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Study of the Optical Properties of Solids by using Full Potential
Linear Augmented Plane Wave (FP-LAPW) method

INTRODUCTION

One of the most powerful tools for studying the properties of solids is the

measurement and the analysis of their optical properties. In this work some of the

results required for such an analysis is presented. It is now almost twenty-five years

since doped poly-acetylene has been shown to reach electrical conductivities

comparable to conventional metals (Chiang et al.1977). These findings marked the

birth of a whole new field of research focusing on the electronic and optical properties

of conjugated polymers. These novel materials combine the mechanical flexibility, the

low molecular weight, and the low cost processibility which is typical for ‘plastic’

materials with the electro-optical properties known from inorganic semiconductors

and metals. Moreover they are low dimensional systems, which opens new

possibilities for applications, and which is also interesting from a purely scientific

point of view. Optical properties of solids are a major topic, both, in basic research as

well as for industrial applications. While for the former origin and nature of different

excitation processes is of fundamental interest, the latter can make use of them in

many opto-electronic devices .These wide interests require experiment and theory to

go hand in hand, and thus asks for reliable theoretical concepts.

SURVEY OF LITERATURE

Applied scientific research depends on the existence of accurate theoretical

models. In particular, highly reliable ab-initio methods are indispensable for designing

novel materials as well as for a detailed understanding of their properties. The

development of such theories describing the electronic structure of atoms, molecules,

and solids has been one of the success stories of physics in the 20th century. Among

these, density functional theory (DFT) ( Hohenberg 1964, Kohn 1964, Sham 1966,

Jones 1989, Gunnarsson 1989) has proven to yield ground state properties for a vast



number of systems in a very precise manner. Indeed, DFT forms the basis of all

electronic ground state calculations carried out in the present work.

Excited states, on the other hand, are not contained within the framework of DFT, and

are –generally speaking –much more demanding. However, it is these properties that

are probed in spectroscopic methods, and that are utilized for technological

applications. Therefore, it is necessary to develop and test ab-initio techniques that are

capable of predicting excited state quantities equally reliable as, for instance, DFT

does for the ground state properties. In this work, we are mainly interested in optical

properties, thus we are concerned with the interaction of external electro-magnetic

with electron-hole excitations in the system. This can be treated rigorously within

many-body perturbation theory, express in terms of the equation of motion for the

electron-hole two – particle Green’s function, the so called Bethe-Salpeter equation

(BSE) (Sham 1966, Hanke 1975, Strinati 1982). The interaction between the electron

and the hole is characterized by an effective interaction kernel, which has to be

approximated in an appropriate manner. To zeroth order, the electron and the hole can

be treated as independent particles, which results in the random phase approximation

(RPA) for the optical properties. However, solutions of the BSE in an ab-initio

framework, appearing in the literature in the past few years, have shown that electron-

hole interactions are indeed important in order to correctly describe quantitative

(oscillator strengths) as well as qualitative (bound excitons) features of optical spectra

of semi-conductors and insulators (Albrecht 1997, Benedict 1998, Rohlfing 1998,

Van der Horst 1999, Arnaud 2001).

SCOPE OF STUDY

The development of new materials and the understanding of their physical properties

is at the heart of technological as well as scientific progress. Optical properties of

solids are a major topic, both, in basic research as well as for industrial applications.

Optical properties of solids are a major topic, both, in basic research as well as for

industrial applications. . To date, the range of applications covers light emitting

diodes [Tang (1987), Burroughes (1990), Braun (1991), Grem (1992), Friend (1999)]

photo diodes and photovoltaic cells ( Sariciftci 1992,  Halls 1995) and also fully

organic transistors (Garnier 1990,  Srivastava 1994, Dodalpur 1995). Recently,

outstanding electronic and optical properties have been studied in molecular crystals



consisting of conjugated molecules. Devices based on polyacene single crystals are

efficient photovoltaic cells (Schon, 2000), ambipolar field effect transistors (Berg et

al. 2000), show electrically driven laser emission (Schon et al. 2000), and exhibit the

integral as well as the fractional Quantum Hall effect (Schon et al. 2000).Lead salts

had been widely used as optical detectors, and hence these semiconductors have

technological importance. We intend to study the optical properties of these systems

by using the latest method called FP-LAPW. Optical properties like variation of ε1, ε2,

absorption coefficients, refractive indices etc. against photon energies, will be

calculated with the help of standard computer code named as WIEN2K. The primary

scope of our study will be hence to update the existing data on optical and band

structure properties.The reason being that we will be using the DFT approach as

proposed by Hohenberg and Kohn (1964).

OBJECTIVE

The purpose of this work is therefore (i) to develop the necessary tools in

order to solve the BSE for crystalline systems, and (ii) to apply these techniques to

semiconductor systems like PbS, PbTe, and PbSe. The first point again consists of

two steps:

All wave functions entering the calculations are commonly expressed in terms

of given basis functions. In the present work, we choose linearized augmented plane

waves (LAPW). They form the basis of the full- potential LAPW method (Andersen

1975), which is one of the most accurate and successful band structure methods

available.  The BSE is adopted for this basis set by deriving the appropriate formulae,

and a computer program is implemented which is performing the required

computational steps. We have chosen the full potential linearized augmented plane

wave (FP-LAPW) method where no shape approximation for potential is made. We

have developed the formalism of treating optical properties within the random phase

approximation (RPA) taking into account interband as well as intraband contributions.

In terms of applications we focus on metallic cases for the following reasons. (1)

Metals don’t suffer from the band gap problem; (2) metals are quite well described by

the LDA, and (3) the RPA is justified due to the effective screening.



THEORY

(A) Optical response:

The optical properties of solids are given by the response of the electron

system to a time - dependent electromagnetic perturbation caused by the incoming

light. As such, the calculation of these properties is reduced to the calculation of a

response function that is the complex dielectric tensor or equivalently the

polarizability. An exact expression for it is of course not known and we have to resort

to the usual technique of many- body perturbation theory to derive the

approximations. The first of these is the RPA.

A particular case of the general expression for the dielectric function in the

RPA is the well known Lindhard formula (Ashcroft and Mermin 1976),

0 0( ) ( )2 ( )( , ) 1 k q k

kc k q k

f fV qq
 
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q
 is the Coulomb interaction, c the unit cell volume, 0f the

Fermi distribution function, and k the single particle energy. The factor 2 comes from

the summation over the spin.

(B) Symmetry:

The dielectric tensor is symmetric with up to six independent components

according to the symmetry of the crystal. Therefore the general expression for the

imaginary part of  is:
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(C) Kramers- Kronig relations and optical constants:

From the imaginary part of the dielectric tensor component Im ij the

corresponding real part is obtained by

' '
'

'2 2
0

Im ( )2Re ij
ij ij d

  
  

  



  


Given the real part, the inverse transformation has to be used.

With the knowledge of the complex dielectric tensor components all other

frequency – dependent optical constants can be obtained.

(D) Sumrules:

There are three sumrules which obtain information about the absorption

process:
'
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The first two give an effective number of electrons contributing to the absorption

process as a function of energy. Typically, in the low energy region the contribution

to the intraband spectrum should sum up to the number of the outermost valence

electrons.



The LAPW basis set:

In band structure calculations based on density-functional theory (Hohenberg

and Kohn 1964) the single particle electronic states { ( )nk r } and energies { nk } are

desribed by the solutions of the Kohn-Sham (KS) equation [ Kohn, Sham 1965]

2
2 ( ) ( ) ( )

2 eff nk nk nkV r r r
m


 
      
 

 ………….. (1)

With the effective potential { ( )effV r } being the sum of the bare Coulomb potential of

the atomic nuclei { ( )lattV r }, The Hatree potential { ( )HV r } and the exchange

correlation potential { ( )xcV r }. In practical calculations, equation (1) is solved via the

Rayleigh-Ritz variational principle.

METHODOLOGY

We will give a short account of the full potential LAPW method and discuss

the implementation of the solution to the BSE in terms of the LAPW method. The

actual formulae required for the coding are derived and numerical test are presented.

For this purpose, we intend to use the computer programme called WIEN2K code

developed by Peter et al. Full fledged standard code called WIEN2K code for the

calculations of optical properties systems under studies. The code consists of several

FORTRAN programmes for doing calculations of density of states (DOS), band

structure and optical properties etc. This code runs on LINUX operating system and is

compatible with the Lahey Fujitsu FORTRAN 95 compiler.

The code had been used by several authors successfully. For example, Daoudi

et al (2007) had used it for the calculation of ground state properties of nitride

compounds. Optical properties of rare earth compounds like hexaborides (sing et al.

2007), zinc choleozenides (Reshak et al. 2007), sesquioxides (Singh et al. 2006), etc.

had been also studied successfully by using this particular.



ORGANISATION

Tentative arrangement of the thesis in the form of chapters will be as follows:

Chapter 1: Introduction.

Chapter 2: Theoretical background of Random Phase Approximation and Linear

Augmented Plane Wave method.

Chapter 3: Study of Optical response within the LAPW method and Band

structure calculations.

Chapter 4: Conclusions followed by references.
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Chapter 1

Introduction

The development of new materials and the understanding of their physical prop-

erties is at the heart of technological as well as scientific progress. The study of semi-

conductors opens new possibilities for applications which make it interesting from a

purely scientific point of view. The range of applications covers infrared detectors, in

light emitting devices, as infrared lasers in fibre optics (Agarwal et al.,1993),  as

thermoelectric materials, in solar energy panels, and in window coatings and in quantum

dots as monolayer (Justo et al.,2010; Hicks et al., 1996; Chatterjee et al.,1993; Nair et

al., 1990; Bozin et al.,2010). Ferroelectric substance has wide applications in non-linear

optics, ceramics, micro wave and sensor industries (Tagantsev et al.,2003; Kell,1963) as

well as in microelectronics.

Applied scientific research depends on the existence of accurate theoretical mod-

els. In particular, highly reliable ab-initio methods are in-dispensable for designing novel

materials as well as for a detailed understanding of their properties. The development of

such theories describing the electronic structure of atoms, molecules, and solids has been

one of the success stories of physics in the 20th century. Among these, density functional

theory (DFT) of Hohenberg and Kohn (1964), Kohn et al., (1965) and others (Jones et

al., 1989; Kohn, 1999) have proven to yield ground state properties for a vast number of

systems in a very precise manner. DFT forms the basis of all electronic ground state

calculations carried out in the present work.

In this work, we are mainly interested in optical properties, thus we are concerned

with the interaction of external electro-magnetic waves with electron-hole excitations in
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the system. We will limit our calculations to weak external perturbations which can be

treated within the linear response regime. This can be treated rigorously within many-

body perturbation theory, expressed in terms of the equation of motion for the electron-

hole two-particle Green's function, the so-called Bethe-Salpeter equation (BSE) (Sham et

al., (1966); Hanke et al., (1975), (1979), (1980); Hanke, (1975); Strinati, 1982,1984). To

zeroth order, the electron and the hole can be treated as independent particles, which

results in the random phase approximation (RPA) for the optical properties. However,

solutions of the BSE in an ab-initio framework, appearing in the literature in the past few

years, have shown that electron-hole interactions are indeed important in order to

correctly describe quantitative (oscillator strengths) as well as qualitative (bound

excitons) features of optical spectra of semi-conductors and insulators (Albrecht et

al.,1997,1998 ; Benedict et al.,(1998), Rohlfing et al.,1998 ,1999; Van der Horst et

al.,1999; Arnaud et al., 2001).

In the present work, we choose full potential linearized augmented plane waves

(FP-LAPW) method (Hashemifar et al., 2005; Hedin et al., 1971), which is one of the

most accurate and successful band structure methods available. We will apply this

method to semiconductors and ferroelectric materials. All wave-functions entering the

calculations are commonly expressed in terms of given basis functions. We have used a

computer program WIEN2k code of Blaha et al., (2008) which is an implementation of the

full-potential LAPW method, for all computations presented in this thesis. The

calculations focus mainly on the influence of inter-molecular interactions on the

electronic and optical properties of semiconductors.

This work is organized as follows. In Chapter 2 we give a short description of

density functional theory (DFT) which provides the framework for treating ground state
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properties of systems of interacting electrons. We will discuss the basic theorems and

equations that form the foundations of DFT (Hohenberg et al., 1964; Kohn et al., 1965),

and the relevant approximations entering the theory. In chapter 3 we will give a detailed

method for the full potential linearized augmented plane waves (FP-LAPW) method. In

chapter 4, we will discuss a methodology for optical study starting from Maxwell's

equations in the presence of matter and we will derive the macroscopic dielectric func-

tion (DF) in the random phase approximation by using the self-consistent field method

following the presentation of Adler (1962) and Wiser (1963). Chapter 4 contains the

main outcome of the theoretical developments attained within this work.

In Chapter 5, the density of states, electronic band structures and optical

properties for systems like BeX, PbX, ZnX, (where X= S, Se, Te) and ferroelectric

material SbTaO4 will be presented. In chapter 6, we will present the conclusion of the

thesis, which will be followed by references and appendices.
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Chapter 2

Density Functional Theory

Since its introduction in the 1960s (Hohenberg et al.,1964; Kohn et al.,1965)

density functional theory (DFT) has evolved into a powerful tool that is widely used in

condensed matter theory and computational materials science for the calculation of

electronic, magnetic and structural properties of solids. The method has been remarkably

successful in predicting, reproducing and explaining a wide variety of materials

phenomena such as predictions of magnetic, electronic properties and understanding

various physical properties of the systems. Thomas and Fermi proposed a scheme based

on the density of electrons to discuss the properties of a system of interacting electrons,

such as a molecule or a solid. They assumed that the motions of the electrons are un-

correlated, and the kinetic energy can be described by a local approximation based on the

free electron result. Although the Thomas-Fermi approximation has only limited success

in treating real materials, it is the basis of the density functional formalism. The

promising aspect of using the electron density instead of the many-particle wave function

as basic variable is of course, that it is much easier to obtain than the precise details of

the wave function ψ, and also the scaling with system size is much better for methods

based on the density of the system. The equations that govern interactions between the

electrons and nuclei of solids have been well known for decades, but finding their exact

solution for a complex solid is beyond the limits of current computing power. However,

using a series of approximations, the electronic structure and the total energy of most

materials can be calculated quite accurately. A wide variety of first-principles methods

are used to determine the behavior of materials. Materials have different types of
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bonding interactions and therefore some approximations are better suited than others for

a particular system of interest.

Density functional theory (DFT) enables the description of the ground state

properties of a real system in terms of its ground state electronic charge density n(r), a

parameter simply depending on a single spatial coordinate r, instead of the wave

functions which depend on all the electronic coordinates ri. In this formalism, all the

physical quantities related to the ground state, are expressed as functional of the charge

density, F[n(r)]. As was shown by Hohenberg and Kohn (1964), all ground state

properties of a crystal are uniquely determined by the electron charge density.

2.1 The Hohenberg-Kohn Theorem

The DFT is based on two theorems.

Theorem 1. For a given external potential v, the total energy of a system is a unique

functional of the ground state electron density.

To prove this we consider a Hamiltonian, H=T+V+W, where T represents the

kinetic energy of the system, V the interaction of the electrons with an external potential

(including the potential coming from the atomic nuclei in the solid) and W the electron-

electron interaction. For N electrons the solution to this Hamiltonian results in a ground

state many body wave function ψ( ri, r2, ....rN ) and we have

H ψ = Eo ψ. (2.1)

The electron density can be calculated from

1
( ) ( )

N

i
i

n r r r  


    (2.2)
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and the interaction V is written as V= ∫ n(r)v(r)d3r, where v(r) is the external potential.

Now, to proof that two different external potentials v(r) and v'(r) must give rise to

different ground state electron densities for a system with potential v'(r) we have

H' ψ ' = E'0 ψ ' (2.3)

Let n(r) be the non-degenerate ground-state density of N electrons in the external

potential v(r), corresponding to the ground state characterized by the many-electron wave

function ψ and its total energy Eo. Then, we can write

0E H    (2.4)

3( ) ( ) | |      n r v r d r T V
(2.5)

3
0 ( ) ( ) [ ( )]E n r v r d r F n r  (2.6)

[ ( )] | |    F n r T V (2.7)

Now suppose that there exists a second external potential v'(r), which differs from v(r)

not just by a constant, leading to the same density n(r). If we denote its ground state

wave function and energy with ψ ' and E'0 respectively, we obtain

0E H      (2.8)

3( ) ( ) | |n r v r d r T V        (2.9)

The Rayleigh-Ritz minimal principle for ψ gives the following inequality
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0

3

3
0

( ) ( ) | |

[ ( ) ( )] ( )

E H

n r v r d r T V

E v r v r n r d r

 

 

   

      

   




(2.10)

A similar argument for the ground state of ψ ' leads to the expression

0

3
0 [ ( ) ( )] ( )

E H

E v r v r n r d r

    

   (2.11)

Adding Eqs. (2.3) and (2.4) leads to the contradiction

E0 + E'0 <  E0 + E0' (2.12)

which is clearly wrong. Hence n'(r) ≠ n(r) and we conclude that two different potentials,

v(r) and v'(r) give rise to different densities n(r) and n'(r). Therefore, knowledge of the

electron density n(r), implies that it was calculated from a Hamiltonian with a specified

external potential v(r). As the kinetic energy T, and electron-electron interactions W, are

known and specified one concludes that knowledge of the ground state electron density

determines the entire Hamiltonian and hence the ground state energy, which proves

Theorem 1. We can thus express a functional relationship between the ground state

energy and the corresponding electron density as

E[n(r)] = T[n(r)] + V[n(r)] + W[n(r)]. (2.13)

The second important theorem of DFT is

Theorem 2. The exact ground state density minimizes the energy functional E[n(r)]. To

prove Theorem 2 one starts from Theorem 1 and for a given external potential v0(r)

writes
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0 0[ ( )] [ ( )] | | [ ( )]     vE n r n r T W V n r (2.14)

where the subscript v0 indicates that this is the energy functional for a system with

external potential v0(r). Since the ground state density specifies the Hamiltonian, it also

specifies the wave function (of the ground state and of excited states) and hence the

notation  [n(r)]. If the ground state electron density is denoted by n0(r), the ground

state can be expressed as  [n0(r)]. From the variational principle one again obtains

0 0 0 0[ ( )] | | [ ( )] [ ( )] | | [ ( )]           n r T W V n r n r T W V n r (2.15)

which can also be expressed as

0 00[ ( )] [ ( )]v vE n r E n r ` (2.16)

i.e., the ground state density minimizes the energy functional E[n(r)]. This is the

Hohenberg-Kohn minimum principle (Hohenberg et al.,1964) stating that the total

energy is a functional of the density, and that the ground state density n(r) minimizes this

functional resulting in the ground state energy E = E[n(r)]. If we have an explicit form

for E[n(r)] we could minimize it with respect to the electron density and in this way

calculate the ground state energy. But, due to the complexity provided by the electron-

electron interactions, approximations are necessary to obtain an explicit expression for

E[n(r)].

2.2 The Kohn-Sham equation

The equation of Kohn and Sham are a practical procedure to obtain the ground

state density and turn density functional theory into a method of finding energy bands.

[ ( )] | |    F n r T V (2.17)
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Hohenberg and Kohn demonstrated that there exists a unique universal functional

E[n(r)]of the ground state electron density, which satisfies the variational principle with

respect to the electron density:

3
0 ( ) ( ) | |     E n r v r d r T V (2.18)

3( ) ( ) [ ( )]n r v r d r F n r  (2.19)

[ ( )] | |    F n r T V (2.20)

where F[n(r)] contains the electronic kinetic energy (T) and the electronic Coulomb

interaction (V) and v(r) represents the Coulomb potential due to the nuclei of the solid.

The fundamental Hohenberg-Kohn theorem of the density functional theory states that the

ground state energy can be obtained by minimization of the functional (2.19), constrained

with the conservation of the total charge.

Unfortunately, the universal functional F[n(r)] is not known. To solve this

problem, Kohn and Sham (1965) introduced an additional development by mapping the

original interacting problem into an effective and non-interacting problem with a slightly

different potential VKS, called the effective Kohn-Sham potential. The density functional

F[n(r)] for the interacting system is given by the sum of the kinetic energies of a non-

interacting electron gas with the same density n(r) as the original one, and additional

terms that describe the inter-particle interactions

F[n] = Ts[n] + J[n] + Exc[n] (2.21)

where Ts[n] is the kinetic energy of a non-interacting electron gas, J[n] is the classical

Coulomb energy (often referred as Hartree term)
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2 '
3 '

'
( )[ ]

2
e n rJ n d r

r r


 (2.22)

and Exc[n] is called exchange-correlation energy and contains all many-body effects not

described by the other terms. In other words, Exc[n] describes the difference between the

real system and the effective non-interacting system (including the correction for the

kinetic energy and the Coulomb interactions):

   [ ] ( ) ( ) ( ) ( )xcE n T n V n T n J n    (2.23)

The difference is usually expected to be small, and Exc[n] principally contains the

correction of J(n) arising from the correlations between electrons.

From equation 2.21 it is possible to extract the effective Kohn-Sham potential VKS, by

imposing that the energy functional E[n(r)] for the interacting problem must be

minimized by the same electron density n(r) that minimizes the energy Es[n(r)] of the

non-interacting electron gas.

2
2 ( ) ( )

2 i i i iKS
e

V r r
m

  
 
 
  
   

  

(2.24)

where

2 [ ( )]( )
( )




   




  xc
rKS

E n rn rV v e dr
r r n r (2.25)

With the Kohn-Sham potential VKS, the effective Hamiltonian describes a non-interacting

system, since all interactions have been included in VKS. In addition, the electronic

problem can now be tackled using a one-particle system, and the charge density

becomes:
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2

1
( ) ( )



 
  

 N

i
i

n r r
(2.26)

The exchange-correlation potential is the variational derivative of the exchange

correlation energy functional:

[ ( )]( )
( )

xc
xc

E n rV r
n r





(2.27)

The wave function i (r) appearing in the Kohn-Sham equations describe electronic

orbitals for the auxiliary non-interacting gas; they are the eigenstates of the effective

single electron non-interacting problem and should not be considered as wave functions

for the electrons of the real system. It is only the total energy and the electronic density

n(r) that have a physical meaning. However, usually the Kohn-Sham energy levels give

good description of band structure of the real crystalline solids.

2.3  Local density approximation

Although the exchange correlation energy, Exc[n(r)] is well defined as a concept,

its expression is not known precisely, and therefore an approximate expression is

necessary to obtain the ground state energy E[n(r)]. The local density approximation

(LDA) is a simple expression for Exc[n(r)] and it is based on the assumption that the real

Exc[n(r)] is equal to the exchange correlation energy per electron of a homogeneous

electron gas of the same density n(r):

3[ ] ( ) ( )xc xcE n n r n r d r  (2.28)

where xc is the exchange-correlation energy per electron of a uniformly interacting

electron gas of the same density n (Kohn et al.,1965). The correlation part was first

calculated by Ceperly and Alder using Quantum Monte Carlo method. The LDA is
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strictly valid only if n(r) is varying slowly, and many extensions exist which give

improved accuracy for systems with localized electrons.

2.4  Generalized gradient approximation

To extend the density approximation to systems with more significant non-

homogeneous densities, several techniques have been proposed. The most successful one

is the generalized gradient approximation (GGA), where the real Exc[n(r)] is expressed as

a functional of the density n(r) and its gradient ( )n r :

3 3[[ ] ( ) ( ) ( ) | |]xc xcxcE n n r n r d r F n r n d r    (2.29)

where Fxc is a correction. In principle this method should be called as LDA+GGA, but

for short one uses only the term GGA. The GGA formalism gives a better description of

inhomogeneous systems, like transition metals, and it significantly improves the binding

energy, predicting good results also in the cases where LDA fails. GGA accounts

specifically for density gradients that are neglected in pure LDA. For the GGA

calculations performed in this work, the Perdew-Burke-Ernzerhof (PBE96) (1996)

parameterization for the exchange-correlation functional was used.
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Chapter 3

Full-Potential Linearized Augmented Plane Wave

Method (FP-LAPW)

In order to solve the Kohn-Sham equations for periodic crystals systems plane

waves [( )]i k K re would be a natural choice of basis functions compatible with the

periodic boundary conditions. Here, k denotes a vector from the first Brillouin zone, and

K is a reciprocal lattice vector. However, an unrealistically large number of plane waves

would be necessary to achieve an appropriate description of the wave functions near the

atomic nuclei. It was the idea of Slater (1937) to augment the plane waves by atomic-like

functions in the vicinity of the atomic nuclei. Since Slater first proposed the method in

1937, the augmented plane wave (APW) method and its descendents has been among the

most popular schemes for solving the electronic structure using density-functional

theory. The APW method in its modern general potential and linearized forms combines

a conceptual simplicity with high accuracy for a general system. During the years, there

have been important developments of the original APW method, for instance the full-

potential implementation and of course the linearization of the secular problem as

proposed by Andersen (1975).

While the LAPW method yields accurate results for close-packed metal systems

the restrictions to the potential (shape-approximations) become difficult to justify for

crystals with open structures such as silizides, perovskides, surfaces or clusters. In

LAPW method, a basis set is introduced which is especially adapted to the problem. This

adaptation is achieved by dividing the unit cell into two regions, namely (i) non-

overlapping atomic spheres (centered at the atomic sites) and (ii) an interstitial region
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(region II) as shown in Fig. 3.1. For the construction of basis functions, the muffin tin

approximation (MTA) is used according to which the potential is assumed to be

spherically symmetric within the atomic spheres in which an atomic-like function is used

and constant outside in which plane waves are used.

The basis functions for the two regions are:

(1) Inside atomic sphere I, of radius Ri, a linear combination of radial functions

times spherical harmonics )(rlmY is used

 



  )ˆ(),(,),(, rlmYlErlu

nklmBlErlu
nklmAkn




 (3.1)

where ),( lErlu 
is the regular solution of the radial Schroedinger equation for energy

lE and the spherical part of the potential inside sphere I; ),( lErlu 
 is the energy

derivative of lu evaluated at the same energy lE . A linear combination of these two

functions constitutes the linearization of the radial function. The coefficients lmA and

lmB are functions of nk determined by requiring that this basis function matches each

plane wave (PW) the corresponding basis function of the interstitial region. lu and

lu are obtained by numerical integration of the radial Schrödinger equation on a radial

mesh inside the sphere.

(2) In the interstitial region a plane wave expansion is used

rnkie
nk





 1 (3.2)

where nKknk

 ; nK


are the reciprocal lattice vectors and k


is the wave vector inside

the first Brillouin zone. Each plane wave is augmented by an atomic-like function in
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every atomic sphere. The solutions to the Kohn-Sham equations are expanded in this

combined basis set of LAPW’s according to the linear variation method


n nknck  (3.3)

and the coefficients cn are determined by the Rayleigh-Ritz variational principle.

In order to improve upon the flexibility of the basis set and to make possible a

consistent treatment of semicore and valence states in one energy window, adding

additional basis functions to the usual LAPW basis set called ‘local orbitals (LO)’ was

suggested by Singh (1994). They are local in the sense that they are completely confined

within the muffin tin spheres. Local orbitals consists of a linear combination of two

radial functions at two different energies and one energy derivative and is given as

ˆ( , ) ( , ) ( , ) ( )1, 1, 1,
LO A u r E B u r E C u r E Y rlm l l lm l l l lmlm llm
         

 (3.4)

In the applications of APW and LAPW methods, the potential in the unit cell V(r) was

typically approximated by

0

0
( )

( )
I

MT

V r
V const outside sphere

V r inside sphere

 

 (3.5)

using a constant potential in the interstitial region and a spherically symmetric potential

inside each sphere.

The full-potential Linearized Augmented Plane Wave (FP-LAPW) method is one

of the most accurate methods used for the solution of the Kohn-Sham equations for

semiconducting systems. The code that has been used for all calculations in this work

(WIEN2k) is a full-potential LAPW code developed by Blaha and co-workers (2008).

The idea of the FP- LAPW method is to divide the unit cell into two different regions:

non-overlapping spheres around the positions of the nuclei, and the remaining interstitial

region, schematically depicted in Fig. 3.1.
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Figure 3.1:  Partitioning of the unit cell into atomic spheres (I) and an interstitial

region (II).



17

In the two regions, different sets of basis functions are used for the wave functions as

well as for the electron density and the crystal potential. The choice of these basis

functions is guided by the observation that near the nuclei the wave functions remain

atomic-like even in a crystalline environment, whereas they are more plane-wave like

between the atoms. The same argument also applies for the density as well as for the

potential.

In the full-potential LAPW method (Hashemifar et al., 2005; Hedin et al., 1971) there

are no shape-approximations in the interstitial region and inside the muffin-tin spheres.

The constant interstitial potential 0
IV is replaced by the warped potential 

 iK r
K

K
V e and to

the spherical muffin-tin potential the non-spherical term is added.

 

ˆ( ) ( )

( ) 3.6



  




 

V r Y r inside sphereL M L M
L M

V r
iK rV e outside sphereK

K

The charge density n(r) is represented in the same way as the potential:

ˆ( ) ( )

( )

n r Y r inside sphereLM LM
LM

n r
iK rn e outside sphereK

K



  




  (3.7)

3.1 The Muffin-Tin A- and B-Coefficients

Within FPLAPW the electron wavefunctions are expanded differently in the

interstitial region and the muffin-tins. Each basis function consists of a planewave in the

interstitial, which is matched to the radial functions and spherical harmonics in the

muffin-tins. The coefficients of the function inside the spheres are determined from the

requirement, that the basis functions and their derivatives are continuous at the sphere
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boundaries. These coefficients play an important role, therefore we will discuss how the

matching conditions can be solved and what properties they induce.

In many systems where the FP-LAPW method can be applied, some atoms are

symmetry equivalent, i.e. these atoms can be mapped onto each other by a space group

operation  R  Such a group of atoms is called an atom type, represented by one of the

atoms. Let  R   be the operation that maps the atom  onto its representative. This

atom can now be assigned a local coordinate frame S where the origin of S is at the

atoms position p .The local frame is chosen such that the unit vectors of the local frame

S are mapped onto those of the global frame by  g gR R S S   . The local frame of the

representative atom S is only translated with respect to the global frame, i.e. the same

rotation R maps S onto S . The potential (and other quantities) inside the muffin-tins

can now be written in terms of the local coordinate system. Due to the symmetry we find

MT MT
V (r ) V (r ) 

  where (r ) and (r ) are expanded in terms of the local frames S

and S respectively. As a consequence the radial functions ( )lu r and the Hamiltonian

matrices are the same for all atoms of the same type. This way symmetry is exploited to

save memory and computing time (during the calculation of the t-matrices) and (r ) are

expanded in terms of the local frames S and S respectively. As a consequence, the

radial functions ( )lu r and the Hamiltonian matrices are the same for all atoms of the

same type. This way symmetry is exploited to save memory and computing time (during

the calculation of the t-matrices).

Any plane wave can be expanded into spherical harmonics via the Rayleigh

expansion,

ˆ ˆiKr l *
l L L

L
e = 4π i j (rK)Y (K)Y (r)

(3.8)



19

where r = |r|, K = |K| and K abbreviates (G + k). Looked at from the local frame K and

p appear rotated, besides the origin of the local frame is shifted. Therefore, the

planewave has the following form in the local frame:

( )( )i R K r R pe   
(3.9)

Thus, the Rayleigh expansion of the planewave in the local frame is given by:

ˆ ˆ4 ( ) ( ) ( )
  iKp l

l L L
L

e i j rK Y R K Y r
(3.10)

The requirement of continuity of the wavefunctions at the sphere boundary leads to the

equation

 

 

ˆ

ˆ ˆ

   



 


μ

μG μG
n n

L

iKp l * μ
l L L

L

A (k )u ( r,E ) + B k u ( r,E ) Y (r)lm l l lm l l lm

= e 4π i j (rK)Y (R K)Y (r) 3.11

where GAlm and GBlm are matching co- efficient which are functions of nk determined by

requiring that this basis function matches each plane wave (PW) the corresponding basis

function of the interstitial region. The second requirement is, that the derivative with

respect to r, denoted by d/dr = ', is also continuous

 

 

' '

'

ˆ( ) ( , ) ( , ) ( )

ˆ ˆ4 ( ) ( ) ( ) 3.12


 

 

   

 

 


l l

l

G G
n n

L

iKp l
L L

L

A k u r E B k u r E Y rlm l lm l lm

e i j rK Y R K Y r

These conditions can only be satisfied, if the coefficients of each spherical harmonic

L ˆY (r) are equal.   Solving the resulting equations for ( )G
nA klm and ( )G

nB klm yields:

' '1 ˆ( ) 4 ( )[ ( , ) ( , ) ( , ) ( , )]
   

   


l l

G iKp l
n L lA k e i Y R K u r E kj r k u r E j r klm l l lW (3.13)

' '1 ˆ( ) 4 ( )[ ( , ) ( , ) ( , ) ( , )]
   

   
l l

G iKp l
n L lB k e i Y R K u r E j r k u r E kj r klm l l lW (3.14)

The Wronskian W is given by:
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[ ( ) ( ) ( ) ( )]  
   

 l l l lW u r u r u r u r
(3.15)

Thus their form is completely general so that such a scheme is termed full-potential

calculation. In order to have a small number of LM values in the lattice harmonics

expansion a local coordinate system for each atomic sphere is defined according to the

point group symmetry of the corresponding atom. This specifies a rotation matrix that

relates the local to the global coordinate system of the unit cell.
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Chapter 4

Methodology for optical study

4.1 Linear Optical Response

In this chapter we will set up methods that will enable us to calculate the linear

optical response of periodic solids from first principles. The microscopic Maxwell

equations will be discussed as a prerequisite that will enable us to calculate the linear

optical response of periodic solids from first principles. The concept of the dielectric

matrix and some of its general properties are also discussed. Following the work of

Ehrenreich et al., (1959), Adler (1962) and Wiser (1963), we then describe the linear

optical properties of solids in terms of the self-consistent field method. Ehrenreich and

Cohen (1959) derived an expression for the dielectric function of solids by assuming that

electrons and holes move independently of each other in a self-consistent potential

arising from the externally applied electric field plus a screening field. This is the

widely-used random phase approximation (RPA) or equivalently the time-dependent

Hartree-approximation. Adler (1962) and Wiser (1963) generalized the RPA description

by allowing the screening field to vary on an atomic scale, giving rise to the so-called

local field corrections. A presentation of the optical properties of solids on the RPA level

can be found in a book by Wooten (1972). In the last section, we go beyond the RPA by

including excitonic effects. These electron-hole interactions have important

consequences in the description of the optical properties of semiconductors.

4.2 Microscopic Maxwell Equations

The Maxwell equations of electrodynamics in the presence of matter and on a

microscopic (atomic) scale can be written in the form
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4 extD   (4.1)

1 B
c t

E 


  
(4.2)

0B  (4.3)

2 4 ex
D
t

c B j 



 
(4.4)

where the electric displacement D is connected to the electric field E via the polarization

P, as D = E + P. The Maxwell equations in the form (4.1-4.4) correspond to systems

which are described by the external charge density ρex with the current density jex. Thus,

the fields entering the Maxwell equations are difference fields between the perturbed and

the unperturbed system. The most general form of the dielectric tensor ε is defined by

linearly relating the electric displacement D to the electric field E

3 ' ' ' ' ' '( , ) ( , ; ) ( , )i ij jr t d r dt r r t t E r tD   (4.5)

where ij is a tensor of second rank for crystals other than cubic symmetry, and we have

used the summation convention for double appearing indices j in the above equation. In a

perfect crystal, we have translational symmetry, and the dielectric tensor remains

unchanged when both coordinates r and r' are shifted by a lattice vector R. Hence,

' ' ' '( , ; ) ( , ; )ij ijr R r R t t r r t t      (4.6)

and the dielectric tensor can be Fourier analyzed with the following convention to be

used for all lattice-periodic two-point functions in this thesis (Appendix A. I)

' '

'

' ' [( ) ] ' [( ) ]1( , ; ) ( , ; )i q G r t
ij ij

q GG

i q G r tr r t t e q G q G e          
 (4.7)

Here, q is a vector within the first Brillouin zone, G and G' are reciprocal lattice vectors,

and Ω denotes the crystal volume. By transforming D and E to reciprocal space and to
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the frequency domain, and using the Fourier expansion for ε, expression (4.5) can be

written as

'

' '( ; ) ( , ; ) ( ; )       i ij j
G

q G q G q G ED q G
(4.8)

Eq. (4.8) can be interpreted in the following way: The (q, ω) Fourier component of the

dielectric displacement D is a vector in the reciprocal lattice vectors G, and the same is

true for the electric field. Then, the (q, ω) component of the dielectric displacement D is

related to the (q, ω) component of the electric field via a matrix multiplication with the

dielectric matrix corresponding to (q, ω), and having the matrix indices GG'.

4.3 Longitudinal and the transverse dielectric tensor

In this section, we follow a practice introduced by Lindhard (1954) and describe

the dielectric response in terms of the longitudinal and the transverse dielectric tensor

describing the response to a longitudinal and transverse electric field, respectively. In the

case of a homogeneous system, for instance the free-electron gas, a longitudinal

(transverse) current cannot be induced by a transverse (longitudinal) electric field.

Consequently, the longitudinal and transverse dielectric tensors give a complete

description of the linear dielectric properties of the homogeneous electron gas. In

inhomogeneous systems, such as periodic solids, however, a purely transverse or purely

longitudinal electric field induces both transverse and longitudinal currents. We are

interested in the response to an optical perturbation, which is a transverse electro-

magnetic field. Therefore, the optical properties have to be calculated using the

transverse-response formalism, with a term A • p as perturbation. Here, A denotes the

vector potential, and p is the momentum operator. In the limit of vanishing q vectors,

however, it can be shown that a longitudinal perturbation described by a scalar potential

leads to the same result. This property is referred to as the gauge invariance of optical

properties and was shown by Ambegaokar et al. (1960) for cubic crystals, and by Del
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Sole et al., (1984) for systems with lower than cubic symmetry. For this reason, it is

sufficient to consider the longitudinal dielectric tensor, if one is interested only in the

limit q → 0. Therefore, we will restrict the discussion in the following sections to the

description of the longitudinal dielectric function only.

4.4 Macroscopic Quantities

When we are interested in the response to an optical perturbation, we are inter-

ested in the average response of the system due to the large wave length of light in the

visible region as compared to an atomic scale. We define the macroscopic quantity fM

corresponding to its microscopic counterpart f by averaging the microscopic quantity

over one unit cell. We can express f in terms of the Fourier representation such that

( )1( ) ( )G
i q G r

qG
f r qf e 

 (4.9)

The average over one unit cell with volume 0 at the position R defines the macroscopic

quantity in the following way

0

3

0

1( ) ( )Mf R d r f r R


 
  (4.10)

Taking into account the definition (4.9) and using the fact that |q| is assumed to be much

smaller than |G|, the term iqre is approximately 1, which leads to the result

0( ) ( ) iqR
M

q
f R f q e

(4.11)

The above relation simply says that the q Fourier component of any macroscopic

quantity is just the {q, G = 0} component of the corresponding microscopic quantity.

We will make use of this result in the next sections, when we derive an expression for

the macroscopic dielectric function.
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4.5 The Self-Consistent Field Method

In this section, we want to describe the longitudinal dielectric response of solids

by following the derivation of the longitudinal dielectric matrix for periodic crystals in

the random phase approximation as given by Adler (1962) and Wiser (1963). An

alternative description using field theoretical techniques is due to Nozieres and Pines

(1958a, 1958b, 1958c). The starting point for the discussion is the single particle

Liouville-von-Neumann equation

 ˆ ˆ,



ni H n
t (4.12)

Here, n̂ denotes the density operator of the system and the Hamiltonian Ĥ consists of a

time-independent part 0Ĥ describing the unperturbed system plus the self-consistent

potential V(r,t)

0
ˆ ˆ ( , ) H H V r t (4.13)

The self-consistent potential V(r,t) is the sum of the externally applied potential Vext and

the screening potential Vs due to the rearrangement of the electrons in response to the

external perturbation

( , ) ( , ) ( , ) ext sV r t V r t V r t (4.14)

We have assumed the response Vs to be a classical electro-static screening potential, and

we did not allow for exchange and correlation effects here. This approximation accounts

for the fact that we treat electrons and holes as independent particles. It is assumed that

the motion of the electrons in the unperturbed case can be described by an effective

single-particle potential such as the Kohn-Sham potential of density functional theory,

which we write in the form

0 


 mkH mk mk (4.15)
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Here, mk denotes the Bloch state of band number m and wave vector k with the single-

particle energy εmk. The action of the density operator of the unperturbed system 0n̂ on

the eigenstates mk is given by

0 0ˆ ( ) mkn mk f mk (4.16)

where 0f is the Fermi-Dirac distribution function. We now assume that the density

operator of the perturbed system can be written as

10ˆ ˆ n n n
(4.17)

where 1̂n denotes the density change due the perturbation. By neglecting a term 1)ˆ( ,V n ,

containing products of the density change and the self-consistent perturbing potential, we

obtain the linear response regime, and arrive at the linearized form of the Liouville

equation for the density change 1̂n ,

0
1

1 0
ˆ

ˆ ˆ[ , ] [ , ]


 

n

i H n n
t

V (4.18)

Moreover, we assume that the time dependence of the external potential Vext is given by

Vext ~
'i t t i te e e    (4.19)

where δ is an infinitesimal positive number producing an adiabatic switching on of the

perturbation. In the following it is understood that ω contains the appropriate

infinitesimal δ. In the linear response regime all quantities exhibit the same time

dependence as the external perturbation. Taking the matrix elements of Eq. (4.18)

between the states |lk and | mk q  , using the relations (4.15) and (4.16), and taking

into account the i te  time dependence leads to

0 0
1

( ) ( )
| | | |mk q lk

mk q lk

f flk mk q lk V mk q 


  








 
      

(4.20)
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Hence, we have found a relation between the induced density and the self-consistent

potential from which we will get the polarizability of the system.

4.6 Neglecting Local Fields

In this section we will discuss an approximation which greatly simplifies the

computation of the macroscopic dielectric function. The macroscopic external

perturbation which is described by the scalar potential Vext only produces a screening

potential Vs on a macroscopic scale. Therefore, both Vext and Vs as well as the total

perturbing potential V can be expressed in a Fourier series

( , ) ( , ) iqr

q
r t V q t eV 

(4.21)

We can derive an expression for the polarization 0P̂ that is relating the change in the

density n to the total potential V.

0( , ) ( , ) ( , )q P q qn V  


 (4.22)

0 00 0 0( ) ( )1( , ) [ ( , )] ( , )mk q lk
lm lm

lmk mk q lk

f f
P q M k q M k q

 
  




 





  

(4.23)

The matrix elements involved in the equation (4.23) can be evaluated for small q by

perturbation theory [Appendix II]. Application of Poisson's equation and using the

relation extV V directly leads to the macroscopic dielectric function in the RPA

which is a well known Lindhard formula (Ashcroft and Mermin 1976),

0( , ) 1 ( ) ( , )M q q P qV  


  (4.24)

The above expression is easy to evaluate, because only the G = G' = 0 component of the

irreducible polarization 0P


has to be computed, and moreover no matrix inversion is

involved.
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4.7 The Long Wavelength Limit

Our main interest in this chapter is to describe the linear response of solids to

optical perturbations. Since the wave length of electro-magnetic waves at optical

frequencies is much larger than the characteristic momenta in solids, optical

perturbations can be described by taking the limit of vanishing q vectors. On account of

the Coulomb potential appearing for instance in Eq. (4.24) this limit has to be taken

analytically, because simply setting q = 0 would result in an indeterminate expression for

the dielectric function. This follows from the fact that the matrix elements

0 ( , )lmM k q entering Eq. (4.23) are given by Kronecker deltas, when q is identically 0

0 ( , 0)lm lmM k q   (4.25)

The reason is of course the fact that the normalized Bloch states belonging to different

bands are orthogonal to each other. We can, however, derive an expression for the matrix

elements 0 ( , )lmM k q in the limit of vanishing wave vector q by using k • p perturbation

theory (Appendix II). One obtains

0 | |( , 0) (1 )lm lm lm
mk lk

lk qp mkM k q  
 
 

   
 (4.26)

where p denotes the momentum operator. Thus, making use of the relation (4.26) we get

an expression for the polarization in the limit of small q

0 2
2

| | | |
( 0, ) 4

( )( )
i j

vck ck vk ck vk

vk p ck ck p vk
P q q

    


   
 

  
(4.27)

Remembering that the frequency ω contains the infinitesimal imaginary number iδ, we

can use the identity

Im (1 )ck vk
ck vk i

   
   

   
   (4.28)



29

We finally arrive at an expression for the imaginary part of the macroscopic dielectric

function in the independent particle approximation where local field effects are neglected

2

2

16Im ( 0, ) | | | | ( )M i j ck vk
lmk

q vk p ck ck p vk    


      
 

(4.29)

Note that the prefactor 21  is a consequence of the square of the energy difference in

the denominator of Eq. (4.27) and the delta function due to the replacement by equation

(4.28). It has been shown that in the limit of vanishing q, the response to a transverse

perturbation is equivalent to that of a longitudinal perturbation, as has already been

discussed in Sec. 4.3. This is not only true for cubic systems (Ambegaokar et al., 1960)

but also for crystals with lower symmetry (Del Sole et al., 1984). For that reason, Eq.

(4.29) describes the response to an optical perturbation, where the tensor character of

Im ( 0, )M q  takes into account the anisotropy of crystals with symmetries lower

than cubic. We note that the real part of εM can be obtained by using the well-known

Kramers-Kronig relations.

4.8  Kramers- Kronig relations

From the imaginary part of the dielectric tensor component Im ij the

corresponding real part is obtained by

' '
'

'2 2
0

Im ( )2Re ij
ij ij d

  
  

  



  
 (4.30)

Given the real part, the inverse transformation has to be used. With the knowledge of the

complex dielectric tensor components all other frequency – dependent optical constants

can be obtained.
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4.9 Dielectric Response within DFT

In this section, we want to consider exchange-correlation (XC) effects in the

response function resulting from the XC energy appearing in density functional theory.

We have to add to the classical, electro-static screening potential Vs a term Vxc stemming

from the change in the exchange-correlation potential (2.27) due to the external

perturbation given by the scalar potential Vext. Thus, we can write for the self-consistent

potential V

  H ext s xcV V V V (4.31)

where Vs is just the Hartree potential due to the density change n, which is given by

3 ( )( )
| |

 

 s
n rV r d r
r r (4.32)

The variation of the XC potential with the density, Vxc, is obtained from

3 ( , ) ( )   xc xcV d r K r r n r
(4.33)

where the exchange-correlation kernel Kxc is defined as the functional derivative of the

XC potential with respect to the density, or equivalently, as second functional derivative

of the exchange-correlation energy,

2

( ) ( )


  
 xc

xc
EK

n r n r (4.34)

Taking into account the definition of the independent particle polarizability 0̂P as the

response to the total change in the effective potential, and the full polarizability P as the

response to the external potential, we obtain in matrix notation (Levine et al., 1989,

1991; Hybertson et al., 1987).

0 0 1 0ˆ ˆ ˆ(1 )  xcP KvP P P (4.35)
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This expression differs from the corresponding RPA expression used in the previous

section, by the additional term KXC 0̂P involving the exchange-correlation kernel. If the

exchange-correlation energy Exc is a local function, as is the case in the framework of

density functional theory, then also the kernel Kxc is a local function and given by

( )( , ) ( )   xc
xc n r

dVK r r r r
dn (4.36)

As a consequence of the delta function in the above equation, the reciprocal-space

expression of Kxc is independent of q,

( ) xc xc
GGK G GK (4.37)

It is in the limit q→0, which is relevant for the description of optical properties.

Therefore, we neglect the exchange-correlation term appearing in the polarization

function in Eq. (4.35) and work with the RPA expressions when calculating the dielectric

function in the framework of density functional theory. In the remaining part of the

chapter, however, we develop a method to go beyond the RPA which allows us to

incorporate electron-hole interactions into the description of the optical response of semi-

conductors.

4.10    Inclusion of Excitonic Effects

The connection of the irreducible polarization P̂ and complete polarization P to

the dielectric matrix  is given by the following relation

ˆ(1 )  vP (4.38)

ˆ(1 )  vP (4.39)

Again, v denotes the Coulomb potential as usual and 1  is the inverse of the dielectric

matrix. Equations (4.38) and (4.39) can be combined to yield a generalized Dyson's

equation for the complete polarization
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ˆ ˆ P P PvP (4.40)

From that expression we see that the polarization P is the sum of two contributions

termed proper and improper polarization parts, respectively. The proper polarization part,

which is equal to the irreducible polarization P̂ , describes just the electron-hole

polarizations which are due directly to the excitations by the external applied field. The

improper part, P̂vP , contains the polarization part due to the induced field coming from

the polarization of all other electron-hole pairs.

4.11 The Long-Range Part of the Coulomb Potential

For the calculation of the optical response we are interested in the long wave-

length limit, thus |q|0. In this case, the term P̂vP in Eq. (4.40) contains divergent

Coulomb factors. These divergent factors can, however, be isolated following a

procedure due to Ambegaokar and Kohn (1960). We define the new polarization

function P as the sum of all polarization processes not involving the long-range part of

the Coulomb interaction. In analogy to (4.40) we obtain a generalized Dyson equation

for P

ˆ ˆ P P PvP (4.41)

where v denotes a modified Coulomb potential defined in the way

0 0
( ) 0

( )


  
 

for G
v q G for G

v q G (4.42)

It has been shown by Kohn that, for insulating crystals, the irreducible polarization P̂ is

proportional to q2 for small q vectors. Moreover, due to the cut off Coulomb potential v

the polarization function P defined above shows the same behavior as P̂ for small q.
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Thus, we can combine Eqs. (4.40) and (4.41) in order to derive the following relation

between the G = G' = 0 components of P and P in the limit of vanishing q

00
00

00

( , )( , )
1 ( ) ( , )




 qq
v q q
PP

P (4.43)

By using the above expression we can now rewrite Eq. (4.43) in the form

1
00 00

00

( , ) ( , )
1

1 ( ) ( , )

1 ( ) 



 




 q q

v q q

v q P

P (4.44)

By the definition of the macroscopic dielectric function via the G = G' = 0 element of the

inverse of the dielectric matrix, we finally obtain

00( , ) ( , )1 ( )   M q qv q P (4.45)
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Chapter 5

Study of the Optical Properties of Solids by using

Full Potential Linear Augmented Plane Wave

(FP-LAPW) method.

We have used the FP-LAPW method within the framework of density functional

theory (DFT) ( Hohenberg et al.,1964) as implemented in the WIEN2k code ( Blaha et

al., 2008) for relativistic computation of electronic structure, the density of state (DOS)

and optical properties for berrylium chalcogenides (BeS, BeSe and BeTe), lead

chalcogenides (PbS, PbSe, and PbTe), zinc chalcogenides (ZnS,ZnSe,and ZnTe) and

stibiotantalite. We will be using Eqn. (4.29) of chapter 4 to find the imaginary part of the

dielectric function ε2 for all three types of chalcogenides and ferroelectric material

stibiotantalite. The exchange-correlation potential was calculated with generalized

gradient approximation (GGA) based on Perdew et al., (1996). Kohn-Sham wave

functions (Kohn et al., 1965) were expanded in terms of spherical harmonic functions

inside the non-overlapping muffin-tin spheres surrounding the atomic sites and in Fourier

series in the interstitial region. We use RMT× K max = 7 to determine the matrix size,

where Kmax is the plane-wave cut off and RMT is the muffin tin sphere radii. In the atomic

region, the basis set consists of spherical harmonics with angular quantum number l = 10

and a non spherical contribution with l = 4. The self-consistent iterations are considered

to be converged when the total energy of the system are stable within 10-3 mRy.
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5.1 Beryllium Chalcogenides:

The beryllium chalcogenides crystallize in the zinc-blende structure at ambient

pressure and temperature. Recently, the electronic and physical properties of BeS, BeSe

and BeTe compounds have been studied. For example, the lattice parameters of

beryllium chalcogenides were initially measured by Zachariasen (1922). Yim et al.,

(1972) have confirmed the crystalline structure to be zinc-blende. Stukel (1970) and

Sarkar et al., (1977) have studied the energy bands of beryllium chalcogenides using the

first principle self-consistent orthogonalized-plane wave (OPW) and the augmented-

plane wave (APW) methods. Kalpana et al., (1998) have also studied these systems

theoretically by using the tight-binding linear muffin-tin orbital method (TB-LMTO).

The electronic band structures of Be chalcogenides were also studied by Waag et al.,

(1996) with first principle self consistent orthogonalized-plane wave (OPW) and the

augmented–plane wave (APW) methods.  Hassan et al., (2006) have performed the

theoretical investigation of the ground state properties and the structural phase transition

by using the FP-LAPW method within DFT to confirm the indirect band gap occurring

between Γ and X for  BeS and BeSe. First principle electronic structure calculations

were also performed by Heciri et al., (2007) using full potential augmented plane wave

plus local orbitals (APW+lo) within DFT for BeS, BeSe and BeTe to compare the results

obtained from GGA with those from conventional local density approximation (LDA)

exchange-correlation energy functional (Perdew et al.,1996). High pressure phase

transitions in these compounds were also studied by Berghout et al., (2006) using FP-

LAPW and the plane wave pseudopotential (PPsPW) methods, to show the existence of

wide indirect band gaps for these compounds in their band structures and DOS.
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5.1.1 Computational methods

The electronic configurations of elements in beryllium chalcogenides are

Be : [He] 2s2;  S : [Ne] 3s2 3p4;  Se : [Ar] 3d10 4s2 4p4 and Te : [Kr] 4d10 5s2 5p4 The l-

expansion of the wave function were carried out up to lmax = 10 inside the muffin-tin

spheres of radius RMT. The wave functions in the interstitial region were expanded in the

plane waves with a cut-off of Kmax = 7/RMT in order to achieve energy eigen values

convergence. The RMT values used were 1.8 a.u. for Be, while for S, Se and Te 2.0 a.u,

2.2 a.u and 2.4 a.u were used respectively. The berrylium chalcogenides BeS, BeSe and

BeTe crystallize in the zinc-blende structure at ambient pressure and temperature with

lattice parameter 4.870Ǻ for BeS, 5.137 Ǻ for BeSe and 5.617 Ǻ for BeTe. A mesh point

of 5000 k-points were used to obtain 111 special k-points in the irreducible wedge of the

Brilloiun zone for BeS, BeSe, BeTe. Both the muffin-tin radius and number of k-points

were varied to ensure total energy convergence.

The components of the imaginary or the absorptive part of the dielectric function,

εij
2(ω) was calculated. The real part ε1(ω) can be obtained from the imaginary part ε2(ω)

by using the Kramers-Kronig dispersion relation.

5.1.2  Results and discussions

The total densities of states for all the three compounds are shown in Fig. 5.1a,

5.1b, 5.1c. From the total density of states, we observe energy gap at around 0 eV which

is taken as Fermi energy level. The partial densities of states are shown in Fig. 5.2. It is

seen that just below the Fermi level, the bands are dominated by chalcogen p states, with

some contribution coming from the Be-2s states. In the region above the Fermi level, p

states also dominate. From the partial state densities, it is clear that the main bonding

mechanism in beryllium chalcogenides is the hybridization between the Be-2s states and
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chalcogen p states. The bond is strongly covalent and partially ionic in character,

covalent since the Be-2s states and chalcogen p states are strongly hybridized and

degenerate over a large part of their extension, and ionic since the relative amount of Be-

2s states and chalcogen p states is different above and below Fermi level. Below the

Fermi level, the chalcogen p states dominate and above Fermi level, the Be-2s states

strongly hybridized with the chalcogen s, p and d states. From simple argumentation

using the relative electro-negativity of the chalcogen and beryllium, we expect that BeS

should be the most ionic and BeTe the most covalent of the three systems since

(according to Pauling) S, Se and Te have electro-negativities 2.5, 2.4, and 2.1

respectively. This conclusion compares well with what we expect from Fig.5.2. The

calculated band structures along symmetry lines L, Γ, X, W, are displayed in Fig. 5.3a,

5.3b and 5.3c.

5.1.3 Band structures

In Fig. 5.3a, 5.3b, and 5.3c., we show the plots of energy bands in the case of

BeS, BeSe and BeTe. It is seen that BeS, BeSe and BeTe have indirect band gap of

3.1eV, 2.6 eV and 1.9 eV respectively from Γ to X along ∆-direction. The highest

valence bands are observed at 0 eV which is taken as Fermi energy level at Γ symmetry

point. These bands are due to the p-state electrons of chalcogen atoms as seen from the

partial density of states in Fig. 5.2. The lowest conduction bands observed at 3 eV, 2.6

eV, and 2 eV lies at symmetry point X which are due to the contributions from both the

beryllium s states and chalcogen s, p and d states. The calculated band-gaps for the

compounds under study have been tabulated with the experimental and theoretical results

provided by others in table 5.1.
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Fig. 5.1a. Total DOS for BeS. The vertical dotted line at E = 0 eV indicates

the Fermi energy level.
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Fig. 5.1b. Total DOS for BeSe. The vertical dotted line at E = 0 eV indicates

the Fermi energy level.
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Fig. 5.1c. Total DOS for BeTe. The vertical dotted line at E = 0 eV indicates

the Fermi energy level.
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Fig. 5.2. Partial DOS for BeS, BeSe, and BeTe. The vertical dotted line

at E = 0 eV indicates the Fermi energy level.
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Fig. 5.3a. Energy band structure for BeS along the high symmetry directions.

EF = 0 eV corresponds to the Fermi level.
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Fig. 5.3b. Energy band structure for BeSe along the high symmetry directions.

EF = 0 eV corresponds to the Fermi level.
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Fig. 5.3c. Energy band structure for BeTe along the high symmetry directions.

EF = 0 eV corresponds to the Fermi level.



45

Table 5.1: Calculated indirect (Γ- X) energy band gap values using GGA under FP-

LAPW and the results of the experimental and theoretical band gaps using various

techniques for BeS, BeSe and BeTe.

Systems

study

Expt. Band gaps

(Γ-X) (eV)

Theoretical Band gaps

(Γ-X) (eV)

Our Calculated Band-gap

(Γ- X)  (eV)

BeS >5.5eV 2.75  eV 3.1 eV

BeSe 4-4.5eV 2.31 eV 2.6 eV

BeTe 2.7 eV 1.6 eV 2.6 eV

The experimental band gaps are taken from Zachariasen (1922), the theoretical band gap
for BeS is taken from Luo et al., (1995); BeSe and BeTe are taken from Fleszar et al.,
(2000).

5.1.4 Optical properties

The absorptive part of the dielectric function ε2(ω) is shown in Fig.5.4a., 5.4b.,

5.4c. The trends in ε2(ω) may be linked to the trends observed in the DOS and band

structures From the partial state densities in Fig. 5.2, it is obvious that the p states play a

major role in these optical transitions, both as initial and final states. Of the s states, the

Be state primarily serves as initial state, whereas the chalcogen states are mostly final

state. The beryllium and chalcogen s, p and d states are primarily final states. Optical

transitions between bands that are parallel or nearly so in the Brillouin Zone tend to

result in peaks in the optical spectrum. Fig. 5.4a, 5.4b, 5.4c displays the imaginary

(absorptive) part of the dielectric function ε2(ω) for BeX. Our analysis of the ε2(ω)

curves show that the first critical points of the dielectric function occurs at 5.6 eV, 4.5 eV

and 3.5 eV. These critical points are followed by the main peaks in the spectra situated at

6.8 eV in BeS, 6.2 eV in BeSe and 5.1 eV in BeTe related to direct transition. These
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peaks are primarily due to transition between valence band and conduction band above

the Fermi energy along symmetry lines L, Γ, X, W. As there should be one-to-one

correspondence between band structure and optical spectrum, we first look at the

imaginary part of the dielectric function ε2(ω). For BeS, BeSe and BeTe the energy peak

at 6.8 eV, 6.2 eV and 5.1 eV in the ε2(ω) arises from the interband transition between the

maximum of valence band at Γ - edge and the bottom most conduction band at W - edge.

These main peaks are followed by sharp energy peak at 7.5 eV, 7.1 eV, and 5.7eV for

BeS, BeSe and BeTe due to the interband transition from the highest valence band -1.0

eV and  the second lowest conduction band at L - edge. Our optical calculation shows

that transitions between highest lying valence band (HVB) and lowest lying conduction

band (LCB) account for almost all structures in optical spectra at energy below 6 eV.
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Fig. 5.4a.  Imaginary or absorptive part of dielectric function for BeS.

Fig. 5.4b. Imaginary or absorptive part of dielectric function for BeSe.

Fig. 5.4c. Imaginary or absorptive part of dielectric function for BeTe.



48

5.2 Lead chalcogenides:

5.2.1 Calculational method

A lead salt is stable in rock-salt structure and have direct minimum energy band

gap at the L symmetry point in the Brillouin Zone (BZ). For our calculation, we used

lattice parameters a = 5.54 Å, 6.13 Å, and 6.5Å for PbS, PbSe, and PbTe respectively,

which was found out from volume optimization with the optimized wave vector k = 4000

and atomic sphere radii 2.5 Å for Pb, 2.4 Å, 2.4 Å and 2.6 Å respectively for S, Se and

Te.

5.2.2 Results and discussions

The total density of states for PbX are shown in Fig.5.5a, 5.5b, 5.5c. From the

total density of states, we observe a small energy gap at around 0 eV which is taken as

Fermi energy level. The partial densities of states are shown in Fig. 5.6. It is seen that

just below the Fermi level, the bands are dominated by chalcogen p states, with some

contribution coming from the Pb-6p states. In the region above the Fermi level, p states

also dominate. From the partial state densities, it is clear that the main bonding

mechanism in PbTe is the hybridization between the Pb-6p states and chalcogen p states.

The bond is both ionic and covalent in character, covalent since the Pb-6p states and

chalcogen p states are strongly hybridized and degenerate over a large part of their

extension, and ionic since the relative amount of Pb-6p states and chalcogen p states is

different above and below Fermi level. Below the Fermi level, the chalcogen p states

dominate and above Fermi level, the Pb-6p states dominate. The calculated band

structures along symmetry lines L, Γ, X, W, are displayed in Fig. 5.7a, 5.7b, 5.7c.

Experimentally, it is well known that PbX  have a narrow band gap at the L point. We
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also find energy gap of 0.40 eV, 0.24 eV, and 0.60 eV for PbS, PbSe, and PbTe

respectively at the L point.

Table 5.2: Our calculated direct (L-L) energy band gap values using GGA under FP-

LAPW and the results of the experimental and theoretical band gaps for PbS, PbSe and

PbTe.

Systems

study
Expt. Band gaps

(L-L) (eV)

Theoretical   Band gaps

(L-L) (eV)

Our Calculated Band-
gaps

(L-L) (eV)

PbS 0.41 0.069 0.40

PbSe 0.27 0.141 0.24

PbTe 0.31 0.032 0.60

Experimental band gaps are taken from Strehlow et al., (1973) and theoretical band gaps
are taken from Anna Delin et al., (1997).
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Fig. 5.5a. Total DOS for PbS. The vertical dotted line at E = 0 eV indicates the Fermi
energy level.

Fig. 5.5b. Total DOS for PbSe. The vertical dotted line at E = 0 eV indicates the Fermi
energy level.
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Fig. 5.5c. Total DOS for PbTe. The vertical dotted line at E = 0 eV indicates the Fermi
energy level.
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Fig. 5.6. Partial  DOS for PbS, PbSe, and PbTe. The vertical dotted line at E = 0 eV
indicates the Fermi energy level.
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Fig. 5.7a. Energy band structure for PbS along the high symmetry

directions. EF = 0 eV corresponds to the Fermi level.
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Fig. 5.7b. Energy band structure for PbSe along the high symmetry

directions. EF = 0 eV corresponds to the Fermi level.
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Fig. 5.7c. Energy band structure for PbTe along the high symmetry

directions. EF = 0 eV corresponds to the Fermi level.
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5.2.3 Optical properties

The absorptive part of the dielectric function ε2(ω) is shown in Fig. 5.8a, 5.8b and

5.8c. From the partial state densities in Fig. 5.6, it is obvious that the p states play a

major role in these optical transitions, both as initial and final states. Of the s states, the

Pb state primarily serves as initial state, whereas the chalcogen states are mostly final

state. The lead and chalcogen d states are primarily final states. Fig. 5.8, displays the

imaginary (absorptive) part of the dielectric function ε2(ω) for PbX. Our analysis of the

ε2(ω) curves show that the first critical points of the dielectric function occurs at 0.5 eV,

0.45 eV and 0.8 eV. These critical points are followed by the main peaks in the spectra

situated at 3.1 eV in PbS, 2.6 eV in PbSe and 2.2 eV in PbTe related to direct transition.

These peaks are primarily due to direct transition between valence band and conduction

band above the Fermi energy along symmetry lines L, Γ, X, W. Since the optical spectra

are obtained from the interband transitions, the peak structures in Fig. 5.8a, 5.8b and 5.8c

can be explained through our band structures Fig.5.7a, 5.7b, 5.7c. For PbS the energy

peak at 3.1eV in the ε2(ω) arises from the interband transition between the valence band

in -0.9 eV and the bottom most conduction band at W- edge. The sharp energy peak at

2.6 eV for PbSe is due to the interband transition from the highest valence band -0.7 eV

to the lowest conduction band at W- edge. The energy peak at 2.2 eV for PbTe is due to

the interband transition between the valence band in -0.3 eV and the conduction band in

1.9 eV. The experimental measurement localized the main peaks at 2.5 eV, and 2.0 eV

for PbSe and PbTe (Suzuki et al., 1994; 1995). In comparison with the experimental

data, there is slight energy shift in the main peaks. The dispersive part of the dielectric

function ε1(ω) have been obtained by Kramers-Kronig relation. All the features obtained

shows satisfactory result with the experimental spectra (Suzuki et al., 1995).
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Fig.5.8a. Calculated Imaginary part of dielectric function for PbS.
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Fig.5.8b. Calculated Imaginary part of dielectric function for PbSe.
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Fig.5.8c. Calculated Imaginary part of dielectric function for PbTe.
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5.3 Zinc chalcogenides:

Zinc chalcogenides have been extensively studied experimentally for their

intrinsic optical properties (Adachi et al., (1991), Kim et al., (1993, 1996, 1997),

Dahmani et al., (1994), Ronnow et al., (1999), Samara et al., (1983), Walter et al.,

(1970), Ves et al., (1990), Wagner et al., (1998), Freeouff (1970)) because of their

potential use in device capable for operating at high temperature.

5.3.1.  Calculational method:

Zinc chalcogens have direct minimum energy band gap at the Γ symmetry point

in the Brillouin Zone (BZ). For our calculation, we used lattice parameters a = 5.13 Å,

5.6 Å, and 6.0Å for ZnS, ZnSe, and ZnTe respectively, which was found out from

volume optimization with the optimized wave vector k = 5000 and atomic sphere radii

2.20 Å for Zn, 1.8Å, 1.9 Å and 2.2 Å respectively for S, Se and Te. We use RMT× K max =

7 to determine the matrix size, where K max is the plane-wave cut off and RMT is the

muffin tin sphere radii. In the atomic region, the basis set consists of spherical harmonics

with angular quantum number l = 10 and a non spherical contribution with l = 4. The

semiconducting Zinc chalcogenides crystallized in the zinc-blende structure. The space

group is F-43 m. The Zn atom is located at the origin and the X atom is located at (1/4,

1/4, 1/4).

5.3.2. Results and discussions

The calculated total density of states, the partial density of states and band

structures for zinc chalcogenides are shown in Fig. 5.9a, 5.9b, 5.9c, Fig.5.10a, 5.10b,

5.10c. and Fig.5.11a, 5.11b, 5.12c. The valence band maximum (VBM) and conduction

band minimum (CBM) are occurs at the Γ point. Thus the energy gap is direct between
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the top of the valence band and the bottom of conduction band at Γ point. It is clearly

seen that the band gap are on the whole underestimated in comparison with experiments

results. This underestimation of the band gaps is mainly due to the fact that the simple

form GGA do not take into account the quasiparticle self energy correctly (Rashkeev et

al., 2001) which make it not sufficiently flexible to accurately reproduce both exchange

correlation energy and its charge derivative.

Table 5.3: Our calculated direct (Γ - Γ) energy band gap values using GGA under FP-

LAPW and the results of the experimental and theoretical band gaps for ZnS, ZnSe and

ZnTe.

Systems

study
Expt. Band gaps

(Γ - Γ) (eV)

Theoretical   Band
gaps

(Γ - Γ) (eV)

Our Calculated Band-gaps

(Γ - Γ) (eV)

ZnS 3.80 2.4 2.8

ZnSe 2.82 1.6 1.4

ZnTe 2.39 1.6 1.4

Experimental band gaps are taken from Huang et al., (1993) and theoretical band gaps
are taken from Corso et al., (1996).

In Fig. 5.9a, 5.9b, 5.9c, we show the density of states DOS for ZnX. It is further

observed that the first structure encountered in the total DOS is the structure situated at

about 6.20 eV below the zero of energy for ZnS. It consists predominantly of Zn d states

with a few contribution of p states of the chalcogen atoms. From the band structure

Fig.5.11a, 5.11b, 5.12c, this structure corresponds to the flat bands clustered at —7.09

eV. The near lack of dispersion among some of these bands gives rise to the very narrow

nature of the peaks. The structure hump between - 5.50 eV  and the zero of the energy in
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these compounds which form the upper VB correspond to the chalcogen p states partially

mixed with cations s states. Above the Fermi level, the feature in the DOS originate

mainly from the s and d states of Zn partially mixed with little of chalcogen p states as

seen from Fig.5.10a.

The lowest energy group at around -11eV has mainly chalcogen s states. The

second group between -7.0eV and -6.0eV is composed of Zn-d and chalcogen p states.

From the partial DOS, we note a strong hybridization between Zn-d states and chalcogen

p states.
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Fig. 5.9a. Total Density of States for ZnS. The vertical dotted line at E = 0 eV
indicates the Fermi energy level.

Fig. 5.9b. Total Density of States for ZnSe. The vertical dotted line at E = 0 eV
indicates the Fermi energy level.
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Fig. 5.9c. Total Density of States for ZnTe. The vertical dotted line at E = 0 eV
indicates the Fermi energy level.
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Fig. 5.10a. Partial Density of States for ZnS. The vertical dotted line at E = 0 eV

indicates the Fermi energy level.
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Fig. 5.10b. Partial Density of States for ZnSe. The vertical dotted line at E = 0 eV

indicates the Fermi energy level.
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Fig. 5.10c. Partial Density of States for ZnTe. The vertical dotted line at E = 0 eV

indicates the Fermi energy level.
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Fig. 5.11a. Energy band structure for ZnS along the high symmetry directions

in Brillouin zone. EF = 0 eV corresponds to the Fermi level.
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Fig. 5.11b. Energy band structure for ZnSe along the high symmetry directions

in Brillouin zone. EF = 0 eV corresponds to the Fermi level.
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Fig. 5.11c. Energy band structure for ZnTe along the high symmetry directions

in Brillouin zone. EF = 0 eV corresponds to the Fermi level.
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5.3.4. Optical properties

In calculations of the optical properties, a dense mesh of uniformly distributed k

points is required. The frequency dependent complex dielectric function ε(ω) = ε1(ω) + i

ε2(ω) is known to describe the optical response of the medium at all phonon energies E =

ћ ω, using the formalism of Ehrenreich and Cohen (1959). The imaginary part of the

ε2(ω) in the long wavelength limit has been obtained directly from the electronic struc-

ture calculation, using the joint density of states (JDOS) and the transition moments

elements. The knowledge of both the real and imaginary parts of the dielectric function

allows the calculation of important optical function such as the refractive index n(ω).

Fig. 5.12a, 5.12b, 5.12c displays the imaginary (absorptive) part of the dielectric

function ε2(ω) for ZnX. Our analysis of the ε2(ω) curves show that the first critical points

of the dielectric function occurs at 2.8 eV, 1.3 eV and 1.25eV. These critical points are

followed by small structure located at 5 eV in ZnS, 3.7 eV in ZnSe and 2.9 eV in ZnTe

related to direct transition (L-L). The main peaks in the spectra are situated at 6.6eV, 5.5

eV and 4.5 eV respectively. The main peaks are followed by pronounced peak situated at

7.9 eV, 7.1 eV and 5.9 eV. These peaks are primarily due to direct transition between

valence band and conduction band above the Fermi energy at L-edge. The experimental

measurement localized the main peaks at 6.8 eV, 6.2eV, and 5.3 eV for ZnS, ZnSe and

ZnTe (Kim et al., 1993; Freeouff, 1973). In comparison with the experimental data, there

is slight energy shift in the main peaks. This energy shifts mainly arise from the GGA,

which give a smaller band gap in comparison with experiment.
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Fig. 5.12a.  Imaginary part of dielectric function for ZnS.

Fig. 5.12b. Imaginary part of dielectric function for ZnSe.
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Fig.5.12c. Imaginary part of dielectric function for  ZnTe.
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5.4  Stibiotantalite (SbTaO4 )

A ferroelectric substance exhibits an electric dipole moment even in the absence

of external electric field. In these crystals the centre of the positive charge does not

coincide with the centre of negative charge. It has wide applications in non-linear optics,

ceramics, micro wave and sensor industries. Due to the rapid advances in the field of

laser technology, the non-linear optics has been studied rigorously in recent years. Many

diverse disciplines such as atomic, molecular, solid state physics, material science,

chemical dynamics, surface-interface sciences, biophysics and medicines have

tremendous applications due to the inclusion of nonlinear techniques.

5.4.1 Details of calculations

The crystal structure of SbtaO4 in the ferroelectric phase is orthorhombic and

belongs to the space group Pbn2_1. There are 6 independent and 24 atoms in a unit cell.

The experimentally measured lattice constants are a=4.916Å, b=5.542 Å and c=11.78 Å

were used in our calculations. The atomic positions are as follows: Sb (-0.040, 0.0, 0.0),

Ta (0.0, 0.375, 0.25), O1 (0.16, 0.33, 0.09), O2 (0.75, 0.12, 0.17), O3 (0.25, 0.12, 0.33)

and O4 (0.84, 0.33, 0.41) (Reshak, 2005). Figure 5.13 shows the unit cell of SbTaO4.

Kohn-Sham wave functions were expanded in terms of spherical harmonic function

inside the non-overlapping muffin-tin spheres surrounding the atomic sites (MT spheres)

and in Fourier series in the interstitial region. The l-expansions of the wave functions

were carried out upto lmax=10 inside the muffin-tin spheres of radius Rmt. The Fourier

expansion for the charge density was upto Gmax=14. The wave functions in the interstitial

region were expanded in the plane waves for the cut-off of Kmax =7/Rmt in order to

achieve the energy eigen value convergence. A mesh of 17 X 20 X 42 k points were

generated in the irreducible wedge of the brillouin zone for SbTaO4. For the calculations,
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the charge convergence criterion is set to be 10-5 Ry. With the above k-points, the

convergence parameters RKmax=7 being the right choice that determines the stability and

convergence of the calculations. Under this conditions, the value of the other parameters

are chosen as follows: Rmt (Sb)= 2.19 a.u., Rmt (Ta) = 2.05 a. u., and Rmt(O) = 1.82 a.u.

5.4.2 Results and discussions

The total density of states for Stibiatantalite is shown in Fig. 5.15a. From the total

density of states, we observe a small energy gap at around 0 eV which is taken as Fermi

energy level. The partial densities of states for Sb, Ta and O are shown in Fig. 5.15b,

5.15c and 5.15d respectively.

5.4.3 Band structure

The calculated band structure of SbTaO4 in the orthorhombic phase is shown in Fig.

5.14. The FP-LAPW method yields an indirect band gap of 1.9 eV at Γ-R symmetry

point. The band structures near the Fermi level were dominated by the hybridization

between 5p bands of Sb, 5d states of Ta and 2p states of O atoms. This conclusion can be

drawn from the partial density of states. The peaks above Fermi level had Ta 5d

character with a little contribution from Sb 5p-states 2p-states of O atoms. The

conduction band arises mainly from d-states of Ta atoms with the minimum energy

occurring at Γ point.
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Fig. 5. 13 : Crystal Structure of SbTaO4.
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Fig. 5. 14 : Band structure of orthorhombic SbTaO4 . EF = 0 eV corresponds

to the Fermi energy level.
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Fig. 5. 15 : Density of states for SbTaO4: (a)Total DOS (b) Partial DOS of Sb

(c) Partial DOS of Ta and (d) Partial DOS of O.
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5.4.4 Optical properties

Our theoretically calculated absorptive part of the dielectric functions for

SbTaO4 is shown in the Fig. 5.16. Since the optical spectra are obtained from the

interband transitions, the peak structures in Fig. 5.16 can be explained through our band

structure Fig. 5.14. As there should be one-to-one correspondence between band

structure and optical spectrum, we first look at the imaginary part of the dielectric

function ε2(ω). For SbTaO4, the lowest energy peak at 2.5eV in the ε2(ω) arises from the

interband transition between the valence band in -0.4eV (Γ1) and the bottom most

conduction band (Γ’
1). The sharp energy peak at 3.5 eV is due to the interband transition

from the highest valence band (Γ1)  to the second lowest conduction band (Γ’
12). The

energy peak at 8.5 eV is due to the interband transition between the valence band in -

4.8eV (Γ15) and the conduction band in 4.7eV (Γ’
16). The real part or dispersive part of

the dielectric function ε1(ω) is shown in Fig. 5.17. The calculated spectra have been

obtained by Kramers-Kronig transformation of the imaginary part of the dielectric

function ε2(ω).  The main feature is a shoulder at lower energies, a rather steep decrease

between 2 eV to 4 eV, after which ε1(ω) becomes negative, a minimum at around 5.7 eV

and slowly increases at higher energies. With the knowledge of the complex dielectric

tensor components all other frequency – dependent optical constants can be obtained.
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Fig. 5. 16 : Imaginary part of Dielectric function ε2 for SbTaO4.



81

Fig. 5. 17: Real or dispersive part of Dielectric function ε1 for SbTaO4.
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Chapter 6

Conclusions

In this thesis, we have presented the study of optical properties of solids within linear

response regime. We have used generalised gradient approximation (GGA) which had been

discussed in detail in chapter 2. In Chapter 5, we have presented the calculation of electronic

band structures, density of states and optical properties by using FP-LAPW method. We applied

it to the case of beryllium chalcogenides (BeS, BeSe and BeTe), lead chalcogenides (PbS, PbSe,

and PbTe), zinc chalcogenides (ZnS,ZnSe,and ZnTe) and stibiotantalite (SbTaO4.). The band

structures are plotted along various symmetry directions in the Brillouin zone. The imaginary

part of the dielectric function (ε2) was also calculated for each system.

The band structures of beryllium chalcogenides (BeS, BeSe and BeTe) show indirect

band gaps. Band gaps are 3.1eV, 2.6 eV and 1.9 eV respectively from Γ to X along ∆-direction

for BeS, BeSe and BeTe respectively. For BeS, BeSe and BeTe the energy peak at 6.8 eV, 6.2 eV

and 5.1 eV in the ε2(ω) arises from the interband transition between the maximum of valence

band at Γ - edge and the bottom most conduction band at W - edge. In comparison with the

experimental data we find that the energy gaps are underestimated which is attributed to our use

of GGA. We also identified the microscopic origin of the main features in the optical spectra and

found that transitions between highest lying valence band (HVB) at Γ symmetry point and lowest

lying conduction band (LCB) at X symmetry point are responsible most of the optical absorption

in these systems.
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For lead salts, we find direct energy band gaps of 0.40 eV, 0.24 eV, and 0.60 eV for PbS,

PbSe, and PbTe respectively at the L symmetry point. Our results were compared with the

experimental results and found to agree and also with theoretical results of others using different

methods. The main peaks in the spectra  are situated at 3.1 eV, 2.6 eV  and 2.2 eV  respectively

for PbS,  PbSe and PbTe. The results for band structure and DOS show that the energy gap for

lead chalcogenides changes when S is replaced by Se and Te. This trend is attributed to the

increase in bandwidth of the conduction band on going from S to Se and Te. For PbS the energy

peak at 3.1eV in the ε2(ω) arises from the interband transition between the valence band in -0.9

eV and the bottom most conduction band at W- edge. The sharp energy peak at 2.6 eV for PbSe

is due to the interband transition from the highest valence band -0.7 eV to the lowest conduction

band at W- edge. The energy peak at 2.2 eV for PbTe is due to the interband transition between

the valence band in -0.3 eV and the conduction band in 1.9 eV.

The band structure for zinc chalcogenides also shows direct energy band gap at Γ

symmetry point. The experimental band gaps are 3.8 eV, 2.8 eV, and 2.4 eV for ZnS, ZnSe and

ZnTe respectively. Our calculated band gaps are 2.8 eV, 1.4 eV, 1.4 eV respectively for ZnS,

ZnSe and ZnTe. Our analysis of the ε2(ω) curves show that the first critical points of the

dielectric function occurs at 2.8 eV, 1.3 eV and 1.25eV. These critical points are followed by

small structure located at 5 eV in ZnS, 3.7 eV in ZnSe and 2.9 eV in ZnTe related to direct

transition (L-L). The main peaks in the spectra are situated at 6.6eV, 5.5 eV and 4.5 eV

respectively which are followed by pronounced peak situated at 7.9 eV, 7.1 eV and 5.9 eV.

These peaks are primarily due to direct transition between valence band and conduction band

above the Fermi energy at L-edge.
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Our calculation of the electronic structure and DOS of ferroelectric SbTaO4 in the ortho-

rhombic phase using the FP-LAPW method shows that the fundamental gap of SbTaO4 is

indirect at Γ-R point with a band gap of 1.9 eV. From the DOS and band structure features, it can

be concluded that the system is semiconductor. Further calculations of the x-ray spectra are to be

investigated for the improvement of our results.

In the above studied systems, in comparison with the experimental data we find that the

energy band gaps are underestimated which is attributed to our use of GGA. For optical

calculation, a dense mesh of k points is required for accurate results. In our case, we took only

5000 k points. We are working on higher k points for the improvement of our results. Overall,

we can conclude that FP-LAPW method is very appropriate for the calculation of electronic band

structure and optical properties of solids.
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Appendix I

A. l    Fourier Series Conventions of Lattice Periodic Functions

A. 1.1    Local Functions

Consider a function f(r) which has the lattice periodicity of the crystal, such as the

electron density or the crystal potential

( ) ( ) f r R f r (A.1)

where R denotes any direct lattice vector. Then, the function f may be expanded in the

Fourier series

1( ) 
 G

iGr

G
f r f e (A.2)

with the Fourier coefficients given by

3( ) ( ) 


  iGr

Gf R d r f r e (A.3)

The summation runs over the reciprocal lattice vectors G, and the integration is over the

crystal volume . If the function f, however, does not have the periodicity of the lattice,

such as an external perturbation, we have to include a sum over the a vector q from the first

Brillouin zone, and write the Fourier expansion of f in the way

( )1( ) ( ) 

BZ

G
q

i q G r

G
f r qf e (A.4)

3 ( )( ) ( )  


  i q G r

Gf q d r f r e (A.5)

A. 1.2    Nonlocal Functions

Response functions for crystalline systems are in general non-local functions of r and

r' that are invariant, if both space variables are translated by a direct lattice vector R, thus
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( , ) ( , )   f r R r R f r r (A.6)

We use the following convention for the Fourier expansions of functions f(r, r') with the

property (A.6)

( )( )1( , ) ( ) ( )   


 

BZ

i q G r
GG

q

i q G r

G
f r r q f q ee (A.7)

3 3 ( ) ( )( ) ( , )    
  

    i q G r i q G r
GGf q d r d r e f r r e (A.8)

The quantity ( )GGf q for a given q from the first Brillouin zone can be interpreted as a

matrix where the matrix indices are reciprocal lattice vectors G and G'.

A.2 Crystal Lattice Integrals and Summations

In this section, some useful integrals over the crystal volume or unit cell, and some

relations involving summations over lattice vectors will be given.

3
,0

  iqr
qd re (A.9)

0

3
0 ,0

  iGr
Gd re (A.10)

Here,  and 0 respectively, denote the crystal and the unit cell volume, and q and G are

vectors from the first Brillouin zone, and reciprocal lattice vectors, respectively. The

summation over direct lattice vectors R of the plane wave iqRe is given by

0
,



 iqR

q G
R G
e (A.11)

where the factor 0  is just the number of unit cells in the crystal. Note that the

summation

over G is only non-zero if q is equal to zero, provided that q is from the first Brillouin zone.



96

Appendix II

B.1 k.p Perturbation Theory

In the position representation, the one-electron wavefunction n,kr n,k (r)

is the solution of the Schrödinger equation

2

n,k n,k n,k
p V(r) (r) (r)
2m

  
 
  

  (B.1)

Since the crystal potential V (r) has the periodicity of the lattice, using Bloch’s

theorem we can write

ik.r
n,k n,k(r) e u (r)  (B.2)

2

k
( p k )H V ( r )

2 m


 
(B.3)

The periodic part of the wavefunction n,ku (r) obeys

k n,k n,k n,kH u (r) u (r) (B.4)

where

2

k
( p k )H V ( r )

2 m


 
(B.5)

We want to obtain an expression for n,k qu (r) and n,k q  valid for small q in terms of

the values for q=0 by perturbation theory. The equation for

n,k qu (r) is k q n,k q n,k q n,k qH u (r) u (r)    (B.6)

with
2 2

k q k
p.q k.q qH H
m m 2m    
  

(B.7)

where the last three terms can be treated as a perturbation.

We will introduce the notation

  n,kr | n,k u (r) (B.8)
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  ' ' n,kn ,k

1ˆ ˆn ,k | O | n,k dr u (r)Ou (r)


  

  (B.9)

for any operator Ô with the integral running over the unit cell of volume Ω.

According to this notation, the wavefunction to first order in q for a non-degenerate

state is

  k q k

n n n,k n ,k

(n ,k | H H | n,k)
| n,k q | n,k | n ,k)

 


 

 
  


(B.10)

Only one term from the perturbation Hamiltonian gives a contribution different

from zero to the first order correction of the wavefunction

  m

n n n,k n ,k

(n , k | p.q | n, k)| n, k q | n, k | n , k)
  


  




(B.11)

To linear order in q the expression for the energy is

2

n,k q n,k q
p.q k.qn, k n, k
m m

  

 
   

 

 

(B.12)

Since the states are normalized this expression can be written as

 n,k q n,k m n,k p n,k k q      


(B.13)

The momentum matrix element can be expressed as

 l,n,k l,np l, k p n,k k l, k p n,k  
(B.14)

In terms of this definition, the wavefunctions and energies to first order in q are

given by

  n ,n,k
m

n n n,k n ,k

p
| n,k q | n,k | n ,k) q

 


 

  


(B.15)

B.2 Matrixelements for small q

In this appendix we use the k. p expressions developed in Appendix B . 1 to

evaluate the matrix elements for q → 0. We first write the matrix elements in terms
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of the periodic part of the wavefunction

 0 iq.r
l,nM (k,q) l, k e n, k q l, k n, k q   

(B.16)

Using the expression of the wavefunction for small q of Eq.(B.15), the matrix

element at lowest order is

l,n,k0
l,n l,n l,n m

n,k l,k

p
M (k,q 0) (1 ) q 

 
   




(B.17)
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