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Chapter 1: INTRODUCTION 

1.1 Introduction 

    Climate change is currently a very important concern. It poses a threat to 

both bio and non-bio resources. Numerous changes in the environmental and 

socioeconomic fields are owed to climate change (Croitoru & Minea, 2014). The 

hydrological responses of the basin are directly related to climate and direct human 

intervention, like various misuses of water for anthropogenic causes, like 

industrialization, irrigation, domestic uses, and agriculture (Wang et al., 2021). 

 The stream flow is impacted by climate change (Su et al., 2016). The primary 

cause of climate change is an increase in temperature, which is closely related to the 

cycle of water resources (Bronstert et al., 2002). The continuous accumulation of 

greenhouse gases is expected to change regional temperatures and precipitation, 

which have a direct impact on water resources (Nash et al., 1991). The functional 

relationship among the variables that directly or indirectly influence the runoff was 

paid attention to by the researchers in the 1970s and 1980s. Thereupon, runoff 

estimation and future prediction based on the mathematical model became a prime 

focus for assessing rainfall-runoff relations and water demand for future uses 

(Zealand et al., 1999). At present, researchers around the globe have focused on 

mathematical models to estimate the human activity and climate change impact on 

runoff change (Cao et al., 2015; Kan et al., 2015; Li et al., 2015). At the beginning of 

the 20th century, runoff response was studied mostly based on geophysical 

conditions, leading to the development of the paired catchment concept (Langbein, 

1949). 

Many models and climatic change projections have been developed by 

scientists for watershed management and future climatic prediction with hydrological 

responses (Jung et al., 2012; Pourmokhtarian et al., 2012; Boni et al., 2013; Biswas 

et al., 2019). Various studies have been conducted on modeling scenarios that 

heavily rely on streamflow regimes while estimating the changes in hydrological 

response on both local and global scales (Döll and Zhang, 2010; Fung et al., 2011). 
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The worsening effect of climate change and anthropogenic activity has increased a 

world-wide water crisis that has been focused on in global hydrological research 

(IPCC, 2007; Kumar et al., 2020). According to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC), the intensity and frequency of 

precipitation and temperature variations will rise due to climate change and 

anthropogenic impacts (Parry et al., 2007). The regional and worldwide distribution 

of water resources, both spatially and temporally, is strongly influenced by climate 

change and changes in land cover spurred by human activity in the 20th century. 

(Scanlon et al., 2007; Solomon et al., 2007; Ling et al., 2011). Some of the studies 

stated a positive correlation between temperature and stream flow (Nijssen et al., 

2001; Arnell, 2003; Wang et al., 2011), while on the contrary, high temperatures 

enhance the evapotranspiration of plants, thereby reducing runoff (Frederick and 

Major, 1997), whereas some studies stated that climate change decreased streamflow 

(Yilmaz and Imteaz, 2011; Chang et al., 2014). The change in runoff (either increase 

or decrease) consequently influences sediment yield and its temporal-spatial 

distribution (Zhang and Wang, 2007). 

It is widely recognized that one of the key factors that will be affected by 

climate change is the availability of water. The basic concepts of water resource 

planning encompass stream flow and hydrological process analysis. This basin is an 

important agro-based area that depends on irrigation for agricultural practice. Thus, 

the investigation in the present work has an immense bearing on society. For the sake 

of future management of runoff conditions, the study of the intensity and magnitude 

of climate change has greater importance to decision-makers (Chang et al., 2014). 

Climate change impact on runoff and discharge is an important study domain; thus, a 

proper review of this topic can formulate sustainable knowledge to proceed with 

further research interest in the ‗climate change impact in stream-flow domain‘. 

1.2 Statement of Research Problem 

  This study is framed to assess the impact of climatic variability and land use 

land (LULC) cover dynamics on the alteration of runoff patterns in the Mayurakshi 

river basin located in the eastern Indian monsoonal tropical climate. The purpose of 
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this research is to evaluate the complex interaction of climate change and LULC 

change patterns on the runoff of the basin. The upper portion of the basin is the 

extended part of the Chotonagpur plateau, while the lower part of the basin is a plain 

area with agricultural practices. A lot of changes in climatic conditions and LULC 

have taken place in the last couple of decades (refer to Chapters 2 and 3). The 

diversity of topography, its climatic variability, and LULC dynamics have extended 

to the complex nature of the basin, making it ideal for runoff-related studies of the 

basin. Many studies have reported that the runoff response varies from region to 

region, including the conditions of soil, geology, lithology, climate, human 

interventions, and LULC patterns (Sun et al., 2004; Wang et al., 2013; Mitra et al., 

2021). Few studies were conducted in the present study area based on drainage basin 

morphometry and flood analysis (Islam et al., 2020), hydro-morphological 

characteristics, and land use modification (Mukhopadhyay et al., 2013). Thus, the 

study of water resource management and the effect of climate change and LULC 

dynamics on the runoff is an unknown aspect of the Mayurakshi river basin. Thus, 

the present study is a plausible attempt to fill this research gap.   

1.3 Study Area 

The Mayurakshi River system is one of the most important river systems in 

eastern India. The river originates from Trikut Hill in the Chota Nagpur plateau of 

Jharkhand state. The basin is located between the coordinates of 23° 63′ 12′′ to 24° 

51′ 3′′ N latitude and 86° 84′ 38′′ to 88° 16′ 12′′ E longitude, spreading across the 

states of Jharkhand and West Bengal, covering an area of 5004.99 km
2 

(Fig. 1.1). 

Geologically, the whole area of the upper part of the basin dates back to the 

Proterozoic eon formation of undivided Precambrian rock. The middle catchment of 

the basin is most dominantly deposited by laterite and lateritic soil, and the lower 

catchment of the basin is mostly covered by young and old alluvial soil. The 

formation of the lower basin can be dated back to the quartanery eon, while the 

middle portion of the basin is dominated by jurassic cretaceous formation, sparsely 

dated back to the late carboniferous Permian eon. 

The Masanjor Dam, which was commissioned in 1955, is situated in the 

Mayurakshi river basin in the Dumka district of Jharkhand. It is 2170 feet in length 
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and stands 155 feet high from its base, with an overflow section extending 225.60 

meters. The dam has a storage capacity of 617,000,000 m
3
 and a discharge capacity 

of 4.446 m
3
/s. Tilpara Barrage downstream, 29.5 km away from the Masanjor Dam, 

was commissioned in 1949 on the Mayurakshi River. The Tilpara Barrage was 

constructed for irrigation and other agricultural activities. 

 

 

Fig. 1.1: Study area 

 

1.4 Drainage System 

            The Mayurakshi River is a rain-fed river that originated from Trikut Hill on 

the Chota Nagpur plateau of Jharkhand state. The river valley consists of many rills 

and gullies that form a dendritic drainage pattern. The river Mayurakshi flows 

through two states, Jharkhand and West Bengal. In Jharkhand, it covers three 

districts: Deoghor, Jamtara, and Dumka. Dumka district comprises most of the 

tributaries of the upper catchments of the Mayurakshi basin (Table 1.1). In West 

Bengal state, the Mayurakshi River flows through Biurbhum and Murshidabad 

districts. The majority of the tributaries of this river remain dry in the summer season 

since the river relies 80% on monsoon rain. The major tributaries of the upper 

catchment are Motihara, Tepra, Bhamri, Dhobi, Bhurbhuri, and Pusaru. The largest 

tributary of the upper catchment is Sidheswari, about 53.89 km long, which 
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originated at Fatapur in Jamtara district. In the middle course of the basin, there are 

Bakreswar (63.63 km) and Khuskarini (26.69 km) in West Bengal state. In the lower 

course, there are two tributaries: Kopai (27.83 km) and Kolya (43.25 km) (Table 

1.1). 

Table 1.1: Tributaries and geographic location 

Sl 

No 
Tributaries 

Length 

(Km) 
Origin District State Course 

1 Motihara 37.54 Deoghar Deoghar Jharkhand Upper Course 

2 Tepra 39.58 Jharmundi Dumka Jharkhand Upper Course 

3 Bhamri 14.95 Masalia Dumka Jharkhand Upper Course 

4 Dhobi 46.11 Ramghar Dumka Jharkhand Upper Course 

5 Bhurbhuri 18.8 Ramghar Dumka Jharkhand Upper Course 

6 Pusaru 11.8 Jama Dumka Jharkhand Upper Course 

7 Sidheswari 53.89 Fatapur Jamtara Jharkhand Upper Course 

8 Khuskarini 26.69 Rajnagar Birbhum 
West 

Bengal 
Middle Course 

9 Bakreswar 63.63 Dubrajpur Birbhum 
West 

Bengal 
Middle Course 

10 Kopai 27.83 Bolpur Birbhum 
West 

Bengal 
Lower Course 

11 Kolya 43.25 Labpur Birbhum 
West 

Bengal 
Lower Course 

 

            The average drainage density of the basin is 0.26 km/km
2
 with the drainage 

density ranging between 0.22 to 0.35 km/km
2
 in the upper, middle, and lower course 

of the river basin (Fig. 1.2). The Mayurakshi river basin is considered one of the 

most flood-prone basins in India. The line density method was applied to better 

visualize the drainage density of the basin. The middle and lower courses of the basin 

are mostly high drainage density areas, thereby making them flood-prone zones.      
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Fig. 1.2: Stream (A) and Drainage density (B) of the basin.  

1.5 Soil 

The soil of the Mayurakshi basin has been identified as Entisols, Alfisols, and 

Ultisols (National Remote Sensing Center) (Fig. 1.3). The categories of alfisols are 

Older Alluvial, Red Lomy, Palue Stulfs Loamy, Red Sandy, and Huplustafs Clayey. 

The Alfisols order of soil categories dominantly covered 75.86% of the area, 

followed by Ultisols at 17.87% (laterite) and Entisols at 6.269% (Ustochrents 

Clayey, Younger Alluvial). As in the individual soil category, Red Sandy (Alfisols) 

covers 39.68% of the area. Alfisols are clay-enriched soils containing mostly Al- and 

Fe-iron contents. Alfisols are ordered by soil taxonomy and are dominantly covered 

in the upper catchment of the basin due to the favorable humid and sub-humid 

growing conditions of the climate over the basin. The second highest soil coverage is 

older alluvial soil, which covers 18.97% of the basin area. The older alluvial soil, 

also known as Bhangar soil, is basically less fertile than the alluvial soil found in the 

lower portion of Birbhum district. The next dominant soil group is utisols, which are 

characterized as an acidic, clay-rich, reddish soil not suitable for agriculture but 

naturally suitable for forestry because of their high concentration of acidity and low 

retention of moisture. Laterite soil is one of the Utisols taxonomic soils that covers 

894.78 km
2
 of the middle basin area (Table 1.2). This aluminum and iron-rich soil 

has developed in the hot and humid weather conditions in the entire Birbhum district 
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of the basin. Entisols taxonomic soil of Younger Alluvial covered 277.04 km
2 

of the 

lower part of the basin. It is formed by the accumulation of clay, sand, silt, gravel, 

and organic matter flowing from the upper and middle courses of the basin. This 

fertile plain in the lower catchment is well supported for kharif and rabi crops.  

Table 1.2: Soil coverage status of Mayurakshi basin of the basin 

Soil Area 

(sq. km) 

Percentage 

Younger Alluvial 

(Entisols) 

277.04 5.53 

Older Alluvial (Alfisols) 949.5 18.97 

Laterite (Ultisols) 894.78 17.87 

Red Lomy (Alfisols) 84.16 1.68 

Ustochrents Clayey 

(Entisols) 

36.36 0.72 

Palue Stulfs Loamy 

(Alfisols) 

205.58 4.10 

Red Sandy (Alfisols) 1986.18 39.68 

Huplustafs Clayey 

(Alfisols) 

571.39 11.41 

Source:- NRSC 
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Fig. 1.3: Soil status of Mayurakshi basin 

1.6 Geology 

Geologically, the whole area of the upper part of the basin dates back to Proterozoic 

and Phanerozoic eon formations of undivided Precambrian rock. The upper part of 

the basin administratively belongs to the Dumka district, and geologically, it covered 

mostly unclassified granite gneiss with enclaves of metamorphic rocks covering 

about 1407.19 km
2
 (26.64%) of the upper part of the basin (Fig. 1.4 and Table 1.3). It 

is a Chotonagpur gneissic complex from the Proterozoic eon. The south and 

southwest parts of the upper basin were mostly covered by laterite and lateritic soil, 

which covered 12.20% of the basin. A narrow strip of sandstone and shale is found in 

the north-western part of the upper basin area (177.32 km
2
), and the north-eastern 

portion of the basin is covered by basalt and inter-trapped bed-chert (178.38 km
2
). 

The north-western portion is composed of a small patch of 64.54 km
2
 (1.22%) of 

acid-intrusive Granodiorite, Homblend schist, and amphibolite formations of the 

Proterozoic eon. Very small patches of Augen gneiss, migmatite, and chamokite/acid 

granulite are strewn over the upper part of the basin (Table 1.3). 

The middle catchment of the basin dates back to the Phanerozoic eon of the 

Mesozoic era in Jurassic to Cretaceous formation. This middle catchment of the 

basin is most dominantly deposited by laterite and lateritic soil, covering about 385 
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km
2
 (7.29% of the whole basin), followed by siltstone, sandstone, and shale, with 

alluvium covering 361.68 km
2
 (6.85% of the whole basin). Unclassified granite 

gneiss with enclaves of metamorphic deposition (289.51 km
2
) covers the upper part 

of the middle catchment of the basin. The Rajmahal trap of the Jurassic to Cretaceous 

period is an important geological deposition of laterite and lateritic soil in the middle 

catchment. The lower catchment of the basin is mostly covered by young and old 

alluvial deposition dating back to the Triassic period of the Mesozoic era to the upper 

Carboniferous period of the Palaeozoic era. These two depositions are found in this 

lower catchment of the basin: hard clay impregnated with caliche nodules, 451.29 

km
2
, followed by siltstone, sandstone, and shale with alluvial 635.7 km

2
 (Table 1.3). 

Table 1.3: Geological setup of Mayurakshi basin based on catchment 

Catchment Geology 
Area (sq. 

km) 
Percentage 

Upper 

Catchment 

Siltstone, sandstone, Shale with alluvium 12.48 0.24 

Laterite and lateritic soil 644.34 12.20 

Sandstone and shale 177.32 3.36 

Basalt / Inter trappen bed-chert 178.38 3.38 

Homblend schist and amphibolite 64.54 1.22 

Augen gneiss and megmatite 99.99 1.89 

Chamokite / Acid granulite 45.17 0.86 

Unclassified granite gneiss with enclaves of metamorphic 1407.19 26.64 

Middle 

Catchment 

Silt stone, sand stone, Shale with alluviam 361.68 6.85 

Hard clay impregnated with caliche nodules 205.72 3.89 

Laterite and lateritic soil 385.00 7.29 

Sandstone and shale 18.31 0.35 

Homblend schist and amphibolite 10.12 0.19 

Chamokite / Acid granulite 18.25 0.35 

Unclassified granite gneiss with enclaves of metamorphic 289.51 5.48 

Lower 

Catchment 

Silt stone, sand stone, Shale with alluviam 635.7 58.48 

Hard clay impregnated with caliche nodules 451.29 41.51 

Source: Bhukosh 
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Fig. 1.4: Geological environment of Mayurakshi basin 

1.7 Relief 

Relief of the upper catchment of the Mayurakshi basin is very undulating and 

covered with flat-topped isolated hills; most of which are >300 meters (Fig. 

1.5).  The upper catchment is part of the Deoghar, Jamtara, and Dumka districts, 

characterized as the fringe of the Chotanagpur plateau covered by undulating relief 

and isolated hills like Trikut pahar (elevation 753 m., 24 29N, 86 51E) in the north 

west and in the north east, Jangalpur pahar (elevation 377 m., 24°28'48.53"N, 

87°14'17.68"E), Amgachhi Pahar (elevation 310 m., 24°10'1.00"N,   87° 8'18.29" E), 

Panjapahari (elevation 311 m., 24° 6'43.10"N, 87°20'11.87"E), Supriya Hill 

(elevation 185., 24° 6'14.13"N,  87°18'16.77"E 610). The middle catchment of the 

basin is the portion of Birbhum district of West Bengal state, also known as the Rarh 

region. It is an eastward extended undulating fringing portion of the Chotonagpur 

plateau that ranges from 71m to 120m in height. The lower catchment is mostly 

encompassed by parts of the Birbhum, Burdwan, and Murshidabad districts of West 

Bengal in the lower-lying floodplain. The lower catchment is characterized as a plain 

of deposited sand, silt, and clay from the Bakreswar, Kopai, and Mayurakshy rivers.               
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Fig. 1.5: Elevation status of the basin 

1.8 Hydrological Soil Groups 

Hydrological soil groups (HSGs) are the fundamental soil classification of 

curve number (CN) initiated by the United States Department of Agriculture (USDA) 

that includes the texture of the soil to estimate rainfall runoff. The study area covers 

HSGs -  C known for a runoff potential moderately high, D known for high runoff 

potential, and C/D and D/D known for high runoff potential unless drained. The 

basin is covered by 71.58% of HSG-C and 23.95% of HSG-C/D, where HSGs D and 

D/D cover 1.86% and 2.61% of the area, respectively (Fig. 1.6 and Table 1.4). 

Table 1.4: Hydrological Soil Groups 

HSGs 
Area 

(Sq.km) 
Area (%) 

C 3582.40 71.58 

C/D 1198.67 23.95 

D 93.28 1.86 

D/D 130.64 2.61 

Source: soilgrids.org 
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.  

Fig. 1.6: Hydrological Soil Group 

1.9 Overview of related studies    

1.9.1 Review of literature  

A lot of research has studied the runoff responses with respect to climatic 

parameters and human interference. An extensive literature review has been done 

to determine the outcome of climate change and its anthropogenic impact on 

runoff, as well as the methods and findings. The articles were reviewed 

simultaneously and grouped into clusters (1–5) based on the following topics: (i) 

climate change effects on runoff; (ii) anthropogenic and climate change impacts 

on runoff; (iii) effects of climate change on runoff and ecosystems; and (iv) 

effects of climate change on streamflow and hydropower. (v) Climate change 

impacts stream flow and sediment yield. 

The clustered articles were grouped based on the year of publication, and the 

articles were summarized systematically based on the author's name and year. The 

review of the literature was aimed at the purpose of the research conducted, 

methodology, and key findings. The investigation of climatic variability and its 

impact on stream flow was aided by the prepared database.   
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 1.9.2 Overview of important literature 

The increase in global average air temperature and an increase in potential 

evaporation have significantly affected the hydrological cycle. This, in turn, has 

affected the stream flow (IPCC, 2007). Al-Faraj et al. (2014) studied climate change 

as the reason for drought occurrences. The volume of runoff is an important concern 

to mitigate drought phenomena in the downstream area. Drought and climate change 

put adverse pressure on water resource management and considerably increase the 

level of water paucity in downstream countries (Table 1.5). Müller Schmied (2012) 

asserted that the main cause of the shift in mean annual runoff is climate change. 

Climate change's effects on discharge/runoff calibration were investigated by Githui 

et al., 2009; Phan et al., 2011; Zhang et al., 2012; Li et al., 2015; Oliveira et al., 

2017; Qiu et al., 2019; Huo et al., 2013; Hagemann et al., 2013; who used the Soil 

and Water Assessment Tool (SWAT) as model validation. Gupta et al. (2011) 

applied the global circulation model and the SCS model to estimate the effect of 

climate change on runoff. Stream and lake eutrophication might be substantially 

impacted by climate change in terms of phosphorus transfer and collaboration with 

changes in nutrient loading, which may strengthen eutrophication symptoms in 

lakes (Jeppesen et al. 2009). The hydrological model was used to determine the 

change in runoff induced by both human-caused and natural factors (Lei et al. 

2014). Meng et al. (2011) argued that annual potential evaporation was more 

significant than annual precipitation to reduce runoff. The insight was given to 

annual runoff change and makes a future runoff change prediction. Based on the 

future prediction hypothesis, empirical equations are developed and validated in the 

different watersheds. Narsimlu et al. (2013) found that climate change studies are 

helpful for the conservation of soil water management planning, crop conservation, 

and drought tolerance crop management planning. Climate change also influences 

river ecosystems, species abundance, and ecosystem services (Schneider et al., 

2013). Chen and Chen (2014) applied sensitivity analysis to detect the climate 

change effect on runoff. This method can provide valuable insights into how the 

hydrological components will respond to future climate change. Tang et al. (2012) 

studied the changing nature of stream flow by applying the Variable Infiltration 
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Capacity (VIC) model to the increasing trend of temperature change and change in 

stream flow that harmed water management and ecology. P. Doll and J. Zhang 

(2010) studied the effect of climate change on river flow regimes and freshwater 

ecosystems and concluded that by the end of the 2050s, climate change will affect 

the ecological characteristics of the river. 

Table 1.5: Summary of literature review 

      

SL 

No 

Author(s) 

and Journal 

Purpose Sample Method Key findings 

 

Cluster 1: Climate change effects on runoff 

 

1 Githui et al., 

(2009) 

Int. J. 

Climatol 

To assess the 

climatic impact on 

runoff change. 

Western Kenya Soil and Water 

Assessment Tool 

Assessed the 

potential future 

climatic changes. 

Stream-flow 

response was not 

sensitive only to 

temperature but 

also depended on 

population growth 

and land cover. 

 

2 Jeppesen et 

al., (2009) 

J. Environ 

To assess Climate 

change effects on 

runoff and 

potential 

adaptations. 

Denmark Climate change 

projections, 

General 

Circulation 

Model, 

Hydrological 

NAM model 

Climate change 

has a deep impact 

on phosphorus (P) 

transport in 

streams and on 

lake 

eutrophication. 

3 Roderick et 

al., (2011) 

Water 

Resources 

Research 

To study relating 

variations in 

runoff to 

variations 

in climatic 

conditions and 

catchment 

properties 

Murray‐Darling 

Basin, 

Southeast 

Australia 

Budyko-type 

equation 

Climate change 

was attributed to a 

10% change in 

precipitation 

resulting in 26% 

change in the 

runoff which was 

predicted by using 

the 

Intergovernmental 

Panel on Climate 

Change AR4 

climate model.  



15 

 

 

4 Yang et al., 

(2011) 

Water 

Resources 

Research 

To examine the 

climate elasticity 

of runoff and to 

assess the effects 

of 

climate change on 

annual runoff 

Hai River 

Basin, China 

Climate Elasticity Evaporation 

elasticity, 

precipitation 

elasticity, and 

catchment 

characteristics 

were very 

sensitive to 

climate change. 

1% change in 

precipitation leads 

to 1.6% to 3.9% 

change in the 

runoff, and 1
0
C of 

temperature 

change leads 2% 

decrease in the 

runoff.   

 

5 Bauwens et 

al., (2011) 

Hydrol. Earth 

Syst. Sci 

To study 

hydrological 

response to 

climate change 

Wallonia, 

Belgium 

Physically Based 

Model 

Physically-based 

model was used to 

understand the 

water-soil-plant 

relation with 

climate change 

impact. The 

projected climate 

change trend was a 

10% decrease in 

evapotranspiration 

could lead to a 

decrease of 17% in 

stream flow. 

 

6 Meng et al., 

(2011) 

Hydrol. 

Process. 

To assess the 

effect of climate 

change on mean 

annual runoff 

Songhua River 

Basin, China 

Schreiber 

Equation, 

Penman-Monteith 

(P-M) Equation, 

General 

Circulation Model 

Changing the 

nature of climatic 

variables like 

temperature and 

wind speed 

increased 

evapotranspiration 

and runoff. 

7 Gupta et al., 

(2011) 

J Indian Soc. 

Remote Sens. 

To study the 

impact of Climate 

change on Runoff 

India Soil Conservation 

Service Curve 

Number Method 

Future prediction 

analysis indicated 

a decrease in 

runoff all over 
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 India with climate 

change. 

Significant runoff 

reduction was 

found on the 

Subarnarekha 

River, the lower 

parts of the Ganga, 

upper parts of the 

Mahanadi and 

Bahamani-Baitrani 

Rivers. 

 

8 Yilmaz et al., 

(2011) 

Hydrological 

Sciences 

Journal 

To assess the 

impact of climate 

change on runoff 

Euphrates 

Basin, Turkey 

Mann-Kendal 

Test, Spearman‘s 

rho Tests, 

Distributed 

Models, Regional 

Circulation Model 

A futuristic 

climate change 

database was 

produced using 

various 

hydrological 

models. 

The projected 

model shows a 

34%, 13%, 10%, 

and 28% runoff 

decline in summer, 

spring, winter, and 

autumn 

respectively. 

 

9 Tang et al., 

(2012) 

Global and 

Planetary 

Change 

To assess the 

streamflow 

sensitivity to 

temperature 

increases 

Salmon River 

Basin, Idaho 

Variable 

Infiltration 

Capacity (VIC) 

Model 

The result shows a 

decrease in stream 

flow with 

increasing 

temperature. The 

increase of 

temperature 2 °C 

and 3 °C decrease 

streamflow 2% to 

6% and 3 to 8%, 

respectively. 

 

10 D¨oll et al., 

(2012) 

Environ. Res. 

Lett 

To evaluate the 

impact of climate 

change on mean 

annual runoff and 

river flow regimes  

A global 

overview 

Water GAP 

Global Hydrology 

Model (WGHM) 

Anthropogenic 

factors reduced 

river discharge.  

Mean annual 

runoff will 

increase by 10% 
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on 50% of the 

global  land area 

 

11 Leppi et al., 

(2012) 

Climatic 

Change 

To study the 

impacts of climate 

change on stream 

discharge 

Central-Rocky 

Mountain, US 

Shapiro-Wilk test, 

Mann-Kendall 

Test 

The result shows a 

negative 

correlation 

between 

temperature and 

discharge. A 

significant decline 

in discharge was 

found over the last 

half-century.     

 

12 Wu et al., 

(2012) 

Quaternary 

International 

To inspect the 

climatic effects of 

the Three Gorges 

Reservoir and 

simulation of 

runoff. 

 

Yangtze River, 

China 

Regional Climate 

Models, Double 

Nested Method 

A significant 

increase in 

temperature and a 

decrease in 

precipitation over 

the Three Gorges 

area. 

 

13 Zhang et al., 

(2012) 

Journal of 

Hydrology 

To study the 

effect of forest 

harvesting and 

climatic 

variability on 

runoff 

Yangtze River 

Basin, China 

Non-parametric 

Tests (Mann–

Kendall, and 

Spearman), Time 

Series Cross-

Correlation 

Analysis 

The significant 

break point of 

annual runoff 

change was 

examined in 1969. 

Forest harvesting 

had a significant 

role in the dry 

season and annual 

runoff (an increase 

of 38 mm/yr).  

 

14 Zhang et al., 

(2012) 

Journal of 

Hydrologic 

Engineering 

To examine 

hydrologic 

simulation to 

explore the 

impacts of climate 

change on runoff 

Huaihe River 

Basin of China 

Variable 

Infiltration 

Capacity Model 

The increase of 

annual runoff, both 

regional shortage 

of water and flood 

occurrence was 

accelerated owing 

to global warming.   

 

15 Huo et al., 

(2013) 

Environ Earth 

Sci 

To assess the 

impact of climate 

change on stream 

flow in a typical 

debris flow 

Jianzhuangcuan 

Catchment 

Shaanxi 

Province, 

China 

Soil and Water 

Assessment Tool 

Future climate 

change scenario 

generated from 

2020 to 2030. 

It was concluded 
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watershed that the climate of 

the study area 

would become 

warmer.  

 

16 Luo et al., 

(2013) 

Science of the 

Total 

Environment 

To examine the 

impact of climate 

change on 

hydrology and 

water quality 

through 

watershed 

modeling 

approach 

California Soil and Water 

Assessment Tool 

A decrease in 

stream flow was 

predicted with 

reduced 

precipitation in 

summers while an 

increase in stream 

flow during 

winter. 

Modified SWAT 

model 

incorporated with 

CO2 impacts and 

future stream flow 

prediction. 

 

17 Schneider et 

al., (2013) 

Hydrol. Earth 

Syst. Sci. 

To study how 

climate change 

modified river 

flow regimes 

Europe Global Hydrology 

Model 

WaterGAP3 

WaterGAP3 

indicated that 

snow cover will be 

reduced for the 

boreal climate 

zone. River flows 

will likely be 

lower in the 2050s. 

 

18 Arnell et al., 

(2013) 

Journal of 

Hydrology 

To study the 

impacts of climate 

change on river 

flow regimes 

A world view Coupled Model 

Intercomparison 

Project Phase 3 

The model 

scenario (Hadley 

Centre HadCM3) 

shows a 47% 

significant 

increase in annual 

runoff across the 

Equator, eastern 

Europe, Canada, 

and high-latitude 

Siberia, and a 

decrease of runoff 

(37%) in the 

Mediterranean, 

Central America, 

Brazil, and central 

Europe. 



19 

 

 

19 Hagemann et 

al., (2013) 

Earth System 

Dynamics 

To examine the 

Climate change 

impact on 

available water 

resources 

A world view global climate and 

hydrology models 

The projected 

result shows a 

10% decrease in 

water resources in 

parts of Europe, 

the catchments of 

the 

Euphrates/Tigris in 

the Middle East, 

Murray in SE 

Australia, Zhu 

Jiang in southern 

China. 

 

20 Janzˇa et al., 

(2013) 

Nat Hazards 

To assess the 

impact of 

projected climate 

change 

on the 

hydrological 

regime 

Upper Socˇa 

River basin, 

Slovenia 

Distributed 

Hydrological 

Model MIKE 

SHE 

The study is based 

on future 

predictions (2011–

2040, 2041–2070, 

2071–2100). 

Future projection 

shows an increase 

of average 

temperature -

0.9
0
C, 02.3

0
C, and 

3.8
0
C respectively, 

thereby reducing 

runoff and 

groundwater 

recharge. 

 

21 Narsimlu et 

al., (2013) 

Water Resour 

Manage 

To examine the 

future climate 

change impacts on 

water resources 

Upper Sind 

River Basin, 

India 

Soil and Water 

Assessment Tool, 

Sequential 

Uncertainty 

Fitting Algorithm 

(SUFI2) 

The result shows a 

predicted increase 

in the annual 

stream flow in the 

mid-century and 

end-century by 

16.40% and 

93.50% 

respectively. 

 

22 Crossman et 

al., (2013) 

Journal of 

Great Lakes 

Research 

To study the 

impact of climate 

change on 

hydrology and 

water quality 

along with  

Lake Simcoe 

watershed, 

Canada 

Global 

Circulation Model 

The projected 

IPCC scenario 

shows increased 

precipitation 

during winter and 

an increase in 
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management 

strategies 

temperature in 

summer 

throughout the 21
st
 

century.  

 

 

23 Al-Faraj et al., 

(2014) 

Water 

To examine the 

sensitivity of 

surface runoff to 

drought and 

climate change 

Diyala river 

basin shared 

between Iraq 

and Iran 

Meteorological 

Drought Severity, 

Streamflow 

Drought Index, 

Rainfall-Runoff 

Model 

A decrease in 

water resources by 

17.30 % annually 

was projected 

owing to climate 

change. 

 

24 Giang et al., 

(2014) 

Hindawi 

Publishing 

Corporation 

Scientific 

World Journal 

To examine the 

impact of climate 

change on water 

resources 

Upper Ca River 

Watershed in 

Southeast Asia 

Soil and Water 

Assessment Tool 

The result 

indicated an 

increase of 

temperature by 

3.4
0
C and 

evaporation in the 

2090s. The 

discharge will 

increase in the wet 

season and will 

decrease in the dry 

season at a rate of 

±25%. 

 

25 Liersch et al., 

(2014) 

Hydrol. Earth 

Syst. Sci. 

To study the 

impact of climate 

change on 

streamflow 

African river 

basins 

Soil and Water 

Integrated Model 

Results showed a 

statistical 

correlation 

between 

precipitation and 

runoff in the Nile 

valley, and some 

African regions. 

 

26 Lei et al., 

(2014) 

Journal of 

Hydrology 

To study the 

impact of climate 

change and 

vegetation 

dynamics on 

runoff in the 

mountainous 

region 

Haihe River 

Basin, Northern 

China 

Community Land 

Model, River 

Transport Model 

The climatic 

variables of 

precipitation, solar 

radiation, air 

temperature, and 

wind speed 

counted as 56%, 

14%, 13%, and 5% 

respectively which 

accounted for the 

overall reduction 
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in the annual 

runoff since 1960. 

 

27 Lin et al., 

(2014) 

Front. Earth 

Sci. 

To explore 

changes in runoff 

and eco-flow 

Dongjiang 

River of the 

Pearl River 

Basin, China 

Mann-Kendall 

test 

, Pettitt-Mann-

Whitney Change-

Point Statistics, 

Indicators of 

Hydrologic 

Alteration 

The trend analysis 

depicts the 

increasing rate of 

annual median 

flow from 1957 to 

2010 with a 

significant change 

point between 

1970 to 1974 due 

to climate change 

and the 

construction of 

reservoirs. 

 

28 Oni et al., 

(2014) 

Science of the 

Total 

Environment 

To examine 

uncertainty 

assessments and 

hydrological 

implications of 

climate 

Change 

Southern 

Ontario 

Statistical 

Downscaling 

Model, 

Physically-Based 

Semi-Distributed 

Rainfall-Runoff 

Model 

Human activities 

increased the 

differences in 

integrated 

hydrological 

responses. 

 

29 Yang et al., 

(2014) 

Water 

Resources 

Research 

An assessment of 

error analysis of 

the Budyko 

hypothesis on the 

contribution of 

climate change to 

runoff 

 

Hai River 

Basin, China 

Budyko 

Hypothesis, 

Mann-Kendall 

test 

Negative 

correlation 

between 

precipitation and 

potential 

evaporation.. 

 

30 Chen et al., 

(2014) 

Front. Earth 

Sci 

To study the 

effects of climate 

fluctuations on 

runoff 

Kaidu River in 

Northwestern, 

China 

Mann-Kendal 

Test 

 

The result shows 

an increasing trend 

of precipitation 

and runoff over the 

past 50 years. 

 

31 Croitoru et al., 

(2014) 

Theor Appl 

Climatol 

To study the 

impact of climate 

changes on river 

discharge 

Moldavia 

region, 

Romania 

Mann–Kendall 

Test,  

Sen‘s Slope 

 

The result shows 

an increase in 

summer 

precipitation 

resulting in 

increased river 

discharge in 80% 

of the rivers. The 
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opposite was 

found in winter 

owing to reduced 

precipitation.  

 

32 Yates et al., 

(2014) 

International 

Journal of 

Water 

Resources 

Development 

To study the 

climatic impact on 

runoff based on 

an integrated 

water balance 

model 

 

Mulberry Basin 

in Arkansas, 

USA 

WatBal Model, 

Priestley Taylor 

Method 

An increase in 

temperature by 

1
0
C caused a 

reduction of 

precipitation by 

2%. Change of 

precipitation ± 

10% and ± 20% 

produced ± 12% 

and ±23% changes 

in runoff, 

respectively. 

 

33 Yang et al., 

(2014) 

Journal of 

Geophysical 

Research: 

Atmospheres 

To study the 

climate change 

and probabilistic 

scenario 

of streamflow 

extremes 

Yellow River 

Basin, China 

Artificial Neural 

Network 

Downscaling 

Models 

The result showed 

a decreasing trend 

of streamflow in 

the Alpine region 

and predicted an 

extreme change in 

streamflow in the 

future.  

 

34 Kwadijk and 

Middelkoop, 

(2014) 

Climatic 

Change 

To estimate the 

climate change on 

peak discharge 

variability 

Rhine River, 

Germany 

RHINEFLOW 

Model 

With an increase 

of temperature by 

4°C, stream flow 

is reduced by 6%, 

and a 20% 

decrease in 

precipitation leads 

to a 30% lower 

peak flow. 

 

35 Goulden et al., 

(2014) 

J. Earth Syst. 

Sci. 

To study 

mountain runoff 

vulnerability with 

increased 

evapotranspiration 

and vegetation 

expansion 

upper Kings 

River basin, 

Southern 

California 

Climate 

Projections 

Climatic 

projection shows 

in 2100 

evaporation could 

increase 28% and 

river flow will 

decrease 26%. 
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36 Stagl et al., 

(2015) 

Water 

To study the 

impacts of climate 

change on the 

hydrological 

regime 

Danube River 

catchment, 

Europe 

Soil and Water 

Integrated Model 

The result shows 

that runoff reduces 

in summer and 

increases in 

winter.  

 

37 Vano et al., 

(2015) 

Water 

Resources 

Research 

To study the 

Seasonal 

hydrologic 

responses to 

climate change 

Columbia 

River basin and 

its adjacent 

coastal 

drainages 

Variable 

Infiltration 

Capacity (VIC) 

land-Surface 

Hydrology Model 

The runoff 

decreasing rate 

was higher in a 

warm season by 

about 74%. Runoff 

increased in the 

cold season at the 

rate of 26%. 

 

 

38 Uniyal et al., 

(2015) 

Water Resour 

Manage 

To assess Climate 

Change Impact on 

Water Balance 

Components 

Upper 

Baitarani River 

Basin of 

Eastern India 

Soil and Water 

Assessment Tool 

Change in 

temperature from 

1°C to 5°C caused 

a reduction in the 

surface runoff by 

2.5% to 11%, 

respectively. 

While increasing 

the nature of 

rainfall 2.5% and 

15% suggested 

increasing runoff 

from about 6.67 % 

to 43.42%. 

A change in 

evapotranspiration 

by 5.05% to 

11.88% rise would 

change 

groundwater 

recharge by 8.7% 

to 23.15%, 

respectively. 

 

39 Zhang et al., 

(2015) 

Quaternary 

International 

To study the 

changes in 

extreme climate 

events in eastern 

China 

Huaihe River 

Basin, eastern 

China 

Penman-Monteith 

Method, Surface 

Humid Index, 

Crop Moisture 

Index, Keetch and 

Byram Drought 

Index, Crop-

The count of the 

annual rainy day 

declined; the 

regional average 

value of wet 

events increased 

by 0.0118 
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Specific Drought 

Index, daily 

Water stress 

index, Moisture 

Deficit Index, 

Agricultural 

Reference Index 

times/year. The 

regional extreme 

drought events had 

a much negative 

tendency about 

0.0127 times/year.  

 

40 Su et al., 

(2016) 

Climatic 

Change 

To examine the 

impact of climate 

change on 

streamflow 

Yangtze River 

Basin, China 

General 

Circulation 

Model,  

An analysis of 

variance 

(ANOVA) 

 

The projected 

result shows an 

increased 

temperature all 

over the basin. The 

simulated result 

shows a 69% 

increase in runoff. 

 

41 Sorribas et al., 

(2016) 

Climatic 

Change 

To examine the 

Projections of 

climate change 

effects on 

discharge 

and inundation 

Guyanese and 

Brazilian 

shields, and the 

Amazon plain 

General 

Circulation Model 

The projected 

result shows the 

increasing trend of 

precipitation, 

increased 

discharge, and 

inundation of 

rivers in western 

and central 

Amazonia and 

Peruvian 

floodplains. The 

projected results 

are decreasing 

discharge in the 

eastern basin along 

with decreasing 

inundation in the 

Amazon basin.  
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42 Pumo et al., 

(2016) 

Science of the 

Total 

Environment 

To study the 

climate change 

effects on the 

hydrological 

regime 

Italy Flow Duration 

Curves, General 

Circulation 

Models, ModABa 

Hydrological 

Model 

ModABa 

hydrological 

model
‘
s projection 

of 2090 depicts an 

increase in 

temperature and a 

reduction of 

precipitation by 

about 13% and a 

reduction of 

annual runoff by 

10% and 20% for 

the future 

projections at 2055 

and 2090, 

respectively. 

 

43 Wang et al., 

(2016) 

Journal of 

Hydrology 

To study the 

multiple 

elasticities of 

runoff to climate 

change and 

catchment 

characteristics 

alteration 

Thirty River 

Basin across 

China 

Mann – Kendall 

Test, Pettitt Test 

Among the 

climatic variables, 

precipitation 

played a 48.98% 

role in runoff. 

Evapotranspiration 

and land-use 

change contributed 

to a negative 

impact on runoff. 

Among 30 

catchments, 19 

were detected with 

change points with 

a 10% level of 

confidence, and 

the change point 

was between the 

years of 1970 s 

and 1980 s. 

 

44 Papadimitriou 

et al., (2016) 

Hydrol. Earth 

Syst. Sci 

To study high-end 

climate change 

impact on runoff 

and low flows 

 

Europe  JULES 

a Land Surface 

Model, Multi-

Segment Bias 

Correction 

(MSBC) Method 

Assessed mean 

and low 

hydrological states 

at 4
0
C global 

warming scenario 

for the European 

region. The study 

predicted the 

increasing nature 
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of the water cycle 

at higher levels of 

warming. There 

were remarkable 

projected 

decreases of low 

flows in the future. 

 

45 Berton et al., 

(2016) 

Journal of 

Hydrology: 

Regional 

Studies 

To examine the 

changing climate 

increases 

discharge and 

attenuates its 

seasonal 

distribution 

Merrimack 

Watershed, 

USA 

Principal 

Component 

Analysis, Factor 

Analysis, Mann-

Kendal Test 

The result shows 

that positive 

correlation 

between annual 

discharge and 

precipitation.  

 

46 Chang et al., 

(2017) 

Nat Hazards 

 To study the 

impact of climate 

change on runoff 

and uncertainty 

Analysis 

Weihe 

River Basin, 

China 

TOPMODEL, M-

GLUE method, 

Mann-Kendal 

Test 

The result of the 

RCP4.5 and 

RCP8.5 scenarios 

shows runoff will 

decrease from 

13.3% to 27.7%, 

respectively. 

 

47 Radchenko et 

al., (2017) 

Water 

Resources 

To study Climate 

Change Impacts 

on Runoff 

Central Asia General 

Circulation Model 

The simulated 

result shows 

significant 

decreases in 

summer runoff by 

12% to 42% and 

an increase in 

winter runoff by 

44% to 107%. 

 

48 Donnelly et 

al., (2017) 

Climatic 

Change 

To examine the 

impacts of climate 

change on 

European 

hydrology 

Europe General 

Circulation Model 

The result shows 

an increasing trend 

of temperature 

closely associated 

with runoff 

change. More 

instance of runoff 

change was found 

at 1.5°C to 3 °C 

temperature.  

 

49 Eisner et al., 

(2017) 

Climatic 

To analyze the 

climate change 

impacts 

**Multiple General 

Circulation Model 

The result shows a 

declining trend of 

stream flow in the 
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Change on streamflow 

seasonality 

Tagus basin and an 

increase in winter 

streamflow in the 

Rhine basin. 

 

50  

 Shanka et al., 

(2017) 

Environ Pollut 

Climate 

Change 

 

 To study Climate 

Change Impacts 

on Runoff 

 

 Gidabo Basin, 

 Ethiopia 

 

 Statistical 

Downscaling 

Model, General 

Circulation 

Model, Soil and 

Water 

Assessment Tool 

The result shows a 

significant 

increase in runoff 

in the summer 

season and a high 

amount of 

decrease in runoff 

in the winter 

season. 

51 Das et al., 

(2018) 

Hydrological 

Sciences 

Journal 

To evaluate   the 

potential climate 

change impact on 

monsoon flow 

Wainganga 

River Basin, 

India 

Machine 

Learning 

Technique 

The result 

predicted a 

significant 

decrease in 

monsoon affecting 

stream flow.  

 

52 Lv et al., 

(2018) 

scientific 

reports 

To study the 

effects of climate 

and catchment 

characteristic 

change on 

streamflow 

Yellow River, 

China 

Budyko-type 

equation 

The streamflow 

changed 26.87mm 

between the period 

1978 to 2010. 

Runoff altered by 

91.27% due to 

changes in 

watershed 

characteristics and 

6.50% due to 

climate change.  

 

53 Worqlul et al., 

(2018) 

water 

To examine the 

impact of climate 

change on 

streamflow 

hydrology 

Upper Blue 

Nile 

Basin, Ethiopia 

Global 

Circulation 

Models 

The result 

predicted an 

increase of 

maximum and 

minimum 

temperature by 

3.6
o
C to 2.4

o
C by 

the end of the 21st 

century. With 

increasing 

temperature, 

evapotranspiration 

will increase by 

7.8%. The 
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hydrological 

model indicates 

that stream flow 

increases by 64% 

in the dry season 

and decreases by 

19% in the wet 

season. 

 

54  

 Kelaiya et al., 

(2019) 

 

 International 

Journal of 

Bio-resource 

and Stress 

Management 

To asses  

 the water balance 

components 

 

 Bhadra River 

Basin, India 

Soil and Water 

Assessment Tool 

The result shows 

that annual 

evapotranspiration, 

runoff, and rainfall 

were 252.9mm, 

243.67mm, and 

670mm 

respectively. The 

annual average 

rainfall accounted 

for 36.37% of the 

annual average 

runoff.  

 

55 Bhatta et al., 

(2019) 

Catena 

To assess the 

climate change 

impact on the 

hydrology 

Koshi River 

Basin, Nepal 

Soil and Water 

Assessment Tool 

The study 

predicted the 

climate from 2030 

to 2080. The 

predicted result 

shows a decrease 

in streamflow by 

8.5% during the 

twenty-first 

century. 

 

56 Qiu et al., 

(2019) 

 

Journal of 

Hydrology 

To study the 

impact of climate 

change on 

watershed 

systems 

Miyun 

Reservoir 

Watershed, 

China 

Soil and Water 

Assessment Tool 

The result shows 

that during the 

middle, near, and 

future periods 

annual runoff 

changes were 

−22.17%, 

−30.14%, −3.97% 

respectively. The 

decrease of runoff 

is associated with 

an increase in 

temperature and 
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evapotranspiration. 

 

57 Oti et al., 

(2020) 

Heliyon 

To examine the 

hydrologic 

response to 

climate change 

Densu River 

Basin, Ghana 

Water Evaluation 

and Planning 

System 

The result 

indicated that with 

an increase of 

temperature by 

8.23%, there is a 

decrease of 17% in 

the precipitation. 

The increase in 

temperature and 

reduction of 

precipitation 

results in 58.3% 

water resource 

reduction.  

 

58 Bingfei et al., 

(2020) 

J. Geogr. Sci. 

To examine the 

differential 

changes in 

precipitation and 

runoff 

Discharge 

Yellow River 

of China 

Standardized 

Precipitation 

Index, Mann-

Kendal Test, 

The result shows 

that 1989 was the 

change point of 

runoff when 14% 

of stream flow 

reduction 

occurred. 

Variation of 

precipitation was 

not strictly 

consistent with 

runoff. 

 

59 Srinivas et al., 

(2020) 

Stochastic 

Environmental 

Research and 

Risk 

Assessment 

To study the 

hydroclimatic 

river discharge 

and seasonal 

trends assessment 

Ganges River 

Basin, India 

Mann–Kendall 

Test,  

Sen‘s Slope 

 

The study was 

predicted for 2030, 

2040, and 2050. It 

stated that a 

gradual decrease 

in precipitation 

leads to a 

significant 

decrease in river 

discharge at the 

rate of 15% to 

21%. 

 

60 Koch et al., 

(2020) 

Climatic 

Change 

To study climate 

change and water 

resource 

management 

Pajeú 

watershed in 

north-eastern 

Brazil 

Soil and Water 

Integrated Model 

The study stated 

that the semi-arid 

region of Brazil 

was prone to 
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drought. 

 

Cluster 2: Climate change and human impact on runoff 

61 Wang et al., 

(2011) 

Water 

Resources 

Research 

 

To quantify the 

relative 

contribution of the 

climate and direct 

Human Impact on 

Mean Annual 

streamflow 

United States Budyko-type 

equation 

The study stated 

that climate and 

human activities 

have a strong 

impact on stream 

flow. Climate 

exhibits an 18% 

increase in 

streamflow. In the 

arid region 

climate- and 

human-induced 

changes were 

more severe than 

in other regions 

 

62 Wang and 

Hejazi (2011) 

Water Resour. 

Res 

To quantify the 

relative 

contribution of the 

climate and direct 

human impacts on 

mean annual 

streamflow 

United States Budyko-type 

equation 

Mean annual 

streamflow 

increased due to 

climate change in 

most of the 

watersheds. The 

impact of climate 

change on annual 

stream flow was 

18%. The human-

induced impact on 

mean annual 

runoff was 

heterogeneous in 

different 

watersheds.     

 

63 Wang et al., 

(2012) 

Quaternary 

International 

To study the role 

of climate change 

and human 

activities on the 

runoff  

Yangtze River, 

China 

Cumulative 

Anomaly and the 

Slope Change 

Catio of 

Cumulative 

Quantity 

(SCRCQ). 

The impact of 

human activities 

on runoff change 

was about 90%, 

while climatic 

variables were 

influenced by 

about 10%. 

 

64 Zhang et al., To assess of Huifa River Soil and Water Reconstruction of 



31 

 

(2012) 

Water Resour 

Manage 

impact of climate 

change and 

human 

activities on 

runoff 

Basin, 

Northeast 

China 

Assessment Tool annual runoff from 

1965 to 2005 

based on 

calibration and 

validation of the 

baseline period 

between 1956 and 

1964. 

The result 

indicates a 

correlation 

between climatic 

variables 

(precipitation and 

temperature) and 

runoff coefficients. 

 

65 Wang et al., 

(2012)  

Hydrol. 

Process. 

To quantify the 

impact of climate 

variability and 

human activities 

on runoff changes 

Haihe River 

Basin, China 

Mann–Kendall 

Test, 

Precipitation–

Runoff Double 

Cumulative 

Curves Method 

and Pettitt‘s Test 

The study 

quantified climate 

variability and 

human activities 

on runoff response 

across three river 

basins. The 

climatic elasticity 

analysis shows an 

average decrease 

of runoff by 

38.33% due to 

climatic variables 

across the basins.  

Human activity 

resulted in about 

61.66% runoff 

change across the 

three basins. 

 

66 Chen et al., 

(2013) 

Theor Appl 

Climatol 

To quantify the 

effects of climatic 

variability and 

human activities 

on runoff 

Kaidu River 

Basin, North 

China 

Mann–Kendall 

Test, Mann–

Kendall–Sneyers 

Test, Hydrologic 

Sensitivity 

Analysis Method 

The runoff trend 

was divided into a 

natural period 

(1960–1993) and a 

human-induced 

period (1994–

2009) and the 

change point in 

annual runoff was 

identified as the 
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year 1993. A 

significant 

increase in runoff 

was recorded and 

it was concluded 

that climatic 

variability was the 

main contributing 

factor (90.5%) 

followed by 

human activity 

(9.5%). 

 

67 Chang et al., 

(2014) 

Quaternary 

International 

To study the 

impact of climate 

change and 

human activities 

on runoff 

Weihe 

 River Basin, 

China 

Variable 

Infiltration 

Capacity 

Hydrological 

Model 

The study showed 

a decline of 35% 

in the runoff of the 

river basin since 

the baseline 

decade (1956). 

The percentage of 

runoff change 

caused by climate 

change in 

1970,1980,1990 

and 2000 was 

36%, 28%, 53%, 

and 10%, 

respectively. The 

percentage of 

runoff change 

caused by human 

activity was 64%, 

72%, 47%, and 

90%, respectively. 

 

68 Jiang et al., 

(2015) 

Journal of 

Hydrology 

To study the 

impacts of climate 

change and 

human activities 

on runoff 

Weihe River, 

China 

Budyko-type 

equations, Mann-

– 

Kendall Test  

The result of the 

study shows that 

human activity and 

climatic factors 

both were the 

driving factors in 

reducing the 

runoff.  

 

69 Mohammed et 

al., (2016) 

Stoch Environ 

To assess various 

models for 

predicting 

Lower Zab 

River, Iqra 

Pettitt, 

Precipitation- 

Runoff Double 

Alteration of the 

climatic variable 

was the prime 
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Res Risk 

Assess 

anthropogenic 

interventions and 

climate variability 

on surface runoff 

Cumulative 

Curve, Mann–

Kendal, Multi-

Model 

Combination 

Technique 

concern of runoff 

change, during the 

year 2003 to 2013. 

Climate change 

has resulted in a 

66% to 97% 

reduction of runoff 

while 

anthropogenic 

interventions 

attributed to about 

4% to 34% 

reduction. 

 

70 Wang et al., 

(2017) 

Appl Water 

Sci 

To investigate the 

causes of change 

in runoff 

Gushan River Hydrological 

Simulation 

Approach 

The result shows a 

reduction of runoff 

by 52.4 mm during 

the study period of 

1980 to 2013 

climate change 

contributes about 

38.5% and human 

activity contributes 

61.5% of total 

runoff.  

 

71 Wang et al., 

(2018) 

J. Earth Syst. 

Sci. 

To Assess the 

response of runoff 

to climate change 

and human 

activities 

Northern 

Taihang 

Mountain, 

China 

Mann–Kendall 

test, Pettitt 

change-point 

statistics, 

Elasticity 

Coefficient 

Method 

Runoff reduction 

owing to spring 

snowmelt and 

winter snowfall 

was 59% and 18%, 

respectively. The 

significance of 

annual runoff and 

precipitation was 

detected in 1982. 

The contribution 

of climate change 

and human 

activities on runoff 

change was 37.5% 

and 62.5%, 

respectively. 
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Cluster 3: Climate change effects on runoff and ecosystem 

 

72 D¨oll et al., 

(2010) 

Hydrol-Earth-

Syst-sci. 

 To assess the 

impact of climate 

change on 

freshwater 

ecosystems and 

river flow 

alterations on a 

global scale. 

A global 

overview 

Water GAP 

Global Hydrology 

Model 

Flow alteration 

and their spatial-

temporal 

magnitudes were 

computed  

 

73 Fekete et al., 

(2010) 

Global 

Biogeochem. 

Cycles 

To study 

ecosystem 

scenarios with 

respect to climate 

and hydrological 

alterations 

A global 

overview 

Global 

Circulation 

Model, Water 

Balance/Transport 

Model, 

Millennium 

Ecosystems 

Assessment 

The future climatic 

consequence to 

alternative 

environmental 

management 

policies. 

 

Cluster 4: Climate change impact on stream-flow and hydropower 

 

74 Oliveira et al., 

(2017) 

Int. J. 

Climatol 

To assess the   

climate change 

impacts on 

streamflow 

and hydropower 

potential 

Southeastern 

Brazil 

Soil and Water 

Assessment Tool 

The result shows a 

significant 

decrease in runoff 

in all seasons and 

a resultant 

decrease in 

hydropower from 

6.1% to 58.6% 

throughout the 21
st
 

century.  

 

75 Wagner et al., 

(2017) 

Environ Earth 

Sci 

To examine the 

impacts of climate 

change on 

streamflow and 

hydropower 

Generation 

Alpine region Hydrological 

Modelling 

The result 

indicates a 

decrease in runoff 

in some seasons.  

 

Cluster 5: Climate change impact on streamflow and sediment yield 

 

76 Phan et al., 

(2011) 

Water 

Resources 

To study the 

impact of climate 

change on Stream 

discharge and 

sediment yield 

Northern Viet 

Nam 

Soil and Water 

Assessment Tool 

The result 

predicted for the 

2050s as a change 

in the rate of 

sediment load and 

stream discharge 
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to be 11.4% and 

15.3%, 

respectively with 

discharge 

increasing with 

sedimentation 

during the wet 

season. 

 

77 Li et al., 

(2015) 

water 

To examine the 

runoff and 

sediment yield 

variations in 

response to 

precipitation 

changes 

Loess Plateau, 

China 

Soil and Water 

Assessment Tool 

The result shows 

sediment yield and 

runoff increased 

by 11.54% and 

18.36% 

respectively when 

precipitation 

increased by 10% 

and sediment yield 

and runoff 

decreased by 

10.05% and 

13.36% 

respectively when 

precipitation 

decreased by 10%. 

 

 

1.9.3 The trend of article publication and journals 

           Of the 77 articles reviewed from the period 2009 to 2020, the highest number 

of articles were found to be in the domain of the effect of climate change on runoff 

and discharge, which accounted for 18.18% of the total in 2014 (Table 1.5). The 

papers mostly appeared in Water, Hindawi Publishing Corporation Scientific World 

Journal, and Hydrol. Earth Syst. Sci, Quaternary International, Journal of 

Hydrology, Front. Earth Sci, Science of the Total Environment, Water Resources 

Research, Front. Earth Sci, Theor Appl Climatol, International Journal of Water 

Resources Development, Journal of Geophysical Research: Atmospheres, Climatic 

Change, and J. Earth Syst. Sci. From 2011 to 2013, the same number of articles 

were taken, which contained 11.69% of articles in each year. The lowest number of 

articles (2.60%) were found for the years 2009 and 2010 (Table 1.5). 
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The articles were grouped into five clusters (Table 1.5), as detailed in 

Methodology. Cluster 1 covered 77.92% of the articles that were reviewed. 14.28% 

of the articles belonged to Cluster 2 (to understand the anthropogenic influence on 

runoff). Clusters 3 to 5 underlined the impact of climate change on runoff, 

ecosystems, stream flow, hydropower, and sediment. This covered 2.5% of the 

reviewed articles. 

Out of 77 articles, the highest percentage was published in the Journal of 

Climatic Change and Water Resour. Res (7% of each). 6% of the articles were 

published in the Journal of Hydrology, followed by 4% each in the Journal of 

Hydrol. Earth Syst. Sci., Quaternary International, and Water. This was followed by 

3% of articles in the journals Science of Total Environment, Hydrological Process, 

and Water Resources Management. Journals of Int. J. Climatol, Hydrol. Process, 

Hydrological Sciences Journal, Nat Hazards, Theor Appl Climatol, and J. Earth 

Syst. Sci published 2% articles in each of the journals, while the other journals 

published only 1% articles in each (Fig. 1.7 and Table 1.6). An increasing trend of 

article publication based on the topic of the review was found in the journals of 

Climatic Change, Water Resources. Res, and Journal of Hydrology. 

Table 1.6: Journal and quantity of  articles 

Sl 

No 

Journal Co

unt 

Sl 

No 

Journal Co

unt 

1 Water Resour. Res 7 21 Global and Planetary Change 1 

2 Climatic Change 7 22 Journal of Hydrologic Engineering 1 

3 Journal of 

Hydrology 

6 23 Earth System Dynamics 1 

4 Hydrol. Earth Syst. 

Sci 

4 24 Journal of Great Lakes Research 1 

5 Quaternary 

International 

4 25 Hindawi Publishing Corporation 

Scientific World Journal 

1 

6 Water 4 26 Front. Earth Sci. 1 

7 Science of the Total 

Environment 

3 27 International Journal of Water 

Resources Development 

1 

8 Hydrol. Process. 3 28 Journal of Geophysical Research: 

Atmospheres 

1 

9 Water Resour 

Manage 

3 29 Stoch Environ Res Risk Assess 1 
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10 Int. J. Climatol 2 30 Journal of Hydrology: Regional 

Studies 

1 

11 Hydrol. Process. 2 31 Appl Water Sci 1 

12 Hydrological 

Sciences Journal 

2 32 Water Resources 1 

13 Nat Hazards 2 33 Environ Pollut Climate Change 1 

14 Theor Appl 

Climatol 

2 34 Scientific reports 1 

15 J. Earth Syst. Sci. 2 35 International Journal of Bio-resource 

and Stress Management 

1 

16 J. Environ 1 36 Catena 1 

17 Hydrol-Earth-Syst-

sci. 

1 37 Heliyon 1 

18 Global 

Biogeochem.Cycles 

1 38 J. Geogr. Sci. 1 

19 J Indian Soc Remote 

Sens 

1 39 Stochastic Environmental Research 

and Risk Assessment 

1 

20 Environ. Res. Lett 1 Total 77 

 

 

Fig. 1.7: (A) List of journals and number of papers published, (B) Quantity of 

journals based on year. 
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1.9.4 Country of origin  

             The study covered every continent of the globe, with the highest number of 

articles published from Asia (51%), with China dominating the publications (26 

publications), followed by India (6 publications). Nepal, Turkey, Iraq, Taiwan, and 

Vietnam had one publication each. North America had the 2
nd

 highest publication 

rate with 15% of the articles, with the United States having 9 publications and 

Canada and Ontario having 1 each. The third-highest publication on the topic of 

study is attributed to Europe (14%). Out of 77 articles undertaken for the present 

study, 5 were based on a global overview; one study was conducted on Iraq and Iran 

(both as one study region); and 4 studies were conducted on a continental scale, i.e., 

Southeast Asia, Asia, Africa, and the Alpine region. The details of the studies 

undertaken have been presented in Fig. 1.8, and Table 1.7. 

Table 1.7: Distribution of article 

SL 

NO 
Country Count SL NO Country Count 

1 China 26 16 Romania 1 

2 United States 9 17 Germany 1 

3 India 6 18 Italy 1 

4 
A global 

overview 
5 19 Nepal 1 

5 Europe 4 20 Ghana 1 

6 Brazil 3 21 Iraq 1 

7 Ethiopia 2 22 Taiwan 1 

8 Kenya 1 23 Vietnam 1 

9 Denmark 1 24 
**Iraq and 

Iran 
1 

10 Australia 1 25 
**Southeast 

Asia 
1 

11 Belgium 1 26 **Africa 1 

12 Turkey 1 27 **Asia 1 

13 Slovenia 1 28 
**Alpine 

region 
1 

14 Canada 1 29 **Multiple 1 

15 Ontario 1 Total 77 
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Note- **Iraq and Iran contained both countries; **Southeast Asia, **Africa, **Asia, 

**Alpine region covered continents as study region, **Multiple represents Rhine and 

Tagus in Europe, upper Amazon in South America, upper Mississippi in North 

America, Lena, Ganges, upper Yellow, and the upper Yangtze in Asia, Blue Nile and 

Niger in Africa, and Darling in Australia as a study region. 

 

Fig. 1.8: (A) Journal distribution based on country (B) Journal distribution based on 

the continent 

1.9.5 Summary of Findings 

            The work highlighted how runoff alteration will be impacted by climate 

change over time. Runoff changes by 26% with a 10% change in precipitation 

(Jeppesen et al., 2009). Climate change is indicated by a significant increase in 

temperature and a drop in precipitation, thereby having a major impact on runoff 

(Wu et al., 2012; Yates et al., 2014; Pumo et al., 2016). An increase in temperature 

by 4 °C reduces stream flow, leading to a 30% lower peak flow (Kwadijk and 

Middelkoop, 2014). The relationship between temperature and runoff/discharge is 

adverse (Leppi et al., 2012; Liersch et al., 2014). The temperature change (10 °C) 

caused a reduction (2%) of runoff change (Yang et al., 2011), and the increase in 
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temperature by 2°C and 3°C decreased stream flow by 2% to 6% and 3% to 8%, 

respectively (Tang et al., 2012). The changes in land use and land cover also had a 

detrimental effect on runoff (Wang et al., 2016). The projected result for future water 

resources shows a change in groundwater recharge by 23.15% (Uniyal et al., 2015; 

Biswas et al., 2018) and a reduction in both runoff and groundwater recharge 

(Hagemann et al., 2013; Papadimitriou et al., 2016). 

Anthropogenic activities have a decisive effect on runoff change (Chang et 

al., 2014). The anthropogenic role in runoff reduction is more dominant than climatic 

factors (Wang et al., 2012; Chang et al., 2014; Wang et al., 2017; Wang et al., 2018). 

In Northern Vietnam and China's Loess Plateau, the SWAT model was used to 

examine how climate change would impact sediment output (Phan et al., 201; Li et 

al., 2015). 

1.10 Objectives: 

      1.   To estimate the rainfall trend of the Mayurakshi river basin. 

2. To assess the land use and land cover dynamics of the basin. 

3. To evaluate seasonal streamflow patterns and simulate the runoff pattern of the 

basin. 

4. To assess the role of climate change and land use land cover change on 

streamflow. 

1.11 Research Questions 

The research work has been conducted to address the following questions in 

reference to the study area: 

(i) Is there any change in rainfall during the study period? 

(ii) What types of land use and land cover changes occurred in the study 

area? 

(iii) What is the impact of climate, land use, and land cover change on the 

runoff of the basin? 
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1.12 Methods  

The research objectives were solved one by one through a series of 

methodological steps. Before the rainfall trend and changepoint analysis, the 

normality of the data was assessed by the Kolmogorov-Smirnov test. The data also 

underwent autocorrelation tests to confirm that the time-series data has a serial 

dependency or that the data is independent. Due to the autocorrelated data, the 

modified Mann-Kendall test (mMK) was applied for the trend analysis, and the 

magnitude of the trend was measured by Sen‘s slope. The change point of the rainfall 

time series has been evaluated by the statistics of Pettitt, Buishand U Statistic, and 

Standard Normal Homogeneity Test. The rainfall variability of the study area is 

analyzed by the Rainfall Seasonality Index (RSI), while the drought condition over 

the study period is measured by the Rainfall Anomaly Index (RAI). The 

Autoregressive Integrated Moving Average (ARIMA) model was used based on 30 

years of time-sequence rainfall data to predict the future rainfall scenario of the 

basin. 

 The land use and land cover (LULC) dynamics of the basin are analyzed by 

the sequential steps of image classification, change detection, and future prediction. 

The satellite images were classified by the machine learning algorithm Random 

Forest (RF), and the change in LULC was assessed by the transition matrix. In order 

to predict the future scenario of LULC, the popular Cellular Automata-Markov 

model (CA-Markov) was employed. The runoff of the basin is simulated in the Soil 

and Water Assessment Tool (SWAT), and the model is calibrated and validated, 

where the calibration and validation are accepted based on the R
2
 and Nash-Sutcliffe 

simulation efficiency (NSE). The climatic and LULC impacts on the runoff were 

evaluated by developing the models 𝑆2𝐼𝑃𝑄  of the simulated average runoff 

contribution of the basin during the impact period, 𝑆1𝑁𝑃𝑄  the simulated average 

runoff contribution of the basin during the natural period, and 𝑆3𝐼𝑃𝐶𝐿 the runoff 

simulation with reference to climate change. In the model (𝑆3𝐼𝑃𝐶𝐿𝑄), the LULC is 

constant and referred to as the natural period (𝑆1𝑁𝑃𝑄), and the climatic components 

are referred to as the impact period ( 𝑆2𝐼𝑃𝑄). 
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1.13 Data Sources 

The rainfall data was collected from the IMD Puna 

(https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_Bin.html). The spatial 

resolution of this daily gridded rainfall data is 0.25 × 0.25 degrees, and the unit of 

rain is a millimeter (mm). The data was collected from 1901 to 2020. For image 

classification, the satellite data was collected from the United States Geological 

Survey (USGS) portal (http://earthexploration.usgs.gov/).  The LULC for the years 

1991, 1996, 2002, and 2008 was done using the collected Landsat 5 images and 

Thematic Mapper (TM). For the years 2014 and 2020, Landsat 8 and Operational 

Land Imager (OLI) were used. To run the SWAT model, weather datasets, including 

temperature, humidity, wind speed, and solar radiation, were acquired from NASA 

Power Access MERRA-2 data (https://power.larc.nasa.gov/data-access-viewer/). The 

observed discharge data were obtained from the Ministry of Jal Shakti, Central Water 

Commission Executive Engineer, Damodar Division, CWC, Asansol, under the 

Government of India. 

1.14 Future research 

The work can lead researchers in the areas of climatology, agricultural 

science, and regional planning to undertake further studies on regional climate 

changes and their effect on agriculture, regional economies, ecosystems, and 

hydropower production. Further, the changes in LULC can prove to be food for 

future research in the fields of regional planning and environmental conservation for 

sustainable policy changes.  

 

1.15 Conclusion 

             The work can lead researchers in the areas of climatology, agricultural 

science, and regional planning to undertake further studies on regional climate 

changes and their effect on agriculture, regional economies, ecosystems, and 

hydropower production. The study was focused on understanding the impact of 

climate change, land use, and land cover change (LULC) on the stream flow domain.  

https://power.larc.nasa.gov/data-access-viewer/
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Further, the changes in LULC can prove to be food for future research in the fields of 

regional planning and environmental conservation for sustainable policy changes. 
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Chapter 2: TREND AND RAINFALL VARIABILITY 

 

2.1 Objective and Chapter Organization 

This chapter extensively incorporates rainfall trends, change points, and 

variability analysis over a 30-year period (1991-2020). Section 2.3 deals with 

databases and methods applied. Prior to trend and change analysis, the data was 

preprocessed, and the same has been deliberated in detail in Section 2.3.2, followed 

by the steps of data preprocessing, visualization, and error correction. To select the 

suitable statistical technique, the entire dataset went through the Kolmogorov-

Smirnov test and the autocorrelation test in sections 2.3.3 and 2.3.4, respectively. 

The trend of rainfall time series data was evaluated in Section 2.3.5, while Section 

2.3.6 incorporated the methods of change point detection. The rainfall variability was 

analyzed in Section 2.3.7. The future rainfall condition (2021-2030) of the basin has 

been predicted through the ARIMA model in Section 2.3.8. The results of decadal 

and long-term rainfall status, change point detection, rainfall seasonality, and rainfall 

anomalies were analyzed in sections 2.4.3, 2.4.5, and 2.4.6, respectively. The future 

scenario for the next 10 years is simulated in Section 2.4.8. The previous related 

studies were reviewed in Section 2.4.9, and the key results were summarized with 

concluding remarks in Section 2.4.10. 

2.2 Introduction 

Basin management is the indispensable management of water resources as well 

as the multi-resource management of a large area or river basin. In the last few 

decades, the driving factors of hydrological components and the impact of climatic 

change have resulted in a growing interest in hydrological research (Zalewski 2000; 

Novotny and Stefan 2007; Clifton et al., 2018). Climatic components, as well as 

anthropogenic activities like water extraction, water diversification, construction of 

multipurpose projects, and changing land cover, are the key factors for the change in 

stream flow pattern (Gao et al., 2013). For the sake of water resource management, 

climatic parameter alteration must be quantified (Wang et al., 2018). Alteration of 

the hydrological cycle is directly associated with the changing nature of rainfall that 
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is directly related to water resources (Gajbhiye et al., 2015). The Indian subcontinent 

and its surroundings rely on the southwest monsoon, which brings a huge amount of 

moisture. In the last few decades, the variability and uncertainty of precipitation have 

become prominent (Long et al., 2021). In recent times, the Indian subcontinent has 

been facing very high spatiotemporal variability as well as the uncertainty of rainfall. 

For example, the mean yearly rainfall in Rajasthan (the western part of India) is 100 

mm, while the rainfall is >2500 mm in the north-eastern part of India (Indian Water 

Resource Society, 2016). The changing behavior of climatic vectors, particularly the 

frequency of rainfall and its quantity, is changing the stream flow pattern, soil 

moisture content, and groundwater recharge (Islam et al., 2012; Srivastava et al., 

2014; Swain et al., 2022a, b). 

Climate change is the primary cause of the inconsistency or changing nature of 

rainfall events, which has exacerbated the dry season, runoff reduction, and food 

insecurity. Thus, climate change, which causes variability in rainfall, is the primary 

cause of agriculture's negative impact in many parts of the world (Siraj et al., 2020). 

The unabated increase in fossil fuel burning and greenhouse gas concentration has 

resulted in changes to a wide range of climatic components. The abrupt change that 

can occur in climatic behavior is known as a change point (Stern et al., 2014). Thus, 

the analysis of climatic variables, particularly rainfall, its changing nature, and trends 

is the most important way for any region to manage its water resources. In the Indian 

subcontinent, the study of climate change is a prime concern to understand the 

precipitation pattern (Jain, 2012). 

Many studies have focused on change-point studies at the global and regional 

levels (Karl et al., 2000; Ahmad et al., 2014; Agarwal et al., 2021). In historical time 

series data, the Mann-Kendall test, Sen‘s slop non-parametric test, and Pettit‘s test 

were widely used for trend analysis, the magnitude of trend, and change point 

detection (Fu et al., 2007; Salarijazi et al., 2012; Karmeshu, 2012; Das et al., 2021). 

A standard normal homogeneity test was also applied to evaluate whether the data is 

homogeneous in long-term time-series data or whether the change has been 

perceived (Winingaard et al., 2003; Stepanek et al., 2009). Among the parametric 

methods (assuming that the data is normally distributed), various statistical 

techniques were also applied to understand the change point detection, such as 
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Buishand U, Buishand range, standard normal homogeneity, and a log-likelihood-

based method (Kang and Yusof 2012; Dhorde and Dhorde 2013; Hussain et al., 

2015; Chargui et al., 2018; Pandžić et al., 2019; Militon et al., 2020). Knowledge of 

change detection and trend analysis will help in understanding the nature of climatic 

anomalies along with providing proper management techniques (Fischer et al., 2012). 

Therefore, the study of temporal and spatial variations of rainfall and its long-term 

time series analysis have a decisive role in understanding the nature of rainfall 

(Michiels et al., 1992). To understand the trend of the climatic variables, various 

indices have been successfully used, such as the Precipitation Concentration Index 

(PCI) (Xuemei et al., 2010; De-Luis et al., 2011; Cui et al., 2017; Oliver, 1980; 

Michiels et al., 1992), the Rainfall Seasonality Index (Walsh and Lawler, 1981), and 

the Rainfall Anomaly Index (RAI) (Hernando et al., 2015). This study deals with 

Mann-Kendall statistics and Sen‘s slope to determine the trend of rainfall and the 

magnitude of linear change. If the stations in the study area have different 

topographical characteristics or are widely placed, then statistical tests are preferred 

to assess the absolute homogeneity and change point, as a significant association may 

not occur between them (Ahmed et al., 2020). Hence, the Pettitt Test, Buishand U 

Statistic, and Standard Normal Homogeneity Test were used to determine the 

significant change in the time series rainfall data. To evaluate the spatio-temporal 

variability and seasonality of rainfall, two extensively used and recognized indexes, 

RSI and RAI, were applied.  

The modeling of climate change and its impact on future rainfall events is 

important for planning water resource management. The prediction of future rainfall 

is broadly studied based on a dynamic and empirical approach (Swami et al., 2018). 

The dynamic approaches are physical-based models, whereas the empirical 

approaches are fuzzy logic, regression, artificial neural networks (ANN), and 

Autoregressive Integrated Moving Averages (ARIMA) (Narayanan et al., 2016). The 

ARIMA model has been widely used to forecast future rainfall (Shamsnia et al., 

2011; Mahsin et al., 2012), hydrology and river modeling (Cui, 2011), and 

evapotranspiration (Valipour et al., 2012). The prediction of future rainfall is 

performed in various states all over India (Narayanan et al., 2013; Chattopadhyay et 
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al., 2013). Many studies have been done on the river basin scale (Nanda et al., 2013). 

This present study has employed the ARIMA model to forecast rainfall. 

The study area is economically and demographically important. The region is 

an important agricultural zone for eastern India. Further, the Mayurakshi River water 

system has a bearing on the region‘s irrigation, drinking, fishing, and varied other 

multipurpose uses (Ghosh et al., 2017). The river creates widespread flooding in 

certain sections of the basin during the rainy season, while over the years it has been 

reduced to a tame stream during the summer season. Thus, the study wants to find 

out the role of precipitation and the spatiotemporal character of rainfall in the 

Mayurakshi basin. The seasonal trend of rainfall was studied to obtain a clear 

understanding of the future trend, which is required for suitable planning of the river 

basin.   

2.3 Database and Methodology  

The database used in this chapter is outlined in this section, the detailed data 

source and the methodologies are given below: 

2.3.1 Data Source  

The rainfall data was collected from the India Meteorological Department 

(IMD) Pune (https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_Bin.html). 

The obtained daily gridded rainfall data (in millimeters) has a high spatial resolution 

of 0.25 × 0.25 degrees. Rainfall data from 1991 to 2020 for the study area was 

obtained from the said source. 

2.3.2 Data pre-processing: Visualization and error correction 

After collecting the rainfall data, the row data set was exported to MS Excel, 

where it was corrected for missing values, and the stations were filtered to get the 

required rainfall stations for the study area. A total of 18 stations, covering the entire 

study area, were assigned names as - S1, S2, S3,... S18 (Fig. 2.1 and Table 2.2). The 

rainfall data was arranged on a daily, monthly, and annual basis for subsequent 

analysis. 
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Fig. 2.1: Distribution of rainfall station 

2.3.3 Normality test 

Before applying appropriate change point detection techniques, it is crucial to 

assess whether the rainfall data confirms a normal distribution (Ghasemi et al., 

2012). If the data exhibits a normal distribution, the Buishand U test and standard 

normal homogeneity test statistics can be utilized. Conversely, if the data does not 

follow a normal distribution, the Pettitt test can be employed. The normality of the 

data was evaluated using the Kolmogorov-Smirnov test with SPSS v26 software. 

 

(i). Kolmogorov-Smirnov Test 

The Kolmogorov-Smirnov test, also referred to as the KS test, is a statistical 

tool utilized to assess whether a given sample conforms to a particular probability 

distribution. Introduced by Kolmogorov and Smirnov in the 1930s and cited by 

D'Agostino & Stephens (1986), this test is classified as non-parametric, meaning it 

does not make assumptions about the data's underlying distribution. It is typically 

employed when the sample size exceeds 50. The test involves comparing the 

empirical cumulative distribution function (ECDF) of the sample against the 
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theoretical cumulative distribution function (CDF) of the target distribution. The test 

statistic is computed as the maximum absolute difference between these two 

functions, quantifying how well the sample aligns with the specified distribution 

(Alice Robson et al., 2000). If the test statistic exceeds the critical value, the null 

hypothesis is rejected, indicating that the sample does not conform to the normal 

distribution. Conversely, if the test statistic is smaller, the null hypothesis is retained, 

suggesting insufficient evidence to conclude that the sample deviates from the 

normal distribution. 

The equation for the Kolmogorov-Smirnov (KS) test statistic is as follows: 

D = max|F(x) - S(x)| ……………………………….………. (Eq.1) 

Where: D represents the KS test statistic. F(x) is the theoretical cumulative 

distribution function (CDF) of the specified distribution. S(x) is the empirical 

cumulative distribution function (ECDF) of the sample. In this equation, the test 

statistic D is calculated as the maximum absolute difference between the theoretical 

CDF and the empirical CDF at each data point. It measures the largest vertical 

distance between the two cumulative distribution functions, indicating how well the 

sample aligns with the specified distribution. 

2.3.4 Autocorrelation     

Autocorrelation is one of the important tests to confirm whether the time series 

data has a serial dependency or is independent (Uyanto, 2020). It is highly 

recommended to check the autocorrelation of the dataset prior to trend analysis. In 

this present study, the autocorrelation was tested by employing ACF.pet in R 

statistical software (R v 4.1.2) at the K of lag-1 since the rainfall data was yearly 

data. If the test result confirms that the data belongs to independent series, then the 

Mann-Kendall test (MK test) is allowed for trend analysis; otherwise, the modified 

Mann-Kendall test (mMK) is preferred for auto-correlated data. 
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2.3.5 Methods of trend analysis 

(i) Mann-Kendall Statistic 

To analyze the trends in time series for long as well as short-term periods, the 

Mann-Kendall non-parametric test can be the measure to assess the consistent 

increasing or decreasing trends of the data (Lukas and Khambhammettu 2005; Alhaji 

et al., 2018). As the Mann-Kendall test is non-parametric, it suits all types of 

distributions of data and hence has been widely used when compared to other 

statistical methods to study long-term trends in time series data (Alahacoon and 

Edirisinghe 2021). 

The tested Kendall‘s statistics (S) of time series data m1, m2, m3. . ., and mn is 

estimated by the following equation (Libiseller and Grimvall 2002; Hipel and 

McLeod 1994). 

                          𝑆 = ∑ ∑ 𝑠𝑔𝑛(xJ − xk)
𝑛

𝑗=𝑘=1

𝑛−1

𝑘=1
 …………………….………. 

(Eq.2) 

                     𝑠𝑔𝑛(xJ − xk) = 

                                          +1 -------- (xJ − xk) > 0 

                                            0 --------- (xJ − xk) = 0 

                                            -1--------- (xJ − xk) < 0           ………….………(Eq.3) 

                                                                                                

When x1…x2...x3…xn and n is the time period of study. xj presents the data point at 

time j. If n is 10 or >10 then Z-transformation is employed as a normal 

approximation called the Kendall Z-value. To get the value of Z statistics to needs to 

adapt the variance of VAR(S) (Chattopadhyay et al., 2018; Aleum and Dioha 2020)  

                     
1

( ) 1/18 ( 1)(2 5) ( 1)(2 5)
g

p p

p

VAR S n n n t t


 
      

 
 ..……..… (Eq.4) 
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When n is the number of observations, g is equal trend values, p represents the 

number of the tide group in the data set, and tp indicates the number of data values, 

Sum (𝛴) represent the summation of the overall tide group (Agbo and Ekpo 2021). 

Calculated VAR(S) computed to calculate Z transformation (Kendall test statistics Z-

value) is a follows: 

             𝑍 =

{
 

 
𝑆−1

𝑉𝐴𝑅(𝑆)
𝑆 > 1

0,             𝑆 = 0
𝑆−1

𝑉𝐴𝑅(𝑆)
 𝑆 < 0

………………………………………………..…..… 

(Eq.5) 

Here Z value represents a standard normal distribution, the negative value of z 

presents a down word trend and the positive value of Z represents an upward or 

increasing trend. For testing the significance level α is utilized (a two-tailed test).   

(ii) Modified Mann–Kendall Test 

The Mann-Kendall statistics give an erroneous result that overestimates or 

underestimates the Z statistics when the time series data has a significant 

autocorrelation (Rahman et al., 2017; Sharma and Goyal 2020). In such conditions, 

researchers prefer the modified Mann-Kendall test (Phuong et al. 2020; Güçlü, 2020) 

Therefore, the time series data was first tested at the lag-1 significance level to 

confirm the probability of serial dependency among the time series data. Due to the 

significant autocorrelation in the data series, modified Mann Kendall (mMK) statistic 

was used (Hamed and Rao 1998).  

The modified Mann-Kendall VAR (S) was estimated by the following equation  

                                    VAR (𝑆) = (
𝑛(𝑛−1)(2𝑛+5)

18
) ⋅ (

𝑛

𝑛𝑒
∗)………………………..…. 

(Eq.6) 

The auto-correlation data is adjusted by    (
𝑛

𝑛𝑒
∗)  correction factor 
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                             (
𝑛

𝑛𝑒
∗) = 1 + (

2

𝑛3−3𝑛2+2𝑛
)∑  𝑛−1

f=1 (𝑛 − 𝑓)(𝑛 − 𝑓 − 1)(𝑛 − 𝑓 −

2)𝜌𝑒(𝑓). (Eq.7) 

𝜌𝑒(𝑓) signifies the of auto-correlation among the rank of observation, computed as 

follows  

                             𝜌(𝑓) = 2sin (
𝜋

6
𝜌𝑒(𝑓))……………………...………………. 

(Eq.8) 

(iii) Sen’s Slope  

Mann-Kendall Statistic provide the inclination (positive or negative) of the 

considered attribute, but the extent of the inclination is commonly assessed with 

Sen‘s Slope. A non-parametric statistic was developed by Sen (1968) to compute the 

slope and magnitude of linear change.  Sen‘s slope estimates positive and negative 

slopes, which has been widely used to compute the magnitude of the trend (Alhaji et 

al., 2018; Kamal and Pachauri, 2019; Biswas et al., 2019). The slope is calculated as 

follows (Hirsch et al., 1982). 

The method of linear trend estimation applied through a linear f (t) equation as  

F(t) = Qt+B…………………………………………………………….…. (Eq.9) 

 

Here F(t) represents a time series, that could be increased or decreased where Q is 

the slope and B is a constant. The Q can be calculated as shown in Eq 10.  

 

                          𝑄𝑖 =
𝑥𝑗−𝑥𝑘

𝑗−𝑘
         𝑖 = 1,2,3,4,5…𝑛 𝑗 > 𝑘…………………….. (Eq.10) 

Where, xj and xk represent the data values at time j and k (j > k) separately. The 

median of the n value Qi is determined by the following equation: 

                         𝑄𝑖 = {
*
𝑄𝑛+1

2
+……………………… . . 𝑛 odd

1

2
   *

𝑄𝑛

2
+ + *

𝑄𝑛+2

2
+………… . 𝑛 even

……………………… 

(Eq.11) 
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When Qi is positive it will present an increasing trend, and when Qi value is negative 

will represent a decreasing trend whereas zero value indicates no trend. 

 

2.3.6 Methods of Change Point Detection 

(i) Pettitt Test 

Single change point detection was developed by Pettitt (1997). This statistical 

analysis is a nonparametric abrupt change point detection for hydrological and 

climate time series data (Smadi and Zghoul 2006; Gao et al., 2011; Zarenistanak et 

al., 2014). It was widely used by Bryson et al. (2012), Dhorde and Zarenistanak 

(2013); Agha et al., (2017), and many others as stated in Eq- 12, 13, 14.   

     
0

2 ( 1)
n

k i

i

U m k n


   ……………………………………………… 

(Eq.12) 

Here mi represents the rank of i
th

 observation and x1, x2, x3,…, xn are data points 

arranged in ascending order, and the value of k is taken from 1,2,3, 4, ……., n 

                   max kK U ……………………………………………..….. (Eq.13)

 

                  𝑈𝑘 = ∑ ∑ 𝑠𝑖𝑔𝑛𝑛
1𝑗= +1 ( 𝑖 −  𝑗)

 

𝑖=1
…….……………..… (Eq.14) 

The value of K in a series attains maximum by Uk, and a change point appears in the 

series. The critical value is gotten by:  

                        Kα=[-1nα(n
3
+n

2
)/6]

1/2
…………………………………………. 

(Eq.15) 

Here α represents the level of significance that decides the critical value and n is the 

number of observations of the data point. 

(ii) Buishand U Statistic 

The Buishand‘s U test was used to measure the change point detection (Ndione 

et al., 2017). This statistical test was applied for single change point detection 

(Buishand 1984). The Buishand U test is formulated as:  
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
………………………………….……(Eq.16) 

Where the terms Sk is cumulative of deducted value from mean, and D
2

x is the 

standard deviation presented in Eq-17& 18.   
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

 

………………….……………………………..……(Eq.18) 

(iii) Standard Normal Homogeneity Test  

Alexandersson (1986) developed standard normal homogeneity tests as a 

statistical method for detecting a change point in time-series data. This method is 

widely used to analyze change point detection in rainfall data (Kang and Yusof 2012; 

Dhored and Zarenistanak 2013). The equations are given below (Alexandersson 

1986).  

     1 2( ) , 1.2,3.........Ty yz n y z Y n   

……………………….….…(Eq.19) 

Here T(y) statistic is computed to compare the mean value of the 1
st
 year (y) with the 

last year (n-y), and Z1 Z2 computation can be written as below: 

                         1 1

1

1/ ( / )
n

q

i

Z y y y S


   and 2 1

1

1/ ( / )
n

q

i y

Z n y y y S
 

  

……. (Eq.20) 

Here y represents the arithmetic mean value of the ratio and 
qS standard deviation of 

the series. A breaking point in the time series exists when the value of T is 

maximum. To compute the homogeneity critical value is computed as  
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                         maxo yT T ………………………………………………(Eq.21) 

2.3.7 Methods of Rainfall Variability Analysis 

(i) Rainfall Seasonality Index  

The relative seasonality of the rainfall regime is expressed by the Rainfall 

Seasonality Index (RSI). The statistics of relative seasonality refer to the contrast of 

monthly rainfall throughout the year. This method is significant for describing the 

precipitation distribution and understanding the seasonal nature of rainfall. The RSI 

has been computed by using the following formula (Walsh and Lawler 1981) 

                              

12

1

1
/12

n
y

n

ynRSI x R
R





   ……………………………. 

(Eq.22) 

where  ̅𝑛𝑦 measured the rainfall of month n of the specific y year, and 𝑅𝑦
̅̅̅̅ ∕ 12 

measured the total annual rainfall for a specific year y.  

(ii) Rainfall Anomaly Index 

The Rainfall Anomaly Index (RAI) is a ranked-based statistical method to 

compute the magnitude of anomalies, i.e., positive (+) anomalies and negative (-) 

anomalies (Gibbs and Maher 1967; Keyantash and Dracup 2002). The ten highest 

and lowest values are ranked and averaged to formulate the threshold of positive and 

negative anomalies proposed by Van-Rooy (Van-Rooy 1965).  The ten highest and 

lowest values are ranked and averaged. This could be expected in extreme wet and 

dry conditions (Shen et al., 2006). 

                            RAI = 3
(Pi−P)̅̅ ̅

(r̅−P)̅̅ ̅
 …………………………….…………...….. (Eq.23) 

 

                            RAI = −3
(Pi−P)̅̅ ̅

(r̅−P)̅̅ ̅
 ……………………………………….……(Eq.24) 

 

Where Pi represents precipitation of the specific year (mm), 𝑃̅ is the mean rainfall of 

the time series. 𝑅,̅ 𝑟̅ represents the average of ten extreme highest and lowest-ranked 

precipitations, prefix ±3 used to compute positive and negative anomalies. 
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2.3.8 Prediction model 

(a) ARIMA 

The most important approach to time-series analysis, as proposed by Box and 

Jenkins in 1976 and modified by Box et al. (1994), is abbreviated as ARIMA a 

numeric weather forecasting empirical approach: - Autoregressive Integrated Moving 

Average (ARIMA). The model has been used to forecast the rainfall based on the 30 

years of rainfall data (1991–2020) in the study area. Previous studies confirm that 

ARIMA modeling was effective and suitable for predicting future hydrological and 

meteorological parameters by considering numerous earlier data and random errors 

(Yurekli et al., 2007; Chattopadhyay et al., 2011). The ARIMA model is a synthesis 

of ARIMA (p, d, q), i.e., AR (p) autoregressive deals with historical time-series data 

(rainfall), I (d) differencing, and MA (q) moving average of random value (Phillips 

and Perron 1988). The ARIMA model was developed with sequential steps of model 

identification, model estimation, diagnostic check, and forecasting. The model 

identification deals with the Autocorrelation Function (ACF), Partial Autocorrelation 

Function (PACF), and Augmented Dickey-Fuller (ADF) statistics to check the 

stationarity and seasonality of the data (Figs 2.2 (a), (b)). Both statistical tests (ACF 

and PACF) identified the rainfall data as non-stationary. To get the stationarity of the 

data and to remove the seasonality of the data, the model is estimated by applying 

ACF, PACF with model residuals, and log transformation (Figs 2.3 (a), (b)). The 

Augmented Dickey-Fuller (ADF) result indicates Dickey-Fuller -13.193, at Lag 

order 7, with a p-value of 0.01 (0.05), indicating that the data is stationary. The 

model was selected based on Akaike information criteria (AIC = 4118.02) and 

Bayesian information criteria (BIC = 4125.72) (Akaike 1974; Schwarz 1978). The 

diagnostic check of model residuals reveals that the data is well-fitted and does not 

follow any extreme outliers. Based on AIC criteria, the best-fitted model was 

ARIMA (0,0,0) (1,1,0) [12]. After fitting the fitted model, rainfall is forecasted for 

ten years (2021–2030) at a 95% significance level. The model was validated by 

Jung–Box's (1976) statistic of residuals at log 30. The result of the Box-Ljung test p 

= 0.1134 (>0.05) indicated the model fitted well and was relevant to use for future 

prediction.  
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The rainfall prediction ARIMA (p, d, q) model is presented below (Box et al., 2015). 

The rainfall prediction ARIMA (p, d, q) model is presented below 

The backshift operator (B) expressed as  

           𝜙(𝐵)(1 − 𝐵)𝑑𝑧 =

             𝜃(𝐵)𝑎 ……………………………………………………...…(Eq.25) 

The p, d, q of the ARIMA model is expressed below (Khashei et al., 2011; 

Valipour et al., 2016) 

𝑧 
¯
= 𝜙1𝑧 

¯
− 1 + 𝜙2𝑧 

¯
− 2 + ⋯+ 𝜙𝑝𝑧 

¯
− 𝑝 + 𝑎 − 𝜃1𝑧 

¯
− 1 − 𝜃2𝑧 

¯
− 2 −

⋯𝜃𝑞𝑧 
¯
− 𝑞…(Eq-26) 

 

where 𝑧 
¯
= 𝑧 − 𝜇, and at is represent, the shock expressed in equation …… 

The model was determined based on the Akaike information criterion (AIC) 

and Bayesian information criterion (BIC) expressed below 

 

                AIC (𝑝, 𝑞) = 𝑁ln (𝜎𝜀
2) + 2(𝑝 + 𝑞) ……………………….…(Eq.27) 

 

               𝐵𝐼𝐶 = ln (𝑛)𝑘 − 2ln (𝐿̂) ……………………………………(Eq.28) 

 

Where in ARIMA p and q are logs,  L̂ is represented by p(x ∣ ψ,M), M using 

ψ as a parameter x represents the observed data and k is the number of the 

parameter.  
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Fig. 2.2: (a) Autocorrelation function (ACF), (b) Partial autocorrelation function 

(PACF) plot of observed rainfall data 
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Fig. 2.3: (a) Autocorrelation function (ACF), (b) Partial autocorrelation function 

(PACF) plot of differencing and deseasonalized the rainfall data 

2.3.9 Thematic presentation 

(a) Inverse Distance Weighted (IDW) 

Inverse distance weighted (IDW) is a deterministic estimation technique that 

relates the linear combination among nearby estimated points and determines the 

unknown value (Wu et al., 2016). Schloeder et al. (2001) evaluated various spatial 

interpolation techniques such as spline, kriging, and IDW. They concluded that the 

IDW technique gives a satisfactory result. Chen et al. (2012) applied IDW to rainfall 

data and got a satisfactory result with a high correlation coefficient value. Among the 

various interpolation methods like inverse distance weighting (IDW), radial basic 

function (RBF), local polynomial (LP), and global polynomial (GP), IDW was found 
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to be the most suitable technique for rainfall analysis (Kong and Tong, 2008; Wu et 

al., 2010). The advantage of this technique is its effectiveness in rainfall analysis. 

This method is sensitive to the extreme outer layer (Longley et al., 2005). In this 

present study of 30 years of rainfall data, there was no extreme out layer. The 

average distance among the stations was 28 km, with the maximum distance being 

37.41 km and the minimum distance being 20.22 km. The IDW technique has been 

applied to create various spatial maps of the rainfall distribution in the study area. 

2.4 Results and Discussion 

2.4.1 Test of Normality 

The 30-year time series rainfall data was tested for normality by employing 

the Kolmogorov-Smirnov test at a 95% of the confidence interval. The tested result 

showed that the p-value was greater than 0.05 ( α=0.05, df=30, p>0.05) (Table 2.1). 

That confirmed the data is normally distributed (Fig 2.4). 

Table 2.1: Tests of Normality 

 

Kolmogorov-Smirnov
a
 

Statistic df Sig. 

Rainfall .114 30 .200
*
 

Note: *. This is a lower bound of the true significance. 
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Fig. 2.4: normality plot of rainfall data (1991 - 2020) 

 

2.4.2 Auto correlation test 

The rainfall time-series data was checked for autocorrelation where the 

ACF.pet was 0.40 with the p- 0.02 at a 95% of confident interval. The result proved 

that the data does not have an autocorrelation and thus modified Mann-Kendall test 

has been used for the trend analysis of rainfall.   

2.4.3 Rainfall Status 

The detailed rainfall characteristics of the Mayurakshi basin from 1991 to 2020 

have been taken to investigate the changing nature and spatial-temporal variation of 

rainfall in the basin. The basin covered 18 rainfall stations. The decadal annual and 

seasonal variability, along with the long-term trend of rainfall, are summarized in the 

sub-sections below: 

(i) Decadal and long-term variation of rainfall 

The modified Mann-Kendall statistic has been used to identify the trend of 

rainfall. The tested mMK of the whole basin shows the variation as well as the effect 

of climate change. To compute the overall rainfall variation of the basin, the p-value 

was calculated, which was computed to be >0.05 of the significance level alpha 



71 

 

(0.05). It indicates that in 30 years of long-term rainfall, there is no specific positive 

or negative trend in the rainfall series, and the trend varies from time to time. In 

general, negative Kendall‘s Z (-1.63) and normalized Kendall's tau (-0.20) show a 

decreasing rainfall trend (Fig. 2.6 and Table 2.3). The magnitude of the trend 

presented by Sen‘s slope shows the rainfall of the basin has a strong negative Sen‘s 

slope value which is -10.37 mm/year, implies that there is a decreasing or downward 

trend in rainfall (Fig. 2.6). The basin has 18 rainfall stations except for station S6; all 

the stations had negative rainfall trends during the whole sampled period. The 

highest negative magnitude of Sen‘s slope was found at S3, S4, and S12 (Q = -25.77 

mm/year, -23.71 mm/year, and -12.30 mm/year) representing a high magnitude of 

decreasing rainfall trend. These were followed by negative Z statistics of -2.18, -

1.70, and -5.00, respectively. The study found negative normalized Kendall‘s Z and 

Sen‘s slope values distributed throughout the study area. (Fig. 2.7 and Table 2.3).   

Table 2.2: Decadal and long-term rainfall variation 

Longitude Latitude Station Rainfall (mm) 

1991-2000 2001-2010 2011-2020 Long-

term  

87.00 24.75 S1 1354.32 1239.73 1146.57 1285.07 

86.75 24.50 S2 1324.11 1281.24 1243.97 1297.40 

87.00 24.50 S3 1752.05 1539.25 1355.59 1619.90 

87.25 24.50 S4 1885.86 1838.98 1380.41 1717.37 

87.00 24.25 S5 1674.31 1544.97 1369.27 1572.63 

87.25 24.25 S6 1528.89 1553.95 1297.35 1451.71 

87.50 24.25 S7 1660.64 1744.03 1305.31 1542.20 

87.00 24.00 S8 1517.80 1446.53 1340.73 1458.77 

87.25 24.00 S9 1607.93 1465.52 1344.43 1520.10 

87.50 24.00 S10 1558.36 1566.56 1237.19 1451.30 

87.75 24.00 S11 1368.12 1345.04 1095.81 1277.35 

88.00 24.00 S12 1414.82 1287.93 1028.08 1285.90 

87.25 23.75 S13 1602.61 1435.10 1377.65 1527.62 

87.50 23.75 S14 1498.86 1413.80 1220.77 1406.16 

87.75 23.75 S15 1365.61 1271.42 1106.56 1279.26 

88.00 23.75 S16 1252.81 1180.60 1060.33 1188.65 

87.50 23.50 S17 1464.92 1386.78 1255.11 1394.99 

87.75 23.50 S18 1383.28 1281.80 1120.70 1295.75 

average 1511.96 1434.62 1238.10 1420.67 

maximum 1885.86 1838.98 1380.41 1717.37 

minimum 1252.81 1180.60 1028.08 1188.65 

SD 160.48 170.52 114.66 140.01 

CVR 10.61 11.89 9.26 9.86 
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Fig. 2.5: Decadal and long-term spatial rainfall variation (a) 1
st
 decade, (b) 2

nd
 

decade, (c) 3
rd

 decade, (d) long-term basin average 

2.4.4 Trend of rainfall 

The modified Mann-Kendall statistic has been used to identify the trend of 

rainfall. The tested mMK of the whole basin shows the variation as well as the effect 

of climate change. To compute the overall rainfall variation of the basin, the p-value 

was calculated, which was computed to be >0.05 of the significance level alpha 

(0.05). It indicates that in 30 years of long-term rainfall, there is no specific positive 

or negative trend in the rainfall series, and the trend varies from time to time. In 

general, negative Kendall‘s Z (-1.63) and normalized Kendall's tau (-0.20) show a 

decreasing rainfall trend (Fig. 2.6 and Table 2.3). The magnitude of the trend 

presented by Sen‘s slope shows the rainfall of the basin has a strong negative Sen‘s 
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slope value which is -10.37 mm/year, implies that there is a decreasing or downward 

trend in rainfall (Fig. 2.6). The basin has 18 rainfall stations except for station S6; all 

the stations had negative rainfall trends during the whole sampled period. The 

highest negative magnitude of Sen‘s slope was found at S3, S4, and S12 (Q = -25.77 

mm/year, -23.71 mm/year, and -12.30 mm/year) representing a high magnitude of 

decreasing rainfall trend. These were followed by negative Z statistics of -2.18, -

1.70, and -5.00, respectively. The study found negative normalized Kendall‘s Z and 

Sen‘s slope values distributed throughout the study area. (Fig. 2.7 and Table 2.3).   

 

Fig. 2.6: (a)Rainfall trend (b) seasonal variation 

Table 2.3: Modified Mann Kendall Statistic and Sen’s slope estimation 

Station 
Normalized 

Test (Z) 

Kendall's 

tau 

p-value 

(Two-

tailed) 

Sen’s 

slope 

(Q value 

mm/year) 

Basin -1.63 -0.20 0.103 -10.37 

S1 -1.89 -0.25 0.059 -14.31 

S2 -0.50 -0.07 0.617 -3.98 

S3 -2.18 -0.28 0.030 -25.77 

S4 -1.70 -0.20 0.089 -23.71 

S5 -1.23 -0.20 0.219 -12.14 

S6 0.11 0.02 0.910 1.30 

S7 -0.69 -0.10 0.492 -10.68 

S8 -0.21 -0.03 0.830 -5.40 

S9 -1.18 -0.15 0.239 -10.07 

S10 -0.89 -0.14 0.374 -9.23 

S11 -0.86 -0.11 0.392 -9.70 

S12 -5.00 -0.37 0.000 -21.30 

S13 -1.64 -0.21 0.101 -12.37 
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S14 -2.00 -0.26 0.046 -17.20 

S15 -1.61 -0.21 0.108 -12.18 

S16 -1.74 -0.15 0.083 -6.88 

S17 -1.58 -0.23 0.113 -11.73 

S18 -1.64 -0.21 0.101 -13.86 

      

 

Fig. 2.7: Normalized Z (a) Sen‘s slope Q (b) 

2.4.5 Change point of annual rainfall 

Statistical methods like Pettitt's test, the SNHT test, and Buishand's test were 

applied to detect the homogeneity and change point of rainfall. The tests confirmed 

that the change point of the basin was in 2008. The tested mathematical models show 

that the computed p-value is lower than the significant level ∝ = 0.05 at 95 % of the 

confidence interval, indicating a change in rainfall during the 30-year study period. 

For the individual rainfall stations tested, models presented a breakpoint of annual 

rainfall at stations S1, S4, S10, S14, and S18 in 2008 and at S3 in 2007, which was 

around the middle of the taken time period (Table 2.4). For stations, S12 Pettitt's test 

indicated that the change point was in 2002, while according to the SNHT test and 

Buishand's U test, it was in 2009 (Table 2.4). The tested change-point models 

(Pettitt's test, SNHT test, Buishand's test) show the computed p-value was greater 

than the significant level ∝ = 0.05 at 95% of the confident interval at 61.11% of the 

stations (S2, S5, S6, S7, S8, S9, S11, S13, S15, S16, S17), indicating there was no 

significant change in rainfall during the study period.  

Table 2.4: Changepoint statistics of the basin 

(a) (b) 
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S
ta

ti
o
n

 

   

Pettitt's test SNHT test Buishand's test 

U t 
p 

T0 t 
P 

Q t 
P  

95% 95% 95%  

Basin    138 200

8 

0.03

3 

8.193

1 

200

8 

0.043

5 

0.531 200

8 

0.027 

S1 
12

4 

200

8 

0.07

3 
6.171 

200

8 
0.143 0.456 

200

8 
0.047 

S2 95 
200

7 

0.28

7 
4.502 

200

7 
0.325 0.226 

200

7 
0.225 

S3 
15

3 

200

7 

0.01

3 

10.26

9 

200

7 
0.012 0.809 

200

7 
0.004 

S4 
15

4 

200

8 

0.01

2 

10.04

5 

200

8 
0.013 0.594 

200

8 
0.020 

S5 
11

4 

200

8 

0.12

2 
4.295 

200

8 
0.362 0.286 

200

8 
0.151 

S6 94 
199

6 

0.29

9 
4.809 

199

6 
0.285 0.240 

200

8 
0.201 

S7 
12

0 

200

8 

0.09

0 
6.378 

200

8 
0.130 0.321 

200

8 
0.114 

S8 78 
200

8 

0.54

1 
3.443 

200

8 
0.525 0.248 

200

8 
0.188 

S9 
11

6 

200

8 

0.01

1 
5.855 

200

8 
0.167 0.472 

200

8 
0.010 

S10 
13

6 

200

8 

0.03

7 
7.599 

200

8 
0.041 0.406 

200

8 
0.046 

S11 
10

7 

201

9 

0.17

1 
4.781 

200

9 
0.293 0.284 

200

9 
0.156 

S12 
14

8 

200

2 

0.01

8 
9.995 

200

9 
0.014 0.846 

200

9 
0.002 

S13 
11

8 

200

8 

0.10

0 
5.347 

200

0 
0.218 0.366 

200

0 
0.082 

S14 
14

0 

200

8 

0.03

0 
7.872 

200

8 
0.054 0.540 

200

8 
0.027 

S15 
14

0 

200

2 

0.19

5 
4.801 

200

8 
0.285 0.393 

200

8 
0.070 

S16 90 
200

2 

0.35

0 
3.497 

200

2 
0.510 0.263 

200

2 
0.169 

S17 
12

8 

200

8 

0.05

9 
6.148 

200

8 
0.145 0.418 

200

8 
0.059 

S18 
11

2 

200

8 

0.03

5 
6.216 

200

8 
0.137 0.011 

200

8 
0.034 
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2.4.6 Rainfall seasonality index 

The long-term (30-year) rainfall seasonality in each year of individual 

stations in the basin was computed to reveal the nature of rainfall seasonality. The 

overall computed rainfall seasonality revealed that two classes of RSI existed across 

the basin (<0.19: ―very equable‖ and 0.20-0.39: ―equable indefinite weather‖). At 

stations S12 and S15, a greater percentage of the sampled years (60.00%) were 

computed to have ―very equitable‖ rainfall throughout the year. The RSI was counted 

as ―very equitable‖ and ―equitable‖ in definite weather in 50.00% of the sampled 

years at 44.44% of the stations throughout the year (Table 2.5). At stations S5, S8, 

and S10, the RSI was computed as ―equitable‖ in definite weather in 53.33% of 

sampled years. The decadal RSI revealed that only in the 1st decade at S18 RSI was 

―very equitable‖ (<0.19), while in the 1st, 2nd, and 3rd decades, RSI was 0.20-0.39, 

i.e., ―equable‖ in definite weather across the study area (Table 2.5). The RSI was 

calculated as ―equitable‖ in definite weather for the decadal character of basin 

rainfall for 43.33% of the years. The spatially high intensity of RSI between 0.20 and 

0.39 was found in the upper basin in the 1
st 

decade and the 2
nd 

decade in the middle 

and upper parts of the basin, whereas in the 3
rd 

decade, the southern part of the 

middle and lower basin experienced RSI >0.20 (Fig. 2.8). The rainfall received in the 

study area is monsoonal rain. The rainfall seasonal character of the upper and middle 

basins is nearly the same as it is situated in the plateau region, and orographic 

conditions prevail. while in the plain region of the lower basin area, there is much 

difference between ―very equable‖ and ―equable‖ in definite weather rainfall, i.e., in 

average, ―very equable‖ (56.67%) and ―equable‖ in definite weather rainfall (43.33% 

of the sampled years). The absence of a topographic barrier could be the reason for 

rainfall uncertainty in the region. 
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Table 2.5:  Rainfall seasonality and decadal status 

 

 

Station 

 

RSI Class (Year in percent) RSI decadal average 

Very 

equable 

(<0.19) 

Equable in 

definite weather 

(0.20-0.39) 

1991-

2000 

 

2001-

2010 

 

2011-

2020 

Basin 56.67 43.33 0.20 0.20 0.22 

S1 53.33 46.67 0.20 0.20 0.24 

S2 50.00 50.00 0.23 0.20 0.24 

S3 50.00 50.00 0.22 0.20 0.23 

S4 50.00 50.00 0.20 0.20 0.22 

S5 46.67 53.33 0.22 0.21 0.24 

S6 56.67 43.33 0.20 0.23 0.20 

S7 53.33 46.67 0.21 0.21 0.21 

S8 46.67 53.33 0.21 0.22 0.24 

S9 50.00 50.00 0.19 0.22 0.23 

S10 46.67 53.33 0.20 0.21 0.24 

S11 50.00 50.00 0.20 0.19 0.24 

S12 60.00 40.00 0.20 0.19 0.22 

S13 50.00 50.00 0.20 0.20 0.24 

S14 53.33 46.67 0.20 0.20 0.24 

S15 60.00 40.00 0.20 0.18 0.23 

S16 56.67 43.33 0.21 0.19 0.22 

S17 50.00 50.00 0.20 0.21 0.23 

S18 50.00 50.00 0.17 0.20 0.27 

 

 

Fig. 2.8: RSI decadal average (a) 1
st
 decade, (b) 2

nd
 decade, (c) 3

rd
 decade 

 



78 

 

2.4.7 Rainfall anomaly index 

Based on RAI, the events of the dry and rainy conditions in the basin were 

evaluated. In the overall 30 years, the temporal characteristic of rainfall was found to 

be extremely wet in 16.67% of the years, with the categories of very wet, moderately 

wet, slightly wet, and slightly dry in 10 % of the sampled years, and 6.67% of the 

years were recorded as having extremely dry conditions across the basin. The 

temporal character of RAI represents extremely wet (>3.00) and extremely dry (<-

3.00) conditions in 13.33% of the years at S1, S5, S10, S12, and S14 throughout the 

basin.  

The highest percentage of near-normal rainfall anomalies occurred at S11 and 

S13 in 26.67% and 23.33% of years, respectively, and at S1, S7, and S17 in 20 % of 

the counted years. The very dry condition of RAI was found in 23.33% of the 

sampled years at S7 and 20 % of the sampled years at S6, and S13. Similar 

precipitation variability was classified as moderately dry in 13.33% of the sampled 

years at S1, S2, S8, S11, S13, S15, S17, and S18. In general, the basin experienced 

extremely wet and extremely dry conditions in 16.67% and 6.67% of the sampled 

years, and near-normal conditions were recorded in only 6.67% of the years (Table 

2.6). 

In the context of spatial-temporal variation, RAI perceived that the years 2009–

2014 had an extreme drought condition and 1999–2000 had an extreme wet 

condition for the basin (Fig. 2.9). At stations S7, S9, S10, S11, S12, S15, and S16, 

extreme dry conditions were recorded from 2011 to 2012 (Fig. 2.9). Except for 

stations S7, S12, S16, and S18, extremely wet conditions were recorded from 1999 to 

2000 through RAI (Fig. 2.9).  
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Table 2.6: Rainfall anomaly and drought status 
S

ta
ti

o
n

 

Class description (RAI) & years in percentage 

D
ro

u
g
h

t 
y
ea

r 
(%

) 

Extre

mely 

Wet 

Ver

y 

Wet 

Mode

rately 

Wet 

Slig

htly 

Wet 

Near 

Nor

mal 

Sligh

tly 

Dry 

Mode

rately 

Dry 

Very 

Dry 

Extre

mely 

Dry 

>3.00 2.00 

to 

2.99 

1.00 to 

1.99 

0.50 

to 

0.99 

0.49 

to -

0.49 

-0.50 

to -

0.99 

-1.00 

to -

1.99 

-2.00 

to -

2.99 

<-

3.00 

Bas

in 

16.67 10.0

0 

10.00 10.0

0 

6.67 10.00 16.67 13.33 6.67 50.

00 

S1 13.33 3.33 13.33 3.33 20.0

0 

10.00 13.33 6.67 16.67 50.

00 

S2 13.33 6.67 13.33 13.3

3 

0.00 13.33 13.33 13.33 13.33 53.

33 

S3 10.00 13.3

3 

6.67 6.67 10.0

0 

10.00 20.00 6.67 16.67 60.

00 

S4 13.33 6.67 20.00 6.67 6.67 0.00 16.67 10.00 20.00 53.

33 

S5 13.33 0.00 10.00 23.3

3 

0.00 3.33 20.00 16.67 13.33 53.

33 

S6 10.00 10.0

0 

13.33 10.0

0 

3.33 3.33 16.67 20.00 13.33 56.

67 

S7 13.33 6.67 3.33 10.0

0 

20.0

0 

10.00 3.33 23.33 10.00 56.

67 

S8 10.00 6.67 10.00 10.0

0 

13.3

3 

3.33 13.33 16.67 16.67 56.

67 

S9 10.00 6.67 10.00 10.0

0 

13.3

3 

10.00 10.00 13.33 16.67 50.

00 

S10 13.33 10.0

0 

16.67 0.00 0.00 20.00 16.67 10.00 13.33 60.

00 

S11 10.00 6.67 16.67 3.33 26.6

7 

0.00 13.33 10.00 13.33 53.

33 

S12 13.33 10.0

0 

20.00 6.67 6.67 6.67 20.00 3.33 13.33 50.

00 

S13 10.00 3.33 13.33 0.00 23.3

3 

3.33 13.33 20.00 13.33 53.

33 

S14 13.33 13.3

3 

10.00 6.67 10.0

0 

6.67 16.67 10.00 13.33 53.

33 

S15 13.33 6.67 13.33 13.3

3 

16.6

7 

6.67 13.33 6.67 10.00 46.

67 

S16 10.00 6.67 23.33 3.33 13.3

3 

13.33 20.00 0.00 10.00 46.

67 

S17 16.67 3.33 13.33 6.67 20.0

0 

6.67 13.33 0.00 20.00 60.

00 

S18 13.33 3.33 20.00 20.0

0 

10.0

0 

0.00 13.33 10.00 10.00 43.

33 



80 

 

 

 

 



81 

 

 

 



82 

 

 



83 

 

 

Fig. 2.9: Wet and dry condition of individual stations 

2.4.8 Temperature, Wind speed, Solar radiation, and Humidity variability 

In the long-term average of a 30-year time period, the average of climatic 

components such as temperature, wind speed, solar radiation, and humidity were 

recorded as 32.23 ± 0.63 ℃, 1.9 ± 0.12 m/s, 90.40 ± 5.00 W/m^2, and 63.44 ± 5.48 

respectively (Table 2.7). During the study period, the basin received a maximum 

temperature of 33.80℃, the temperature varied from time to time, in overall 
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conditions from 1991 to 2020, the temperature followed a slightly increasing trend 

(Fig. 2.10a)  seconded by a significant Kendall's P value of 0.05 with its normalized 

test (Z) and Kendall's tau of 1.89, 0.24 respectively. The increasing trend in 

temperature was 0.03 
0
C at the annual rate. The maximum and minimum wind speed 

conditions during the study period were 2.25 m/s and 1.72 m/s with an average of 

1.99 m/s. During the whole study period, wind speed experienced a significant (P = 

<0.05) decreasing trend (Fig. 2.10b), and the magnitude of the decreasing wind speed 

was -0.007 m/s annually with its normalized test (Z) and Kendall's tau accounted for 

-2.29 and -0.37, respectively (Tables 2.7 and 2.8). The maximum and minimum solar 

radiation recorded 99.78 W/m^2 and 82.25 W/m^2 respectively, a very low 

decreasing rate of solar radiation recorded (-0.44 W/m^2 annually) during the whole 

study period. The maximum and minimum humidity were 73.59 % and 49.37 % 

respectively. The humidity followed a decreasing trend with a magnitude of -0.43% 

annually. Among the climatic parameters, a significant increase in temperature is 

found, while the rest of the parameters (wind speed, solar radiation, and humidity) 

were recorded as decreasing in nature over the study period. With increasing 

temperatures, rainfall, humidity, and wind speed have decreased with time. 

Table 2.7: Climatic parameters 

Year 
Temperature 

(C) 

Wind 

Speed 

(m/s) 

Solar 

Radiation 

(W/m^2) 

Humidity 

(%) 

1991 31.66 2.08 95.01 73.59 

1992 32.23 2.17 95.76 66.78 

1993 31.93 2.21 99.78 65.69 

1994 32.08 2.25 95.07 68.53 

1995 32.92 2.25 97.98 64.37 

1996 32.53 2.13 97.35 63.98 

1997 32.13 2.02 96.84 64.12 

1998 31.41 1.98 95.56 67.06 

1999 32.30 2.01 98.34 63.13 

2000 31.43 1.95 96.75 67.44 

2001 32.82 1.94 87.83 63.84 

2002 32.37 1.90 87.15 62.96 

2003 31.34 1.93 88.30 69.41 

2004 31.17 1.96 89.39 68.80 

2005 31.74 1.92 87.36 66.77 

2006 32.28 1.81 88.13 65.31 



85 

 

2007 31.83 1.90 87.35 66.72 

2008 31.91 1.72 86.30 66.34 

2009 32.01 1.89 88.29 65.77 

2010 31.90 1.97 89.16 63.40 

2011 31.90 1.90 84.67 64.71 

2012 32.22 2.10 87.64 63.75 

2013 31.78 2.08 85.34 67.90 

2014 32.28 1.98 86.74 59.97 

2015 32.06 1.96 83.80 53.71 

2016 33.80 1.98 92.67 56.35 

2017 33.01 1.92 84.80 53.46 

2018 33.10 1.89 90.22 55.16 

2019 33.52 2.02 86.28 49.37 

2020 33.20 1.84 82.25 54.76 

Long-term 

Average 
32.23 1.99 90.40 63.44 

SD 0.63 0.12 5.00 5.48 

 

Table 2.8:  Trend of Climatic parameters 

Parameter 
Normalized 

Test (Z) 

Kendall's 

tau 

p-value 

(Two-

tailed) 

Sen’s 

slope 

(Q 

value) 

Temperature 1.89 0.24 0.058 0.03 

Wind speed -2.92 -0.37 0.003 -0.007 

Solar radiation -4.31 -0.55 -0.55 -0.44 

Humidity -2.18 -0.28 -0.55 -0.43 
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Fig. 2.10: Trend of (a) temperature, (b) Wind Speed (c) Solar Radiation, (d) 

Humidity 
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2.4.9 Change point of temperature 

At present climate change is attributed to increasing temperatures as it has 

also been found in the IPCC 2003 report. The temperature of the study area 

increased by 0.03
0
C/year. Statistical methods like the SNHT test, and 

Buishand's test were applied to detect the homogeneity and change point of 

temperature. The tests confirmed that the change point of temperature was in 

2015 confirmed by the SNHT test, and Buishand's test. The tested 

mathematical models show that the computed p-value is lower than the 

significant level ∝ = 0.05 at 95 % of the confidence interval, indicating a 

change in temperature during the 30-year study period.  

Table 2.9:  Change point of temperature 

 

P
a
ra

m
et

er
 

   

SNHT test Buishand's test 

 

T0 

 

t 
P 

Q t 
P 

95% 95% 

Temperature   17.36 2015 <0.05 0.72 2015 <0.05 

 

2.4.10 Rainfall Forecasting  

The forecasted annual rainfall of the Mayurakshi basin shows an average of 

1303.38 ± 19.99 mm of rainfall with a maximum and minimum of 1335.28 mm, and 

1251.84 mm respectively, from January 21st, 2021 to December 30th, 2030. The 

forecasted rainfall shows very little variability of rainfall (CV 1.53) for the next 10 

years and the trend line depicts a linear positive trend for the rainfall of the basin. 

The predicted highest rainfall is estimated for 2022, and the lowest annual rainfall is 

for 2021 (Table 2.9). 
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Table 2.10: Forecasted rainfall status (2021 to 2030) 

Yeas Rainfall 

(mm) 

2021 1251.84 

2022 1335.28 

2023 1292.56 

2024 1314.43 

2025 1303.23 

2026 1308.97 

2027 1306.03 

2028 1307.54 

2029 1306.76 

2030 1307.16 

Average 1303.38 

Maximum 1335.28 

Minimum 1251.84 

SD 19.99 

CV 1.53 

ARIMA (0, 0, 0) (1, 1, 0) [12] was applied to forecast the annual and monthly 

rainfall. The forecasted time series was plotted in Fig. 2.11 and the monthly seasonal 

character was plotted in Fig. 2.12 with a 95% confidence level. The rainfall result 

shows that there was consistency in annual rainfall of around 1300 mm for the next 

10 years (Fig. 2.11, 2.12 and Table 2.10). The validated Box-Ljung test result of p = 

0.1134 (> 0.05) indicated that the model fit well and that the seasonal pattern of 

monthly rainfall fit reasonably well. 

 

Fig. 2.11: forecasted seasonal rainfall ARIMA (0.0,0) (0,1,1) [12] blue line indicates 

95% confidence limit 



89 

 

 

Fig. 2.12: forecasted rainfall data with 95% confidence limit 

2.4.11 Comparison of the findings with other works 

Mondal et al. (2016) investigated a negative trend in water presence frequency 

and wetland hydrological dynamics of the lower Mayurakshi River. Islam et al. 

(2020) studied the flood-prone areas and the contribution of tributaries to flood 

intensity in lower basin areas of the Mayurakshi River based on morphometric 

parameters. They concluded that such flood occurrences are mostly a result of the 

region's flashy precipitation patterns on the Chotanagpur Plateau. The present study 

also found that decadal and long-term high rainfall occurs in the upper part of the 

basin covered by the Chotanagpur Plateau (Fig. 2.5). Pal et al. (2021) investigated 

the annual and monthly water balances of the Mayurakshi basin using the parameters 

of evapotranspiration, rainfall, runoff, and soil moisture. The result of their study 

shows annual and seasonal water deficit and surplus conditions. Pre-monsoon 

months recorded a reverse state, whereas monsoonal months recorded a surplus 

water balance state. Biswas et al. (2016) worked on the statistically significant 

relationships among the variables of upstream water level, discharge, inflow, and 

rainfall. This study evaluated the role of rainfall on drought, discharge, and flood 

conditions in the rainy season. Previous studies established a negative trend in water 

presence frequency and wetland hydrological dynamics owing to the uncertainty of 

rainfall patterns. The present study also found 50 % drought years during the entire 

study period of 30 years. 
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The previous studies were conducted mostly on water dynamics, flood 

intensity, the influence of rainfall on drought and flooding, and annual and seasonal 

water deficits. However, the present work is a detailed analysis of rainfall patterns' 

changing nature and trend analysis in the spatiotemporal domain to understand the 

present and past conditions of rainfall variability and its changing behavior. The 

previous works lacked the goal of the present work. The decreasing pattern of 

rainfall was evaluated along with its seasonal variability through RSI and trend 

analysis statistics. The rainfall anomaly and drought status were also evaluated 

through RAI. The rainfall forecasting for the next ten years was done using the fitted 

model ARIMA (0,0,0) (1,1,0) [12]. This work can provide important insights into the 

rainfall condition of the basin for future planning and water resource management 

strategies. 

2.5 Concluding remarks 

The present study focused on the spatiotemporal character of rainfall in the 

Mayurakshi river basin. The decadal characteristics and long-term average rainfall 

show that the spatial concentration of high rainfall was in the upper and middle parts 

of the basin (1500 to 1700 mm). In general, the basin's maximum and minimum 

rainfall were 1717.37 mm and 1188.65 mm respectively, with a mean annual rainfall 

of 1420.67 ± 140.01 mm. The long-term spatially high concentration of rainfall was 

recorded in the upper and middle basin areas, and the low rainfall concentration was 

recorded in most of the lower parts of the basin. An overall negative Kendall‘s Z (-

1.63), normalized Kendall's tau (-0.20), and Sen‘s slope value (-10.37 mm/year) 

proved a decreasing rainfall trend in the basin. The decadal nature of rainfall also 

indicates a decreasing nature of rainfall over the basin. Statistical methods like 

Pettitt's test, the SNHT test, and Buishand's U test were applied to detect the 

homogeneity and change point of rainfall. The tests confirmed that the change point 

of rainfall in the basin was in 2008. Based on RAI, the temporal characteristics of 

basin rainfall were found to be extremely wet in 16.67% of the years; moderately 

dry, slightly wet, and slightly dry in 16.67% of the sampled years. 10% of the 

sampled years and 6.67% of the years were recorded as extremely dry across the 

basin. ARIMA evidence indicated an average of 1303.38 ± 19.99 mm of rainfall with 
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the very least variability (CV 1.53) and a decreasing trend for the next 10 years over 

the basin. All the micro-level information gathered from this study will augment 

basin management and the planning of water resources in the basin, thereby helping 

the planners and scientists with crop management and regional planning.  
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Chapter 3: THE LAND USE AND LAND COVER DYNAMICS  

 

3.1 Objective and Chapter Organization 

In this chapter, an extensive analysis of land use and land cover (LULC) 

spanning 30 years (1991 - 2020) has been conducted to investigate the dynamic 

change in the land use pattern of the basin. The study period is divided into distinct 

segments, as outlined in Section 3.5, to facilitate change detection. Section 3.2 

focuses on the relevant literature about LULC, while Section 3.3.2 provides an in-

depth explanation of the popular machine learning approach used for LULC 

classification, namely Random Forest (RF). The accuracy of the image classification 

is assessed in sections 3.3.3 and 3.4.1, and the findings are subsequently utilized in 

the change detection process described in section 3.5. To evaluate the future scenario 

of LULC in the basin, the CA-Markov model is employed, as explained in Section 

3.3.4, with suitable driving forces derived from auxiliary data, as detailed in Section 

3.3.5. The output model is validated against the actual LULC data of 2020 in Section 

3.6.1, and the future prediction of LULC for the year 2032 has been presented in 

Section 3.6.2. The key results are summarized in Section 3.7, followed by concluding 

remarks in Section 3.8. 

3.2 Introduction 

The earth's surface cover encompasses various elements such as soils, grass, 

vegetation, water, and human settlements, while land use refers to the specific 

purposes served by these elements, such as agriculture, wildlife habitat, residential 

areas, and recreational spaces. Global environmental change is increasingly 

concerned with significant alterations in land use and land cover (LULC) (Pandian et 

al., 2014). The ongoing population growth, escalating demand for natural resources, 

climate factors, and changing land use and land cover contribute to this issue. In the 

present decade, land use and land cover alteration have emerged as critical 

environmental concerns worldwide (Guan et al., 2011). Consequently, LULC 

alteration is of utmost importance in various locations across the globe (Sleeter et al., 

2013; Taelman et al., 2016). The increase in land use and land cover changes is 
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driven by both human activities and natural phenomena (Javed et al., 2012; Alam et 

al., 2019). Understanding the data derived from the detection of land use and land 

cover changes, along with their magnitude and dimensions, is crucial for sustainable 

development, ecosystem preservation, land conservation management, water 

resource balance, and basin management planning (Tewabe and Fentahun, 2020). 

The dynamic nature of land uses and land cover can significantly impact regional 

climate, ecosystem stability, water balance, streamflow, and socioeconomic practices 

(Kindu et al., 2013; Hyandye and Martz, 2017). Utilizing time-series analysis to 

detect changes in land use and land cover and leveraging the resulting information is 

essential for effective long-term land use management (Gashaw et al., 2017). Land 

use and land cover changes are intertwined with the historical process of human land 

utilization (Ahmad, 2014). In other words, these changes reflect the results and 

nature of natural and socio-economic characteristics influenced by humans over time 

and space. Population growth plays a significant role in land use change, with 

excessive population growth being one of the key factors (Lambin et al., 2003). 

India, the second-most populated country in the world, experiences a high growth 

rate of 17.64 percent (Census of India 2011). This study conducted on the 

Mayurakshi River Basin, which includes parts of West Bengal and the relatively less 

populated state of Jharkhand, emphasizes the effects of land use changes on resource 

accessibility, including soil, vegetation, and water (Ahmad, 2014). Land use and land 

cover have a direct impact on groundwater level, overall runoff, and 

evapotranspiration, LULC change is a significant global issue due to its 

repercussions on natural and socio-economic resources (Hurni et al., 2005; Akpoti et 

al., 2016). Understanding the interaction between human activities, changes in 

landscape patterns, and natural phenomena is crucial for effective land management 

and the development of decision support systems (Rawat & Kumar, 2015). 

Continuous alterations in land use and land cover have adverse effects on climatic 

trends and socio-economic dynamics, leading to increased local and global hazards 

such as landslides and droughts (Sewnet, 2015; Chakilu & Moges, 2017). Human-

induced factors play a more significant role in land use and land cover changes than 

natural phenomena, influencing food supply and potentially leading to socio-political 

consequences (Turner et al., 2007; Uma et al., 2021). 
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The conversion of vegetation cover zones into agricultural land and urban areas 

due to climate change and population growth has become a significant driver of 

environmental degradation, including adverse effects on rainfall-runoff relationships 

(Leach & Coulibaly, 2019). Numerous studies have focused on modeling land use 

and land cover change and its impact on runoff in various regions (Porter-Bolland et 

al., 2007; Umar et al., 2021). Remote sensing data plays a crucial role in detecting 

land use changes and is an essential source of information for decision support 

systems (Tewabe & Fentahun, 2020). Understanding land use, land cover change, 

and making future predictions is vital for studying forest fragmentation, biodiversity 

loss, earth-atmosphere interactions, and future management plans (Chen et al., 2000; 

Olson et al., 2008; Dayamba et al., 2016). 

Various techniques are commonly employed to evaluate land use and land 

cover dynamics such as change detection, principal component analysis, vector 

analysis, image overlay, individual classification and post-classification analysis, 

image rationing, NDVI index, and land cover statistics comparisons (Han et al., 

2009). Several studies have been conducted on land use and land cover change and 

future predictions using models such as Markov chain (Guan et al., 2014; Wang et 

al., 2020; Munthali et al., 2020), cellular automata (Verburg et al., 2006; Mishra and 

Rai, 2016; Anand et al., 2018), CLUE (Han et al., 2015), and agent-based (Xie et al., 

2007). The key aspect of change detection is quantifying the transformation of land 

use classes into other classes (Han et al., 2009; Yirsaw et al., 2017). Therefore, future 

predictions of land use and land cover changes are based on transition probability 

matrices from one period to another (Hyandye and Martz, 2017). The Markov-CA 

approach is often employed as a convenient method for projecting future scenarios. 

Thus, detailed land use and land cover (LULC) dynamics were executed to get the 

present and future scenarios of the basin. 

3.3 Database and Methods  

This section outlines the comprehensive database and methodologies utilized 

in this research. A thorough exploration of the database and the methods employed in 

this chapter is presented in this section. 
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 3.3.1 Data Source  

In order to determine the LULC classification and change detection of the 

Mayurakshi basin from 1991 to 2020, historical images were collected from open-

source available satellite data from the United States Geological Survey (USGS) 

portal (http://earthexploration.usgs.gov/). For the years 1991, 1996, 2002, and 2008, 

the LULC maps were obtained by classifying the satellite images with Landsat 5, 

Thematic Mapper (TM), and for the years 2014 and 2020, Landsat 8, Operational 

Land Imager (OLI), followed by paths 139 and raw 43, 44 (Table 3.1). To eliminate 

cloud disturbance, images with 5% cloud coverage were collected (Jain and Sharma, 

2019). Before LULC classification, QGIS 3.16 and ArcGIS 10.8 software were used 

for geometric correction and atmospheric correction to convert the DN values from 

radiance to reflectance. To get better clarity, image enhancement techniques were 

applied, and mosaicking, masking, and clipping were performed to get the study 

area. 

 

Table 3.1: Image collection for LULC classification 

Year Satellite Sensor Acquisition Path/Raw Datum/UTM Claude 

Cover 

Resolution 

1991 Landsat5 TM 1991-8-12 139/43 & 

139/44 

WGS84/45N <5% 30m 

1996 Landsat5 TM 1996-8-20 139/43 & 

139/44 

WGS84/45N <5% 30m 

2002 Landsat5 TM 2002-7-14 139/43 & 

139/44 

WGS84/45N <5% 30m 

2008 Landsat5 TM 2008-8-25 139/43 & 

139/44 

WGS84/45N <5% 30m 

2014 Landsat8 OLI 2014-9-16 139/43 & 

139/44 

WGS84/45N <5% 30m 

2020 Landsat8 OLI 2020-8-17 139/43 & 

139/44 

WGS84/45N <5% 30m 

 

3.3.2 Random Forest  

Random Forest (RF) is a machine learning algorithm developed by Breiman 

(2001) commonly used for regression, classification, and prediction of land use and 

land cover (LULC). The RF is non-parametric in nature, has high accuracy of 

classification, and is capable of handling high data dimensionality (Avic et al., 2022). 
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The random forest algorithm has several hyper-parameters that need to be tuned for 

optimal performance, including the number of trees, the depth of each tree, and the 

number of features used in each split. Additionally, the input features must be 

carefully selected and preprocessed to ensure that they are relevant and informative 

for the classification task. The number of trees combined to make a random forest, 

where each of them plays the role of casting one vote for the most common class to 

be assigned to the input data (Adam et al., 2014; Vahid et al., 2015). The RF 

algorithm works by building a multitude of decision trees at training time and 

outputting the class that is the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. The numerous binary classification trees were run 

through the bagging or bootstrapping samples, and the replacement was extracted 

from the original observation. The samples that are excluded from bootstrap samples 

are called out-of-bag (OOB) samples. Based on the training data subset, the RF 

model increases the number of trees. The OOB helps to determine the 

misclassification error as well as the importance of variable estimation (Vahid et al., 

2015). The split of entropy is calculated based on the bootstrap samples, and the 

classification splits with no pruning of the lower diversity of classification trees; 

thus, the lower bias is archived in the classification (Rodriguez-Galiano et al., 2011; 

Vahid et al., 2015). Several studies have been conducted on RF and have 

demonstrated that it is the best method that is not sensitive to overtraining or noise 

(Rodriguez-Galiano et al., 2011). 

 

The following equation summarizes the Random Forest algorithm for LULC 

classification:  

y = f(x1, x2, x3,x4,x5 ..., 

xn)…………………………………………………………..(Eq.1) 

where: 

y is the LULC class 

x1, x2, x3,x4,x5 ..., xn are the input features (e.g. Water, Vegetation, Bare-Land, 

Agriculture, Built-up, etc.) f is the function that combines the outputs of multiple 

decision trees to make the final prediction. 
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3.3.3 Accuracy Assessment 

The accuracy assessment plays a crucial role in evaluating the precision of 

LULC classes. This assessment involves comparing the classified map with reference 

or ground truth data to determine the level of agreement or disagreement between the 

two. To quantify the accuracy assessment, metrics such as Producer's Accuracy (PA) 

and User's Accuracy (UA) are calculated for each land use or land cover class. These 

metrics provide valuable insights into the reliability and quality of the LULC 

classification results for specific classes (Mishra et al., 2018). 

  PA measures the ratio of correctly classified pixels for a particular LULC 

class to the total number of reference pixels for that class (Eq. 2). It indicates the 

likelihood that a pixel from the reference data belongs to a specific class and is 

accurately classified in the classified map (Jamali et al., 2019). Commission Error 

(CE) or Producer's Error (PE) refers to the occurrence of an incorrect classification of 

a pixel into a specific LULC class in the classified map. In other words, it represents 

a false positive error where a class is present in the map but should not be there 

according to the reference data. 

 UA measures the ratio of correctly classified pixels for a specific LULC class 

to the total number of pixels classified as that class in the classified map (Eq. 3). It 

indicates the probability that a pixel labeled as a particular class in the map is indeed 

a member of that class in the reference data (Mishra et al., 2018). Omission Error 

(OE) or User's Error (UE) occurs when a pixel is mistakenly excluded or missed 

from a specific LULC class in the classified map, representing a false negative error. 

In this case, a class is absent from the map but should be present based on the 

reference data. 

 The most commonly used metric for LULC accuracy assessment is Overall 

Accuracy (OA), which calculates the ratio of correctly classified pixels of LULC 

classes to the total number of pixels in the study area. OA provides an overall 

measure of accuracy for the entire classification. It is calculated using the following 

equation (Eq. 4) 

 The Kappa index of agreement, also known as Cohen's Kappa coefficient, is a 

statistical measure widely used to assess the agreement between the classified map 

and reference data in LULC classification (Hamad et al., 2018; Nguyen et al., 2020). 



103 

 

The Kappa index takes into account the agreement that would be expected by chance 

alone, providing a more robust measure of accuracy. The equation to calculate the 

Kappa index of agreement in LULC classification is as follows (Eq. 5). The Kappa 

index ranges from 0 to 1, with different interpretations: A value of 1 indicates perfect 

agreement between the classified map and reference data. A value of 0 indicates no 

agreement between the classified map and reference data. It is one of the suitable 

indices for the measurement of accuracy and a value > 0.85 is considered a standard 

threshold value (Yan et al. 2015). The interpretation of Kappa values is subjective, 

but commonly used thresholds include: Kappa < 0.20: Poor agreement, 0.20 ≤ Kappa 

< 0.40: Fair agreement, 0.40 ≤ Kappa < 0.60: Moderate agreement, 0.60 ≤ Kappa < 

0.80: Substantial agreement, Kappa ≥ 0.80: Almost perfect agreement 

 

             PA=(∑NTc)/(∑NTrp)*100………………………………………… (Eq. 2) 

 

             UA=(∑NTc)/(∑NTcp)*100………………………………………… (Eq. 3) 

 

            𝑂𝐴 =
∑𝑖=1
𝑛𝑐  𝑒𝑖𝑖

𝑁𝑇
× 100 ………………………………………………. (Eq. 4) 

 

             𝐾̆ =
(𝑁𝑇×∑𝑖=1

𝑛𝑐  𝑒𝑖𝑖)− Pe 

(𝑁𝑇)2− Pe 
      were,  𝑁𝑇 = ∑𝑖=1

𝑛𝑐  ∑𝑗=1
𝑛𝑐  𝑒𝑖𝑗 …………….. (Eq. 5) 

In these equations: 

PA = Producer's Accuracy in percentage, UA = User's Accuracy in percentage 𝑂𝐴 = 

overall accuracy in percentage, 𝐾̆ = Kappa index, NTc =  number of correctly 

classified pixels for a specific class, NTrp = number of reference pixels for that class, 

NTcp = number of classified pixels for that class,  𝑛𝑐 = total number of class, 𝑒𝑖 = 

element in, 𝑖th  row and 𝑖th  column, 𝑁𝑇 = total number of samples, 𝑒𝑖𝑗 = element in 

𝑖th  row and 𝑗th  column, Pe = represents the expected proportion of agreement due to 

chance. It is calculated by multiplying the marginal totals of the reference and 

classified data for each LULC class summing them up, and then dividing by the total 

number of pixels squared. 
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     By considering these accuracy metrics, it becomes possible to assess the 

accuracy of LULC classes, identify potential errors, and determine areas where 

improvements may be needed in the classification process. 

3.3.4 CA-Markov model  

     In order to predict future LULC changes, the CA-Markov model is suitable 

to simulate LULC classes from one time to another and predict future LULC 

conditions. The Markov Chain Model (MCM) is a statistical model that predicts the 

probability of transitioning from one LULC to another over time, based on historical 

data. The MCM works on the principle of the transition probability matrix. The 

transition probability matrix is the likelihood of pixels of one LULC class to move to 

another LULC class within the next time period, i.e., time 1 (t+1) to time 2 (t+n). The 

MCM contains the stochastic potentiality of changing the behavior of random 

variables over time (Amponsah et al., 2021; Munthali et al., 2020; Khwarahm et al., 

2021). The model assumes that the probability of transitioning from one LULC class 

to another is dependent only on the current (t+1) LULC type, and not on any previous 

(t-1), or future (t+n) LULC types. This is known as the Markov property, which states 

that the future (LULC) state of a system depends only on its (t+1), state, and not on 

any (t-1) states. 

  The MCM can be used to simulate LULC changes over time by iteratively 

applying the transition probability matrix to the (t+1) LULC map to generate a new 

LULC map for the next desired time step. The model can be calibrated and validated 

by using (t+1) LULC and used to project (t+n) LULC scenarios. 

The MCM model can be represented mathematically as follows: 

P_j(t+1) = Σ_i P_i(t) * 

T_ij…………………………………………………………(Eq. 6) 

where P_j(t+1) is the probability of being in LULC type j at the time t+1, given the 

current LULC type at the time t; P_i(t) is the probability of being in LULC type i at 

the time t, and T_ij is the probability of transitioning from LULC type i to future 

LULC type j. 
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 The matrix T is typically estimated from historical data. The diagonal 

elements of T represent the probabilities of remaining in the same LULC type, while 

the off-diagonal elements represent the probabilities of transitioning to another 

LULC type.  

 MCM has widely been used in the simulation of future LULC prediction 

(Munthali et al., 2020; Wang et al., 2020), but it does not provide the distribution and 

allocation of spatial changes of LULC over time (Yang et al., 2012). The cellular 

automata (CA) model, when incorporated with MCM, has the ability to compute a 

non-linear, complex spatial distribution of LULC classes (Mishra and Rai 2016). The 

Automata CA model for LULC change is a spatially explicit model that simulates the 

dynamics of LULC at fine resolution using a set of simple rules. The model operates 

on a regular grid of cells, where each cell represents a location on the landscape and 

is assigned a particular LULC type. The model operates based on the principle of 

iteratively updating the state of each grid cell based on a set of transition rules that 

are defined according to the characteristics of the LULC types being simulated. The 

transition rules of CA work on the present LULC cell status (t+1) and the 

neighboring cells are based on the past LULC status (t+2) (Hamad et al., 2018; 

Liping et al., 2018). Thus, the CA-MCM makes a combination to produce the 

transition probability matrix remove the gap in spatial dimension defining barriers, 

and simulate the future LULC (Beroho et al., 2023; Khwarahm et al., 2020). 

The CA model for LULC change can be represented mathematically as follows: 

L_ij(t+1) = F(L_ij(t), 

N_ij(t))……………………………………………………….(Eq. 7) 

where L_ij(t+1) is the LULC type of cell (i,j) at time t+1, L_ij(t) is the LULC type of 

the same cell at time t, and N_ij(t) is the neighborhood of cell (i,j) at time t. The 

function F specifies the transition rules that determine how the LULC type of a cell 

changes over time, based on its current LULC type and the LULC types of its 

neighbors. 
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  The neighborhood N_ij(t) is typically defined as a set of adjacent cells 

surrounding the cell (i,j) at time t. The size and shape properties of the neighborhood 

can vary based on the specific application and spatial scale of the model. The 

transition rules specified by the function F can also vary depending on the (t+1) data 

availability. 

  The CA model for LULC change can be implemented using computer 

software that simulates the dynamics of LULC over time, based on the transition 

rules specified by the function F. The model can be calibrated and validated using 

historical LULC data and used to project (t+n) LULC scenarios. 

3.3.5 Driving Factors  

The inclusion of driving factors to comprehend plausible deep knowledge 

about the LULC transition is very important to predict future LULC status. However, 

there is no universally predefined set of driving factors that can reliably predict 

future LULC status (Shafizadeh-Moghadam et al., 2013; Osman et al., 2019; Hasan 

et al., 2020; Chaturvedi, 2021; Lai et al., 2022). This study incorporated four specific 

driving factors: slope, elevation, road proximity, and city center proximity (Fig. 3.1). 

The slope factor was derived from a 30 m digital elevation model (DEM) provided 

by the US Geological Survey (USGS), while the elevation map was also generated 

from the DEM. Both slope and elevation play crucial roles in influencing LULC 

patterns. Steep slopes and high elevations are generally unsuitable for agriculture and 

settlement, whereas flat regions are more favorable for agricultural activities and 

human settlements (Jantz et al., 2004). The road network was downloaded from the 

shapefile of the Road Open Street Map (https:// www. open street map. org/) and city 

center drown point data from Google Earth. From a social perspective, proximity to 

roads is vital for ensuring socio-economic sustainability, promoting urban 

densification, and facilitating access to goods and services (Ji et al., 2014). 

Additionally, the proximity to the city center is pivotal as it serves as a hub for 

health, education, and socio-economic advantages, which significantly influence 

LULC in any given location (Linard et al., 2012). These driving factors demonstrate 

a plausible influence on the status of LULC changes. 
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Fig. 3.1: Driving factors, a- Slope, b- Elevation, c- Road network, d- City center 

3.3.6 LULC classes 

This study incorporated five LULC classes that fulfilled all categories of 

LULC in the study area. The classes identified in this study are:  

1. Water: it comprises dams and reservoirs, rivers, ponds, and wetlands as water 

bodies;  

2. Vegetation: the natural vegetation cover area, planted orchard, and sparse 

vegetation cover area come under this category; 

3. Bare-land: open ground with no vegetation cover, fallow open ground not used for 

agriculture; the ground left after opencast mining is accounted for as bare-land; 

4. Agriculture: the arable land used for agriculture and; 

 5. Built-up: the residential built-up area, commercial, and industrial areas (Table 

3.2). 
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From each LULC class, more than 120 spatial training signatures were collected. The 

Random Forest (RF) machine learning algorithm is applied to get LULC 

classification. 

Table 3.2:  LULC class description 

CULC 

Class 

ID Description 

Water 1 Dam/Reservoir, Pond, river, and wetlands 

Vegetation 2 Natural vegetation areas and plantations 

Bare-land 3 Open ground with no vegetation, bare rock, relinquished ground of 

open cast mining 

Agriculture 4 Arable land 

Built-up 5 Residential built-up, Commercial, and institutional areas 

 

3.4 Results and Discussion 

3.4.1 Accuracy Report 

The accuracy of the classified LULC is evaluated using various metrics, such 

as the confusion matrix, including  Usear Accuracy (UA), Producer Accuracy (PA), 

Overall Accuracy (OA), and Kappa coefficients. To analyze the changes in LULC 

over a 30-year period (1991, 1996, 2002, 2008, 2014, and 2020), the images were 

classified every six years. For accuracy assessment, a total of 180, 156, and 210 

ground control points were considered for the years 1991, 1996, and 2002, 

respectively. These ground control points were obtained from historical images of 

Google Earth and aerial photography. The accuracy was assessed individually for 

each LULC category, and the results are presented in Table 3.3 and Table 3.7. The 

diagonal values of the error matrix represent the correctly classified points between 

the classified LULC maps and the ground truth at the corresponding number of 

validation points: 165, 140, and 187 for the years 1991, 1996, and 2002, respectively 

(Tables 3.4,3.5, and 3.6). The PA ranged from 49.44% to 89.47% for 1991, 66.67% 

to 97.22% for 1996, and 86.67% to 94.59% for 2002. The UA ranged from 88.89% 

to 94.44% for 1991, 72.73% to 92.50% for 1996, and 83.33% to 92.86% for 2002. 

The OA and Kappa coefficients for the years 1991, 1996, and 2002 were 91.67%, 

89.74%, 89.05%, and 0.89, 0.86, 0.86, respectively (Table 3.3). 
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Table 3.3: Accuracy assessment 

 
1991 1996 2002 

Class Name PA UA PA UA PA UA 

Water 94.12% 88.89% 95.83% 92.00% 88.64% 92.86% 

Vegetation 94.44% 94.44% 84.09% 92.50% 86.67% 92.86% 

Bar-Land 89.19% 91.67% 92.50% 92.50% 89.74% 83.33% 

Agriculture 89.47% 94.44% 97.22% 87.50% 86.67% 92.86% 

Built-up 91.43% 88.89% 66.67% 72.73% 94.59% 83.33% 

Overall 

Accuracy 
91.67% 89.74% 89.05% 

Kappa 

Statistics 
0.89 0.86 0.86 

 

Table 3.4: Error matrix of Accuracy assessment 1991 

LULC class Water Vegetation Bar-land Agriculture Built-

up 

Total 

Water 32 0 0 4 0 36 

Vegetation 2 34 0 0 0 36 

Bar-land 0 0 33 0 3 36 

Agriculture 0 1 1 34 0 36 

Built-up 0 1 3 0 32 36 

Total 34 36 37 38 35 180 

 

Table 3.5: Error matrix of Accuracy assessment 1996 

LULC class Water Vegetation Bar-land Agriculture Built-

up 

Total 

Water 23 1 0 0 1 25 

Vegetation 1 37 1 1 0 40 

Bar-land 0 0 37 0 3 40 

Agriculture 0 5 0 35 0 40 

Built-up 0 1 2 0 8 11 

Total 24 44 40 36 12 156 

 

Table 3.6: Error matrix of Accuracy assessment 2002 

LULC class Water Vegetation Bar-land Agriculture Built-

up 

Total 

Water 39 1 1 1 0 42 

Vegetation 1 39 0 1 1 42 

Bar-land 2 2 35 2 1 42 

Agriculture 1 1 1 39 0 42 

Built-up 1 2 2 2 35 42 

Total 44 45 39 45 37 210 
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   The contingency matrix was assessed for the years 2008, 2014, and 2020, 

taking into account the ground validation points recorded as 210, 156, and 184, 

respectively (Tables 3.8, 3.9, and 3.10). Out of the selected validation points, there 

were 186, 143, and 167 accurately matched points between the classified LULC 

classes and the ground truth. The evaluation of accuracy levels revealed that the PA 

and UA for 2008 and 2014 varied between 86.36% and 95.12%, 72.73% and 

96.00%, 83.33% and 92.86%, and 88.89% and 92.50%, respectively. For the year 

2020, the PA and UA ranged from 87.50% to 95.45% and 87.50% to 92.11% 

respectively. The overall accuracy (OA) for 2008, 2014, and 2020 was determined to 

be 88.57%, 91.67%, and 90.76% respectively. Additionally, the computed Kappa 

coefficients were 0.85, 0.89, and 0.88 for the respective years (Table 3.7). 

Table 3.7: Accuracy assessment 

 
2008 2014 2020 

Class Name PA UA PA UA PA UA 

Water 95.12% 92.86% 96.00% 88.89% 95.45% 87.50% 

Vegetation 86.36% 90.48% 90.24% 92.50% 91.30% 91.30% 

Bar-Land 82.61% 90.48% 94.87% 92.50% 92.11% 92.11% 

Agriculture 85.37% 83.33% 92.50% 92.50% 89.13% 89.13% 

Built-up 94.74% 85.71% 72.73% 88.89% 87.50% 93.33% 

Overall Accuracy 88.57% 91.67% 90.76% 

Kappa Statistics 0.85 0.89 0.88 

 

Table 3.8: Error matrix of Accuracy assessment 2008 

LULC 

class 
Water Vegetation 

Bar-

land 
Agriculture 

Built-

up 
Total 

Water 39 1 1 1 0 42 

Vegetation 1 38 1 2 0 42 

Bar-land 0 1 38 1 2 42 

Agriculture 1 2 4 35 0 42 

Built-up 0 2 2 2 36 42 

Total 41 44 46 41 38 210 
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       Table 3.9: Error matrix of Accuracy assessment 2014 

LULC 

class 
Water Vegetation 

Bar-

land 
Agriculture 

Built-

up 
Total 

Water 24 0 0 0 1 25 

Vegetation 1 37 1 2 0 41 

Bar-land 0 1 37 1 0 39 

Agriculture 1 2 0 37 0 40 

Built-up 1 0 2 0 8 11 

Total 27 40 40 40 9 156 

 

Table 3.10: Error matrix of Accuracy assessment 2020 

LULC 

class 
Water Vegetation 

Bar-

land 
Agriculture 

Built-

up 
Total 

Water 21 1 0 2 0 24 

Vegetation 1 42 0 2 1 46 

Bar-land 0 0 35 1 2 38 

Agriculture 0 3 1 41 1 46 

Built-up 0 0 2 0 28 30 

Total 22 46 38 46 32 184 

 

3.4.2 LULC Status 

The LULC of the Mayurakshi basin was assessed over a period of 30 years, at 

intervals of six years (1991, 1996, 2002, 2008, 2014, and 2020). The study area 

encompassed various LULC classes, including water, vegetation, barren land, 

agriculture, and built-up (Table 3.2). The dominant land use in the basin was 

agriculture, particularly in the lower basin area, which comprised a fertile river plain 

predominantly used for agricultural activities (Figs. 3.2, and 3.3). In 1991, 

agricultural land covered an area of 2460.06 km
2
 (49.15%), which increased to 

2644.82 km
2
 (52.48%) in 1996, and in 2002, agricultural land decreased by 2429.85 

km2 (48.55%). Except for 2002, agricultural land has continuously increased in 

2008, 2014, and 2020 by 2469.85 km2, 3215.69 km
2
, and 3533.81 km

2
 (49.35%, 

64.25%, and 70.61%) (Tables 3.11a, 3.11b, and Fig. 3.4). In the whole study period, 

agricultural land dominated in terms of its area and the nature of the conversion of 

the other LULC classes into agricultural land. The status of agricultural land between 

the years 1991 and 1996 was 184.76 km
2
 (3.69%  area gain) between 1996 and 2002, 

4.30 % area lost between 2002 and 2008, 0.80 % area gained between 2008 and 
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2014, 745.84 km
2
 (14.90% area gain), and 318.12 km

2
 (6.36% area gain) between 

2014 and 2020 (Table 3.12 and Fig. 3.4, Fig. 3.5). 

 The second-most dominant LULC class in the Mayurakshi basin was 

vegetation cover. In 1991, the area covered by vegetation was 1023.56 km
2
 (20.45%) 

and counted as the 3
rd

 dominant LULC class, which increased to 993.94 km
2 

(19.86%) and jumped to the 2nd dominant LULC class in 1996, 829.18 km
2
 

(16.57%) in 2014, and in 2020 it was covered by 16.57%, 15.57%  (Tables 3.11a, 

11b). The vegetation cover exhibited a slight increase of 3.10% and 2.80% between 

the years of 1996–2002 and 2002–2008, but overall, it experienced a continuous 

decline throughout the study period. Specifically, it decreased by 29.62 km
2
 (0.59%) 

between 1991 and 1996, by 460.20 km
2 

(9.19%) between 2008 and 2014, and by 

49.68 km
2
 (0.99%) between 2014 and 2020 (Tables 3.12 and Fig. 3.4, Fig. 3.5). 

 

Fig. 3.2: LULC a-1991, b-1996, 2002, c-2008 
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The third dominant LULC class in the basin was bare-land, predominantly 

found in the upper part of the basin, which is characterized by plateau areas. In 1991, 

2008, and 2020, bare land accounted for 22.96% (1149.33 km
2
), 18.01% (901.53 

km
2
), and 5.18% (259.37 km

2
) of the area, respectively (Tables 3.11a, 11b). The only 

increase in bare land occurred between 1996 and 2002, amounting to 140.12 km
2
 

(2.80%). However, bare land underwent a decreasing trend as it was converted into 

agricultural land and built-up areas. The years 1991 to 1996 witnessed a decrease of 

166.42 km
2
 (3.33%), followed by a decrease of 221.50 km

2
 (4.43%) between 2002 

and 2008, and a decrease of 257.79 km
2
 and 394.36 km

2
 (5.15% and 7.88%) between 

2008 and 2014 and 2014 and 2020, respectively. During the study period, the built-

up area experienced an overall increase; in 1991, it covered an area of 107.82 km
2
, 

accounting for 2.15% of the total area. By 2002, the built-up area had expanded to 

145.38 km
2 

(2.91%), and in 2020, it had reached 272.30 km
2
 (5.44%). 

 

 

Fig. 3.3: LULC e-2014, f-2020 
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Table 3.11a: LULC status (1991, 1996, 200) 

  Area in km
2
 

LULC 

Class 
1991 

Area 

(%) 
1996 

Area 

(%) 
2002 

Area 

(%) 

Water 264.22 5.28 267.67 5.35 157.16 3.14 

Vegetation 1023.56 20.45 993.94 19.86 1149.12 22.96 

Bare-land 1149.33 22.96 982.91 19.64 1123.03 22.44 

Agriculture 2460.06 49.15 2644.82 52.84 2429.85 48.55 

Built-up 107.82 2.15 115.65 2.31 145.83 2.91 

 

Table 3.11b: LULC status (2008, 2014, 2020) 

  Area in km
2
 

LULC 

Class 
2008 

Area 

(%) 
2014 

Area 

(%) 
2020 

Area 

(%) 

Water 181.66 3.63 149.34 2.98 160.01 3.20 

Vegetation 1289.38 25.76 829.18 16.57 779.50 15.57 

Bare-land 901.53 18.01 643.74 12.86 259.37 5.18 

Agriculture 2469.85 49.35 3215.69 64.25 3533.81 70.61 

Built-up 162.58 3.25 167.05 3.34 272.30 5.44 

 

Table 3.12: LULC status of lost and gain 

LULC Class 
1991to 

1996 
% 

1996 to 

2002 
% 

2002 to 

2008 
% 

2008 to 

2014 
% 

2014 to 

2020 
% 

Water +3.46 +0.07 -110.52 -2.21 +24.50 +0.49 -32.32 -0.65 +10.67 +0.21 

Vegetation -29.62 -0.59 +155.18 +3.10 +140.26 +2.80 -460.20 -9.19 -49.68 -0.99 

Bare-land -166.42 -3.33 +140.12 +2.80 -221.50 -4.43 -257.79 -5.15 -394.36 -7.88 

Agriculture +184.76 +3.69 -214.97 -4.30 +40.00 +0.80 +745.84 +14.90 +318.12 +6.36 

Built-up +7.82 +0.16 +30.19 +0.60 +16.74 +0.33 +4.47 +0.09 +115.25 +2.30 

Note: symbol ‗+‘ indicates area increased or gained, ‗-‘ indicates area lost or 

decreased. 
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Fig. 3.4: LULC status (1991-2020) 

 

Fig. 3.5: Gain and lost status in percentage (1991-2020) 
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3.5 LULC Change detection 

The basin underwent LULC change detection and land use and land cover 

conversion analyses spanning from 1991 to 2020. The analysis employed change 

vector analysis of a conversion matrix at five distinct stages: the first study period 

(1991–1996), the second study period (1996–2002), the third study period (2002–

2008), the fourth study period (2008–2014), and the fifth study period (2014–2020). 

Throughout the entire study period, the conversion matrix revealed significant 

changes and transitions in LULC. Notably, during the first study period, the water 

body, agricultural land, and built-up areas increased by 0.07%, 3.69%, and 0.16%, 

respectively (Table 3.12). Additionally, the area of 3.72 km
2
, 1.78 km

2
 of bare land 

(Plate 1,2), and agriculture were converted into the water class. Moreover, 154.05 

km
2
 and 78.07 km

2
 of bare land and vegetation contributed to the agricultural land. 

The built-up areas experienced a substantial increase of 7.82 km
2
 during the first 

study period, with contributions of 7.70 km
2
 and 4.78 km

2
 from bare land and 

vegetation, respectively (Table 3.13). 

In the second study period, vegetation increased by 3.10% (1150.09 

km
2
), predominantly contributed by agricultural land and bare land (472.64 km

2
) and 

272.02 km
2
, where 4.30% of agriculture classes decreased by 2429.75 km

2
, while 

bare-land and built-up classes increased from 1325.68 km
2
 to 1079.09 km

2
, 42.82 

km
2
 to 182.67 km

2
, respectively (Table 3.14). In the third study period, water, 

vegetation, agriculture, and built-up areas increased by 183.02 km
2 

(0.49%), 2368.95 

km
2
 (2.80%), 2469.73 km

2
 (0.80%), and 162.37 km

2
 (0.33%), respectively (Tables 

3.12–15). Notably, the vegetation class received significant contributions from 

agriculture and bare land of 526.12 km
2
 and 140.10 km

2
, and the agricultural class 

received significant contributions from vegetation and bare land of 397.06 km
2
 and 

310.60 km
2
, respectively (Table 3.15). 
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Table 3.13: Conversion Matrix 1991 – 1996 

LULC Class 

(km
2
) 

Water Vegetation 
Bare-

land 
Agriculture 

Built-

up 
Total 

Water 261.79 0.13 1.42 0.76 0.06 264.17 

Vegetation 0.80 940.40 0.02 78.07 4.78 1024.06 

Bare-land 3.72 3.48 980.41 154.05 7.71 1149.38 

Agriculture 1.78 46.67 0.23 2410.13 0.74 2459.54 

Built-up 0.17 3.80 0.01 1.15 102.71 107.84 

Total 268.26 994.49 982.09 2644.15 116.00 5004.99 

 

Table 3.14: Conversion Matrix 1996 – 2002 

LULC Class 

(km
2
) 

Water Vegetation Bare-

land 

Agriculture Built-

up 

Total 

Water 97.73 3.34 12.33 30.53 2.41 146.34 

Vegetation 8.24 397.12 57.99 323.23 29.26 815.84 

Bare-land 25.87 272.02 699.71 291.10 36.98 1325.68 

Agriculture 23.98 472.64 308.34 1770.08 99.28 2674.32 

Built-up 1.66 4.98 1.62 14.82 19.75 42.82 

Total 157.48 1150.09 1079.99 2429.75 187.67 5004.99 

 

Table 3.15: Conversion Matrix 2002 – 2008 

LULC Class 

(km
2
) 

Water Vegetation Bare-

land 

Agriculture Built-

up 

Total 

Water 122.38 6.11 17.24 11.47 0.41 157.60 

Vegetation 6.31 574.07 129.54 397.06 42.00 1148.98 

Bare-land 13.96 140.10 613.77 310.60 44.41 1122.84 

Agriculture 38.36 526.12 127.88 1718.08 19.36 2429.80 

Built-up 2.01 42.62 12.42 32.53 56.20 145.77 

Total 183.02 1289.03 900.84 2469.73 162.37 5004.99 

 

Between 2008 and 2014, there was a significant loss of area in vegetation and 

bare land, amounting to 1015.16 km
2
 to 831.31 km

2
, and 1295.10 km

2
 to 656.22 km

2
 

respectively. During the fourth study period, the agriculture class increased from 

2529.54 km
2
 to 3214.12 km

2
. In the agriculture LULC class, vegetation and bare land 

contributed 583.62 km
2
 and 516.03 km

2
 of the area, respectively (Table 3.16). 

In the final study period (2014–2020), bare land continued to significantly 

decrease, mirroring the trends observed in the fourth study period. However, 
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agriculture experienced an increase of 6.36% (3988.62 km
2
). The transition of the 

area from water, vegetation, bare land, and built-up to agriculture accounted for 

47.34 km
2
, 501.33 km

2
, 451.41 km

2
, and 90.63 km

2
, respectively. Furthermore, the 

transition of the area from water, vegetation, bare land, and agriculture to built-up 

was 1.64 km
2
, 17.82 km

2
, 30.51 km

2
, and 29.43 km

2
, respectively. (Table 3.17). 

Table 3.16: Conversion Matrix 2008 – 2014 

LULC Class 

(km
2
) 

Water Vegetation 
Bare-

land 
Agriculture 

Built-

up 
total 

Water 88.76 2.38 14.06 17.80 1.16 124.16 

Vegetation 16.33 355.75 35.73 583.62 23.72 1015.16 

Bare-land 22.20 214.30 499.23 516.03 43.33 1295.10 

Agriculture 22.33 253.50 101.80 2088.73 63.18 2529.54 

Built-up 0.19 5.38 5.39 7.94 22.14 41.04 

total 149.81 831.31 656.22 3214.12 153.53 5004.99 

 

Table 3.17: Conversion Matrix 2014 – 2020 

LULC Class 

(km
2
) 

Water Vegetation 
Bare-

land 
Agriculture 

Buil-

tup 
Total 

Water 99.21 1.81 3.59 47.34 1.64 153.60 

Vegetation 3.29 298.73 9.59 501.33 17.82 830.76 

Bare-land 16.82 64.48 91.25 451.41 30.51 654.46 

Agriculture 15.17 244.68 25.76 2897.90 29.43 3212.94 

Built-up 1.40 15.45 6.11 90.63 39.63 153.23 

Total 135.89 625.16 136.30 3988.62 119.03 5004.99 
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Plate 1: Bare land at up-stream ( Ahilpur pur, Dumka ) 

 

Plate 2:  Bare land  and gully erosion at up-stream ( Nagabadi, Dumka ) 
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Plate 3:  Bare land  and gully erosion at mid-stream ( Palom, Dumka ) 

 

Plate 4: Crop-land (at Sonamukhi, Birbhum ) 
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3.6 LULC Prediction 

3.6.1 Model validation 

The CA-Markov model was employed to estimate the future LULC, 

considering various driving factors such as slope, elevation, road proximity, and city 

center (Fig. 3.1). The accuracy of the simulated LULC was assessed by comparing it 

with the actual LULC data from 2020. The evaluation results demonstrated an 

impressive overall accuracy of 93.16% and a Kappa agreement of 0.85 (Table 3.18). 

These findings indicate a perfect agreement between the simulated and actual LULC, 

affirming the reliability of the model. Moreover, the comparison between the actual 

and simulated results was analysed by pairing the respective LULC data (Table 3.20 

and Fig. 3.6). The percentages of water, vegetation, bare-land, agriculture, and built-

up LULC classes were as follows: 3.20%, 15.57%, 5.18%, 70.61%, and 5.44 % for 

the actual results and 3.22%, 15.71%, 5.25%, 70.37%, and 5.46 % for the simulated 

results, respectively. Notably, the vegetation and agriculture classes exhibited the 

highest rates of change (RC) and percentage of change (PC) at 7.00%, -12.04%, and 

0.14%, -0.24% respectively. Overall, considering the Kappa agreement and 

comparison Tables 19 and 20, the model demonstrated considerable accuracy in 

predicting future LULC, enabling the estimation of the LULC for the year 2032. 

Table 3.18: Contingency matrix number of actual 2020 and simulated 2020 

2020 

Actual  

LULC 

Class (km
2
) 

2020 Simulated 
 

Water Vegetation Bare-land Agriculture Built-up total 

Water 158.78 0.16 0.13 0.79 0.17 160.02 

Vegetation 0.33 772.08 1.01 4.42 1.65 779.50 

Bare-land 0.29 0.64 255.72 2.01 0.71 259.37 

Agriculture 1.74 11.39 5.02 3512.53 3.13 3533.81 

Built-up 0.23 2.23 0.81 2.03 267.00 272.29 

Total 161.37 786.50 262.70 3521.77 272.65 5004.99 
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Table 3.19: Accuracy between actual 2020 and simulated 2020 LULC 

LULC Class UA PA 

Water 56.53 % 56.20 % 

Vegetation 90.93 % 92.05 % 

Bare-land 69.83 % 69.95 % 

Agriculture 97.87 % 97.44 % 

Built-up 76.35 % 73.91 % 

Overall 

Accuracy 

93.16 % 

Kappa Statistics 0.85 

 

Table 3.20: Comparison between actual (2020) and simulated (2020) 

LULC 

Class 

2020 

(Original) 
Area (%) 

2020 

(Simulated) 
Area (%) RC PC 

Water 160.01 3.20 161.37 3.22 1.36 0.02 

Vegetation 779.50 15.57 786.50 15.71 7.00 0.14 

Bare-land 259.37 5.18 262.70 5.25 3.32 0.07 

Agriculture 3533.81 70.61 3521.77 70.37 -12.04 -0.24 

Built-up 272.30 5.44 272.65 5.46 0.36 0.02 

Note* RC = Rate of change, PC = Percentage of change. 

 

 

Fig. 3.6: a- Actual 2020 and, b- simulated 2020 
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3.6.2 Future LULC status and conversion probability 

According to the CA-Markov model, the estimated future LULC for 2032 (Fig. 

3.7) indicates that agriculture will dominate the study area, covering 70.35% of the 

area. However, compared to 2020 (70.61%), agricultural land will decrease by 12.89 

km
2
 (Table 3.19 and 3.20). The second dominant LULC class will be vegetation, 

covering an area of 788.18 km
2
, which will see a slight increase of 0.03%. Bare-land 

and built-up areas are expected to increase by 0.05% (Table 3.20). 

The conversion probabilities for the water class in 2032 are computed as 

follows: 0.15% from bare-land, 0.04%, 0.06% from vegetation and agriculture, and 

0.08% from built-up areas (Table 3.23). The expected vegetation cover will be 

788.18 km
2
, with contributions of 15.48 km

2
 and 2.24 km

2
 from agriculture and 

built-up areas respectively (Table 3.22). The probability of transitioning from water, 

vegetation, and bare-land to agriculture is estimated at 0.80%, 0.90%, and 0.94%, 

respectively. 

Table 3.21: LULC status of 2032 

LULC 

Class 

2032 

Area (km
2
) (%) 

Water 161.38 3.22 

Vegetation 788.18 15.75 

Bare-land 262.12 5.24 

Agriculture 3520.92 70.35 

Built-up 272.40 5.44 

 

Table 3.22: Conversion Matrix 2020 - 2032 

Land use 

types 
Water Vegetation 

Bare-

land 
Agriculture 

Built-

up 
Total 

Water 158.43 0.09 0.08 1.28 0.13 160.01 

Vegetation 0.31 769.99 0.59 7.00 1.61 779.50 

Bare-land 0.38 0.37 255.16 2.44 1.01 259.37 

Agriculture 2.04 15.48 5.27 3507.64 3.38 3533.81 

Built-up 0.20 2.24 1.02 2.56 266.27 272.30 

Total 161.38 788.18 262.12 3520.92 272.40 5004.99 
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Table 3.23: Conversion Probability 2020 – 2032 in percentage 

LULC Class Water Vegetation 
Bare-

land 
Agriculture 

Built-

up 

Water 99.02 0.06 0.05 0.80 0.08 

Vegetation 0.04 98.78 0.08 0.90 0.21 

Bare-land 0.15 0.14 98.38 0.94 0.39 

Agriculture 0.06 0.44 0.15 99.26 0.10 

Built-up 0.08 0.82 0.38 0.94 97.78 

 

 

 

 

Fig. 3.7: Predicted LULC 2032 

3.7 Summary  

 The analysis of LULC changes over a 30-year study period provided insights 

into the changing trend and pattern of LULC in the basin. Initially, in 1991, the upper 

part of the basin consisted mostly of bare land, while the lower basin area was 

predominantly agricultural. Over time, the bare land was transformed into 

agricultural land, thereby significantly altering the landscape. In 1991, the 

agricultural land covered an area of 2460.06 km
2
 (49.15%), which increased to 

3533.81 km
2
 (70.60%) by 2020. Similarly, the built-up area exhibited a consistent 
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upward trend throughout the study period. In 1991, 2008, and 2020, the built-up area 

accounted for 2.15%, 3.25%, and 5.44%, respectively. 

Conversely, vegetation cover experienced a declining trend over the 30-year 

span. In 1991, vegetation covered 20.45% of the basin, which increased to 25.76% in 

2008 and further dropped to 16.67% and 15.57% in 2014 and, 2020. The analysis 

revealed that during the first study period, 0.80 km
2
 of vegetation and 3.27 km

2
 of 

bare land were converted into water bodies. In the second study period, 1.42 km
2 

of 

water bodies and 78.07 km
2
 of vegetation were transformed into bare-land and 

agriculture. In the final study period, 47.34 km
2
 of water, and 298.73 km

2
 of 

vegetation underwent conversion into agriculture and built-up areas. Based on an 

overall accuracy of 93.16% and a Kappa agreement of 0.85, the future LULC 

prediction for 2032 indicates that agriculture will be the dominant land cover class, 

spanning 3520.92 km
2
. It will be followed by vegetation covering an area of 788.18 

km
2
 and built-up areas occupying 272.40 km

2
. It is projected that from 2020 to 2032, 

agricultural land will experience a marginal decline of 0.26%. 

3.8 Concluding Remarks 

The present chapter aims to provide a concise overview of the evolving land 

use and land cover patterns in the Mayurakshi basin. The analysis employed popular 

LULC mapping techniques (RF) and change detection methods, supplemented by the 

algorithms of the Artificial Neural Network CA-Markov model, to explore future 

scenarios. Over the period from 1991 to 2020, significant transformations were 

observed in the basin's land use composition. Initially, the upper region exhibited 

undulating terrain and bare land, which gradually gave way to agricultural fields. 

Throughout the study duration, there was an increase in agricultural and built-up 

areas, while water bodies, vegetation cover, and bare-land areas decreased. The 

natural vegetation on the plateau in the upper part of the basin experienced a decline, 

whereas the lower basin area saw the introduction of planted vegetation cover. These 

detailed LULC findings are instrumental in understanding the runoff characteristics 

of the basin. Furthermore, future projections of LULC offer insights into the 

anticipated scenario for the basin. Therefore, this comprehensive analysis of LULC 
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status, dynamic patterns, and future predictions holds immense value for effective 

basin management and environmental preservation. Local communities can utilize 

this knowledge and integrate it into their planning endeavors to ensure sustainable 

basin management in the years to come. 
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Chapter 4: TO EVALUATE THE SEASONAL STREAMFLOW PATTERN 

AND SIMULATE THE RUNOFF PATTERN OF THE BASIN 

4.1 Objective and Chapter Organization 

This chapter extensively incorporates runoff simulation calibration and validation 

over a 30-year period. Section 4.3 deals with the database and method prior to the 

simulation and validation of the SWAT model. The details of model building and 

mandatory datasets are outlined in sections 4.3.1 Dataset for the SWAT model, 4.3.2 

SWAT model, 4.3.3 SWAT Soil Input Data Preparation, and 4.3.4 for Model 

Calibration and Validation. The flow pattern of the streams is highlighted in Section 

4.5. The runoff of the natural period and the impact period are simulated and 

validated in sections 4.6 and 4.7. The key result was summarized with concluding 

remarks in Section 4.8. 

4.2 Introduction 

The exploration of hydrological modeling is crucial for effective water 

resource management, driven by its implications for biodiversity preservation and 

meeting the growing human demand on Earth. The sustenance of both human 

societies and the ecosystem is intricately tied to the availability and quality of water 

(Milly et al., 2005). Technological advancements have led to significant changes in 

LULC, with human activities increasingly disrupting the natural environment, 

making it highly susceptible to climate change (Huntington, 2006). Runoff dynamics 

are influenced by various factors, with LULC and climate being pivotal among them. 

Notably, alterations in runoff are not solely attributed to LULC changes on the 

Earth's surface; direct human interventions, such as reservoir operations and 

irrigation, have accounted for a 2.1% reduction in global discharge from 1981 to 

2000 (Biemans et al., 2011). The global temperature has risen by 0.85 °C, according 

to the fourth report of the IPCC (Pachauri et al., 2014). Consequently, distinguishing 

between the impacts of human activities and climatic factors on runoff is a 

fundamental focus of hydrological research (Hulme et al., 1999). 
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Numerous tools and techniques have evolved and have been employed in 

hydrological research, including climate elasticity (Yang et al., 2008), the time trend 

method (Zhang et al., 2013), hydrological modeling (Li et al., 2009), Budyko-

coupled elasticity (Liang et al., 2013), and the paired catchment method (Huang et 

al., 2003). Among these models, the Soil and Water Assessment Tool (SWAT) 

stands out as a widely used and popular model, applied in numerous studies for 

runoff simulation. This chapter primarily focuses on the calibration and validation 

of runoff simulation using the well-established models SWAT and SWAT CUP 

(Soil and Water Assessment Tool-Calibration and Uncertainty Programming) 

(Hossain et al. 2020) 

4.3 Database and Methods  

A thorough exploration of the database and the methods employed in this chapter has 

been presented in this section. 

4.3.1 Dataset for the SWAT model  

The necessary dataset for this study was sourced from diverse outlets. Rainfall 

data, crucial for the research, was obtained from IMD Puna 

(https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_Bin.html). The data 

furnished by this platform features exceptionally high spatial resolution, providing 

daily gridded rainfall data at 0.25 × 0.25 degrees with the unit of measurement in 

millimeters (mm). Other mandatory weather datasets, including temperature, 

humidity, wind speed, and solar radiation, were acquired from NASA Power Access 

MERRA-2 data (https://power.larc.nasa.gov/data-access-viewer/). These datasets 

were assessed at a 0.5 × 0.5-degree interval. The specific point dataset needed for 

simulating the runoff model aimed for precision at a 0.25 × 0.25 interval. To achieve 

this goal, the NASA Power Access data was processed through kernel smoothing 

interpolation. The resulting dataset with the desired interval (0.25 × 0.25) was 

aligned with IMD point latitude and longitude, forming the basis for running the 

runoff model. Elevation data was sourced from the Digital Elevation Model (DEM), 

while historical images were collected from openly available satellite data via the 

United States Geological Survey (USGS) portal (http://earthexploration.usgs.gov/). 
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The LULC map was classified by the Random Forest (RF) machine learning 

algorithm, as detailed in Chapter 3, Section 3.3.2. To validate the model, observed 

discharge data were obtained from the Ministry of Jal Shakti, Central Water 

Commission Executive Engineer, Damodar Division, CWC, Asansol, under the 

Government of India. 

4.3.2 SWAT model 

The Soil and Water Assessment Tool (SWAT) stands as a sophisticated, 

physically-based model designed for runoff simulation, sediment yield measurement, 

vegetation growth, and nutrient circulation. Originating from the "Agricultural 

Research Centre of the United States Department of Agriculture" (USDA), SWAT 

evolved from the "Simulator for Water Source in Rural Basins" (SWRRB). This 

GIS-based application is compatible with various GIS platforms, such as QSWAT, 

VISWAT, MSWAT, and ArcSWAT. Detailed information about the application can 

be found in the SWAT documentation available at http://swatmodel.tamu.edu/. To 

operate the SWAT model, essential datasets encompass soil texture, DEM, land 

use/land cover, precipitation, humidity, solar radiation, wind speed, temperature data 

for modeling, and observed discharge for calibration and validation. The basin is 

categorized into sub-basins, and the model delineates hydrologic response units 

(HRUs) within each sub-basin. For evapotranspiration calculations, the model 

employs the Priestly-Taylor, Hargreaves, and Penman-Monteith methods. The water 

balance equation is a fundamental component of the model's functionality (Hosseini 

et al. 2020). 

 

SWt = SWo + ∑   
𝑖=1 (Rv − Qs −  Wseepage − 𝐸 − 𝑄 𝑔𝑤) ………………(Eq.1) 

Where, 

SWt is soil humidity, SWo is base humidity, Rv is the volume of rainfall (mm), Qs is 

runoff, and Wseepage is water percolation under the soil profile per day in 

millimeters. E
t
 is evapotranspiration per day in millimeters, and 𝑄 𝑔𝑤 is the amount 

of base flow per day in millimeters. 

 

 

http://swatmodel.tamu.edu/
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4.3.3 SWAT Soil Input Data Preparation 

Soil input is an important parameter of SWAT modeling to simulate the runoff. 

The soil data is categorized into physical properties and chemical properties. The 

SWAT inputs of physical properties such as percentage of sand, silt, clay, bulk 

density, course fragment, and organic carbon density have a major impact on the 

movement of air and water through the soil. The initial soil chemical level is 

determined by soil chemical properties such as soil PH. The physical properties are 

mandatory, and the chemical properties are optional. The required SWAT soil inputs 

are given below. 

Table 4.1: List of variables for SWAT soil input data  

SL.NO Variables Remarks 

1 Hydrological Soil 

Group 

Hydrological Soil Group (HSG) is the classification 

system of soil based on its ability to absorb and transmit 

water, widely being used for hydrological studies. The 

classification system was proposed by the United States 

Natural Resources Conservation Service (NRCS), is a part 

of the Soil Conservation Service (SCS) Curve Number 

(CN) method. The HSG initially categorized four primary 

hydrological soil groups. These are group A represents 

high infiltration, group B represents moderate infiltration, 

group C represents slow Infiltration and group D 

represents Very Slow Infiltration. 

 

2 Maximum rooting 

depth 

The maximum rooting depth is the depth of the soil layer 

to be taken as an input of the maximum depth of the soil 

layer considered for the computation of runoff 

measurement. 

3 Depth of soil from the 

surface to the bottom 

of the layer 

The depth of soil from the surface to the bottom of the 

layer is the depth of soil layers from the surface to the 

bottom of the individual layers in centimeters. Depth by 

layer is given below  

0 – 5 cm depth 

5-15 cm depth 

15-30cm depth 

30-60cm depth 

60-100cm depth 

100-200cm depth 

 

4 Moist bulk density The moist bulk density expresses the ratio of the porous 

material per unit volume or mass of a soil, the volume 

could be occupied as solids and pores at a specific 

moisture content. The moist bulk density is expressed in 

the unit of kilograms per cubic meter (kg/m³) or as grams 
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per cubic centimeter (g/cm³), The moisture content of the 

soil is an important factor because it affects the 

permeability as well as the weight of the material for a 

given volume. 

 

5 Availability of the 

water in the soil layer 

Available Water Capacity (AWC) refers to the amount of 

water in a soil layer that can be stored and is available for 

plants to uptake. The AWC is determined by Field 

Capacity (FC) and Wilting Point (WP). The FC refers to 

the amount of water in the soil retained against the pull of 

gravity or after the downward movement of the water. It is 

the condition when the soil is moist enough to adequately 

supply water for the plants. The WP is the point when soil 

loses its adequate moisture condition and water is tightly 

bound with soil and not enough to uptake for plants. The 

AWC is estimated by Dijkerman, 1988 as follows 

AWC = (θ33–θ1500) …………………..…(Eq.2) 

 

θ33 = 0.3697–0.0035*S…………………. (Eq.2.1) 

θ1500 = 0.0074 + 0.0039*C……………. (Eq.2.2) 

In these equations 

 AWC= Available Water Capacity, θ33 = soil water 

content at field capacity, θ1500 = soil water content at 

wilting point, C = Clay in percentage, and S = Sand in 

percentage. 

6 Saturated hydraulic 

conductivity  

Saturated hydraulic conductivity is referring the porous 

medium of rock or soil under saturated conditions. It is a 

coefficient of water movement at the saturated condition of 

the soil under the influence of gravity. The saturated 

hydraulic conductivity is influenced by factors of porosity 

of the soil, grain size distribution, soil structure, and 

compaction history.  The standard units to measure 

saturated hydraulic conductivity are inches per hour (in/hr) 

or millimeters per hour (mm/hr) or centimeters per second 

(cm/s) or meters per second (m/s). To calculate the 

saturated hydraulic conductivity formula used Cosby et al. 

(1984). 

 Ks = 60.96*10 ^ (−0.6 + 0.0126*S − 0.0064*C)……… 

(Eq.3) 

In this equation 

Ks = saturated hydraulic conductivity, S = Sand in 

percentage, C = Clay in percentage. 

 

7 Organic carbon 

content in the soil 

Soil organic carbon content refers to the presence of 

carbon content in the soil or sediment. For soil organic 

carbon is a major component of organic matter that 

includes animal and plant decomposed residuals. The 

decomposed residuals are important in determining the 

moisture retention and fertility of the soil.    

 

8 Percentage of clay The percentage of clay content in the soil is an important 
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content in the soil soil input, the clay layers are included by depth as given 

below  

0 – 5 cm Percentage of clay 

5-15 cm Percentage of clay 

15-30cm Percentage of clay 

30-60cm Percentage of clay 

60-100cm Percentage of clay 

100-200cm Percentage of clay 

  

9 Percentage of silt 

content in the soil 

The percentage of silt content in the soil is an important 

soil input, the silt layers are included by depth as given 

below  

0 – 5 cm Percentage of silt 

5-15 cm Percentage of silt 

15-30cm Percentage of silt 

30-60cm Percentage of silt 

60-100cm Percentage of silt 

100-200cm Percentage of silt 

 

 

10 Percentage of sand 

content in the soil 

The percentage of sand content in the soil is an important 

soil input, the silt layers are included by depth as given 

below  

0 – 5 cm Percentage of sand 

5-15 cm Percentage of sand 

15-30cm Percentage of sand 

30-60cm Percentage of sand 

60-100cm Percentage of sand 

100-200cm Percentage of sand 

 

11 Coarse fragment 

content 

The coarse fragment content of the soil is the non-soil 

particles typically including pebbles, gravels, and rocks 

that are larger than the soil particles. The presence of 

coarse fragments in the soil influences the soil structure.  

 

12 Moist soil albedo Soil albedo is a proportional measurement of solar 

radiation that is reflected by the soil. Moist soil albedo 

refers to the albedo of the soil when it is moist or has some 

level of near-field capacity moisture content. The soil 

albedo value ranges from 0 to 1, Where 1 represents the 

surface is totally reflective, and 0 represents a completely 

absorptive surface. The albedo of moist soil can vary based 

on several factors including moisture content, soil type, 

soil composition, and vegetation cover. To compute the 

moist soil albedo formula used Wang et al. (2005) 

 

Albedo = 0.1807 + 0.1019*exp(−3.53*θ33) …………. 

(Eq.4) 

 

θ33 is given in variable 5 
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13 USLE equation soil 

erodibility  

The Universal Soil Loss Equation (USLE) is an empirical 

equation widely used to predict soil erosion. The key 

factor (K) is soil erodibility proposed by Williams (1995). 

The K factor is the probability of soil erosion based on its 

properties. The unit of K is expressed as tons per acre per 

hour per inch of rainfall (tons/acre/hr/inch) or the unit 

depends on the formulation of the equation being used. 

The USLE is computed as proposed by Williams (1995). 

 

USLE=ES×EC−T×EOC×EHS ………………………... (Eq.5) 

 

ES=0.2+0.3×exp[−0.256×S×(1−T’100)] ………… 

(Eq.5.1) 

 

EC−T=[T/(C+T)]
0.3

……………….……………...... (Eq.5.2) 

 

EOC=1−(0.25×OC/ (OC+ exp [ (0.72−2.95×OC)] ……... 

(Eq.5.3) 

 

EHS=1−{0.7×(1−S’100) 

’[(1−S’100)+exp(−5.51+22.9×(1−S’100)]………. 

(Eq.5.4) 

 

 

OC = Organic carbon, EOC = represents the effectiveness 

of cover, EHS=Erosion Hazard Score, S = Percentage of 

sand, C = Percentage of clay, T = Percentage of silt 

 

(Source of variables are drawn from SWAT manual documentation) 

4.3.4 Model Calibration and Validation 

The Sequential Uncertainty Fitting (SUFI-2) is used for the calibration and 

validation of hydrological models in the SWAT Calibration and Uncertainty Program 

(SWAT-CUP vs. 5.1.2). SWAT-CUP is specifically designed to handle the 

uncertainty associated with model parameters during the calibration process. 

Calibration involves adjusting the model parameters to make the simulated outputs 

match the observed data as closely as possible. The calibration and validation were 

performed using the fitted parameters taken from SWAT-CUP (Tables 4.2, and 4.5). 

The natural period calibrated from 1991 to 2002 and 2003 to 2008 was validated. 

The impact period 2009–2015 is calibrated, and 2016–2020 data is used for model 

validation. The model‘s performance was finally evaluated by R
2
 and Nash-Sutcliffe 

simulation efficiency (NSE) (Hosseini et al. 2020). 
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𝑅2 = {
∑  𝑛
𝑖=1 (𝑂𝑖−𝑂ave )×(𝑃𝑖−𝑃ave )

[∑  𝑛
𝑖=1 (𝑂𝑖−𝑂ave )2]

0.5
×[∑  𝑛

𝑖=1 (𝑃𝑖−𝑃ave )2]
0.5}

2

…………. (Eq.6) 

𝐸𝑁𝑆 = 1 −
∑  𝑛
𝑖=1 (𝑂𝑖−𝑃𝑖)

2

∑  𝑛
𝑖=1 (𝑂𝑖−𝑂̅𝑖)

2
…………………………………. (Eq.7) 

Where 

Oi is the observed value, Pi is the predicted value, N is the total sample, Õi is the 

observed mean value, Oave, and Pave are the observed and predicted average. 

4.4 Masanjor Dam and Tilpara Barage 

The Masanjor Dam, also known as the Canada Dam, is situated on the 

Mayurakshi River basin in the Dumka district of Jharkhand, India (Plate 5,7). 

Commissioned in 1955, it spans the river basin, strategically placed after the 

drainage of the plateau region. The dam measures approximately 2170 feet in length 

and stands 155 feet high from its base, with an overflow section extending 225.60 

meters. Designed with a discharge capacity of 4.446 m
3
/s and a storage capacity of 

617,000,000 cubic meters, the dam maintains a full reservoir level of 121.34 meters 

and a flood level of 122.56 meters. Apart from its impressive engineering, the 

Masanjor Dam serves a pivotal role in water storage and irrigation. Creating a 

reservoir, it stores water for diverse purposes, releasing it during the crop-growing 

season to support crucial agricultural activities in the region. 

The Tilpara Barrage was constructed to harness the water resources of the 

Mayurakshi River for irrigation and other agricultural activities (Plate 6,8). The 

barrage was commissioned in 1949 on the Mayurakshi River. The length of the 

barrage is 309 meters. The barrage plays a crucial role in facilitating irrigation by 

controlling the flow of water and ensuring a regulated and reliable water supply for 

agricultural purposes. 
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Plate 5: Masanjor Dam at up-stream 

 

Plate 6: Tilpara Barage at mid-stream 
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Plate 7: Mayurakshi at the upper course (at Vijay pur, Dumka ) 

 

Plate 8: Mayurakshi at the middle course (at Lalia pur, Birbhum ) 

 

Plate 9: Mayurakshi at the middle course (at Sundarpur pur, Murshidabad) 
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Plate 10:  Tributary Bhurbhuri in summer season 

 4.5 The seasonal stream flow patterns 

The basin's stream flow is illustrated using the observed discharge data from 

1991 to 2020. The peak runoff in the basin occurs during the rainy season, 

characterized by rainfall from the southwest monsoon between June and September, 

known as India's monsoon season. Analysis of the rainfall seasonal pattern, as 

computed by RSI (Chapter 1, Table 1.5), indicates RSI index categories of, ―very 

equitable‖ and "equitable in definite weather," contributing to monsoonal discharge 

peaks in June, July, August, and September over the study period (Fig. 4.1). Apart 

from the rainy season, the watershed experiences low discharge. The basin relays its 

80% of its discharge from monsoonal rainfall, thus the monsoonal discharge pattern 

is considered to evaluate the seasonal variation of discharge. In the overall seasonal 

flow, the Mann Kendall statistic showed that the computed p-value was >0.05 of the 

significance level alpha (0.05). It indicates that in a monsoonal discharge pattern, 

there is no specific positive or negative trend in the discharge, the trend varies from 

time to time. Sen‘s slope (-0.76 mm/year) showed a very gentle decreasing 

monsoonal discharge pattern over the study period of the basin (Table 4.2, Fig. 4.1). 

Over the study period, pick seasonal discharge recorded 66.45 m
3
/s in 1992, followed 

by 66.45, 61.12, 61.11 m
3
/s in 2008,2004,2015 respectively. The low seasonal 

discharge of the basin recorded 22.13 m
3
/s followed by 25.35, 26.67, and 28.45 m

3
/s  

in the years 2010, 2018, and 1998 respectively (Table 4.3, Fig. 4.1). 
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Table 4.2: Trend of seasonal discharge 

Station 
Normalized 

Test (Z) 

Kendall's 

tau 

p-value 

 

Sen’s 

slope 

(Q value 

mm/year) 

Basin 0.017 0.004 >0.05 -0.762 

 

Table 4.3: Monsoonal discharge pattern  

Years 

Discharge 

of monsoon 

(m
3
/s) 

Years 

Discharge 

of monsoon 

(m3/s) 

1991 28.45 2006 45.46 

1992 66.45 2007 62.59 

1993 27.00 2008 66.45 

1994 50.08 2009 57.09 

1995 54.58 2010 25.35 

1996 30.75 2011 65.53 

1997 45.00 2012 22.13 

1998 50.08 2013 29.10 

1999 47.82 2014 33.54 

2000 44.46 2015 61.11 

2001 38.62 2016 55.04 

2002 55.76 2017 36.28 

2003 59.95 2018 26.70 

2004 61.12 2019 31.66 

2005 54.58 2020 56.49 
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              Fig. 4.1: Seasonal trend 

4.6 Runoff Simulation of Natural Period 

The study period was divided into two segments using change point analysis, 

as detailed in Chapter 1 (Reference: Change point of annual rainfall 2.4.5). The 

response of basin runoff relies on various factors, including soil characteristics, 

slope, LULC, elevation, and climatic elements such as rainfall, humidity, 

temperature, and wind speed. To simulate runoff during the natural period from 1991 

to 2008, parameters outlined in Table 2 were considered, including their best-fitted 

values. The range of values, both maximum and minimum, for the basin, was also 

highlighted. For the natural period moisture condition II curve number, baseflow 

recession constant, delay time for aquaria recharge, the threshold water level in the 

shallow aquifer for base flow, soil evaporation compensation coefficient, and surface 

runoff lag coefficient were determined as 0.0275, 0.44375, 169.125, 0.5125, 

0.98375, and 0.798437, respectively. The parameters for the runoff simulation model 

are summarized in Table 2. The model was calibrated and validated using observed 

discharge data for the natural period. Calibration involved using 13 years (1991–

2003) of simulated and observed data, while the next 5 years were used for 

validation. The validated model for the natural period demonstrated satisfactory 

performance with R
2
 (Fig. 3) and NES values of 0.83 and 0.80, respectively. 
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Table 4.4: Fitted parameter (1991-2008) 

Parameter Name 
Fitted 

Value 

Min 

value 

Max 

value 

CN2.mgt 0.0275 -0.2 0.2 

ALPHA_BF.gw 0.44375 0 1 

GW_DELAY.gw 169.125 30 450 

GWQMN.gw 0.5125 0 2 

GW_REVAP.gw 0.18875 0 0.2 

ESCO.hru 0.98375 0.8 1 

CH_N2.rte 0.219375 0 0.3 

CH_K2.rte 66.71875 5 130 

ALPHA_BNK.rte 0.51875 0 1 

SOL_AWC(..).sol 0.19375 -0.2 0.4 

SOL_K(..).sol 0.61 -0.8 0.8 

SOL_BD(..).sol 0.510625 -0.5 0.6 

SFTMP.bsn -0.5625 -5 5 

SURLAG.bsn 0.798437 0.05 24 

 

Table 4.5: Description of fitted parameter 

Parameter Name Description 

CN2.mgt Moisture condition II curve number 

ALPHA_BF.gw Baseflow Recession constant 

GW_DELAY.gw Delay time for aquaria recharge  

GWQMN.gw 

The threshold water level in the shallow 

aquifer for base flow 

GW_REVAP.gw Revamp coefficient 

ESCO.hru Soil evaporation compensation coefficient 

CH_N2.rte Manni‘s ―n‖ value for the main channel 

CH_K2.rte 

Effective hydraulic conductivity in the main 

channel  

ALPHA_BNK.rte Baseflow alpha factors for bank storage 

SOL_AWC.sol Available water capacity of the soil layer 

SOL_K.sol Saturated hydraulic conductivity 

_SOL_BD.sol Soil moist bulk density 

SFTMP.bsn 

Mean air temperature at which precipitation is 

equally likely to be rain as snow/ freezing rain 

(
0
C) 

SURLAG.bsn Surface runoff lag coefficient 

Source: -SWAT theoretical documentation 
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Fig. 4.2: Calibration and validation (1991-2008) 

 

Fig. 4.3: R
2
 of Natural Period 
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Table 4.6: Calibrated and validated discharge (m
3
/s) from 1991 to 2008 

Date observed simulated Date observed simulated 

Jan-1991 0.50 0.59 Jan-2000 0.91 0.00 

Feb-1991 0.50 0.06 Feb-2000 1.29 2.44 

Mar-1991 0.52 0.00 Mar-2000 0.90 0.34 

Apr-1991 0.51 0.42 Apr-2000 3.55 2.51 

May-1991 0.55 0.02 May-2000 12.38 14.56 

Jun-1991 17.84 22.38 Jun-2000 11.91 17.62 

Jul-1991 13.77 16.82 Jul-2000 14.50 16.59 

Aug-1991 60.47 68.41 Aug-2000 19.26 21.10 

Sep-1991 21.73 26.73 Sep-2000 132.16 102.40 

Oct-1991 3.63 4.80 Oct-2000 17.29 15.99 

Nov-1991 0.76 0.27 Nov-2000 4.20 5.03 

Dec-1991 2.01 1.69 Dec-2000 1.28 0.01 

Jan-1992 0.92 1.00 Jan-2001 1.07 0.00 

Feb-1992 0.52 0.00 Feb-2001 0.99 0.00 

Mar-1992 0.51 0.24 Mar-2001 0.97 0.04 

Apr-1992 0.80 5.32 Apr-2001 0.99 0.00 

May-1992 3.68 11.98 May-2001 3.98 6.55 

Jun-1992 34.71 51.85 Jun-2001 62.38 54.15 

Jul-1992 36.61 56.87 Jul-2001 17.84 22.38 

Aug-1992 100.10 54.26 Aug-2001 13.77 16.82 

Sep-1992 94.39 53.73 Sep-2001 60.47 68.41 

Oct-1992 161.64 33.61 Oct-2001 21.73 26.73 

Nov-1992 51.39 8.57 Nov-2001 1.66 0.22 

Dec-1992 0.52 0.95 Dec-2001 1.24 0.01 

Jan-1993 0.54 0.07 Jan-2002 1.06 0.06 

Feb-1993 0.52 0.01 Feb-2002 1.30 0.07 

Mar-1993 0.87 0.40 Mar-2002 1.27 0.04 

Apr-1993 1.83 1.83 Apr-2002 4.83 4.04 

May-1993 2.73 1.83 May-2002 5.72 6.15 

Jun-1993 25.27 6.96 Jun-2002 11.28 15.11 

Jul-1993 30.19 6.63 Jul-2002 29.27 31.04 

Aug-1993 20.99 4.28 Aug-2002 90.36 79.04 

Sep-1993 35.02 7.55 Sep-2002 92.14 64.98 

Oct-1993 2.50 3.24 Oct-2002 34.53 41.13 

Nov-1993 0.64 0.01 Nov-2002 6.32 5.62 

Dec-1993 0.54 0.49 Dec-2002 1.62 0.18 

Jan-1994 0.96 0.35 Jan-2003 1.37 0.01 

Feb-1994 0.90 0.05 Feb-2003 1.34 0.29 

Mar-1994 0.87 0.59 Mar-2003 1.64 1.76 

Apr-1994 0.86 0.79 Apr-2003 1.34 0.00 
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May-1994 2.23 1.97 May-2003 11.69 10.23 

Jun-1994 3.95 6.80 Jun-2003 19.96 17.38 

Jul-1994 67.66 83.41 Jul-2003 19.25 23.17 

Aug-1994 53.81 50.28 Aug-2003 7.95 13.18 

Sep-1994 74.90 74.11 Sep-2003 12.79 9.18 

Oct-1994 30.17 31.98 Oct-2003 63.31 60.15 

Nov-1994 8.66 11.26 Nov-2003 4.27 5.11 

Dec-1994 0.72 0.29 Dec-2003 1.68 0.20 

Jan-1995 0.67 0.00 Jan-2004 1.52 0.55 

Feb-1995 0.67 0.24 Feb-2004 1.31 0.09 

Mar-1995 0.69 0.26 Mar-2004 1.32 0.25 

Apr-1995 1.05 0.69 Apr-2004 8.20 8.27 

May-1995 1.23 0.82 May-2004 2.78 5.25 

Jun-1995 1.17 2.98 Jun-2004 36.91 32.66 

Jul-1995 96.49 79.41 Jul-2004 117.43 102.20 

Aug-1995 104.62 83.36 Aug-2004 23.36 26.66 

Sep-1995 16.02 24.90 Sep-2004 66.78 66.10 

Oct-1995 191.25 137.00 Oct-2004 136.40 92.61 

Nov-1995 23.02 20.40 Nov-2004 2.33 3.29 

Dec-1995 1.61 3.09 Dec-2004 0.91 2.51 

Jan-1996 1.18 0.04 Jan-2005 0.69 2.47 

Feb-1996 1.11 0.02 Feb-2005 0.58 2.07 

Mar-1996 1.08 0.01 Mar-2005 1.55 3.40 

Apr-1996 1.47 0.51 Apr-2005 0.75 2.51 

May-1996 1.29 0.43 May-2005 0.73 3.08 

Jun-1996 10.01 7.92 Jun-2005 1.17 2.98 

Jul-1996 38.12 13.76 Jul-2005 96.49 79.41 

Aug-1996 40.21 13.97 Aug-2005 104.62 83.36 

Sep-1996 34.69 1.86 Sep-2005 16.02 24.90 

Oct-1996 2.01 1.13 Oct-2005 191.25 137.00 

Nov-1996 1.67 1.10 Nov-2005 23.02 20.40 

Dec-1996 1.17 0.00 Dec-2005 1.61 3.09 

Jan-1997 1.11 0.00 Jan-2006 1.09 2.72 

Feb-1997 1.10 0.00 Feb-2006 0.89 2.42 

Mar-1997 1.26 0.08 Mar-2006 0.76 2.01 

Apr-1997 1.98 2.44 Apr-2006 1.93 3.68 

May-1997 1.94 1.59 May-2006 3.46 9.67 

Jun-1997 13.20 9.21 Jun-2006 23.37 32.21 

Jul-1997 100.35 88.13 Jul-2006 50.23 52.77 

Aug-1997 32.50 33.84 Aug-2006 11.25 23.44 

Sep-1997 33.93 41.26 Sep-2006 96.98 117.30 

Oct-1997 2.90 3.51 Oct-2006 55.40 51.33 

Nov-1997 1.20 0.01 Nov-2006 1.42 2.30 



151 

 

Dec-1997 1.07 0.48 Dec-2006 0.87 0.93 

Jan-1998 1.31 0.85 Jan-2007 0.65 0.78 

Feb-1998 1.71 1.49 Feb-2007 0.86 1.84 

Mar-1998 1.69 3.01 Mar-2007 0.66 0.83 

Apr-1998 1.80 2.00 Apr-2007 0.76 0.58 

May-1998 4.67 4.49 May-2007 3.70 9.53 

Jun-1998 3.95 6.80 Jun-2007 54.23 27.90 

Jul-1998 67.66 83.41 Jul-2007 75.34 176.20 

Aug-1998 53.81 50.28 Aug-2007 70.34 124.00 

Sep-1998 74.90 74.11 Sep-2007 61.25 150.50 

Oct-1998 30.17 31.98 Oct-2007 65.29 84.03 

Nov-1998 8.66 11.26 Nov-2007 4.22 11.23 

Dec-1998 1.65 0.39 Dec-2007 2.12 8.08 

Jan-1999 1.34 0.00 Jan-2008 1.80 9.48 

Feb-1999 1.24 0.00 Feb-2008 1.18 8.29 

Mar-1999 1.18 0.00 Mar-2008 0.97 5.80 

Apr-1999 1.17 0.00 Apr-2008 0.80 5.32 

May-1999 12.19 11.26 May-2008 3.68 11.98 

Jun-1999 16.70 17.04 Jun-2008 34.71 51.85 

Jul-1999 49.20 48.30 Jul-2008 36.61 56.87 

Aug-1999 78.12 66.06 Aug-2008 100.10 54.26 

Sep-1999 47.24 50.90 Sep-2008 94.39 53.73 

Oct-1999 44.62 46.02 Oct-2008 161.64 33.61 

Nov-1999 3.64 3.41 Nov-2008 51.39 8.57 

Dec-1999 1.12 0.01 Dec-2008 3.46 2.49 

 

4.7 Runoff Simulation of Impact Period 

The runoff of the impact period is simulated and outlined in Table 6. The 

simulation of the impact period was run by the best-fit parameters of base flow 

recession constant, the delay time for aquaria recharge, the threshold water level in 

the shallow aquifer for base flow, revamp coefficient, soil evaporation compensation 

coefficient, base flow alpha factors for bank storage, and surface runoff lag 

coefficients of 0.50, 156.00, 0.18, 0.50, and 2.45, respectively (Table 4.7). All the 

parameters for the runoff simulation model of the impact period are summarized in 

Table 5, and the parameter description is outlined in Table 3. The model was 

calibrated and validated using observed discharge data for 2009–2020. Calibration 

involved using 8 years (2009–2020) of simulated and observed data, while the next 4 
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years were used for validation. The validated model for the impact period 

demonstrated satisfactory performance with R
2
 (Fig. 4.5) and NES values of 0.89 and 

0.87, respectively. 

 

Table 4.7: Fitted parameter (2009-2020) 

Parameter Name 
Fitted 

Value 

Min 

value 

Max 

value 

CN2.mgt 0.00 -0.20 0.20 

ALPHA_BF.gw 0.50 0.00 1.00 

GW_DELAY.gw 156.00 30.00 450.00 

GWQMN.gw 0.60 0.00 2.00 

GW_REVAP.gw 0.18 0.00 0.20 

ESCO.hru 0.94 0.80 1.00 

CH_N2.rte 0.15 0.00 0.30 

CH_K2.rte 42.50 5.00 130.00 

ALPHA_BNK.rte 0.50 0.00 1.00 

SOL_AWC(..).sol 0.22 -0.20 0.40 

SOL_K(..).sol -0.32 -0.80 0.80 

SOL_BD(..).sol 0.49 -0.50 0.60 

SFTMP.bsn -2.00 -5.00 5.00 

SURLAG.bsn 2.45 0.05 24.00 

 

 

Fig. 4.4: Calibration and validation (2009-2020) 
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Fig. 4.5: R
2
 of Impact Period 

Table 4.8: Calibrated and validated discharge (m
3
/s) from 2009 to 2020 

Date Observed Simulated Date Observed Simulated 

Jan-2009 9.12 1.06 Jan-2015 9.12 0.06 

Feb-2009 9.08 0.37 Feb-2015 9.04 0.00 

Mar-2009 9.29 0.11 Mar-2015 9.16 0.04 

Apr-2009 9.20 0.04 Apr-2015 10.52 0.56 

May-2009 13.86 3.79 May-2015 10.04 0.29 

Jun-2009 11.00 1.25 Jun-2015 20.12 8.23 

Jul-2009 33.85 18.92 Jul-2015 71.69 53.27 

Aug-2009 99.72 78.88 Aug-2015 89.38 69.76 

Sep-2009 83.79 68.70 Sep-2015 63.26 46.70 

Oct-2009 106.05 93.23 Oct-2015 15.53 8.12 

Nov-2009 10.79 5.30 Nov-2015 9.27 0.28 

Dec-2009 9.39 3.01 Dec-2015 9.10 0.16 

Jan-2010 9.23 2.18 Jan-2016 11.04 1.38 

Feb-2010 9.17 1.42 Feb-2016 9.26 0.06 

Mar-2010 9.12 0.50 Mar-2016 9.04 0.00 

Apr-2010 9.09 0.02 Apr-2016 9.03 0.00 

May-2010 11.37 1.89 May-2016 9.78 0.09 

Jun-2010 25.37 4.01 Jun-2016 16.49 6.11 

Jul-2010 20.34 6.65 Jul-2016 60.12 44.36 

Aug-2010 28.36 5.65 Aug-2016 64.04 44.64 

Sep-2010 27.35 15.27 Sep-2016 79.49 56.30 

Oct-2010 12.45 3.28 Oct-2016 14.86 6.19 
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Nov-2010 9.30 0.61 Nov-2016 9.35 0.60 

Dec-2010 10.01 1.17 Dec-2016 9.14 0.26 

Jan-2011 9.09 0.21 Jan-2017 9.06 0.02 

Feb-2011 9.04 0.00 Feb-2017 9.03 0.00 

Mar-2011 9.05 0.00 Mar-2017 9.08 0.00 

Apr-2011 10.15 0.59 Apr-2017 9.79 0.33 

May-2011 16.16 5.83 May-2017 13.19 2.79 

Jun-2011 66.68 47.70 Jun-2017 29.30 4.13 

Jul-2011 57.27 49.44 Jul-2017 39.35 105.30 

Aug-2011 59.21 185.10 Aug-2017 35.69 136.20 

Sep-2011 78.96 72.72 Sep-2017 40.81 34.82 

Oct-2011 15.62 14.69 Oct-2017 22.00 106.40 

Nov-2011 9.87 6.28 Nov-2017 15.44 11.29 

Dec-2011 9.54 4.99 Dec-2017 9.62 3.31 

Jan-2012 9.38 3.93 Jan-2018 9.36 2.42 

Feb-2012 9.27 2.78 Feb-2018 9.25 1.59 

Mar-2012 9.50 1.86 Mar-2018 9.20 0.72 

Apr-2012 11.72 3.08 Apr-2018 9.80 0.60 

May-2012 9.17 0.49 May-2018 10.47 1.52 

Jun-2012 11.11 2.19 Jun-2018 13.08 3.70 

Jul-2012 31.56 20.44 Jul-2018 24.44 11.74 

Aug-2012 17.09 7.59 Aug-2018 44.50 32.16 

Sep-2012 28.74 16.69 Sep-2018 24.77 12.46 

Oct-2012 16.37 6.75 Oct-2018 16.68 6.20 

Nov-2012 15.15 5.54 Nov-2018 9.40 0.70 

Dec-2012 9.22 0.88 Dec-2018 9.93 0.92 

Jan-2013 9.09 0.42 Jan-2019 9.11 0.13 

Feb-2013 9.54 0.37 Feb-2019 9.54 0.29 

Mar-2013 9.04 0.00 Mar-2019 9.08 0.00 

Apr-2013 10.40 0.98 Apr-2019 9.44 0.12 

May-2013 17.92 4.44 May-2019 13.08 3.14 

Jun-2013 32.00 21.74 Jun-2019 10.37 0.71 

Jul-2013 26.49 15.89 Jul-2019 31.60 18.90 

Aug-2013 33.13 18.62 Aug-2019 15.44 6.40 

Sep-2013 24.78 11.34 Sep-2019 69.24 33.48 

Oct-2013 113.70 84.30 Oct-2019 96.34 97.25 

Nov-2013 14.15 5.87 Nov-2019 13.68 5.99 

Dec-2013 9.30 0.68 Dec-2019 9.25 0.56 

Jan-2014 9.11 0.21 Jan-2020 9.10 0.14 

Feb-2014 9.46 0.20 Feb-2020 9.15 0.02 

Mar-2014 9.05 0.00 Mar-2020 9.60 0.10 

Apr-2014 9.16 0.00 Apr-2020 9.34 0.01 

May-2014 30.94 16.90 May-2020 14.51 3.96 
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Jun-2014 22.82 15.65 Jun-2020 26.29 13.74 

Jul-2014 43.13 28.52 Jul-2020 63.76 46.49 

Aug-2014 30.02 14.43 Aug-2020 50.45 41.20 

Sep-2014 38.20 21.96 Sep-2020 85.44 69.29 

Oct-2014 13.51 4.66 Oct-2020 30.82 27.75 

Nov-2014 9.27 0.36 Nov-2020 9.98 4.22 

Dec-2014 9.10 0.17 Dec-2020 9.52 3.15 

 

4.8 Concluding Remarks  

The basin experiences its peak runoff during the monsoonal rainy season. 

Before conducting an assessment of the impact of climate and land use land cover, 

the study period was segmented into two phases: the natural period (1991–2008) i.e 

before the step change point of rainfall, and the impact period (2009–2020) i.e after 

the change point of rainfall. The natural period refers to the time period where there 

is a homogeneity or no significant increase or decrease in rainfall, After the step 

change in rainfall (2008) it followed a decreasing pattern that is considered an impact 

period. Calibration for the natural period spanned 13 years (1991–2003), with the 

subsequent 5 years allocated for validation, resulting in a satisfactory model 

performance indicated by R
2
 and NES values of 0.83 and 0.80, respectively. 

Calibration for the impact period covered 8 years (2009–2020), and the subsequent 4 

years were designated for validation. The validated model for the impact period 

exhibited commendable performance, with R
2
 and NES values of 0.89 and 0.87, 

respectively. Consequently, the model was developed to assess the influence of 

climate change and land use land cover change in the basin. 
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Chapter 5: THE ROLE OF CLIMATE CHANGE AND LAND USE LAND 

COVER CHANGE ON STREAMFLOW  

5.1 Objective and Chapter Organization 

In this chapter, the impact of climate and LULC on basin runoff is investigated, 

and the methodology to separate the climatic impact and LULC on runoff is 

outlined in Section 5.3.1. The result and discussion of the simulation of TQ at 

the natural period are briefly explained in Section 5.4.1., and the detailed 

simulation of TQ at the impact period and simulated climatic impact is given in 

Section 5.4.2, while Section 5.4.3 deals with a comparative analysis of rainfall 

and TQ. Section 5.4.4 deals with the impact of LULC and climate on runoff and 

the concluding remarks outlined in Section 5.5. 

5.2 Introduction 

The hydrological process is significantly influenced by climatic parameters and 

Land Use/Land Cover. Numerous studies have delved into the hydrological changes 

resulting from shifts in LULC patterns (Guo et al., 2008; Dong et al., 2015; Li et al., 

2017). Alterations in LULC have a profound impact on groundwater recharge, 

evapotranspiration, interception, and soil moisture content (Zhang et al., 2001; 

Woldesenbet et al., 2017; Gashaw et al., 2018). The distribution pattern of LULC in 

a watershed plays a pivotal role in governing surface runoff and sediment yield 

(Kumar, 2018). The changing LULC, primarily driven by population growth and 

ecological footprint stress, is a central concern. Studies concur that an increase in 

vegetation cover and agricultural land significantly amplifies runoff in the watershed 

(Bosch and Hewlett, 1982; Fang et al., 2013; Teklay et al., 2018). 

The influence of climate change and escalating human demands for ecological 

footprints intensify hydrological extremes, impacting food, water resource 

management, and land management vulnerabilities (Bronstert et al., 2002). 

Understanding the interplay between LULC and climate is pivotal in hydrological 

studies, particularly in simulating rainfall-runoff models (Joorabian et al., 2017). 
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Runoff characteristics are not solely influenced by rainfall and LULC but also hinge 

on watershed features such as slope, soil, wind speed, and solar radiation (Dong et 

al., 2015; Yang et al., 2017). 

Currently, climate change exerts a profound influence on LULC alterations, and 

this impact manifests in surface runoff, making it a crucial focus for hydrologists (Jia 

et al., 2010; Nosetto et al., 2010). In the nexus between climate change and LULC, 

climate emerges as the primary driver for changes in surface runoff and groundwater 

recharge, while the influence of LULC, encompassing factors like population growth 

and economic development, is relatively indirect (Liu and Andersson, 2004). The 

widely adopted SWAT model is employed globally to assess the impact of climate 

and LULC on surface runoff alterations (Kiros et al., 2015; Gyamfi et al., 2016; 

Himanshu et al., 2017; Shooshtaria, 2017; Yan, 2017). This chapter aims to evaluate 

runoff changes and determine the relative influence of LULC and climate on the 

Mayurakshi river basin's runoff. 

5.3 Database and Methodology  

The database used in this chapter is briefly outlined in the section, and the 

details of the methodology are given below: 

5.3.1 Methodology 

The impact of climate change and land use and land cover change on runoff 

is assessed by quantifying the surface runoff of the watershed (SURQ), lateral flow 

(LATQ), and groundwater (GWQ) contribution to the stream. The average contribution 

of SURQ, LATQ, and GWQ is taken to evaluate the impact of climate and LULC over 

the study period of the Mayurakshi river basin. During the study period, time series 

rainfall change was accounted for in 2008 by the statistics of the Pettitt test, 

Buishand U test, and Standard Normal Homogeneity test (reference: Chapter 2, 

Section 2.3.6). Thus, the whole study period is broken into two segments based on 

the step change in rainfall. Based on the step change result, the study period from 

1991 to 2008 is considered the natural period, whereas from 2009 to 2020 is the 

interference period. The method to separate climatic and human activity (LULC 

change) is used by many of the studies known as the hydrological model (Devia et 
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al., 2015; Xu et al., 1999). The model is modified and mathematically presented in 

Eqs. 2, 3, 4, and 6. The impact accounted for the combinations of the different 

scenarios or simulations. The first simulation represents the natural period, assuming 

the climatic variables were in an equitable condition, where climate and LULC are 

applied to the natural or reference period to simulate the model. The 

second simulation presents the impact period, where the climate and LULC are 

applied to the interference or impact period. To quantify the climatic impact, we 

applied the LULC of the natural period and the climate of the impact period to 

simulate the model. 

 

Currently, climate change exerts a profound influence on LULC alterations, 

and this impact manifests in surface runoff, making it a crucial focus for hydrologists 

(Jia et al., 2010; Nosetto et al., 2010). In the nexus between climate change and 

LULC, climate emerges as the primary driver for changes in surface runoff and 

groundwater recharge, while the influence of LULC, encompassing factors like 

population growth and economic development, is relatively indirect (Liu and 

Andersson, 2004). The widely adopted SWAT model is employed globally to assess 

the impact of climate and LULC on surface runoff alterations (Kiros et al., 2015; 

Gyamfi et al., 2016; Himanshu et al., 2017; Shooshtaria, 2017; Yan, 2017). This 

chapter aims to evaluate runoff changes and determine the relative influence of 

LULC and climate on the Mayurakshi river basin's runoff. The hydrological model is 

used by the researchers to simulate and separate climatic and LULC impact by Ma et 

al, 2009; Fan et al, 2010 equations are given below. 

 

𝑇𝑄 = 𝛴𝑆𝑈𝑅𝑄 + 𝐿𝐴𝑇𝑄 + 𝐺𝑊𝑄 ∕ 3……………………………………(Eq.1) 

𝑇𝐷𝑄 = 𝑆2𝐼𝑃𝑄 − 𝑆1𝑁𝑃𝑄…………………………………………………(Eq.2) 

𝐶𝐿𝐼𝑄 = 𝑆3𝐼𝑃𝐶𝐿𝑄 − 𝑆1𝑁𝑃𝑄………………………………………………. (Eq.3) 

𝐿𝑈𝐿𝐶𝐼𝑄 = 𝑆2𝐼𝑃𝑄 − 𝑆3𝐼𝑃𝐶𝐿………………………………………………(Eq.4) 

Where, 
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SURQ is the surface flow of the watershed, LATQ is the lateral flow contribution to 

the stream flow of the basin, and GWQ is the groundwater contribution to the stream. 

𝑇𝑄 is the total average contribution of SURQ, LATQ, and GWQ to the runoff of the 

watershed. 𝑇𝐷𝑄 is the total difference in runoff, 𝑆2𝐼𝑃𝑄 is the simulated average runoff 

contribution of the basin during the impact period, 𝑆1𝑁𝑃𝑄 is the simulated average 

runoff contribution of the basin during the natural period, 𝐶𝐿𝐼𝑄 is the impact of 

climate change stream flow, LULCIQ is the impact of LULC on stream flow. 𝑆3𝐼𝑃𝐶𝐿 is 

the runoff simulation with reference to climate change, where the LULC is 

constantly referred to natural period (𝑆1𝑁𝑃𝑄), and the climatic components are 

referred to impact period ( 𝑆2𝐼𝑃𝑄).(**Unite of measurement is MASF/y : M: 

Monthly, A: Average, SF: Stream Flow, /y: per year) 

5.4 Results and Discussion 

5.4.1 Simulation of TQ at Natural Period 

The simulation of TQ including SURQ, LATQ, and GWQ for the 𝑆1𝑁𝑃𝑄 is 137.85 

mm. In the total natural period, a greater amount of TQ was in the year 2007 (TQ 

410.51 mm) with a greater contribution of SURQ and GWQ   amounting to 361.18mm 

and 42.63mm. The minimum TQ occupied in 1993 (TQ 19.63 mm) and a low TQ 

contribution in the watershed prevailed at the beginning of the natural period (1991 - 

1995) (Table 5.1 and Fig. 5.1). At the timeframe of 1996 - 2008 (except 2003) a 

greater amount of TQ was recorded. The SURQ is an important contributor to the TQ 

of the watershed. The contribution of SURQ was low at the beginning of the natural 

period after 1995 the SURQ contribution to TQ notably increased and the trend of TQ 

followed a positive increasing trend during the 𝑆1𝑁𝑃𝑄 of the watershed (Fig. 5.1).  

 

Table 5.1: Runoff simulation (MASF/y) of 𝑺𝟏𝑵𝑷𝑸 

Year 
SURQ 

(mm) 

LATQ 

(mm) 

GWQ 

(mm) 
TQ 

1991 49.85 2.93 1.5 54.28 

1992 19.25 1.3 2.13 22.68 

1993 15.27 1.9 2.46 19.63 
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1994 43.59 1.8 4.05 49.44 

1995 42.98 2.63 2.64 48.25 

1996 112.59 1.87 2.13 116.59 

1997 110.45 4.25 4.21 118.91 

1998 157.88 5.42 3.58 166.88 

1999 141.85 5.09 1.5 148.44 

2000 114.99 4.89 3.9 123.78 

2001 106.73 5.09 10.3 122.12 

2002 145.48 4.85 2.7 153.03 

2003 79.06 4.05 5.61 88.72 

2004 209.22 5.58 8.61 223.41 

2005 222.1 5.13 16.83 244.06 

2006 172.44 5.16 11.7 189.3 

2007 361.18 6.7 42.63 410.51 

2008 146.1 5.01 30.09 181.2 

𝑆𝐼𝑁𝑃𝑄 
 

137.85 

 

 

Fig. 5.1: TQ Natural period 

5.4.2 Simulation of TQ at Impact Period and Simulated Climatic Impact 

The TQ of the basin during the 𝑆2𝐼𝑃𝑄  (2009 to 2020) was recorded at 

127.65mm, and the maximum and minimum TQ documented in 2011 and 2010 were 

283.34mm, and 44.9mm respectively. Contrary to  𝑆1𝑁𝑃𝑄 during the period of 𝑆2𝐼𝑃𝑄 

the TQ showed a downward trend (Fig. 5.2). The prime contributor SURQ to TQ 
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accounted maximum in 2011 (259.24mm) and a minimum in 2010 (26.34) mirroring 

the TQ of 2011 and 2010 (Table 5.2). During the 𝑆2𝐼𝑃𝑄 maximum contribution of 

LATQ and GWQ recorded 0.90mm and 23.20mm similar to the SURQ contribution to 

the TQ of the watershed. The impact of climatic components (S3IPCL) is evaluated 

where the contribution of TQ on the watershed was 68.19. The individual 

contributions of SURQ, LATQ, and GWQ were 65.35mm, 0.59mm, and 2.24mm 

respectively (Table 5.2).  

Table 5.2: Runoff simulation (MASF/y) of 𝑺𝟐𝑰𝑷𝑸 

Year SURQ 

(mm) 

LATQ 

(mm) 

GWQ 

(mm) 

TQ 

2009 199.7 0.52 21.01 221.23 

2010 26.34 0.71 17.85 44.9 

2011 259.24 0.9 23.2 283.34 

2012 43.56 0.74 15.15 59.45 

2013 118.17 0.75 2.44 121.36 

2014 77.49 0.82 0.13 78.44 

2015 126.66 0.76 0.01 127.43 

2016 111.94 0.76 0 112.7 

2017 151.23 0.91 11.51 163.65 

2018 46.88 0.78 7.15 54.81 

2019 122.68 0.68 0.69 124.05 

2020 136.07 0.9 3.5 140.47 

𝑆2𝐼𝑃𝑄  127.65 

 Simulated climatic impact 

 SURQ 

(mm) 

LATQ 

(mm) 

GWQ 

(mm) 

TQ  

𝑆3𝐼𝑃𝐶𝐿𝑄 65.35 0.59 2.24 68.19 
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Fig. 5.2: TQ Impact period 

5.4.3 Comparative analysis of rainfall and TQ  

The rainfall and TQ of the basin are juxtaposed to analyze the correlation 

between rainfall patterns and basin runoff patterns. The rainfall and TQ of the basin 

are paired to make a comparison of them. In the 30 years of rainfall, the maximum 

and minimum rainfall were 2128.99 mm and 770.00 mm with an average of 1376.57 

mm ± 313.93 mm. The TQ time series over the study period accounted for an average 

of 133.77 mm ± 80.08 mm with a maximum and minimum of 410.51 mm and 19.63 

mm (Table 5.3). To compute the overall rainfall variation of the basin regarding the 

natural period and impact period, the computed p-value was >0.05 at the significance 

level of alpha α= 0.05 for the natural period as well as for the impact period. It 

indicates that in both time frames, there is no specific positive or negative trend in 

the rainfall series and the trend varies from time to time. In the natural period 

Kendall‘s Z (1.28) and normalized Kendall's tau (0.28) indicate an increasing rainfall 

trend, whereas in the impact period Kendall‘s Z (-0.3) and normalized Kendall's tau 

(-0.07) show a decreasing rainfall trend (Table 5.4 and Fig. 5.3). The TQ variation is 

computed for the natural period and the impact period. In the natural period 

Kendall‘s Z was 2.25 and normalized Kendall's tau was 0.48 with a computed p-

value of 0.02 and the Sen‘s slope is 10.69 mm/year indicating an increasing TQ trend. 

In the impact period, Kendall‘s Z -0.18 and normalized Kendall's tau -0.05 with the 

Sen‘s slope of -1.39 mm/year indicate a decreasing trend of TQ during the impact 

period (Table 5.4 and Fig. 5.3). 
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Table 5.3: Rainfall and TQ (mm) 

Year 
Rainfall 

(mm) 

TQ  

(mm) 
Year 

Rainfall  

(mm) 

TQ  

(mm) 

1991 1315.13 54.28 2006 1560.45 189.3 

1992 1011.55 22.68 2007 1599.02 410.51 

1993 1427.14 19.63 2008 1506.70 181.2 

1994 1158.26 49.44 2009 1221.79 221.23 

1995 1627.27 48.25 2010 1031.07 44.9 

1996 1361.95 116.59 2011 871.40 283.34 

1997 1598.04 118.91 2012 770.00 59.45 

1998 1667.80 166.88 2013 1481.17 121.36 

1999 2128.99 148.44 2014 1209.49 78.44 

2000 2097.20 123.78 2015 1634.67 127.43 

2001 1409.63 122.12 2016 1167.39 112.7 

2002 1576.80 153.03 2017 1446.96 163.65 

2003 1253.11 88.72 2018 843.58 54.81 

2004 1553.25 223.41 2019 1096.57 124.05 

2005 1255.88 244.06 2020 1414.79 140.47 

 

Table 5.4: Trend and Sen’s slope estimation 

Station 

Normalized 
Kendall's 

tau 

p-value 
Sen’s 

slope 

Test (Z) 
(Two-

tailed) 
(Q value) 

Rainfall Natural 

Period 
1.28 0.28 0.20 43.47 

Rainfall Impact 

Period 
-0.3 -0.07 0.76 -5.87 

TQ Natural Period 2.25 0.48 0.02 10.69 

TQ Impact Period -0.18 -0.05 0.85 -1.39 
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Fig. 5.3: Long-term rainfall and TQ status 

5.4.4 Role of LULC and Climate on stream flow 

 Climate variability, especially rainfall, and LULC, are the most effective 

factors that directly control stream flow. In the 30 years of the time period, the basin 

was characterized by a dynamic nature of climatic variability and LULC change as 

well. In terms of climatic variability, at the very beginning of the 1st decade of the 

study period (1991–2000), the basin received low rainfall, and in 1997, the basin 

started to receive a continuous upward graph of rainfall, with a peak rainfall of 

2128.99 mm. Overall, the first decade of the study period accounted for an upward 

rainfall trend (reference: Chapter 2 Section 2.4.4). After that, the rainfall decreased 

continuously followed by a downward trend in the 2
nd

 and 3
rd

 decades (Table 2.3). 

The step change in rainfall accounted for by the statistics of Pettitt‘s test, the SNHT 

test, and Buishand's test confirmed that the rainfall change point of the basin was in 

2008 (reference: Chapter 2 section 2.4.5). The LULC of the basin at the beginning of 

the agricultural land was 49.15% and it continuously increased to 70.61% in 2020, 

the built-up area also increased over the study period, in 1991 it was 2.15% and 

increased to  5.44% at the end of the study period (2020). The increase of built-up 

area is one of the accelerating agents of the runoff pattern for the basin. The step 

change of rainfall and the continuous decreasing of rainfall seconded by Sen‘s slope 

(Q) is -12.21 mm/year indicating a decreasing trend of rainfall over the study period 
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(reference: Chapter 2 Table 2.3, Fig. 2.6). The comparison between the rainfall 

pattern and the streamflow is paired to examine the rainfall and streamflow 

characteristics over the study period (Table 5.3). Both followed a decreasing trend 

(Fig. 5.3). The magnitude of the rainfall trend in the natural period was (Sen‘s slope) 

Q = 43.47 mm/year and it was followed by a negative magnitude of Q = -5.87 

mm/year in the impact period, mirroring the decreasing trend as well as rainfall.The  

TQ pattern computed in natural period Q = 10.69 mm/year and impact period was Q 

= -1.39 mm/year. The computed result of the decreasing pattern of rainfall reflected 

the decreasing nature of TQ. Thus it indicates the negative role of climate on stream 

flow in this basin.  In the S1NPQ the surface runoff was 125.06 mm and percolation to 

the shallow aquifer and recharge to the deep aquifer was 8.88 mm and 0.44 mm 

respectively. The the contribution of return flow to the stream flow was 8.35 mm 

(Fig.5.4). The runoff decreased in the impact period (S2IMPQ) accounted for 118.33 

mm and percolation to the shallow aquifer and recharge to deep aquifer accounted 

6.43 mm and 0.32 mm, with the contribution of return flow to the stream was 6.10 

mm (Fig. 5.5). The contribution of SURQ, LATQ, GWQ   is presenting the overall 

scenario of the streamflow pattern of the basin, that has been taken by computing the 

monthly average stream flow/ year (MASF/y) of TQ   scenario. Thus the scenarios of 

𝑆1𝑁𝑃𝑄, 𝑆2𝐼𝑃𝑄, S3IPCLQ presents the basic stream flow scenarios of the basin under 

different conditions of climatic variability and LULC dynamics over the 30-year 

study period. The impact of 𝐿𝑈𝐿𝐶𝐼𝑄  on streamflow, 59.47 mm indicating the 

positive role of LULC  on streamflow acceleration of the basin. On the other hand, 

the impact of climate change (CLIQ) is -69.69 mm, the negative value (-) of CLIQ 

indicating the role of climate on the stream flow pattern is negative, thus when 

LULC plays a positive role on the stream flow, at the same time the climatic 

phenomena playing negative influence on streamflow acceleration of the basin. This 

scenario of the climatic and LULC impact on streamflow  was also the same during 

the periods of 𝑆1𝑁𝑃𝑄, 𝑆2𝐼𝑃𝑄, thus the computed TDQ was  -10.19 mm which indicates 

a decrease in stream flow over the study period. Also the impact of LULCIQ and CLIQ 

values to be found at 59.47 mm and -69.66 mm, where the difference between 

LULCIQ and CLIQ is -10.19 mm mirroring the same difference of TDQ (Table 5.5). 
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Thus it is proved that the streamflow decreased by the rate of 10.19 mm where the 

negative (-) CLIQ assigned the responsibility of streamflow reduction is caused by the 

climate change on the basin, and the same is found in the step change of climate at 

the section of Chapter 2 section 2.4.4. & 2.2.5. The computed value of Eq 2,3,4 

revealed that climatic factors played a negative role in reducing streamflow of the 

basin at the rate of 10.19 mm/year with the same evidence has been proved in 

Chapter 2 Section 2.4.4. & 2.2.5 and Chapter 5 Table 5.5. 

Table 5.5: Impact assessment of Climate and LULC on runoff scenario 

Simulated and measured impact Values (mm/year) 

𝑆1𝑁𝑃𝑄 

 
137.85  

𝑆2𝐼𝑃𝑄 127.66 

𝑆3𝐼𝑃𝐶𝐿 68.19 

𝑇𝐷𝑄 -10.19 

𝐶𝐿𝐼𝑄 -69.66 

𝐿𝑈𝐿𝐶𝐼𝑄 59.47 

 

 

Fig. 5.4: Simulated SURQ of S1NPQ 
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Fig. 5.5: Simulated SURQ of S2IPQ 

 

Fig. 5.6: Simulated SURQ of S3IPCLQ 

 



169 

 

5.5 Concluding remarks 

In the natural period, TQ  was 137.85 mm and in the impact period, TQ  reduced and 

counted as  127.66 mm. There is a linear relation that has been found in rainfall 

pattern and TQ, with a decreasing trend of rainfall the streamflow pattern was also 

recorded. The surface runoff in the natural period was 125.06 mm and in the impact 

period, it was 118.33 mm. The simulated outcome due to the climatic interference 

revealed that with the constant LULC and the change in climatic factors, the surface 

runoff accounted for 65.35 mm. The total change of -10.19 mm of TQ indicates a 

decrease in stream flow over the study period. 
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Chapter 6: FINDINGS AND CONCLUSION  

6.1 Major findings 

6.1.1 Major findings of the first objective 

The Mayurakshi river basin is one of the important agricultural belts of eastern 

India. The work was conducted to understand the dynamic change of climate and 

LULC of the basin and its impact on the streamflow. In the last 30 years' study 

period, the maximum and minimum rainfall was 1717.37 mm,1188.65 mm, and the 

long-term average rainfall was recorded as 1420.67mm. The characteristics of 

rainfall in the 1st decade (1991-2000) varied, with a maximum of 1885.86 mm, a 

minimum of 1252.81 mm, and an average of 1511.96 ± 160.48 mm. In the 1st 

decade, a continuous upward trend of rainfall was recorded.  In the 2nd decade 

(2001-2010), the mean annual rainfall was 14346.22 ± 170.52 mm. In the 3rd decade 

(2011-2020), the basin received low rainfall (1380.41 mm) as compared to the 1st 

and 2nd decades. High rainfall concentrations were recorded in the northeastern part 

of the upper and middle basin areas in the whole study period. The basin experienced 

a decreasing trend of rainfall, the magnitude of the trend presented by Sen‘s slope 

shows the rainfall of the basin has a strong negative Sen‘s slope value which is -

10.37 mm/year, implying that there is a decreasing or downward trend in rainfall. In 

the 30 years, the rainfall pattern change point was detected in 2008 and was 

confirmed by the step change point detection. In the long term period, the average 

values of various climatic components were recorded as follows: temperature at 

32.23 ± 0.63 
0
C, wind speed at 1.9 ± 0.12 m/s, solar radiation at 90.40 ± 5.00 W/m², 

and humidity at 63.44 ± 5.48 %. During the study period, the basin experienced a 

maximum temperature of 38.80 ℃. From 1991 to 2020, temperature showed a 

slightly increasing trend, supported by a significant Kendall's P value of 0.05, with a 

normalized test (Z) value of 1.89 and a Kendall's tau of 0.24. The temperature has 

shown an increase by 0.03 
0
C during the study period. The temporal characteristics 

of the basin rainfall was found to be extremely wet during 16.67% of the years; 

moderately dry, slightly wet, and slightly dry in 16.67% of the sampled years, while 

6.67% of the years were recorded as extremely dry. The rainfall was forecasted 
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through ARIMA model which indicated an average rainfall condition of 1303.38 ± 

19.99 mm/year, with the very least variability (CV 1.53) and a decreasing trend for 

the next 10 years over the basin. 

6.1.2 Major findings of the second objective 

 In 1991 (1
st
 study period) agricultural land was covered by 49.15% and vegetation 

cover covered 20.45% area. During the second study period, vegetation expanded by 

3.10% (1150.09 km²), mainly due to the contribution from agricultural land and bare 

land 472.64 km² and 272.02 km², respectively. However, agricultural areas saw a 

4.30% decrease, shrinking by 2429.75 km², while bare land and built-up areas grew 

from 1325.68 km² to 1079.09 km² and from 42.82 km² to 182.67 km², respectively. 

In the third study period, there were increases in water bodies (183.02 km² or 

0.49%), vegetation (2368.95 km² or 2.80%), agricultural land (2469.73 km² or 

0.80%), and built-up areas (162.37 km² or 0.33%). During the fourth study period, 

the agricultural land expanded from 2,529.54 km² to 3,214.12 km². Within this 

agriculture land use and land cover category, vegetation contributed for 583.62 km², 

while bare land contributed 516.03 km². During the final study period (2014–2020), 

bare land continued to decline significantly, reflecting the trends observed in the 

fourth study period. In contrast, agricultural land increased by 6.36% (3988.62 km²). 

The LULC transition to agriculture class included 47.34 km² from water, 501.33 km² 

from vegetation, 451.41 km² from bare land, and 90.63 km² from built-up areas. 

Additionally, the transition to built-up areas included 1.64 km² from water, 17.82 km² 

from vegetation, 30.51 km² from bare land, and 29.43 km² from agricultural land. In 

2020 the dominant LULC of the basin was agricultural land covered by 70.60% of 

the area and the second dominant LULC class was vegetation, covered by 15.57% of 

the area. The built-up area experienced a continuously increasing trend, in 1991 it 

was 2.15% and in 2020 increased by 5.44%. The water class was covered by 5.28% 

in 1991 but has decreased by 3.20% of the area in 2020. The future LULC of 2032 

indicates that agriculture will remain the dominant land cover class, spanning 

3520.92 km
2
. It will be followed by vegetation class covering an area of 788.18 km

2
 

and built-up areas occupying 272.40 km
2
. The trend of the seasonal discharge pattern 
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was -0.762 mm/year indicating a gentle rate of decreasing pattern in monsoonal 

discharge. 

6.1.3 Major findings of the third objective 

The hydrological parameters determined for the simulation of runoff in the natural 

period were moisture condition II the curve number, base-flow recession constant, 

delay time for aquifer recharge, threshold water level in the shallow aquifer for base 

flow, soil evaporation compensation coefficient, and surface runoff lag coefficient. 

The values are 0.0275, 0.44375, 169.125, 0.5125, 0.98375, and 0.798437, 

respectively. The validated model for the natural period demonstrated satisfactory 

performance with R
2 

and NES values of 0.83 and 0.80, respectively. 

The values for various hydrological parameters in impact period were determined as 

follows: the curve number for natural period moisture condition II was 0.0275, the 

base-flow recession constant was 0.44375, the delay time for aquaria recharge was 

169.125, the threshold water level in the shallow aquifer for base-flow was 0.5125, 

the soil evaporation compensation coefficient was 0.98375, and the surface runoff 

lag coefficient was 0.798437. The validated model for the impact period showed 

satisfactory performance, with R² and NES values of 0.89 and 0.87, respectively.  

6.1.4 Major findings of the fourth objective 

The simulated TQ of S1NPQ was 137.85 mm. From 1996 to 2008 a greater amount of 

TQ was recorded. The simulated S2IPQ was 127.65 mm. During the period of S2IPQ, the 

TQ showed a downward trend. The impact of the decreasing trend of rainfall caused a 

decrease in TQ on the watershed was 68.19 mm. The computed TDQ between the 

natural period and the impact period was -10.19 mm/year which indicates a decrease 

in stream flow over the study period. The CLIQ of -69.66 indicated the negative 

impact of climate on streamflow. 
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6.2 Conclusion 

This study focused on a detailed examination of rainfall variability and LULC 

changes over time, aiming to investigate the runoff conditions in the basin and the 

influence of both climatic and LULC change impacts on basin runoff. The study 

identified a significant change in both precipitation patterns and LULC. The pattern 

of precipitation step change occurred in 2008 after the breaking point, when rainfall 

followed a decreasing trend (-12.21 mm/year). The runoff model employed in this 

analysis shed light on the fact that, based on the watershed‘s characteristics (slope, 

soil, aspect, elevation, climate, and LULC) and the role of relative control between 

climate and LULC on stream flow, climate played a negative influence on runoff 

conditions. The findings revealed that at the constant LULC, changes in climate will 

be caused by the runoff yield of 68.19 mm. Consequently, the runoff decreased by -

10.19 mm/year from the natural period to the interference period, exhibiting a 

negative relative contribution of climatic factors to the stream flow of the basin. The 

observed reduction in runoff is attributed to climate change, specifically the 

declining nature of precipitation. This comprehensive study on the interplay of 

climate and LULC holds significant value for effective basin management and 

environmental conservation. As the study area is one of the important agricultural 

belts of eastern India, it is very important to know the impact of climate and LULC 

on stream flow patterns, which is a very precious aspect of land management and 

sustainable water resource management. The local communities, planners, and 

government can leverage this knowledge to integrate sustainable practices into their 

planning efforts and ensure responsible basin management for the future. 

6.3 Recommendations  

         The study area suffers from the problems of environment-degrading livelihood, 

environment-degrading agricultural practices, loss of ecological balance, climate 

change, rampant forest cover loss, and loss of water bodies. Restoration of 

environmental balance and the sustainable development of "Life on Earth" is the 

main aim of Sustainable Development Goals (SDGs). The Central government and 

state government should work hand in hand in the study area to restore the SDGs 
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such as ecological imbalance and check the rampant deforestation in the study area 

while maintaining and encouraging a sustainable livelihood. "Ministry of 

Environment, Forest and Climate Change, (MoEFCC)" can provide some necessary 

solutions towards the problem through its schemes and policies like "National 

Afforestation Programme, (NAP)‖, ―Green India Mission (GIM)", " Compensatory 

Afforestation Fund Management and Planning Authority, (CAMPA)", and " National 

Mission for a Green India (GIM) ". Further "National Agroforestry Policy (NAP)" 

under the "Ministry of Agriculture and Farmers' Welfare, (MoAFW)", "Mahatma 

Gandhi National Rural Employment Guarantee Act, (MGNREGA)" under the 

"Mahatma Gandhi National Rural Employment Guarantee Act, (MGNREGA)", and 

―National Forest Policy, (NFP) 1988‖, under the ―Ministry of Food and Agriculture, 

(MFA)‖ are aimed to protect the environment. The above-mentioned policies could 

be implemented to protect the SDGs, like   Sustainable Development Goal 12 (SDG 

12), to ensure sustainable consumption and production patterns to achieve the 

sustainable management and efficient use of natural resources, Sustainable 

Development Goal 13 (SDG 13), to limit and adapt to climate change, to "Take 

urgent action to combat climate change and its impacts", and Sustainable 

Development Goal 15 (SDG 15), to ―Protect, restore and promote the sustainable use 

of terrestrial and forest ecosystems, combat desertification, and halt and reverse land 

degradation and halt biodiversity loss‖ of the study area which are at risk.  

              The study revealed that water bodies have been reduced from time to time. 

To restore the water bodies and sustainable agriculture towards attaining Sustainable 

Development Goal 2 (SDG 2, to "End hunger, achieve food security and improved 

nutrition and promote sustainable agriculture"),  the government should take steps 

toward the wetland management program through the ―Wetlands Management for 

Biodiversity and Climate Protection Project, (WMBCPP)‖ and "National Plan for 

Conservation of Aquatic Ecosystems (NPCA)" under the ―Ministry of Environment, 

Forest and Climate Change (MoEFCC)‖, " National Water Mission (NWM)", and " 

Atal Bhujal Yojana, (Atal Jal)", under the "Ministry of Jal Shakti", and "Pradhan 

Mantri Krishi Sinchai Yojana, (PMKSY)" under the "Ministry of Agriculture and 

Farmers' Welfare" these will be helpful towards attaining the respective goals if 
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implemented. The environmental awareness programs like environmental education 

and awareness, conservation of natural resources programs for the local people could 

play an important role in restoring sustainable management of water, soil, forests, 

and the environment. 

6.4 Strength and weakness  

The obtained daily gridded rainfall data has a high spatial resolution of 0.25 × 0.25 

degrees. The rainfall data from 1991 to 2020 for the study area was obtained from 

the source of India Meteorological Department (IMD) Pune was quite satisfactory. 

The LULC classification incorporated with Random Forest Machine Learning 

algorithm that achieved a satisfactory level of classification accuracy. The SWAT 

model is configured with important thirteen soil parameters of: Hydrological Soil 

Group, Maximum rooting depth, Depth of soil from the surface to the bottom of the 

layer, Moist bulk density, Availability of the water in the soil layer, Saturated 

hydraulic conductivity, Organic carbon content in the soil, Percentage of clay content 

in the soil, Percentage of silt content in the soil, Percentage of sand content in the 

soil, Coarse fragment content, Moist soil albedo, USLE equation soil erodibility. 

These are calculated by using various equations (Table 1, Chapter 4) to achieve a 

high accuracy level. The calibration and validation of the model achieved a 

satisfactory level on R
2 

(The validated model for the natural period demonstrated 

satisfactory performance with R
2 

and NES values of 0.83 and 0.80, respectively and 

the validated model for the impact period showed satisfactory performance, with R² 

and NES values of 0.89 and 0.87, respectively). Thus the SWAT model attempted a 

satisfactory level of strength towards the evaluation of climatic and LULC impact on 

streamflow. 

To get a better accuracy level in rainfall analysis higher resolution data is 

expected, the data used for weather parameters had a spatial resolution of 0.25 × 0.25 

degrees, where the rainfall analysis could be achieved at a micro level of precision 

with high-resolution data for all weather parameters like rainfall, temperature, 

humidity, solar radiation, and wind speed. The LULC is mapped by 30m × 30m 

spatial resolution. The centinal data provides 10m × 10m spatial resolution, it is a 
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satisfactory level of special resolution for LULC mapping and LULC change 

analysis. The centinal data is not available from 1991 and is also not available for 

every region. Where LULC change detection algorithm should be performed on the 

same spatial resolution. Due to the unavailability of centinal database, the LULC was 

mapped with 30m × 30m of spatial resolution. The soil input parameters are 

computed in 250m of spatial resolution where to achieve a greater accuracy level 

much more accuracy is expected.   
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1. Introduction 

    Climate change is currently a very important concern. It poses a threat to 

both bio and non-bio resources. Numerous changes in the environmental and 

socioeconomic fields are owed to climate change (Croitoru & Minea, 2014). The 

hydrological responses of the basin are directly related to climate and direct human 

intervention, like various misuses of water for anthropogenic causes, like 

industrialization, irrigation, domestic uses, and agriculture (Wang et al., 2021). 

 The stream flow is impacted by climate change (Su et al., 2016). The primary 

cause of climate change is an increase in temperature, which is closely related to the 

cycle of water resources (Bronstert et al., 2002). The continuous accumulation of 

greenhouse gases is expected to change regional temperatures and precipitation, 

which have a direct impact on water resources (Nash et al., 1991). The functional 

relationship among the variables that directly or indirectly influence the runoff was 

paid attention to by the researchers in the 1970s and 1980s. Thereupon, runoff 

estimation and future prediction based on the mathematical model became a prime 

focus for assessing rainfall-runoff relations and water demand for future uses 

(Zealand et al., 1999). At present, researchers around the globe have focused on 

mathematical models to estimate the human activity and climate change impact on 

runoff change (Cao et al., 2015; Kan et al., 2015; Li et al., 2015). At the beginning of 

the 20th century, runoff response was studied mostly based on geophysical 

conditions, leading to the development of the paired catchment concept (Langbein, 

1949). 

              Many models and climatic change projections have been developed by 

scientists for watershed management and future climatic prediction with hydrological 

responses (Jung et al., 2012; Pourmokhtarian et al., 2012; Boni et al., 2013; Biswas 

et al., 2019). Various studies have been conducted on modeling scenarios that 

heavily rely on streamflow regimes while estimating the changes in hydrological 

response on both local and global scales (Döll and Zhang, 2010; Fung et al., 2011). 

The worsening effect of climate change and anthropogenic activity has increased a 

world-wide water crisis that has been focused on in global hydrological research 



(IPCC, 2007; Kumar et al., 2020). According to the Fourth Assessment Report of the 

Intergovernmental Panel on Climate Change (IPCC), the intensity and frequency of 

precipitation and temperature variations will rise due to climate change and 

anthropogenic impacts (Parry et al., 2007). The regional and worldwide distribution 

of water resources, both spatially and temporally, is strongly influenced by climate 

change and changes in land cover spurred by human activity in the 20th century. 

(Scanlon et al., 2007; Solomon et al., 2007; Ling et al., 2011). Some of the studies 

stated a positive correlation between temperature and stream flow (Nijssen et al., 

2001; Arnell, 2003; Wang et al., 2011), while on the contrary, high temperatures 

enhance the evapotranspiration of plants, thereby reducing runoff (Frederick and 

Major, 1997), whereas some studies stated that climate change decreased streamflow 

(Yilmaz and Imteaz, 2011; Chang et al., 2014). The change in runoff (either increase 

or decrease) consequently influences sediment yield and its temporal-spatial 

distribution (Zhang and Wang, 2007). 

It is widely recognized that one of the key factors that will be affected by 

climate change is the availability of water. The basic concepts of water resource 

planning encompass stream flow and hydrological process analysis. This basin is an 

important agro-based area that depends on irrigation for agricultural practice. Thus, 

the investigation in the present work has an immense bearing on society. For the sake 

of future management of runoff conditions, the study of the intensity and magnitude 

of climate change has greater importance to decision-makers (Chang et al., 2014). 

Climate change impact on runoff and discharge is an important study domain; thus, a 

proper review of this topic can formulate sustainable knowledge to proceed with 

further research interest in the ‗climate change impact in stream-flow domain‘. 

2. Statement of Research Problem 

  This study is framed to assess the impact of climatic variability and land use 

land (LULC) cover dynamics on the alteration of runoff patterns in the Mayurakshi 

river basin located in the eastern Indian monsoonal tropical climate. The purpose of 

this research is to evaluate the complex interaction of climate change and LULC 

change patterns on the runoff of the basin. The upper portion of the basin is the 



extended part of the Chotonagpur plateau, while the lower part of the basin is a plain 

area with agricultural practices. A lot of changes in climatic conditions and LULC 

have taken place in the last couple of decades. The diversity of topography, its 

climatic variability, and LULC dynamics have extended to the complex nature of the 

basin, making it ideal for runoff-related studies of the basin. Many studies have 

reported that the runoff response varies from region to region, including the 

conditions of soil, geology, lithology, climate, human interventions, and LULC 

patterns (Sun et al., 2004; Wang et al., 2013; Mitra et al., 2021). Few studies were 

conducted in the present study area based on drainage basin morphometry and flood 

analysis (Islam et al., 2020), hydro-morphological characteristics, and land use 

modification (Mukhopadhyay et al., 2013). Thus, the study of water resource 

management and the effect of climate change and LULC dynamics on the runoff is 

an unknown aspect of the Mayurakshi river basin. Thus, the present study is a 

plausible attempt to fill this research gap.   

3. Study Area 

The Mayurakshi River system is one of the most important river systems in 

eastern India. The river originates from Trikut Hill in the Chota Nagpur plateau of 

Jharkhand state. The basin is located between the coordinates of 23° 63′ 12′′ to 24° 

51′ 3′′ N latitude and 86° 84′ 38′′ to 88° 16′ 12′′ E longitude, spreading across the 

states of Jharkhand and West Bengal, covering an area of 5004.99 km
2 

(Fig. 1.). 

Geologically, the whole area of the upper part of the basin dates back to the 

Proterozoic eon formation of undivided Precambrian rock. The middle catchment of 

the basin is most dominantly deposited by laterite and lateritic soil, and the lower 

catchment of the basin is mostly covered by young and old alluvial soil. The 

formation of the lower basin can be dated back to the quartanery eon, while the 

middle portion of the basin is dominated by jurassic cretaceous formation, sparsely 

dated back to the late carboniferous Permian eon. 

The Masanjor Dam, which was commissioned in 1955, is situated in the Mayurakshi 

river basin in the Dumka district of Jharkhand. It is 2170 feet in length and stands 

155 feet high from its base, with an overflow section extending 225.60 meters. The 



dam has a storage capacity of 617,000,000 m
3
 and a discharge capacity of 4.446 

m
3
/s. Tilpara Barrage downstream, 29.5 km away from the Masanjor Dam, was 

commissioned in 1949 on the Mayurakshi River. The Tilpara Barrage was 

constructed for irrigation and other agricultural activities. 

 

Fig. 1. Study area 

4. Objectives: 

      1.   To estimate the rainfall trend of the Mayurakshi river basin. 

2. To assess the land use and land cover dynamics of the basin. 

3. To evaluate seasonal streamflow patterns and simulate the runoff pattern of the 

basin. 

4. To assess the role of climate change and land use land cover change on 

streamflow. 

5. Research Questions 

The research work has been conducted to address the following questions in 

reference to the study area: 

(i) Is there any change in rainfall during the study period? 



(ii) What types of land use and land cover changes occurred in the study 

area? 

(iii) What is the impact of climate, land use, and land cover change on the 

runoff of the basin? 

 

6. Methods  

The research objectives were solved one by one through a series of 

methodological steps. Before the rainfall trend and changepoint analysis, the 

normality of the data was assessed by the Kolmogorov-Smirnov test. The data also 

underwent autocorrelation tests to confirm that the time-series data has a serial 

dependency or that the data is independent. Due to the autocorrelated data, the 

modified Mann-Kendall test (mMK) was applied for the trend analysis, and the 

magnitude of the trend was measured by Sen‘s slope. The change point of the rainfall 

time series has been evaluated by the statistics of Pettitt, Buishand U Statistic, and 

Standard Normal Homogeneity Test. The rainfall variability of the study area is 

analyzed by the Rainfall Seasonality Index (RSI), while the drought condition over 

the study period is measured by the Rainfall Anomaly Index (RAI). The 

Autoregressive Integrated Moving Average (ARIMA) model was used based on 30 

years of time-sequence rainfall data to predict the future rainfall scenario of the 

basin. 

 The land use and land cover (LULC) dynamics of the basin are analyzed by 

the sequential steps of image classification, change detection, and future prediction. 

The satellite images were classified by the machine learning algorithm Random 

Forest (RF), and the change in LULC was assessed by the transition matrix. In order 

to predict the future scenario of LULC, the popular Cellular Automata-Markov 

model (CA-Markov) was employed. The runoff of the basin is simulated in the Soil 

and Water Assessment Tool (SWAT), and the model is calibrated and validated, 

where the calibration and validation are accepted based on the R
2
 and Nash-Sutcliffe 

simulation efficiency (NSE). The climatic and LULC impacts on the runoff were 

evaluated by developing the models 𝑆2𝐼𝑃𝑄  of the simulated average runoff 

contribution of the basin during the impact period, 𝑆1𝑁𝑃𝑄  the simulated average 



runoff contribution of the basin during the natural period, and 𝑆3𝐼𝑃𝐶𝐿 the runoff 

simulation with reference to climate change. In the model (𝑆3𝐼𝑃𝐶𝐿𝑄), the LULC is 

constant and referred to as the natural period (𝑆1𝑁𝑃𝑄), and the climatic components 

are referred to as the impact period ( 𝑆2𝐼𝑃𝑄). 

7. Data Sources 

The rainfall data was collected from the IMD Puna 

(https://www.imdpune.gov.in/cmpg/Griddata/Rainfall_25_Bin.html). The spatial 

resolution of this daily gridded rainfall data is 0.25 × 0.25 degrees, and the unit of 

rain is a millimeter (mm). The data was collected from 1901 to 2020. For image 

classification, the satellite data was collected from the United States Geological 

Survey (USGS) portal (http://earthexploration.usgs.gov/).  The LULC for the years 

1991, 1996, 2002, and 2008 was done using the collected Landsat 5 images and 

Thematic Mapper (TM). For the years 2014 and 2020, Landsat 8 and Operational 

Land Imager (OLI) were used. To run the SWAT model, weather datasets, including 

temperature, humidity, wind speed, and solar radiation, were acquired from NASA 

Power Access MERRA-2 data (https://power.larc.nasa.gov/data-access-viewer/). The 

observed discharge data were obtained from the Ministry of Jal Shakti, Central Water 

Commission Executive Engineer, Damodar Division, CWC, Asansol, under the 

Government of India. 

8.  Future research 

The work can lead researchers in the areas of climatology, agricultural 

science, and regional planning to undertake further studies on regional climate 

changes and their effect on agriculture, regional economies, ecosystems, and 

hydropower production. Further, the changes in LULC can prove to be food for 

future research in the fields of regional planning and environmental conservation for 

sustainable policy changes.  

 

 

https://power.larc.nasa.gov/data-access-viewer/


9. Major findings 

9.1. Major findings of the first objective 

The Mayurakshi river basin is one of the important agricultural belts of eastern 

India. The work was conducted to understand the dynamic change of climate and 

LULC of the basin and its impact on the streamflow. In the last 30 years' study 

period, the maximum and minimum rainfall were 1717.37 mm, 1188.65 mm, and the 

long-term average rainfall was recorded as 1420.67 mm. The characteristics of 

rainfall in the 1st decade (1991-2000) varied, with a maximum of 1885.86 mm, a 

minimum of 1252.81 mm, and an average of 1511.96 ± 160.48 mm. In the 1st 

decade, a continuous upward trend of rainfall was recorded.  In the 2nd decade 

(2001-2010), the mean annual rainfall was 14346.22 ± 170.52 mm. In the 3rd decade 

(2011-2020), the basin received low rainfall (1380.41 mm) as compared to the 1st 

and 2nd decades. High rainfall concentrations were recorded in the northeastern part 

of the upper and middle basin areas in the whole study period. The basin experienced 

a decreasing trend of rainfall, the magnitude of the trend presented by Sen‘s slope 

shows the rainfall of the basin has a strong negative Sen‘s slope value, which is -

10.37 mm/year, implies that there is a decreasing or downward trend in rainfall. In 

the 30 years, the rainfall pattern change point was detected in 2008 and was 

confirmed by the step change point detection. In the long term period, the average 

values of various climatic components were recorded as follows: temperature at 

32.23 ± 0.63
0
C, wind speed at 1.9 ± 0.12 m/s, solar radiation at 90.40 ± 5.00 W/m², 

and humidity at 63.44 ± 5.48 %. During the study period, the basin experienced a 

maximum temperature of 38.80
0
C. From 1991 to 2020, temperature showed a 

slightly increasing trend, supported by a significant Kendall's P value of 0.05, with a 

normalized test (Z) value of 1.89 and a Kendall's tau of 0.24. The temperature has 

shown an increase by 0.03 
0
C during the study period. The temporal characteristics 

of the basin rainfall were found to be extremely wet during 16.67% of the years; 

moderately dry, slightly wet, and slightly dry in 16.67% of the sampled years, while 

6.67% of the years were recorded as extremely dry. The rainfall was forecasted 

through ARIMA model which indicated an average rainfall condition of 1303.38 ± 



19.99 mm/year, with the very least variability (CV 1.53) and a decreasing trend for 

the next 10 years over the basin. 

9.2. Major findings of the second objective 

 In 1991 (1
st
 study period), agricultural land was covered by 49.15% and vegetation 

cover covered 20.45% area. During the second study period, vegetation expanded by 

3.10% (1150.09 km²), mainly due to the contribution from agricultural land and bare 

land 472.64 km² and 272.02 km², respectively. However, agricultural areas saw a 

4.30% decrease, shrinking by 2429.75 km², while bare land and built-up areas grew 

from 1325.68 km² to 1079.09 km² and from 42.82 km² to 182.67 km², respectively. 

In the third study period, there were increases in water bodies (183.02 km² or 

0.49%), vegetation (2368.95 km² or 2.80%), agricultural land (2469.73 km² or 

0.80%), and built-up areas (162.37 km² or 0.33%). During the fourth study period, 

the agricultural land expanded from 2,529.54 km² to 3,214.12 km². Within this 

agriculture land use and land cover category, vegetation contributed 583.62 km², 

while bare land contributed 516.03 km². During the final study period (2014–2020), 

bare land continued to decline significantly, reflecting the trends observed in the 

fourth study period. In contrast, agricultural land increased by 6.36% (3988.62 km²). 

The LULC transition to agriculture class included 47.34 km² from water, 501.33 km² 

from vegetation, 451.41 km² from bare land, and 90.63 km² from built-up areas. 

Additionally, the transition to built-up areas included 1.64 km² from water, 17.82 km² 

from vegetation, 30.51 km² from bare land, and 29.43 km² from agricultural land. In 

2020 the dominant LULC of the basin was agricultural land, covered by 70.60% of 

the area and the second dominant LULC class was vegetation, covered by 15.57% of 

the area. The built-up area experienced a continuously increasing trend, in 1991 it 

was 2.15% and in 2020 it increased by 5.44%. The water class was covered by 

5.28% in 1991 but has decreased by 3.20% of the area in 2020. The future LULC of 

2032 indicates that agriculture will remain the dominant land cover class, spanning 

3520.92 km
2
. It will be followed by vegetation class covering an area of 788.18 km

2
 

and built-up areas occupying 272.40 km
2
. The trend of the seasonal discharge pattern 

was -0.762 mm/year, indicating a gentle rate of decreasing pattern in monsoonal 

discharge. 



9.3. Major findings of the third objective 

The hydrological parameters determined for the simulation of runoff in the natural 

period were moisture condition II the curve number, base-flow recession constant, 

delay time for aquifer recharge, threshold water level in the shallow aquifer for base 

flow, soil evaporation compensation coefficient, and surface runoff lag coefficient. 

The values are 0.0275, 0.44375, 169.125, 0.5125, 0.98375, and 0.798437, 

respectively. The validated model for the natural period demonstrated satisfactory 

performance with R
2 

and NES values of 0.83 and 0.80, respectively. 

The values for various hydrological parameters in the impact period were determined 

as follows: the curve number for natural period moisture condition II was 0.0275, the 

base-flow recession constant was 0.44375, the delay time for aquaria recharge was 

169.125, the threshold water level in the shallow aquifer for base-flow was 0.5125, 

the soil evaporation compensation coefficient was 0.98375, and the surface runoff 

lag coefficient was 0.798437. The validated model for the impact period showed 

satisfactory performance, with R² and NES values of 0.89 and 0.87, respectively.  

9.4. Major findings of the fourth objective 

The simulated TQ of S1NPQ was 137.85 mm. From 1996 to 2008 a greater amount of 

TQ was recorded. The simulated S2IPQ was 127.65 mm. During the period of S2IPQ, the 

TQ showed a downward trend. The impact of the decreasing trend of rainfall caused a 

decrease in TQ on the watershed was 68.19 mm. The computed TDQ between the 

natural period and the impact period was -10.19 mm/year which indicates a decrease 

in stream flow over the study period. The CLIQ of -69.66 indicated the negative 

impact of climate on streamflow. 

10. Recommendations  

         The study area suffers from the problems of environment-degrading livelihood, 

environment-degrading agricultural practices, loss of ecological balance, climate 

change, rampant forest cover loss, and loss of water bodies. Restoration of 

environmental balance and the sustainable development of "Life on Earth" is the 

main aim of Sustainable Development Goals (SDGs). The Central government and 



state government should work hand in hand in the study area to restore the SDGs 

such as ecological imbalance and check the rampant deforestation in the study area 

while maintaining and encouraging a sustainable livelihood. "Ministry of 

Environment, Forest and Climate Change, (MoEFCC)" can provide some necessary 

solutions towards the problem through its schemes and policies like "National 

Afforestation Programme, (NAP)‖, ―Green India Mission (GIM)", " Compensatory 

Afforestation Fund Management and Planning Authority, (CAMPA)", and " National 

Mission for a Green India (GIM) ". Further "National Agroforestry Policy (NAP)" 

under the "Ministry of Agriculture and Farmers' Welfare, (MoAFW)", "Mahatma 

Gandhi National Rural Employment Guarantee Act, (MGNREGA)" under the 

"Mahatma Gandhi National Rural Employment Guarantee Act, (MGNREGA)", and 

―National Forest Policy, (NFP) 1988‖, under the ―Ministry of Food and Agriculture, 

(MFA)‖ are aimed to protect the environment. The above-mentioned policies could 

be implemented to protect the SDGs, like   Sustainable Development Goal 12 (SDG 

12), to ensure sustainable consumption and production patterns to achieve the 

sustainable management and efficient use of natural resources, Sustainable 

Development Goal 13 (SDG 13), to limit and adapt to climate change, to "Take 

urgent action to combat climate change and its impacts", and Sustainable 

Development Goal 15 (SDG 15), to ―Protect, restore and promote the sustainable use 

of terrestrial and forest ecosystems, combat desertification, and halt and reverse land 

degradation and halt biodiversity loss‖ of the study area which are at risk.  

11. Conclusion 

This study focused on a detailed examination of rainfall variability and LULC 

changes over time, aiming to investigate the runoff conditions in the basin and the 

influence of both climate and LULC change impacts on basin runoff. The study 

identified a significant change in both precipitation patterns and LULC. The pattern 

of precipitation step change occurred in 2008 after the breaking point, when rainfall 

followed a decreasing trend (-12.21 mm/year). The runoff model employed in this 

analysis shed light on the fact that, based on the watershed‘s characteristics (slope, 

soil, aspect, elevation, climate, and LULC) and the role of relative control between 

climate and LULC on stream flow, climate played a negative influence on runoff 



conditions. The findings revealed that at the constant LULC, changes in climate will 

be caused by the runoff yield of 68.19 mm. Consequently, the runoff decreased by -

10.19 mm/year from the natural period to the interference period, exhibiting a 

negative relative contribution of climatic factors to the stream flow of the basin. The 

observed reduction in runoff is attributed to climate change, specifically the 

declining nature of precipitation. This comprehensive study on the interplay of 

climate and LULC holds significant value for effective basin management and 

environmental conservation. As the study area is one of the important agricultural 

belts of eastern India, it is very important to know the impact of climate and LULC 

on stream flow patterns, which is a very precious aspect of land management and 

sustainable water resource management. The local communities, planners, and 

government can leverage this knowledge to integrate sustainable practices into their 

planning efforts and ensure responsible basin management for the future. 

              The study revealed that water bodies have been reduced from time to time. 

To restore the water bodies and sustainable agriculture towards attaining Sustainable 

Development Goal 2 (SDG 2, to "End hunger, achieve food security and improved 

nutrition and promote sustainable agriculture"),  the government should take steps 

toward the wetland management program through the ―Wetlands Management for 

Biodiversity and Climate Protection Project, (WMBCPP)‖ and "National Plan for 

Conservation of Aquatic Ecosystems (NPCA)" under the ―Ministry of Environment, 

Forest and Climate Change (MoEFCC)‖, " National Water Mission (NWM)", and " 

Atal Bhujal Yojana, (Atal Jal)", under the "Ministry of Jal Shakti", and "Pradhan 

Mantri Krishi Sinchai Yojana, (PMKSY)" under the "Ministry of Agriculture and 

Farmers' Welfare" these will be helpful towards attaining the respective goals if 

implemented. The environmental awareness programs like environmental education 

and awareness, conservation of natural resources programs for the local people could 

play an important role in restoring sustainable management of water, soil, forests, 

and the environment. 
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