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PREFACE

The present thesis entitled “A Study on Certain Classes of Almost

Contact Manifolds and Spacetimes” is an outcome of the research carried out

by me under the joint supervisor, Prof. Jay Prakash Singh, Professor, Department

of Mathematics, Central University of South Bihar, Gaya-824236, Bihar, and

supervisor, Prof. S. Sarat Singh, Professor, Department of Mathematics and

Computer Science, Mizoram University, Aizawl-796004, Mizoram.

This thesis has been divided into six chapters and each chapter is subdivided

into smaller sections. The first chapter is the introduction which includes the

basic definitions and formulas of differential geometry such as topological man-

ifolds, smooth manifolds, Riemannian manifolds, almost contact metric mani-

folds, Kenmotsu manifolds, almost Kenmotsu manifolds, hyperbolic Kenmotsu

manifolds, almost cosymplectic manifolds, Vaidya spacetime, Submanifolds and

Ricci-Yamabe solitons, and review of literature.

The second chapter is the classification of Ricci-Yamabe solitons. This chap-

ter is divided into three sections. In the first section, we examine the isometries

of almost Ricci-Yamabe solitons. Firstly, the conditions under which a compact

gradient almost Ricci-Yamabe soliton is isometric to Euclidean sphere Sn(r) are

obtained. Next, we have studied complete gradient almost Ricci-Yamabe soli-

ton with α ̸= 0 and non-trivial conformal vector field with non-negative scalar

curvature and proved that it is either isometric to Euclidean space En or Eu-

clidean sphere Sn. Also, solenoidal and torse-forming vector fields are consid-

ered. Then, some non-trivial examples are constructed to verify the results. In

the second section, we characterize Lorentzian concircular structure manifolds

(briefly, (LCS)n-manifolds) admitting Ricci-Yamabe solitons. It is shown that

an (LCS)n-manifold which admits the Ricci-Yamabe soliton becomes flat when

the soliton is steady. Next, we have constructed examples of 3-dimensional and

v



5-dimensional (LCS)n-manifold satisfying the result. Moreover, we extend our

study to η−Ricci-Yamabe soliton on a conformally flat (LCS)n (n ≥ 4) manifold

and we have shown the conditions for the soliton to be shrinking, steady and

expanding with ξ being a torse forming vector field. Lastly, the third section

investigates almost ∗−Ricci-Yamabe solitons on a Sasakian manifold in which we

have proved that the manifold is isometric to the unit sphere S2n+1 if its metric

represents a complete almost ∗−Ricci-Yamabe solitons with α ̸= 0. Certain con-

ditions under which the soliton reduces to ∗-Ricci-Yamabe soliton and when it

becomes steady are also obtained.

In the third chapter, we study almost cosymplectic manifolds and its exten-

sion. In the first section, we investigate almost cosymplectic manifolds admit-

ting almost Ricci-Yamabe solitons and show the conditions for local isomorphism

to Lie group G√
−κ. Non-existence of such solitons on compact (κ, µ)-almost

cosymplectic manifolds with κ < 0 is established. Scalar curvature equations

are derived and the findings are validated with a 3-dimensional example. The

second section characterizes almost Kenmotsu manifolds admitting conformal

Ricci-Yamabe solitons and it is shown that (κ, µ)′ manifolds M2n+1 are locally

isometric to Hn+1(−4)× Rn under specific conditions. Conditions for conformal

pressure and the potential vector field as an infinitesimal contact transformation

are given with an example of a 3-dimensional manifold.

In the fourth chapter, we study the characterization of invariant submanifolds

of hyperbolic Kenmotsu manifolds. First, we have proved that an invariant sub-

manifolds of a hyperbolic Kenmotsu manifold is again a hyperbolic Kenmotsu

manifold and is minimal. Next, the conditions for the invariant submanifolds

to be totally geodesic are obtained. Also, it is shown that a 3-dimensional sub-

manifolds is totally geodesic if and only if it is invariant. Moreover, an invariant

submanifold of a hyperbolic Kenmotsu manifold admitting η-Ricci-Bourguinon

soliton is examined and verified with an example.
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The fifth chapter is geometrical properties of spacetime and it is divided into

three main sections. The first section is devoted to the study of Vaidya spacetime

under the effect of a conformal Ricci soliton vector field. The study demonstrates

the reduction of spacetime to Schwarzschild spacetime and the existence of a

conformal gradient Ricci soliton in Vaidya spacetime determining its shrinking,

steady or expanding condition. The second section investigates relativistic mag-

neto fluid spacetime stuffing in f(R)-gravity. We characterize the spacetime and

obtain the expressions for Ricci tensor, scalar curvature and equation of state.

We explore the emergence of a black hole and a trapped surface. The study also

reveals that gravitational dynamics are influenced by magnetic field strength,

permeability, and density affecting total pressure on the spacetime. Finally, the

third section explores the dynamics of a string cloud using f(R)-gravity theory

analyzing its properties. We have found that there is a balance between particle

density and string tension. We also use the Ricci soliton metric to determine

conditions for its behavior under different vector fields and explore the formation

of black holes and trapped surfaces.

In Chapter 6, we present the summary and conclusion followed by a list of

references.
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Chapter 1

Chapter 1

Introduction

1.1 Topological Manifold

Definition 1.1. Let M be a topological space. We define M as a topological

manifold of dimension n or a topological n-manifold if it meets the following

criteria:

1. M is a Hausdorff space: for any two distinct points p, q ∈ M , there exist

open sets U and V in M such that p ∈ U , q ∈ V , and U ∩ V = ∅.

2. M is second-countable: there is a countable collection of open sets that forms

a basis for the topology of M .

3. M is locally Euclidean of dimension n.

1.2 Smooth Manifold

Let M denotes a topological n-manifold. A coordinate chart for M is a pair

(U, ϕ), where U is an open subset of M and ϕ : U → Ū is a homeomorphism

that connects U to an open subset Ū = ϕ(U) ⊆ Rn. If (U, ϕ) and (V, ψ) are two

charts with U ∩ V ̸= ∅, the composite map ψ ◦ φ−1 : φ(U ∩ V ) → ψ(U ∩ V ) is

1



Chapter 1

termed as the transition map from ϕ to ψ. The charts (U, ϕ) and (V, ψ) are said

to be smoothly compatible if either U ∩ V = ∅ or the transition map ψ ◦ φ−1 is

a diffeomorphism. An atlas A consists of charts that cover M . A smooth atlas is

defined as any two charts in A that are smoothly compatible. The smooth atlas

A on M is maximum if it is not properly contained in any larger smooth atlas.

Definition 1.2. Suppose M is a topological manifold, a smooth or differentiable

structure (C∞-structure) onM is a maximum smooth atlas. A smooth manifold is

defined as (M,A), where M is a topological manifold and A is a smooth structure

on M .

1.3 Riemannian Manifold

The Riemannian metric enables the definition of geometric concepts such as

lengths, angles and distances on smooth manifolds. Much like the inner product

in a vector space, the Riemannian metric on a manifold is a smoothly varying

inner product on each tangent space.

Definition 1.3. Consider a smooth manifold M , which may or may not have

a boundary. A Riemannian metric on M is a smooth, symmetric, covariant 2-

tensor field on M that is positive definite at every point. A Riemannian manifold

is defined as the pair (M, g), where M is a smooth manifold and g represents the

Riemannian metric on M .

1.4 Connection on Riemannian Manifold

An affine or linear connection on a smooth manifold M is an R-bilinear map-

ping

∇ : χ(M)× χ(M) → χ(M),

2



Chapter 1

which satisfies the following conditions:

1. ∇fXY = f∇XY,

2. ∇X(fY ) = f∇XY + (Xf)Y,

for any vector fields X, Y ∈ χ(M) and smooth function f . On a Riemannian

manifold M of dimension n, the affine connection ∇ is termed as a Levi-Civita

connection (Myers, 1935) or Riemannian connection if it meets the following

criteria:

1. ∇ is symmetric or torsion-free, i.e., ∇XY −∇YX = [X, Y ], and

2. ∇ is metric-compatible, i.e., (∇Xg)(Y, Z) = 0, for all X, Y, Z ∈ χ(M).

1.5 Almost Contact Metric Manifolds

A (2n+1)-dimensional smooth manifoldM is called an almost contact metric

manifold if it admits a (1, 1)-tensor field ϕ, a unit vector field ξ (called the Reeb

vector field) and a 1-form η such that

ϕ2 = −I + η ⊗ ξ, η(ξ) = 1, η · ϕ = 0, (1.1)

which is equivalent to a reduction of the structural group of the tangent bundle

to U(n)× 1 (Sasaki, 1960; Sasaki and Hatakeyama, 1961). A Riemannian metric

g is said to be an associated (or compatible) metric if it satisfies

g(ϕX, ϕY ) = g(X, Y )− η(X)η(Y ), (1.2)

for all X, Y ∈ χ(M). An almost contact manifold M2n+1(ϕ, ξ, η) together with

a compatible metric g is known as an almost contact metric manifold ( Blair,

1976). Chinea and Gonzalez (1990) obtained a complete classification for almost

contact metric manifolds through the study of the covariant derivative of the

3



Chapter 1

fundamental 2-form. The fundamental 2-form Φ of an almost contact metric

manifold (M,ϕ, ξ, η, g) is defined by

Φ(X, Y ) = g(X,ϕY ),

for all X, Y ∈ χ(M), and this form satisfies η ∧ Φn ̸= 0. This means that every

almost contact metric manifold is orientable. Moreover, an almost contact metric

manifold is said to be a contact metric manifold (Perrone, 2004) if dη = Φ. The

following formula holds on a contact metric manifold (Blair, 2002):

∇Xξ = −ϕX − ϕhX. (1.3)

Further, we define two self-adjoint operators h and ℓ by h = 1
2
(Lξϕ), where Lξϕ

denotes the Lie-derivative of ϕ along ξ, and ℓ = R(·, ξ)ξ. These operators satisfy

hξ = ℓξ = 0, hϕ+ ϕh = 0, Trh = Tr(hϕ) = 0, (1.4)

Tr ℓ = Ric(ξ, ξ) = 2n− ∥h∥2. (1.5)

Here, “Tr” denotes trace. When a unit vector ξ is Killing, i.e., h = 0 or Tr ℓ = 2n,

then the contact metric manifold is calledK-contact. On theK-contact manifold,

the following condition holds:

R(X, ξ)ξ = X − η(X)ξ. (1.6)

An almost contact structure (ϕ, η, ξ) and almost contact manifold M are said to

be normal if the almost complex structure on M × R defined by J(X, f∂t) =

(ϕX − fξ, η(X)∂t), where f is a real function on M ×R and t a coordinate on R,

is integrable (Blair, 1976, 2002). The necessary and sufficient conditions for the

almost contact structure (ϕ, η, ξ) to be normal is

[ϕ, ϕ] + 2dη ⊗ ξ = 0,

4



Chapter 1

where the pair [ϕ, ϕ] is the Nijenhuis tensor of ϕ defined by

[ϕ, ϕ](X, Y ) = [ϕX, ϕY ] + ϕ2[X, Y ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ],

for all X, Y ∈ χ(M). A normal almost contact metric manifold is a Sasakian

manifold. It is shown that an almost contact metric manifold is Sasakian if and

only if

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X, (1.7)

for any X, Y ∈ χ(M). A Sasakian manifold is K-contact, but the converse is true

only in dimension 3. Olszak (1986) showed that a 3-dimensional almost contact

metric manifold M is normal if and only if ∇ξ · ϕ = ϕ · ∇ξ or equivalently

∇Xξ = −αϕX + β(X − η(X)ξ), (1.8)

where 2α = div ξ, 2β = Tr(ϕ∇ξ), div ξ is the divergence of ξ defined by div ξ =

Tr{X → ∇Xξ} and Tr(ϕ∇ξ) = Tr{X → ϕ∇Xξ}. On a 3-dimensional normal

almost contact metric manifold, the following relations hold (Olszak, 1986):

Ric(X, ξ) = −Xα− (ϕX)β − {ξα + 2(α2 − β2)}η(X), (1.9)

ξα + 2αβ = 0, (1.10)

for any X ∈ χ(M).

1.6 (κ, µ)-contact metric Manifold

The (κ, µ)-nullity distribution of an almost contact metric manifoldM(ϕ, ξ, η, g)

is a distribution (Blair et al., 1995; Shaikh and Yadav, 2019):

Np(κ, µ) = {Z ∈ TpM |R(X, Y )Z =κ(g(Y, Z)X − g(X,Z)Y )

+ µ(g(Y, Z)hX − g(X,Z)hY )}, (1.11)

5



Chapter 1

where κ, µ ∈ R and X, Y, Z ∈ χ(M). If µ = 0, the (κ, µ)-nullity distribution

N(κ, µ) is called the κ-nullity distribution N(κ) (Koufogiorgos, 1993). An almost

contact metric manifold M with ξ ∈ N(κ, µ) is called a (κ, µ)-contact metric

manifold (Singh and Khatri, 2021). A (κ, µ)-contact metric manifold becomes a

Sasakian manifold if κ = 1 and µ = 0. In a (κ, µ)-contact metric manifold, the

following relations hold (Papantoniou, 1993; Blair et al., 1995):

h2 = (k − 1)φ2, k ≤ 1, (1.12)

R(X, Y )ξ = k[η(Y )X − η(X)Y ] + µ[η(Y )hX − η(X)hY ], (1.13)

Ric(X, Y ) = [2(n− 1)− nµ]g(X, Y ) + [2(n− 1) + µ]g(hX, Y )

+[2(1− n) + n(2k + µ)]η(X)η(Y ), (1.14)

for any vector fields X, Y ∈ χ(M).

1.7 Curvatures on Riemannian Manifold

A conformal transformation is a map that preserves angles. Suppose g and ḡ

are two metrics on an n-dimensional Riemannian manifold M related by

ḡ(X, Y ) = e2σg(X, Y ), (1.15)

for all vector fieldsX, Y onM and some scalar function σ. The angle between any

two tangent vectors at a point p ∈M remains unchanged under this transforma-

tion. In this case, M and M̄ are said to be conformally related, and the mapping

between them is called a conformal transformation (Obata, 1970). One signifi-

cant curvature tensor for investigating the intrinsic properties of a Riemannian

manifold is the Weyl conformal curvature tensor, introduced by Yano and Kon

(1984). This curvature tensor is invariant under conformal transformations. The

conformal curvature tensor C of type (1,3) on a (2n+1)-dimensional Riemannian

6



Chapter 1

manifold (M, g), where n > 1, is defined by

C(X, Y )Z = R(X, Y )Z − 1

2n− 1

[
Ric(Y, Z)X −Ric(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY
]
+

r

2n(2n− 1)

[
g(Y, Z)X − g(X,Z)Y

]
, (1.16)

where r is the scalar curvature ofM , Q is the Ricci operator, and Ric is the Ricci

tensor.

A harmonic function is defined as a function whose Laplacian is zero. Gener-

ally, harmonic functions are not invariant under conformal transformations. To

address this, Ishi (1957) identified the condition under which a harmonic function

remains invariant by introducing the conharmonic transformation as a subgroup

of conformal transformations (1.15) satisfying

σi
,i + σ,iσ

,i = 0.

The tensor H, which remains invariant under conharmonic transformation, is

known as the conharmonic curvature tensor. For a Riemannian manifold M of

dimension (2n+ 1), the conharmonic curvature tensor is given by

H(X, Y )Z = R(X, Y )Z − 1

(2n− 1)

[
Ric(Y, Z)X −Ric(X,Z)Y + g(Y, Z)QX

− g(X,Z)QY
]
, (1.17)

for all vector fields X, Y, Z on M . Also, Yano and Kon (1984) defined the pro-

jective curvature tensor as

P (X, Y )Z = R(X, Y )Z − 1

(n− 1)
[g(QY,Z)X − g(QX,Z)Y ]. (1.18)

The Riemannian curvature tensor is also defined by Ozgur (2003) as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z. (1.19)

7
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1.8 Kenmotsu Manifold

To investigate manifolds with negative curvature, Bishop and O’Neill (1969)

introduced the concept of a warped product as a generalization of the Riemannian

product. Tanno (1969) classified connected (2n+ 1)-dimensional almost contact

metric manifolds M based on their automorphism groups having the maximum

dimension of (n + 1)2. For such manifolds, if the sectional curvature of plane

sections containing ξ is a constant k, then there are three categories:

1. If k > 0,M is a homogeneous Sasakian manifold with constant holomorphic

sectional curvature.

2. If k = 0, M is the global Riemannian product of a line or a circle with a

Kähler manifold of constant holomorphic sectional curvature.

3. If k < 0, M is a warped product space R×f Cn.

Kenmotsu (1972) studied the third category and derived its geometrical prop-

erties which lead to what is now known as the Kenmotsu structure, and the

corresponding manifolds are called Kenmotsu manifolds (Janssens and Vanhecke,

1981). Generally, a Kenmotsu manifold is not Sasakian. A Kenmotsu manifold

can be characterized as a normal almost contact metric manifold satisfying dη = 0

and dΦ = 2η ∧ Φ. K. Kenmotsu demonstrated that such a manifold is locally a

warped product I ×f N
2n, where I is an open interval with coordinate t, f = cet

is the warping function for some positive constant c, and N2n is a Kählerian

manifold (Kenmotsu, 1972). A Kenmotsu manifold can be further characterized

by its Levi-Civita connection ∇ satisfying:

∇Xξ = X − η(X)ξ, (1.20)

(∇Xϕ)Y = −η(Y )ϕX − g(X,ϕY )ξ, (1.21)

8
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for any X, Y ∈ χ(M). In a Kenmotsu manifold M , the following properties hold

(Kenmotsu, 1972):

R(X, Y )ξ = η(X)Y − η(Y )X, (1.22)

Qξ = −2nξ, (1.23)

for any vector fields X, Y on M .

1.9 Almost Kenmotsu Manifolds

Olszak (1989) and Kim and Pak (2005) investigated almost contact metric man-

ifolds where η is closed and dΦ = 2η ∧ Φ, referring to them as almost Kenmotsu

manifolds. A normal almost Kenmotsu manifold is a Kenmotsu manifold. In an

almost Kenmotsu manifold M , the following relation holds

∇Xξ = −ϕ2X − ϕhX, (1.24)

for any vector fieldX onM . Dileo and Pastore (2009) examined almost Kenmotsu

manifolds with (κ, µ)-nullity distribution and (κ, µ)′-nullity distribution. Pastore

and Saltarelli (2011) later extended this to generalized nullity distributions. An

almost Kenmotsu manifoldM2n+1(ϕ, ξ, η, g) is termed a generalized (κ, µ)-almost

Kenmotsu manifold if ξ belongs to the generalized (κ, µ)-nullity distribution, i.e.,

R(X, Y )ξ = κ [η(Y )X − η(X)Y ] + µ [η(Y )hX − η(X)hY ] , (1.25)

for all vector fields X, Y on M , where κ and µ are smooth functions on M .

Similarly, an almost Kenmotsu manifold M2n+1(ϕ, ξ, η, g) is termed a generalized

(κ, µ)′-almost Kenmotsu manifold if ξ belongs to the generalized (κ, µ)′-nullity

distribution, i.e.,

R(X, Y )ξ = κ [η(Y )X − η(X)Y ] + µ [η(Y )h′X − η(X)h′Y ] , (1.26)

9
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for all vector fields X, Y on M , where κ and µ are smooth functions on M .

Furthermore, if both κ and µ are constants in (1.26), then M is called a (κ, µ)′-

almost Kenmotsu manifold (Dileo and Pastore, 2009). For generalized (κ, µ)

or (κ, µ)′-almost Kenmotsu manifolds with h ̸= 0 (equivalently, h′ ̸= 0), the

following relations hold (Dileo and Pastore, 2009):

h′2 = (κ+ 1)ϕ2, h2 = (κ+ 1)ϕ2, (1.27)

Qξ = 2nκξ. (1.28)

Almost contact metric manifolds such that η is closed and dΦ = 2η ∧ Φ are

studied by many geometers (Blair et al., 1995; Dileo and Pastore, 2007, 2019;

Pastore and Saltarelli, 2011; Wang and Liu, 2016; Khatri and Singh, 2024b) and

this type of manifolds are called almost Kenmotsu manifolds. A normal almost

Kenmotsu manifold is called a Kenmotsu manifold (Kenmotsu, 1972). Let us

denote the distribution orthogonal to ξ by O defined by Dey and Majhi (2019)

as

O = Ker(η) = Im(ϕ),

where O is an integrable distribution on an almost Kenmotsu manifold as η is

closed.

Many geometers studied and characterized almost Kenmotsu manifold ad-

mitting solitons and deduced some notion and conditions on the manifold (For

details see Basu and Bhattacharya, 2015; Naik et al., 2020; Venkatesha et al.,

2020). Let M2n+1 be an almost Kenmotsu manifold (in short, akm). We denote

by h = 1
2
Lξϕ and l = R(·, ξ)ξ on M2n+1. The tensor fields l and h are symmetric

10
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operators and satisfy the following relations (Pastore and Saltarelli, 2011):

hξ = 0, lξ = 0, tr(h) = 0, tr(hϕ) = 0, hϕ = ϕh = 0, (1.29)

∇Xξ = X − η(X)ξ − ϕhX, (1.30)

ϕlϕ− l = 2(h2 − ϕ2), (1.31)

R(X, Y )ξ = η(X)(Y − ϕhY )− η(Y )(X − ϕhX) + (∇Y ϕh)X − (∇Xϕh)Y,

(1.32)

for any vector fields X, Y . From (1.30), we see that

∇ξξ = 0. (1.33)

We define the (1, 1)-type symmetric tensor field by h′ = h ◦ ϕ, where h′ is anti-

commuting with ϕ and h′ξ = 0. Also, it satisfies the following relations

h = 0 ⇐⇒ h′ = 0, h′2 = (κ+ 1)ϕ2( ⇐⇒ h2 = (κ+ 1)ϕ2). (1.34)

1.10 Hyperbolic Kenmotsu Manifold

A (2n + 1)-dimensional smooth manifold M̃ is called an almost hyperbolic

contact metric manifold (Upadhyay and Dube, 1976) if it admits a timelike vector

field ζ, 1-form η and a (1, 1)-tensor ϕ satisfying (Singh et al., 2024):

ϕ2X = X + η(X)ζ, (1.35)

η(ζ) = −1, ϕ(ζ) = 0, (1.36)

rank ϕ = 2n, η ◦ ϕ = 0, (1.37)

g(ϕX, ϕY ) = −g(X, Y )− η(X)η(Y ), (1.38)

g(ϕX, Y ) = −g(X,ϕY ), (1.39)

g(X, ζ) = η(X), (1.40)

11
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for all X, Y ∈ χ(M̃). The structure (ϕ, ζ, η, g) is said to be hyperbolic almost

contact metric structure (see Dube and Niwas, 1978; Joshi and Dube, 2001;

Zulekha et al., 2016; Pankaj and Chaubey, 2021). Therefore, the manifold M̃ is

called hyperbolic Kenmotsu manifold if and only if

(∇̃Xϕ)Y = g(ϕX, Y )ζ − η(Y )ϕX. (1.41)

It is obvious that

dη = 0, ∇̃Xζ = −X − η(X)ζ (1.42)

and

(∇̃Xη)Y = −g(X, Y )− η(X)η(Y ). (1.43)

In hyperbolic Kenmotsu manifold, we have

R̃(X, Y )ζ = η(Y )X − η(X)Y, (1.44)

R̃(X, ζ)ζ = −X − η(X)ζ, (1.45)

R̃(ζ,X)Y = g(X, Y )ζ − η(Y )X, (1.46)

R̃ic(X, ζ) = 2nη(X), (1.47)

Q̃ζ = −2nζ, (1.48)

for all vector fields X, Y , where R̃, R̃ic, Q̃ are the Riemann tensor, Ricci tensor

and the Ricci operator of M̃ respectively.

1.11 Almost Cosymplectic Manifolds

An almost cosymplectic manifold is a smooth manifold with a 1-form η and

a metric g that meets certain compatibility constraints. Let (M, η, g) denotes

a smooth manifold M with a non-degenerate 1-form η and a metric g. If the
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following criteria hold, then (M, η, g) is an almost cosymplectic manifold:

1. Compatibility condition:The metric g is compatible with the 1-form η,

which means that for all vector fields X, Y ∈ χ(M), the condition

g(X, Y ) = η(X)η(Y ) + g(ϕX, ϕY ), (1.49)

holds.

2. Closedness condition: The 1-form η is closed, which means that dη = 0,

where d is the exterior derivative.

Almost cosymplectic manifolds are generalization of symplectic manifolds with a

relaxed non-degeneracy requirement. In a symplectic manifold, the 1-form must

be closed and non-degenerate, but in an almost cosymplectic manifold, just the

non-degeneracy requirement is necessary.

The investigation of almost cosymplectic manifolds provides a rich frame-

work for investigating geometric structures and their interactions with curvature

features. These manifolds are related to many different fields of mathematics, in-

cluding Riemannian geometry, symplectic geometry, and mathematical physics.

The features and categorization of almost cosymplectic manifolds are important

to examine the relationship with the almost Ricci-Yamabe solitons.

For any X, Y ∈ χ(M), the fundamental 2-form on M is defined as ω(X, Y ) =

g(ϕX, Y ). An almost α-cosymplectic manifold is an almost contact metric man-

ifold in which the basic form ω and 1-form η satisfy dω = 0 and dω = 2αη ∧ ω

(Shaikh and Yadav, 2019). An α-cosymplectic manifold is a normal nearly α-

cosymplectic manifold. When α = 0, M is a nearly cosymplectic manifold. Ad-

ditionally, if α = 1, the manifold represents the Kenmotsu manifold.

Suppose thatM is a nearly α-cosymplectic manifold. We remember that there

is a self-dual operator h = 1
2
Lξϕ. If dimM = 3 and h = 0, then M is normal.
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We know from Ozturk et al.(2010) that

2g((∇Xϕ)Y, Z) = 2αg(g(ϕX, Y )ξ − η(Y )ϕX,Z) + g(N(Y, Z), ϕX), (1.50)

for any vector field X, Y , where N is the Nijenhuis torsion of M . Then the

following relations hold (Blair, 1976)

trace(h) = 0, hξ = 0, φh = −hφ (1.51)

g(hX, Y ) = g(X, hY ), ∀X, Y ∈ TM.

Using equation (1.50), a simple calculation provides

∇Xξ = −αϕ2X − ϕhX, ∇ξφ = 0. (1.52)

For an almost α-cosymplectic manifold (M2n+1, φ, ξ, η, g), the following equations

were proven in Ozturk et al.(2010):

R(X, ξ)ξ − φR(φX, ξ)ξ = 2[α2φ2X − h2X], trace(φh) = 0,

R(X, ξ)ξ = α2φ2X + 2αφhX − h2X + φ(∇ξh)X,

for any vector fields X, Y on M .

The Study of almost cosymplectic manifolds requires an understanding of the

(κ, µ)-nullity distribution. It decomposes the tangent space geometrically into

subspaces corresponding with distinct eigenvalues of the κ operator. This de-

composition results in the categorization of almost cosymplectic manifolds and

aids in the comprehension of the geometrical characteristics and curvature re-

quirements. An almost cosymplectic manifold is known as a (κ, µ)-almost cosym-

plectic manifold when ξ connects to the (κ, µ)-nullity distribution. Furthermore,
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Cappelletti-Montano (2013) provided the following relationships:

Q = 2nκη ⊗ ξ + µh, (1.53)

h2 = κϕ2. (1.54)

1.12 Submanifold

Let M and N be smooth manifolds such that dim(M) ≤ dim(N). Let F :

M → N be a smooth map and let p be a point in M . We say that F is an

immersion at p if the differential map dp(F ) : Tp(M) → TF (p)(N) is injective and

that F is an immersion if it is an immersion at every p in M .

Definition 1.4. Suppose (N, g̃) is a Riemannian manifold of dimension m, M

is a manifold of dimension n and ι :M → N is an immersion. If M is given the

induced Riemannian metric g := ι∗g̃, then ι is said to be an isometric immersion.

If, in addition, ι is injective, so that M is an immersed submanifold of N , then

M is said to be a Riemannian submanifold of N .

In recent decades, the geometry of submanifolds has garnered substantial

interest due to its significant applications in both applied mathematics and the-

oretical physics. Submanifolds constitute a fundamental concept in the realm of

differential geometry, serving as essential building blocks for understanding the

geometric properties of higher-dimensional spaces. Essentially, a submanifold is

a subset of a manifold that retains its own intrinsic manifold structure, inheriting

certain geometric properties from the ambient space. Notably, the study of in-

variant submanifolds offers insights into the properties of non-linear autonomous

systems and such submanifolds inherit “almost all geometric properties of the

ambient manifold”. Another crucial type of submanifold is the totally geodesic

submanifold which is distinguished by the fact that geodesics of the ambient man-

ifold remain geodesics within these submanifolds. The concept of geodesics plays
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a pivotal role in the theory of relativity. The foundational work on the geometry

of invariant submanifolds within almost contact manifolds was initiated by Yano

and Ishihara (1969).

Consider that M be an immersed submanifold of a Riemannian manifold M̃

with an induced metric g. The tangent and normal subspaces of M in M̃ are

denoted by Γ(TM) and Γ(T⊥M), respectively. The induced connections on the

tangent bundle, TM and the normal bundle, T⊥M of M are denoted by ∇ and

∇⊥, respectively. The Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + µ(X, Y ) (1.55)

and

∇̃XV = −AVX +∇⊥
XV, (1.56)

for all X, Y ∈ Γ(TM) and V ∈ Γ(T⊥M), where µ and A are second fundamental

form and shape operator of M respectively. These are related by:

g(AVX, Y ) = g(µ(X, Y ), V ). (1.57)

The mean curvature H of M is defined as:

H =
1

n
Tr(µ),

where Tr denotes the trace.

A submanifold M is called minimal if H ≡ 0. It is termed as totally geodesic

if µ(X, Y ) = 0 for any X, Y ∈ Γ(TM). The covariant derivative of the second

fundamental form µ is defined by (Atceken, 2021):

(∇̃Xµ)(Y, Z) = ∇⊥
Xµ(Y, Z)− µ(∇XY, Z)− µ(Y,∇XZ), (1.58)

for all X, Y, Z ∈ Γ(TM), where ∇̃ represents the Vander-Waerden-Bortolotti

connection on M . The tensor ∇̃µ is a tensor of type (0, 3) and it is valued in the
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normal bundle as the third fundamental form. If ∇̃µ = 0, then M is said to have

a parallel second fundamental form. The Gauss equation for the Riemannian

curvature R of the submanifold M is given by

R̃(X, Y )Z = R(X, Y )Z + Aµ(X,Z)Y − Aµ(Y,Z)X, (1.59)

for any X, Y, Z ∈ Γ(TM).

1.13 Vaidya Spacetime

The exploration of spacetime geometry and its connections to physical phe-

nomena has been a captivating subject of investigation spanning the domains of

both physics and mathematics. Over time, the intricate interplay between ge-

ometry and gravity has evolved into a vibrant field of research and give rises to

various mathematical frameworks which are aimed to understand the complex

interrelationships. With its profound implications in mathematical physics and

cosmology, the study of spacetime has experienced significant growth in recent

years. Albert Einstein’s iconic theory of general relativity (Einstein, 1915) serves

as a pivotal bridge between the physical attributes of spacetime and its underlying

geometrical structure which is expressed by the field equation

Ric− R

2
g + Λg =

8πG

c4
T , (1.60)

where Λ represents the cosmological constant, while c represents the speed of

light in a vacuum, G, Ric, R and T are the gravitational constant, the Ricci

tensor, the scalar curvature and the energy-momentum tensor respectively. The

best known non-trivial exact solution of the field equation when Λ = 0 is the

Schwarzschild metric (Griffiths and Podolsky, 2009) given by

ds2 = −
(
1− 2m

r

)
dt2 +

(
1− 2m

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), (1.61)
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where m is an arbitrary parameter, r is the areal radius. This metric (1.61)

specifies the geometry of a non-rotating, non-charged black hole, and it has

been researched by numerous physicists and geometers such as Lindquist et

al.(1958), Vishveshwara(1970), Vaidya (1999a,1999b), Simpson and Visser(2019)

and Hashimoto et al.(2020).

Vaidya (1951) proposed a spacetime metric which characterizes the behaviour

of spherically symmetric (i.e., non-rotating) stars or black holes interacting with

null dust, either emitting or absorbing it. Consequently, their mass undergoes cor-

responding decreases or increases which is different from the Schwarzschild space-

time, where the mass remains constant. In reality, astronomical bodies experience

mass variations as they absorb or emit radiation rendering the space-time around

them time-dependent. The Vaidya metric offers a relatively straightforward yet

captivating framework for exploring the attributes of such dynamic space-times,

notably the presence of a photon sphere and the formation of a shadow.

Now, in Eddington–Finkelstein coordinates, the Vaidya metric is given by

(Vaidya, 1951):

ds2 = −
(
1− 2m(u)

r

)
du2 − 2drdu+ r2

(
dθ2 + sin2θdϕ2

)
. (1.62)

Ifm(u) =constant in the above equation, then the metric becomes Schwarzschild’s

metric. In the absence of matter or energy sources, the Schwarzschild metric

describes the geometry of spacetime.

The non-vanishing components of the curvature tensor R in (1.62) are given

by (Shaikh et al., 2019):

Rurur = −2m

r3
, Ruθuθ = −2m2 + r2m′ −mr

r2
, Ruθrθ =

m

r
,

Ruϕrϕ =
msin2θ

r
, Ruϕuϕ = −(2m2 + r2m′ −mr)sin2θ

r2
,

Rθϕθϕ = 2mr sin2 θ.
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Furthermore, the expression for Ricci curvature is provided by:

Ricuu =
2m′

r2
. (1.63)

Here, m′ denotes the derivative of m with respect to the coordinate, u.

1.14 f (R)-gravity theory

The relationship between spacetime and gravity constitutes a cornerstone of

modern theoretical physics (Thorne et al., 2000). Massive objects induce cur-

vature in spacetime and create gravitational fields that controls the trajectories

of nearby objects. This curvature alters the path of particles and compelling

them to follow geodesics dictated by the underlying spacetime geometry. The re-

cent detection of gravitational waves further confirms the profound link between

spacetime and gravity. These waves propagate as ripples in spacetime which carry

energy and provide insights into cataclysmic cosmic events.

General Relativity (GR) is an important theoretical framework for compre-

hending the Universe’s large-scale structure (Hawking and Ellis, 1973) yet it

fails to explain the cosmic acceleration events. To solve this, researchers inves-

tigated theoretical revisions that include the ideas such as inflation and Dark

Energy (DE). Einstein’s gravitational field equations are altered to better ac-

count for observable cosmic dynamics. This often requires an introduction of an

additional speculative component known as Dark Matter (Overduin and Wesson,

2004) which aims to reconcile theoretical predictions with observable data. Dark

energy is believed to be the driving force behind cosmic expansion, while modified

gravity theories propose alterations to the gravitational framework without dark

energy. Both approaches aim to reconcile theoretical predictions with observa-

tional data but each presents unique challenges.

Beyond the fundamental Einstein-Hilbert action, Nojiri and Odintsov (2005)
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proposed f(G)-gravity, Sotiriou and Faraoni (2010) discussed f(R)-gravity and

Cai et al. (2016) introduced f(T )-gravity theory. These modified gravitational

frameworks give novel insights that go beyond Einstein’s gravitational theory.

Furthermore, these alterations are expected to give effective approximations to

the elusive domain of quantum gravity (Parker and Toms, 2009). The addition

of a function f(R) allows General Relativity (GR) to be extended into the world

of f(R)-gravity beyond the Einstein-Hilbert Lagrangian density. The Einstein-

Hilbert action for f(R)-gravity has the expression

H =
1

κ2

∫
[f(R) + Lm]

√
−gd4x, (1.64)

where f(R) represents an arbitrary function of the Ricci scalar R and Lm denotes

the Lagrangian of the scalar field. The integration of higher-order curvature

components causes the equations of motion within this framework to exhibit

bigger degrees giving a solution to the dilemma encountered by massive neutron

stars (Astashenok et al., 2013, 2015, 2017).

1.15 Lie Derivative

For any smooth vector fields X and Y on a manifold M , let θ be the flow of

X, we define a vector (LXY )p at each p ∈M , called the Lie Derivative of Y with

respect to X at p, by

(LXY )p =
d

dt

∣∣∣∣
t=0

(θ−t)∗Yθt(p) = lim
t→0

(θ−t)∗Yθt(p) − Yp

t
,

provided the derivative exists.
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1.16 Generalized Quasi Einstein and Some Vec-

tor Fields

Definition 1.5 (Barros and Ribeiro, 2012). A smooth vector field X on a Rie-

mannian manifold is said to be a conformal vector field if there exists a smooth

function ψ on M that satisfies

LXg = 2ψg.

We say that X is non-trivial if X is not Killing, that is, ψ ̸= 0.

Definition 1.6 (Chaki, 2001). A semi-Riemannian manifoldM (n > 3) is a gen-

eralized quasi-Einstein (GQE) manifold if its Ricci tensor (Ric) does not vanish

identically and satisfies the equation:

Ric = ag + bη ⊗ η + cγ ⊗ γ,

where a, b, and c are scalars, with the condition that b and c are non-zero and

η and γ signify non-zero 1-forms. For every vector field X, g(X, ξ) = η(X) and

g(X, ζ) = γ(X) hold. The generators of the manifold are the unit vectors ξ and

ζ, which are mutually orthogonal and correspond to the 1-forms η and γ. The

manifold M reduces to a quasi-Einstein manifold if c = 0.

Definition 1.7 (Yano, 1944). A Lorentzian manifold features a torse-forming

vector field (TFV) denoted as ζ. This vector field satisfies

∇Xζ = ωX + γ(X)ζ, (1.65)

where ω represents a scalar function and γ is a non-zero 1-form, for any X ∈

χ(M).

A time-like TFV unit is ξ = X on a n-dimensional Lorentzian manifold M
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and has the following form (Yano, 1944):

∇XY = ω[X + η(X)Y ], (1.66)

where η is a 1-form and g(X, Y ) = η(X) for all X.

Definition 1.8 (Hinterleitner and Kiosak, 2008). On a Lorentzian manifold M ,

a vector field ϕ is termed as ϕ(Ric)-vector field when it satisfies the following

equation

∇Xϕ = µRicX, (1.67)

where ∇ represents the Levi-Civita connection and µ is a constant. In case of a

non-zero µ, the vector field ϕ is specifically identified as a proper ϕ(Ric)-vector

field. Conversely, in the case when µ = 0 in (1.67), the vector field ϕ is categorized

as covariantly constant.

1.17 Ricci-Yamabe Solitons

Henri Poincaré, in 1904, wondered if there is a way to recognize a three di-

mensional sphere while the necessary measurements are operated from inside the

shape, which later becomes the famous Poincaré conjecture. Since then, to prove

or disprove the conjecture has become the core agenda of many researchers. The

study of geometric flows amongst other methods is one of the main attraction

for geometers due to its application in mathematical physics and it helps us to

understand shapes in three or more dimensional spaces. One such significant

flow is the Ricci flow introduced by Hamilton (1988), who used it to prove a

three-dimensional sphere theorem (Hamilton, 1982) and which later become the

heart of proof of the Poincaré conjecture by Perelman (2002). The Ricci soliton

(Ghosh, 2011) on a Riemannian manifold (M, g) are the self-similar solutions to
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Ricci flow and is defined by

1

2
LV g +Ric = λg, (1.68)

where LV g denotes the Lie-derivative of g along potential vector field V , Ric is

the Ricci curvature of M2n+1 and λ, a real constant. When the vector field V

is the gradient of a smooth function f on M2n+1, that is, V = ∇f , then we say

that Ricci soliton is a gradient. According to Petersen (2009), a gradient Ricci

soliton is rigid if it is a flat N ×Γ Rk, where N is Einstein and represents certain

classification. The notion of almost Ricci soliton was introduced by Pigola et al.

(2011) by taking λ as a smooth function in the definition of Ricci soliton (1.68).

To tackle the Yamabe problem on manifolds of positive conformal Yamabe

invariant, Hamilton (1998) introduced the geometric flow known as Yamabe flow.

The Yamabe soliton is a self-similar solution to the Yamabe flow. On a Rieman-

nian manifold (M, g), a Yamabe soliton is given by

1

2
LV g = (τ − λ)g, (1.69)

where τ is the scalar curvature of the manifold and λ, a real constant. The

Yamabe soliton preserves the conformal class of the metric but the Ricci soliton

does not in general. However, in dimension n = 2, both the solitons are similar.

If λ is a smooth function in (1.69), then it is called almost Yamabe soliton.

Guler and Crasmareanu (2019) introduced a new type of geometric flow which

is a scalar combination of Ricci flow and Yamabe flow under the name Ricci-

Yamabe map and define the following:

Definition 1.9. The map RY (α,β,g) : I → T s
2 (M) given by:

RY (α,β,g) =
∂g

∂t
(t) + 2αRic(t) + βr(t)g(t),
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is called the (α, β)-Ricci-Yamabe map of the Riemannian flow (M, g). If

RY (α,β,g) ≡ 0,

then g(.) will be called an (α, β)-Ricci-Yamabe flow.

The Ricci-Yamabe flow can be Riemannian or semi-Riemannian or singular

Riemannian flow due to the involvement of scalars α and β. These kind of

different choices can be useful in some physical models such as relativity theory.

The Ricci-Yamabe soliton emerges as the limit of the solution of Ricci-Yamabe

flow.

Definition 1.10. A Riemannian manifold (Mn, g), n > 2 is said to admit almost

Ricci-Yamabe soliton (g, V, λ, α, β) if there exist smooth function λ such that

LV g + 2αRic = (2λ− βτ)g, (1.70)

where α, β ∈ R.

Almost Ricci-Yamabe soliton is of particular interest as it generalizes a large

group of well-known solitons such as:

1. Ricci almost soliton (α = 1, β = 0).

2. almost Yamabe soliton (α = 0, β = 1).

3. Ricci-Bourguignon almost soliton (α = 1, β = −2ρ).

Also, if λ is constant, then it includes Ricci soliton, Yamabe soliton and Ricci-

Bourguignon soliton among others. If V is a gradient of some smooth function f

on M , then the above notion is called gradient almost Ricci-Yamabe soliton and

then (1.70) reduces to

∇2f + αRic = (λ− 1

2
βτ)g, (1.71)
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where ∇2f is the Hessian of f . The almost Ricci-Yamabe soliton (ARYS) is said

to be expanding, shrinking or steady if λ < 0, λ > 0 or λ = 0 respectively. In

particular, if λ is constant, then almost Ricci-Yamabe soliton reduces to Ricci-

Yamabe soliton. Extending the notion of Ricci soliton, Cho and Kimura (2009)

introduced the η-Ricci soliton which is obtained by perturbing the equation (1.70)

with a multiple of a certain (0, 2)-tensor field η ⊗ η. Siddiqi and Akyol (2020)

extended to η-Ricci-Yamabe soliton of type (α, β) which is defined by:

LV g + 2αRic+ (2λ− βτ) + 2ωη ⊗ η = 0. (1.72)

1.18 Review of Literature

A Ricci soliton is a self-similar solution to the Ricci flow (Hamilton, 1982).

Ricci flow has various applications including Ricci flow gravity (Graf, 2007), non-

linear reaction-diffusion systems in biology, chemistry and physics (Ivancevic and

Ivancevic, 2011), brain surface conformal parametrization with the Ricci flow

(Wang et al., 2012) and economic modeling (Sandhu et al., 2016). Gradient

Ricci solitons were introduced and studied by Cao (2006, 2009) and Petersen and

Wylie (2009). Wylie (2008) showed that complete shrinking Ricci solitons have

a finite fundamental group. Cao and Zhou (2010) studied complete shrinking

Ricci solitons. Munteanu and Wang (2017) demonstrated that positively curved

shrinking Ricci solitons are compact. Ricci solitons with Jacobi-type vector fields

were explored by Deshmukh (2012), while Deshmukh et al. (2020) characterized

trivial Ricci solitons. For more details, see Ghosh (2013, 2019, 2020) and Duggal

(2017).

Cho and Sharma (2010) initiated the study of Ricci solitons in contact ge-

ometry. The concept of almost Ricci solitons was introduced by Pigola et al.

(2011). Barros et al. (2021) studied the rigidity of gradient almost Ricci soli-
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tons and showed that they are isometric to either the Euclidean space Rn or the

sphere Sn. Various rigidity results were presented by Cao et al. (2011), Barros

et al. (2013) and Yang and Zhang (2017). Catino et al. (2016a) also discussed

the analytic and geometric properties of generic Ricci solitons. Chu and Wang

(2013) provided scalar curvature estimates for gradient Yamabe solitons. Sub-

sequent studies on Yamabe solitons were conducted by Wang (2016b) and Suh

and De (2020). Shaikh et al. (2021) gave the characterizations of gradient Yam-

abe solitons. Chaubey et al.(2022) presented a complete classification of Yamabe

solitons on real hypersurfaces in the complex quadric, Qm = SOm+1/SO2SOm.

Extending the concept of Yamabe solitons, Barbosa and Ribeiro (2013) intro-

duced almost Yamabe solitons. Seko and Maeta (2019) classified almost Yamabe

solitons in Euclidean spaces, while Alkhaldi et al. (2021) characterized almost

Yamabe solitons with conformal vector fields. Miao and Tam (2009, 2011) stud-

ied on the volume functional of a critical metric and compact manifolds.

Guler and Crasmareanu (2019) introduced the Ricci-Yamabe solitons. De

et al. (2022) characterized Ricci-Yamabe solitons on a 3-dimensional Rieman-

nian manifold. Sardar and Sarkar (2022) analyzed Ricci-Yamabe solitons on a

class of generalized Sasakian space forms. Singh and Khatri (2021) studied per-

fect fluid spacetime using Ricci-Yamabe solitons with torse forming vector field

and deduced its condition for the soliton to be shrinking, expanding and steady.

Siddiqi and De (2022) investigated Ricci-Yamabe solitons in relativistic perfect

fluid spacetimes and derived the Poisson and Liouville equation. Siddiqi et al.

(2022) presented the problem of almost Ricci-Yamabe solitons on static space-

times using conformal Killing vector field. Zhang et al. (2022) studied perfect

fluid spacetimes and introduced the notion of conformal Ricci-Yamabe solitons.

Also, Yoldas (2021) studied η-Ricci-Yamabe solitons on Kenmotsu manifolds and

proved that the scalar curvature is constant.

Endo (2002) investigated the non-existence of almost cosymplectic manifolds
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satisfying certain curvature conditions. Goldberg and Yano (1969) derived the

integrability condition of almost cosymplectic structures. Olszak (1981) and Ol-

szak and Rosca (1991) studied locally conformal and normal locally conformal

almost cosymplectic manifolds. Chen (2020a, 2020b) studied quasi Einstein struc-

ture and almost quasi-Yamabe solitons on almost cosymplectic manifolds. Sar-

dar and De (2023) studied almost cosymplectic manifolds with Schouten solitons

(Schouten, 1954).

Blair (2002) provided a comprehensive overview of the geometric structures

involved in the Sasakian manifolds, while Boyer and Galicki (2007) presented an

in-depth exploration of the properties and significance of Sasakian manifolds in

both mathematics and theoretical physics. Many geometers studied and charac-

terized almost Kenmotsu manifold such as Basu and Bhattacharya (2015), Naik

et al. (2020), Venkatesha et al. (2020), Chaubey et al. (2021), Satarelli (2015),

Wang (2017), Wang and Wang (2017), Patra and Ghosh (2018), Patra et al.

(2020), Khatri and Singh (2023a, 2023b) and De et al. (2023).

Sasaki (1960) introduced Sasakian manifold. Sasakian manifold attracts ge-

ometers and physicists due to its application in complex geometry and string

theory( Maldecena, 1999; Friedrich and Ivanov, 2002). Further, developments ex-

tend to the study of almost Ricci solitons isometric to spheres(Deshmukh, 2019)

and the characterization of generalized Ricci-Yamabe solitons on Sasakian 3-

metrics(Dey and Majhi, 2022). Dwivedi and Patra (2022) introduced the notion

of almost ∗-Ricci-Bourguinon soliton and obtained its geometric characterization

on Sasakian manifold.

The study of the geometry of invariant submanifolds of almost contact man-

ifolds was initiated by Yano and Ishihara (1969). Chern(1968) introduced the

minimal submanifolds and Chen (1973) studied the geometry of submanifolds

and derived the theorem for minimal submanifolds. There are many applications

of invariant submanifolds to spacetimes(Chen, 1993, 1994, 1995a, 1995b, 1996).
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Kenmotsu (1969) investigated invariant submanifolds in Sasakian manifold. Kon

(1973) studied conditions for an invariant submanifolds of normal contact metric

manifolds to be totally geodesic. Milnor (1976) derived the curvature properties of

left invariant metrics on Lie groups. Bejanchu and Papaghiuc (1981) introduced

the semi-invariant submanifolds of Sasakian manifolds, while Joshi et al.(2001)

studied r- almost contact hyperbolic metric manifold. Many geometers have at-

tempted various problems related with invariant submanifolds, i.e., Kon (1973),

Endo (1986), Anitha and Bagewadi (2003), Yildiz and Murathan (2009), Vanli

and Sari (2014), De and Majhi (2015), Shaikh et al. (2016), Eyasmin and Baishya

(2020), Atceken et al. (2020), Atceken (2021), Atceken and Uygun (2021), Blaga

and Ozgur (2022), Chaubey et al. (2022) and Khatri et al. (2022).

In the last decade, significant work has been done on η-Ricci solitons and

η-Yamabe solitons within the context of Riemannian geometry. Geometric flows

have recently been applied to cosmological models, such as perfect fluid space-

times. Venkatesha and Kumara (2019) analyzed Ricci solitons in perfect fluid

spacetimes with torse-forming vector fields. Conformal Ricci solitons in perfect

fluid spacetimes have also been examined (Siddiqi and Siddiqui, 2020). Blaga

(2020) studied η-Ricci and η-Einstein solitons in perfect fluid spacetimes and de-

rived the Poisson equation from the soliton equation. Praveena et al. (2021)

investigated solitons in Kahlerian spacetime manifolds.

Minkowski (1908) introduced the geometric interpretation of spacetime. The

spacetime of special theory of relativity is now known as Minkowski spacetime.

Spacetime in general relativity (Wienberg, 1972) simply means a four dimensional

connected semi-Riemannian manifold (M4, g) with Lorentz metric g of signature

(−,+,+,+). A Lorentzian manifoldM of dimension n is an n−dimensional semi-

Riemannian manifold (O’Neill, 1983) endowed with a Lorentzian metric g of sig-

nature (+,+, . . . ,+︸ ︷︷ ︸
n−1 times

,−). Alias et al. (1995) introduced the notion of generalized
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Robertson-Walker (GRW) spacetimes. A Lorentzian manifold M of dimension

n ≥ 3 is named GRW-spacetime if it is the warped product M = −I × q2M∗,

where I is an open interval of real numbers with base (I,−dt2), warping function

q and the fibre (M∗, g∗).

A Lorentzian manifold with Ricci tensor of the form (Hawking and Ellis, 1973)

Ric (X, Y ) = αg (X, Y ) + βA (X)A (Y ) ,

is called perfect fluid spacetimes. Here, α, β are scalar fields and U is a unit

timelike vector field corresponding to the 1−form A, i.e., g (U,U) = −1. De

et al. (2002) introduced the notion of Lorentzian Para-Sasakian manifolds with

coefficient α which is known as LP-Sasakian manifold with coefficient α. Many

researchers from physics and mathematics have been studying different types of

spacetime such as Shaikh et al. (2009) on Quasi-Einstein spacetimes, Gutiérrez

et al. (2009) on GRW space, Mantica et al. (2015) on perfect fluid spacetime to

be GRW spacetime, Yadav et al. (2019) on perfect fluid LP-Sasakian spacetime,

De and Sardar (2020) on relativistic properties of LP-Sasakian type spacetime,

Blaga (2020) on solitons and geometrical structures in a perfect fluid spacetime,

Chattopadhyay et al. (2021) on hyper-generalized Quasi-Einstein spacetime and

Siddiqui and De (2022) on relativistic perfect fluid spacetime.

The study of spacetime evolves exponentially, with the approach from both

physical and mathematical point of view. Vaidya (1951) proposed a spacetime

metric which characterizes the behaviour of spherically symmetric (i.e., non-

rotating) stars or black holes interacting with null dust, either emitting or ab-

sorbing it. After this, several authors such as Lindquist et al. (1958), Dwivedi

and Joshi (1989), Virbhadra (1992), Rudra et al. (2016), Simpson et al. (2019),

Shaikh et al. (2019) and Piesnack and Kassner (2022) extended the research

on Vaidya spacetime. Vishveshwara (1970) investigated the scattering of grav-

itational radiation by a Schwarzschild Black-hole. Simpson and Visser (2019)
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discussed the black bounce in traversable wormhole. Siddiqi and Siddiqui (2020)

studied conformal Ricci soliton in a perfect fluid spacetime. For more informa-

tion on spacetime, blackholes and its relation to cosmology, one can see Boucher

(1984), Masood-ul-Alam (1987), Karchar (1992), Schmidt (1993), Philbin (1996),

Stuchlik and Hledik (1999), Sahni and Starobinski (2000), Stephani et al. (2003),

Griffiths and Podolsky (2009), Limoncu (2010), Qing and Yuan (2013), Mantica

et al. (2016), Bronnikov et al. (2016), Hwang et al. (2016), Batool and Hussain

(2017), Carroll (2019), Coutinho (2019), Leandro and Solorzano (2019), De et al.

(2021), Kumara et al. (2021) and Siddiqi (2022), Cao et al. (2022), Fathi et al.

(2022), Siddiqi et al. (2023), Yang et al. (2023).

The perfect fluid spacetime model postulates matter distribution as a perfect

fluid without viscosity. Solutions to Einstein’s field equations are often used to

depict astrophysical scenarios such as star interiors or cosmic environments with

perfect fluid behavior (Van Elst and Ellis, 1996; Carot and Sintes, 1997; Zhao

et al., 2021). The connection between Ricci solitons and Perelman’s Ricci flow

(Perelman, 2002) provides new research opportunities for understanding space-

time geometry under systematic flows revealing fundamental principles which

regulate the structure of the cosmos and help in cosmological modeling. Many

mathematicians and physicists investigate the interplay of solitons, spacetimes

and modified gravity such as Sidhoumi and Batat (2017), Khan et al.(2018),

Capozziello et al. (2019), Mandal (2021), Chaubey (2021), De et al. (2021,

2022), Guler and Gunal (2022), Ali and Khan (2022), De and De (2022, 2023),

Khatri et al. (2023) Suh and Chaubey (2023) and De et al. (2023).
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Chapter 2

Classification of Ricci-Yamabe

Solitons

This chapter is divided into three main sections. Section 2.1 deals with almost

Ricci-Yamabe solitons on Riemannian manifold. In Section 2.2, Ricci-Yamabe

solitons on (LCS)n-manifolds are discussed and Section 2.3 is devoted to the

characterization of almost ∗-Ricci-Yamabe solitons.

2.1 Isometries on almost Ricci-Yamabe solitons

This section investigates isometries of almost Ricci-Yamabe solitons. We ob-

tain conditions for compact and complete gradient almost Ricci-Yamabe solitons

to be isometric to Euclidean space or sphere.

M. Khatri, Z. Chhakchhuak and J.P. Singh (2023). Isometries on almost Ricci–Yamabe
solitons, Arab. J. Math. 12, 127–138.
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2.1.1 Some rigidity results on almost Ricci-Yamabe soli-

tons

Before proceeding to the main results, we obtain several lemmas on almost

Ricci-Yamabe solitons (ARYS) and gradient ARYS which would be used later.

Lemma 2.1. For a gradient ARYS (Mn, g,∇f, λ), the following formula holds:

(1) 2∆f + (2α + nβ)τ = 2nλ.

(2) {α + (n− 1)β}∇iτ = 2(m− 1)∇iλ+ 2Ris∇sf , α ̸= 0, n ≥ 3.

(3) α(∇jRik−∇iRjk) =
α

α+(n−1)β
[(∇jλ)gik − (∇iλ)gjk]+

α+(n−3)β
α+(n−1)β

Rijks∇sf , α+

(n− 1)β ̸= 0.

(4) For α + (n− 1)β ̸= 0, we have

1

2
∇(τ + |∇f |2) = n− 1

α + (n− 1)β
∇λ+ (λ− βτ

2
)∇f

+
1− α2 − (n− 1)αβ

α + (n− 1)β
Ric(∇f).

Proof. Result (1) is directly obtained by taking trace of the soliton equation.

For result (2), we consider Schur’s Lemma (n > 2), we have

1

2
∇iτ = divRici = gjk∇kRij,

=⇒ α

2
∇iτ = gjk{(∇kλ)gij −

β

2
(∇kτ)gij} − gjk∇k∇i∇jf.

Then, using Ricci identity in the above expression gives

(α + β)∇iτ = 2∇iλ− 2∇i(∆f)− 2Ris∇sf.

Thus, in regard of result (1) yields

[α + (n− 1)β]∇iτ = 2(n− 1)∇iλ+ 2Ris∇sf.

This gives result (2).
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In consequence of result (2) and Ricci identity, we obtain

Rjiks∇sf + α(∇jRik −∇iRjk) = (∇jλ)gik − (∇iλ)gjk +
β

2
[(∇iτ)gjk − (∇jτ)gik].

Further, inserting result (2) in the above expression and then simplifying,

we obtain result (3). Now, using result (3) and the fundamental equation as a

(1,1)-tensor, result (4) follows, which thus completes the proof.

Petersen and Wylie (2009) obtained the following Bochner formula for Killing

and gradient field as:

Lemma 2.2. Given a vector field X on a Riemannian manifold (Mn, g), we have

div(LXg)(X) =
1

2
∆|X|2 − |∇X|2 +Ric(X,X) +DXdivX.

When X = ∇f is a gradient field and Z is any vector field , we have

div(L∇fg)(Z) = 2Ric(Z,∇f) + 2DZdiv∇f,

or, in (1,1)-tensor notation,

div∇∇f = Ric(∇f) +∇∆f.

Taking an inner product of result (2) in Lemma 2.1 by arbitrary vector field

Z gives

[α + (n− 1)β]g(∇τ, Z) = 2(n− 1)g(∇λ, Z) + 2Ric(∇f, Z). (2.1)

In particular,

[α + (n− 1)β]g(∇τ,∇f) = 2(n− 1)g(∇λ,∇f) + 2Ric(∇f,∇f). (2.2)

and

[α + (n− 1)β]|∇τ |2 = 2(n− 1)g(∇λ,∇τ) + 2Ric(∇f,∇τ). (2.3)
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Lemma 2.3. For an ARYS (Mn, g,X, λ) (n ≥ 3) with α ̸= 0, we have

2α + nβ

2
∆|X|2 − (2α + nβ)|∇X|2 + β(2α + nβ)g(∇τ,X)

+ (2α + nβ)Ric(X,X) + 2[(n− 2)α− nβ]g(∇λ,X) + nβDXdivX = 0.

Proof. Taking divergence of ARYS equation yields

div(LXg)(X) + 2(α + β)divRic(X) = 2DXλ. (2.4)

We have from (1.70), 2divX + (2α + nβ)τ = 2nλ, which gives

2DXdivX + (2α + nβ)DXR = 2nDXλ. (2.5)

Making use of Schur’s Lemma, Lemma 2.2, (2.4) and (2.5), we get the required

results. This completes the proof.

Moreover, from (1.70) we have

1

2
LXg(X,X) + αRic(X,X) = (λ− βτ

2
)|X|2.

In consequence of this in Lemma 2.3, we get

2α + nβ

2
(∆− DX

α
)|X|2 = (2α + nβ)|∇X|2 − β(2α + nβ)g(∇τ,X)

− 2α + nβ

α
(λ− βτ

2
)|X|2 + 2[nβ − (n− 2)α]g(∇λ,X)− nβDXdivX.

(2.6)

Corollary 2.1. For a gradient ARYS (Mn, g,∇f, λ) (n ≥ 3) with α ̸= 0, we

have

2α + nβ

2
∆|∇f |2 = (2α + nβ)|Hess f |2 − β(2α + nβ)g(∇τ,∇f)

− (2α + nβ)Ric(∇f,∇f) + 2[nβ − (n− 2)α]g(∇λ,∇f)− nβD∇fdiv(∇f).

Theorem 2.1. Let (Mn, g,X, λ) (n ≥ 3) be a compact ARYS. If α ̸= {0,−nβ
2
}
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and ∫
M

{
Ric(X,X) + βg(∇τ,X) +

nβ

2α + nβ
∇XdivX

+
2[(n− 2)α− nβ]

2α + nβ
g(∇λ,X)

}
dvg ≤ 0,

then X is Killing and Mn is RYS.

Proof. Since Mn is compact, taking integration of Lemma 2.3 gives∫
M

|∇X|2dvg =
∫
M

{
Ric(X,X) + βg(∇τ,X) +

nβ

2α + nβ
∇XdivX

+
2[(n− 2)α− nβ]

2α + nβ
g(∇λ,X)

}
dvg. (2.7)

In view of our hypothesis∫
M

{
Ric(X,X) + βg(∇τ,X) +

nβ

2α + nβ
∇XdivX

+
2[(n− 2)α− nβ]

2α + nβ
g(∇λ,X)

}
dvg ≤ 0,

and (2.7), we get ∇X = 0 which implies LXg = 0, i.e., X is Killing vector field.

In this case, ARYS will be simply RYS sinceMn will be Einstein manifold, which

implies that λ is constant. This completes the proof.

Corollary 2.2. Let (Mn, g,X, λ) (n ≥ 3) be a compact RYS. If α ̸= {0,−nβ
2
}

and ∫
M

[
Ric(X,X) + βg(∇τ,X) +

nβ

2α + nβ
∇XdivX

]
dvg ≤ 0,

then X is Killing.

In particular, for α = 1 and β = −2ρ in Theorem 2.1, we recover Theorem

1.6 of (Dwivedi, 2021). Moreover, Theorem 3 in (Barros and Ribeiro, 2012) for

compact Ricci soliton is obtained for α = 1, β = 0.

The next theorem generalizes Theorem 3.5 of (Dwivedi, 2021) which is ob-

tained for compact gradient Ricci-Bourguignon almost soliton, which is the case

for α = 1 and β = −2ρ.
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Theorem 2.2. Let (Mn, g,∇f, λ) (n ≥ 3) be a compact ARYS with α ̸= 0 and

α + (n− 1)β ̸= 0. Then we have

(1)
∫
M
|∇2f − ∆f

n
g|2dvg = α(n−2)

2n

∫
M
g(∇τ,∇f)dvg.

(2)
∫
M
|∇2f− ∆f

n
g|2dvg = α(n−2)

2n[α+(n−1)β]

∫
M
[2(n−1)g(∇λ,∇f)+2Ric(∇f,∇f)]dvg.

Proof. From the gradient ARYS, from (1.71) we have

(Hess f)(∇f) + αRic(∇f) = (λ− βτ

2
)∇f. (2.8)

Combining second argument of Lemma 2.1 and (2.8), then taking divergence of

the obtained expression yields

α[α + (n− 1)β]∆τ = 2α(n− 1)∆λ+ (2λ− βτ)∆f −∆|∇f |2

+ 2g(∇λ,∇f)− βg(∇τ,∇f). (2.9)

Now, using commuting covariant derivative and Ricci identity, we have

∇i∇i(g(∇jf,∇jf)) = 2∇i(g(∇i∇jf,∇jf)),

= 2g(∇i∇i∇jf,∇jf) + 2|∇2f |2,

= 2g(∇i∇i∇jf +Riijs∇sf,∇jf) + 2|∇2f |2,

= 2g(∇(∆f),∇f) + 2Ric(∇f,∇f) + 2|∇2f |2.

Making use of the above expression in (2.9), we get

α{α + (n− 1)β}∆τ + 2g(∇∆f,∇f) + 2Ric(∇f,∇f) + 2|∇2f |2

= 2α(n− 1)∆λ+ (2λ− βτ)∆f + 2g(∇λ,∇f)− βg(∇τ,∇f). (2.10)

Combining first argument of Lemma 2.1, (2.2) and (2.10), we obtain

α{α+(n−1)β}∆τ−αg(∇τ,∇f)+2|∇2f |2 = 2α(n−1)∆λ+(2λ−βτ)∆f. (2.11)
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Making use of the fact that |∇2f − ∆f
n
g|2 = |∇2f |2 − (∆f)2

n
in (2.11) gives

α{α + (n− 1)β}∆τ + 2|∇2f − ∆f

n
g|2 − αg(∇τ,∇f) = 2α(n− 1)∆λ+

2α

n
τ∆f.

(2.12)

By hypothesis, since Mn is compact, we get∫
M

|∇2f − ∆f

n
g|2dvg =

α

2

∫
M

g(∇τ,∇f)dvg +
α

n

∫
M

R∆fdvg. (2.13)

Also, we know that
∫
M
R∆fdvg = −

∫
M
g(∇τ,∇f)dvg, then (2.13) becomes∫

M

|∇2f − ∆f

n
g|2dvg =

α(n− 2)

2n

∫
M

g(∇τ,∇f)dvg. (2.14)

Combining (2.2) in (2.14) proves the second part provided α+(n−1)β ̸= 0. This

completes the proof.

Now, for a gradient ARYS (Mn, g,∇f, λ), from (1.71) and Lemma 2.1 we can

write

α(Ric− τ

n
g) = (λ− βτ

2
)g −∇2f − ατ

n
g,

= λg − (2α + nβ)τ

2n
g −∇2f,

=
∆f

n
g −∇2f.

Now, using the foregoing equation in (2.14) yields∫
M

|Ric− τ

n
g|2dvg =

α(n− 2)

2n|α|2

∫
M

g(∇τ,∇f)dvg. (2.15)

Corollary 2.3. Let (Mn, g,∇f, λ) (n ≥ 3) be a gradient ARYS with α ̸= 0. Then

we have

(1) {α + (n− 1)β}∆τ + 2α|Ric− τ
n
g|2 − g(∇τ,∇f) = 2(n− 1)∆λ+ 2

n
τ∆f .

(2) If Mn is compact, then
∫
M
|Ric− τ

n
g|2dvg = (n−2)

2nα

∫
M
g(∇τ,∇f)dvg.

With regard to Theorem 2.2, Corollary 2.3 and Tashiro’s result (Tashiro,

1965) which states that a compact Riemannian manifold (Mn, g) is conformally

37



Chapter 2

equivalent to Sn(r) provided there exists a non-trivial function f :Mn → R such

that ∇2f = ∆f
n
g. We obtain the following result which is a generalization of

Corollary 1 of (Barros and Ribeiro, 2012) and Corollary 1.10 of (Dwivedi, 2021).

Corollary 2.4. A non-trivial compact gradient ARYS (Mn, g,∇f, λ) (n ≥ 3)

with α ̸= {0, (1 − n)β} is isometric to a Euclidean sphere Sn(r) if one of the

following conditions hold:

(1) Mn has constant scalar curvature.

(2) Mn is a homogeneous manifold.

(3)
∫
M
[2(n − 1)g(∇λ,∇f) + 2Ric(∇f,∇f)]dvg ≥ 0 and 0 < α < (1 − n)β or

0 > α > (1− n)β.

(4)
∫
M
[2(n − 1)g(∇λ,∇f) + 2Ric(∇f,∇f)]dvg ≤ 0 with non-negative constants

α and β.

Hodge-de Rham decomposition theorem states that we may decompose the

vector field X over a compact oriented Riemannian manifold as a sum of the

gradient of a function h and a divergence free vector field Y , i.e.,

X = ∇h+ Y, (2.16)

where div Y = 0.

Taking divergence of (2.16) gives div X = ∆h. From the fundamental equation,

we have 2div X+(2α+nβ)τ = 2nλ. Therefore, combining both equations result

in the following:

2∆h+ (2α + nβ)τ = 2nλ. (2.17)

On the other hand, if (Mn, g,∇f, λ) is also a compact gradient ARYS, then from

result (1) of Lemma 2.1, we have

2∆f + (2α + nβ)τ = 2nλ. (2.18)

Comparing (2.17) and (2.18), we get ∆(h−f) = 0. Now, by using Hopf’s theorem,
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we see that f = h+ c, where c is a constant. Hence, we can state the following:

Theorem 2.3. Let (Mn, g,X, λ) be a compact ARYS. If Mn is also gradient

ARYS with potential f , then upto a constant, it agrees with the Hodge-de Rham

potential h.

2.1.2 Almost Ricci-Yamabe solitons with certain condi-

tions on the potential vector field

In this subsection, we consider ARYS whose potential vector field satisfies

certain conditions such as conformal, solenoidal and torse-forming vector fields.

Conformal vector field under almost Ricci soliton and almost Ricci-Bourguignon

solitons were considered by authors in (Barros and Ribeiro, 2012; Blaga and

Tastan, 2021) and obtained interesting results. Now, we state and prove the

following lemma.

Lemma 2.4. Let (n ≥ 3) be ARYS with α ̸= 0. If X is a conformal vector field

with potential function ψ, then τ and λ− ψ are constants.

Proof. Since X is a conformal vector field, we have LXg = 2ψg. Making use of

this in the soliton equation (1.70) yields

αRic = (λ− βτ

2
− ψ)g. (2.19)

which further gives

(2α + nβ)τ = 2n(λ− ψ), (2.20)

and

α divRic = ∇(λ− βτ

2
− ψ). (2.21)

Making use of Schur’s Lemma in (2.21) and inserting it in the covariant derivative

of (2.20) results in (n− 2)α∇τ = 0. As α ̸= 0, then τ is constant, which implies

then from (2.20) that λ− ψ is also constant. This completes the proof.
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Theorem 2.4. Let (Mn, g,X, λ) (n ≥ 3) be a compact ARYS with α ̸= 0. If X

is a non-trivial conformal vector field, then Mn is isometric to Euclidean sphere

Sn(r).

Proof. In regard of Lemma 2.4, we know that τ and λ−ψ are constants. Moreover,

using Lemma 2.3 of (Yano, 1970), we conclude that τ ̸= 0, otherwise ψ = 0, a

contradiction as ψ ̸= 0.

Taking Lie derivative of (2.19) and using the fact that τ and λ−ψ are constants

give

αLXRic = (λ− βτ

2
− ψ)LXg = (λ− βτ

2
− ψ)ψg.

Now, applying Theorem 4.2 of (Yano, 1970) to conclude that Mn is isometric to

Euclidean sphere Sn(r). This completes the proof.

Now, we look at gradient ARYS admitting conformal vector field on which we

state and prove the following:

Theorem 2.5. Let (Mn, g,∇f, λ) (n ≥ 3) be a complete gradient ARYS with

α ̸= 0. If ∇f is a non-trivial conformal vector field with non-negative scalar

curvature, then either

(1) Mn is isometric to a Euclidean space En.

or

(2)Mn is isometric to a Euclidean sphere Sn. Moreover, ψ is a first eigenfunction

of Laplacian and λ = 2α+nβ
2n

τ − λ1

n
f + k, where k is a constant.

Proof. Since ∇f is a non-trivial conformal vector field, we have L∇fg = 2ψg,

ψ ̸= 0. Now, in consequence of argument (1) of Lemma 2.1, we get ψ = ∆f
n

̸= 0.

Moreover, from Lemma 2.4, we know that τ and λ − ψ are constants. Suppose

τ = 0, then this implies that Mn is Ricci flat and by using Tashiro’s theorem

(Tashiro, 1965) in the fundamental equation, we conclude that Mn is isometric

to a Euclidean space En. On the other hand, suppose τ ̸= 0. Then, making
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use of Lemma 2.1 in ψ = ∆f
n

gives λ = ψ + (2α+nβ
2n

)τ . As a consequence, (2.19)

becomes Ric = τ
n
g for α ̸= 0. Therefore, by involving a theorem by Nagano

and Yano (Nagano and Yano, 1959), we can conclude that Mn is isometric to a

Euclidean sphere Sn. Furthermore, taking into account of the fact that Ric = τ
n
g,

we can use Lichnerowicz’s theorem (Lichnerowicz, 1958), the first eigenvalue of

the Laplacian of Mn is λ1 = τ
n−1

. Now, we make use of well known formula by

Obata and Yano (Obata and Yano, 1970), which gives

∆ψ +
τ

n− 1
ψ = 0. (2.22)

In view of (2.22), one can easily obtain ∆ψ = −λ1ψ, that is, ψ is a first eigenfunc-

tion of the Laplacian. Also, we get ∆(∆f+λ1f) = 0. Then, by Hopf theorem, we

obtain ∆f + λ1f = c, where c is a constant. Combining the last expression with

Lemma 2.1 give us the required expression for λ. This completes the proof.

In the paper of Blaga and Tastan (Blaga and Tastan, 2021), the authors con-

sidered almost Ricci-Bourguignon soliton and almost η-Ricci-Bourguignon soliton

with solenoidal and torse-forming vector field and obtained several rigidity results.

Following similar methods, we examine ARYS (Mn, g, ξ, λ) with solenoidal and

torse-forming vector fields.

Let ξ be a solenoidal vector field. Then, by taking trace of the ARYS equation

(1.70), we get

τ =
2

2α + nβ
(λn− div(ξ)), (2.23)

provided α ̸= −nβ
2
. If α = −nβ

2
, then λ = div(ξ)

n
. For α ̸= {0,−nβ

2
}, the soliton

equation can be written as

1

2
Lξg + αRic =

βdiv(ξ) + 2αλ

2α + nβ
g. (2.24)
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Taking an inner product with Ric in (2.24) gives

⟨Lξg,Ric⟩ = −2α|Ric|2 + 4

(2α + nβ)2
[(nβ

−2α)div(ξ)λ− β(div(ξ))2 + 2αnλ2]. (2.25)

Again, taking an inner product with Lξg in (2.24) and considering |Lξg|2 =

4|∇ξ|2, we have

⟨Lξg,Ric⟩ = − 2

α
|∇ξ|2 + 2

α(2α + nβ)
[β(div(ξ))2 + 2αλdiv(ξ)]. (2.26)

Comparing (2.25) and (2.26), we get

|Ric|2 = 1

α2
|∇ξ|2 + 1

α2(2α + nβ)2
[4α2nλ2 − 8α2λdiv(ξ)− (4α + nβ)β(div(ξ))2].

which leads to the following:

Proposition 2.1. For an ARYS (Mn, g, ξ, λ) with α ̸= {0,−nβ
2
} and a solenoidal

vector field ξ, we have

|Ric|2 ≥ 1

α2
|∇ξ|2.

Now, let ξ be a gradient vector field. Making use of Bochner formula (Blaga,

2017), we have

Ric(ξ, ξ) =
1

2
∆(|ξ|2)− |∇ξ|2 − ξ(div(ξ)). (2.27)

Using (2.23) in the soliton equation (1.70), we get

1

2
Lξg + αRic =

[
λ− β

2α + nβ
(λn− div(ξ))

]
g. (2.28)

From (2.28), we have

αRic(ξ, ξ) = −1

2
ξ(|ξ|2) +

[
λ− β

2α + nβ
(λn− div(ξ))

]
|ξ|2. (2.29)

Comparing (2.24) and (2.29), we can state the following:

Theorem 2.6. A gradient ARYS (Mn, g, ξ, λ) with α ̸= {0,−nβ
2
} has the function
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λ expressed in terms of ξ as

λ =
2α + nβ

4α|ξ|2
[α∆(|ξ|2)− 2α|∇ξ|2 + ξ(|ξ|2)− 2αξdiv(ξ)]− β

2α
div(ξ).

In particular, for α = 1 and β = −2ρ, where ρ ∈ R and ρ ̸= 1
n
, we recover

Theorem 2.2 of (Blaga and Tastan, 2021).

If ξ = ∇f with f a smooth function on Mn and α ̸= {0,−nβ
2
}, the soliton

equation becomes

Hess f + αRic = (λ− βτ

2
)g. (2.30)

and (2.23) becomes

τ =
2

2α + nβ
(λn−∆f). (2.31)

Differentiating the above expression gives

d(∆f) = ndλ− 2α + nβ

2
dτ, (2.32)

=⇒ ∇(∆f) = n∇λ− 2α + nβ

2
∇τ.

Taking divergence of (2.30) and using Schur’s Lemma, we get

div(Hess f) = dλ− α + β

2
dτ. (2.33)

Also, from (Blaga, 2017), we have

div(Hess f) = d(∆f) + iQ(∇f)g, (2.34)

where i denotes the interior product and Q is the Ricci operator.

Comparing (2.33) and (2.34) yields

d(∆f) = dλ− α + β

2
dτ − iQ(∇f)g. (2.35)

From (2.32) and (2.35), we have

(n− 1)dλ =
α + (n− 1)β

2
dτ −Q(∇f). (2.36)
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Therefore we can state the following:

Proposition 2.2. For a gradient ARYS on Mn with α ̸= {0,−nβ
2
}, we have

grad(λ) =
α + (n− 1)β

2(n− 1)
grad(τ)− 1

n− 1
Q(grad f).

Moreover, if grad f ∈ Ker(Q), then

grad(λ) =
α + (n− 1)β

2(n− 1)
grad(τ). (2.37)

In the gradient case, we have ξ = ∇f , if α ̸= {0,−nβ
2
}, then from (2.31), we get

λ =
2α + nβ

2n
τ +

∆f

n
. (2.38)

Then, (2.30) becomes

Hess f + αRic =
ατ +∆f

n
g. (2.39)

Taking inner product with Ric and Hess f respectively in (2.39) yields

α|Ric|2 = ατ +∆f

n
τ − ⟨Hess f,Ric⟩, (2.40)

and

1

α
|Hess f |2 = ατ +∆f

αn
∆f − ⟨Ric,Hess f⟩. (2.41)

On comparing (2.40) and (2.41), we get

α|Ric|2 − 1

α
|Hess f |2 = α2τ 2 − (∆f)2

αn
,

which leads to the following:

Theorem 2.7. For a gradient ARYS (Mn, g,∇f, λ) on Mn with α ̸= {0,−nβ
2
},

we have

1

α2
|Hess f |2 − (∆f)2

α2n
≤ |Ric|2 ≤ 1

α2
|Hess f |2 + τ 2

n
.

Again, let us consider a torse forming vector field ξ, then, ∇ξ = γI + ψ ⊗ ξ,

where γ is a smooth function, ψ is a 1-form and I is the identity endomorphism
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on the space of vector fields. Then, we have

div(ξ) = nγ + ψ(ξ),

Lξg = 2γg + ψ ⊗ θ + θ ⊗ ψ,

where θ is the dual 1-form of ξ. From (1.70), we get for α ̸= {0,−nβ
2
} that

Ric =
βψ(ξ)− 2α(γ − λ)

α(2α + nβ)
g − 1

2α
(ψ ⊗ θ + θ ⊗ ψ). (2.42)

Thus,

Q =
βψ(ξ)− 2α(γ − λ)

α(2α + nβ)
I − 1

2α
(ψ ⊗ ξ + θ ⊗ ζ),

which implies

τ =
nβψ(ξ)− 2αn(γ − λ)

α(2α + nβ)
,

where ζ is the dual vector field of ψ.

Computing the Riemann curvature for ∇ξ = γI + ψ ⊗ ξ, we get

R(X, Y )ξ = (dγ − γψ)(X)Y − (dγ − γψ)(Y )X + [(∇Xψ)Y − (∇Y ψ)X]ξ,

for any X, Y ∈ χ(Mn). If ψ is a Codazzi tensor field, i.e., (∇Xψ)Y = (∇Y ψ)X,

then

Ric(ξ, ξ) = (1− n)[ξ(γ)− γψ(ξ)]. (2.43)

Also, from (2.42), we have

Ric(ξ, ξ) =
|ξ|2

α(2α + nβ)
[2α(λ− γ)− {2α + (n− 1)β}ψ(ξ)]. (2.44)

Then, comparing (2.43) and (2.44) yields

Proposition 2.3. Let (Mn, g, ξ, λ) defines an ARYS with α ̸= {0,−nβ
2
} such

that ξ is a torse forming vector field and ψ is a Codazzi tensor field, then

λ = γ+
2α + nβ

2|ξ|2
(1−n)ξ(γ)+ 1

α|ξ|2
[{2α+(n−1)β}|ξ|2+α(n−1)(2α+nβ)γ]ψ(ξ).
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Let us verify the obtained results by assuming non-trivial examples con-

structed in (Blaga and Tastan, 2021).

Example 2.1. On the 3-dimensional manifold M = {(x, y, z) ∈ R3, z > 0},

where (x, y, z) are the standard coordinates in R3 with the Riemannian metric

g :=
1

z2
(dx2 + dy2 + dz2).

Then
(
g, ξ = ∂

∂z
, λ = 3β

2αz
− 2α+3β

2α
(2 + 1

z
)
)
defines a gradient ARYS.

Precisely, ξ = ∇f for f(x, y, z) = −1
z
where |ξ|2 = 1

z2
, ξ(|ξ|2) = − 2

z3
, ∆(|ξ|2) =

8
z2
, |∇ξ|2 = 3

z2
, div(ξ) = −3

z
, ξ(div(ξ)) = 3

z2
. Therefore, λ = 3β

2αz
− 2α+3β

2α
(2 + 1

z
)

is obtained from Theorem 2.6.

Example 2.2. LetM = {(x, y, z) ∈ R3|z > 0}. Consider the Riemannian metric

g := exp(2z)(dx2 + dy2) + dz2.

Then, (g, ξ = exp(z) ∂
∂z
, λ = 2α+3β

2α
(exp(z) − 2α) − 3β

2α
exp(z)) defines a gradient

ARYS with ξ = ∇f , where f(x, y, z) = exp(z). On the other hand, one can check

that |ξ|2 = exp(2z), ξ(|ξ|2) = 2 exp(3z), ∆(|ξ|2) = 8 exp(2z), |∇ξ|2 = 3 exp(2z),

div(ξ) = 3 exp(z), ξ(div(ξ)) = 3 exp(2z), therefore, λ = 2α+3β
2α

(exp(z) − 2α) −
3β
2α

exp(z) is immediately obtained from Theorem 2.6.

2.2 Certain results of Ricci-Yamabe solitons on

(LCS)n-manifolds

Siddiqi and Akyol (2020) constructed the geometrical bearing on Riemannian

submersions in terms of η−Ricci-Yamabe soliton with the potential field and

presented the classification of any fiber of Riemannian submersion is a η−Ricci-

Yamabe soliton, η−Ricci soliton and η−Yamabe soliton.

J.P. Singh and Z. Chhakchhuak (2022). Certain results of Ricci-Yamabe solitons on
(LCS)n-manifolds, Facta Univ. Math. Inform. 37(4), 797–812.
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2.2.1 Preliminaries

Let an n−dimensional Lorentzian manifoldM admits the characteristic vector

field ξ. Then, we have g(ξ, ξ) = −1. Since ξ is a unit concircular vector field, we

have a non-zero 1−form η such that for g(X, ξ) = η(X), the following equation

holds for all vector fields X and Y on M :

(∇Xη)(Y ) = γ{g(X, Y ) + η(X)η(Y )}, γ ̸= 0, (2.45)

where γ is a scalar function on M which satisfies

∇Xγ = X(γ) = dγ(X) = ρη(X), (2.46)

for ρ ∈ C∞(M), where ∇ is the Levi-Civita connection of g. Let us take a

symmetric (1, 1) tensor field ϕ denoted by

ϕ(X) = X(γ) =
1

γ
∇Xξ, (2.47)

called the structure tensor of the manifold. Thus, the Lorentzian manifold M

equipped with ξ, η and ϕ is said to be a Lorentzian concircular structure manifold

(briefly, (LCS)n−manifold) (Shaikh, 2003). In fact, if we take γ = 1, then

we obtain the LP-Sasakian structure of Matsumoto (Matsumoto, 1989). The

following relations hold in an (LCS)n−manifold (n > 2) for any X, Y, Z on M

(Shaikh 2003; Roy et al., 2020):

ϕX = X + η(X)ξ, (2.48)

ϕ2 = I + η ⊗ ξ, η(ξ) = −1, ϕξ = 0, η ◦ ϕ = 0, (2.49)

g(ϕX, ϕY ) = g(X, Y ) + η(X)η(Y ), and g(ϕX, Y ) = g(X,ϕY ), (2.50)

(∇Xϕ)Y = γ[g(X, Y )ξ + 2η(X)η(Y )ξ + η(Y )X], (2.51)
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η(∇Xξ) = 0, ∇ξξ = 0, (2.52)

R(X, Y )Z = (γ2 − ρ)[g(Y, Z)X − g(X,Z)Y ], (2.53)

Ric(X, Y ) = (γ2 − ρ)(n− 1)g(X, Y ), (2.54)

τ = n(n− 1)(γ2 − ρ), (2.55)

∇η = γ(g + η ⊗ η), ∇ξη = 0, (2.56)

Lξϕ = 0, Lξη = 0, Lξg = 2∇η = 2γ(g + η ⊗ η), (2.57)

where R is the Riemannian curvature tensor, Ric is the Ricci tensor, τ is the

scalar curvature and ∇ is the Levi-Civita connection associated with g.

Shaikh (2009) studied a conformally flat (LCS)n−manifold and shown that

a conformally flat (LCS)n (n ≥ 4) manifold is η−Einstein and its Ricci tensor is

given by

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (2.58)

where a = τ
n−1

− (γ2 − ρ) and b = n(γ2 − ρ)− τ
n−1

. Then, from (2.58), we have

Ric(X, ξ) = (a− b)η(X), (2.59)

and

Ric(ξ, ξ) = −(a− b). (2.60)

Definition 2.1 (Hui and Chakraborty, 2016). A vector field ξ is called torse

forming if it satisfies

∇Xξ = fX + ν(X)ξ, (2.61)

for a smooth function f ∈ C∞(M) and ν is an 1−form, for all vector field X on

M .

Remark 2.1. Let ξ be a torse forming vector field on an (LCS)n-manifold. We

know that in an (LCS)n-manifold, ∇ξξ = 0. Taking X = ξ in (2.61), we get

(f − 1)ξ = 0. Since ξ ̸= 0, then f = 1.
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2.2.2 Ricci-Yamabe Soliton (RYS) on (LCS)n manifolds

Now, we assume that ξ is the Reeb vector field of the Lorentzian concircular

structure.

Consider the Ricci-Yamabe soliton (RYS) on an n−dimensional (LCS)n man-

ifold as

Lξg + 2αRic = (2λ− βτ)g. (2.62)

From (2.57), we have

2γ(g(X, Y ) + η(X)η(Y )) + 2αRic(X, Y ) = (2λ− βτ)g(X, Y ), (2.63)

for all vector fields X, Y on M . This implies

(2λ− βτ − 2γ)g(X, Y )− 2αg(QX, Y )− 2γη(X)η(Y ) = 0. (2.64)

Setting Y = ξ in the above equation and using (2.49), we get

g((2λ− βτ)X − 2αQX, ξ) = 0. (2.65)

Then, we have

QX =
2λ− βτ

2α
X,α ̸= 0. (2.66)

Contracting the foregoing equation, we obtain

τ =
2λn

2α + nβ
, 2α + nβ ̸= 0. (2.67)

Since, α, β, λ are constants, τ is also constant. Now, using (2.54), (2.55) and

(2.67), we have

Ric(X, Y ) =
2λ

2α + nβ
g(X, Y ), 2α + nβ ̸= 0. (2.68)

Also, using (2.67) and (2.68) in (2.62), we get

Lξg = 0. (2.69)
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Thus, we can state the following theorem:

Theorem 2.8. An (LCS)n−manifold admitting a Ricci-Yamabe soliton has con-

stant scalar curvature and the manifold becomes Einstein manifold provided that

α ̸= {0,−nβ
2
}. Moreover, ξ is the killing vector field.

Let us assume that the Ricci tensor, Ric of an (LCS)n manifold is η−recurrent,

we have

∇Ric = η ⊗Ric, (2.70)

which implies

(∇XRic)(Y, Z) = η(X)Ric(Y, Z), (2.71)

for all vector fields X, Y, Z on M . From (2.68), we get ∇Ric = 0. Now, from

(2.71), we have

η(X)Ric(Y, Z) = 0. (2.72)

Since η(X) ̸= 0, we obtain Ric(Y, Z) = 0. Thus, from the expression of Ric

in (2.68), we have λ = 0. Also, from (2.67), we get τ = 0, which then implies

from (2.55) that (γ2 − ρ) = 0 provided n > 1. Again, in view of (2.53), we have

R(X, Y )Z = 0 for all vector fields X, Y, Z on M . This results to the following:

Proposition 2.4. If the Ricci tensor Ric of an (LCS)n (n > 1) manifold admit-

ting a RYS is η−recurrent, then the soliton is steady and the manifold becomes

flat.

Let us consider a symmetric (0, 2) tensor field h such that

h =
1

2α
Lξg −

2λ− βτ

2α
g, α ̸= 0. (2.73)

This implies ∇h = 0. Then,

h(ξ, ξ) = Lξg(ξ, ξ)−
2λ− βτ

2α
g(ξ, ξ)

=
2λ− βτ

2α
. (2.74)
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As ∇h = 0, then using (2.74) and the results obtained in Chandra et al. (2015),

(2.73) becomes

Lξg(X, Y ) + 2αRic(X, Y ) = (2λ− βτ)g(X, Y ), (2.75)

for all vector fields X, Y on M . This leads to the following theorem:

Theorem 2.9. Let (M, g, ξ, η, ϕ, γ) be an (LCS)n−manifold such that a symmet-

ric (0, 2) tensor field h given by h = 1
2α
Lξg − 2λ−βτ

2α
g with α ̸= 0 and ∇h = 0.

Then, (g, ξ) yields a Ricci-Yamabe soliton on M .

Let us define a Ricci-Yamabe soliton (RYS) on an n-dimensional (LCS)n-

manifold M as

LV g + 2αRic = (2λ− βτ)g. (2.76)

Let V = tξ, where t is a function on M . Then,

Ltξg(X, Y ) + 2αRic(X, Y ) = (2λ− βτ)g(X, Y ), (2.77)

for any vector fields X, Y on M . Applying the property of Lie derivative and

Levi-Civita connection, we have

tg(∇Xξ, Y )+(Xt)η(Y )+tg(∇Y ξ,X)+(Y t)η(X)+2αg(QX, Y ) = (2λ−βτ)g(X, Y ).

(2.78)

Taking Y = ξ in the above equation and using (2.52), we get

−Xt+
(
ξt+

4αλ

2α + nβ
− 2λ+ βτ

)
η(X) = 0, 2α + nβ ̸= 0. (2.79)

Taking X = ξ in the foregoing equation, we obtain

ξt =
2λ− βτ

2
− 2αλ

2α + nβ
. (2.80)

Using (2.80), (2.79) becomes

Xt = −2nλβ − βτ(2α + nβ)

2(2α + nβ)
η(X). (2.81)
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Applying exterior differentiation in (2.81), we get

2nλβ − βτ(2α + nβ)

2(2α + nβ)
dη = 0. (2.82)

We know that in an n−dimensional (LCS)n−manifold, we have

(dη)(X, Y ) = X(η(Y ))− Y (η(X))− η([X, Y ]), (2.83)

which implies

(dη)(X, Y ) = g(Y,∇Xξ)− g(X,∇Y ξ). (2.84)

Using (2.47) and (2.50) in (2.84), we get

(dη)(X, Y ) = 0. (2.85)

Hence, the 1−form η is closed. Then, using the above equation, (2.82) implies

either

τ =
2λn

2α + nβ
or τ ̸= 2λn

2α + nβ
. (2.86)

Now, if τ ̸= 2λn
2α+nβ

, we have

LV g + 2αRic = (2λ− βτ)g. (2.87)

Replacing the expression of Ric from (2.68) in (2.87), we get

LV g =

(
2λ− 4αλ

2α + nβ
− βτ

)
g, (2.88)

which implies that V is a conformal Killing vector field. Again, if τ = 2λn
2α+nβ

,

then from (2.81), we get

Xt = 0, (2.89)

which implies that t is constant. Therefore, we can state the following theorem:

Theorem 2.10. If a vector field V on an (LCS)n−manifold admitting a Ricci-

Yamabe soliton is pointwise collinear with ξ, then either V is a conformal Killing

vector field, or V is a constant multiple of ξ, provided that τ ̸= 2λn
2α+nβ

and 2α +
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nβ ̸= 0.

Remark 2.2. The above Theorem 2.10 is a generalization of Theorem 3.8 in

(Roy et al., 2020), where they obtained the condition for V to be a conformal

Killing vector field is τ ̸= λ. It is easy to see that for α = 0 and β = 2, Theorem

3.8 in (Roy et al., 2020) can be obtained from Theorem 2.10.

As a consequence of Theorem 2.10, substituting τ = 2λn
2α+nβ

, 2α+ nβ ̸= 0 in

(2.87), we get that

LV g = 0, (2.90)

implying V is a Killing vector field. Then, we have:

Corollary 2.5. If a vector field V on an (LCS)n−manifold admitting a Ricci-

Yamabe soliton is pointwise collinear with ξ and τ = 2λn
2α+nβ

with 2α + nβ ̸= 0,

then V becomes a Killing vector field.

Setting Z = ξ in (1.18), we get

P (X, Y )ξ = R(X, Y )ξ − 1

(n− 1)
[Ric(Y, ξ)X −Ric(X, ξ)Y ]. (2.91)

Taking Z = ξ in (2.53), then using the result and (2.68) in the above equation,

we get

P (X, Y )ξ =

(
(γ2 − ρ)− 2λ

(n− 1)(2α + nβ)

)
[η(Y )X − η(X)Y ]. (2.92)

Using (2.55) and (2.67) in (2.92), we obtain

P (X, Y )ξ = 0, (2.93)

which results to the following:

Proposition 2.5. An (LCS)n−manifold admitting a Ricci-Yamabe soliton is

ξ−projectively flat.
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Again, taking Z = ξ in (1.17), we get

H(X, Y )ξ = R(X, Y )ξ − 1

(n− 2)
[g(Y, ξ)QX − g(X, ξ)QY (2.94)

+Ric(Y, ξ)X −Ric(X, ξ)Y ].

Putting Z = ξ in (2.53), then using the result and (2.68) in (2.94), we obtain

H(X, Y )ξ =

(
(γ2 − ρ)− 4λ

(n− 2)(2α + nβ)

)
[η(Y )X − η(X)Y ]. (2.95)

Using (2.55) and (2.67) in the above equation, we get

H(X, Y )ξ = − 2nλ

(n− 1)(n− 2)(2α + nβ)
[η(Y )X − η(X)Y ]. (2.96)

This implies that H(X, Y )ξ = 0 if and only if λ = 0. Hence, we can state the

following:

Proposition 2.6. An (LCS)n−manifold admitting a Ricci-Yamabe soliton is

ξ−conharmonically flat if and only if the soliton is steady.

Now, we know that

R(ξ,X) ·Ric = Ric(R(ξ,X)Y, Z) +Ric(Y,R(ξ,X)Z), (2.97)

for all vector fields X, Y, Z on M . Interchanging Y and Z, then putting Z = ξ in

(2.53), then using the result and (2.68) in (2.97), the above equation becomes

R(ξ,X) ·Ric = 2λ
2α+nβ

(γ2 − ρ)[g(X, Y )η(Z)− g(X,Z)η(Y ) (2.98)

+g(X,Z)η(Y )− g(Y,X)η(Z)],

which implies that R(ξ,X) ·Ric = 0. This leads to the following theorem:

Theorem 2.11. If an (LCS)n−manifold admits a Ricci-Yamabe soliton, then

the manifold is ξ−semi symmetric.
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Let us assume that Ric(ξ,X) ·R = 0, which implies

Ric(X,R(Y, Z)W )ξ −Ric(ξ, R(Y, Z)W )X +Ric(X, Y )R(ξ, Z)W (2.99)

−Ric(ξ, Y )R(X,Z)W +Ric(X,Z)R(Y, ξ)W −Ric(ξ, Z)R(Y,X)W

+Ric(X,W )R(Y, Z)ξ −Ric(ξ,W )R(Y, Z)X = 0,

for any vector fields X, Y, Z,W on M . Taking the inner product with ξ, (2.99)

becomes

−Ric(X,R(Y, Z)W )−Ric(ξ, R(Y, Z)W )η(X) +Ric(X, Y )η(R(ξ, Z)W )(2.100)

−Ric(ξ, Y )η(R(X,Z)W ) +Ric(X,Z)η(R(Y, ξ)W )−Ric(ξ, Z)η(R(Y,X)W )

+Ric(X,W )η(R(Y, Z)ξ)−Ric(ξ,W )η(R(Y, Z)X) = 0.

Taking Z = W = ξ in (2.147) and replacing the expression of Ric from (2.68),

we get

2λ
2α+nβ

[−g(X,R(Y, ξ)ξ)− η(R(Y, ξ)ξ)η(X) + g(X, Y )η(R(ξ, ξ)ξ) (2.101)

−η(Y )η(R(X, ξ)ξ) + η(X)η(R(Y, ξ)ξ) + η(R(Y,X)ξ) + η(X)η(R(Y, ξ)ξ)

+η(R(Y, ξ)X)] = 0.

In view of (2.53) and on simplification, the above equation becomes

4λ

2α + nβ
(γ2 − ρ)[g(X, Y ) + η(X)η(Y )] = 0. (2.102)

Using (2.50), we get

4λ

2α + nβ
(γ2 − ρ)g(ϕX, ϕY ) = 0, (2.103)

for all vector fields X, Y on M , which implies that

4λ

2α + nβ
(γ2 − ρ) = 0. (2.104)
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Using (2.55) and (2.67) in (2.104), we get

8λ2

(n− 1)(2α + nβ)2
= 0. (2.105)

This implies that λ = 0, then using (2.67), τ = 0. From (2.55), τ = 0 implies

(γ2− ρ) = 0 provided n > 1. Again, in view of (2.53), we have R(X, Y )Z = 0 for

all vector fields X, Y, Z on M . Hence, we can state the following theorem:

Theorem 2.12. If an (LCS)n (n > 1) manifold admitting a Ricci-Yamabe soliton

satisfies Ric(ξ,X)·R = 0, then the manifold becomes flat and the soliton is steady.

2.2.3 Examples of (LCS)3 and (LCS)5− manifold satisfying

RYS

In this subsection, we construct examples for the 3-dimensional and 5-dimensional

(LCS)n-manifold in which we verify our results.

Example 2.3. Consider the 3−dimensional manifold M = {(x, y, z) ∈ R3, z ̸=

0}, where (x, y, z) are the standard coordinates in R3.

Let E1, E2, E3 be a linearly independent system of vector fields on M given

by

E1 = y
∂

∂x
, E2 = y

∂

∂y
, E3 = y

∂

∂z
.

Let g be the Lorentzian metric defined by

g(E1, E1) = g(E2, E2) = 1, g(E3, E3)− 1,

g(Ei, Ej) = 0 ∀i ̸= j; i, j = 1, 2, 3.

Let η be the 1−form defined by η(Z) = g(Z, e2) and ϕ be the (1, 1)−tensor field

defined by

ϕE1 = E1, ϕE2 = 0, ϕE3 = E3.
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Then, using the linearity of ϕ and g, we have

η(E2) = −1, ϕ2(Z) = Z + η(Z)E2,

and g(ϕZ, ϕV ) = g(Z, V ) + η(Z)η(V ),

for all Z, V ∈ χ(M). Let ∇ be the Levi-Civita connection with respect to the

Lorentzian metric g. Then, we have

[E1, E2] = −E1, [E2, E3] = E3, [E1, E3] = 0.

Using Koszuls formula and taking ξ = E2, we can easily calculate

∇E1E3 = 0, ∇E2E3 = 0, ∇E3E3 =
1
2
(1 + 2E2),

∇E1E1 =
1
2
(1 + 2E2), ∇E2E1 = 0, ∇E3E1 = 0,

∇E1E2 = −E1, ∇E2E2 = 0, ∇E3E2 = −E3.

Hence, in this case, the data (g, ξ, η, ϕ, γ) is an (LCS)3−structure on M , where

γ = −1. Also, as γ = −1, then ρ = 0 and consequently (M, g, ξ, η, ϕ, γ) is an

(LCS)3−manifold.

Now, from (2.55), we have τ = 6. Let us consider g defines a RYS onM . Putting

the value of τ and γ in (2.63), we have(
2λ− 6β + 2− 4αλ

2α + 3β

)
g(X, Y ) + 2η(X)η(Y ) = 0.

Taking X = Y = ξ, we get λ = 2α+3β which satisfies (2.67). Again, from (2.68),

we have Ric(X, Y ) = 2g(X, Y ) and therefore, this example verifies Theorem 2.8

in 3-dimension.

Example 2.4. Consider the 5−dimensional manifold M = {(x1, x2, x3, x4, x5) ∈

R5 : x5 ̸= 0}, where (x1, x2, x3, x4, x5) are the standard coordinates in R5.
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Let E1, E2, E3, E4, E5 be a linearly independent global frame on M given by

E1 = x5

(
∂

∂x1
+ x2

∂
∂x2

)
, E2 = x5

∂
∂x2
, E3 = x5

(
∂

∂x3
+ ∂

∂x4

)
,

E4 = x5
∂

∂x4
, E5 = (x5)

4 ∂
∂x5
.

Let us define ϕ, ξ, η, g by

ϕE1 = E1, ϕE2 = E2, ϕE3 = E3, ϕE4 = E4, ϕE5 = 0, ξ = E5,

η(X) = g(X,E5) for any X ∈ χ(M), g(Ei, Ei) = 1 ∀i = 1, 2, 3, 4,

and g(E5, E5) = −1, g(Ei, Ej) = 0, ∀i ̸= j, i, j = 1, 2, 3, 4, 5.

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g,

then we have

[E1, E5] = −(x5)
3E1, [E2, E5] = −(x5)

3E2, [E3, E5] = −(x5)
3E3,

[E4, E5] = −(x5)
3E4, [E1, E2] = −(x5)E2,

and all other remaining [Ei, Ej] vanishes. Taking ξ = E5 and using Koszul formula

for the Lorentzian metric g, we obtain

∇E1E5 = −(x5)
3E1, ∇E2E5 = −(x5)

3E2, ∇E3E5 = −(x5)
3E3,

∇E4E5 = −(x5)
3E4, ∇E2E1 = (x5)E2,

∇E1E1 = ∇E3E3 = ∇E4E4 = −1
2
(1− 2(x5)

3E5),

∇E2E2 = −1
2
(1− 2(x5)

3E5 + 2(x5)E1).

Hence, (g, ϕ, ξ, η, γ) is an (LCS)5−structure onM . Consequently,M5(g, ξ, η, ϕ, γ)

is an (LCS)5−manifold with γ = −(x5)
3 ̸= 0, where ρ = 3(x5)

6.

Now, from (2.55), we get τ = −40(x5)
6. Assume g defines a RYS on M and from

(2.63), we obtain(
2λ+ 40(x5)

6β + 2(x5)
3 − 4αλ

2α + 5β

)
g(X, Y ) + 2(x5)

3η(X)η(Y ) = 0.
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Setting X = Y = ξ, we get λ = −4(x5)
6(2α + 5β) which satisfies (2.67). Again,

from (2.68), we have Ric(X, Y ) = −8(x5)
6g(X, Y ) and thus confirms Theorem

2.8 in 5-dimension.

2.2.4 Conformal Ricci-Yamabe soliton on (LCS)n-manifolds

Here, we obtain the expression for the scalar λ on an (LCS)n-manifold ad-

mitting a conformal Ricci-Yamabe soliton, where the notion of the soliton was

introduced by Zhang et al. (2022) while studying a perfect fluid spacetime. The

soliton is given by

LV g + 2αRic =

[
2λ− βτ −

(
p+

2

n

)]
g, (2.106)

where p is a conformal pressure.

Taking V = ξ in (2.106), we get

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αRic(X, Y ) =

[
2λ− βτ −

(
p+

2

n

)]
g(X, Y ),

(2.107)

for all X, Y . Now, using (2.47), (2.48) and (2.50) in the above equation and on

simplification, we obtain

Ric(X, Y ) =
1

α

[
λ− βτ

2
−
(
p

2
+

1

n

)
− γ

]
g(X, Y )− γ

α
η(X)η(Y ), α ̸= 0.

(2.108)

Now, contracting (2.108), we have

λ =
p

2
+

(2α + nβ)

2n
τ +

(n− 1)γ + 1

n
. (2.109)

Thus, we can state the following:

Theorem 2.13. If an (LCS)n-manifold admits a conformal Ricci-Yamabe soli-

ton, then the manifold becomes η-Einstein and the scalar λ is given by λ =

p
2
+ (2α+nβ)

2n
τ + (n−1)γ+1

n
provided α ̸= 0.
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2.2.5 η−Ricci-Yamabe Soliton (η−RYS) on a conformally

flat (LCS)n (n ≥ 4) manifold

Here, we study a conformally flat (LCS)n (n ≥ 4) manifold which admits

η−Ricci-Yamabe soliton.

Lemma 2.5. If a conformally flat (LCS)n (n ≥ 4) manifold admits a η−RYS,

then

α(a− b) + λ− βτ

2
− µ = 0.

Proof. From (1.72), we have

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2αRic(X, Y ) + (2λ− βτ)g(X, Y ) (2.110)

+2µη(X)η(Y ) = 0.

Substituting (2.58) in the foregoing equation, we get

g(∇Xξ, Y ) + g(X,∇Y ξ) (2.111)

+2
[(
λ− βτ

2
+ aα

)
g(X, Y ) + (bα + µ)η(X)η(Y )

]
= 0.

Putting X = Y = ξ in (2.111), we get

g(∇ξξ, ξ) = α(a− b) + λ− βτ

2
− µ. (2.112)

Using (2.52), g(∇ξξ, ξ) = 0. Then,

α(a− b) + λ− βτ

2
− µ = 0. (2.113)

Hence, we get the result.

Remark 2.3. For a particular case such that α = 1 and β = 0 in the above

Lemma 2.5, the relation becomes a − b + λ − µ = 0. This result is obtained by

Hui and Chakraborty (2016).
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Theorem 2.14. If ξ is a torse forming vector field on a conformally flat (LCS)n−

manifold admitting η−RYS, then λ = βτ
2
− aα− 1, η is closed and

b = a− (n− 1) and µ = α(n− 1) + λ− βτ

2
.

Proof. Let ξ be a torse forming vector field on a conformally flat (LCS)n−manifold

which admits η−RYS. Then, taking inner product with ξ in (2.61), we get

fη(X) = ν(X). (2.114)

In view of the above relation, (2.61) becomes

∇Xξ = f [X + η(X)ξ]. (2.115)

Using (2.115) in (2.111) and in view of Lemma 2.5, we get(
f + λ− βτ

2
+ aα

)
[g(X, Y ) + η(X)η(Y )] = 0, (2.116)

for all vector fields X and Y and hence it follows that

f = −
(
λ− βτ

2
+ aα

)
. (2.117)

Using the fact that f = 1 from Remark 2.2 in (2.117), we get

λ =
βτ

2
− aα− 1. (2.118)

Now, using (2.117) in (2.115), we get

∇Xξ = −
(
λ− βτ

2
+ aα

)
[X + η(X)ξ], (2.119)

which means that ∇Xξ is collinear to ϕ2X for all X and hence we get dη = 0,

i.e., η is closed. From (1.19), we know that

R(X, Y )ξ = ∇X∇Y ξ −∇Y∇Xξ −∇[X,Y ]ξ. (2.120)
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In view of (2.119), (2.120) yields

R(X, Y )ξ =

(
λ− βτ

2
+ aα

)2

[η(Y )X − η(X)Y ]. (2.121)

Again, in view of (2.53), (2.54), (2.118) and (2.121), we get

Ric(X, ξ) = (n− 1)η(X). (2.122)

Comparing (2.122) with (2.59), we obtain

b = a− (n− 1), (2.123)

and µ = α(n− 1) + λ− βτ

2
. (2.124)

Hence, we get the theorem.

The following result follows immediately from Theorem 2.14

Corollary 2.6. If ξ is a torse forming vector field on a conformally flat (LCS)n

(n ≥ 4) manifold admitting η−RYS, then the soliton is expanding, steady and

shrinking according as βτ < 2(aα + 1), βτ = 2(aα + 1) and βτ > 2(aα + 1)

respectively.

Again, as a consequence of Theorem 2.14, in particular, if µ = 0, then we

obtain λ = α(b− a) + βτ
2

which results in the following corollary:

Corollary 2.7. If ξ is a torse forming vector field on a conformally flat (LCS)n

(n ≥ 4) manifold admitting Ricci-Yamabe soliton with α ̸= 0, then the soliton is

shrinking, steady and expanding according as βτ > 2α(a − b), βτ = 2α(a − b),

and βτ < 2α(a− b) respectively.
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2.3 Characterization of almost ∗-Ricci-Yamabe

solitons

Recently, Dwivedi and Patra (2022) introduced the notion of almost ∗-Ricci-

Bourguinon soliton and studied its geometric characterization on Sasakian man-

ifold. One of the most interesting geometric property for a soliton which repre-

sents a metric of a manifold is its isometry, may it be spheres or hyperbolic space.

Obata (1962) has shown that “In order for a complete Riemannian manifold of

dimension n ≥ 2 to admit a non-constant function ϕ with ∇Xdϕ = −c2ϕX for

any vector X, it is necessary and sufficient that the manifold be isometric with

a sphere S(c) of radius 1/c in the (n + 1)-Euclidean space. ” Deshmukh (2019)

obtained certain conditions and bounds for an almost Ricci soliton to be iso-

metric to spheres. Many other geometers also obtained conditions under which

the almost Ricci-Bourguinon soliton, almost ∗-Ricci-Bourguinon soliton, almost

Ricci-Yamabe soliton are isometric to spheres (see for further details: Ghosh and

Patra, 2018; Dwivedi, 2021; Dwivedi and Patra, 2022). Inspired from these men-

tioned works, we pondered if we assume a complete Sasakian manifold and define

its metric by gradient almost ∗-Ricci-Yamabe soliton and almost ∗-Ricci-Yamabe

soliton, would it still be isometric to the unit sphere? And if it does, then what

are the conditions it need to satisfy?

To answer the questions that we asked, we introduce the notion of almost

∗−Ricci-Yamabe soliton as

LUg + 2αRic∗ = (2λ− βτ ∗)g, (2.125)

where λ is a smooth function, α, β ∈ R, Ric∗ is the Ricci curvature tensor and

τ ∗, the ∗−scalar curvature. If U = ∇f , where ∇ denotes the gradient in (2.125),

Z. Chhakchhuak and J.P. Singh (2024). Characterization of almost ∗-Ricci-Yamabe solitons
isometric to a unit sphere, Novi Sad J. Math. https://doi.org/10.30755/NSJOM.15574
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then (2.125) reduces to gradient almost ∗−Ricci-Yamabe soliton as

∇2f + αRic∗ = (λ− βτ ∗

2
)g, (2.126)

where ∇2f = Hess f is the Hessian of a smooth function f .

2.3.1 Preliminaries

In this subsection, we give some basic results which will be useful for proving

our results.

A contact manifold is a (2n + 1) dimensional which admits a contact 1-form

η satisfying η ∧ (dη)n ̸= 0. Therefore, for a contact structure, there exists a

characteristic vector field ξ satisfying dη(ξ, ·) = 0 and η(ξ) = 1. Polarizing dη on

the contact sub-bundle defined by η = 0 by D gives a (1, 1)−tensor field ϕ and a

Riemannian metric g such that the following relations hold:

ϕ2X = −X + η(X)ξ, η = g(X1, ξ), (2.127)

dη(X, Y ) = g(X,ϕY Y. (2.128)

This structure is called a contact metric structure and the manifold equipped

with such structure is called a contact metric manifold M of dimension (2n+ 1)

with an associated metric g. We know that from the foregoing equations

η ◦ ϕ = 0, ϕ(ξ) = 0, and rank(ϕ) = 2n. (2.129)

The Riemannian curvature tensor R of g is given by the formula

R(X, Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z, for all X, Y, Z ∈ χ(M), (2.130)

where ∇ and χ(M) are the Levi-Civita connection of g and the Lie algebra of

vector fields on the manifold respectively. The Ricci operator Q is a (1, 1)−tensor
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field defined by

g(QX, Y ) = Ric(X, Y ), X, Y ∈ χ(M),

and the scalar curvature g and the gradient of the scalar curvature τ are respec-

tively the smooth function defined by τ = tr Q and

1

2
g(X,∇τ) = (div Q)(X), X ∈ χ(M). (2.131)

We call such manifold a Sasakian manifold if any of the following three equivalent

conditions hold (Blair, 2002; Boyer and Galicki, 2007):

1. The metric cone (C(M), ḡ) = (R+ ×M,dr2 ⊕ τ 2g) is Kähler.

2. The Riemann curvature tensor R of g satisfies the identity

R(X, Y )ξ = η(Y )X − η(X)Y, X, Y ∈ χ(M). (2.132)

3. The structural tensor field ϕ satisfies the identity

(∇Xϕ)Y = g(X, Y )ξ − η(Y )X, X, Y ∈ χ(M). (2.133)

We know that M is a K−contact manifold if ξ is Killing. Also, A Sasakian

manifold is a K− contact manifold but a K−contact manifold is not Sasakian

for dim ̸= 3. The following relations are valid on a Sasakian manifold (Blair,

2002):

∇Xξ = −ϕX, ∇ξξ = 0, QX = 2nX, X ∈ χ(M). (2.134)

Further, setting X = ξ on the last term of the above equation and then taking

covariant derivative along X ∈ χ(M), we get

(∇XQ)ξ = QϕX − 2nϕX. (2.135)

A contact metric manifold is said to be η−Einstein if

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ), X, Y ∈ χ(M), (2.136)
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where a, b are smooth functions on M . However, by Okumura (Okumura, 1962),

if the manifold is a K−contact manifold with dim > 3, then a, b becomes con-

stants.

From the geometric point of view, preserving the structure upon transforma-

tion is important. Therefore, such preservation of a K−contact and Sasakian

structures can be obtained by a D−homothetic deformation which is described

as

η̄ = νη, ξ̄ =
1

ν
ξ, ϕ̄ = ϕ, ḡ = νg + ν(ν − 1)η ⊗ η, (2.137)

where ν ∈ R+. Now, we recall the following for later use:

Definition 2.2 (Ghosh and Patra, 2018). A K-contact η-Einstein manifold with

a = −2 is D-homothetically fixed.

Following Tanno (Tanno, 1963), we define an infinitesimal contact transfor-

mation as

Definition 2.3. A potential vector field U is infinitesimal contact transforma-

tion on an almost contact metric manifold if LUη = ψη for some function ψ. In

particular, if LUη = 0, then U is said to be strict infinitesimal contact transfor-

mation. Moreover, U is called an infinitesimal automorphism if it leaves all the

structure tensors invariant.

Lemma 2.6 (Ghosh and Sharma, 2021). Let M2n+1(ϕ, ξ, η, g) be a Sasakian

manifold and {Ei}1≤i≤2n+1 be a local orthonormal frame on M . Then, for Y ∈

χ(M), we have

∑
i

g((∇ϕYQ)ϕEi, Ei) = 0,
∑
i

g((∇ϕEi
Q)ϕY,Ei) =

1

2
X(τ).

Lemma 2.7 (Dwivedi and Patra, 2022). LetM2n+1(ϕ, ξ, η, g) be a Sasakian man-

ifold and f be a smooth function on M . If {Ei}1≤i≤2n+1 is a local orthonormal
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frame on M , then for Y ∈ χ(M), we have

∑
i

g(Y,∇ϕEi
∇f)g(ξ, Ei) = 0,

∑
i

g(ξ,∇Ei
∇f)g(ϕY,Ei) = g(ϕY,∇ξ∇f),

∑
i

g(ϕY,∇Ei
∇f)g(ξ, Ei) = g(ξ,∇ϕY∇f),

∑
i

g(ξ, R(Ei, Y )∇f)g(ξ, Ei) = Y (f)− η(∇f)η(Y ).

Also, we recall the expression of ∗−Ricci tensor on a Sasakian manifold by

the lemma:

Lemma 2.8 (Ghosh and Patra, 2018). The expression of ∗−Ricci tensor Ric∗

on a Sasakian manifold M2n+1(ϕ, ξ, η, g) is

Ric∗(X, Y ) = Ric(X, Y )− (2n− 1)g(X, Y )− η(X)η(Y ), X, Y ∈ χ(M). (2.138)

As a direct consequence of the above lemma, we have the following:

Corollary 2.8. The ∗-scalar curvature τ ∗ on a Sasakian manifoldM2n+1 (ϕ, ξ, η, g)

is given by τ ∗ = τ − 4n2.

2.3.2 Main Results

In this subsection, we will prove our main results. All the vector fields we

considered here are on the Sasakian manifold M .

First of all, let us make use of (2.138) in (2.125), we get

(LUg)(X, Y ) + 2αRic(X, Y ) =(2λ− βτ ∗ + 2α(2n− 1))g(X, Y )

+ 2αη(X)η(Y ). (2.139)

Taking Lie derivative of R(X, ξ)ξ = X − η(X)ξ along U gives

(LUR)(X, ξ)ξ+R(X, ξ)LUξ+g(X,LUξ)ξ+(LUg)(X, ξ)ξ+η(LUξ)X = 0. (2.140)
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Using the fact that Qξ = 2nξ and (2.139), we get

(LUg)(X, ξ) = (2λ− βτ ∗)η(X). (2.141)

Again, taking Lie derivative of η(X) = g(X, ξ) and g(ξ, ξ) = 1 along U respec-

tively results in

(LUη)X − g(X,LUξ) = (2λ− βτ ∗)η(X), (2.142)

and

η(LUξ) = −1

2
(LUg)(ξ, ξ). (2.143)

From (2.141), we get

η(LUξ) = −
(
λ− βτ ∗

2

)
. (2.144)

Again, from (2.142), we obtain

(LUη)ξ =

(
λ− βτ ∗

2

)
. (2.145)

Making use of these foregoing equations in (2.140) results in the following lemma.

Lemma 2.9. If a Sasakian metric g represents an almost ∗−RYS with α ̸= 0,

then the relation

(LUR)(X, ξ)ξ = (2Λ− βτ ∗)(X − η(X)ξ), X ∈ χ(M),

holds.

Now, using Lemma 2.8, we can write (2.126) as

∇X∇f + αQX =

(
λ− βτ ∗

2
+ α(2n− 1)

)
X + αη(X)ξ. (2.146)

Applying covariant derivative in

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (2.147)

68



Chapter 2

to obtain the curvature tensor expression

R(X,Z)∇f = ∇X∇Z∇f −∇Z∇X∇f −∇[X,Z]∇f

= X

(
λ− βτ ∗

2

)
Z − αη(Z)ϕX + 2αg(X,ϕZ)ξ

− Z

(
λ− βτ ∗

2

)
X − α(∇XQ)Z + α(∇ZQ)X + αη(X)ϕZ.

Taking inner product with respect to the vector field Y in the above equation,

we obtain

g(R(X,Z)∇f, Y ) = X

(
λ− βτ ∗

2

)
g(Y, Z)− αη(Z)g(Y, ϕX)

+ 2αg(X,ϕZ)η(Y )− Z

(
λ− βτ ∗

2

)
g(X, Y )

− αg((∇XQ)Z, Y ) + αg((∇ZQ)X, Y )

+ αη(X)g(Y, ϕZ). (2.148)

Since Q and ϕ commute on a Sasakian manifold, we have (see Lemma 2.1 of

(Ghosh and Patra, 2018))

∇ξQ = Qϕ− ϕQ and ∇ξQ = 0. (2.149)

Also, utilizing the symmetric and anti-symmetric properties of Q and ϕ respec-

tively and thus setting Y = Z = ξ in (2.148) and using (2.135), (2.149) and the

fact that ϕ(ξ) = 0, we obtain

X

(
λ− βτ ∗

2
+ f

)
= ξ

(
λ− βτ ∗

2
+ f

)
η(X). (2.150)

Putting ζ = λ− βτ∗

2
+ f , (2.150) becomes

X(ζ) = ξ(ζ)η(X). (2.151)

Now, taking covariant derivative of (2.151) along Y ∈ χ(M) and using (2.134)
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gives

g(∇Y∇ζ,X) = Y (ξ(ζ))η(X) + ξ(ζ)g(ϕX, Y ). (2.152)

Ustilizing (2.152) in the symmetric property of Hessζ , we get

2ξ(ζ)g(ϕX, Y ) = X(ξ(ζ))η(Y )− Y (ξ(ζ))η(X).

Hence, we choose X, Y ⊥ ξ to get ξ(ζ) = 0 on the manifold as dη is non-zero on

the manifold. This further implies that ∇ζ = 0 on M . Thus, we conclude that

ζ = λ− βτ∗

2
+ f is constant on M . On the contrary, replacing X by ξ in (2.148)

and using (2.149) and (2.149) results in

g(R(ξ, Z)∇f, Y ) = g(QϕZ, Y )− (2n− 1)g(ϕZ, Y )

+ ξ

(
λ− βτ ∗

2

)
g(Y, Z)− Z

(
λ− βτ ∗

2

)
η(Y ). (2.153)

Also, the relation

R(ξ, Z)∇f = Z(f)ξ − ξ(f)Z, (2.154)

follows directly from (2.132). Substituting the above equation in (2.153), we

obtain

g(QϕZ, Y )− (2n− 1)g(ϕZ, Y ) = Z(ζ)η(Y )− ξ(ζ)g(Y, Z). (2.155)

Since ζ is constant, (2.155) yields QϕZ = (2n−1)ϕZ. Then, setting Z = ϕZ and

using (2.127), (2.134), we obtain

Ric(Y, Z) = (2n− 1)g(Y, Z) + η(Y )η(Z), Y, Z ∈ χ(M). (2.156)

Hence, M becomes η−Einstein manifold. Further, suppose that M is complete,

then (2.156) shows that M is compact and positive Sasakian. Again, plugging in

(2.156) into (2.146) yields

∇X∇f =

(
λ− βτ ∗

2

)
X, X ∈ χ(M). (2.157)
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As ζ =
(
λ− βτ∗

2
+ f

)
is a constant, the foregoing expression can be written as

∇XDγ = −γX, (2.158)

where γ = λ − βτ∗

2
and λ is a non-constant smooth function on the manifold.

Therefore, by invoking Obata’s theorem (Obata, 1962) to our results, we conclude

with the following theorem.

Theorem 2.15. A complete Sasakian manifold admitting a gradient almost ∗-

Ricci-Yamabe soliton as its metric is ∗-Ricci flat, compact positive-Sasakian and

isometric to the unit sphere S2n+1 provided α ̸= 0.

By looking at the above theorem, a natural question arise as to whether the

soliton would still behave as such without considering the gradient vector field of

a smooth function f or not. Before giving answer to this logical assumption, let

us deduce some propositions which we will use later in the proofs.

Proposition 2.7. For a Sasakian metric g admitting almost ∗−RYS with α ̸= 0,

the following formula holds:

(LU∇)(X, ξ) = 2α(2n− 1)ϕX − 2αϕQX +X

(
λ− βτ ∗

2

)
ξ

+ ξ

(
λ− βτ ∗

2

)
X − η(X)∇

(
λ− βτ ∗

2

)
.

Proof. Taking covariant derivative of (2.139) along an arbitrary Z ∈ χ(M) and

using (2.134), we get

(∇ZLUg)(X, Y ) + 2α(∇ZRic)(X, Y ) = Z(2λ− βτ ∗)g(X, Y )

− 2α[η(X)g(Y, ϕZ) + η(Y )g(X,ϕZ)]. (2.159)

Now, we recall the formula given by Yano (1970)

(LU∇Zg −∇ZLUg −∇[U,Z]g)(X, Y ) = −g((LU∇)(Z,X), Y )

− g((LU∇)(Z, Y ), X), (2.160)
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for all X, Y, Z ∈ χ(M). Since g is parallel, inserting (2.159) into (2.160), we

obtain

g((LU∇)(Z,X), Y ) + g((LU∇)(Z, Y ), X) + 2α(∇ZRic)(X, Y )

= 2Z

(
λ− βτ ∗

2

)
g(X, Y )− 2α[η(X)g(Y, ϕZ)

+ η(Y )g(X,ϕZ)]. (2.161)

Interchanging cyclicallyX, Y, Z in the foregoing equation and using the symmetry

(LU∇)(X, Y ) = (LU∇)(Y,X) results in

g((LU∇)(X, Y ), Z) = α[(∇ZRic)(X, Y )− (∇XRic)(Y, Z)

− (∇YRic)(Z,X)] +X

(
λ− βτ ∗

2

)
g(Y, Z) + Y

(
λ− βτ ∗

2

)
g(X,Z)

− Z

(
λ− βτ ∗

2

)
g(X, Y )− 2α[η(X)g(ϕY, Z) + η(Y )g(ϕX,Z)]. (2.162)

Finally, setting Y = ξ in (2.162) and utilizing (2.135) and (2.149), (2.149) com-

pletes the proof.

Proposition 2.8. For a Sasakian metric g admitting almost ∗−RYS, the formula

g

(
ξ,∇X∇

(
λ− βτ

2

))
ξ − η(X)∇ξ∇

(
λ− βτ

2

)
= 4αQX

− 2

(
λ− βτ ∗

2
+ 2α(2n− 1)

)
X

+ 2

(
λ− βτ ∗

2
− 2α

)
η(X)ξ + 2(ϕX)

(
λ− βτ

2

)
ξ

−∇X∇
(
λ− βτ

2

)
,

is valid provided ξ leaves λ invariant and α ̸= 0.

Proof. We know that ξ is Killing on a Sasakian manifold, this implies LξRic = 0,

from which we obtain ξ(τ) = 0. Also, from Corollary 2.8, we have τ ∗ = τ − 4n2.

This further implies ξ(τ ∗) = 0 and X
(
λ− βτ∗

2

)
= X

(
λ− βτ

2

)
due to the fact
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that ξ(λ) = 0. Thus, Proposition 2.7 reduces to

(LU∇)(X, ξ) = 2α(2n− 1)ϕX − 2αϕQX

+X

(
λ− βτ

2

)
ξ − η(X)∇

(
λ− βτ

2

)
, (2.163)

where X ∈ χ(M). Setting X = ξ in (2.163) and using (2.156) results in

(LU∇)(ξ, ξ) = −∇
(
λ− βτ

2

)
. (2.164)

Taking the covariant derivative along X in (2.164) and using (2.134) yields

(∇XLU∇)(ξ, ξ) = 4αQX − 4α(2n− 1)X − 4αη(X)ξ

+ 2(ϕX)

(
λ− βτ

2

)
ξ −∇X∇

(
λ− βτ

2

)
. (2.165)

On the other hand, differentiating (2.163) along ξ gives

(∇ξLU∇)(X, ξ) = g

(
X,∇ξ∇

(
λ− βτ

2

))
ξ − η(X)∇ξ∇

(
λ− βτ

2

)
, (2.166)

where we used ∇ξQ = ∇ξξ = ∇ξϕ = 0. Now, from the commutation formula by

Yano (Yano, 1970):

(LUR)(X, Y )Z = (∇XLU∇)(Y, Z)− (∇YLU∇)(X,Z). (2.167)

Finally, setting Y = Z = ξ in the above expression and applying Lemma 2.9,

(2.165) and (2.166) thus completes the proof.

Proposition 2.9. For a Sasakian metric g representing almost ∗−RYS, the for-

mula

Ric

(
Y,∇

(
λ− βτ

2

))
= (4n− 1)Y

(
λ− βτ

2

)
+ 4αg

(
ϕY,∇ξ∇

(
λ− βτ

2

))
+ η(Y )div

(
∇ξ∇

(
λ− βτ

2

))
− g

(
ξ,∇Y∇ξ∇

(
λ− βτ

2

))
− 2αY (τ),
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holds true provided ξ(λ) = 0 and α ̸= 0.

Proof. By hypothesis, ξ(λ) = 0 and since ξ(τ) = 0, this implies that ξ
(
λ− βτ

2

)
=

0. Therefore,

(ϕX)

(
λ− βτ

2

)
= g

(
ξ,∇X∇

(
λ− βτ

2

))
.

Thus, Proposition 2.8 reduces to

∇X∇
(
λ− βτ

2

)
= 4αQX − 2

(
λ− βτ ∗

2
+ 2α(2n− 1)

)
X

+ 2

(
λ− βτ ∗

2
− 2α

)
η(X)ξ + g

(
ξ,∇X∇

(
λ− βτ

2

))
ξ

+ η(X)∇ξ∇
(
λ− βτ

2

)
. (2.168)

Taking covariant derivative of (2.168) along Y , we get

∇Y∇X∇
(
λ− βτ

2

)
= g

(
ξ,∇Y∇X∇

(
λ− βτ

2

))
ξ

− g

(
ϕY,∇X∇

(
λ− βτ

2

))
ξ

− g

(
ξ,∇X∇

(
λ− βτ

2

))
ϕY

+ η(X)∇Y∇ξ∇
(
λ− βτ

2

)
− g(X,ϕY )∇ξ∇

(
λ− βτ

2

)
+ 4α(∇YQ)X − 2Y

(
λ− βτ ∗

2

)
X

2Y

(
λ− βτ ∗

2

)
η(X)ξ − 2

(
λ− βτ ∗

2
− 2α

)
g(X,ϕY )ξ

− 2

(
λ− βτ ∗

2
− 2α

)
η(X)ϕY.

Utilizing the symmetry of Hess, anti-symmetric property of ϕ, (2.168) and the

foregoing equation in (2.130), we get

R(X, Y )∇
(
λ− βτ

2

)
= ∇X∇Y∇

(
λ− βτ

2

)
−∇Y∇X∇

(
λ− βτ

2

)
−∇[X,Y ]∇

(
λ− βτ

2

)
.

Now, contracting the obtained results over X after a few steps of calculation of
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the foregoing expression and making use of the fact that Trϕ = 0 = ϕ(ξ) Lemma

2.7, the required result is obtained.

Now, we recall the commutation formula (Yano, 1970)

LYLXg − LXLY g = L[Y,X]g, (2.169)

where X, Y ∈ χ(M). Since ξ is Killing, we have Lξg = LξRic = 0. Utilizing

(2.139) in (2.169), we get

L[U,ξ]g = −2ξ(λ)g (2.170)

where we used ξ(τ ∗) = 0 on M . Thus, the vector field [U, ξ] is conformal and

thus results in the following two cases:

Case I: [U, ξ] is homothetic.

Case II: [U, ξ] is non-homothetic.

Proceeding the calculation as in Theorem 1.4 of (Dwivedi and Patra, 2022), we

can conclude that Case I cannot happen as it results in a contradiction of λ

being a constant regardless of the fact that it is non-constant. Thus, invoking

Okumura’s theorem in Case II yields that the manifold is isometric to the unit

sphere S2n+1. Hence, we can state the following theorem.

Theorem 2.16. A complete Sasakian manifold admitting almost ∗−RYS of dim >

3 with λ ̸= constant is isometric to the unit sphere S2n+1 provided α ̸= 0.

Remark 2.4. For a particular value of α = 1, β = −2ρ, the above theorem

reduces to Theorem 1.4 of (Dwivedi and Patra, 2021).

Suppose that the vector field U is parallel to the Reeb vector field ξ, this

means that U = σξ, where σ is some smooth function on M . Then from (2.134),

we get

(LUg)(X, Y ) = X(σ)η(Y ) + Y (σ)η(X). (2.171)
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Using the antisymmetry of ϕ, (2.139) implies

X(σ)η(Y ) + Y (σ)η(X) + 2αRic(X, Y ) = [2λ− βτ ∗ + 2α(2n− 1)]g(X, Y )

+ 2αη(X)η(Y ). (2.172)

Putting X = Y = ξ in (2.172) and using (2.134), we get ξ(σ) = λ− βτ∗

2
. Similarly,

setting Y = ξ in (2.172) yields

X(σ) = ξ(σ)η(X) (2.173)

Taking the covariant differentiation of (2.173) along Y ∈ χ(M) and using (2.134),

we get

g(∇Y∇σ,X) = Y (ξ(σ))η(X) + ξ(σ)g(ϕX, Y ).

Using the symmetric property of Hessσ, it follows that

X(ξ(σ))η(Y )− Y (ξ(σ))η(X) = 2ξ(σ)g(ϕX, Y ),

which further gives

ξ(σ)dη(X, Y ) = 0, ∀ X, Y ⊥ ξ.

Now, since dη is non-zero, we get ξ(σ) = 0 and hence ∇σ = 0. This implies σ

is constant and thus U is Killing. Further, 2λ− βτ ∗ = 0 which leads to the fact

that

Ric(X, Y ) = (2n− 1)g(X, Y ) + η(X)η(Y ).

Hence, M is ∗−Ricci flat and ∗−scalar curvature τ ∗ = 0. Moreover, τ = 4n2 and

λ = 0. Therefore, we can conclude the results with the following theorem.

Theorem 2.17. If U is parallel to the characteristic vector field ξ on a Sasakian

manifold M admitting almost ∗−RYS with α ̸= 0, then U is Killing and ∗−Ricci

flat with constant scalar curvature 4n2. Moreover, the soliton is steady for any σ.

Now, let us consider that U is an infinitesimal contact transformation on M .
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Thus, setting Y = ξ in (2.139), we get

(LUg)(X, ξ) = (2λ− βτ ∗)η(X). (2.174)

Then, from η(ξ) = 1, we obtain by taking Lie derivative along U

(LUη)(ξ) = −η(LUξ) = λ− βτ ∗

2
,

and from Definition 2.3, ψ = λ − βτ∗

2
. In view of this and the Lie derivative of

η(X) = g(X, ξ) along U gives

g(LUξ,X) = −
(
λ− βτ ∗

2

)
η(X). (2.175)

Taking exterior derivative of LUη = ψη yields

(LUdη)(X, Y ) = d(LUη)(X, Y )

=
1

2
[X(ψ)η(Y )− Y (ψ)η(X)] + ψdη(X, Y ). (2.176)

Now, Lie derivative of (2.128) along U and using Definition 2.3, (2.139) and

(2.176) yields

2(LUϕ)(X) + 2[2λ− βτ ∗ + 2α(2n− 1)]ϕX = 4ϕQX −X(ψ)ξ

+ η(X)∇ψ. (2.177)

Utilizing ϕξ = 0, we have (LUϕ)ξ = 0 and setting X = ξ in (2.177) results in

∇ψ = ξ(ψ)ξ.

Hence, ψ is constant on M . Thus, utilizing ψ = λ − βτ∗

2
and (2.127) in (2.177),
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we obtain

(LUϕ)(ϕX) = ϕ(LUϕ)(X)

= −2QX +

(
λ− βτ ∗

2
+ 2α(2n− 1)

)
X

−
(
λ− βτ ∗

2
− 2α

)
η(X)ξ, (2.178)

where we used Qϕ = ϕQ. Furthermore, taking Lie derivative of (2.127) yields

(LUϕ)(ϕX) + ϕ(LUϕ)(X) = (LUη)(X)ξ + η(X)LUξ. (2.179)

Combining Definition 2.3, (2.134), (2.178) and (2.179), we get

2αRic =

[
λ− βτ ∗

2
+ 2α(2n− 1)

]
g −

(
λ− βτ ∗

2
− 2α

)
η ⊗ η. (2.180)

Utilizing (2.180) in (2.177) yields LUϕ = 0 which implies that U leaves ϕ invariant.

Taking Lie derivative of the possible volume form ω = η∧(dη)n ̸= 0 along U yields

LUω = (n+ 1)ψω. Invoking the result LUω = (divU)ω implies divU = (n+ 1)ψ

and then integrating it over a compact M where we applied divergence theorem

to get ψ = 0 and thus λ = βτ∗

2
. Hence, (2.180) becomes

Ric = (2n− 1)g + η ⊗ η,

which gives τ = 4n2. Thus, M is ∗−Ricci flat and τ ∗ = 0. Further, V is Killing

and λ = 0. Moreover, from (2.175) and (2.134), U(η) = U(ξ) = 0 which leads to

the following theorem.

Theorem 2.18. If U is an infinitesimal contact transformation on a Sasakian

manifold M admitting almost ∗−RYS with α ̸= 0, then M is ∗−Ricci flat and

τ = 4n2. Moreover, U becomes an infinitesimal automorphism and the soliton is

steady for any values of β.
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Again, recall the formula

∇Y∇XU −∇∇Y XU +R(U, Y )X = (LU∇)(Y,X). (2.181)

Setting X = Y = ξ in the foregoing equation and utilizing Proposition 2.7, we

obtain

∇ξ∇ξU +R(U, ξ)ξ = ξ(2λ− βτ ∗)ξ −∇
(
λ− βτ ∗

2

)
. (2.182)

Suppose that U is a Jacobi field such that

∇ξ∇ξU +R(U, ξ)ξ = 0.

Let γ = λ − βτ∗

2
. Utilizing the above equation into (2.182) yields 2ξ(γ)ξ = ∇γ.

Also,

X(ξ(γ))η(Y )− ξ(γ)g(ϕX, Y ) =
1

2
g(∇X∇γ, Y ).

Making use of the symmetric and anti-symmetric properties of Hessγ and ϕ

respectively, it follows that

ξ(γ)dη(X, Y ) = 0, ∀ X, Y ⊥ ξ.

This implies that ξ(γ) = 0 and consequently, ∇γ = 0 and hence γ = λ − βτ∗

2
is

constant. Thus, we can state the following result.

Theorem 2.19. If U is a Jacobi field along trajectories of ξ on a Sasakian

manifoldM admitting almost ∗−RYS, then the soliton reduces to ∗−RYS provided

α ̸= 0.

Let us now see an example of a Sasakian manifold satisfying gradient almost

∗−RYS.

Example 2.5. From Example 3.1 of (Ghosh and Patra, 2018), we see that
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∗−Ricci tensor on a Sasakian manifold satisfies the equation

Ric∗(X, Y ) = [(n+ 1)c− (n− 1)]g(X, Y ),∀ X, Y ⊥ ξ, (2.183)

where c is a constant ϕ sectional curvature. Again, using Example 4.1 of (Ghosh

and Patra, 2018), we define a vector field U on the unit sphere S2n+1 such that

U = −Dγ+ωξ, where D is the gradient operator on the sphere and ω is constant.

It follows that U is conformal from Obata’s theorem and (2.134). On applying

a D−homothetic deformation to the unit sphere, we obtain a Sasakian structure

on S2n+1 with constant c = 4
a
− 3. Now, choosing a = 2(n+1)

2n+1
, we also observe

that from (2.183) the ∗−Ricci tensor vanishes and thus the Ricci tensor satisfies

(2.156). Hence, this example satisfies Theorem 2.15.

2.4 Conclusion

We have explored the properties and isometries of almost Ricci-Yamabe soli-

tons (ARYS) in Section 2.1. We have established several key results that ad-

vance the understanding of these solitons in the context of Riemannian geometry.

Firstly, we derived the conditions under which a compact gradient almost Ricci-

Yamabe soliton is isometric to a Euclidean sphere Sn(r). This involved demon-

strating the potential function f of a compact gradient almost Ricci-Yamabe

soliton coincides with the Hodge-de Rham potential h. This result is significant

as it ties the geometric structure of the soliton to a well-known and well-studied

geometric form known as the Euclidean sphere, thereby providing a concrete ex-

ample of these abstract structures. Secondly, we examined complete gradient

almost Ricci-Yamabe solitons with non-zero α and a non-trivial conformal vector

field. We showed that these solitons under the condition of non-negative scalar

curvature must be isometric to either Euclidean space En or a Euclidean sphere

Sn. This result not only extends the rigidity results known for Ricci solitons
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but also illustrates the restrictive nature of almost Ricci-Yamabe solitons under

these conditions enhancing our understanding of their geometric properties. Ad-

ditionally, we considered ARYS with solenoidal and torse-forming vector fields

providing a comprehensive analysis of their structure. Through various lemmas

and theorems, we demonstrated the rigidity of these solitons proving that they

admit few deformations under the given conditions. This rigidity is an essential

characteristic as it implies stability and uniqueness of the geometric structures

described by these solitons. We have provided explicit examples to verify the

theoretical results obtained. These examples serve to illustrate the applicability

of the theoretical findings and provide a concrete foundation for further research.

By constructing non-trivial examples, we not only validated our theoretical work

but also opened up new avenues for exploring the practical implications of almost

Ricci-Yamabe solitons in various geometric contexts.

The work carried out in Section 2.2 is an extension of the work done on

(LCS)n-manifolds by Roy et al. (2020). We generalized their results and ob-

tained more general value for the scalar curvature tensor on an (LCS)n-manifold

admitting the Ricci-Yamabe soliton and shown that it is constant. The promi-

nence of this result is that it holds for a larger group of solitons. We have also

verified our result by constructing a 3-dimensional and 5-dimensional (LCS)n-

manifold. The expression for the scalar λ when the manifold admits a conformal

Ricci-Yamabe soliton is also obtained. Moreover, the conditions under which a

conformally flat (LCS)n (n ≥ 4) manifold admitting a torse forming vector field

ξ is expanding, steady and shrinking η-Ricci-Yamabe soliton is obtained. Also,

we give the expression for λ in a conformally flat (LCS)n (n ≥ 4) manifold which

admits a torse forming η-Ricci-Yamabe soliton. Further, it is shown that the

results obtained in (Roy et al., 2020) are particular results.

Throughout the work done in Section 2.3, we introduced and investigated al-

most ∗−Ricci-Yamabe solitons on a Sasakian manifoldM . Following the method
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used by Dwivedi and Patra (2022) and extending their results, we give analytic

answer to the question raised in the beginning of the section and hence we proved

that if a complete Sasakian manifold admits almost ∗-Ricci-Yamabe soliton and

gradient almost ∗-Ricci-Yamabe soliton as its metric, then it is isometric to the

unit sphere S2n+1 under the condition that α is non-zero. Furthermore, we ob-

tained certain conditions for the soliton to become steady. Also, we found that

if the potential vector field U is assumed to be an infinitesimal contact transfor-

mation, it becomes an infinitesimal automorphism. Lastly, we used the example

constructed in (Ghosh and Patra, 2018) to verify our results. However, we have

studied the solitons only on a Sasakian manifold and found the results, further

work of the almost ∗-Ricci-Yamabe solitons on Riemannian manifold can be car-

ried out and is highly suggested.
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Chapter 3

Characterization of Almost

Cosymplectic Manifolds

This chapter comprises of two main sections. Section 3.1 deals with almost

cosymplectic manifolds with almost Ricci-Yamabe solitons as its metric. We take

a conformal Ricci-Yamabe solitons on almost Kenmotsu manifolds in section 3.2.

3.1 Investigations on almost cosymplectic man-

ifolds admitting almost Ricci-Yamabe soli-

tons

The categorization of almost cosymplectic manifolds admitting almost Ricci-

Yamabe solitons is the focus of this section. Almost cosymplectic structures are

a natural generalisation of cosymplectic structures in which the symplectic form

might be degenerate. Because of their importance in both mathematical and

scientific contexts such as the study of generalised complex geometry and super-

symmetric field theories, there has been a great deal of interest in these structures

lately. The main aim of this investigation is to look into the existence and charac-
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teristics of almost Ricci-Yamabe solitons on almost cosymplectic manifolds. We

hope to gain a comprehensive understanding of the underlying geometric struc-

tures and uncover novel insights into the rich interplay between curvature and

soliton dynamics by investigating the interplay between the geometric properties

of almost cosymplectic structures and the solitonic behaviour induced by almost

Ricci-Yamabe solitons.

One of the important notion in the study of mathematical structures is the

concept of isomorphism because it allows us to identify and compare various

things based on their underlying qualities. Understanding the isomorphism be-

tween almost cosymplectic manifolds and particular classes of Lie groups give

vital insights into the nature of these geometric objects and develops linkages

to group-theoretic issues in the world of almost cosymplectic manifolds. The

classification of almost cosymplectic manifolds admitting almost Ricci-Yamabe

solitons not only adds to the theory of solitons and geometric flows but it also

has consequences in other fields of mathematics and theoretical physics.

Now, we derive from equation (1.53) that the scalar curvature τ = 2nκ and

Qξ = 2nκξ using equation (1.51). We can clearly see from equation (1.54), that

κ ≤ 0 and κ = 0 if and only if M is a cosymplectic manifold. As a result, we

will always assume κ < 0 throughout the following discussions. Let us recall the

following lemma:

Lemma 3.1 (Ozturk et al., 2010). On a (κ, µ)-almost cosymplectic manifold with

κ < 0, we have

(∇Xh)Y − (∇Y h)X =κ[η(Y )ϕX − η(X)ϕY − 2g(X,ϕY )ξ]

+ µ[η(X)h′Y − η(Y )h′X], (3.1)
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and

(∇Xh
′)Y − (∇Y h

′)X =κ[η(Y )X − η(X)Y ]

+ µ[η(Y )hX − η(X)hY ]. (3.2)

Also, if µ = 0, we have the following theorem:

Theorem 3.1 (Dacko, 2000). For some κ < 0, an almost cosymplectic (κ, 0)-

manifold is locally isomorphic to a Lie group Gq equipped with the almost cosym-

plectic structure, where q =
√
−κ.

3.1.1 Main Results

In this subsection, we investigate the behaviour of an almost cosymplectic

manifolds while considering the manifold to be compact and belonging to the

(κ, µ)-nullity distributions. Here, we take an almost Ricci-Yamabe solitons as the

metric of the manifold and we obtain the following results.

Theorem 3.2. Given that b ̸= 0, no almost Ricci-Yamabe solitons exist on com-

pact (κ, µ)-almost cosymplectic manifolds with κ < 0.

Proof. For any X, Y ∈ χ(M), we can write equation (1.70) as

LUg(X, Y ) + 2a Ric(X, Y )− (2λ− b τ)g(X, Y ) = 0, (3.3)

which implies

g(∇XU, Y ) + g(X,∇YU) + 2a Ric(X, Y ) + (2λ− b τ)g(X, Y ) = 0. (3.4)

Setting U = ξ in the above equation and employing equations (1.52), (1.53) gives

g(∇Xξ, Y ) + g(X,∇Y ξ) + 2a Ric(X, Y ) + (2Λ− b τ)g(X, Y ) = 0,

−2g(ϕhX, Y ) + 2a[µg(hX, Y ) + 2nκη(X)η(Y )] + (2λ− b τ)g(X, Y ) = 0. (3.5)
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Putting X = Y = ξ in equation (3.5), we get

τ =
4naκ+ 2λ

b
, b ̸= 0. (3.6)

Contracting X and Y in equation (3.5) results in

div U + 2naκ+ 2naκ+ (2n+ 1)λ− (2n+ 1)b

2
τ = 0. (3.7)

Utilizing equation (3.6) yields

div U − 4n2aκ = 0. (3.8)

Integrating equation (3.8) and using divergence theorem, we obtain∫
M

4n2aκ dM = 0, (3.9)

where the manifold M ’s volume form is expressed as dM . Since κ < 0, equation

(3.9) does not hold. This completes the proof.

Theorem 3.3. If a (κ, µ)-almost cosymplectic manifold admits an ARYS with a

potential vector field such that U = dξ, it becomes a RYS and the soliton shrinks.

Proof. Consider that the potential vector field U is pointwise collinear with ξ,

then U = dξ, where d is a smooth function. Then equation (3.4) implies that

(XXd)η(Y )+ (Y d)η(X)− 2dg(ϕhX, Y )+ 2a Ric(X, Y )+ (2λ− b τ)g(X, Y ) = 0.

(3.10)

Replacing X by ϕX and Y by ϕY in equation (3.10) results in

2dg(ϕ2hϕX, Y ) + 2aµg(ϕhϕX, Y ) + (2λ− b τ)g(ϕ2X, Y ) = 0, (3.11)

which further implies

2dϕ2hϕX + 2aµϕ2hX + (2λ− b τ)ϕ2X = 0. (3.12)
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Then, using equation (1.1) and taking inner product with Y , we get

2dg(hϕX, Y )− 2aµg(hX, Y )− (2λ− bτ)g(X, Y ) = 0. (3.13)

Contracting the foregoing expression and using equation (1.51), we obtain

λ = nbκ, (3.14)

which is constant. Moreover, since κ < 0, λ < 0, completing the proof.

Theorem 3.4. A Lie group Gq equipped with the almost cosymplectic structure

where q =
√
−κ is locally isomorphic to a (κ, µ)-almost cosymplectic manifold

admitting a gradient RYS with a ̸= 0. Otherwise, the manifold does not admit a

gradient RYS.

Proof. From the soliton equation, we have

∇2f + a Ric+

(
λ− b τ

2

)
g = 0. (3.15)

Then,

∇XDf + a QX +

(
λ− b τ

2

)
X = 0, (3.16)

where D is the gradient operator. Taking covariant differentiation of the equation

(3.16) along Y implies

∇Y∇XDf + a ∇YQX +

(
λ− b τ

2

)
∇YX − b

2
Y (τ)X = 0. (3.17)

Now, swapping X and Y in the equation (3.17), we have

∇X∇YDf + a ∇XQY +

(
λ− b τ

2

)
∇XY − b

2
X(τ)Y = 0. (3.18)

From equation (3.16), we obtain

∇[X,Y ]Df + a Q[X, Y ] +

(
λ− b τ

2

)
[X, Y ] = 0. (3.19)
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Utilizing the last three equations, we get

R(X, Y )Df =
b

2
{(Y (τ))X − (X(τ))Y } − a{(∇XQ)Y − (∇YQ)X}. (3.20)

Differentiating equation (1.53) along Y results in

(∇YQ)X = µ(∇Y h)X − 2nκ{g(ϕhX, Y )ξ + η(X)ϕhY }. (3.21)

Utilizing equation (3.21) in equation (3.20), we get

R(X, Y )Df =
b

2
{(Y (τ))X − (X(τ))Y } − aµ{(∇Xh)Y − (∇Y h)X}

+ 2naκ{η(Y )ϕhX − η(X)ϕhY }. (3.22)

Invoking Lemma 3.1 in the above expression yields

R(X, Y )Df =
b

2
{(Y (τ))X − (X(τ))Y } − aκµ{η(Y )ϕX − η(X)ϕY

− 2g(X,ϕY )ξ} − aµ2{η(X)h′Y − η(Y )h′X}

+ 2naκ{η(Y )ϕhX − η(X)ϕhY }. (3.23)

Contracting equation (3.23) along X, we obtain

Ric(Y,Df) = 0. (3.24)

Again, from equation (1.53), we have

Ric(X, Y ) = µg(hX, Y ) + 2nκη(X)η(Y ). (3.25)

Replacing X by Df in equation (3.25) and using equation (3.24) results in

µg(Df, hY ) + 2nκ(ξf)η(Y ) = 0. (3.26)

Substituting Y = ξ in the above equation yields

2nκ(ξf) = 0. (3.27)
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Since κ < 0, equation (3.27) implies

ξf = 0. (3.28)

Utilizing the foregoing equation in equation (3.26), we get

µg(Df, hY ) = 0, (3.29)

which implies that either µ = 0 or µ ̸= 0.

Case I: If µ = 0, the manifold becomes N(κ)-almost cosymplectic manifold and

Theorem 3.1 follows.

Case II: If µ = 0, then equation (3.29) implies that g(Df, hY ) = 0. Hence,

g(Df, h2Y ) = 0. Using h2 = κϕ2, we have

κ[Y f − (ξf)η(Y )] = 0

Also, since κ < 0, Y f = 0 implying that f is constant. Hence, using equation

(3.17), we have

Ric(X, Y ) =
1

a

(
λ− b τ

2

)
g(X, Y ), a ̸= 0,

resulting in Einstein manifold, which is a contradiction to equation (3.25). This

completes the proof.

Substituting the values a = 1 and b = −2ρ in equation (3.17), we get

∇XDf +QX = (λ+ ρτ)X,

which is a gradient Ricci-Bourguinon soliton (GRBS) and equation (3.26) be-

comes

Ric(X, Y ) = (λ+ ρτ)g(X, Y ),

which contradict equation (3.25). Hence the corollary follows

Corollary 3.1. A (κ, µ)-almost cosymplectic manifolds does not admit a GRBS.
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Theorem 3.5. If a compact α-almost cosymplectic manifolds admits an ARYS,

then the manifold becomes almost cosymplectic manifold.

Proof. Setting U = ξ in equation (3.4) and using (1.52), we get

2α[g(X, Y )− η(X)η(Y )]− 2g(ϕhX, Y ) + 2a Ric(X, Y )

+ (2λ− b τ)g(X, Y ) = 0.

Contracting X and Y from the above expression yields

(2λ− b τ)(2n+ 1) + 2a τ = −4nα. (3.30)

Again, contracting X and Y from the soliton equation (1.70), we obtain

div U + a τ +

(
λ− b τ

2

)
(2n+ 1) = 0. (3.31)

Utilizing equation (3.30), equation (3.31) becomes

div U = 2nα. (3.32)

Integrating the foregoing equation and invoking the divergence theorem yields∫
M

2nα dM = 0. (3.33)

Hence, α = 0 implying that M is an almost cosymplectic manifold.

Theorem 3.6. If an ARYS’s soliton vector field is pointwise collinear with ξ

on a compact α-almost cosymplectic manifold, then τ = 2λ
(2n+1)b−2a

provided that

a ̸= {0, (2n+1)b
2

}.

Proof. Putting U = dξ in equation (3.4), we get

(Xd)η(Y ) + (Y d)η(X) + 2dα[g(X, Y )− η(X)η(Y )]

− 2dg(ϕhX, Y ) + 2a Ric(X, Y ) + (2λ− b τ)g(X, Y ). (3.34)
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Setting Y = ϕY and X = ξ in equation (3.34), we obtain

g(Dd, ϕY ) = 0, (3.35)

which further implies that Y d = (ξd)η(Y ). Differentiating U = dξ along X and

then taking inner product with Y gives

g(∇XU, Y ) = (Xd)η(Y ) + dα[g(X, Y )− η(X)η(Y )]− dg(ϕhX, Y ). (3.36)

Contracting the preceding equation gives

div U = (ξd) + 2ndα. (3.37)

Integrating equation (3.37) and invoking the divergence theorem yields∫
M

[(ξd) + 2ndα] dM = 0, (3.38)

which implies that ξd = −2ndα. Again, contracting equation (3.34) and using

the value of ξd, we obtain

τ =
2λ

(2n+ 1)b− 2a
, a ̸= {0, (2n+ 1)b

2
}. (3.39)

Hence, the proof.

Theorem 3.7. If a 3-dimensional cosymplectic manifold admits GRYS, then it

is either flat or the scalar curvature is constant, assuming that a ̸= b.

Proof. Setting X = Df in the following equation

Ric(X, Y ) =
τ

2
[g(X, Y )− η(X)η(Y )], (3.40)

and using equation (3.24), we get

τ [Y f − (ξf)η(Y )] = 0, (3.41)

which gives either τ = 0 or τ ̸= 0. If τ = 0, then Ric(X, Y ) = 0 which further
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implies that R(X, Y )Z = 0 resulting in a flat manifold.

Now, suppose that τ ̸= 0, then

Df = (ξf)ξ. (3.42)

Then, ∇XDf = [X(ξf)]ξ. So, from equation (3.16) we have

a Ric(X, Y ) + [X(ξf)]η(Y ) +

(
λ− b τ

2

)
g(X, Y ) = 0. (3.43)

Putting Y = ξ in the foregoing expression, we obtain

X(ξf) = −
(
λ− b τ

2

)
η(X), (3.44)

Substituting the preceding equation into equation (3.43) yields

τ =
2λ

b− a
, a ̸= b. (3.45)

This completes the proof.

3.1.2 Example on 3-dimensional manifold

Consider a 3-dimensional manifold M3 = {(x, y, z) ∈ R3}, where (x, y, z) are

the standard coordinates in R3. Let us choose E1, E2 and E3 to be the three

vector fields in R3 that satisfy

[E1, E2] = E2, [E1, E3] = E3 and [Ei, Ej] = 0 ∀ i, j = 2, 3.

and let g be the Riemannian metric such that

g(Ei, Ej) =


1, i = j,

0, i ̸= j, ∀ i, j = 1, 2, 3.
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Here, we take E1 as the Reeb vector field. Suppose ϕ is the (1, 1)−tensor field

and η be the 1−form defined such that

ϕ(E1) = 0, ϕ(E2) = E3, ϕ(E3) = 2E2,

η(V ) = g(V,E1), for any V ∈ T (M3).

By the linearity of ϕ and g, we have

η(E1) = 1, ϕ2(V ) = −V + η(V )E1, g(ϕV, ϕU) = g(V, U)− η(V )η(U),

for any V, U . The following relations are obtained directly by using Koszul’s

formula:

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0,

∇E2E1 = −E2, ∇E2E2 = E1 −
1

2
, ∇E2E3 = 0,

∇E3E1 = −E3, ∇E3E2 = 0, ∇E3E3 = E1 −
1

2
.

From the above relations, we obtain the components of the curvature tensor R

as follows:

R(E1, E2)E3 = 0, R(E2, E3)E3 = −E2, R(E1, E3)E1 = E3,

R(E1, E3)E3 = −E1 +
1

2
, R(E1, E2)E2 = 0, R(E2, E3)E1 = 0,

R(E2, E3)E2 = E3, R(E1, E3)E2 = 0, R(E1, E2)E1 = −E1 +
1

2
.

From these expressions, we conclude that

R(X, Y )ξ = −[η(Y )X − η(X)Y ],

for any X, Y . ThereforeM3 is a N(−1)-almost cosymplectic manifold. The Ricci

tensor are obtained as below

Ric(E1, E1) = −2, Ric(E2, E2) = 0, Ric(E3, E3) = 0.
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Setting f = z2 and a = 1, λ = −b ∈ R, equation (3.16) is met. As a result,

M specifies a gradient RYS. Furthermore, because the manifold is N(−1)-almost

cosymplectic, Theorem 3.4 is validated.

3.2 On almost Kenmotsu manifolds admitting

conformal Ricci-Yamabe solitons

Wang (2016a, 2016c) proved that a (κ, µ)′ − akm admitting Ricci soliton is

locally isometric to Hn+1(−4)× Rn. Venkatesha and Kumara (2019) proved the

same result for a gradient ρ-Einstein soliton. Also, the result is extended by the

authors in (Dey and Majhi, 2019) for Ricci-Yamabe soliton and for conformal

Ricci soliton. So, a logical question arises as:

Will the above result also holds true if a (2n+1) dimensional (κ, µ)′−akm admits

a conformal Ricci-Yamabe soliton or a conformal gradient Ricci-Yamabe soliton?

In this section, we shall try to give a reasonable answer to this question.

On an almost Kenmotsu manifold, the authors in (Dileo and Pastore, 2009)

defined for any q ∈M and κ, µ ∈ R the (κ, µ)′−nullity distribution as

Nq(κ, µ)
′ = {Z ∈ Tq(M) : R(X, Y )Z = κ[g(Y, Z)X − g(X,Z)Y ]

+ µ[g(Y, Z)h′X − g(X,Z)h′Y ]}. (3.46)

This is called generalized nullity distribution when κ, µ are smooth functions.

Let X ∈ O be the eigenvector of h′ analogous to the eigenvalue γ. Then,

from (1.34) it is obvious that γ2 = −(κ + 1), a constant. Therefore κ ≤ −1 and

γ = ±
√
−κ− 1. We denote [γ]′ and [−γ]′, the corresponding eigenspaces akin to

the non-zero eigenvalues γ and −γ of h′ respectively. It has been proved in (Dileo

and Pastore, 2019) that in a (κ, µ)′ − akm M2n+1 with h′ ̸= 0, κ < −1, µ = −2

J.P. Singh and Z. Chhakchhuak (2024). On almost Kenmotsu manifolds admitting confor-
mal Ricci-Yamabe solitons, Bol. Soc. Paran. Math. (accepted)
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and Spec(h′) = {0, γ,−γ} with 0 as a simple eigenvalue and γ =
√
−κ− 1. Also,

(∇Xh
′)Y = −g(h′X + h′2X, Y )ξ − η(Y )(h′X + h′2X). (3.47)

Further, from Wang and Liu (2016), we have

QX = −2nX + 2n(κ+ 1)η(X)ξ − 2nh′X. (3.48)

From (3.48), the scalar curvature of M2n+1 is 2n(κ− 2n). From (3.46), we have

R(X, Y )ξ = κ[η(Y )X − η(X)Y ] + µ[η(Y )h′X − η(X)h′Y ], (3.49)

where κ, µ ∈ R. Again, from above equation, we get

R(ξ,X)Y = κ[g(X, Y )ξ − η(Y )X] + µ[g(h′X, Y )ξ − η(Y )h′X]. (3.50)

Contracting X in (3.48) yields

Ric(Y, ξ) = 2nκη(Y ). (3.51)

Using (1.30) and (1.33), we have

(∇Xη)Y = g(X, Y )− η(X)η(Y ) + g(h′X, Y ). (3.52)

Dai et al.(2019) defined an infinitesimal contact transformation on M as

Definition 3.1. A potential vector field V is infinitesimal contact transformation

on an almost contact metric manifold if LV η = ζη for some function ζ. In partic-

ular, if LV η = 0, then V is said to be strict infinitesimal contact transformation.

3.2.1 Conformal Ricci-Yamabe Soliton (CRYS) on (κ, µ)′-

almost Kenmotsu manifolds

In this subsection, we study (κ, µ)′ − akm and generalized (κ, µ)′ − akm ad-

mitting a conformal Ricci-Yamabe soliton.
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A Conformal Ricci-Yamabe soliton (CRYS) on an almost Kenmotsu manifolds

with dimension (2n+ 1) can be defined as the data (g, V, λ, α, β) satisfying

LV g + 2αRic =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g, (3.53)

where Ric, LV are the Ricci tensor and Lie derivative along a vector field V

respectively.

Lemma 3.2 (Dey and Majhi, 2019). In a (κ, µ)′ − akm M2n+1 with h′ ̸= 0, we

have

(∇ZRic)(X, Y )− (∇XRic)(Y, Z)− (∇YRic)(X,Z) = −4n(κ+ 2)g(h′X, Y )η(Z).

Lemma 3.3 (Dey and Majhi, 2019). In a (κ, µ)′ − akm M2n+1, (LXh
′)Y = 0

for any X, Y ∈ [γ]′ or X, Y ∈ [−γ]′, where Spec(h′) = {0, γ,−γ}.

Theorem 3.8. A conformal Ricci-Yamabe soliton (CRYS) with α, β > 0 on

a (2n + 1)− dimensional (κ, µ)′ − akm is locally isometric to Hn+1(−4) × Rn,

provided that 2λ − βτ ̸= 4αnκ − (p + 2
2n+1

) or the CRY S is (i) expanding, (ii)

steady or (iii) shrinking, according to whether the conformal pressure p is

(1) p < 2nβ(2n− κ)− 4αnκ− 2
2n+1

,

(2) p = 2nβ(2n− κ)− 4αnκ− 2
2n+1

,

(3) p > 2nβ(2n+1)2+4αn(2n+1)−2
2n+1

.

Proof. From the soliton equation (3.53), we have

(LV g)(X, Y ) + 2αRic(X, Y ) =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g(X, Y ). (3.54)

Taking covariant derivative of (3.54) along any vector field Z yields

(∇ZLV g)(X, Y ) = −2α(∇ZRic)(X, Y ). (3.55)

Using the result of Yano (Yano, 1970), we have

(LV∇Xg−LX∇V g−∇[V,X]g)(Y, Z) = −g((LV∇)(X, Y ), Z)−g((LV∇)(X,Z), Y ).
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Since g is parallel with respect to the Levi-civita connection ∇, then the above

relation becomes

(∇XLV g)(Y, Z) = g((LV∇)(X, Y ), Z) + g((LV∇)(X,Z), Y ). (3.56)

Since LV∇ is symmetric, then from (3.56), we obtain

g((LV∇)(X, Y ), Z) =
1

2
(∇XLV g)(Y, Z) +

1

2
(∇YLV g)(X,Z)−

1

2
(∇ZLV g)(X, Y ).

(3.57)

Utilizing (3.55) in (3.57), we get

g((LV∇)(X, Y ), Z) = α[(∇ZRic)(X, Y )− (∇XRic)(Y, Z)− (∇YRic)(X,Z).

(3.58)

In view of Lemma 3.2, (3.58) can be written as

g((LV∇)(X, Y ), Z) = −4nα(κ+ 2)g(h′X, Y )η(Z),

which implies

(LV∇)(X, Y ) = −4nα(κ+ 2)g(h′X, Y )ξ. (3.59)

Taking Y = ξ in (3.59), we get

(LV∇)(X, ξ) = 0.

From the above expression, we can have ∇Y (LV∇)(X, ξ) = 0, which results in

(∇YLV∇)(X, ξ) + (LV∇)(∇YX, ξ) + (LV∇)(X,∇Y ξ) = 0. (3.60)

Using (LV∇)(X, ξ) = 0, (3.58) and (1.30) in (3.60) we get

(∇YLV∇)(X, ξ) = 4nα(κ+ 2)(g(h′X, Y ) + g(h′2X, Y ))ξ. (3.61)

It is known that (Yano, 1970)

(LVR)(X, Y )Z = (∇XLV∇)(Y, Z)− (∇YLV∇)(X,Z),
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Taking Y = Z = ξ in (3.61) and utilizing the result in the foregoing equation, we

have

(LVR)(X, ξ)ξ = 0. (3.62)

Now, setting Y = ξ in (3.54) and in view of (3.71), we obtain

(LV g)(X, ξ) =

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
η(X). (3.63)

Taking Lie differentiation of g(X, ξ) = η(X) along V and using (3.63) yields

(LV η)X − g(X,LV ξ) =

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
η(X). (3.64)

Putting X = ξ in the foregoing expression, we get

η(LV ξ) =

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
. (3.65)

From (3.49) we have

R(X, ξ)ξ = κ(X − η(X)ξ)− 2h′X. (3.66)

Utilizing (3.64)-(3.66) and (3.49)-(3.50), we get

(LVR)(X, ξ)ξ = κ

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
(X − η(X)ξ)− 2(LV h

′)X

− 2

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
h′X − 2nη(X)h′(LV ξ)

− 2g(h′X,LV ξ)ξ. (3.67)

Equating (3.62) and (3.67) and then taking an inner product with Y , we obtain

κ

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
[g(X, Y )− η(X)η(Y )]− 2g((LV h

′)X, Y )

− 2

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
g(h′X, Y )− 2nη(X)g(h′(LV ξ), Y )

− 2g(h′X,LV ξ)η(Y ) = 0. (3.68)
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Replacing X by ϕX in the foregoing expression, we obtain

κ

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
g(ϕX, Y )− 2g((LV h

′)ϕX, Y )

− 2

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
g(h′ϕX, Y ) = 0. (3.69)

Letting X ∈ [−γ]′ and V ∈ [γ]′, then ϕX ∈ [γ]′. Thus (3.69) yields

(κ− 2γ)

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
g(ϕX, Y )

− 2g((LV h
′)ϕX, Y ) = 0. (3.70)

Since V, ϕX ∈ [γ]′, using Lemma 3.3 we have (LV h
′)ϕX = 0. Therefore (3.70)

becomes

(κ− 2γ)

[
2λ− βτ − 4nακ−

(
p+

2

2n+ 1

)]
g(ϕX, Y ) = 0,

which implies either κ = 2γ or 2λ = βτ + 4αnκ+
(
p+ 2

2n+1

)
.

Case I: If κ = 2γ, then from γ2 = −(κ + 1), we get γ = −1 and thus κ = −2.

Therefore, from Proposition 4.2 of (Dileo and Patore, 2009), we have

R(X1γ , X2γ )X3γ = 0,

and

R(X1γ , X2γ )X3γ = −4[g(X2−γ , X3−γ )X1−γ − g(X1−γ , X3−γ )X2−γ ],

for any X1γ , X2γ , X3γ ∈ [γ]′ and X1−γ , X2−γ , X3−γ ∈ [−γ]′. Also, µ = −2, it

follows from Proposition 4.3 of (Dileo and Pastore, 2009) that κ(X, ξ) = −4 for

anyX ∈ [−γ]′ and κ(X, ξ) = 0 for anyX ∈ [γ]′. Again, we see that κ(X, Y ) = −4

for any X, Y ∈ [−γ]′ and κ(X, Y ) = 0 for any X, Y ∈ [γ]′. As is shown in (Dileo

and Pastore, 2009), the distribution [ξ] ⊕ [γ]′ is integrable with totally geodesic

leaves and the distribution [−γ]′ is integrable with totally umbilical leaves by

H = −(1 − γ)ξ, where H is the mean curvature tensor field for the leaves of
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[−γ]′ immersed in M2n+1. Here, γ = −1, then both the orthogonal distributions

[ξ]⊕ [γ]′ and [−γ]′ are integrable with totally geodesic leaves immersed inM2n+1.

Then we can say that M2n+1 is locally isometric to Hn+1(−4)× Rn.

Case II: Let 2λ = βτ + 4nακ + (p + 2
2n+1

). Since τ = 2n(κ − 2n) in an akm of

dimension 2n+ 1, we get

2λ = 2βn(κ− 2n) + 4αnκ+

(
p+

2

2n+ 1

)
.

Now the CRYS is expanding, steady or shrinking depending on whether λ < 0,

λ = 0 or λ > 0 respectively. Therefore the CRYS is expanding when

p < −4αnκ− 2βn(κ− 2n)− 2

2n+ 1
,

steady when

p = 2βn(2n− κ)− 4αnκ− 2

2n+ 1
,

and shrinking when

p > 2βn(2n− κ)− 4αnκ− 2

2n+ 1
,

the last expression is obtained by taking κ = −1 which completes the proof.

Theorem 3.9. If (g, ξ, λ, α, β) is a CRYS in a generalized (κ, µ)′ − akm M2n+1,

then the manifold is η−Einstein provided 2nα − 1 ̸= 0 and the expression for λ

is given by

λ =
p

2
+

1

2n+ 1
+ (2α + β)nκ− 2n2β. (3.71)

Proof. From the soliton equation (3.53) we have

(Lξg)(X, Y ) + 2αRic(X, Y ) =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g(X, Y ). (3.72)

Using (1.30), we get

(Lξg)(X, Y ) = 2g(X, Y )− 2η(X)η(Y )− 2g(ϕhX, Y ). (3.73)
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Utilizing (3.73) in (3.72), we obtain

2g(X, Y )− 2η(X)η(Y )− 2g(ϕhX, Y )

+ 2αRic(X, Y ) =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g(X, Y ). (3.74)

From (3.48), we get

g(ϕhX, Y ) =
1

2n
Ric(X, Y ) + g(X, Y )− (κ+ 1)η(X)η(Y ). (3.75)

Now, substituting (3.75) in (3.74), we get

Ric(X, Y ) =
n[2λ− 2nβ(κ− 2n)− (p+ 2

2n+1
)]

2nα− 1
g(X, Y )− 2nκ

2nα− 1
η(X)η(Y ),

(3.76)

which implies that the manifold is η−Einstein. Now taking X = Y = ξ in (3.76)

yields (3.71). This completes the proof.

3.2.2 Conformal Gradient Ricci-Yamabe Soliton on (κ, µ)′-

almost Kenmotsu manifolds

From (3.53), we get the conformal gradient Ricci-Yamabe soliton equation by

considering the vector field V to be a gradient of some smooth function ζ on the

manifold as

∇∇ζ + αRic =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g. (3.77)

Lemma 3.4. If (g,Dζ, λ, α, β) is a conformal gradient Ricci-Yamabe soliton

(CGRYS) with α ̸= 0 on a (κ, µ)′ − akm M2n+1, then following relation:

R(X, Y )Dζ = α[2n(κ+ 2)(η(X)h′Y − η(Y )h′X)],

holds. Here, ζ is a smooth function such that V = Dζ, where D is the gradient

operator.
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Proof. From (3.77), we have

∇XDζ =

[
λ− βτ

2
−
(
p

2
+

1

2n+ 1

)]
X − αQX. (3.78)

Covariant derivative of the above relation along Y yields

∇Y∇XDζ =

[
λ− βτ

2
−
(
p

2
+

1

2n+ 1

)]
∇YX − α∇YQX. (3.79)

Interchanging X and Y in the above equation yields

∇X∇YDζ = [λ− βτ

2
− (

p

2
+

1

2n+ 1
)]∇XY − α∇XQY. (3.80)

Again, from (3.78), we get

∇[X,Y ]Dζ =

[
λ− βτ

2
−

(
p

2
+

1

2n+ 1

)]
(∇XY −∇YX)− αQ(∇XY −∇YX).

(3.81)

Utilizing (3.79)-(3.81) in the equation

R(X, Y )Dζ = ∇X∇YDζ −∇Y∇XDζ −∇[X,Y ]Dζ,

results in

R(X, Y )Dζ = α[(∇YQ)X − (∇XQ)Y ]. (3.82)

Now, utilizing (1.30), (3.47), (3.48) and (3.52) we obtain

(∇YQ)X = ∇YX −Q(∇YX)

= 2n(κ+ 1)[g(X, Y )− η(X)η(Y ) + g(h′X, Y )]ξ

+ 2n(κ+ 1)η(X)(Y − η(Y )ξ − ϕhY ) + 2ng(h′Y + h′2Y,X)ξ

+ 2nη(X)(h′Y + h′2Y ). (3.83)

Interchanging X and Y in (3.83) yields the expression for (∇XQ)Y . Then, on

simplification and using (1.34), (3.82) becomes

R(X, Y )Dζ = α[2n(κ+ 2)(η(X)h′Y − η(Y )h′X)],
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which completes the proof.

Theorem 3.10. A (κ, µ)′ − akm M2n+1 with h′ ̸= 0 admitting a conformal

gradient Ricci-Yamabe soliton with α ̸= 0 is locally isometric to Hn+1(−4) × Rn

provided V is not pointwise collinear with the Reeb vector field, otherwise the

manifold does not admit a conformal gradient Ricci-Yamabe soliton.

Proof. Setting X = ξ in Lemma 3.4 and then taking inner product with X yields

g(R(ξ, Y )Dζ,X) = α2n(κ+ 2)g(h′Y,X). (3.84)

Again from (3.50), we have

g(R(ξ, Y )Dζ,X) = −g(R(ξ, Y )X,Dζ)

= −κg(X, Y )(ξζ) + κη(X)(Y ζ)

+ 2g(h′X, Y )(ξζ)− 2η(X)((h′Y )ζ). (3.85)

Equating (3.84) and (3.85) we get

−κg(X, Y )(ξζ) + κη(X)(Y ζ) + 2g(h′X, Y )(ξζ)

− 2η(X)((h′Y )ζ) = 2n(κ+ 2)αg(h′Y,X).

Antisymmetrizing the above relation results in

κη(X)(Y ζ)− κη(Y )(Xζ)− 2η(X)((h′Y )ζ) + 2η(Y )((h′X)ζ) = 0. (3.86)

Putting X = ξ in (3.86) yields

κ(Y ζ)− κ(ξζ)η(Y )− 2((h′Y )ζ) = 0,

which implies

κ[(Dζ)− (ξζ)ξ]− 2h′(Dζ) = 0. (3.87)
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Operating on h′ in the above equation and using (1.34), we get

h′(Dζ) = −2(κ+ 1)

κ
[dζ − (ξζ)ξ]. (3.88)

Utilizing (3.88) in (3.87) yields

(κ+ 2)2[Dζ − (ξζ)ξ] = 0,

which implies either κ = −2 or Dζ = (ξζ)ξ. Let us consider these two cases in

the following:

Case I: For κ = −2, then by the same argument made in Case I of Theorem 3.8,

the manifold M2n+1 is locally isometric to Hn+1(−4)× Rn.

Case II: For V = Dζ = (ξζ)ξ, then V is pointwise collinear with the Reeb vector

field ξ. Then, Differentiating Dζ = (ξζ)ξ covariantly along X and using (1.30),

we obtain

∇XDζ = (X(ξζ))ξ + (ξζ)(X − η(X)ξ − ϕhX). (3.89)

Equating (3.78) and (3.89), we obtain

αQX =

([
λ− βτ

2
−

(
p

2
+

1

2n+ 1

)]
− (ξζ)

)
X+((ξζ)η(X)−X(ξζ))ξ+(ξζ)ϕhX.

(3.90)

Comparing (3.48) and the above equation, we get[
λ− βτ

2
−

(
p

2
+

1

2n+ 1

)]
− ξζ = −2nα, (3.91)

(ξζ)η(X)−X(ξζ) = 2n(κ+ 1)η(X), (3.92)

(ξζ)ϕh = −2nh′. (3.93)

Utilizing (3.93) in (3.91) and (3.92) we get

λ =
βτ

2
+

(
p

2
+

1

2n+ 1

)
+ 4n(1− α), (3.94)
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and

2nη(X) = 2n(κ+ 1)η(X), (3.95)

for any vector field X which implies κ = 0 which is a contradiction as κ ≤ −1.

This completes the proof.

Moreover, if V = Dζ = (ξζ)ξ = dξ, where d = ξζ is a smooth function on the

manifold M2n+1. By (1.30), we have

(Ldξg)(X, Y ) = (Xd)η(Y ) + (Y d)η(X) + 2d[g(X, Y )− η(X)η(Y )− g(ϕhX, Y )].

(3.96)

Utilizing (3.96) in (3.54), we obtain

(Xd)η(Y ) + (Y d)η(X) + 2d[g(X, Y )− η(X)η(Y ) (3.97)

− g(ϕhX, Y )] =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
g(X, Y )− 2αRic(X, Y ).

Setting X = Y = ξ in the foregoing relation and utilizing (3.71) yields

2(ξd) =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
− 4nακ. (3.98)

Again, considering the orthonormal basis of the tangent space {Ej} at each point

of the manifold and setting X = Y = Ej in (3.97) and then summing over j

results as

2(ξd) =

[
2λ− βτ −

(
p+

2

2n+ 1

)]
(2n+ 1)− 2ατ − 4nd. (3.99)

Since α, β, λ, τ, p are all constants, so, from (3.98) and (3.99) d is also a constant.

Therefore, (3.98) results in[
2λ− βτ −

(
p+

2

2n+ 1

)]
= 4nακ. (3.100)

Further, since d is constant, we get LV ξ = 0. Utilizing (3.100) in (3.63) yields

(LV η)X = 0 for any vector field X. Now, substituting LV ξ = 0 and (3.100) in
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(3.68) results in (LV h
′)X = 0 for any vector field X, which implies that V leaves

h′ invariant.

Thus, we can state the following:

Corollary 3.2. On a (κ, µ)′ − akm M2n+1 with κ ̸= −2 admitting a conformal

gradient RYS, then V is a constant multiple of ξ which further implies the po-

tential vector field V is a strict infinitesimal contact transformation and leaves h′

invariant.

3.2.3 Example of a 3-dimensional (κ, µ)′ − akm satisfying

CRYS

Consider a 3-dimensional manifold M3 = {(x, y, z) ∈ R3}, where (x, y, z) are

the standard coordinates in R3. Let us take E1, E2 and E3 to be the three vector

fields in R3 which satisfies

[E1, E2] = E2, [E1, E3] = E3, and [Ei, Ej] = 0, ∀ i, j = 2, 3,

and let g be the Riemannian metric such that

g(Ei, Ej) =


1, i = j,

0, i ̸= j, ∀ i, j = 1, 2, 3.

Here, we take E1 as the Reeb vector field. Suppose ϕ is the (1, 1)−tensor field

and η be the 1−form defined such that

ϕ(E1) = 0, ϕ(E2) = E3, ϕ(E3) = 2E2,

η(U) = g(U,E1), for any U ∈ T (M3).
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Moreover, let h′E1 = 0, h′E2 = E2, h
′E3 = E3. By the linearity of ϕ and g, we

have

η(E1) = 1, ϕ2(U) = −U + η(U)E1, g(ϕU, ϕV ) = g(U, V )− η(U)η(V ).

The following relations are obtained directly by using Koszul’s formula:

∇E1E1 = 0, ∇E1E2 = 0, ∇E1E3 = 0,

∇E2E1 = −E2, ∇E2E2 = E1 −
1

2
, ∇E2E3 = 0,

∇E3E1 = −E3, ∇E3E2 = 0, ∇E3E3 = E1 −
1

2
.

From the above relations, we get that

∇XE1 = −ϕ2X + h′X,

for any X ∈ T (M3). Thus, the structure (ϕ,E1, η, g) is an almost contact metric

structure so that M3 is an almost Kenmotsu manifold (akm) of dimension 3.

Utilizing the above results, we can calculate the components of the curvature

tensor R as follows:

R(E1, E2)E1 = R(E3, E2)E3 = 4E2,

R(E1, E2)E2 = R(E1, E3)E3 = −4E1,

R(E1, E3)E1 = R(E2, E3)E2 = 4E3,

R(E2, E1)E1 = R(E2, E3)E3 = −4E2,

R(E3, E1)E1 = R(E3, E2)E2 = −4E3,

R(E2, E2)E2 = R(E3, E1)E3 = 4E1.

In view of the above results obtained for the curvature tensor R, we observe that

the Reeb vector field E1 belongs to the (κ, µ)′−nullity distribution where κ = −2

and µ = −2. Thus, from the formula γ2 = −(κ+1), we get γ = ±1. Considering

γ = −1, thus, by the same argument made in Case I of Theorem 3.8, we conclude
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that M3 is locally isometric to H2(−4)× R.

Using the curvature tensor formula, we have

R(X, Y )Z = −4[g(Y, Z)X − g(X,Z)Y ].

From the foregoing equation, we obtain

Ric(Y, Z) = −8g(Y, Z),

which implies τ = −24. Now, we can easily see that

(LE1g)(E1, E1) = 0, (LE1g)(E2, E2) = (LE1g)(E3, E3) = −2.

Consider V = E1 and then tracing the soliton equation (3.53), we get

λ =
p

2
+

1

3
− 4(2α + 3β)− 2

3
.

Hence, (g, E1, λ, α, β) is a CRYS on M3. Therefore, Theorem 3.8 is verified.

3.3 Conclusion

In Section 3.1, we have shown that almost Ricci-Yamabe solitons are signif-

icantly limited in their existence on compact (κ, µ)-almost cosymplectic mani-

folds with κ < 0. This discovery underlines a restriction on the occurrence of

such solitons inside this particular framework. Furthermore, the transition from

an almost Ricci-Yamabe soliton (ARYS) to a more refined Ricci-Yamabe soliton

(RYS) occurs on a (κ, µ)-almost cosymplectic manifold. This transition signifies

an increase in geometric regularity and structure as well as the appearance of a

shrinking soliton. The shrinking behaviour of the soliton suggests a contraction

and convergence of geometric characteristics as the manifold evolves, demonstrat-

ing the soliton’s stability and coherence. Our main finding is that a (κ, µ)-almost

cosymplectic manifold with a gradient RYS (GRYS) and a ̸= 0 is either locally
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isomorphic to a Lie group G√
−κ with an almost cosymplectic structure or does

not accept a GRYS. This result reveals a deep relationship between the manifold’s

geometric qualities and its local isomorphism to a certain Lie group, enhancing

our knowledge of the manifold’s structural aspects. We have also observed that

a (κ, µ)-almost cosymplectic manifold does not take gradient Ricci-Bourguinon

solitons (GRBS). Furthermore, we see that allowing an ARYS on a compact α-

almost cosymplectic manifold changes it into an almost cosymplectic manifold.

This observation emphasises the transformation and refinement of the geometric

structure of the manifold in the presence of an ARYS.

We also found a link between the scalar curvature (τ) and the parameters λ,

a, b and n in our study of an ARYS vector field being pointwise collinear with

ξ on a compact α-almost cosymplectic manifold. In particular, we obtain that

τ = 2λ
(2n+1)b−2a

, subject to the constraint α ̸= {0, (2n+1)β
2

}. This connection pro-

vides vital insights into the interplay between geometric quantities and soliton

characteristics allowing for a better understanding of the curvature dynamics of

the manifold. We discovered that a 3-dimensional cosymplectic manifolds that

permits a GRYS with a ̸= b is either flat or has a constant scalar curvature. This

conclusion is useful in understanding the geometric configurations and curvature

aspects of 3-dimensional cosymplectic manifolds. Moreover, we construct an ex-

ample of a 3-dimensional manifold admitting a GRYS validating our results.

In Section 3.2, we have conducted a thorough investigation into the proper-

ties and structures of almost Kenmotsu manifolds that admits conformal Ricci-

Yamabe solitons (CRYS). By extending the existing results on Ricci solitons and

Ricci-Yamabe solitons to the more generalized setting of CRYS on (κ, µ)′-almost

Kenmotsu manifolds, we demonstrated that a (2n+1)-dimensional (κ, µ)′-almost

Kenmotsu manifold admitting a CRYS is locally isometric to Hn+1(−4) × Rn

provided that 2λ − βτ ̸= 4αnκ −
(
p+ 2

2n+1

)
. This result is significant as it

reveals a specific geometric structure that these manifolds possess when they
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admit such solitons, establishing a notable connection to hyperbolic spaces and

Euclidean spaces. Additionally, it was proven that a generalized (κ, µ)′-almost

Kenmotsu manifold admitting a CRYS is an η-Einstein manifold. For (κ, µ)′-

almost Kenmotsu manifolds admitting a conformal gradient Ricci-Yamabe soli-

ton, it was shown that the potential vector field is a strict infinitesimal contact

transformation. This result indicates that the vector field associated with the

soliton preserves the contact structure of the manifold, thereby maintaining the

integrity of the underlying almost Kenmotsu structure. Furthermore, an example

of a 3-dimensional (κ, µ)′-almost Kenmotsu manifold is constructed to illustrate

and verify the theoretical findings. The results not only extend the theory of

Ricci-Yamabe solitons to a broader class of manifolds but also provide a deeper

understanding of the interaction between soliton equations and the geometric

structures of almost Kenmotsu manifolds. The local isometry to Hn+1(−4)×Rn

opens up new avenues for exploring the curvature and topology of these manifolds

in relation to well-known geometric spaces. Moreover, the η-Einstein condition

and the strict infinitesimal contact transformation property offer new insights into

the curvature conditions and the preservation of geometric structures under the

influence of CRYS. These findings could have further implications in the study

of geometric flows and their limiting behaviors in various geometric contexts.
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Chapter 4

On Invariant submanifolds

This chapter deals with the invariant submanifolds of hyperbolic Kenmotsu

manifolds and its characterization when η-Ricci-Bourguignon soliton is admitted

as its metric.

4.1 Invariant submanifolds of hyperbolic Ken-

motsu Manifolds

Definition 4.1. A submanifold M of a hyperbolic Kenmotsu manifold M̃ is

termed invariant if the structure vector field ζ is tangent to M at every point

and ϕX is tangent to M for any vector field X tangent to M at every point, i.e.,

ϕ(TM) ⊂ TM at every point of M .

It is easy to see that for invariant submanifolds of a hyperbolic Kenmotsu

manifolds, we have

µ(X, ζ) = 0, (4.1)

for any X ∈ Γ(TM).
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Proposition 4.1. Suppose M is an invariant submanifold of a hyperbolic Ken-

motsu manifold M̃ . Then the following equations are satisfied:

∇Xζ = −X − η(X)ζ = −ϕ2X, (4.2)

ϕµ(X, Y ) = µ(ϕX, Y ) = µ(X,ϕY ), (4.3)

(∇Xϕ)Y = g(ϕX, Y )ζ − η(Y )ϕX, (4.4)

R(X, Y )ζ = η(Y )X − η(X)Y, (4.5)

where ∇, µ, and R represent the induced Levi-Civita connection, shape operator,

and Riemannian curvature tensor of M , respectively.

Proof. By employing (1.41), (1.42), (1.44), (1.55), (1.59), and (4.1), we can di-

rectly derive the required results.

Therefore, in view of the above proposition, we can state the following lemma:

Lemma 4.1. A submanifold M that is invariant under a hyperbolic Kenmotsu

manifold M̃ is itself a hyperbolic Kenmotsu manifold and is a minimal submani-

fold.

Proof. The first part is a direct consequence of Proposition 4.1.

For the second part, let us consider an orthonormal basis E1, ..., E2n+1 of M such

that En+x = ϕEx(x = 1, ..., n) and E2n+1 = ζ. Then, according to (4.1) and (4.4),

we obtain

µ(ϕEi, ϕEi) = ϕ2µ(Ei, Ei) = −µ(Ei, Ei).

Thus, we have

Tr(µ) =
2n+1∑
i=1

(µ(Ei, Ei) + µ(ϕEi, ϕEi)) + µ(ζ, ζ) = 0.
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This completes the proof.

Now R̃ · µ is given by

(R̃(X, Y ) · µ)(Z,U) = R⊥(X, Y )µ(Z,U)− µ(R(X, Y )Z,U)

−µ(Z,R(X, Y )U), (4.6)

for all X, Y, Z, U ∈ Γ(TM), where

R⊥(X, Y ) = [∇⊥
X ,∇⊥

Y ]−∇⊥
[X,Y ].

If R̃ · µ = 0, then the submanifold is said to be semiparallel. Arslan et al. (1990)

defined and studied submanifolds satisfying the condition R̃(X, Y ) · ∇̃µ = 0 for

all X, Y ∈ Γ(TM) and called it as 2-semiparallel. We can write

(R̃(X, Y ) · ∇̃µ)(Z,U, V ) = R⊥(X, Y )(∇̃µ)(Z,U, V )

− (∇̃µ)(R(X, Y )Z,U, V )

− (∇̃µ)(Z,R(X, Y )U, V )

− (∇̃µ)(Z,U,R(X, Y )V ), (4.7)

for all X, Y, Z, U, V ∈ Γ(TM) and (∇̃µ)(Z,U, V ) = (∇̃Zµ)(U, V ).

For a (0, k)-type tensor field J , k ≥ 1 and a (0, 2)-type tensor field G on a

Riemannian manifold M . D(G, J)-tensor field is defined by Atceken and Uygun

(2021) which is as follows:

D(G, J)(J1, J2, ...Jk;X, Y ) = −J((X ∧G Y )J1, J2, .....Jk)

....− J(J1, J2, ....Jk−1, (X ∧G Y )Jk), (4.8)

for all J1, J2, ....Jk, X, Y ∈ Γ(TM), where

(X ∧G Y )Z = G(Y, Z)X −G(X,Z)Y.

Definition 4.2 (Atceken et al., 2020). Suppose M is a submanifold of a Rie-
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mannian manifold (M̃, g). If there exist functions L1, L2, L3, and L4 on M̃ such

that

R̃ · µ = L1D(g, µ), (4.9)

R̃ · ∇̃µ = L2D(g, ∇̃µ), (4.10)

R̃ · µ = L3D(Ric, µ), (4.11)

R̃ · ∇̃µ = L4D(Ric, ∇̃µ), (4.12)

then M is, respectively, pseudoparallel, 2-pseudoparallel, Ricci-generalized pseu-

doparallel, and 2-Ricci-generalized pseudoparallel submanifold. In fact, if L1 = 0

or L3 = 0 (resp., L2 = 0 or L4 = 0), then M is called semiparallel (resp.,

2-semiparallel).

Following this, we establish certain characteristic arguments for totally geodesic

submanifolds of hyperbolic Kenmotsu manifolds.

Theorem 4.1. Consider M as an invariant submanifold of a hyperbolic Ken-

motsu manifold M̃ . Then M is totally geodesic if and only if its second funda-

mental form is parallel.

Proof. Suppose ∇̃µ = 0, then from (1.58) we have

(∇̃Xµ)(Y, Z) = ∇⊥
Xµ(Y, Z)− µ(∇XY, Z)− µ(Y,∇XZ) = 0. (4.13)

Replacing Z by ζ in (4.13) and using (1.35), (4.1) and (4.2) gives

µ(X, Y ) = 0,

which completes the proof.
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Theorem 4.2. Suppose M is an invariant submanifold of a hyperbolic Kenmotsu

manifold M̃ . If we assume that M is a pseudoparallel submanifold of hyperbolic

Kenmotsu manifold, then it is either totally geodesic or the function L1 satisfies

L1 = −1.

Proof. Consider that M is a pseudoparallel submanifold of a hyperbolic Ken-

motsu manifold, then from (4.9) we have

(R̃(X, Y ) · µ)(Z,U) = L1D(g, µ)(Z,U ;X, Y ), (4.14)

for all X, Y, Z, U ∈ Γ(TM). Utilizing (4.6) and (4.8) in (4.14) yields

R⊥(X, Y )µ(Z,U)− µ(R(X, Y )Z,U)− µ(Z,R(X, Y )U)

= −L1{µ((X ∧g Y )Z,U) + µ(Z, (X ∧g Y )U)}. (4.15)

Setting X = Z = ζ and using (4.1) in (4.15) we get

(L1 + 1)µ(Y, U) = 0,

for all U, Y ∈ Γ(TM) which completes the proof.

Corollary 4.1. Consider M as an invariant submanifold of a hyperbolic Ken-

motsu manifold M̃ . Then M is totally geodesic if and only if it is semiparallel.

Theorem 4.3. Suppose M is an invariant submanifold of a hyperbolic Kenmotsu

manifold M̃ . If M is a 2-pseudoparallel submanifold of a hyperbolic Kenmotsu

manifold, then it is either totally geodesic or the function L2 satisfies L2 = −3.

Proof. Suppose M is 2-pseudoparallel, then from (4.10) we have

(R̃(X, Y ) · ∇̃µ)(U, V, Z) = L2D(g, ∇̃µ)(U, V, Z;X, Y ), (4.16)
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for all X, Y, Z, U, V ∈ Γ(TM). Making use of (4.6) and (4.8) in (4.16) results in

R⊥(X, Y )(∇̃Uµ)(V, Z)− (∇̃R(X,Y )Uµ)(V, Z)− (∇̃Uµ)(R(X, Y )V, Z)

− (∇̃Uµ)(V,R(X, Y )Z) = −L2{(∇̃(X∧gY )Uµ)(V, Z)

+ (∇̃Uµ)((X ∧g Y )V, Z) + (∇̃Uµ)(V, (X ∧g Y )Z)}.

(4.17)

Putting X = V = ζ in (4.17) yields

R⊥(ζ, Y )(∇̃Uµ)(ζ, Z)− (∇̃R(ζ,Y )Uµ)(ζ, Z)− (∇̃Uµ)(R(ζ, Y )ζ, Z)

− (∇̃Uµ)(ζ, R(ζ, Y )Z) = −L2{(∇̃(ζ∧gY )Uµ)(ζ, Z)

+ (∇̃Uµ)((ζ ∧g Y )ζ, Z) + (∇̃Uµ)(ζ, (ζ ∧g Y )Z)}. (4.18)

Solving the individual terms of (4.18) and making use of (1.35), (1.58), (4.1),

(4.2) and (4.5), yields the following:

(∇̃(ζ∧gY )Uµ)(ζ, Z) = µ(ϕ2(ζ ∧g Y )U,Z)

= −η(U)µ(Y, Z). (4.19)

(∇̃Uµ)((ζ ∧g Y )ζ, Z) = (∇̃Uµ)(η(Y )ζ − Y, Z)

= −µ(∇Uζ, Z)η(Y )− (∇̃Uµ)(Y, Z)

= µ(ϕ2U,Z)η(Y )− (∇̃Uµ)(Y, Z)

= µ(U,Z)η(Y )− (∇̃Uµ)(Y, Z). (4.20)

(∇̃Uµ)(ζ, (ζ ∧g Y )Z) = (∇̃Uµ)(ζ,−η(Z)Y )

= −µ(U, Y )η(Z). (4.21)

R⊥(ζ, Y )(∇̃Uµ)(ζ, Z) = −R⊥(ζ, Y µ(∇Uζ, Z)

= R⊥(ζ, Y )µ(U,Z). (4.22)

116



Chapter 4

(∇̃R(ζ,Y )Uµ)(ζ, Z) = −µ(∇R(ζ,Y )Uζ, Z)

= µ(ϕ2R(ζ, Y )U,Z)

= µ(Y, Z)η(U). (4.23)

(∇̃Uµ)(R(ζ, Y )ζ, Z) = (∇̃Uµ)(Y + η(Y )ζ, Z)

= µ(∇Uζ, Z)η(Y ) + (∇̃Uµ)(Y, Z)

= −µ(U,Z)η(Y ) + (∇̃Uµ)(Y, Z). (4.24)

(∇̃Uµ)(ζ, R(ζ, Y )Z) = −µ(∇Uζ, R(ζ, Y )Z)

= µ(ϕ2U,R(ζ, Y )Z)

= −µ(U, Y )η(Z). (4.25)

Combining (4.18)-(4.25) and then replacing Z by ζ in the forgoing equation leads

to

(3 + L2)µ(Y, U) = 0,

for all Y, U ∈ Γ(TM). This completes the proof.

Corollary 4.2. SupposeM is an invariant submanifold of a hyperbolic Kenmotsu

manifold. Then M is 2-semiparallel if and only if it is totally geodesic.

Theorem 4.4. Consider M to be an invariant submanifold of a hyperbolic Ken-

motsu manifold M̃ . If M is a Ricci-generalized pseudoparallel submanifold of a

hyperbolic Kenmotsu manifold, then M is either totally geodesic or the function

L3 satisfies L3 = − 1
2n
.

Proof. Suppose that M is Ricci-generalized pseudoparallel submanifold of a hy-

perbolic Kenmotsu manifold, then from (4.11) becomes

(R̃(X, Y ) · µ)(Z,U) = L3D(Ric, µ)(Z,U ;X, Y ), (4.26)
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for all X, Y, Z, U ∈ Γ(TM). Making use of (4.6) and (4.8) in (4.26) gives

R⊥(X, Y )µ(Z,U)− µ(R(X, Y )Z,U)− µ(Z,R(X, Y )U)

= −L3{µ((X ∧Ric Y )Z,U) + µ(Z, (X ∧Ric Y )U)}. (4.27)

Setting X = U = ζ in (4.27) and then using (4.1) and (4.5) we obtain

(1 + 2nL3)µ(Z, Y ) = 0,

for all vector fields Z, Y . This completes the proof.

Theorem 4.5. Suppose that M is an invariant submanifold of a hyperbolic Ken-

motsu manifold M̃ . If M is a 2-generalized Ricci pseudoparallel submanifold of a

hyperbolic Kenmotsu manifold, then M is either totally geodesic or the function

L4 satisfies L4 = − 1
2n
.

Proof. By hypothesis, from (4.12) we have

(R̃(X, Y ) · ∇̃µ)(U, V, Z) = L4D(Ric, ∇̃µ)(U, V, Z;X, Y ), (4.28)

for all vector fields X, Y, Z, U, V . Making use of (4.6) and (4.8) in (4.28) gives

R⊥(X, Y )(∇̃Uµ)(V, Z)− (∇̃R(X,Y )Uµ)(V, Z)− (∇̃Uµ)(R(X, Y )V, Z)

−(∇̃Uµ)(V,R(X, Y )Z) = −L4{(∇̃(X∧RicY )Uµ)(V, Z)

+(∇̃Uµ)((X ∧Ric Y )V, Z) + (∇̃Uµ)(V, (X ∧Ric Y )Z)}. (4.29)

Replacing X = V = ζ in (4.29) gives

R⊥(ζ, Y )(∇̃Uµ)(ζ, Z)− (∇̃R(ζ,Y )Uµ)(ζ, Z)− (∇̃Uµ)(R(ζ, Y )ζ, Z)

−(∇̃Uµ)(ζ, R(ζ, Y )Z) = −L4{(∇̃(ζ∧RicY )Uµ)(ζ, Z)

+(∇̃Uµ)((ζ ∧Ric Y )ζ, Z) + (∇̃Uµ)(ζ, (ζ ∧Ric Y )Z)}. (4.30)
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Computing each terms separately gives

(∇̃(ζ∧RicY )Uµ)(ζ, Z) = −µ(∇(ζ∧RicY )Uζ, Z)

= µ(ϕ2(ζ ∧Ric Y )U,Z)

= −Ric(ζ, U)µ(Y, Z). (4.31)

(∇̃Uµ)((ζ ∧Ric Y )ζ, Z) = (∇̃Uµ)(Ric(Y, ζ)ζ −Ric(ζ, ζ)Y, Z)

= Ric(Y, ζ)(∇̃Uµ)(ζ, Z)−Ric(ζ, ζ)(∇̃Uµ)(Y, Z). (4.32)

(∇̃Uµ)(ζ, (ζ ∧Ric Y )Z) = (∇̃Uµ)(ζ, Ric(Y, Z)ζ −Ric(ζ, Z)Y )

= −Ric(ζ, Z)(∇̃Uµ)(ζ, Y ). (4.33)

Utilizing (4.22)-(4.25) and (4.31)-(4.33) in (4.30) then setting Z = ζ results in

(1 + 2nL4)µ(Y, U) = 0,

for all Y, U ∈ Γ(TM). This completes the proof.

4.1.1 3-dimensional invariant submanifold of hyperbolic

Kenmotsu manifold

Lemma 4.2. Consider an invariant submanifold M of a hyperbolic Kenmotsu

manifold M̃ . Then there exists the distributions D and D⊥ such that

TM = D ⊕D⊥⊕ < ζ >, ϕ(D) ⊂ D⊥and ϕ(D⊥) ⊂ D.

Proof. The result is due to Lemma 4.1 of Chaubey et al. (2022) and Proposition

6.1 of Shaikh et al. (2016).

Theorem 4.6. A 3-dimensional submanifold M of a hyperbolic Kenmotsu man-

ifold M̃ is invariant if and only if it is totally geodesic.

Proof. Suppose that a 3-dimensional submanifold M of a hyperbolic Kenmotsu
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manifold M̃ is invariant, then from (4.3) for X1, Y1 ∈ D we have

ϕµ(X1, Y1) = µ(ϕX1, Y1) = µ(X1, ϕY1). (4.34)

Operating (4.34) by ϕ and using (1.35) gives

ϕµ(X1, ϕY1) = ϕ2µ(X1, Y1) = µ(X1, Y1) + η(µ(X1, Y1))ζ. (4.35)

Since µ(X1, Y1) ⊂ T⊥M , µ(X1, Y1) is orthogonal to ζ ∈ TM . In consequence,

from (4.34) and (4.35) we get

µ(ϕX1, ϕY1) = µ(X2, Y2) = −µ(X1, Y1), (4.36)

where X2 = ϕX1, Y2 = ϕY1 ∈ D⊥. Now for any X1, Y1 ∈ D and X2, Y2 ∈ D⊥ we

see that

µ(X1 +X2 + ζ, Y1) = µ(X1, Y1) + µ(X2, Y1) + µ(ζ, Y1),

µ(X1 +X2 + ζ, Y2) = µ(X1, Y2) + µ(X2, Y2) + µ(ζ, Y2),

µ(X1 +X2 + ζ, ζ) = µ(X1, ζ) + µ(X2, ζ) + µ(ζ, ζ).

In view of above equations and (4.22), we can write

µ(X1 +X2 + ζ, Y1 + Y2 + ζ) = µ(X2, Y1) + µ(X1, Y2). (4.37)

Taking U, V ∈ TM as U = X1 +X2 + ζ and V = Y1 + Y2 + ζ, (4.37) becomes

µ(U, V ) = µ(X2, Y1) + µ(X1, Y2).

Solving the above equation with ϕ and utilizing (4.34) and (4.36), we obtain

ϕµ(U, V ) = µ(X2, ϕY1) + µ(X1, ϕY2) = 0.

Again operating by ϕ gives µ(U, V ) = 0, for any vector fields U, V . Therefore, M

is totally geodesic.
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Conversely, suppose M is totally geodesic, then

µ(X, Y ) = 0, ∀ X, Y ∈ TM.

We have to show that ϕX /∈ T⊥M . To demonstrate this, suppose for contradiction

that the vector field ϕX has a component, say LX, along the normal vector field

of M . Clearly, ALXY ∈ TM . Let Z = ALXY ̸= 0. Then,

g(Z,Z) = g(ALXY, Z) = g(µ(Y, Z), LX) = 0.

Since Z is a non-null and non-zero vector field in TM , it follows that g(Z,Z) ̸= 0,

which is a contradiction. Therefore, ϕX ∈ TM and thus M is invariant.

4.1.2 η-Ricci-Bourguignon solitons on invariant submani-

folds of hyperbolic Kenmotsu manifolds

LetM be an invariant submanifold of a hyperbolic Kenmotsu manifold. Con-

sider the equation

1

2
(Lζg)(X, Y ) +Ric(X, Y ) + (λ+ ρτ)g(X, Y ) + ωη(X)η(Y ) = 0, (4.38)

for any X, Y ∈ Γ(TM), where Lζg denote the Lie-derivative of g with respect

to ζ, Ric is the Ricci tensor of g, τ is the scalar curvature and λ, ρ and ω are

real constants. The data (g, ζ, λ, ω) satisfying (4.38) is referred to as an η-Ricci-

Bourguignon soliton on M (for more detail, see Chaubey et al., 2022; Dey and

Roy, 2022; Dogru, 2023). Specifically, if ω = 0, it is known as a Ricci-Bourguignon

soliton (Khatri and Singh, 2024a) and it is classified as growing, steady, or de-

creasing depending on whether λ > 0, λ = 0, or λ < 0, respectively.
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Utilizing (4.2), we have

(Lζg)(X, Y ) = g(∇Xζ, Y ) + g(X,∇Y ζ)

= −2{g(X, Y ) + η(X)η(Y )}.

In view of the last equation in (4.38) gives

Ric(X, Y ) = (1− λ− ρτ)g(X, Y ) + (1− ω)η(X)η(Y ), (4.39)

for any vector fields X, Y on M . Thus we conclude with the following:

Theorem 4.7. Let an invariant submanifold M of a hyperbolic Kenmotsu man-

ifold M̃ admit an η-Ricci-Bourguignon soliton, then M is η-Einstein.

Specifically, for ω = 0, we have

Corollary 4.3. Consider an invariant submanifold M of hyperbolic Kenmotsu

manifold M̃ admitting a Ricci-Bourguignon soliton, then M is η-Einstein.

Setting X = Y = ζ in (4.39) and making use of (4.5), we obtain

λ = ω − 2n− ρτ.

Theorem 4.8. If an invariant submanifoldM of a hyperbolic Kenmotsu manifold

M̃ admits an η-Ricci-Bourguignon soliton, then λ = ω − 2n− ρτ .

Corollary 4.4. Suppose that an invariant submanifold M of a hyperbolic Ken-

motsu manifold M̃ admit a Ricci-Bourguignon soliton as its metric. Then M is

η-Einstein and the soliton is shrinking.

Assume that invariant submanifold M of a hyperbolic Kenmotsu manifold M̄

admits an η-Ricci-Bourguignon soliton as its metric. Let the unit timelike vector

field ζ ofM is the gradient of some smooth function ψ, that is, ζ = grad ψ. Then
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equation (4.38) becomes

1

2
{g(∇Xgrad ψ, Y ) + g(X,∇Y grad ψ)}+Ric(X, Y ) + (λ+ ρτ)g(X, Y )

+ ωη(X)η(Y ) = 0.

Contracting the foregoing expression over X and Y yields

∇2ψ = Ω, (4.40)

where Ω = −[(2n+1)λ+{(2n+1)ρ+1}τ+ω], ∇2 denotes the Laplacian operator

of g and τ represents the scalar curvature of M .

A smooth function ψ on a Riemannian manifoldM is said to indulge Poisson’s

equation if (4.40) holds true for some smooth function Ω on M . In particular, if

Ω = 0, then Poisson’s equation simplifies to the Laplace equation, and ψ is called

harmonic.

In view of these facts, we conclude the following theorems:

Theorem 4.9. Consider an invariant submanifold M of a hyperbolic Kenmotsu

manifold M̃ that admits an η-Ricci-Bourguignon soliton. If the unit timelike

vector field of M is the gradient of a smooth function ψ, then ψ satisfies Poisson’s

equation (4.40).

Theorem 4.10. Consider an invariant submanifold M of a hyperbolic Kenmotsu

manifold M̃ that admits an η-Ricci soliton. If the unit timelike vector field of M

is the gradient of a smooth function ψ, then ψ satisfies the Laplace equation if

and only if λ = −{(2n+1)ρ+1}τ+ω
2n+1

.

Now, let us consider a concircular vector field ξ and thus it satisfies

∇Xξ = ψX, (4.41)

for any X ∈ TM and ψ is a smooth function. For an invariant submanifold, from
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Lemma 4.2, we have

ξ = ξT + ξ⊥, (4.42)

where ξ ∈ TM, ξT ∈ D and ξ⊥ ∈ D⊥. Since ξ is a concircular vector field, we

can write

ψX = ∇̃Xξ
T + ∇̃Xξ

⊥, (4.43)

for any X ∈ D. Now, from (1.55) and (1.56), we have

ψX = ∇Xξ
T + µ(X, ξT )− Aξ⊥X +∇⊥

Xξ
⊥. (4.44)

Comparing the tangential and normal components of the above expression, we

get

µ(X, ξT ) = −∇⊥
Xξ

⊥, ∇Xξ
T = ψX − Aξ⊥X. (4.45)

Next, we prove the following:

Theorem 4.11. Suppose M is an invariant submanifold of a hyperbolic Ken-

motsu manifold that admits an η-Ricci-Bourguignon soliton with a concircular

vector field ξ. Then, the Ricci tensor on the invariant distribution is expressed as

Ric(X, Y ) = −[(ψ + λ+ ρτ)g(X, Y )− g(µ(X, Y ), ξ⊥) + ωη(X)η(Y )].

Proof. We know that the Lie derivative has the form

(LξT g)(X, Y ) = g(∇Xξ
T , Y ) + g(X,∇Y ξ

T ). (4.46)

Utilizing (4.45) yields

(LξT g)(X, Y ) = 2ψg(X, Y )− 2g(µ(X, Y ), ξ⊥). (4.47)

Then, substituting the above expression in (4.38) completes the proof.

Also, we we assume the invariant distribution to beD-geodesic, then g(µ(X, Y ), ξ⊥)

vanishes and hence, we state:
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Corollary 4.5. Suppose that an invariant submanifold M of a hyperbolic Ken-

motsu manifold admits an η-Ricci-Bourguignon soliton with a concircular vector

field ξ. If the invariant distribution is D-geodesic, then the invariant distribution

is η-Einstein.

Furthermore, if we assume ψ = 1, then we get a concurrent vector field ξ. As

a consequence, we get the following results:

Theorem 4.12. Consider an invariant submanifold M of a hyperbolic Kenmotsu

manifold admitting an η-Ricci-Bourguignon soliton as its metric with a concurrent

vector field ξ. Then, the Ricci tensor on the invariant distribution is given by the

following relation:

Ric(X, Y ) = −[(1 + λ+ ρτ)g(X, Y )− g(µ(X, Y ), ξ⊥) + ωη(X)η(Y )].

Corollary 4.6. Assume that M is an invariant submanifold of a hyperbolic Ken-

motsu manifold that admits an η-Ricci-Bourguignon soliton with a concurrent

vector field ξ. If the invariant distribution is D-geodesic, then the invariant dis-

tribution is η-Einstein.

Remark 4.1. In view of the results obtained in this section, we can extract the

results from every theorems and corollaries for η-Ricci soliton, η-Schouten soliton

and η-Einstein soliton by putting different values for ρ as 1
2(n−1)

and 1
2
respectively.

4.1.3 Examples of an invariant submanifold of a hyper-

bolic Kenmotsu manifolds

Example 4.1. Consider a 5-dimensional manifold M̃ = {(x, y, z, v, t) ∈ R5 : t ̸=

0} where (x, y, z, v, t) are the standard coordinates in R5.

Now let {E1, E2, E3, E4, E5} be a linearly independent global frame on M̃ .

Let g be a Riemannian metric on M̃ defined as
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g(Ei, Ej) =



1 0 0 0 0

0 −1 0 0 0

0 0 1 0 0

0 0 0 −1 0

0 0 0 0 −1


.

Set E5 = ζ, then it is obvious that η(E5) = −1 and η(Ei) = 0 for i = 1, 2, 3, 4.

Also, we define (1,1)-tensor ϕ as

ϕ(E1) = −E2, ϕ(E2) = −E1, ϕ(E3) = E4, ϕ(E4) = E3, ϕ(E5) = 0.

As an immediate result of the above equations we can see that ϕ2X = X+η(X)ζ

and g(ϕX, ϕY ) = −g(X, Y )−η(X)η(Y ), for any vector fieldsX, Y on M̃ . Clearly,

the structures we defined satisfies the condition of an almost hyperbolic contact

metric manifold. Let ∇̃ be the Levi-Civita connection with respect to the metric

g. Then we define the Lie bracket for our vector fields {E1, E2, E3, E4, E5} as

follows:

[Ei, Ej] =


−Ei, if i = 1, 2, 3, 4; j = 5,

0, otherwise.

(4.48)

Using Koszul formula and (4.48), we obtain the following

∇̃E1E1 = E5, ∇̃E1E2 = 0, ∇̃E1E3 = 0, ∇̃E1E4 = 0, ∇̃E1E5 = −E1,

∇̃E2E2 = E5, ∇̃E2E3 = 0, ∇̃E2E4 = 0, ∇̃E2E5 = −E2, ∇̃E3E3 = E5,

∇̃E3E4 = 0, ∇̃E3E5 = −E3, ∇̃E4E5 = −E4, ∇̃E4E4 = E5, ∇̃E5E5 = 0.

We can easily see from the above relations that the manifold satisfies ∇̃Xζ =

−ϕ2X, for ζ = E5. Hence, M̃ is a hyperbolic Kenmotsu manifold.

Let M be a subset of M̃ and consider the isometric immersion π : M → M̃

defined by π(x, z, t) = (x, 0, z, 0, t). Clearly, M = {(x, z, t) ∈ R3 : (x, z, t) ̸= 0}
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is a 3-dimensional submanifold of M̃ , where the triplet (x, z, t) are standard

coordinates in R3. We choose the vector fields {E1, E3, E5} such that their Lie

bracket is defined as:

[Ei, Ej] =


−Ei, if i = 1, 3, and j = 5,

0, otherwise.

We define g1 such that {E1, E3, E5} is an orthonormal basis of M as follows:

g1(Ei, Ej) =


1 0 0

0 −1 0

0 0 −1

 .

Set ζ = E5. Then define 1-form η1 and (1,1)-tensor field ϕ1 as η1(·) = g1(·, E5)

and ϕ1(E1) = E3, ϕ1(E3) = E1, ϕ1(E5) = 0.

From the above equations, it is obvious that

η1(E5) = −1, ϕ2
1(X) = X + η1(X)E5,

g1(ϕ1X,ϕ1Y ) = −g1(X, Y )− η1(X)η1(Y ),

for vector fields X, Y onM . Clearly,M(η1, g1, E5, ϕ1) is an invariant submanifold

of M̃ . Let ∇ be the Levi-Civita connection induced by the metric g1, then we

have the following:

∇E1E1 = E5,∇E1E3 = 0,∇E1E5 = −E1,

∇E3E3 = E5,∇E3E5 = −E3,∇E5E5 = 0.

One can see that M(g1, η1, ϕ1, E5) forms a 3-dimensional hyperbolic Kenmotsu

manifold with ζ = E5. Thus, Lemma 4.1 is verified.

Let µ be the second fundamental form, then making use of (1.55) and the
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foregoing equations, we obtaine

µ(X, Y ) = 0,

for any vector field X, Y on M . Thus, M is a totally geodesic submanifold of M̃ .

Hence, Theorem 4.6 and Corollary 4.1, 4.2 are verified.

Example 4.2. Let Rn be an n-dimensional real number space. Define M5 =

{(x, y, z, v, u) : xi ∈ R, i = 1, 2, ..., 5 and z ̸= 0}.

Let {E1, E2, E3, E4, E5} be a set of linearly independent vector fields of M5

with their Lie bracket defined by

[Ei, Ej] =


−Ei, if i = 1, 2, 4, 5; j = 3,

0, otherwise.

Let g be the associated metric of M5 which is define as

g(Ei, Ej) =



1 0 0 0 0

0 −1 0 0 0

0 0 −1 0 0

0 0 0 −1 0

0 0 0 0 1


.

Now, let us define a (1,1)-tensor field ϕ of M5 as

ϕ(E1) = E2, ϕ(E2) = E1, ϕ(E3) = 0, ϕ(E4) = −E5, ϕ(E5) = −E4.

We know that g and ϕ are linear, thus we can easily see that the following expres-

sions ϕ2Ei = Ei + η(Ei)E3, g(Ei, E3) = η(Ei) and g(ϕEi, ϕEj) = −g(Ei, Ej) −

η(Ei)η(Ej) holds for i, j = 1, 2, 3, 4, 5 and ζ = E3. Thus, M5(g, ϕ, η, ζ = E3) is

an almost hyperbolic contact metric manifold.

Let ∇ denote the Levi-Civita connection, then by Koszul’s formula and above
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expressions, we obtain the following:

∇E1E1 = E3,∇E1E2 = 0,∇E1E3 = −E1,∇E1E4 = 0,

∇E1E5 = 0,∇E2E2 = E3,∇E2E3 = −E2,∇E2E4 = 0,

∇E2E5 = 0,∇E3E3 = 0,∇E3E4 = E4,∇E3E5 = E5,

∇E4E4 = E3,∇E4E5 = 0,∇E5E5 = E3.

Clearly, from the foregoing equations, we can clearly see that M5(g, ϕ, ζ, η) is a

hyperbolic Kenmotsu manifold for ζ = E3.

Let M3 be a subset of M5. Now consider an isometric immersion π : M3 →

M5 define as π(x, y, z) = (x, y, z, 0, 0) where (x, y, z) is the standard coordinates

in R3. Clearly, M3 = {(x, y, z) ∈ R3 and (x, y, z) ̸= 0} is a submanifold of M5.

Let {E1, E2, E3} be the basis of M3 whose Lie bracket is defined as

[Ei, Ej] =


−Ei, if i = 1, 2; j = 3,

0, otherwise.

Let us define the associate metric g1 of M3 as

g1(Ei, Ej) =


1 0 0

0 −1 0

0 0 −1

 .

Also, 1-from η1 and (1,1)-tensor field ϕ1 are define as follows:

ϕ1(E1) = −E2, ϕ1(E2) = −E1, ϕ1(E3) = 0 and η1(·) = g1(·, E3)

Utilizing the above equations, it is obvious that

η1(E3) = −1, ϕ2
1(X) = X + η1(X)E3,

g1(ϕ1X,ϕ1Y ) = −g1(X, Y )− η1(X)η1(Y ),
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for any vector fields X, Y on M3. Clearly, M3(η1, g1, E3, ϕ1) is an invariant sub-

manifold of M5. Let ∇ be the Levi-Civita connection induced by the metric g1,

then the following results from Koszul formula:

∇E1E1 = E3,∇E1E2 = 0,∇E1E3 = −E1,

∇E2E2 = E3,∇E2E3 = −E2,∇E3E3 = 0.

It is obvious thatM3(g1, ϕ1, η1, E3) is also a hyperbolic Kenmotsu manifold. Thus,

Lemma 4.1 is verified.

Let µ be the second fundamental form. Making use of (1.55) and the foregoing

expressions yields

µ(X, Y ) = 0,

for any vector field X, Y onM3. This shows that the 3-dimensional invariant sub-

manifold of a hyperbolic Kenmotsu manifold is totally geodesic. Hence, Theorem

4.6 is verified.

4.2 Conclusion

This study investigates the geometric properties of invariant submanifolds

within hyperbolic Kenmotsu manifolds, revealing significant results that enhance

our understanding of these complex structures. The findings are crucial for theo-

retical research and practical applications in fields like mathematics and physics.

The study reveals that the structure vector field ζ is tangent to these submani-

folds, and the tensor field ϕ preserves tangency, confirming that these submani-

folds retain the geometric characteristics of the ambient manifold. Additionally,

we demonstrate that invariant submanifolds within hyperbolic Kenmotsu mani-

folds are minimal, meaning their mean curvature vector vanishes which indicate

stability. This condition is essential for understanding geometric flows supported
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by these submanifolds, contributing to stability analysis and differential geome-

try applications. The study also identifies the condition under which invariant

submanifolds are totally geodesic implying that geodesics in the ambient mani-

fold remain within the submanifold which is a property crucial for applications

in relativity theory and spacetime structures.

Further, we explore the curvature properties of pseudoparallel and 2- pseu-

doparallel submanifolds providing new insights into their geometric behavior.

The results show that semiparallel submanifolds are totally geodesic while 2-

pseudoparallel submanifolds are either totally geodesic or satisfy a specific func-

tional condition. This extends our understanding of how curvature influences

submanifolds’ geometric behavior offering a framework for further exploration of

curvature conditions in complex geometric settings. The findings have significant

implications for differential geometry particularly in the study of spacetime and

general relativity. The study also offers valuable tools for researchers investi-

gating the stability and geometric flows of submanifolds and the conditions for

pseudoparallelism and 2-pseudoparallelism provide new avenues for exploring the

interplay between curvature and geometry potentially leading to advancements

in theoretical research and practical applications in fields like material science

and cosmology.
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Chapter 5

Geometrical Properties of

Spacetime

This chapter consists of three sections. The first section deals with Vaidya

spacetime and the existence of conformal Ricci soliton in it. Section 5.2 investi-

gates relativistic magneto fluid spacetime in the settings of f(R)-gravity theory

and the last section is devoted to the study of string cloud spacetime stuffed in

f(R)-gravity.

5.1 Conformal Ricci Solitons on Vaidya Space-

time

Basu and Bhattacharyya (2015) introduced the notion of conformal Ricci

soliton in Kenmotsu manifolds as a limiting solution to the conformal Ricci flow

introduced by Fischer (2004), which is given as below:

LV g + 2Ric =

[
2λ−

(
p+

2

n

)]
g,

Z. Chhakchhuak and J.P. Singh (2024). Conformal Ricci solitons on Vaidya spacetime,
Gen. Relativ. Gravit. 56(1), 1–15.
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where p is the conformal pressure and λ ∈ R. We say that the soliton is shrinking,

steady or expanding according as λ > 0, λ = 0 or λ < 0 respectively. Again, if

V = grad f , then the above equation becomes conformal gradient Ricci soliton.

Also, Siddiqi and Siddiqui (2020) studied conformal Ricci soliton in a perfect

fluid spacetime. For further information about Ricci solitons and conformal Ricci

solitons, see for instance (Catino et al., 2016b; Ganguly et al., 2021; Chen et al.,

2022; Li et al., 2022; Li and Ganguly, 2023; Li et al., 2023; Khatri et al., 2023;

Dey, 2023).

In our investigation, we employ Vaidya spacetime as a framework to elucidate

the characteristics of conformal Ricci solitons within the context of gravitational

collapse. Vaidya spacetime vividly portrays the dynamic collapse of a null fluid

under the influence of gravity. This spacetime model captures fundamental as-

trophysical phenomena, including the formation of black holes and the emission

of gravitational waves.

We have investigated the existence of a conformal Ricci soliton vector field on

Vaidya spacetime as a result of the above findings.

5.1.1 Conformal Ricci Soliton vector field in Vaidya space-

time

The existence of a conformal Ricci soliton with its vector field V in Vaidya

spacetime is investigated in this subsection.

A conformal Ricci soliton vector field (CRSVF) is a vector field V that meets

the following condition:

1

2
LV g +Ric =

[
λ−

(
p

2
+

1

n

)]
g, (5.1)

where LV g denote the Lie derivative of metric g along the vector field V , p is the

conformal pressure and λ is a constant. Also, n is the dimension of the manifold
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that the soliton lies and in our case, we shall consider for n = 4 and thus (5.1)

becomes

1

2
LV g +Ric =

[
λ−

(
p

2
+

1

4

)]
g. (5.2)

Let V = A∂u +B∂r +C∂θ +D∂ϕ, where A,B,C and D are smooth functions

of u, r, θ and ϕ. Utilizing (1.62), we obtain the following:

(LV g)(∂u, ∂u) = 2

(
2m− r

r
∂uA− ∂uB

)
,

(LV g)(∂u, ∂r) = −∂uA+

(
2m− r

r

)
∂rA− ∂rB,

(LV g)(∂u, ∂θ) = r2∂uC +

(
2m− r

r

)
∂θA− ∂θB,

(LV g)(∂u, ∂ϕ) = r2 sin2 θ∂uD +

(
2m− r

r

)
∂ϕX1 − ∂ϕB,

(LV g)(∂r, ∂r) = −2∂rA, (5.3)

(LV g)(∂r, ∂θ) = r2∂rC − ∂θA,

(LV g)(∂r, ∂ϕ) = r2 sin2 θ∂rD − ∂ϕA,

(LV g)(∂θ, ∂θ) = 2r2∂θC,

(LV g)(∂θ, ∂ϕ) = r2 sin2 θ∂θD + r2∂ϕC,

(LV g)(∂ϕ, ∂ϕ) = 2r2 sin2 θ∂ϕD.
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Combining (1.63), (5.2) and (5.3), we get the following set of differential equations

(
2m−r

r

)
∂uA− ∂uB + 2m′

r2
=

[
λ−

(
p
2
+ 1

4

)] (
2m−r

r

)
,(

2m−r
r

)
∂rA− ∂uA− ∂rB = −

[
2λ−

(
p+ 1

2

)]
,

r2∂uC +
(
2m−r

r

)
∂θA− ∂θB = 0,

r2 sin2 θ∂uD +
(
2m−r

r

)
∂ϕA− ∂ϕB = 0,

∂rA = 0,

r2∂rC − ∂θA = 0,

r2 sin2 θ∂rD − ∂ϕA = 0,

∂θC =
[
λ−

(
p
2
+ 1

4

)]
,

sin2 θ∂θD + ∂ϕC = 0,

∂ϕD =
[
λ−

(
p
2
+ 1

4

)]
.

(5.4)

From the fifth equation in (5.4), we get A = A(u, θ, ϕ). Solving the eighth

equation in (5.4) gives

C =

[
λ−

(
p

2
+

1

4

)]
θ + E(u, r, ϕ), (5.5)

where E is a smooth function. Similarly, solving the tenth equation in (5.4), we

obtain

D =

[
λ−

(
p

2
+

1

4

)]
ϕ+ F(u, r, θ), (5.6)

where F is a smooth function. Since A is independent of r, differentiating the

sixth equation of (5.4) with respect to r yields

r∂2rC + 2∂rC = 0. (5.7)
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Utilizing (5.5) in (5.7) results in

E(u, r, ϕ) = 1

r
Ē(u, ϕ) + ¯̄E(u, ϕ),

where Ē and ¯̄E are smooth functions. Making use of the foregoing equation with

(5.5) yields

C =

[
λ−

(
p

2
+

1

4

)]
θ +

1

r
Ē(u, ϕ) + ¯̄E(u, ϕ). (5.8)

Similarly, differentiating the seventh equation in (5.4) with respect to r and using

(5.6), we get

F(u, r, θ) =
1

r
F̄(u, θ) + ¯̄F(u, θ), (5.9)

where F̄ and ¯̄F are smooth functions. Combining (5.6) and (5.9) yields

D =

[
λ−

(
p

2
+

1

4

)]
ϕ+

1

r
F̄(u, θ) + ¯̄F(u, θ). (5.10)

Utilizing (5.8) and (5.10) in the ninth equation of (5.4), we get the following

expressions: 
∂ϕĒ(u, ϕ) + sin2 θ∂θF̄(u, θ) = 0,

∂ϕ
¯̄E(u, ϕ) + sin2 θ∂θ

¯̄F(u, θ) = 0.

(5.11)

Solving (5.11), we obtain
Ē(u, ϕ) = − sin2 θ∂θF̄(u, θ)ϕ+ G(u),

¯̄E(u, ϕ) = − sin2 θ∂θ
¯̄F(u, θ)ϕ+ Ḡ(u),

(5.12)

where G and Ḡ are smooth functions. Combining (5.12) and (5.8) gives

C =

[
λ−

(
p

2
+

1

4

)]
θ − sin2 θ

r
∂θF̄(u, θ)ϕ+

1

r
G(u)− sin2 θ∂θ

¯̄F(u, θ)ϕ+ Ḡ(u).

(5.13)

136



Chapter 5

Inserting (5.10) in the seventh equation of (5.4), we get

A = − sin2 θF̄(u, θ)ϕ+H(u, θ), (5.14)

where H is a smooth function. Inserting (5.13) and (5.14) in the sixth equation

of (5.4), we get

2 sin θ
(
sin θ∂θF̄(u, θ) + cos θF̄(u, θ)

)
ϕ− G(u)− ∂θH(u, θ) = 0.

Since the last expression holds for all the values of ϕ, we get
sin θ∂θF̄(u, θ) + cos θF̄(u, θ) = 0,

∂θH(u, θ) + G(u) = 0.

(5.15)

Solving (5.15) gives 
H(u, θ) = −G(u)θ + I(u),

F̄(u, θ) = Ī(u) csc θ,
(5.16)

where I and Ī are smooth functions. Utilizing (5.16) in (5.14), (5.13) and (5.10)

results in
A = − sin θĪ(u)ϕ+ I(u)− G(u)θ,

C =
[
λ−

(
p
2
+ 1

4

)]
θ + cos θ

r
Ī(u) + 1

r
G(u)− sin2 θ∂θ

¯̄F(u, θ)ϕ+ Ḡ(u),

D =
[
λ−

(
p
2
+ 1

4

)]
ϕ+ csc θ

r
Ī(u) + ¯̄F(u, θ).

(5.17)

Inserting the value of A from (5.17) in the second equation of (5.4) and integrat-

ing, we obtain the following:

B =

(
2λ−

(
p+

1

2

)
+ sin θĪ ′(u)ϕ− I ′(u) + G ′(u)θ

)
r + J (u, θ, ϕ), (5.18)
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where J is a smooth function. Making use of (5.17) and (5.18) in the fourth

equation of (5.4), we get

sin2 θ∂u
¯̄F(u, θ)r3 +

(
sin θĪ(u)− ∂ϕJ (u, θ, ϕ)

)
r − 2m sin θĪ(u) = 0,

which holds for all values of r. Since m ̸= 0, we get Ī(u) = 0 and

r2 sin2 θ∂u
¯̄F(u, θ)− ∂ϕJ (u, θ, ϕ) = 0.

Solving the last equation gives

J (u, θ, ϕ) = r2 sin2 θ∂u
¯̄F(u, θ)ϕ+ J̄ (u, θ), (5.19)

where J̄ is a smooth function. Making use of the above results in (5.18) and

(5.17), we get

A = I(u)− G(u)θ,

B =
(
2λ−

(
p+ 1

2

)
− I ′(u) + G ′(u)θ

)
r + r2 sin2 θ∂u

¯̄F(u, θ)ϕ

+J̄ (u, θ),

C =
[
λ−

(
p
2
+ 1

4

)]
θ + 1

r
G(u)− sin2 θ∂θ

¯̄J (u, θ)ϕ+ Ḡ(u),

D =
[
λ−

(
p
2
+ 1

4

)]
ϕ+ ¯̄J (u, θ).

(5.20)

Inserting (5.20) in the third equation of (5.4), we obtain

(
−2r2 sin2 θ∂u∂θ

¯̄F(u, θ)− r2 sin 2θ∂u
¯̄F(u, θ)

)
ϕ

+∂θJ̄ (u, θ) + r2Ḡ ′(u)−
(
2m− r

r

)
G(u) = 0,

which holds for all values of ϕ. Thus we get
∂θJ̄ (u, θ) + r2Ḡ ′(u)−

(
2m−r

r

)
G(u) = 0,

sin θ∂θ∂u
¯̄F(u, θ) + cos θ∂u

¯̄F(u, θ) = 0.
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Solving the last two equations, we obtain the following relations:
J̄ (u, θ) =

((
2m−r

r

)
G(u)− r2Ḡ ′(u)

)
θ + J̃ (u),

¯̄F(u, θ) = csc θ
∫
K(u)du+ a,

(5.21)

where J̃ and K are smooth functions and a ∈ R. As a consequence of (5.21) in

(5.20), we get

A = I(u)− G(u)θ,

B =
(
2λ−

(
p+ 1

2

)
− I ′(u) + G ′(u)θ

)
r + r2 sin2 θ csc θK(u)ϕ

+
((

2m−r
r

)
G(u)− r2Ḡ ′(u)

)
θ + J̃ (u),

C =
[
λ−

(
p
2
+ 1

4

)]
θ + 1

r
G(u) + cos θ

∫
K(u)duϕ+ Ḡ(u),

D =
[
λ−

(
p
2
+ 1

4

)]
ϕ+ csc θ

∫
K(u) + a.

(5.22)

Making use of (5.22) in the first equation of (5.4), we obtain(
2m− r

r

)
(I ′(u)− 2G ′(u)θ)− (G ′′(u)θ − I ′′(u))r − r2 sin θK′(u)ϕ+ r2Ḡ ′′(u)θ

−J̃ ′(u) +
2m′

r2
=

[
λ−

(
p

2
+

1

4

)](
2m− r

r

)
,

which implies
r2 sin θK′(u) = 0,

r2Ḡ ′′(u)− rG ′′(u)− 2
(
2m−r

r

)
G ′(u) = 0,(

2m−r
r

)
I ′(u) + rI ′′(u)− J̃ ′(u) + 2m′

r2
=

[
λ−

(
p
2
+ 1

4

)] (
2m−r

r

)
.

(5.23)

Solving the first equation of (5.23), we obtain K(u) = ā ∈ R. Differentiating

the second equation three times with respect to r gives G(u) = b ∈ R. As a

consequence, the second equation of (5.23) becomes Ḡ ′′(u) = 0 which implies

Ḡ(u) = a′u+ b′, where a′, b′ ∈ R.
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Differentiating the third equation four times with respect to r yields

mI ′(u) +
5m′

r
=

[
λ−

(
p

2
+

1

4

)]
m. (5.24)

Differentiating (5.24) by r yields m′ = 0, implying that m is constant. As a

result, spacetime is transformed into Schwarzschild spacetime. As a consequence,

(5.24) becomes I ′(u) =
[
λ−

(
p
2
+ 1

4

)]
which implies I(u) =

[
λ−

(
p
2
+ 1

4

)]
u+ d,

where d ∈ R.

Using the value of I and m′ = 0 in the third equation of (5.24), we obtain

J̃ (u) = k ∈ R. As a consequence of the above values, the components of vector

field V are obtained as follows:

A =
[
λ−

(
p
2
+ 1

4

)]
u− bθ + d,

B =
[
λ−

(
p
2
+ 1

4

)]
r +

(
2mb
r

− a′r2 − b
)
θ − ār2 sin θϕ+ k,

C =
[
λ−

(
p
2
+ 1

4

)]
θ + b

r
+ (ā cos θ)uϕ+ a′u+ b′,

D =
[
λ−

(
p
2
+ 1

4

)]
ϕ+ uā csc θ + a.

(5.25)

Hence, we can state the following theorem:

Theorem 5.1. If a Vaidya spacetime with its metric given by (2.49) admits a

conformal Ricci soliton with its vector field given by V = A∂u+B∂r+C∂θ+D∂ϕ,

then the spacetime reduces to a Schwarzschild spacetime with the vector field V

given by (5.25).

From (5.24), we have seen that the spacetime mass-energy function becomes

constant, i.e., m′(u) = 0. If the Vaidya metric’s mass-energy function is constant,

then the mass of the collapsing or expanding matter is conserved over time.

Therefore, there is no matter radiating either inwards or outwards and the mass

remains fixed within the evolving spacetime which is stationary. The mass-energy

function in the above scenario indicates the entire mass-energy of the core object,

which is dispersed symmetrically spherically. As a result, the resultant metric,
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the Schwarzschild metric represents a static spherically symmetric spacetime.

Remark 5.1. The above Theorem 5.1 implies that when the spacetime meets the

criteria for a conformal Ricci soliton with the provided vector field V , it acts

like a Schwarzschild spacetime. The discovery that a Vaidya spacetime, which

was originally distinguished by its dynamic nature and reliance on the collaps-

ing or expanding mass, can transform into a Schwarzschild spacetime under the

conditions of admitting a conformal Ricci soliton is a remarkable demonstration

of the interconnectedness of various gravitational solutions. Schwarzschild space-

time, known as the template for static spherically symmetric black holes, has long

been regarded as a foundational concept in our knowledge of gravity. This result

not only establishes an intriguing relationship between dynamic and static solu-

tions, but also demonstrates the potency of conformal symmetries in controlling

spacetime behavior. It emphasizes the conformal Ricci soliton’s adaptability as a

geometric term, offering fresh light on the underlying mathematical structure of

these spacetimes. This finding opens up new areas of investigation, having impli-

cations for both the theoretical study of black holes and a larger knowledge of the

links between alternative solutions to Einstein’s field equations.

5.1.2 Conformal Gradient Ricci Soliton in Vaidya Space-

time

Let us consider an arbitrary gradient vector field V = grad f on the Vaidya

metric (1.62), where f is the potential function. Then, using (1.62), we obtain

grad f = −(∂rf)∂u −
(
∂uf +

(
2m− r

r

)
∂rf

)
∂r +

1

r2
(∂θf)∂θ

+
1

r2 sin2 θ
(∂ϕf)∂ϕ. (5.26)

As previously stated, a Vaidya metric (1.62) admits a conformal Ricci soliton with

its vector field V given by (5.25). As a consequence, by comparing Equations
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(5.25) and (5.26), we obtain the following expressions:

A = −∂rf,

B = −
(
∂uf +

(
2m−r

r

)
∂rf

)
,

C = 1
r2
∂θf,

D = 1
r2 sin2 θ

∂ϕf.

(5.27)

where the values for A,B,C and D are given by (5.25) Solving the first equation

of (5.27) gives

f = −ur
[
λ−

(
p

2
+

1

4

)]
+ brθ − dr + f̃(u, θ, ϕ), (5.28)

where f̃ is a smooth function. We obtain the following via inserting (5.28) into

the third equation of (5.27) and solving the resultant equation:

f̃(u, θ, ϕ) =
r2θ2

2

[
λ−

(
p

2
+

1

4

)]
+ āur2ϕ sin θ + (a′u+ b′)r2θ + ˜̃f(u, ϕ), (5.29)

where ˜̃f is a smooth function. Making use of (5.29) and (5.28) in the fourth

expression of (5.27), we get

˜̃f(u, ϕ) =
r2ϕ2 sin2 θ

2

[
λ−

(
p

2
+

1

4

)]
+ r2aϕ sin2 θ + f̄(u), (5.30)

where f̄ is a smooth function. Utilizing (5.30) and (5.29) in (5.28) yields

f =
r

2

(
rθ2 + rϕ2 sin2 θ − 2u

) [
λ−

(
p

2
+

1

4

)]
+ brθ − dr + āur2ϕ sin θ

+ (a′u+ b′)r2θ + r2aϕ sin2 θ + f̄(u). (5.31)
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Using (5.31) in the second equation of (5.27) results in the following:

f̄(u) =

(
1− 2m

r

){(
rθ2 + rϕ sin2 θ − u

2

)[
λ−

(
p

2
+

1

4

)]
u

}
+

(
1− 2m

r

){
−du+ āu2rϕ sin θ + rθ(a′u+ 2b′)u+ r2auϕ sin2 θ

}
+ a′r2θu− ku+ 2bθu− 4mbθ

r
u. (5.32)

Combining (5.32) and (5.31), we obtain the following:

f =
r

2

(
rθ2 + rϕ2 sin2 θ − 2u

) [
λ−

(
p

2
+

1

4

)]
+ brθ − dr + āur2ϕ sin θ

+ (a′u+ b′)r2θ + r2aϕ sin2 θ

+

(
1− 2m

r

){(
rθ2 + rϕ sin2 θ − u

2

)[
λ−

(
p

2
+

1

4

)]
u

}
+

(
1− 2m

r

){
−du+ āu2rϕ sin θ + rθ(a′u+ 2b′)u+ 2aruϕ sin2 θ

}
+ a′r2θu− ku+ 2bθu− 4mbθ

r
u. (5.33)

Equation (5.30) is now differentiated three times with respect to θ, and the result

is then differentiated twice with respect to ϕ to get the expression for λ as follows:

λ =
p

2
+

1

4
, (5.34)

which implies that a = 0. Again, differentiating (5.32) and (5.29) two times with

respect to r and utilizing (5.34) and the values of a, we get d = b = 0 implying

a′ = 0 and ā = b′ = 0. Thus, (5.33) reduces to

f = −ku. (5.35)

Hence, we conclude with the theorems below:

Theorem 5.2. If a Vaidya metric provided by equation (1.62) admits a conformal

gradient Ricci soliton, then the potential function f must satisfy equation (5.35).

Theorem 5.3. A conformal gradient Ricci soliton on Vaidya spacetime is shrink-
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ing, steady or expanding according as

p > −1

2
, p = −1

2
or p < −1

2

respectively.

5.2 Investigations on Relativistic Magneto Fluid

Spacetime stuffing in f (R)-gravity and Ricci

Solitons

Siddiqi and De (2021) published their work on “Relativistic Magneto Fluid

Spacetime” where the matter content includes magnetism. They characterize

the curvature properties of the spacetime and validate to Maxwell equation of

magnetism for the magnetic field intensity, H. Also, Siddiqi et al. (2023) studied

the solitonic aspects of the spacetime. Here, we study the spacetime in the

settings of f(R)-gravity.

5.2.1 Magneto Fluid Spacetime in f(R)-gravity

A Magneto Fluid Spacetime is a spacetime where the matter content includes

magnetic properties such as magnetic strength, intensity, permeability, density,

flux and pressure.

In Magneto Fluid spacetime, the magnetic energy momentum tensor T is of

the form (Siddiqi and De, 2021; Siddiqi et al., 2023)

T = pg + (p+ ρ)η ⊗ η + µ

{(
η ⊗ η +

1

2
g

)
H − γ ⊗ γ

}
. (5.36)

In this particular framework, the variable ρ is employed to denote the density

of the magneto-fluid, while p is used to represent the pressure. The symbol µ is

assigned to denote the magnetic permeability, γ stands for the magnetic flux, and
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H is employed to indicate the strength of the magnetic field. It is noteworthy

that the functions η(X) and g(Y, ζ) are non-zero 1-forms, where η(X) = g(X, ξ)

and g(Y, ζ) = γ(Y ). Moreover, the vector ξ is taken as the unit timelike vector

field with the condition that g(ξ, ξ) = −1 and ζ is the spacelike magnetic flux

vector field, ensuring that g(ζ, ζ) = 1. Importantly, these vectors are mutually

orthogonal, as denoted by g(ξ, ζ) = 0.

Now, the Einstein-Hilbert action for f(R)-gravity has the expression

H =
1

κ2

∫
[f(R) + Lm]

√
−gd4x, (5.37)

where f(R) represents an arbitrary function of the Ricci scalar R and Lm denotes

the Lagrangian of the scalar field. The tensor T of the matter is expressed as

Tαβ =
−2δ(

√
−g)Lm√

−gδgαβ
. (5.38)

Taking variation of (5.37) with respect to gαβ yields

fR(R)Ricαβ −
1

2
f(R)gαβ + (gαβ∇θ∇θ −∇α∇β)fR(R) = κ2Tαβ, (5.39)

where Ric is the Ricci tensor, fR(R) = ∂f(R)
∂R

and fR(R) ̸= 0. Taking constant

Ricci scalar, the above equation gives

Ricαβ −
R

2
gαβ =

κ2

fR(R)
T eff
αβ ,

where

T eff
αβ = Tαβ +

f(R)−RfR(R)

2κ2
gαβ.

Thus,

Ricαβ −
R

2
gαβ =

κ2

fR(R)
Tαβ +

f(R)−RfR(R)

2fR(R)
gαβ. (5.40)
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In view of (5.36), (5.40) can be written as

Ricαβ =

[
2κ2

(
p+ µH

2

)
+ f(R)

2fR(R)

]
gαβ +

κ2(p+ ρ+ µH)

fR(R)
ηαηβ −

κ2µ

fR(R)
γαγβ.

(5.41)

The foregoing equation can be written in index free notation for any vector fields

X, Y as

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ) + cγ(X)γ(Y ), (5.42)

where a =
2κ2(p+µH

2 )+f(R)

2fR(R)
, b = κ2(p+ρ+µH)

fR(R)
and c = − κ2µ

fR(R)
.

Contracting (5.41), we obtain

R =

[
4κ2

(
p+ µH

2

)
+ 2f(R)

fR(R)

]
− κ2(p+ ρ+ µ(H + 1))

fR(R)
. (5.43)

Now, utilizing the expressions for the Ricci tensor, Ricci scalar and the magnetic-

energy momentum tensor of the Magneto-Fluid Spacetime in f(R)-gravity, the

Einstein equation (1.60) becomes[
Λ− κ2

p+ ρ+ µ(2H + 1) + f(R)

2fR(R)
− κ2

(
p+

µH

2

)]
gαβ

= κ2
(
1− 1

fR(R)

)
(p+ ρ+ µH)ηαηβ + κ2µ

(
1

fR(R)
− 1

)
γαγβ.

However, throughout our study, we will assume that Λ = 0. Now, we state the

following results:

Theorem 5.4. The Ricci tensor in the context of a Magneto Fluid Spacetime

within the framework of f(R)-gravity theory with constant Ricci scalar takes the

following expression:

Ricαβ =

[
2κ2

(
p+ µH

2

)
+ f(R)

2fR(R)

]
gαβ +

κ2(p+ ρ+ µH)

fR(R)
ηαηβ −

κ2µ

fR(R)
γαγβ.

Corollary 5.1. The Ricci scalar in the context of a Magneto Fluid Spacetime
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within the framework of f(R)-gravity theory takes the following expression:

R =

[
4κ2

(
p+ µH

2

)
+ 2f(R)

fR(R)

]
− κ2(p+ ρ+ µ(H + 1))

fR(R)
.

In view of (5.42) and Definition 1.6, we conclude:

Theorem 5.5. The Magneto Fluid Spacetime stuffing in f(R)-gravity is a gen-

eralized quasi-Einstein spacetime.

Now, from Corollary 5.1, we obtain

p =
1

3

[
RfR(R)

κ2
+ ρ+ µ(1−H)− 2f(R)

κ2

]
. (5.44)

Thus, we conclude with the following:

Corollary 5.2. In the context of f(R)-gravity, when a Magneto Fluid Spacetime

is incorporated, the equation of state (EoS) is expressed as (5.44).

Remark 5.2. Presently, under the assumption of a radiation-type matter source,

we have EoS = w = 1
3
where w = p

ρ
, then (5.44) gives

H = 1 +
RfR(R)− 2f(R)

κ2µ
, (5.45)

which gives the expression for the magnetic strength of the considered spacetime

in the context of f(R)-gravity theory. Next, if we, again assume that the matter

source is of phantom barrier, then we have p = −ρ which gives

p =
1

4

[
RfR(R)

κ2
− 2f(R)

κ2
+ µ(1−H)

]
, (5.46)

and

ρ =
1

4

[
2f(R)

κ2
− RfR(R)

κ2
+ µ(H − 1)

]
. (5.47)

Also, from (5.42), we have
Ric(X, ξ) = (a+ b)η(X),

Ric(X, ζ) = (a+ c)γ(X),

(5.48)

147



Chapter 5

where a, b, c are given by (5.42).

Throughout the study, we shall assume that the f(R)-gravity theory consid-

ered in our study has a constant Ricci scalar.

5.2.2 Magneto Fluid spacetime in the setting of f(R)-

gravity and Ricci soliton

We know that the Ricci soliton equation is given by (1.68). Now, for any

vector fields X, Y, Z, we have

Ric(Y, Z) = −λg(Y, Z)− 1

2
LXg(Y, Z) (5.49)

= −λg(Y, Z)− 1

2
[g(∇YX,Z) + g(Y,∇ZX)]. (5.50)

Now, setting X = ξ in (5.50), we have

Ric(Y, Z) = −λg(Y, Z)− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)].

Contracting the above expression, we obtain

R = −4λ− div ξ. (5.51)

Now, comparing (5.51) with (5.43), we get

4a− b+ c = −4λ− div ξ. (5.52)

Taking Y = Z = ξ in (5.42) and (5.49) yields

Ric(ξ, ξ) = −a− b+ c,

Ric(ξ, ξ) = λ.

Then,

c− a− b = λ. (5.53)
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From (5.52) and (5.53), we obtain

a = −λ− div ξ

5
, (5.54)

which implies that b− c = div ξ
5

. Next, if ξ is killing, then a = −λ or λ = −a and

b− c = 0 as b, c ̸= 0. Then R = −4λ which implies that

λ = −
2κ2

(
p+ µH

2

)
+ f(R)

2fR(R)
. (5.55)

Hence, we conclude with the following theorem:

Theorem 5.6. If a Magneto Fluid Spacetime, embedded within the framework of

f(R)-gravity, possesses a Ricci soliton with a Killing unit timelike vector field ξ,

then the soliton exhibits shrinking, steady, or expanding behaviour based on

p < −1

2

(
f(R)

κ2
+ µH

)
, p = −1

2

(
f(R)

κ2
+ µH

)
, or p > −1

2

(
f(R)

κ2
+ µH

)
,

respectively.

Now, setting X = ζ and using (1.66), we get

Ric(Y, Z) = −(λ+ ω)g(Y, Z)− ωη(Y )η(Z). (5.56)

Now, using (5.42) and (5.56), we obtain[
2κ2

(
p+ µH

2

)
+ f(R)

2fR(R)

]
g(Y, Z) +

κ2(µH + p+ ρ)

fR(R)
η(Y )η(Z)− κ2µ

fR(R)
γ(Y )γ(Z)

= −(λ+ ω)g(Y, Z)− ωη(Y )η(Z). (5.57)

Putting Y = Z = ξ in the above equation, we get

λ = −κ2 {3µH + 4p+ 2ρ} − f(R)

2fR(R)
− 2ω. (5.58)

Thus, we state the following:

Theorem 5.7. In the scenario where a Magneto Fluid Spacetime within the
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framework of f(R)-gravity possesses a Ricci soliton featuring a unit timelike torse-

forming vector field ξ with the condition fR(R) ̸= 0, the soliton is

1. shrinking when f(R)
2fR(R)

< −2ω − κ2 {3µH + 4p+ 2ρ},

2. steady when f(R)
2fR(R)

= −2ω − κ2 {3µH + 4p+ 2ρ},

3. expanding when f(R)
2fR(R)

> −2ω − κ2 {3µH + 4p+ 2ρ}.

Again, from (5.48), we have

Ric(ξ, ξ) = −a− b

= −κ2 {3µH + 4p+ 2ρ} − f(R)

2fR(R)
. (5.59)

So, if R(ξ, ξ) > 0, that is

f(R)

2fR(R)
< −κ2 {3µH + 4p+ 2ρ} ,

then, the considered spacetime obeys the TCC (Timelike Convergence Condi-

tion), which further implies that the spacetime satisfies cosmic SEC (Strong

Energy Condition). Utilizing this fact in (5.58) with ω < 0 and fR(R) < 0, we

can state:

Theorem 5.8. If a Magneto Fluid Spacetime within the framework of f(R)-

gravity contains a Ricci soliton characterized by a unit timelike torse-forming

vector field ξ and adhering to the Timelike Convergence Condition (TCC), the

soliton shrinks if the scalar function ω and fR(R) are less than zero.

We know that the TCC impliesNCC (Null Convergence Condition) according

to Hawking and Ellis (1973). Thus, combining with the above Theorem 5.8, we

have the following:

Corollary 5.3. In the context of f(R)-gravity, if a Magneto Fluid Spacetime ac-

commodates a shrinking soliton characterized by a unit timelike torse-forming vec-

tor field ξ, then the spacetime satisfies the Null Convergence Condition (NCC).
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Vilenkin and Wall (2014) extends Penrose Singularity Theorem (Hawking and

Ellis, 1973) in which they assume a spacetime M that obeys NCC, has a non-

compact, connected Cauchy surface and contains some black holes. They also

assume that there is no naked singularities on or outside the horizon and further-

more there is a trapped surface outside the black hole horizon. Then the trapped

surface must be completely surrounded by the event horizon.

Now, if we consider the case of having a Magneto Fluid Spacetime embedded

in f(R)-gravity admitting a Ricci soliton with torse forming vector field, ξ with

the scalar function ω < 0 and fR(R) < 0 (i.e., the soliton is shrinking and obeys

the NCC), then we assume that the spacetime in f(R)-gravity has a non-compact,

connected Cauchy surface and contains some black holes with the existence of a

trapped surface T and that all the singularities lie in the interior of the event

horizon. Hence, the trapped surface must be completely surrounded by the event

horizon. Furthermore, either the event horizon extends all the way to past infin-

ity( initial singularity) or there exist black holes whose horizons contain multiple

connected components.

5.2.3 Ricci Soliton on Magneto Fluid Spacetime in f(R)-

gravity along ϕ(Ric)-vector field

From the soliton equation (1.68), we have for any vector fields X, Y, Z,

LXg(Y, Z) + 2(a+ λ)g(Y, Z) + 2bη(Y )η(Z) + 2cγ(Y )γ(Z) = 0. (5.60)

By the definition of Lie derivative and (1.67), we obtain

(Lϕg)(Y, Z) = 2µRic(Y, Z), (5.61)
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for any Y, Z. Then, setting X = ϕ in (5.60) and then utilizing (5.61) results in

Ric(Y, Z) = − 1

µ
[(a+ λ)g(Y, Z) + bη(Y )η(Z) + cγ(Y )γ(Z)]. (5.62)

which yields the following result:

Theorem 5.9. In the context of f(R)-gravity, if a Magneto Fluid Spacetime has a

Ricci soliton with a vector field ϕ that fits the conditions of being a proper ϕ(Ric)-

vector field, the spacetime is classified as a generalized quasi-Einstein spacetime.

Setting Y = Z = ξ in (5.62), we get

λ = −(1 + µ)(a+ b). (5.63)

Theorem 5.10. Consider a Magneto Fluid Spacetime embedded within f(R)-

gravity, allowing for a Ricci soliton with a suitable ξ(Ric)-timelike velocity vector

field ξ. In this context, the spacetime is characterized as shrinking, steady, or

expanding based on whether

1. µ < −1, µ = −1, or µ > −1 respectively, provided a ̸= −b, or

2. a < b, a = b, or a > b respectively, provided µ ̸= −1.

Corollary 5.4. Consider a Magneto Fluid Spacetime embedded within the frame-

work of f(R)-gravity. Suppose the spacetime accommodates a Ricci soliton fea-

turing a covariantly constant ξ(Ric)-timelike velocity vector field denoted as ξ. In

this context, the spacetime exhibits a shrinking, steady, or expanding behaviour

depending on whether a < b, a = b, or a > b respectively.

Again, contracting (5.62), we obtain

Theorem 5.11. In the context of f(R)-gravity, when a Magneto Fluid Spacetime

accommodates a Ricci soliton featuring an appropriate ϕ(Ric)-vector field denoted
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as ϕ, the expression for the scalar curvature is provided by:

R =
1

µ
[b− c− 4(a+ λ)],

where a, b, c are defined by (5.42).

5.2.4 Modified Poisson and Liouville equations with the

harmonic feature of Ricci soliton on a Magneto Fluid

Spacetime in f(R)-gravity

In this subsection, we will be looking for the modified Poisson and Liouville

equation of a Ricci soliton in the framework of a Magneto Fluid Spacetime em-

bedded within f(R)-gravity theory with its harmonic character.

Now, if we take ξ = grad h where h is a smooth function, then from (5.54)

we can state the following:

Theorem 5.12. Consider a Magneto Fluid Spacetime in the setting of f(R)-

gravity admitting a Ricci soliton. If the velocity vector field ξ associated with

this Ricci soliton is of the gradient type, then the function h solves the modified

Poisson equation specific to f(R)-gravity as

∇2h = 5

[
λ+

2κ2
(
p+ µH

2

)
+ f(R)

2fR(R)

]
.

Moreover, considering a smooth function h on the manifold M and a vector

field ξ, a direct computation yields the expression:

div(hξ) = ξ(dh) + h div ξ.

If h belongs to the smooth functions space C∞(M) and acts as the last multiplier

of ξ concerning the metric g and this implies that div(hξ) = 0. The associated

equation,

ξ(d ln ξ) = −div(ξ),

153



Chapter 5

is referred as the Liouville equation of ξ in the context of the metric g. Considering

the above two equations along with (5.54), the following implications arise:

Theorem 5.13. Consider a Magneto Fluid Spacetime in the setting of f(R)-

gravity which allow the inclusion of a Ricci soliton. In the event that the velocity

vector field ξ linked to this Ricci soliton is characterized as being of the gradient

type, then in the context of f(R)-gravity, the modified Liouville equation is

ξ(d ln h) = −5

[
λ+

2κ2
(
p+ µH

2

)
+ f(R)

2fR(R)

]
.

Next, we recall that if ∇2h = 0, a function h is said to be harmonic. As a

result of Theorem 5.12, we get the following results:

Corollary 5.5. Consider a Magneto Fluid Spacetime in the context of f(R)-

gravity, which accommodates a Ricci soliton. The velocity vector field ξ associated

with this Ricci soliton is classified as gradient. Furthermore, if the function h

exhibits harmonic behaviour on the spacetime, then the spacetime exhibits either

decreasing, stable, or expanding behaviour, depending on

p < −µH
2

− f(R)

2κ2
, p = −µH

2
− f(R)

2κ2
, or p > −µH

2
− f(R)

2κ2

respectively.

Corollary 5.6. Consider a Magneto Fluid Spacetime with f(R)-gravity and a

Ricci soliton. This Ricci soliton is coupled with a gradient velocity vector field

ξ. Furthermore, we see that, in the case, when the function f shows harmonic

behaviour,

p = − 1

2κ2
[2λfR(R) + f(R)]− µH

2
.
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5.2.5 Magneto Fluid Spacetime in the framework of f(R)-

gravity and Gradient Ricci soliton

This subsection deals with gradient Ricci soliton as a metric for a Magneto

Fluid Spacetime in the framework of f(R)-gravity.

Consider X to be the gradient of a smooth function h, with D as the gradient

operator. In this case, (1.68) can be expressed as

∇YDh+QY + λY = 0. (5.64)

Utilizing the relationship

R(Y,X)Dh = ∇Y∇XDh−∇X∇YDh−∇[Y,X]Dh, (5.65)

equation (5.64) transforms into

R(Y,X)Dh = (∇YQ)X − (∇XQ)Y. (5.66)

Differentiating (5.64) covariantly along X results in

∇X∇YDh = −[(∇XQ)Y −Q(∇XY )]− λ∇XY. (5.67)

Swapping X and Y in the above equation results in

∇Y∇XDh = −[(∇YQ)X −Q(∇YX)]− λ∇YX. (5.68)

Now, (5.42) can be expressed as

QY = aY + bη(Y )ξ + cγ(Y )ζ, (5.69)
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for all Y ∈ χ(M), where M is the Magneto Fluid Spacetime stuffing in f(R)-

gravity. Again, differentiating (5.69) covariantly along Y , we obtain

(∇YQ)(X) = Y (a)X + b(∇Y η)(X)ξ + bη(X)∇Y ξ + c(∇Y γ)(X)ζ + cγ(X)∇Y ζ.

(5.70)

In view of (5.66) and (5.70), we get

R(Y,X)Dh = Y (a)X −X(a)Y + b[(∇Y η)(X)ξ + η(X)∇Y ξ − (∇Xη)(Y )ξ

− η(Y )∇Xξ] + c[(∇Y γ)(X)ζ + γ(X)∇Y ζ − (∇Xγ)(Y )ζ

− γ(Y )∇Xζ]. (5.71)

Next, contracting the foregoing equation yields

Ric(X,Dh) = −3X(a) + b[(∇ξη)(X)− (∇Xη)(ξ) + η(X)divξ]. (5.72)

Also, from (5.42), we have

Ric(X,Dh) = aX(h) + bη(X)ξ(h) + cγ(X)ζ(h). (5.73)

Setting X = ξ in (5.72) and (5.73) and then comparing the obtained results, we

get

(b− a)ξ(h) = 3ξ(a) + b divξ. (5.74)

Let us assume now that ξ is Killing, i.e., Lξg = 0, and consider an invariant a

acting on the vector field ξ, implying that ξ(a) = 0. Therefore, this implies that

divξ = 0. Hence, we have from (5.74), either a = b or ξ(h) = 0. Now, we have

the following two cases:

Case I: Let us first assume that ξ(h) ̸= 0 and a = b. Then, from (5.42), we

obtain

f(R) = 2κ2µH + 2κ2ρ, (5.75)
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which gives the expression for the function f(R) in terms of magnetic strength,

permeability and density of the magnetic fluid, provided fR(R) ̸= 0.

Case II: Again, let us assume that a ̸= b and ξ(h) = 0. Then, taking covariant

derivative of g(ξ,Dh) = 0 along Y with (5.42) and (5.64) gives

g(∇Y ξ,Dh) = −[λ+ (a− b)]η(Y ). (5.76)

We know that ξ is Killing, hence, we have g(∇Y ξ,X) + g(Y,∇Xξ) = 0. Next, by

substituting X = ξ, we get g(Y,∇ξξ) = 0 since g(∇Y ξ, ξ) = 0. Therefore, setting

Y = ξ in (5.76) results in

λ = 2κ2µH + 2κ2ρ− f(R). (5.77)

With the above two cases, we conclude that:

Theorem 5.14. Suppose a Magneto Fluid Spacetime within f(R)-gravity accom-

modates a gradient Ricci soliton. In the case where the velocity vector field ξ is

a Killing vector, and a scalar quantity a remains invariant along ξ, subject to

the condition fR(R) ̸= 0, then the expression for the function f(R) is determined

by (5.75), or alternatively, the soliton exhibits shrinking, steady, or expanding

behavior based on

f(R) < 2κ2[µH + ρ], f(R) = 2κ2[µH + ρ], or f(R) > 2κ2[µH + ρ]

respectively.

Remark 5.3. Looking at the expression of f(R) in (5.75) and considering our

assumption that the Ricci scalar being constant, we see that f(R) depends solely

on the magnetic field intensity or the magnetic field strength, magnetic perme-

ability and the density of the magnetic fluid. However, these three terms would

affect the gravitational dynamics of the spacetime when considering gradient Ricci

soliton as the metric of the spacetime with the components of the Ricci tensor a
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and b being equal. So, depending on the curvature of the spacetime, the magnetic

flux within the spacetime would vary dynamically which could lead to interesting

phenomena where gravitational and electromagnetic properties influence one an-

other. Moreover, as it can be seen from Case II, we can say that our argument is

valid for the gradient Ricci soliton admitted into the spacetime considered in the

framework of f(R)-gravity theory.

5.3 Ricci Solitons and String Cloud Spacetime

in f (R)-gravity

Letelier (1979), for the first time, introduced clouds of strings. Clouds of

strings represent intriguing theoretical constructs within the framework of gen-

eral relativity, offering novel insights into the gravitational dynamics of cosmic

structures. In this theoretical framework, fundamental strings, envisaged as one-

dimensional extended objects, aggregate to form macroscopic ensembles known

as string clouds. Unlike point particles, strings possess finite size and exhibit

rich dynamical behavior, including oscillations, winding modes, and interactions

mediated by their tension. Within general relativity, the presence of string clouds

induces curvature in spacetime, manifesting as gravitational fields that influence

the motion of surrounding matter and radiation. String clouds have been pre-

sented as a possible explanation for a variety of astronomical events, including

the development of primordial black holes, the generation of cosmic strings in the

early universe, and the seeding of structure in the cosmic web. Furthermore, their

research connects with other fields of theoretical physics, including string theory,

cosmology, and high-energy physics, providing a holistic approach to understand-

ing the underlying nature of spacetime and gravity. While observable evidence for

Z. Chhakchhuak and J.P. Singh (2024). Ricci Solitons and String Cloud Spacetime in
f(R)-gravity, Int. J. Theor. Phys. 63, 185.
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the presence of string clouds is still lacking, their theoretical relevance highlights

their continuous research as promising paths for investigating the cosmos on both

macroscopic and microscopic levels.

Inspired by the aforementioned investigations, we undertake an exploration

of the String Cloud Spacetime within the settings of f(R)-gravity theory.

5.3.1 String Cloud Spacetime in f(R)-gravity

In the context of String Cloud Spacetime within f(R) gravity, we’re dealing

with a theoretical framework where spacetime is described using string theory and

the gravitational dynamics are governed by a modified theory of gravity known

as f(R) gravity. This framework aims to incorporate both quantum mechanics

(through string theory) and gravitational interactions (through f(R) gravity) into

a unified theory. In our study of String Cloud Spacetime, we shall consider its

dimension to be 4.

The string cloud energy momentum tensor T is of the form (Tye, 2008):

T = ρη ⊗ η − θγ ⊗ γ, (5.78)

where the variable ρ is employed to denote the associated particle density of the

cloud fluid and θ is the string tension. Taking into account the rest energy density

of particles, ϵ0, we have

ρ = θ + ϵ0. (5.79)

It is essential to note that the functions η(X) and g(Y, ζ) represent non-zero 1-

forms, where η(X) = g(X, ξ) and g(Y, ζ) = γ(Y ). Additionally, the vector ξ is

designated as the unit timelike vector field, satisfying the condition g(ξ, ξ) = −1,

while ζ serves as the unit spacelike vector field, ensuring g(ζ, ζ) = 1. Crucially,

these vectors are mutually orthogonal, as indicated by g(ξ, ζ) = 0.

Let us recall the famous Einstein field equation (EFE’s) given in (1.60). For
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our study, without loss of generality, let us take G, c = 1 such that (1.60) becomes

Ric+ Λg − R

2
g = 8πT . (5.80)

In index free notation and utilizing (5.78), the above equation becomes

Ric(X, Y ) +

(
Λ− R

2

)
g(X, Y ) = 8π[ρη(X)η(Y )− θγ(X)γ(Y )]. (5.81)

Contracting the foregoing equation, we obtain

R = 4Λ + 8π(ρ+ θ). (5.82)

Now, in the context of f(R)-gravity, the Einstein-Hilbert action for f(R)-

gravity has the expression

H =
1

8π

∫
[f(R) + Lm]

√
−gd4x, (5.83)

where f(R) represents an arbitrary function of the Ricci scalar R and Lm denotes

the Lagrangian of the scalar field. The tensor T characterizing the matter is

Tαβ =
−2δ(

√
−g)Lm√

−gδgαβ
. (5.84)

Now, taking variation of (5.83) with respect to gαβ yields

fR(R)Ricαβ −
1

2
f(R)gαβ + (gαβ∇c∇c −∇a∇b)fR(R) = 8πTαβ, (5.85)

where Ric is the Ricci tensor and fR(R) = ∂f(R)
∂R

. We assume that f(R) ̸=

0, fR(R) ̸= 0 and that fR(R) < ∞. Taking constant Ricci scalar, the above

equation gives

Ricαβ −
R

2
gαβ =

8π

fR(R)
T eff
αβ ,

where

T eff
αβ = Tαβ +

f(R)−RfR(R)

16π
gαβ.
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Thus,

Ricαβ −
R

2
gαβ =

8π

fR(R)
Tαβ +

f(R)−RfR(R)

2fR(R)
gαβ. (5.86)

In view of (5.78), (5.86) can be written as

Ricαβ =
f(R)

2fR(R)
gαβ +

8πρ

fR(R)
ηαηβ −

8πθ

fR(R)
γαγβ. (5.87)

The foregoing equation can be written in index free notation for any vector fields

X, Y as

Ric(X, Y ) = ag(X, Y ) + bη(X)η(Y ) + cγ(X)γ(Y ), (5.88)

where a = f(R)
2fR(R)

, b = 8πρ
fR(R)

and c = − 8πθ
fR(R)

.

Contracting (5.87), we obtain

R =
2f(R)

fR(R)
− 8πρ

fR(R)
− 8πθ

fR(R)
. (5.89)

Now, we can state the following:

Theorem 5.15. The Ricci tensor in the context of a String Cloud Spacetime

within the framework of f(R)-gravity theory takes the following expression:

Ricαβ =
f(R)

2fR(R)
gαβ +

8πρ

fR(R)
ηαηβ −

8πθ

fR(R)
γαγβ.

Corollary 5.7. The scalar curvature in the context of a String Cloud Spacetime

within the framework of f(R)-gravity theory takes the following expression:

R =
2f(R)

fR(R)
− 8πρ

fR(R)
− 8πθ

fR(R)
.

In view of (5.88) and Definition 1.6, we conclude:

Theorem 5.16. The String Cloud Spacetime stuffing in f(R)-gravity is a gener-

alized quasi-Einstein spacetime.

Also, from Corollary 5.7, we have
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Theorem 5.17. Within the domain of f(R)-gravity, the equation of state (EoS)

for a String Cloud Spacetime is expressed as follows:

ρ+ θ =
2f(R)−RfR(R)

8π
.

Also, from (5.88), we have
Ric(X, ξ) = (a+ b)η(X),

Ric(X, ζ) = (a+ c)γ(X),

(5.90)

where a, b, c are given by (5.88). Now, from (5.79) and Corollary 5.7, we can

state:

Theorem 5.18. If a String Cloud Spacetime in f(R)-gravity obeys the relation

given by (5.79), then the particle density ρ of the cloud fluid is given by

1

16π
(2f(R)−RfR(R)) +

ϵ0
2

and the string tension is

1

16π
(2f(R)−RfR(R))−

ϵ0
2
.

Combining the value of ρ and θ from the above theorem results in the follow-

ing:

Corollary 5.8. If a String Cloud Spacetime adhering to (5.79) within f(R)-

gravity fulfills the condition ρ
θ
= −1, then ρ is directly proportional to θ.

Remark 5.4. In the context of String Cloud Spacetime within f(R) gravity, the

equation ρ = θ + ϵ0 describes the total energy density, where ρ is the particle

density, θ is the string tension, and ϵ0 is the rest energy density of the particles.

When ρ
θ
= −1, it signifies a special condition known as the quintessence era. This

condition implies that the total energy density due to particles exactly balances out

the string tension. In other words, ρ is proportional to θ, with the proportionality
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factor being a negative one. This equilibrium between the energy stored in the

strings and the energy associated with particles has significant implications for

the stability and dynamics of the string cloud spacetime, particularly within the

framework of f(R) gravity. It represents a delicate balance that could influence

the curvature of spacetime and the gravitational interactions within the string

cloud.

Corollary 5.9. If a String Cloud Spacetime embedded within f(R)-gravity ad-

heres to (5.79) with a constant R, and satisfies the condition ρ
θ
= −1, then the

strings within the spacetime are considered massive, thus characterizing the space-

time as a massive String Cloud Spacetime.

We also know that the energy density σ and the particle density ρ are related

to the specific energy e and volume of the fluid V as (Wienberg, 1972; Jackiw et

al., 2004):

σ = ρe and ρ =
1

V
. (5.91)

Therefore, in light of the above equation, we conclude that:

Theorem 5.19. In a String Cloud Spacetime under f(R)-gravity with constant

R and ρ = θ+ ϵ0, the specific energy e and volume of the cloud fluid V are given

by

16πσ

2f(R)−RfR(R) + 8πϵ0

and

16π

2f(R)−RfR(R) + 8πϵ0
,

respectively.
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5.3.2 String Cloud Spacetime and Ricci soliton embedded

in f(R)-gravity

We know that the Ricci soliton equation is given by (1.68). Now, from the

soliton equation, we have for any vector fields Y and Z

Ric(Y, Z) = −λg(Y, Z)− 1

2
LXg(Y, Z) (5.92)

= −λg(Y, Z)− 1

2
[g(∇YX,Z) + g(Y,∇ZX)]. (5.93)

Now, setting X = ξ in (5.93), we have

Ric(Y, Z) = −λg(Y, Z)− 1

2
[g(∇Y ξ, Z) + g(Y,∇Zξ)].

Contracting the above expression, we obtain

R = −4λ− div ξ. (5.94)

Now, comparing (5.94) with (5.89), we get

4a− b+ c = −4λ− div ξ. (5.95)

Taking Y = Z = ξ in (5.88) and (5.92) yields

Ric(ξ, ξ) = −a− b+ c,

Ric(ξ, ξ) = λ.

Then,

c− a− b = λ. (5.96)

From (5.95) and (5.96), we obtain

a = −λ− div ξ

5
, (5.97)
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which implies that b− c = div ξ
5

. Next, if ξ is killing, then a = −λ or λ = −a and

b− c = 0 as b, c ̸= 0. Then R = −4λ which implies that

λ = − f(R)

2fR(R)
. (5.98)

Hence, we conclude with the following theorem:

Theorem 5.20. In the context of f(R)-gravity, if a String Cloud Spacetime ac-

commodates a Ricci soliton with a killing unit timelike vector field ξ, then the

Ricci soliton displays either shrinking, or expanding behavior according as

f(R) < 0, or f(R) > 0,

respectively.

A direct consequences of (5.98) and f(R) ̸= 0, fR(R) <∞, is as follows:

Corollary 5.10. In the case when a String Cloud Spacetime is placed inside the

framework of f(R)-gravity and employs a Ricci soliton defined by a killing unit

timelike vector field ξ, a stable Ricci soliton does not exist.

Next, setting X = ζ and using (1.66), we get

Ric(Y, Z) = −(λ+ ω)g(Y, Z)− ωη(Y )η(Z). (5.99)

Now, using (5.88) and (5.99), we obtain

f(R)

2fR(R)
g(Y, Z) +

8πρ

fR(R)
η(Y )η(Z)− 8πλ

fR(R)
γ(Y )γ(Z)

= −(λ+ ω)g(Y, Z)− ωη(Y )η(Z). (5.100)

Putting Y = Z = ξ in the above equation, we get

λ = −ω
(
1 +

8π

fR(R)

)
− 8π

fR(R)

(
ρ+

f(R)

16π

)
. (5.101)

Thus, we state the following:
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Theorem 5.21. In the context where a String Cloud Spacetime is governed by

f(R)-gravity and harbors a Ricci soliton characterized by a unit timelike torse-

forming vector field ξ, and the condition fR(R) ̸= 0 holds, the soliton is

1. shrinking when f(R) < −2ω(8π + fR(R))− 16πρ,

2. steady when f(R) = −2ω(8π + fR(R))− 16πρ,

3. expanding when f(R) > −2ω(8π + fR(R))− 16πρ.

Again, from (5.90), we have

Ric(ξ, ξ) = −a− b

= − f(R)

2fR(R)
− 8πρ

fR(R)
. (5.102)

So, if R(ξ, ξ) > 0, that is

f(R) < −16πρ,

then the spacetime adheres to the Timelike Convergence Condition (TCC) which

indicates its compliance with the Strong Energy Condition (SEC). Utilizing this

fact in (5.101) with ω > 0, the following result follows:

Theorem 5.22. If a String Cloud Spacetime within the framework of f(R)-

gravity contains a Ricci soliton characterized by a unit timelike torse-forming

vector field ξ and adhering to the Timelike Convergence Condition (TCC), the

soliton shrinks if the scalar function ω is greater than zero.

We know that the TCC impliesNCC (Null Convergence Condition) according

to Hawking and Ellis (1973). Thus, combining with the above Theorem 5.22, we

have the following:

Corollary 5.11. Within the settings of f(R)-gravity, if a String Cloud Spacetime

accommodates a shrinking Ricci soliton characterized by a unit timelike torse-

forming vector field ξ, then the spacetime satisfies the Null Convergence Condition

(NCC).

166



Chapter 5

In light of the theorems derived by Vilenkin and Wall (2014) which states that

if a spacetimeM obeys the NCC, thenM has a non-compact Cauchy surface and

contains some black holes, we state the following theorems:

Theorem 5.23. If a String Cloud Spacetime governed by f(R)-gravity allows

for a shrinking Ricci soliton characterized by a torse-forming vector field ξ and

adheres to the Null Convergence Condition (NCC), then a non-compact Cauchy

surface manifests within the spacetime.

Theorem 5.24. If a String Cloud Spacetime accommodating a shrinking Ricci

soliton characterized by a torse-forming vector field ξ and adhering to the Null

Convergence Condition (NCC) which is considered in the context of f(R)-gravity

theory, then it implies the presence of black holes within this spacetime. Further-

more, the spacetime has a trapped surface lying outside of these black holes.

5.3.3 Ricci Soliton on String Cloud Spacetime in f(R)-

gravity along ϕ(Ric)-vector field

The ϕ(Ric) vector field plays a significant role in the study of spacetime

dynamics within the framework of f(R) gravity. This vector field is defined

based on the Ricci curvature of the spacetime geometry, denoted as Ric, and is

characterized by its ability to capture essential geometric properties. This section

deals with the study of the spacetime along ϕ(Ric) vector field.

From the soliton equation (1.68), we have

LXg(Y, Z) + 2(a+ λ)g(Y, Z) + 2bη(Y )η(Z) + 2cγ(Y )γ(Z) = 0. (5.103)

By the definition of Lie derivative and (1.67), we obtain

(Lϕg)(Y, Z) = 2µRic(Y, Z), (5.104)
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for any Y, Z. Then, setting X = ϕ in (5.103) and then utilizing (5.104) results in

Ric(Y, Z) = − 1

µ
[(a+ λ)g(Y, Z) + bη(Y )η(Z) + cγ(Y )γ(Z)], (5.105)

which yields the following result:

Theorem 5.25. Under the framework of f(R)-gravity, when a String Cloud

Spacetime possesses a Ricci soliton characterized by a vector field ϕ meeting the

criteria of a proper ϕ(Ric)-vector field, the spacetime is designated as a general-

ized quasi-Einstein spacetime.

Next, setting Y = Z = ξ in (5.105) yields

λ = −(1 + µ)(a+ b). (5.106)

Theorem 5.26. Consider a String Cloud Spacetime embedded within f(R)-gravity

which allow a Ricci soliton with a suitable ξ(Ric)-timelike velocity vector field ξ.

Then the spacetime is characterized as shrinking, steady or expanding based on

whether

1. µ < −1, µ = −1, or µ > −1 respectively, provided ρ ̸= −f(R)
16π

,

2. ρ < f(R)
16π

, ρ = f(R)
16π

, or ρ > f(R)
16π

respectively, provided µ ̸= −1.

Corollary 5.12. Consider a String Cloud Spacetime embedded within the frame-

work of f(R)-gravity. Suppose the spacetime accommodates a Ricci soliton featur-

ing a covariantly constant ξ(Ric)-timelike velocity vector field denoted as ξ. Then

the spacetime exhibits a shrinking, steady or expanding behaviour depending on

whether ρ < f(R)
16π

, ρ = f(R)
16π

or ρ > f(R)
16π

respectively.

Again, contracting (5.105), we obtain

Theorem 5.27. Within the framework of f(R)-gravity, when a String Cloud

Spacetime accommodates a Ricci soliton featuring an appropriate ϕ(Ric)-vector
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field denoted as ϕ, the expression for the scalar curvature is provided by:

R =
1

µ

[
8π

fR(R)
{ρ+ θ − 2f(R)}+ λ

]
,

and such that the equation of state is given as

ρ+ θ =
fR(R)

8π

[
µR +

16πf(R)

fR(R)
− λ

]
.

5.3.4 Modified Equations in String Cloud Spacetime within

f(R) gravity

In this subsection, we aim to derive the modified Poisson and Liouville equa-

tions describing the behavior of a Ricci soliton within the context of a String

Cloud Spacetime governed by f(R)-gravity theory using its harmonic nature.

This investigation is crucial for understanding the dynamical properties of the

spacetime geometry and its interaction with gravitational effects.

Now, if we take ξ = grad h where h is a smooth function, then from (5.97)

we can state the following:

Theorem 5.28. Consider a String Cloud Spacetime in the setting of f(R)-gravity

admitting a Ricci soliton. If the velocity vector field ξ associated with this Ricci

soliton is of the gradient type, then the function h solves the modified Poisson

equation specific to f(R)-gravity as

∇2h = 5

[
λ+

f(R)

2fR(R)

]
.

Moreover, considering a smooth function h on the manifold M and a vector

field ξ, a direct computation yields the expression:

div(hξ) = ξ(dh) + h div ξ.

If h belongs to the smooth functions space, C∞(M) and acts as the last multiplier
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of ξ concerning the metric g, then div(hξ) = 0. The associated equation,

ξ(d ln ξ) = −div(ξ)

is referred to as the Liouville equation of ξ in the context of the metric g. Con-

sidering these equations along with (5.97), the following implications arise:

Theorem 5.29. Consider a String Cloud Spacetime in the setting of f(R)-gravity

which allows the inclusion of a Ricci soliton. In the event that the velocity vector

field ξ linked to this Ricci soliton is characterized as being of the gradient type,

then in the context of f(R)-gravity, the modified Liouville equation is

ξ(d ln h) = −5

[
λ+

f(R)

2fR(R)

]
.

Next, we recall that if ∇2h = 0, then h is said to be harmonic. As a result of

Theorem 5.28, we get the following result:

Theorem 5.30. Consider a String Cloud Spacetime in the context of f(R)-

gravity which accommodates a Ricci soliton. The velocity vector field ξ associated

with this Ricci soliton is classified as gradient. Furthermore, if the function h ex-

hibits harmonic behaviour on the spacetime, then the spacetime exhibits decreasing

and expanding behaviour depending on

f(R) < 0, and f(R) > 0

respectively. Moreover, the fact that f(R) ̸= 0, fR(R) <∞ implies the absence of

steady Ricci soliton in the spacetime.

5.3.5 String Cloud Spacetime in the framework of f(R)-

gravity and Gradient Ricci soliton

This subsection deals with gradient Ricci soliton as a metric for a String Cloud

Spacetime in the framework of f(R)-gravity.
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Consider X to be the gradient of a smooth function h, with D as the gradient

operator. In this case, (1.68) can be expressed as

∇YDh+QY + λY = 0. (5.107)

Utilizing the relationship

R(Y,X)Dh = ∇Y∇XDh−∇X∇YDh−∇[Y,X]Dh, (5.108)

equation (5.107) transforms into

R(Y,X)Dh = (∇YQ)X − (∇XQ)Y. (5.109)

Differentiating (5.107) covariantly along X results in

∇X∇YDh = −[(∇XQ)Y −Q(∇XY )]− λ∇XY. (5.110)

Swapping X and Y in the above equation results in

∇Y∇XDh = −[(∇YQ)X −Q(∇YX)]− λ∇YX. (5.111)

Now, (5.88) can be expressed as

QY = aY + bη(Y )ξ + cγ(Y )ζ, (5.112)

for all Y ∈ χ(M), whereM is the String Cloud Spacetime stuffing in f(R)-gravity.

Again, differentiating (5.112) covariantly along Y , we obtain

(∇YQ)(X) = Y (a)X + b(∇Y η)(X)ξ + bη(X)∇Y ξ + c(∇Y γ)(X)ζ + cγ(X)∇Y ζ.

(5.113)
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In view of (5.109) and (5.113), we get

R(Y,X)Dh = Y (a)X −X(a)Y + b[(∇Y η)(X)ξ + η(X)∇Y ξ − (∇Xη)(Y )ξ

− η(Y )∇Xξ] + c[(∇Y γ)(X)ζ + γ(X)∇Y ζ − (∇Xγ)(Y )ζ

− γ(Y )∇Xζ]. (5.114)

Next, contracting the foregoing equation yields

Ric(X,Dh) = −3X(a) + b[(∇ξη)(X)− (∇Xη)(ξ) + η(X)divξ]. (5.115)

Also, from (5.88), we have

Ric(X,Dh) = aX(h) + bη(X)ξ(h) + cγ(X)ζ(h). (5.116)

Setting X = ξ in (5.115) and (5.116) and then comparing the obtained results,

we get

(b− a)ξ(h) = 3ξ(a) + b divξ. (5.117)

Let us assume now that ξ is Killing, i.e., Lξg = 0 and consider an invariant, a

acting on the vector field ξ which implies that ξ(a) = 0. Therefore, this implies

that divξ = 0. Hence, we have from (5.117), either a = b or ξ(h) = 0. However,

if a = b, then f(R) = 16πρ which implies that f(R) is a constant and fR(R) = 0,

which is a contradiction. Therefore, ξ(h) = 0. Thus, taking covariant derivative

of g(ξ,Dh) = 0 along Y with (5.88) and (5.107) gives

g(∇Y ξ,Dh) = −[λ+ (a− b)]η(Y ). (5.118)

We know that ξ is Killing, hence, we have g(∇Y ξ,X) + g(Y,∇Xξ) = 0. Next, by

substituting X = ξ, we get g(Y,∇ξξ) = 0 since g(∇Y ξ, ξ) = 0. Therefore, setting

Y = ξ in (5.118) results in

λ =
1

2fR(R)
[16πρ− f(R)]. (5.119)
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With the above two cases, we state the following theorem:

Theorem 5.31. Suppose a String Cloud Spacetime within f(R)-gravity accom-

modates a gradient Ricci soliton. In the case where the velocity vector field ξ is a

Killing vector, and a scalar quantity a remains invariant along ξ, the soliton is

1. shrinking when ρ > f(R)
16

,

2. steady when ρ = f(R)
16

,

3. expanding when ρ > f(R)
16

.

5.4 Conclusion

The study of Vaidya spacetime within the context of conformal gradient Ricci

solitons provides a powerful link between geometry and the dynamics of space-

time. The discovery that the potential function f is directly related to the incom-

ing time coordinate u, which is specified by the constant k, stresses the importance

of time in determining the conformal structure of these spacetimes.

The results, we have obtained, expand our understanding of the complicated

link between geometry and general relativity concepts. It demonstrates the use-

fulness of mathematical techniques such as conformal Ricci solitons in describing

and categorizing the solutions of Einstein’s equation. Furthermore, under certain

conditions, the connection between Vaidya and Schwarzschild spacetimes empha-

sizes the unity and beauty of Einstein’s gravitational theory.

It is also novel to identify precise formulations that the potential function f

must satisfy in order for the Vaidya spacetime to allow a conformal gradient Ricci

soliton. A conformal gradient Ricci soliton vector field describes a specific geo-

metric flow through spacetime. The dynamics of the collapsing null fluid and its

interaction with the spacetime geometry would be constrained by the potential
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function f conditions. The presence of a conformal Ricci soliton vector field as

well as the accompanying limits on the potential function f , has an influence on

the general behaviour and eventual fate of the collapsing null fluid.

From Theorem 5.3, we conclude with the following: the behavior of a confor-

mal gradient Ricci soliton in Vaidya spacetime is intricately related to the value

of the Vaidya metric parameter p. The dynamics of spacetime under the influence

of the soliton are governed by this parameter.

1. Shrinking Behavior (When p > −1
2
):

• When p is larger than −1
2
, the soliton causes the spacetime to compress

or shrink.

• Depending on an understanding of the physical properties of space-

time, this phenomenon may be equivalent to gravitational collapse or

spatial point convergence.

• The presence of p values greater than −1
2
implies that the effect of

the soliton dominates the expansion induced by the Vaidya metric,

resulting in a net shrinkage.

2. Steady Behavior (When p = −1
2
):

• The soliton has a stabilizing effect on spacetime when p is exactly −1
2
.

• At this crucial number, the soliton’s actions precisely balance the

Vaidya metric’s expansion, resulting in a spacetime that remains con-

stant over time.

• This condition of equilibrium indicates that the soliton’s impact is ex-

actly adjusted to counteract any expansion or contraction tendencies.

3. Expanding Behavior (When p < −1
2
):
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• When p is smaller than −1
2
, the soliton causes a growing or expanding

behavior in spacetime.

• Depending on the physical environment of the spacetime, this expan-

sion may be equivalent to an expanding cosmos or the divergence of

spatial points.

• A value of p less than −1
2
implies that the effect of the soliton dom-

inates the growth induced by the Vaidya metric, resulting in a net

expansion.

To summarize, the value of the parameter p is a significant determinant of the

dynamics of a conformal gradient Ricci soliton in Vaidya spacetime. It deter-

mines whether the spacetime contracts (shrinking), remains stable or expands,

providing vital insights into the dynamical features of the soliton and its influence

on the geometry of the spacetime.

The extensive investigation, we have conducted into the dynamics of Magneto-

Fluid Spacetime within the theoretical framework of f(R)-gravity, has yielded a

number of remarkable insights. These important discoveries, embodied in a set

of crucial statements provide light on numerous aspects of the delicate inter-

play between magneto fluid dynamics and gravitational theories. The findings of

our study have made significant advances to our knowledge of Ricci solitons in

Magneto-Fluid Spacetime in the settings of f(R)-gravity theory. The arguments

elaborate on the requirements that determine whether these solitons exhibit de-

creasing, stable or growing behaviour. These findings, which are based on the

complicated interplay of magnetic fields, fluid characteristics, and the modified

gravitational framework, add to our understanding of the various behaviours in-

herent in these complex spacetimes.

A soliton’s properties are accurately specified by the interplay of magnetic

flux, pressure and gravitational effects. These discoveries add considerably to the
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larger story of spacetime dynamics and demonstrate the complexities of gravi-

tational systems. Furthermore, our research into the harmonic functions within

spacetime in f(R)-gravity situations has revealed remarkable discoveries. These

claims show how the velocity vector field, harmonic functions, and modified Pois-

son and Liouville equations are related. These correlations’ consequences broaden

our understanding of the complicated interaction between geometric characteris-

tics and the changed gravitational field.

The formation of black holes and the trapped surface of a black hole com-

pletely surrounded by the event horizons when shrinking Ricci solitons is admit-

ted within Magneto-Fluid Spacetime in the framework of f(R)-gravity shed a new

light. These significant findings not only improve our theoretical understanding

of these systems but also establish the groundwork for future research into the

complicated interplay between fluid dynamics and modified gravity theories.

The investigation into string cloud spacetime and Ricci solitons within the

realm of f(R) gravity has yielded significant insights into the complex interplay

between geometry, matter distribution and gravitational dynamics. The obtained

results, encompassing expressions for the Ricci tensor, scalar curvature and equa-

tion of state have provided a deeper understanding of the geometric properties of

the spacetime, elucidating how it responds to the presence of matter and energy

within the framework of f(R) gravity. Furthermore, the identification of String

Cloud Spacetime as a generalized quasi-Einstein spacetime underscores its ad-

herence to specific geometric conditions akin to those observed in Einstein’s field

equations, offering avenues for simplifying the study of its dynamics.

Moreover, the analysis of Ricci solitons has revealed their behavior under f(R)

gravity indicating their potential for exhibiting either shrinking or expanding be-

havior depending on the sign of f(R). This emphasizes the dynamic nature of the

spacetime geometry, suggesting that gravitational configurations tend to evolve

over time rather than remain static. Additionally, the absence of steady Ricci
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solitons under certain conditions further highlights the dynamic nature of the

spacetime, implying that gravitational interactions within the system are inher-

ently transient and subject to evolution.

Furthermore, the identification of black holes within String Cloud Spacetime

featuring shrinking Ricci solitons underscores the gravitational phenomena encap-

sulated within the framework of f(R) gravity theory. Additionally, the behavior

of gradient Ricci solitons offers nuanced insights into the dynamics of the space-

time, providing a comprehensive understanding of its evolution and expansion

properties. Moreover, the derived modified Liouville and Poisson equations offer

further avenues for investigating the intricate interplay between matter distribu-

tion, geometry and gravitational dynamics within the spacetime.
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Chapter 6

Summary and Conclusion

In the present thesis, we give classification of almost contact metric mani-

folds admitting some geometrical structures and also studied their submanifold.

Furthermore, we explore the dynamics of different spacetime. The following ob-

jectives are taken up in the study:

1. To study the properties of Ricci-Yamabe solitons.

2. To characterize almost cosymplectic manifolds and its extension.

3. To study geometrical properties of spacetimes.

4. To investigate invariant submanifolds of certain classes of almost contact

manifolds.

In Chapter 1, we provide a general introduction which includes the basic defini-

tions and formulas of differential geometry such as topological manifolds, smooth

manifolds, Riemannian manifolds, almost contact metric manifolds, Kenmotsu

manifolds, almost Kenmotsu manifolds, hyperbolic Kenmotsu manifolds, almost

cosymplectic manifolds, submanifolds, Vaidya spacetime and Ricci-Yamabe soli-

tons, and review of the literature.

Chapter 2 is divided into three main sections. In the first section, we have in-
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vestigated the properties and isometries of almost Ricci-Yamabe solitons (ARYS)

and established several critical results that enhance the understanding within

the realm of Riemannian geometry. Firstly, we derived the necessary conditions

under which a compact gradient almost Ricci-Yamabe soliton is isometric to a

Euclidean sphere Sn(r). We have observed that the potential function f of a

compact gradient almost Ricci-Yamabe soliton aligns with the Hodge-de Rham

potential h. This result is significant as it ties the geometric structure of the soli-

ton to the well-known Euclidean sphere, thereby providing a tangible example

of these abstract structures. Secondly, we examined complete gradient almost

Ricci-Yamabe solitons with non-zero α and a non-trivial conformal vector field.

We demonstrated that these solitons, given the condition of non-negative scalar

curvature, must be isometric to either Euclidean space En or a Euclidean sphere

Sn. This finding not only extends known rigidity results for Ricci solitons but

also highlights the restrictive nature of almost Ricci-Yamabe solitons under these

conditions, enhancing the understanding of their geometric properties.

Additionally, we analyzed ARYS with solenoidal and torse-forming vector

fields, providing a comprehensive examination of their structure. Through var-

ious lemmas and theorems, we demonstrated the rigidity of these solitons and

proved that they admit few deformations under the given conditions. This rigid-

ity is crucial and resulted in the stability and uniqueness of the geometric struc-

tures described by these solitons. Furthermore, we provided explicit examples to

substantiate the theoretical results. These examples illustrate the applicability

of the theoretical findings and provide a concrete foundation for further research.

By constructing non-trivial examples, we not only validate our results but also

open new avenues for exploring the practical implications of almost Ricci-Yamabe

solitons in various geometric contexts. The work in Section 2.2 extends the re-

sults of Roy et al. (2020) on (LCS)n-manifolds. We generalized their results and

derived a more general value for the scalar curvature tensor an (LCS)n-manifold
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admitting the Ricci-Yamabe soliton and shown that it is constant. This result is

prominent as it applies to a larger group of solitons. We verified our results by

constructing 3-dimensional and 5-dimensional (LCS)n-manifolds.

Furthermore, we derived the expression for the scalar, λ when the manifold

admits a conformal Ricci-Yamabe soliton. We also identified the conditions un-

der which a conformally flat (LCS)n (n ≥ 4) manifold admitting a torse-forming

vector field ξ is an expanding, steady or shrinking η-Ricci-Yamabe soliton. More-

over, we provided the expression for λ in a conformally flat (LCS)n (n ≥ 4)

manifold admitting a torse-forming η-Ricci-Yamabe soliton.

In Section 2.3, we investigated almost ∗-Ricci-Yamabe solitons on a Sasakian

manifold M .Following and extending the method used by Dwivedi and Patra

(2022), we provided an analytic answer to the question posed in the beginning of

the section. We proved that if a complete Sasakian manifold admits both almost

∗-Ricci-Yamabe soliton and gradient almost ∗-Ricci-Yamabe soliton as its metric,

it is isometric to the unit sphere S2n+1 provided α is non-zero. Additionally, we

identified specific conditions under which the soliton becomes steady. We also

found that if the potential vector field U is an infinitesimal contact transforma-

tion, it becomes an infinitesimal automorphism. Lastly, we validated our results

by constructing an example.

Chapter 3 deals with almost cosymplectic manifolds and its extension to al-

most Kenmotsu manifolds. The chapter comprises of two main sections. In the

first section, we found a link between the scalar curvature τ and the parame-

ters (λ, a, b, n) on a compact α-almost cosymplectic manifold. Specifically, we

obtained

τ =
2λ

(2n+ 1)b− 2a
provided α ̸=

{
0,

(2n+ 1)β

2

}
.

This connection provides vital insights into the interplay between geometric quan-

tities and soliton characteristics, allowing for a better understanding of the cur-

180



Chapter 6

vature dynamics of the manifold. We discovered that a manifold permitting a

GRYS with a ̸= b is either flat or has constant scalar curvature. This result

is useful in understanding the geometric configurations and curvature aspects of

3-dimensional cosymplectic manifolds. Lastly, we constructed an example of a

3-dimensional manifold admitting a GRYS to validate the results.

In the second section, we conducted a thorough investigation into the prop-

erties and structures of almost Kenmotsu manifolds that admit conformal Ricci-

Yamabe solitons (CRYS). By extending the existing results on Ricci solitons

and Ricci-Yamabe solitons to the more generalized setting of CRYS on (κ, µ)′-

almost Kenmotsu manifolds, we provided new insights into the geometric struc-

tures that arise in this context. Firstly, it was demonstrated that a (2n + 1)-

dimensional (κ, µ)′-almost Kenmotsu manifold admitting a CRYS is locally iso-

metric to Hn+1(−4) × Rn provided that 2λ − βτ ̸= 4αnκ −
(
p+ 2

2n+1

)
. This

result is significant as it reveals a specific geometrical structure that these man-

ifolds possess when they admit solitons and established a notable connection to

hyperbolic spaces and Euclidean spaces. Additionally, it is proven that a gen-

eralized (κ, µ)′-almost Kenmotsu manifold admitting a CRYS is an η-Einstein

manifold. This finding is important because it links the existence of CRYS to the

η-Einstein condition by imposing specific constraints on the Ricci tensor of the

manifold.

Understanding the η-Einstein property is crucial for comprehending the cur-

vature properties and the overall geometric behavior of the manifold. We have

shown that the potential vector field is a strict infinitesimal contact transfor-

mation for (κ, µ)′-almost Kenmotsu manifolds admitting a conformal gradient

Ricci-Yamabe soliton. This result indicates that the vector field associated with

the soliton preserves the contact structure of the manifold, thereby maintaining

the integrity of the underlying almost Kenmotsu structure. Furthermore, an ex-

ample of a 3-dimensional (κ, µ)′-almost Kenmotsu manifold was constructed to
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illustrate and verify the findings. The implications of these results are exten-

sive. The results not only extend the theory of Ricci and Yamabe solitons to a

broader class of manifolds but also provide a deeper understanding of the interac-

tion between soliton equations and the geometric structures of almost Kenmotsu

manifolds. The local isometry to Hn+1(−4) × Rn opens up new avenues for ex-

ploring the curvature and topology of these manifolds in relation to well-known

geometric spaces. Moreover, the η-Einstein condition and the strict infinitesimal

contact transformation property offer new insights into the curvature conditions

and the preservation of geometric structures under the influence of CRYS. These

findings could have further implications in the study of geometric flows and their

limiting behaviors in various geometric contexts.

Chapter 4 explored the geometric properties of invariant submanifolds within

hyperbolic Kenmotsu manifolds, uncovering several significant results that en-

hance our understanding of these intricate structures. The implications of our

findings are profound, impacting both theoretical research and practical applica-

tions in fields such as mathematics and physics. We began by establishing the

fundamental properties of invariant submanifolds in hyperbolic Kenmotsu mani-

folds. Our results show that the structure vector field ζ is tangent to these sub-

manifolds and that the tensor field ϕ preserves tangency. This finding is crucial,

as it confirms that these submanifolds inherently retain the geometric character-

istics of the ambient manifold, ensuring consistency in geometric behavior across

different layers of the manifold.

Moreover, we demonstrated that invariant submanifolds within hyperbolic

Kenmotsu manifolds are minimal. This means that their mean curvature vector

vanishes which indicate stability. The minimality condition is pivotal for un-

derstanding the types of geometric flows that the submanifolds can support and

contribute to the stability analysis and applications in differential geometry. One

of the key results we identified is the condition under which the invariant subman-
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ifolds are totally geodesic. We proved that these submanifolds are totally geodesic

if and only if their second fundamental form is parallel. This result is significant

as it links the intrinsic geometry of the submanifold with its extrinsic curvature

properties. The condition for total geodesy implies that geodesics in the ambient

manifold remain geodesics within the submanifold which is a property essential

for applications in the theory of relativity and the spacetime structures. We fur-

ther explored the concepts of pseudoparallel and 2-pseudoparallel submanifolds,

providing new insights into the curvature properties of these geometric structures.

Our findings show that if an invariant submanifold is semiparallel, it is totally

geodesic.

Additionally, for 2-pseudoparallel submanifolds, we established that they are

either totally geodesic or satisfy a specific functional condition. These results

extend the understanding of how curvature influences the geometric behavior

of submanifolds offering a framework for further exploration of curvature condi-

tions in complex geometric settings. The results of our study have far-reaching

implications for the field of differential geometry. By establishing the fundamen-

tal properties and conditions for invariant submanifolds in hyperbolic Kenmotsu

manifolds, we contribute to a deeper understanding of the geometric structures

within these manifolds. This has potential applications in theoretical physics,

particularly in the spacetime and general relativity, where understanding the ge-

ometric properties of submanifolds can provide insights into the nature of the

universe and the behavior of gravitational fields. Furthermore, our findings on

minimality and total geodesy offer valuable tools for researchers who are inves-

tigating the stability and geometric flows of submanifolds. The conditions for

pseudoparallelism and 2-pseudoparallelism provide new avenues for exploring the

interplay between curvature and geometry which lead to advancements in both

theoretical research and practical applications in fields of material science and

cosmology.
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Chapter 5 is devoted to the study of geometrical structures of spacetime and

it consists of three main sections. We start with an investigation on Vaidya space-

time in the first section. The study of Vaidya spacetime within the context of

conformal gradient Ricci solitons reveals a profound link between geometry and

spacetime dynamics, where the potential function f is directly associated with

the incoming time coordinate, u emphasizing the temporal role in determining the

conformal structure. This expands our comprehension of the intricate relationship

between geometry and general relativity highlighting the utility of mathematical

tools like conformal Ricci solitons in categorizing the solutions of Einstein’s equa-

tion. The connection between Vaidya and Schwarzschild spacetimes underscores

the unity of Einstein’s theory and the identification of precise formulations for the

potential function f elucidates the constraints on the dynamics of collapsing null

fluid. The behavior of a conformal gradient Ricci soliton in Vaidya spacetime is

intricately linked to the Vaidya metric parameter p, dictating whether spacetime

contracts, remains stable or expands, providing crucial insights into the soliton’s

dynamics.

The second section deals with the relativistic magneto fluid spacetime within

f(R)-gravity and obtain the expressions for the Ricci tensor, scalar curvature and

equation of state. By employing Ricci solitons as metrics, conditions for shrink-

ing, constant or growing behaviors under Killing and torse forming vector fields

are established. The emergence of black holes and trapped surfaces outside the

black holes are discussed, particularly in the contexts where a shrinking Ricci soli-

ton is admitted imposing constraints on scalar function ω and the first derivative

of f(R). Additionally, the influence of magnetic field strength, permeability and

fluid density on gravitational dynamics in spacetime admitting a gradient Ricci

soliton is highlighted and indicates its impact on total pressure. Furthermore, the

study explores the dynamics of string cloud spacetime governed by f(R) gravity

in the last section, revealing a balance between particle density ρ and string ten-
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sion λ during the quintessence era. Modified Poisson and Liouville equations are

derived, elucidating the formation of black holes and trapped surfaces in the pres-

ence of a shrinking Ricci soliton. Conditions for spacetime contraction, steadiness

or expansion under a gradient Ricci soliton are also established based on particle

density ρ.

In our study, some key geometrical structures such as Ricci solitons, conformal

Ricci solitons, Ricci-Yamabe solitons, conformal Ricci-Yamabe solitons, almost

Ricci-Yamabe solitons and almost ∗-Ricci-Yamabe solitons were investigated in

the setting of almost contact metric manifolds and various isometric classifica-

tions were found. We have also explored the geometrical structure of certain

spacetime in the framework of conformal Ricci solitons and f(R)-gravity theory

and discovered certain conclusions that might be beneficial in theoretical physics,

particularly, in the study of general relativity and spacetime. Furthermore, we

created additional instances to validate our findings.
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ABSTRACT

In the present thesis, we have investigated some geometrical structures such as Ricci

solitons, conformal Ricci solitons, Ricci-Yamabe solitons, conformal Ricci-Yamabe

solitons, almost Ricci-Yamabe solitons and almost ∗-Ricci-Yamabe solitons in the

almost contact metric manifolds. We also introduced geometrical structures of cer-

tain spacetime in the framework of conformal Ricci solitons and f(R)-gravity theory

which might be beneficial in theoretical physics, particularly, in the field of general

relativity and spacetime. Furthermore, we constructed certain examples to validate

the findings.

This thesis aims to deepen the understanding of Riemannian manifolds, almost

contact manifolds and their submanifolds and spacetime by addressing the following

objectives:

1. To study the properties of Ricci-Yamabe solitons.

2. To characterize almost cosymplectic manifolds and its extension.

3. To study geometrical properties of spacetimes.

4. To investigate invariant submanifolds of certain classes of almost contact man-

ifolds.

In Chapter 1, we provide a general introduction which include basic definitions

and formulas of differential geometry such as topological manifolds, smooth mani-

folds, Riemannian manifolds, almost contact metric manifolds, Kenmotsu manifolds,

almost Kenmotsu manifolds, hyperbolic Kenmotsu manifolds, almost cosymplectic

manifolds, Ricci-Yamabe solitons, Lorentzian manifolds, Vaidya spacetime, and Sub-

manifolds, as well as a review of the literature.

Chapter 2 consists of three sections. The first section delves to examine the isome-

tries of almost Ricci-Yamabe solitons. Firstly, we consider a compact gradient almost

4



Ricci-Yamabe soliton. Next, we studied complete gradient almost Ricci-Yamabe soli-

ton with α ̸= 0 and non-trivial conformal vector field with non-negative scalar curva-

ture and proved that it is either isometric to Euclidean space En or Euclidean sphere

Sn. Also, solenoidal and torse-forming vector fields are considered. Moreover, some

non-trivial examples are constructed to verify the results. The second section char-

acterizes Lorentzian concircular structure manifolds ((LCS)n-manifolds) admitting

Ricci-Yamabe solitons and we have shown that they become flat when the soliton is

steady. We have constructed 3 and 5-dimensional (LCS)n-manifolds satisfying this

property and derived the scalar, λ expression for conformal Ricci-Yamabe solitons.

Furthermore, we have discussed η-Ricci-Yamabe solitons on conformally flat (LCS)n

(n ≥ 4) manifolds and found the conditions for shrinking, steady and expanding

solitons when ξ act as a torse forming vector field. We characterized almost ∗−Ricci-

Yamabe solitons on a Sasakian manifold in the last section, where we proved that

the manifold is isometric to the unit sphere S2n+1 if its metric represents a com-

plete almost ∗−Ricci-Yamabe solitons with α ̸= 0. Certain conditions under which

the soliton reduces to ∗-Ricci-Yamabe soliton and when it becomes steady are also

obtained.

In Chapter 3, the first section investigates the behaviour of an almost cosymplec-

tic manifold when an almost Ricci-Yamabe soliton is admitted as its metric. We have

shown the condition under which the manifold is locally isomorphic to a Lie group

G√
−κ. Next, the non-existence of the almost Ricci-Yamabe solitons on a compact

(κ, µ)-almost cosymplectic manifold with κ < 0 is established. When the soliton vec-

tor field is pointwise collinear with ξ, we derived an equation for the scalar curvature

of its metric with certain limitations on the metric’s parameter a. Then the findings

have been validated by constructing an example of a 3-dimensional manifold that

defines a gradient Ricci-Yamabe solitons. The second section characterizes almost

Kenmotsu manifolds admitting conformal Ricci-Yamabe solitons. Here, we exam-

ined (κ, µ)′ and generalized (κ, µ)′ almost Kenmotsu manifolds and shown that such
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a manifold M2n+1 is locally isometric to Hn+1(−4) × Rn under specific conditions.

Conditions for conformal pressure when the soliton is expanding, steady or shrinking

are obtained. We demonstrated that if the manifold admits a conformal gradient

Ricci-Yamabe soliton, the potential vector field is a strict infinitesimal contact trans-

formation. An example of a 3-dimensional manifold is also constructed.

In Chapter 4, we characterized an invariant submanifolds of hyperbolic Kenmotsu

manifolds. First, we have proved that an invariant submanifolds of a hyperbolic

Kenmotsu manifold is again a hyperbolic Kenmotsu manifold and is minimal. Next,

the conditions for the invariant submanifolds to be totally geodesic are obtained.

Also, it is shown that a 3-dimensional submanifolds is totally geodesic if and only if

it invariant. Moreover, an invariant submanifold of a hyperbolic Kenmotsu manifold

admitting η-Ricci-Bourguinon soliton is examined and an example which verify some

of the results is constructed.

Chapter 5 is divided into three sections. In the first section, we have examined

Vaidya spacetime under a conformal Ricci soliton vector field and observed the re-

duction of the spacetime to Schwarzschild spacetime and the existence of a conformal

gradient Ricci soliton. We then extend our investigation into relativistic magneto

fluid spacetime stuffing in f(R)-gravity where we have provided the conditions for

the emergence of black holes and trapped surfaces. We have also observed that gravi-

tational dynamics are influenced by magnetic field strength, permeability and density,

affecting total pressure on spacetime. In the third section, we discussed the dynamics

of a string cloud spacetime using f(R)-gravity theory and found a balance between

particle density and string tension. Moreover, the Ricci soliton metric is used to

determine its behavior under different vector fields.

Chapter 6 is devoted for summary and conclusion.

A list of references is given at the end.
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