following cases depending on the divisibility of niei by

p.

Case 1: p ! niei for some 1 ≤ i ≤ t.
If p ! niei, re-arrange the index by interchanging i and 1 so that p ! n1e1. Using Eq.

(3.2), we have

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =

(
p2

n1e1

)
s(n1

(e1))
t∏

j=2

(
n −∑j−1

i=0 niei

njej

)
s(nj

(ej))

which implies that (
p2

n1e1

)
|s(n1

(e1), n2
(e2), n3

(e3), ..., nt
(et)).

We also know that p2|
(

p2

n1e1

)
if p ! n1e1. It follows that

p2|s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)).
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Therefore,

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) ≥ 2

if p ! niei for some i, 1 ≤ i ≤ t.

Case 2: p|niei for every 1 ≤ i ≤ t.
In this case, either p|ni or p|ei for all 1 ≤ i ≤ t. We divide this case into two sub-cases,

where the first sub-case deals with p|ei for all 1 ≤ i ≤ t and the second sub-case deals with

p ! ei for some i, 1 ≤ i ≤ t.

Case 2.1: p|ei for every 1 ≤ i ≤ t.
It is clear that there exists a positive integer ai for each 1 ≤ i ≤ t such that ei = pai.

By the given condition, we have
t∑

i=1

ei = kp

which implies that
t∑

i=1

ai = k.

Now, we have

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
p2!∏t

i=1 ei!(ni!)ei

which yields

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = vp(p
2!) − vp(

t∏

i=1

ei!(ni!)
ei)

= p + 1 −
t∑

i=1

vp(ei!) −
t∑

i=1

eivp(ni!). (3.4)

Since
∑t

i=1 niei = p2 and by replacing ei = pai, we get

t∑

i=1

niai = p

which implies that 1 ≤ ni < p for every 1 ≤ i ≤ t since
∑t

i=1 ai = k ≥ 2. It follows that

vp(ni!) = 0.

We also have

vp(ei!) = vp((aip)!)

= ai.
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Now Equation (3.4) reduces to

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = p + 1 −
t∑

i=1

ai

= p + 1 − k

≥ p + 1 − (p − 1) since k ≤ p − 1

= 2.

Thus, it follows that vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) ≥ 2 if p|ei ∀ 1 ≤ i ≤ t.

Case 2.2: p ! ei for some 1 ≤ i ≤ t.
Let α be the number of e′

is which are divisible by p. Then, 0 ≤ α < t. If α = 0, then

each e′
is are not divisible by p which means p divides each ni and we can write ni = pmi

for each i. Therefore ∑
pmiei = p2 ⇒

∑
miei = p

which implies
∑

ei ≤ p as each m′
is are positive integers. This is a contradiction as∑

ei = kp with k ≥ 2. Thus, we must have α > 0.

Now, we re-arrange the index in such a manner that p|ei if 1 ≤ i ≤ α and p ! ei if

α < i ≤ t, which implies that ei = pbi for some positive integer bi for all 1 ≤ i ≤ α. We

also have ni = pmi for some positive integer mi and for all α + 1 ≤ i ≤ t. It follows that

kp =
t∑

i=1

ei

=
α∑

i=1

ei +
t∑

i=α+1

ei

=
α∑

i=1

pbi +
t∑

i=α+1

ei

which implies that p|∑t
i=α+1 ei. Since α < t, and e′

is are positive integers, we must have

t∑

i=α+1

ei ≥ p.

We also have

p2 =
t∑

i=1

niei =
α∑

i=1

niei +
t∑

i=α+1

niei = p
α∑

i=1

nibi + p
t∑

i=α+1

miei,
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which implies that

p =

α∑

i=1

nibi +

t∑

i=α+1

miei

≥
α∑

i=1

nibi +
t∑

i=α+1

ei (since m′
is are positive)

≥
α∑

i=1

nibi + p.

Thus, we get
α∑

i=1

nibi ≤ 0,

which is a contradiction as each term is positive and α ̸= 0. Therefore, this case cannot

happen.

We conclude that p2 divides s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) for each case, where∑t
i=1 niei = p2 and

∑t
i=1 ei = kp. So,

p2|S(p2, kp) if 2 ≤ k ≤ p − 1.

The preceding theorem confirms that the lower bound of vp(S(p2, kp)) for 2 ≤ k <
p − 1 is 2 as mentioned in the conjecture of Singh [SLS] is true. The next theorem is a

generalization of the above theorem.

Theorem 3.3. Let p be an odd prime and k be an integer 2 ≤ k ≤ p − 1, then

vp(S(pn, kp)) ≥ 2

for any integer n ≥ 2.

Proof. Replacing N = 2 in Eq. (2.2), we get

π(kp; p2) = (p − 1)pb if pb−1 < kp ≤ pb.

Since 2 ≤ k ≤ p − 1, we also have p < kp < p2 and hence b = 2. Therefore,

π(kp; p2) = (p − 1)p2.

It follows that

S(a + d(p − 1)p2, kp) ≡ S(a, kp) mod p2 (3.5)

for every positive integer a and d.

Now, we prove the theorem by induction on n. The previous theorem states that our

hypothesis is true for n = 2, i.e.,

vp(S(p2, kp)) ≥ 2
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which can be written as

S(p2, kp) ≡ 0 (mod p2).

Assume that the theorem holds for all n ≤ m for some positive integer m ≥ 2 so that

vp(S(pn, kp)) ≥ 2 for all 2 ≤ n ≤ m

which implies

S(pm, kp) ≡ 0 (mod p2).

Putting a = pm and d = pm−2 in Eq. (3.5), we get

S(pm+1, kp) ≡ 0 (mod p2).

Thus the theorem is also true for n = m + 1. It follows that the theorem is true for every

integer n ≥ 2.

Theorem 3.4. Let p be an odd prime, then

vp(S(2p, p)) ≥ 2.

Proof. Using Eq. (2.1) and Theorem 3.1, we have

S(2p, p) =
∑

∑
ej=p,

∑
njej=2p

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)), (3.6)

and

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) =
2p!∏t

j=1 ej !(nj !)ej

for some positive integer t. It follows that

vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = 2 −
t∑

j=1

vp(ej !) −
t∑

j=1

ejvp(nj !)).

Now we consider the following cases in Eq. (3.6).

Case 1: nj < p and ej < p for every j.

It is easy to see that vp(s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et))) = 2 if each e′
js and n′

js are

less than p and we get

s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)) ≡ 0 (mod p2) (3.7)

if both ej and nj are less than p.

Case 2: ej ≥ p for some j.

We know that
∑

ej = p which implies each e′
js are less than p unless for the case

t = 1, e1 = p so that n1e1 = 2p or n1 = 2. In this case, the term is

s(2(p)) =
(2p)!

p!(2!)p
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and can be written as

s(2(p))

p
=

(p + 1)(p + 2) · · · (p + p − 1)

2p−1

≡ (p − 1)! ≡ −1 (mod p).

or

s(2(p)) ≡ −p (mod p2). (3.8)

Case 3: nj ≥ p for some j.

If nj ≥ p for some j, then ej = 1 due to
∑

ej = p and
∑

njej = 2p. The upper bound

for the value of nj is p + 1 since the remaining 2p − nj objects cannot fill the remaining

empty p − 1 subsets if nj > p + 1.

Case 3.1: nj = p + 1 for some j.

If nj = p + 1 for some j, all the remaining p − 1 subsets must contain a single object

and the corresponding term for this case is s((p + 1)(1), 1(p−1)), i.e., t = 2, n1 = p + 1,

e1 = 1 = n2 and e2 = p − 1. Then

s((p + 1)(1), 1(p−1)) =
(2p)!

(p − 1)!(p + 1)!
,

which can also write as

s((p + 1)(1), 1(p−1))

p
≡ 2 (mod p)

or

s((p + 1)(1), 1(p−1)) ≡ 2p (mod p2). (3.9)

Case 3.2: nj = p for some j.

In this case, one subset contains p elements, one another subset contains two elements

and remaining p − 2 subsets must contain a single object. The corresponding term for this

case is s(p(1), 2(1), 1(p−2)), i.e., t = 3, n1 = p, e1 = 1 = e2 = n3, n2 = 2 and e3 = p − 2.

Using (3.3), we have

s(p(1), 2(1), 1(p−2)) =
(2p)!

(p − 2)!p!2!

which reduces to
s(p(1), 2(1), 1(p−2))

p
≡ −1 (mod p)

or

s(p(1), 2(1), 1(p−2)) ≡ −p (mod p2). (3.10)

Combining the results in (3.6), (3.7), (3.8), (3.9) and (3.10), we get

S(2p, p) ≡ 0 (mod p2).

This completes the proof.
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Theorem 3.5. For any prime p ≥ 5, we have

vp(S(2p, p − 1)) = 1

or more specifically

S(2p, p − 1) ≡ 1

6
p (mod p2).

Proof. We look into the following cases where p2 does not divide s(n1
(e1), n2

(e2),

n3
(e3), ..., nt

(et)) as in the preceding theorem:

1. ni = p for some i

2. ni = p + 1 for some i

3. ni = p + 2 for some i.

In the first case, there are two possible terms namely, s(p(1), 3(1), 1(p−3)) and s(p(1),

2(2), 1(p−4)). So

s(p(1), 3(1), 1(p−3)) =
(2p)!

(p − 3)!p!3!
≡ 2

3
p (mod p2)

and

s(p(1), 2(2), 1(p−4)) =
(2p)!

2!(p − 4)!p!(2!)2
≡ −3

2
p (mod p2).

For the second case, the only possible term is s((p + 1)(1), 2(1), 1(p−3)) and

s((p + 1)(1), 2(1), 1(p−3)) =
(2p)!

(p − 3)!(p + 1)!2!
≡ 2p (mod p2).

The final case also contains only one term, s((p + 2)(1), 1(p−2)) and

s((p + 2)(1), 1(p−2)) =
(2p)!

(p − 2)!(p + 2)!
≡ −p (mod p2).

Thus, we have

S(2p, p − 1) ≡ 2

3
p − 3

2
p + 2p − p (mod p2)

≡ 1

6
p (mod p2).

This completes the proof.

Using the results of minimum periods in Eq. (2.2) and exploiting the same technique as

in the proof of Theorem 3.3, we generalize Theorem 3.4 and Theorem 3.5 as follows.

Theorem 3.6. Let p be an odd prime, then

vp(S(2pn, p)) ≥ 2.
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Theorem 3.7. For any prime p ≥ 5, we have

vp(S(2pn, p − 1)) = 1

or more specifically

S(2pn, p − 1) ≡ 1

6
p (mod p2).

Theorem 3.8. For any odd prime p, we have

vp(S(2p, p + 1)) = 0; (3.11)

moreover,

S(2p, p + 1) ≡ 2 (mod p2). (3.12)

Eq. (3.11) is a special case of (2.3) since S(2p, p + 1) is a minimum zero case. Hence

vp(S(2p, p + 1)) =
sp(p + 1) − sp(2p)

p − 1
= 0,

where sp(n) is the sum of p-adic digits of n.

Using Eq. (2.4), we can also say that

vp(S(2pn+1, (p + 1)pn)) = 0

for any positive integer n.

The second result (3.12) can be obtained using the same method as in Theorem 3.5.

Theorem 3.9. For any odd prime p,

vp(S(2p, p + 2)) ≥ 1

or

S(2p, p + 2) ≡ 2p − 2 (mod p2).

Proof. There are two cases where p2 does not divide s(n1
(e1), n2

(e2), n3
(e3), ..., nt

(et)).
The first case is s(1(p), i(1), (p − i)(1)) for 2 ≤ i ≤ (p − 1)/2 and

s(1(p), i(1), (p − i)(1)) =
(2p)!

p!i!(p − i)!
≡ 2

(
p

i

)
(mod p2).

It follows that

p−1
2∑

i=2

s(1(p), i(1), (p − i)(1)) ≡ 2p − 2 − 2p (mod p2).

The second case is s(1(p+1), (p − 1)(1)) and

s(1(p+1), (p − 1)(1)) =
(2p)!

(p + 1)!(p − 1)!
≡ 2p (mod p2).

Now, we have

S(2p, p + 2) ≡ 2p − 2 − 2p + 2p ≡ 2p − 2 (mod p2).

This completes the proof.
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It is known that 2p − 2 is always divisible by p using Fermat’s theorem. The result for

mod p2 is however not known in general. There are some primes p especially greater than

1000 where p2 divides 2p − 2. So, this leads to an interesting problem as to find out those

primes p such that vp(S(2p, p + 2)) ̸= 1 which is equivalent to p2 ! 2p − 2.

4. CONCLUSION

This paper introduce an alternate formula for evaluation of Stirling numbers of the second

kind S(n, k). This formula is used to determine the lower bound of the p-adic valuations

of Stirling numbers of the second kind of the classes S(p2, kp), where p is an arbitrary odd

prime and k is a positive integer such that 2 ≤ k ≤ p − 1. Some generalized results of

p-adic evaluation of S(pn, kp), S(2pn+1, (p + 1)pn) and S(2pn, p) are also proved using

minimum periods. The results of p-adic valuation for S(2p, p − 1), S(2p, p), S(2p, p + 1)
and S(2p, p + 2) are also obtained.
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Abstract This paper consists of certain congruence properties of Stirling numbers of the first and second kinds.
Some congruence relations between s(n, k) and S(n, k) for differentmodulo are obtained through their generating
functions. We also present some exact p-adic valuations of s(n, k) and S(n, k) for some cases, mainly when
n − k is divisible by p − 1 for odd prime p. Some estimates of the p-adic valuation of these two numbers are
also presented when p − 1 does not divide n − k.

Keywords Congruence · Generating function · Primes · p-adic valuation · Stirling numbers

Mathematics Subject Classification 11A07 · 11B73 · 11E95.

1 Introduction

The p-adic valuation of an integer a denoted by vp(a) is the highest exponent of p that divides a, where p is a
prime. It follows that pvp(a) | a but p1+vp(a) � a. Every integer has a unique p-adic expansion. If

a = a0 + a1 p + a2 p
2 + · · · + an p

n,

where 0 ≤ ai ≤ p − 1, this expression is unique, and ai ’s are called the p-adic digits. The sum of a’s p-adic
digits is denoted by sp(a). Thus,

sp(a) =
n∑

i=0

ai .

This sum is related to the p-adic valuation of binomial coefficients [14] as

vp

((
n

k

))
= sp(k) + sp(n − k) − sp(n)

p − 1
.
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A. Lalchhuangliana, S.S.Singh

Some important generating functions of Stirling numbers of the second kind S(n, k) and the first kind s(n, k) are

xn =
n∑

i=0

s(n, i)xi , xn =
n∑

i=0

(−1)n−i s(n, i)xi , (1)

n−1∏

i=1

(1 − i x) =
n−1∑

i=0

s(n, n − i)xi ,
n−1∏

i=1

(1 + i x) =
n−1∑

i=0

(−1)i s(n, n − i)xi , (2)

k∏

i=1

1

(1 − i x)
=

∞∑

n=0

S(n + k, k)xn,
k∏

i=1

1

(1 + i x)
=

∞∑

n=0

(−1)n S(n + k, k)xn, (3)

where the notations xn and xn̄ stand for the falling factorial and the rising factorial of x , respectively.
Stirling numbers are related to several sequences of numbers, making them interesting to many researchers. In
recent years, divisibility properties of Stirling numbers of the second kind for an even prime appeared in Adelberg
[2], Hong et al. [7], Lengyel [11], Wannemacker [22] and Zhao et al. [24].
For positive integers a, k, and a prime p such that a < k < p, and for each positive integer n ≡ a
(mod pm0−1(p − 1)), Miska [15] confirmed that

vp(S(n, k)) = vp(S(a + (p − 1)pm0−1, k)) + vp(n − a) − m0 + 1.

Singh and Lalchhuangliana [18] proved, using a combinatorial approach and a concept of minimum periods,
that

vp(S(pn, kp)) ≥ 2,

for any integer n ≥ 2 and 2 ≤ k ≤ p − 1.
Chan and Manna [4] obtained a congruence relation for S(n, kpm) modulo pm and found that pm always divides
S(n, kpm) whenever n �≡ k (mod p − 1). Adelberg [1] discussed the concept of Minimum Zero Case (MZC),
and if n = aph , 1 ≤ a ≤ p − 1, and (p − 1) | (n − k), then S(n, k) is MZC with exact p-adic valuation

vp(S(n, k)) = sp(n) − sp(k)

p − 1
.

For more results about the divisibility properties of Stirling numbers of the second kind, we refer to Davis [5],
Sagan [17], Singh et al. [19], Tsumura [21], Sun [20], and Young [23].
For any prime p, Lengyel [12] confirmed that

vp(s(ap
n + b, apn + b − k)) = vp(s(b, b − k)),

where a, k, b, and n are integers such that a ≥ 1 with (a, p) = 1, 2 ≤ k + 1 ≤ b and n is sufficiently large.
Qiu and Hong [16] showed that v2(s(2n, k)) = v2(s(2n + 1, k + 1)) for 1 ≤ k ≤ 2n, and v2(s(2n, 2n − k)) =
2n − 2 − v2(k − 1) if k is odd and 2 ≤ k ≤ 2n−1 + 1. Komatsu and Young [10] proved that

vp(s(n + 1, k + 1)) = vp(n!) − vp(k!) − kr,

where n, k, m, and r are positive integers such that n = kpr +m andm < pr . More results about the divisibility
of Stirling numbers of the first kind can be seen in Cao and Pan [3], Hong and Qiu [8], Howard [9], and Leonetti
and Sanna [13].
This paper present the congruences of S(n, kpm) and s(kpm, n) explicitly in terms of binomial coefficient when
n ≡ k (mod p − 1). We further obtain congruences for S(n, k) and s(k, a) modulo p, pm , and pn , where
m = �logp(k)� and n ≥ m. We reduce the congruences to simpler results for some special cases. The exact
values of vp(S(n, k)) and vp(s(n, k)) for some special cases of n ≡ k (mod p−1) are obtained.We also discuss
the case when S(n, k) and S(n − 1, k − 1) have the same congruence property.
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2 Preliminaries

The generating functions of S(n, k) and s(n, k) play a significant role in obtaining their congruence properties.
We will assume p as an odd prime unless stated otherwise. We use the congruence property of the polynomial
Chan and Manna [4]

kpm∏

i=1

(1 − i x) ≡ (1 − x p−1)kp
m−1

(mod pm). (4)

If we replace x with 1/y, we get

kpm∏

i=1

(1 − i x) = 1

ykpm

kpm∏

i=1

(y − i)

and

(1 − x p−1)kp
m−1 = 1

yk(p−1)pm−1 (y p−1 − 1)kp
m−1

.

It follows that

kpm∏

i=1

(y − i) ≡ ykp
m−1

(y p−1 − 1)kp
m−1

(mod pm). (5)

We can also write this result as

xkp
m ≡ xkp

m−1
(x p−1 − 1)kp

m−1
(mod pm). (6)

Replacing x by −x in Equations (4) and (6), we obtain

kpm∏

i=1

(1 + i x) ≡ (1 − x p−1)kp
m−1

(mod pm) (7)

and

xkp
m ≡ (−1)k xkp

m−1
(x p−1 − 1)kp

m−1
(mod pm). (8)

Davis and Webb [6] proved, for a prime p > 3, that

(
np

kp

)
≡

(
n

k

)
(mod pe), (9)

where e = 3 + vp(n) + vp(k) + vp(n − k) + vp(
(n
k

)
). With the help of Equation (9), it is easy to confirm

(1 − x)p
n ≡ (1 − x pn−m

)m (mod pm+1) (10)

for any integers n and m such that 0 ≤ m ≤ n.
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3 Results

In this section, we prove our main results which we present in theorems and corollaries. The first theorem gives
the congruence relations between Stirling numbers of the first kind and Binomial coefficients.

Theorem 1 If p is an odd prime and k is a positive integer not divisible by p, then for any positive integer m,
the following congruences hold;

a) s(kpm, kpm − b) ≡ (−1)ks(kpm, kpm−1 + b) (mod pm),

b) s(kpm, kpm − b) ≡
(
kpm−1

b
p−1

)
(−1)

b
p−1 (mod pm),

if b ≡ 0 (mod p − 1) and b ≤ k(p − 1)pm−1.

c) s(kpm, b) ≡ 0 (mod pm),

if b ≤ kpm−1 or kpm−1 − b �≡ 0 (mod p − 1).

d) s(kpm, b) ≡ s(kpm + 1, b + 1) (mod pm),

for any integer b such that 1 ≤ b ≤ kpm − 1.

Proof We know that

kpm−1∏

i=1

(1 − i x) =
kpm−1∑

i=0

s(kpm, kpm − i)xi

xkp
m =

kpm∑

i=0

s(kpm, i)xi .

Due to Equations (4) and (6), we get

kpm−1∏

i=1

(1 − i x) ≡ (1 − x p−1)kp
m−1

(mod pm);

xkp
m ≡ xkp

m−1
(x p−1 − 1)kp

m−1
(mod pm).

It follows that

kpm−1∑

i=0

s(kpm, kpm − i)xi ≡
kpm−1∑

j=0

(
kpm−1

j

)
(−1) j x j (p−1) (mod pm);

kpm∑

i=0

s(kpm, i)xi ≡ xkp
m−1

kpm−1∑

j=0

(
kpm−1

j

)
(−1)k− j x j (p−1) (mod pm).

Comparing the coefficients of xb, we get the first three results, and the last result is obtained from the congruence

kpm∏

i=1

(1 − i x) ≡
kpm−1∏

i=1

(1 − i x) (mod pm). (11)

Hence, the theorem follows. 	

Corollary 1 Let n = kpm, m ≥ 1, be an integer with only one non-zero p-adic digit, and p > 3 be a prime.
Then, s(n, a) is divisible by p if and only if n �≡ a (mod (p − 1)pm−1). Further, s(n, a) is divisible by pt+1,
0 ≤ t ≤ m − 1, if and only if n − a < kpm−1 or n �≡ a (mod (p − 1)pm−1−t ).

Proof Follow the proof of Theorem 1 and use Equation (10). 	
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Corollary 2 For an odd prime p and integers k and m such that p � k and m ≥ 1, we have

vp(s(kp
m + 1, a + 1)) = vp(s(kp

m, a)) = m − 1 − vp(a), (12)

whenever m − 1 > vp(a), kpm−1 ≤ a ≤ kpm, and k ≡ a (mod p − 1).

Proof The proof is based on the equality vp(
(apn
bpm

)
) = n − m when p � a, p � b, and n > m. 	


Remark 1 If n ≥ m, the p-adic valuation of the binomial coefficient
(apn
bpm

)
is equal to vp(

( a
bpm−n

)
). It follows

that if m − 1 ≤ vp(a) and vp(
( k
kp−ap1−m

)
) ≤ m − 1, we have

vp(s(kp
m + 1, a + 1)) = vp(s(kp

m, a)) = vp

((
k

kp − ap1−m

))
. (13)

It is also trivial from Theorem 1 that

Min{vp(s(kp
m + 1, a + 1)), vp(s(kp

m, a))} ≥ m (14)

when a < kpm−1 or kpm−1 − a �≡ 0 (mod p − 1).

The following theorem is a generalization of Theorem 1.

Theorem 2 For an odd prime p and positive integers k, m, a, and b, the following congruences hold;

s(kpm + a, kpm−1 + b) ≡
∑

i

(−1)k−i
(
kpm−1

i

)
s(a, b − i(p − 1)) (mod pm) (15)

if b ≤ a + k(p − 1)pm−1, and

s(kpm + a, b) ≡ 0 (mod pm). (16)

if b ≤ kpm−1.

Proof We have

xkp
m+a =

kpm+a∑

i=0

s(kpm + a, i)xi (17)

and

xkp
m+a =

kpm∏

i=0

(x − i)
a−1∏

i=1

(x − (kpm + i))

≡ xkp
m−1

(x p−1 − 1)kp
m−1

xa (mod pm)

≡ xkp
m−1

kpm−1∑

i=0

(
kpm−1

i

)
(−1)k−i x i(p−1)

a∑

j=0

s(a, j)x j (mod pm). (18)

Comparing the coefficients of xkp
m−1+b in the RHS of Equations (17) and (18), we obtain

s(kpm + a, kpm−1 + b) ≡
∑

i(p−1)+ j=b

(−1)k−i
(
kpm−1

i

)
s(a, j) (mod pm). (19)

Changing the index j to b − i(p − 1) confirms the first result of the theorem. The coefficient of xn on the
right-hand side of Equation (18) vanishes if n ≤ kpm−1; hence, the second result follows. 	

The following corollaries are special cases of the preceding theorem.
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Corollary 3 For an odd prime p and positive integers k, m, a, and b;

(i) σa ≡ (−1)ks(a, b) (mod pm) if b ≤ p − 1,

(i i) vp(σp−1) =
{
m − 1 − vp(� b

p−1�), if (p − 1) � b and � b
p−1� < pm−1;

m − 1 − vp(
b

p−1 − 1), if (p − 1) | b and b
p−1 < pm−1.

where σa = s(kpm + a, kpm−1 + b).

Proof On observation of Equation (19), we can see that;
(i) If b ≤ p − 1, then the only solution of i(p − 1) + j = b for (i, j) is (0, b), unless b = p − 1, in which case
there are two solutions, namely (0, p − 1) and (1, 0). The corresponding term for the solution (1, 0) vanishes as
s(a, 0) = 0. Hence, (i) follows.
(ii) Let b = q(p − 1) + r such that 0 ≤ r < p − 1. The only solution of i(p − 1) + j = q(p − 1) + r with
j ≤ p − 1 is (i, j) = (q, r), if r �= 0. Thus, we get

s(kpm + p − 1, kpm−1 + b) ≡ (−1)k−q
(
kpm−1

q

)
s(p − 1, r) (mod pm). (20)

Now, we obtain the congruence for s(p − 1, b):
We have

x p−1 = x p

x − p + 1
≡ (x p − x)(1 − x + x2 − · · · ) (mod p).

It follows that

p−1∑

i=0

s(p − 1, i)xi ≡ −x + x2 − x3 + · · · + x p−1 (mod p)

and

s(p − 1, i) ≡ (−1)i (mod p) (21)

if 1 ≤ i ≤ p − 1.

Therefore, the valuation of the binomial coefficient
(kpm−1

q

)
is m − 1− vp(q) and s(p − 1, r) is not divisible by

p. Thus, the first case of (ii) follows.
On the other hand, if r = 0 or b = q(p − 1), then there are two solutions of i(p − 1) + j = q(p − 1), namely
(q, 0) and (q − 1, p − 1). The corresponding term for the index (q, 0) is zero since s(p − 1, 0) = 0. Following
the proof of the first result, we get the second case of (ii). 	

Corollary 4 For an odd prime p and positive integers k, m, a, and b;

s(kpm + a, kpm−1 + b) ≡ (−1)q
(
kpm−1

q

)
s(a, r) (mod pm)

if a < p − 1 and b = q(p − 1) + r with 0 ≤ r < p − 1.

Proof Given Equation (19), the only solution of i(p− 1)+ j = q(p− 1)+ r is (i, j) = (q, r). Hence the result
follows. 	

Remark 2 The p-adic valuations of large classes of Stirling numbers of the first kind can be obtained using
Theorem 1, Corollaries 3, and 4. The first result of Corollary 4 yields the following exact p-adic valuation,

vp(s(kp
m + a, kpm−1 + b)) = m − 1 − vp

(⌊ b

p − 1

⌋)
, (22)

if b ≡ 1, a, a − 1 or a − 3 (mod p − 1), assuming conditions of the corollary apply.

123



Congruence between Stirling numbers

Theorem 3 Let p be an odd prime and k, a, b, m, and t be positive integers such that max{k, a} ≤ p − 1,
t < m, and b ≤ apt . Then,

θapt ≡
{
s(apt , b) (mod pm), if a �≡ b (mod p − 1) or b < apt−1;
s(apt , b) (mod pm−vp(b)−1), otherwise.

(23)

where θq = s(kpm + q, kpm + b).

Proof Replace a and b in Equation (19) with apt and k(p − 1)pm−1 + b, respectively; we obtain

θapt ≡
∑

i(p−1)+ j=k(p−1)pm−1+b

(−1)k−i
(
kpm−1

i

)
s(apt , j) (mod pm).

If we replace the index j with (kpm−1 − i)(p − 1) + b, we get

θapt ≡
∑

i

(−1)k−i
(
kpm−1

i

)
s(apt , (kpm−1 − i)(p − 1) + b) (mod pm).

By reversing the index, we get

θapt ≡
∑

i

(−1)i
(
kpm−1

i

)
s(apt , b + i(p − 1)) (mod pm). (24)

Using Theorem 1, s(apt , b + i(p − 1)) is divisible by pt if a �≡ b (mod p − 1) or b < apt−1. The valuation

of
(kpm−1

i

)
is m − 1 − vp(i) unless i = 0. Thus, the valuation of the i−th terms, i �= 0, of the right-hand side

of Equation (24) is greater than or equal to m − 1 + t − vp(i). The range of the index i is determined by the
inequality b ≤ b + i(p − 1) ≤ apt , which implies that 0 ≤ i ≤ a

∑t−1
r=0 p

r . It follows that vp(i) ≤ t − 1 and
consequently m − 1+ t − vp(i) ≥ m. Hence, pm divides all the i − th terms except the term with i = 0. Thus,
the first case of the theorem follows.
Now, we assume that a ≡ b (mod p− 1) and apt−1 ≤ b ≤ apt . Therefore, we can express b as apt − q(p− 1)
with 0 ≤ q < apt−1. Equation (24) becomes

θapt ≡
∑

i

(−1)i
(
kpm−1

i

)
s(apt , apt − (q − i)(p − 1)) (mod pm). (25)

Given Theorem 1, the valuation of the i-th term on the RHS of the preceding congruence is m + t − 2− vp(i) −
vp(q − i) if i > 0. Therefore, two sub cases arise, namely vp(q) < vp(i) and vp(i) ≤ vp(q);
If vp(q) < vp(i), we have vp(q − i) = vp(q) and

m + t − 2 − vp(i) − vp(q − i) = m − 1 − vp(q) + (t − 1 − vp(i)) ≥ m − 1 − vp(q),

since vp(i) ≤ t − 1.
If vp(i) ≤ vp(q), we get

m + t − 2 − vp(i) − vp(q − i) ≥ m − 1 − vp(q) + (t − 1 − vp(q − i)) ≥ m − 1 − vp(q),

since vp(q − i) ≤ t − 1.
The equality b = apt − q(p − 1) also implies that vp(b) = vp(q) for the given condition. It follows that all the
terms except when i = 0 are divisible by pm−1−vp(b). Hence, the second case of the theorem follows. 	
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3.1 Valuations of S(n, kpm)

Using Equations (3) and (4), we have the following result [4];
∞∑

n=0

S(n + kpm, kpm)xn ≡
∞∑

j=0

(
kpm−1 + j − 1

j

)
x j (p−1) (mod pm), (26)

which implies S(n, kpm) ≡ 0 (mod pm) if n �≡ k (mod p − 1); otherwise,

S(kpm + a, kpm) ≡
(
kpm−1 + a

p−1 − 1

kpm−1 − 1

)
(mod pm) (27)

for any non-negative integer a with a ≡ 0 (mod p − 1).
Due to Equation (11), we also have the congruence

S(kpm + a − 1, kpm − 1) ≡ S(kpm + a, kpm) (mod pm). (28)

The following theorem is a consequence of Equations (26), (27), and (28).

Theorem 4 Let p be an odd prime and k be an integer not divisible by p. For any positive integer n such that
n ≡ k (mod p − 1) and n < kpm + (p − 1)pm−1 with m > 1;

vp(S(n − 1, kpm − 1)) = vp(S(n, kpm)) = m − 1 − vp(n). (29)

If n �≡ k (mod p − 1), then

min{vp(S(n, kpm)), vp(S(n − 1, kpm − 1))} ≥ m. (30)

Proof The second result is trivial from Equations (26) and (28).
We assume n ≥ kpm and let n = kpm + b(p − 1) with b < pm−1. From Equations (27) and (28), we have

S(kpm + b(p − 1) − 1, kpm − 1) ≡ S(kpm + b(p − 1), kpm)

≡
(
kpm−1 + b − 1

b

)
(mod pm).

The p-adic valuation of the above binomial coefficient is given as

vp

((
kpm−1 + b − 1

b

))
= sp(b) + sp(kpm−1 − 1) − sp(kpm−1 + b − 1)

p − 1
, (31)

and we have

sp(kp
m−1 − 1) = sp((k − 1)pm−1 + pm−1 − 1)

= sp((k − 1)pm−1) + sp(p
m−1 − 1)

= sp(k − 1) + (m − 1)(p − 1). (32)

Further, k is not divisible by p and then sp(k − 1) = sp(k) − 1. Therefore, Equation (32) reduces to

sp(kp
m − 1) = sp(k) + (m − 1)(p − 1) − 1. (33)

Since m > 1 and b < pm−1, we have

sp(kp
m−1 + b − 1) = sp(kp

m−1) + sp(b − 1)

= sp(k) + sp(b − 1). (34)

Let b = b′ pvp(b), p � b′, for some positive integer b′. Replacing kpm with b in Equation (33); we get

sp(b − 1) = sp(b) − 1 + vp(b)(p − 1) (35)

since sp(b) = sp(b′). Therefore, combining Equations (31), (33), (34), and (35), we get

vp

((
kpm−1 + b − 1

b

))
= m − 1 − vp(b).

It is also trivial from our assumption of b that vp(b) = vp(n). Hence the theorem follows. 	
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Definition 1 Let a be a positive integer whose p-adic expansion is given by

a = a0 + a1 p + a2 p
2 + · · · + at p

t .

For a fixed integer k, 1 ≤ k ≤ p − 1, we define ρp,k,m(a) as

ρp,k,m(a) =

⎧
⎪⎨

⎪⎩

0, (if k + am < p),

1 + n, (ifk + am ≥ p,am+1 = · · · = am+n = p − 1
and am+n+1 < p − 1).

(36)

Here, ρp,k,m(a) is the number of carries when adding a and kpm in base p. Using Kummer’s theorem, we can

see that ρp,k,m(a) is, in fact, vp(
(a+kpm

a

)
).

The preceding theorem restricts the value of n to less than some particular value. The following theorem gives
an alternate result of Theorem 4 when there is no restriction on the values of n but restrict k < p.

Theorem 5 Let p be an odd prime and k be a positive integer less than p. For positive integers m and n such
that n ≡ k (mod p − 1);

vp(S(n − 1, kpm − 1)) = vp(S(n, kpm)) = ρp,k−1,m−1

(n − kpm

p − 1

)
, (37)

if ρp,k−1,m−1(
n−kpm

p−1 ) ≤ m − 1 ≤ vp(n). However, if ρp,k,m−1(
n−kpm

p−1 ) ≤ vp(n) < m − 1, then

vp(S(n − 1, kpm − 1)) = vp(S(n, kpm))

= m − 1 − vp(n) + ρp,k,m−1

(n − kpm

p − 1

)
. (38)

Proof Since n ≡ k (mod p−1), we can write n = kpm +a(p−1). Let a = ∑q
i=0 ai p

i be the p-adic expansion

of a = n−kpm

p−1 for some positive integer q. To prove the theorem, it is enough to obtain vp(
(kpm−1+a−1

a

)
) for both

cases. For the first case, we have

a = a′ pt

for some positive integers a′ and t such that p � a′ and t ≥ m − 1. Therefore,

sp(kp
m−1 + a′ pt − 1) = sp(k + a′ pt−m+1 − 1) + sp(p

m−1 − 1)

and

sp(kp
m−1 − 1) = k − 1 + sp(p

m−1 − 1).

Thus, the valuation of the binomial coefficient is

vp

((
kpm−1 + a − 1

a

))
= sp(a′) − sp(k − 1 + a′ pt−m+1) + k − 1

p − 1
. (39)

Suppose t > m − 1, the sum of the digits sp(k − 1 + a′ pt−m+1) can be split into the sum sp(k − 1) + sp(a′)
since we assume 1 ≤ k ≤ p − 1. In this case, the valuation of the binomial coefficient becomes zero, which
is also equal to ρp,k,m−1(a), since the (m − 1)-th p-adic digit of a is zero and k + am−1 = k < p. Now, we
assume that vp(a) = m − 1, which means that t = m − 1 and a′ = am−1 + am p + am+1 p2 + · · · . It follows
that if k − 1 + am−1 < p, then

sp(kp
m−1 + a − 1) = sp(a) + sp(kp

m−1 − 1)

and vp(
(kpm−1+a−1

a

)
) = 0 = ρp,k−1,m−1(a).

If k − 1 + am−1 > p, then
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a = am−1 p
m−1 + (p − 1)

m−2+ρp,k−1,m−1(a)∑

i=m

pi +
q∑

i=m−1+ρp,k−1,m−1(a)

ai p
i ,

kpm−1 + a − 1 = (am−1 + k − 1 − p)pm−1

+ (am−1+ρp,k−1,m−1(a) + 1)pm−1+ρp,k−1,m−1(a)

+
q∑

i=m+ρp,k−1,m−1(a)

ai p
i ,

which implies

sp(a) = am−1 + (p − 1)(ρp,k−1,m−1(a) − 1) +
q∑

i=m+ρp,k−1,m−1(a)

ai ,

sp(kp
m−1 + a − 1) = k − p + am−1 +

q∑

i=m+ρp,k−1,m−1(a)

ai

= sp(a) − (p − 1)ρp,k−1,m−1(a) + k − 1.

Therefore, we get

vp

((
kpm−1 + a − 1

a

))
= sp(a) − sp(k − 1 + a) + k − 1

p − 1

= ρp,k−1,m−1(a).

Using this valuation in Equation (27), the first result of the theorem follows. The second result of the theorem
can be obtained through the same method. 	

Remark 3 If there is no restriction on the value of k and vp(a) < m − 1, we can write a as a = cpm−1 + b,
where b < pm−1. Therefore,

vp

((
kpm−1 + a − 1

a

))
= m − 1 − vp(b) + vp

((
k + c

c

))
.

For vp(a) ≥ m − 1, we have a = cpm−1 for some integer c and hence

vp

((
kpm−1 + a − 1

a

))
= vp

((
k + c − 1

c

))
.

If the valuations obtained are less thanm−1 for both cases, then they are the valuations of S(kpm+a(p−1), kpm)

for both cases.

Theorem 6 Let p be a prime greater than 3 and n, k, andm be positive integers. Then, p divides S(n, kpm) if n �≡
k (mod (p−1)pm−1). More precisely, pt+1, 0 ≤ t ≤ m−1, divides S(n, kpm) if n �≡ k (mod (p−1)pm−1−t ).

Proof The theorem can be proved using Equations (3), (4), and (10). 	
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3.2 Congruence relation between S(n,k) and s(n,k)

Now, we establish congruence relations between Stirling numbers of the first and the second kind using their
generating functions. The next theorem gives the results for S(n, k) modulo p. We use the notation [n] to denote
the set {0, 1, 2, · · · , n} for simplicity.

Theorem 7 Let p be an odd prime and n, k, a, and d are positive integers such that a < p and 0 ≤ d < p− 1,
then

S(n, kp + a) ≡ (−1)ds(p − a, p − a − d)

( n−k−a−d
p−1

k

)
(mod p)

if n − k − a ≡ d (mod p − 1) for some d ∈ [p − 1 − a], and
S(n, kp + a) ≡ 0 (mod p)

if n − k − a �≡ d (mod p − 1) for any d ∈ [p − 1 − a].
Proof We have

1
∏kp+a

i=1 (1 − i x)
=

∏(k+1)p
i=kp+a+1(1 − i x)
∏(k+1)p

i=1 (1 − i x)
,

and we get the following congruences;

1
∏kp+a

i=1 (1 − i x)
≡

∏p−a−1
i=0 (1 + i x)

(1 − x p−1)k+1 (mod p),

∞∑

n=0

S(n + kp + a, kp + a)xn ≡
p−a−1∑

i=0

s(p − a, p − a − i)(−1)i x i

×
∞∑

j=0

(
k + j

j

)
x j (p−1) (mod p).

It follows that if n ≡ d (mod p − 1) for d ∈ [p − a − 1], then

S(n + kp + a, kp + a) ≡ (−1)d
(
k + n−d

p−1

k

)
s(p − a, p − a − d) (mod p), (40)

and if n �≡ d (mod p − 1) for any d ∈ [p − a − 1], then
S(n + kp + a, kp + a) ≡ 0 (mod p). (41)

If we replace n + kp + a with n in Equations (40) and (41), we get the required results. 	

Remark 4 The following results are consequences of Theorem 7, specifically for the prime p = 3 and p = 5:
For p=3, we have two classes (since p − 1 = 2) for each a ∈ {0, 1, 2}. We get the following congruences:

S(n, 3k) ≡
{( n−k

2
k

)
(mod 3), if n − k is even;

0 (mod 3), if n − k is odd,

S(n, 3k + 1) ≡
{( n−k−1

2
k

)
(mod 3), if n − k is odd;

( n−k−2
2
k

)
(mod 3), if n − k is even,

S(n, 3k + 2) ≡
{( n−k−2

2
k

)
(mod 3), if n − k is even;

0 (mod 3), if n − k is odd.
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For p = 5, we have four classes (since p − 1 = 4) for each a ∈ {0, 1, 2, 3, 4}. We get the following
congruences:

S(n, 5k) ≡
{( n−k

4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n �≡ k (mod 4),

S(n, 5k + 1) ≡

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

( n−k−1
4
k

)
(mod 5), if n ≡ k + 1 (mod 4);

( n−k−2
4
k

)
(mod 5), if n ≡ k + 2 (mod 4);

( n−k−3
4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

( n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4),

S(n, 5k + 2) ≡

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

( n−k−2
4
k

)
(mod 5), if n ≡ k + 2 (mod 4);

3
( n−k−3

4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

2
( n−k−4

4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1 (mod 4),

S(n, 5k + 3) ≡

⎧
⎪⎨

⎪⎩

( n−k−3
4
k

)
(mod 5), if n ≡ k + 3 (mod 4);

( n−k−4
4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1 or k + 2 (mod 4),

S(n, 5k + 4) ≡
{( n−k−4

4
k

)
(mod 5), if n ≡ k (mod 4);

0 (mod 5), if n ≡ k + 1, k + 2, or k + 3 (mod 4).

In the case of S(n, 5k), the multiplier s(5, 5 − d) where d ∈ {0, 1, 2, 3} is divisible by 5 except when d = 0.
It is also easy to see that the binomial coefficients on the RHS of the above equations reduce to 1 if k = 0. This
observation leads us to acquire the following exact p-adic valuations:
For a prime p = 3 and any positive integer n,

a) v3(S(2n, 2)) = 0,

b) v3(S(6n + 3, 3)) = v3(S(6n + 5, 3)) = 0,

c) v3(S(6n, 4)) = v3(S(6n + 1, 4)) = v3(S(6n + 4, 4))

= v3(S(6n + 5, 4)) = 0,

d) v3(S(6n + 1, 5)) = v3(S(6n + 1, 5)) = 0,

e) v3(S(6n, 6)) = 0,

f ) v3(S(6n + 1, 7)) = v3(S(6n + 2, 7)) = 0,

g) v3(S(6n, 6)) = 0.

For a prime p = 5, we have the following p-adic valuations:

a) v5(S(4n, 2)) = v5(S(4n + 2, 2)) = v5(S(4n + 3, 2)) = 0,

b) v5(S(4n, 3)) = v5(S(4n + 3, 3)) = 0,

c) v5(S(4n, 4)) = 0,

d) v5(S(20n + r, 5)) = 0, if r ∈ {5, 9, 13, 17},
e) v5(S(20n + r, 6)) = 0, if r ∈ [19] \ {2, 3, 4, 5},
f ) v5(S(20n + r, 7)) = 0, if r ∈ [19] \ {2, 3, 4, 5, 6, 10, 14, 18},
g) v5(S(20n + r, 8)) = 0, if r ∈ {0, 1, 8, 9, 12, 13, 16, 17},
h) v5(S(20n + r, 9)) = 0, if r ∈ {1, 9, 13, 17}.
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The following theorem gives a generalization of Theorem 7 from modulo p to modulo pm .

Theorem 8 For an odd prime p and positive integers k, b, m, and n such that b < pm−1, the following
congruences hold;

S(n + kpm + b, kpm + b) ≡
∑

j

(−1)n
(

(k + 1)pm−1 + j − 1

j

)

× s(c, c − n + j (p − 1)) (mod pm) (42)

and

s(kpm + b, kpm + b − n) ≡
∑

j

(−1)n+ j
(

(k + 1)pm−1

j

)

× S(n − j (p − 1) + c, c) (mod pm), (43)

where c = pm − b.

Proof We have

1
∏kpm+b

i=1 (1 − i x)
=

∏(k+1)pm

i=kpm+b+1(1 − i x)
∏(k+1)pm

i=1 (1 − i x)

and

kpm+b−1∏

i=1

(1 − i x) =
∏(k+1)pm

i=1 (1 − i x)
∏(k+1)pm

i=kpm+b(1 − i x)
.

We obtain the following two congruences

1
∏kpm+b

i=1 (1 − i x)
≡

∏pm−b−1
i=1 (1 + i x)

(1 − x p−1)(k+1)pm−1 (mod pm), (44)

and

kpm+b−1∏

i=1

(1 − i x) ≡ (1 − x p−1)(k+1)pm−1

∏pm−b
i=0 (1 + i x)

(mod pm). (45)

Equations (44) and (45) generate Equations (42) and (43), respectively. Hence the theorem follows. 	

Theorem 9 For an odd prime p and positive integers k, a, m, and n such that kpm < pn and m + 1 ≤ n, the
following congruences hold;

S(a + kpm, kpm) ≡ (−1)a
∑

j

(
pn−1 + j − 1

j

)

× s(bpm, bpm − a + j (p − 1)) (mod pn) (46)

and

s(kpm, kpm − a) ≡
∑

j

(−1)a+ j
(
pn−1

j

)

× S(a − j (p − 1) + bpm, bpm) (mod pn), (47)

where b = pn−m − k.
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Proof Using the same technique as in the proof of Theorem 8, we obtain the following two congruences;

1
∏kpm

i=1 (1 − i x)
≡

∏(pn−m−k)pm−1
i=1 (1 + i x)

(1 − x p−1)p
n−1 (mod pn) (48)

and

kpm−1∏

i=1

(1 − i x) ≡ (1 − x p−1)p
n−1

∏(pn−m−k)pm

i=0 (1 + i x)
(mod pn). (49)

These two congruences generate the required results. Hence the theorem follows. 	

Remark 5 In the second result of the preceding theorem, the generating function on the RHS of Equation (49)
generates an infinite term. In contrast, the LHS generates kpm − 1 terms only. It follows that the sum vanishes
when a ≥ kpm, i.e.,

∑

j

(−1)a+ j
(
pn−1

j

)
S(a − j (p − 1) + bpm, bpm) ≡ 0 (mod pn), (50)

if a ≥ kpm .
If we replace n = m + 1 in Theorem 9, the second result of the theorem yields the following congruence;

s(kpm, kpm − a) ≡ (−1)a[S(a + bpm, bpm)

− S(a − pm(p − 1) + bpm, bpm)] (mod pm+1), (51)

whenever p − 1 � a. Moreover, if a < pm(p − 1) and p − 1 � a, we obtain

s(kpm, kpm − a) ≡ (−1)a S(a + bpm, bpm) (mod pm+1). (52)

We can utilize Theorem 9 to obtain some values of vp(S(n, kpm)), which are always greater than or equal to m.
Although Theorem 5 deals with vp(S(n, kpm)), the theorem is restricted to valuations less than or equal to m
since the key congruences used in Theorem 5 are in modulo pm . The congruences obtained in Theorem 9 are in
modulo pn for arbitrary n, usually greater than or equal to m of S(n, kpm); the next theorem is an application of
such congruence.

Theorem 10 Let p be an odd prime and a, u, k, and m be positive integers such that p � a and a ≡ 0
(mod p − 1). If pm−1 ≤ u = a

p−1 < pm and u
pm−1 + k ≥ p, then

vp(S(kpm + a, kpm)) = m. (53)

Proof Replace n and a in the first result of Theorem 9 with m + 1 and u(p − 1), respectively; we get

S(a + kpm, kpm) ≡
∑

j

(
pm + j − 1

j

)

× s(bpm, bpm − (u − j)(p − 1)) (mod pm+1) (54)

where b = p − k.
Let u = ∑m−1

i=0 ui pi be the p-adic expansion of u. We know that s(bpm, bpm −(u− j)(p−1)) is divisible by pm

if bpm − (u − j)(p − 1) < bpm−1 or j <
∑m−1

i=0 ui pi − bpm−1 = α (say). We can also confirm that p divides(pm+ j−1
j

)
if j < α, unless j = 0, in which case s(bpm, bpm − (u − j)(p − 1)) = 0 since bpm − u(p − 1) < 0.

Thus, all the j-th terms with 0 ≤ j < α are divisible by pm+1, and we obtain

S(a + kpm, kpm) ≡
u∑

j=α

(
pm + j − 1

j

)

× s(bpm, bpm − (u − j)(p − 1)) (mod pm+1). (55)
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From Theorem 1(b), we have

s(bpm, bpm − (u − j)(p − 1)) ≡
(
bpm−1

u − j

)
(−1)u− j (mod pm). (56)

It follows that the p-adic valuation of each term on the RHS of Equation (55) ism− vp( j)+m−1− vp(u− j).
If p � j and j �= u, then the valuation is 2m − 1 − vp(u − j), which is greater than or equal to m + 1 unless
vp(u − j) = m − 1. On the other hand, if p | j , then p � (u − j), and the valuation becomes 2m − 1 − vp( j),
which is greater than or equal to m + 1 unless vp( j) = m − 1. If vp(u − j) = m − 1, then u − j = rpm−1

for some r , p � r . If vp( j) = m − 1, then j = tpm−1 for some t , p � t . The only remaining term whose p-adic
valuation is less than m + 1 is the term with j = u. Thus, Equation (55) reduces to

S(a + kpm, kpm) ≡
b∑

r=1

(
pm + u − rpm−1 − 1

pm − 1

)
ϕr(p−1)pm−1

+
(
pm + u − rpm−1 − 1

pm − 1

)
ϕr(p−1)pm−1

+
um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
ϕ(u−tpm−1)(p−1) (mod pm+1), (57)

where ϕq = s(bpm, bpm − q), and the preceding equation can be written as

S(a + kpm, kpm) ≡
b∑

r=0

(
pm + u − rpm−1 − 1

pm − 1

)
ϕr(p−1)pm−1

+
um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
ϕ(u−tpm−1)(p−1) (mod pm+1). (58)

Now, we have the following congruences

(
pm + u − rpm−1 − 1

pm − 1

)
= pm

pm + u − rpm−1

(
pm + u − rpm−1

pm

)

≡ pm

u
(mod pm+1), (59)

ϕrpm−1(p−1) ≡
(
bpm−1

rpm−1

)
(−1)r ≡

(
b

r

)
(−1)r (mod p), (60)

(
pm + tpm−1 − 1

pm − 1

)
= pm

pm + tpm−1

(
pm + tpm−1

pm

)

≡ p

t
(mod p2), (61)

and

ϕ(u−tpm−1)(p−1) ≡
(

bpm−1

u − tpm−1

)
(−1)u−t (mod pm)

≡ bpm−1

u − tpm−1

(
bpm−1 − 1

u − tpm−1 − 1

)
(−1)u−t (mod pm)

≡ bpm−1

u

(
b − 1

um−1 − t

)
(−1)sp(u)−um−1−1(−1)u−t (mod pm)

≡ bpm−1

u

(
b − 1

um−1 − t

)
(−1)t−um−1−1 (mod pm). (62)
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Let

X =
b∑

r=0

(
pm + u − rpm−1 − 1

pm − 1

)
s(bpm, bpm − r(p − 1)pm−1) (63)

and

Y =
um−1∑

t=um−1−b+1

(
pm + tpm−1 − 1

pm − 1

)
s(bpm, bpm − (u − tpm−1)(p − 1)). (64)

From Equations (59), (60), and (63), we get

X ≡ pm

u

b∑

r=1

(
b

r

)
(−1)r (mod pm+1)

≡ 0 (mod pm+1). (65)

From Equations (61), (62), and (64), we get

Y ≡ pm

u

um−1∑

t=um−1−b+1

b

t

(
b − 1

um−1 − t

)
(−1)t−um−1−1 (mod pm+1)

≡ pm

u

b−1∑

t=0

b

um−1 − t

(
b − 1

t

)
(−1)t−1 (mod pm+1)

≡ pm

u

b−1∑

t=0

b − t

um−1 − t

(
b

t

)
(−1)t−1 (mod pm+1). (66)

Using partial fraction decomposition, we get

b−1∑

t=0

b − t

um−1 − t

(
b

t

)
(−1)b−t−1 = 1(um−1

b

) . (67)

From Equations (58) and (63) – (67), we obtain

S(a + kpm, kpm) ≡ (−1)b pm

u
(um−1

b

) (mod pm+1). (68)

Since p � u
(um−1

b

)
,

vp(S(a + kpm, kpm)) = m. (69)

Hence, the theorem holds. 	

The following theorem gives a generalization of Theorem 8 to congruence modulo pn for any positive integer n
greater than m.

Theorem 11 For an odd prime p and positive integers a, u, and n such that a ≤ pn, the following two
congruences holds;

S(u + a, a) ≡ (−1)u
∑

j

(
pn−1 + j − 1

j

)

× s(pn − a, pn − a − u + j (p − 1)) (mod pn) (70)

and

s(a, a − u) ≡
∑

j

(−1)u+ j
(
pn−1

j

)

× S(u − j (p − 1) + pn − a, pn − a) (mod pn). (71)
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Proof The proof is similar to the proof of Theorems 8 and 9. 	

Remark 6 It follows from Theorem 11 that if 0 ≤ u < p − 1, then the index j has only one possible value,
which is j = 0. Therefore,

S(u + a, a) ≡ (−1)us(pn − a, pn − a − u) (mod pn) (72)

and

s(a, a − u) ≡ (−1)u S(u + pn − a, pn − a) (mod pn). (73)
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ABSTRACT

Sequences of integers and their divisibility properties are interesting topic in

number theory. There are many Mathematicians who have been introducing

different results, particularly powers of primes dividing integers. Nowadays, the

divisibility properties of integers and more general, rational numbers are expressed

in terms of p-adic valuations. The sequence of Stirling numbers of the second kind

have deep importance in combinatorics and its divisibility properties connect to

different areas of mathematics. Motivated by the above reasons, we have taken

up the following three objectives in the present thesis:

1. Obtain the p-adic valuations of Stirling numbers of the second kind of the

classes S(pn, k) and S(pn, kp), 1 ≤ k ≤ p− 1.

2. Derive the relationship of p-adic valuations of sequence of integers with

Stirling numbers of the second kind.

3. Obtain the relationship between p-adic valuations of Stirling numbers of

the second kind and minimum periods of { S(n,k) modulo pN }.

The thesis consists of six chapters and deals with various approaches to de-

termine the p-adic valuations of certain classes of Stirling numbers of the second

kind. The p-adic valuations of these numbers are mainly obtained through con-

gruence relations. Some cases are also tackled through an algebraic and com-

binatorial approach. The first chapter is General Introduction and it contains

basic definitions, divisibility and congruence, p-adic Valuation, Stirling Numbers,

Periodicity, applications of Stirling numbers and review of literature.

In Chapter 2, the problem of divisibility of certain classes of Stirling numbers

of the second kind is investigated. We derive a new identity of Stirling numbers

of the second kind. A combinatorial approach helps to obtain the lower bounds

of p-adic valuations of some classes of S(n, k) for an odd prime p. We also extend

an existing congruence relation in modulo of a power of an odd prime, which is

useful in determining the lower bound of vp(S(p
n, kp)) when k is odd and less

than p − 1. We obtain the lower bound of vp(S(p
2, kp)) when k is even and its

value is greater than the one when k is odd. We also discuss the congruence

behaviour of S(pn, k) and the involvement of p-adic digits of k on the congruence

when k is not divisible by p.

In Chapter 3, we study the p-adic valuations of S(n, k) when n is a power of a

prime. We find that the results when k is divisible by p (or pm) are quite different



from the ones where k is not divisible by p. We have proved that vp(S(p
2, kp)) ≥ 5

when k is even, which confirms the lower bound of the Conjecture in Chapter

2. Furthermore, we find that the values of vp(S(n, kp
m)) are affected by the

parity of n and k. In fact, if n and k are opposite in parity, i.e., n − k is odd,

then vp(S(n, kp
m)) ≥ 2m when (p − 1) ∤ (n − k) and vp(S(n, kp

m)) ≥ m when

(p − 1) | (n − k). However, if the parity of n and k are the same, i.e., n − k

is even, then vp(S(n, kp
m)) ≥ m when (p − 1) ∤ (n − k). We further investigate

the divisibility of S(pn, k) when p does not divide k and we have found that the

divisibility depends on the sum of the p-adic digits of k.

Chapter 4 focuses on the congruence relation between Stirling numbers of

the first and the second kind. Their generating function is the bridge between

the two numbers. We present their congruence relations with sums involving

binomial coefficients for the two numbers. We also express the first kind in terms

of sums involving the second kind modulo a power of a prime and vice versa. The

congruence obtained helps to acquire the p-adic valuations of some classes of the

two numbers. We even establish a congruence relation between the two numbers

in modulo pn for any positive integer n.

In Chapter 5, the relationship between minimum periods and p-adic valua-

tions of Stirling numbers of the second kind has been studied. We discuss the

periodicity, period, and minimum period of the sequence {S(n, k) (mod pN)}n≥0

for some fixed positive integers N and k. We find that the cycle of the sequence

sometimes starts even when n is less than k. We present some results about

the divisibility of a partial Stirling number, which is effective in evaluating some

classes of S(n, k). The periodicity and minimum periods help to determine a class

of S(n, k) holding the same p-adic valuation.

Chapter 6 is the summary and conclusions of the thesis.

A list of references is presented at the end.


	Main.pdf
	Abstract.pdf

