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INTRODUCTION 
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1. INTRODUCTION 

 

1.1. Motivation 

The neutron capture cross sections of zinc isotopes are important for nuclear 

astrophysics. In the solar system, about half of the nuclei beyond iron are produced by 

the slow neutron capture process (s-process), the other half by the rapid neutron 

capture process (r-process), and a marginal contribution is provided by the so-called 

p-process (Burbidge et al. 1957). Most of the s elements between iron and strontium 

(60 ≲A ≲ 90) are generated at about 90 keV in massive stars with mass M >8M⊙ (M⊙ 

stands for the mass of the sun) during stellar He Core burning, and later during C Shell 

burning via activation of the neutron source reaction 22Ne(α,n)25Mg (where 22Ne is 

being produced from double α capture on 14N left behind from the CNO cycle), 

forming the weak s component (Kӓppeler F. et al. 1989; Beer et al. 1992; Lederer et 

al. 2013;  Reifarth et al. 2012). In shell C-burning, due to higher MACS uncertainties 

at higher temperatures, the s-process nucleosynthesis is more uncertain than in the He 

core (Pignatari et al., 2010). For A ≳ 90, the s elements are produced at about 5 to 25 

keV in low mass asymptotic giant branch  (AGB) stars with mass 1.3M⊙ ≲ M ≲ 8M⊙ 

forming the main s component (e.g., Arlandini et al., 1999) which is responsible for 

the mass region from Y to Bi (Reifarth, 2012). Finally, about 50% of the solar 208Pb is 

provided by AGB stars at low metallicity, forming the strong s component (Gallino et 

al., 1998). After the formation of a degenerate carbon-oxygen core, the alternating 

hydrogen shell burning and helium shell burning characterize the AGB stars. During 

the AGB evolution phase, the s process is mainly activated in the radiative 13C-pocket 

by the 13C(α, n)16O reaction where the 13C is being produced via 12C(p, γ)13N(+)13C.  

After a thermal pulse (TP), the shell H burning is not effective and in the He inter-shell 
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region, the H-rich material from the envelope is mixed down by the Third Dredge Up 

(TDU). The 70Zn(n, γ) reaction is the strongest local sensitivities in the 13C-pocket as 

well as TP for 70Zn isotope (Koloczek et al., 2016). Taking from spectroscopic 

observation evidences and from Galacticals chemical evolution calculations, Travaglio 

et al. (2004) showed that the weak s component and the main s component do not fully 

reproduce the s abundances between strontium and barium, proposing the existence of 

a new unknown component called lighter element primary process (LEPP). There is 

still under debate about the nature of such a component, and different scenarios have 

been proposed as an astrophysical site of the LEPP (Pignatari et al., 2010). 

The s-process path in the region around zinc starting from 64Zn is completely 

bypassing the r-only nucleus 70Zn which is produced when the 69Zn branching is open 

during the initial high neutron-density phase and during the final neutron burst 

(Reifarth et al. 2012; Pignatari et al., 2010 ). The branch bypassing occurs at 69Zn, 

since the β-half-lives of ground and isomeric states are too short (1h and 14 h). 

Therefore, 69Zn will always undergo a β-decay before capturing a neutron and hence, 

70Zn is bypassed during the weak s-process (Reifarth et al., 2012) between iron and 

arsenic. The s-process starting from 70Zn has a contribution for the formation of 71Ga 

via 71Zn and hence, 70Zn(n, γ) reaction has linked the s-process path through 71Ga. The 

Figure 1 shows how the 70Zn has linked the s-process path between iron and arsenic. 

The branching at 69Zn is indicated by the increase of the overabundance of 70Zn and 

the decrease of the abundance ratio of the Germanium isotopes 70Ge/72Ge. Notice that 

70Zn was destroyed during core He burning, but produced by shell C burning. This 

overabundance of 70Zn can be used as indicator of the strength of the nuclear reaction 

flow through the branchings along the s-process path, especially at 69Zn (The et al., 

2007). The cross sections in the energy region relevant to the s-process have not been 
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known accurately. In order to improve the situation, Reifarth et al., (2012) performed 

an experiment to study the Maxwellian averaged cross sections (MACS) of 64Zn, 68Zn 

and 70Zn neutron captures at kT = 25 keV, which concludes that the 70Zn neutron 

capture MACS is about half of the values recommended by Bao et al. (2000) though 

it does not have a strong impact on s-process scenario.  

 

Figure 1: Neutron-induced: s-process. 

 

It is also important for nuclear reactor application. The radiative capture cross 

section of 70Zn is a candidate of Reactor Dosimetry (Trkov et al., 2013). Reactor 

Dosimetry (RD) is an element of Nuclear Safety Culture. It is applied for determination 

of  neutron field parameters and the neutron flux responses in different regions of the 

reactor system plays an important role in determining of consecutive effects from the 

irradiation. That is, for determination of radiation exposure on reactor system elements 

such as Reactor Pressure Vessel (RPV), internals, shielding; dose determination for 

material damage study; determination of radiation field parameters for conditioning of 

irradiation. Therefore, the Reactor Dosimetry is a field that embraces measurements 

and assessment of the exposure of reactor materials and reactor experiments (Ilieva, 

2011). It is also a candidate of dosimetry reactions to study deviation of the epithermal 
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reactor neutron spectrum from 1/E distribution because there is no 70Zn+n resolved 

resonance below 10 keV (Trkov, 2015). The importance of deviation from 1/E 

distribution is particularly in determining the neutron leakage and absorption in the 

slowing down energy region. 

Except for the thermal neutron energy, the above mentioned kT~25 keV 

spectrum averaged cross section is the unique experimental 70Zn neutron capture cross 

section available in the EXFOR library (Otuka et al., 2014), while comparison of 

evaluated cross sections in the basic evaluated nuclear data libraries TENDL-2015 

(Koning et al., 2015), JENDL-4.0 (Shibata et al., 2011 ; Iwamoto et al., 2007) and 

EAF-2010 (Sublet et al., 2010) shows large discrepancies between the upper boundary 

of the resolved resonance region and 10 MeV as shown in Figure 2 and there is no 

experimental results from upper boundary of the resolved resonance region. So, it is 

not possible to know which evaluation is correct in absence of the experimental data. 

The purpose of this paper is to report new 70Zn(n, γ)71Znm  (3.96 ± 0.05 hrs) cross 

sections experimentally determined at incident neutron spectrum averaged energies of 

0.96 and 1.69 MeV to achieve improvement in our knowledge of this capture reaction 

in the MeV region. Therefore, the present result in this energy region will resolve this 

issue. The cross section for the 70Zn(n, γ)71Znm  has not been measured in the past in 

the MeV region. There are few data measured for a thermal and epithermal region 

using reactor neutrons. This may be due to the fact that the natural abundance of 70Zn 

is only 0.61 % and the enriched isotope is very costly.  
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Figure 2: Comparison of different evaluated files from IAEA-ENDF for the 70Zn(n, 

𝛾)71Zn reaction in the energy range 0.4 - 20 MeV.  

 

1.2. Radiative Capture 

In radiative capture, the incident neutron is captured by the target nucleus 

forming a compound nucleus which then decays to its ground state often through 

several intermediate states, thereby emitting one or more high energy gamma rays. The 

Illustration of radiative capture is shown in the Figure 3. An example of a radiative 

capture reaction is shown below. 

𝒏𝟎
𝟏 + 𝒁𝒏𝟑𝟎

𝟕𝟎  → ( 𝒁𝒏𝟑𝟎
𝟕𝟏 )

∗
 →  𝒁𝒏𝟑𝟎

𝟕𝟏 +  𝜸 
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Figure 3: Illustration of (n, γ) reaction. 

 

It is believed that the radiative capture reaction proceeds through the formation 

of an excited compound nucleus and subsequently decays by emitting one or several 

gamma-rays, i.e., 

(Z, A) + n → (Z, A + 1)* → (Z, A + 1) + γ . 

Where (Z, A + 1)* is the compound nucleus generated during the process. The 

formation of the compound nucleus and the emission of the gamma rays is represented 

in Figure 4.  

 

Figure 4: Scheme of the radiative capture process resulting in the formation of a 

compound nucleus. The neutron is captured into an unbound state above the neutron 

separation energy, Sn.  
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After the neutron capture, the compound nucleus is excited to a level with an 

energy given by, 

𝐸∗ = 𝑆𝑛 + 𝐸𝑛 − − − − (1);        

where 𝑆𝑛 is the neutron separation energy of the nucleus (Z, A+1) and 𝐸𝑛 is the energy 

of the incident neutron. The generated compound nucleus decays after a very short 

time ~ 10-14 s by the emission of one or more gamma-rays to reach either in a 

metastable state, which is an excited energy level close to the ground state, or a ground 

state (Domingo-Pardo, 2004). As the incoming neutron was first absorbed by the 

nucleus to form a compound nucleus, the chance of neutron capture is different for 

each target nucleus, depending on factors such as mass and spin. Therefore, the neutron 

capture cross section of an isotope can be defined as the probability of a reaction per 

incident neutron per target nucleus (Gicking, 2012).  

 

1.3. Neutron Activation Analysis (NAA) 

In 1936, the neutron activation analysis (NAA) was first developed by G. 

Hevesy and H. Levi. They found that the samples containing certain rare earth 

elements after exposure to a source of neutrons become highly radioactive. From this 

observation, they recognized that NAA is a powerful sensitive analytical technique to 

analyze the sample, i.e., to identify the elements present in the unknown samples both 

qualitatively and quantitatively by measuring the induced radioactivity. Due to its 

accuracy and reliability, NAA is usually used as an important reference for other 

analysis methods (Verma, 2007).  

The NAA technique is based on the principle of detecting and measuring the 

gamma rays emitted by the radioactive isotopes transformed from the stable isotopic 

sample by irradiating it with neutrons in a nuclear reactor or using any other neutron 

source. During irradiation, most of the naturally occurring stable isotopic elements are 
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transformed into radioactive isotopes by neutron capture. According to the 

characteristic half-lives of the newly radioactive isotopes varying from seconds to 

years, it is so decay emitting the γ-radiations with specific energies. In order to identify 

the source of γ-radiations, the characteristic γ-rays emitted by radioactive isotopes are 

subsequently measured with semi-conductor γ-ray spectrometers. Since, γ-radiation of 

a specific wavelength(s) or energy(ies) is emitted by each radionuclide, the emitted γ-

radiations are characteristic of the isotope formed and hence characteristic of the parent 

element (Verma, 2007; Bode and De Coeij, 1998). This emitted radiation is an imprint 

of the element, and the amount of radiation given off at certain energy is investigative 

of the amount of the element present in the sample. 

The neutron activation analysis is extremely useful for the determination of 

concentration of trace and minor elements in many disciplines. These include 

environmental sciences, nutritional and health related studies, geological as well as 

archaeological sciences, nuclear data measurements, material and forensic sciences. 

The most suitable source of neutrons for NAA is a research reactor (IAEA-TECDOC, 

2001).  

 

1.3.1. Basic Principles of NAA  

The principle of neutron activation analysis is the nuclear reaction, specifically 

the neutron capture and subsequent gamma radiation emission through β-decay, called 

(n, γ) reaction. The radiative neutron capture has the high probability for thermal 

(energy ∼ 0.025 eV) neutrons and for elements having large cross sections. The 

sequence of events occurring during the nuclear reaction of neutron capture or (n, γ) 

reaction used for neutron activation analysis is shown in Figure 5.  
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Figure 5: Diagram illustrating the process of neutron capture by a nucleus followed 

by the emission of gamma rays (Lylia Hamidatou et al., 2013). 

In a neutron capture reaction, when the target nucleus absorbed an incident 

neutron through an inelastic collision, a compound nucleus is formed which is in the 

excited state.  The compound nucleus excitation energy is due to the binding energy 

of the neutron with the nucleus. Then, the compound nucleus de-excites into either 

stable or radioactive. In the former case, during irradiation, de-excitation of compound 

nucleus occurs by emitting one or more characteristic prompt gamma rays. This type 

of NAA is called Prompt gamma ray NAA (PGNAA). The PGAA technique is usually 

performed by using neutrons beam extracted through a reactor beam port. In the latter 

case, a radioactive nucleus decays mostly by β-emission, the product nucleus which is 

being in the excited state may then de-excites (or decays) to its ground state by 

emission of one or more characteristic high energy delayed γ-rays. This type of NAA 

is known as Delayed gamma ray NAA (DGNAA). According to the type of neutrons 

used, NAA can be classified as thermal neutron activation analysis, epithermal neutron 

activation analysis, and fast neutron activation analysis. 
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The most advantage of PGNAA is the ability to obtain prompt gamma-ray 

spectra from excited compound nuclides of the neutron capture that do not produce 

radioactive isotopes through the (n, γ) reaction. This technique is most applicable to 

elements with very high neutron capture cross sections (B, Ni, P, S, Cd, Sm, and Gd); 

radioactive elements with a very short half-life which decay very quickly to be 

measured by DGNAA; elements that produce only stable isotopes; or radioactive 

elements with very low count rate (weak decay gamma-ray intensities). 2D, 3D 

analysis of (main) elements distribution in the samples can be performed by PGAA 

(Lylia Hamidatou et al., 2013). 

DGNAA technique is useful for mostly of elements that produce radioactive 

nuclides. This technique is adjustable regarding with time so that the sensitivity for a 

long-lived radionuclide that undergoes interference by a shorter-lived radionuclide can 

be enhanced by waiting for the short-lived radionuclide to decay or quite the opposite, 

the sensitivity for short-lived isotopes can be increased by decreasing irradiation time 

to minimize the interference of long-lived isotopes. This selectivity is a key advantage 

of DGNAA over other analytical methods (Verma, 2007; Lylia Hamidatou et al., 

2013). In the present work, the residual nucleus 71Znm has the half-life of 3.96 ± 

0.05hrs and we adopted DGNAA technique. 

 

1.3.2. Activation Equation 

Consider the neutron capture reaction, in which the target sample is bombarded 

by neutrons. The product nuclide can be either stable or radioactive. In the former case, 

only prompt gamma de-excitation occurs. In the latter case, the radioactive nuclei 

undergo -decay emitting delayed γ-rays which can be detected by using the HpGe 

detector and is eventually transformed into a stable nuclide. The rate of change of 
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radioactive nuclides during irradiation is governed by the expression (Yit-Fong Chan, 

2012): 

𝑑𝑁(𝑡)

𝑑𝑡
= (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖𝑜𝑛) − (𝑟𝑎𝑡𝑒 𝑜𝑓 𝑑𝑒𝑐𝑎𝑦) 

= (𝜙𝜎𝑁) − 𝜆𝑁(𝑡) − − − (2), 

where, N is the number of target nuclei in the sample; 𝑁(𝑡) is the number of isotopes 

produced during irradiation; σ is the neutron capture cross section of the reaction or is 

a probability of a neutron being captured by a nucleus; 𝜙 is the neutron flux;  𝜆 is the 

decay constant of radioactive nuclei produced. 

Multiplying Eq. (2) by λ and rearranging we get, 

𝑑[𝜆𝑁(𝑡)]

[𝜆𝑁(𝑡) − 𝑁𝜎𝜙]
= −𝜆𝑑𝑡 − − − (𝟑) 

Integrating Eq. (3), we get, 

ln (𝜆𝑁(𝑡) − 𝑁𝜎𝜙)|0
𝑁 = −𝜆𝑡|0

𝑡  

[𝜆𝑁(𝑡) − 𝑁𝜎𝜙]

−𝑁𝜎𝜙
= 𝑒−𝜆𝑡 

Therefore, the Eq. (2) becomes: 

𝑁(𝑡) =
𝑁𝜎𝜙

𝜆
(1 − 𝑒−𝜆𝑡) − − − (𝟒). 

The activity of the product nuclei, 𝐴𝛾 at the end of irradiation is given by: 

𝐴𝛾 = 𝑁𝜎𝜙(1 − 𝑒−𝜆𝑡) − − − (5). 

The activity 𝐴𝛾
 
of a reaction product at any time is related to counting rate 𝐴𝐶  

in one of its characteristic photo-peaks which is given by: 

𝐴𝛾 =  
𝐴𝐶𝜆

𝜀𝑝𝑓𝑠𝑓𝑑
− − − (6), 

where, 𝜀𝑝 is the photopeak detection efficiency of the detector; 𝑓𝑠 is the source self-

absorption correction, and  𝑓𝑑 is the photon disintegration probability. 
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Let 𝑡1 be the time elapsed during irradiation of the sample (irradiation time), 

𝑡2  is the time elapsed between the end of irradiation and the start of counting (cooling 

or delay time), and 𝑡3 be the length of counting time. During irradiation, there is a 

build-up in activity. Figure 6 shows the behavior of activated neutron sample. 

Considering correction for decay during counting interval 𝑡3 , the number of counts 

(count rate) detected is: 

 

𝐴𝐶 = [𝑁𝜎𝜙𝜀𝑝𝑓𝑠𝑓𝑑(1 − 𝑒−𝜆 𝑡1)𝑒−𝜆 𝑡2(1 − 𝑒−𝜆 𝑡3)]/𝜆 − − − (7). 

 

 

 

Figure 6: Activity build-up as a sample is irradiated to 𝑡1 . Counting measurements 

taken between 𝑡2 and 𝑡3. 

Cross sections were estimated using the above equation of activation formula. 

The count rates were corrected for coincidence effects, for γ-ray abundance, γ-ray self-

absorption, an efficiency of the detector, and measurement geometry, neutron flux 

fluctuations during the irradiations, and the background neutrons.  

The cross section σ of a neutron-induced nuclear reaction can be estimated 

relative to the well-known cross section 𝜎𝑚 
 
of the monitor reaction using the following 

relation; 

𝜎 = 𝜎𝑚

𝐴𝐶𝑁𝑚𝜙𝜀𝑚𝑓𝑠,𝑚𝑓𝑑,𝑚(1 − 𝑒− 𝜆𝑚 𝑡1)𝑒−𝜆𝑚 𝑡2(1 − 𝑒−𝜆𝑚 𝑡3)

𝐴𝐶,𝑚𝑁𝜙𝜀𝑓𝑠𝑓𝑑(1 − 𝑒−𝜆 𝑡1)𝑒−𝜆 𝑡2(1 − 𝑒−𝜆 𝑡3)
− − − (8), 
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where, A is the number of counts under the photo peak. The quantities with the 

subscript ‘m’ are for the monitor reaction.  

The commonly used monitor reactions are 197Au(n, γ)198Au , 115In(n, n’)115Inm 

27Al(n, p)27Mg, 27Al(n, α)24Na, 56Fe(n, p)56Mn, 93Nb(n, 2n)92Nbm, etc. 

Although the activation technique is simple and efficient as compared to other 

techniques, one of the limitations is that it cannot be used for reactions whose product 

nuclei are stable. 

 

1.4. Review of Literature 

Reifarth et al. (2012) measured the neutron radiative capture cross sections of 

64Zn, 68Zn, and 70Zn with the activation technique in a quasi-stellar neutron spectrum 

via the 7Li(p, n)7Be  reaction corresponding to a thermal energy of kT = 25 keV. By 

repeating the irradiations several times with different experimental conditions, it could 

be achieved on the uncertainty of 3% for the 64Zn(n, γ)65Zn cross section and for the 

partial cross section 68Zn(n, γ)69Znm  feeding the isomeric state in 69Zn. For the partial 

cross sections of 70Zn(n, γ)71Znm  and 70Zn(n, γ)71Zng, which had not been measured so 

far, uncertainties of only 16% and 6% could be reached because of limited counting 

statistics and decay intensities. He compared the present results to the previous 

measurements on 64Zn and 68Zn, and then, he found that the uncertainties could be 

significantly improved, while the 70Zn cross section was found to be two times smaller 

than existing model calculations. From these results, Maxwellian average cross 

sections were determined between 5 and 100 keV. Additionally, the β-decay half-life 

of 71Znm could be determined with significantly improved accuracy. By network 

calculations, he studied the results of these data for convective core He burning and 

convective shell C burning in massive stars. 
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Mannhart et al., (1967) determined thermal capture cross sections and isomeric 

cross section ratios in thermal neutron capture for even-even nuclei in the region of the 

2P1/2 – 1g9/2 neutron shell. They measured capture cross sections for formation of 71Znm 

and Zn71 by the activation method using 197Au(n, γ)Au198 as a monitor with the cross 

section as 98.5 ± 0.4 b. From these data and additional measurements of cross section 

ratios, the isomeric ratios were also determined for thermal capture in 70Zn. Then, the 

isomer ratios were compared with calculations based on the statistical model of 

HUIZENGA and VANDENBOSCH. The measured thermal neutron capture cross 

sections for the 70Zn(n, γ)71Znm  and  70Zn(n, γ)71Zn are 0.0081 ± 0.0005 % b and 0.083 

± 0.005 % b. 

Mangal et al. (1962), measured thermal neutron capture cross sections for the 

70Zn(n, γ)71Znm and 70Zn(n, γ)71Zn  using activation technique by making irradiation 

with the "Swimming pool" reactor at Trombay, Bombay.  Near the core, the zinc oxide 

film was irradiated, because 14 h irradiation in the thermal column failed to give 3 h 

activity. The sample activity was studied for 10 h, after it had decayed for 8 h to allow 

69Zn activity to decay. The decay curve consisted of two activities. The 14 h activity 

observed due to conversion electrons of 69Znm when subtracted from the total activity 

gave an activity which decayed with a half-life of 3 h. This was attributed to mZn71. In 

such cases, the neutrons flux at the point of irradiation was of the order of 1011 neutrons 

per cm2 • sec-1. The sample was irradiated every time, either in the thermal column or 

near the core, the flux was calibrated simultaneously with the help of the standard 

reaction as reactor calibration was not so sensitive. An end window -counter was used 

for nuclei which decay through -particle emission. The 55Mn(n, γ)Mn56 reaction was 

taken as the standard, with cross section as 13.4 ± 0.3 b. The measured thermal neutron 

capture cross sections for the 70Zn(n, γ)71Znm  and  70Zn(n, γ)71Zn are 9 ± 20 % mb and 
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111 ± 20 % mb, and isomeric cross section ratios for target nuclei of spin 0 i.e., 71Znm 

/ 70Zn71 is 0.041 ± 0.017 with competing levels of  
9

2
/

1

2
 . 

Cohen et al. (2005), measured the reactor thermal neutron capture cross section 

for the resonance integrals of the reactions 70Zn(n, γ)71Zn and 70Zn(n, γ)71Znm, referred 

to the tabulated value for the resonance integral of the 68Zn(n, γ)69Znm reaction with 

cross section as  0.24 ± 0.03 b. No previous data were found on the discriminated 

resonance integrals for the capture reactions on 70Zn. The experimental results were 

0.1350 ± 0.0093 b, for the 70Zn(n, γ)71Zn reaction (average of four measurements) and 

0.157 ± 0.029 b for the 70Zn(n, γ)71Znm reaction, the latter corresponding to a single 

measurement of the resonance integral. As they did not perform any corrections for 

the departures from the ideal behaviour of the epithermal flux, and literature data on 

the mean effective resonance energy were lacking for these reactions, these results 

should be considered as informative or working values, only. The mean values of the 

epithermal flux per unit ln E, as measured the reaction 68Zn(n, γ)69Znm, which was used 

as internal standard, was 8.4×1010 n cm−2 s−1 respectively.  

Krane (2017) measured the radiative thermal neutron capture cross sections 

70Zn(n, γ)71Znm,g reaction. Irradiations were done in the TRIGA reactor of the Oregon 

State University Radiation Center. Several different irradiation sites were used: one in 

the central core, which also featured a Cd-lined facility to absorb thermal neutrons 

(nominal thermal and epithermal fluxes of 9.0×1012 and 1.2×1012 neutrons cm−2s−1); a 

fast pneumatic transfer facility (rabbit) located in the outer ring of the core (4.4×1012 

and 3.4×1011 neutrons cm−2 s−1); and a thermal column located behind graphite 

shielding about 2 m from the core (7.8×1010 and 2.0×108 neutrons cm−2s−1). All of the 

irradiations for the cross section measurements were accompanied by Au and Co as 

dilute impurities in aluminum foils which served as flux monitors. 
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In order to facilitate corrections for the epithermal neutron component, the 

resonance integrals were also measured. He also determined the cross sections for 

64Zn(n, γ)65Zn and 68Zn(n, γ)69Znm reactions. The γ rays from the irradiated samples 

were observed with high-resolution Ge detectors (efficiency 35–40% compared with 

NaI at 1332 keV, resolution 1.7–1.8 keV at 1332 keV). Through high-resolution γ-ray 

spectrometry in the 71Znm decay, a new set of γ-ray energies and intensities was 

obtained of roughly an order of magnitude greater precision than the previous set, and 

several transitions new to the decay scheme are proposed. The implications for the 

properties of the levels of 71Ga were discussed. More precise values of the decay half-

lives for 69Znm, 71Zng, and 71Znm were determined. 
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2. EXPERIMENTAL DETAILS 

 

2.1. Neutron Source 

The experiment was performed at the Folded Tandem Ion Accelerator (FOTIA) 

Facility, Nuclear Physics Division, Bhabha Atomic Research Centre (BARC), 

Mumbai. Schematic layout and photographs of the Folded Tandem Ion Accelerator 

(FOTIA) are shown in Figures 7, 8(a) & (b). The protons at 2.80 and 3.50 MeV after 

passing through a beam collimator (0.5 cm in diameter) bombarded a 2.0-mg/cm2 

(37.4 μm) thick natural lithium target to produce neutrons through the 7Li(p, n)7Be 

reaction (Eth = 1.881 MeV). The proton beam energy spread is ± 0.02 MeV.  A fresh 

lithium target was used for irradiation at each proton energy. The lithium targets were 

supplied by the Tata Institute of Fundamental Research 

 

  

 

 

 

 

 

 
 

 

 

Figure 7: Schematic Layout of the Folded Tandem Ion Accelerator (FOTIA) 

Figure 8(a): A wide view photograph 

of  FOTIA  

Figure 8(b): A close view photograph 

of  FOTIA  
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Figure 9(b) & (c): The photographs 

of Experimental Setup-1. 

Figure 9(a): The schematic diagram of 

the Experimental Setup-1. 

(TIFR), Mumbai, and prepared using the rolling method at TIFR. A 0.25-mm thick 

tantalum foil (manufactured by Goodfellow Cambridge Limited, England, and 

supplied by H. Fillunger & Co. Pvt. Ltd., Banglore) on which the lithium target was 

pasted was used as a proton beam stopper. The proton beam current during irradiation 

varied from 50 to 100 nA, and the beam diameter on the lithium target was about 5 mm. 

The neutron flux was monitored online by an NE213 (shown in Figure 10) neutron 

detector at zero degree and at 1 m distance from the lithium target. The neutron flux 

was recorded and saved every 30 minutes to get the neutron flux fluctuation during the 

whole irradiation period. The experimental setup is schematically shown in 

Figure 9(a) and photographs in Figures 9(b) & (c). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) 

(c) 
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Figure 10: Experimental Setup-1: NE213 neutron detector at zero degree kept at 

1 m distance from the lithium target. 

 

 

 

The proton beam was continuous, and therefore TOF technique cannot be 

employed to measure the neutron flux energy spectrum. We, therefore rely on the 

7Li(p, n)7Be neutron flux energy spectrum code EPEN (R. Pachuau et al., 2017a, 

2017b) developed at our laboratory to obtain the neutron flux energy spectra φ(E) for 

various lithium target configurations based on the 7Li(p, n)7Be cross section evaluated 

by H. Liskien and A. Paulsen (Liskien et al., 1975) for proton energy of 1.95 - 4 MeV 

and Macklin and Gibbons (Macklin et al., 1958) for below 1.95 MeV up to threshold 

(1880.429 keV). The neutron flux energy spectra φ(E) calculated by EPEN at the two 

proton energies in the present experimental configuration are shown in Figures 11 and 

12. It can be seen that the neutron energy is quasi-monoenergetic due to the proton 

energy loss in the lithium target and also due to the finite angular coverage of the 

neutron capture reaction target in the experimental setup. Since the proton energies in 

the present experiment are above the threshold energy of the 7Li(p, n1)
7Be reaction 

(2.37 MeV), there are (p, n1) low energy background neutrons in addition to the (p, n0) 

neutrons, and their contribution should be known for subtraction. The mean energy of 

the (p, n0) neutron group was obtained by  

〈𝐸𝑛〉 = ∫ φ0(𝐸) 𝐸𝑑𝐸/ ∫ φ0(𝐸) 𝑑𝐸 − − − (9) 

NE213 Neutron Detector 
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with the EPEN (p, n0) neutron flux energy spectrum φ0(E), and it is 0.96 and 1.69 MeV 

for Ep = 2.80  and 3.50 MeV, respectively. The width of the (p, n0) spectrum is ± 0.15 

MeV at both proton energies. The neutron flux energy spectra are plotted in Figures 

11 and 12.  
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Figure 11: Neutron flux energy spectrum φ(E) from the 7Li(p, n0)

7Be and7Li(p, n1)
7Be 

reaction at Ep = 2.80 ± 0.02 MeV obtained from the code EPEN.  
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Figure 12: Neutron flux energy spectrum φ(E) from the 7Li(p, n0)
7Be and 7Li(p, n1)

7Be 

reaction at Ep = 3.50 ± 0.02 MeV obtained from the code EPEN. 
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2.2. Sample Preparation 

A zinc foil enriched (72.4 ± 1.0%) to 70Zn (manufactured by FUSE “Integrated 

Plant Electrohimpribor”,  Russia, and supplied by AMT Ventures Pvt. Ltd.) was 

sandwiched between gold foils (manufactured by Goodfellow Cambridge Limited, 

England, and supplied by H. Fillunger & Co. Pvt. Ltd., Banglore). The gold foils were 

used for normalization of the measured cross section with the 197Au(n, γ)198Au standard 

cross section. Furthermore, another natural indium foil (provided by BARC) was 

stacked at the end of the foil stack to serve as an independent flux monitor foil using 

the 115In(n, n’)115Inm  reaction for cross-checking. The whole stacked foils (10 mm × 

10 mm) were wrapped with a 0.025 mm-thick superpure aluminium foil. The Au-Zn-

Au-In stack was mounted at zero degree with respect to the beam direction at a distance 

of 14 mm from the lithium target. All foils were weighted at TIFR with an accuracy of 

0.1 mg. Details of foils used in the present work are shown in Table 1. 

 

Table 1: Details of foils used in the present experiment. 

Isotope 
Enrichment 

(%) 

Purity 

(%) 

En 

(MeV) 

Thickness 

(mg/cm2) 

Number of atoms of 

the isotope (10-4 

atoms/b) 

70Zn 

72.4 ± 1.0 

8.49 (64Zn) 

8.40 (66Zn) 

2.01 (67Zn) 

8.70 (68Zn) 

>99.97 

0.96 87.3 ± 0.1  5.529 

1.69 113.6 ± 0.1 7.194 

197Au 100% 99.95 

0.96 

72.3 ± 0.1 

(front) 

68.5 ± 0.1 

(back) 

2.211 (front) 

2.094 (back) 

1.69 

74.0 ± 0.1 

(front) 

70.3 ± 0.1 

(back) 

2.263 (front) 

2.149 (back) 

115In 95.71% 99.99 

0.96 102.0 ± 0.1 5.120 

1.69 129.8 ± 0.1 6.516 
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2.3. Measurement of γ-ray Activity 

After completion of the neutron irradiation and sufficient cooling, the foil stack 

was transferred to the counting room. The γ-ray activity was measured using a pre-

calibrated lead-shielded 185 cc high purity germanium (HPGe) detector having 30% 

relative efficiency, and 1.8 keV energy resolution at 1.33 MeV γ-energy. The data 

acquisition was carried out using CAMAC based LAMPS (Linux Advanced Multi 

Parameter System) software (TCAMCON-95/CC 2000 crates controller and CM-48 

ADCs). The HPGe detector set up is shown in Figure 13. Therefore, the detector dead 

time was negligible. To correctly identify the γ-ray of interest, the decay curve analysis 

was carried out by saving the γ count periodically as shown in Table 2 and followed 

for 2 – 3 times the half-life of 71Znm. Details of decay data adopted in the analysis are 

given in Table 3. A typical γ-ray spectrum of the present experiment at <En> = 1.69 

MeV is shown in Figure 14.  

 
     

Figure 13(a)-(d): Experimental Setup-2 (HPGe Detector Setup). 

       

(a) (b) (c) 

(d) 
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Table 2: Irradiation, cooling and counting times. 

En 

(MeV) 

Irradiation 

time (sec.) 

Run 

No. 

Cooling time (sec.) 

(beam stop time-

counting start time) 

Counting 

time (sec.) 

0.96 26580.0 

1 1808.0 3875.6 

2 5705.6 3636.9 

3 9373.5 7313.7 

4 16746.2 7212.3 

5 24012.5 1836.0 

1.69 30300.0 

1 1534.0 3591.2 

2 5180.2 3634.3 

3 8851.5 3616.9 

4 12541.4 7253.3 

5 20113.7 10368.6 

6 30573.3 7950.3 

7 38531.6 6353.3 

 

 

 

Table 3: Decay data adopted in the present work taken from the ENSDF library 

(Abusaleem et. al., 2011, Xiaolong, 2009; Blachot, 2012). 

 

 

 

 

 

 

 

 

 

Nuclide Half-life Eγ (keV) Iγ (%) 

71Znm 3.96 ± 0.05h 386.280 91.40 ± 2.10 

198Au 2.6947 ± 0.0003d 411.802 95.62 ± 0.06 

115Inm 4.486 ± 0.004h 336.240 45.80 ± 2.20 
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Figure 14: Typical γ-ray spectrum of radioactive nuclides 115Inm, 71Znm and 198Au at 

<En> = 1.69 MeV. 

 

2.4. HPGe Detector Energy Calibration 

The energy calibration specifies the relationship between peak position in the 

spectrum (channel number) and the corresponding gamma-ray energy (i.e., gamma-

ray as a function of channel number). The energy calibration is accomplished by 

measuring the spectrum of a source emitting gamma-rays of precisely known energy 

and comparing the measured peak position with energy irrespective of the number of 

nuclides present in the source. This is normally performed before measuring the 

sample. Whatever source is used, it should be ensured that the calibration energies 

cover the entire range over which the spectrum is to be used. In practice, the spectrum 

should be measured long enough to achieve good statistical precision for the peaks to 

be used for calibration (Gilmore, 2008). The measured energies are only used to 

identify the nuclides and, thus, the uncertainty in the energy is no longer used in the 
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following calculations. The 152Eu point source (T1/2 = 13.517 Years, Martin, 2013) of 

known activity, A0 was used for energy calibration of the HPGe detector at its various 

characteristic gamma energies. The characteristics of the 152Eu point source used in 

the experiment are given in Table 4. 

 

 Table 4: Characteristics of the 152Eu point source. 

Isotope 

Activity on 

Reference 

Date [DPS] 

Activity on 

Measurement 

Date (24.2.2013) 

[DPS] 

Reference 

Date 

Half-life         

[t1/2  yrs.] 

152Eu 7582.5 3733.17 1.10.1999 13.517 ± 0.014 y 

 

 

2.5. HPGe detector efficiency calibration 

Detection efficiency of a detector system depends on different parameters: the 

incident gamma ray energy, the detector crystal, the materials surrounding the detector 

crystal, the physical thickness of the detector in the direction of the incident radiation, 

the source to detector distance and geometry (Knoll, 2000). Three efficiencies can be 

considered depending upon how we wish to use it: 

(i) Absolute total efficiency: it is the ratio of the number of gamma rays 

emitted by the source (in all directions) to the number of counts detected anywhere in 

the spectrum. This takes into account the full energy peak and all incomplete 

absorptions represented by Compton continuum (Gilmore, 2008). 

(ii) Intrinsic efficiency: it is the ratio of the number of pulses recorded by 

the detector (counts in the peaks of the spectrum) to the number of gamma rays hitting 

the detector i.e., the fraction of gamma rays recorded in the net full energy peak to the 

number of gamma rays incident on the detector. This efficiency of a detector is a 

detector property and is independent of source/detector geometry (Knoll, 2000). 
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(iii) Absolute full-energy peak (or photo-peak) efficiency: it is the ratio of 

the peak area in the spectrum, at a particular energy (counts in the full-energy peak), 

to the number of gamma-rays emitted by the source. It depends on the geometrical 

arrangement of source and detector. This parameter is the most significant in practical 

gamma-spectroscopy (Gilmore, 2008: Knoll, 2000). 

A 152Eu point source of known activity (A0 = 7582.5 Bq on 1st Oct.1999) was 

used for determination of the absolute photo-peak efficiency of the HPGe detector at 

various characteristic γ energies of the point source, because, its photon radiations 

cover the energy range of interest and also provide the highest possible accuracy. The 

spectrum obtained demonstrates that the 152Eu source was a long-lived multi-gamma-

ray emitter with the gamma-rays being emitted over a wide range of energies. This 

spectrum emphasizes the ability of the HPGe detector to measure complex spectra and 

to distinguish gamma-rays with very close energies, in the limits of the values for the 

energy resolutions. 

For the point source, the detector efficiency calibration consisted of 

determining a function describing the full-energy peak (FEP) detection efficiency 

versus the gamma-ray energies. For convenience, the peak efficiency was calibrated 

in terms of absolute efficiency. Based on the energy spectrum, the peak efficiency 

indicates the number of events detected in the full-energy peak over the total number 

of events emitted by the source. It relies upon several variables like the gamma energy, 

the detector qualities (dimensions, shape, material, etc.) and the source’s relative 

arrangement (Peralta, 2004; Chandani, 2014). The detection efficiency for the point 

source placed at a distance of 1 cm from the detector εp was determined by 

𝜀𝑝 = 𝜀𝐼𝜀𝐺 − − − (10), 

In the above equations, 𝜀𝐼  is the intrinsic detection efficiency, 𝜀𝐺  is the  
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geometric efficiency depending on the distance and shape of the source). A brief 

discussions for these parameters are given in the following Sections 2.5.1 and 2.5.2. 

Since the count rate from the 70Zn(n, γ)71Znm reaction is rather low, we needed 

to place the foil stack very close to the detector to obtain high count rate. Therefore, 

the efficiency calibration source has also to be placed at the same distance, which is 

1 cm from the detector. However, this introduces the coincidence-summing effect. 

Evaluations of the coincidence summing effect and detection efficiency are discussed 

in the following sections. Note that all parameters independent of γ energies are finally 

cancelled because we need only the ratio of detection efficiencies in the determination 

of the cross sections. 

 

2.5.1. The Intrinsic Efficiency  

Basically, the detection efficiency depends mainly on the characteristic of 

intrinsic factors of the detector and on the solid angle Ω subtended by the source at the 

detector face. The intrinsic detector efficiency is represented by Eq.(11) respectively 

as: 

𝜀𝑖 = 1 − 𝑒−𝜇𝑑 − − − (11) 

where 𝜇 is the attenuation coefficient of the detector active medium for a γ-ray photon 

with energy Eγ, 𝑑 is the average path length traveled by a photon through the detector 

active volume for an isotropic emission and is represented by Eq.(12) respectively 

(Abbas, 2006): 

𝑑 =
∫

Ω
(∑ 𝑑𝑗

𝑛
𝑗=1 )dΩ

∫
Ω

dΩ
=

∫
𝜑

∫
𝜃

(∑ 𝑑𝑗
𝑛
𝑗=1 ) sin 𝜃𝑑𝜃 𝑑φ

Ω
− − − (12), 

where, d1, d2, …, dn are the possible path lengths traveled by the photon within the 

detector active volume and θ and φ are the polar and the azimuthal angles respectively. 
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Experimentally, the intrinsic efficiency can be determined by:  

,  

𝜀𝐼 =
𝐶𝐾𝑐

𝐴0𝑒−𝜆𝑡∆𝑡𝐼𝛾

− − − −(13), 

where C is the number of counts during the counting time (Δt = 3607 sec), A0 is the 

152Eu source activity at the time of manufacture, t is the time elapsed from the date of 

manufacturer to the start time of counting, λ is the decay constant, Iγ is the decay γ 

intensity, Kc is the correction factor for the coincidence summing effect, d is the source 

to detector distance.  

 

2.5.2. Geometric Efficiency 

The detector efficiency is a function of the solid angle subtended by the source 

at the detector i.e., of the source-to-detector distance, and the areas of the detector and 

source front face. Generally, gamma rays are emitted equally in all directions thereby 

covering a solid angle Ω for a point source to the detector located along the axis of a 

right circular cylindrical detector. For an arbitrary detector and isotropic point source, 

the geometric efficiency can be defined as the fraction of solid angle subtended by the 

detector at the source position (Peralta, 2004): 

𝜀G = (1/4π)dΩ = (1/4π)∫
A

�⃗�⦁�⃗⃗�

|𝑟3|
d𝐴 − − − (14) 

where, �⃗⃗� is a unitary vector perpendicular to the detector surface at each point and �⃗� 

the vector linking the point source to a detector elementary area dA. For an extended 

source, an extra integration must be brought out to cover all source points. For a 

cylindrical detector with a window of radius r and a point source located in the 

symmetry axis at a distance d from the detector as shown in Figure 15, the solid angle 

can be calculated as (Peralta, 2004): 

Ω = ∫
∅

∫
𝜃

sin 𝜃𝑑𝜃 𝑑∅ = ∫ d∅
2π

0

∫ d(cos𝜃′)
1

cos 𝜃

= 2𝜋(1 − cos 𝜃) − − − (15) 
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where,                               

tan 𝜃 =
𝑟

𝑑 
 , 

and,                                                     cos 𝜃 = 1 √𝑡𝑎𝑛2𝜃 + 1⁄  

                                                                     = 𝑑 √𝑟2 + 𝑑2⁄  

and then, the solid angle for the point source is given by (Peralta, 2004; Damon, 2005): 

         Ω = 2𝜋[1 − 𝑑/(𝑑2 + 𝑟2)1/2] − − − (16), 

where, d is the source to detector distance and r is the radius of the detector. A 

depiction of the solid angle is shown below for a point source located at distance d 

from a cylindrical detector with radius r. 

 

 

Figure 15: Geometric arrangement of 152Eu point source placed at the distance d. 

 

 

Therefore, the geometric efficiency εG  can be defined as the ratio of the number 

of photons emitted towards the detector to the number of photons emitted by the 

source, and then, it is for a point source and cylindrical detector given by: 

𝜀G  = Ω/4π                    

                               = (
1

2
) (1 −

𝑑

√𝑑2 + 𝑟2
) − − − (14𝑎) 
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For example:  

Consider the point source placed above the detector crystal as follows: 

 (i) Distance of the source from the detector (d) =1 cm. 

(ii) Radius of the circular detector (r) =2.865 cm.                                                      

Now, the solid angle for the point source is calculated by using Eq. (16) as                                                                                                                                

Ω = 2𝜋 (1 −
𝑑

√𝑑2 + 𝑟2
) 

                = 2 × 3.14 (1 − 1/√1 + (2.865)2) 

                                                      =  4.2143         

Finally, using Eq. (14a), we get the geometric efficiency as: 

𝜀G = 4.2143/12.5714 

                                           = 0.3352 

 

 

2.5.3. Coincidence Summing Effect 

When two γ-rays emitted in a cascade are detected within the resolving time of 

the detector, the detector cannot distinguish between the two γ-rays, and thus giving 

rise to a single signal in the spectrum as if a single γ-ray would have been detected. 

This is known as “cascade” or “true coincidence” summing. This leads to (1) a loss in 

count (“summed out”) from the peaks corresponding to two γ-rays, and (2) an addition 

of count (“summed in”) at the sum of two energies. For any source-to-detector distance 

there will be some degree of summing depending on the detector size, beyond a certain 

distance, coincidence-summing losses will be negligible (Damon, 2005). 

The Figure 16 shows a simplified decay scheme for 152Eu. There can be two 

possible choices for the atoms of this nuclide when they decay; they can either emit ‒ 

particle and become 152Gd or, more likely (on 72.08% of events), undergo electron 

capture and become 152Sm. For both modes of decay, the daughter nucleus then de-
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excited by emitting a number of gamma-rays in any of the decays schemes until a 

stable nucleus is formed. Moreover, the electron capture decay to 152Sm is likely to be 

accompanied by the emission of Sm X-rays. The lifetimes of the discrete nuclear levels 

are short, which are much shorter than the resolving time of the gamma spectrometer 

system. Every disintegration of a 152Eu atom in the source will release a number of 

gamma-rays and possibly X-rays, simultaneously. For the detector, there is a high 

probability that more than one of these within the resolving time of the detector will 

be detected together. In that case, a pulse will be recorded which represents the sum of 

the energies of the two individual photons detected together. This phenomenon is 

called True coincidence summing (TCS), i.e., it is the summing of two gamma-rays 

emitted in coincidence, the event results in the loss of counts from the photo-peak and 

therefore a loss of photo-peak efficiency (Damon, 2005; Wissam, 2007; Gilmore, 

2008). 

The degree of TCS depends upon the probability that two or more coincident 

gamma rays emitted very nearly simultaneously will be detected simultaneously as a 

single count by the detector. This is a function of the geometry, of the solid angle 

subtended at the detector by the source and errors, are particularly severe when the 

sources are placed very close to the detector. It is noted that two gamma rays will be 

detected together decreases with increasing the distance between source and detector. 

So, it is understood that for any source-to-detector distance, there will be some degree 

of summing. Thus, the coincidence summing corrections can be avoided by counting 

the sample keeping far from the detector, so that the probability of two gamma rays 

reaching the detector at the same time will be negligible. So, in practice, depending on 

the detector size, TCS loses beyond a certain distance are negligible. This is quite 

impractical for the samples with the low activity where the samples are required to be 
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counted as close as possible to the detector. Another way to avoid coincidence 

summing corrections is to use a gamma ray standard as a monitor; the 152Eu, which is 

used in our works (Damon, 2005; Wissam, 2007; Gilmore, 2008). The evidence for 

coincidence summing is found in the gamma rays spectrum of the 152Eu point source 

shown in Figure 17. The photo-peaks corresponding to the combination of gamma-

ray lines that are indicated in Figure 17 is given in Table 5. In our experiment, since 

the count rate from the 70Zn(n, γ)71Znm reaction is rather low, we needed to place the 

foil stack very close to the detector to obtain high count rate. 

 

Figure 16: Simplified decay scheme for 152Eu (Gilmore, 2008). 
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Table 5: Combinations of gamma-rays (keV) of the 152Eu standard source that undergo 

coincidence summing. The yellow boxes indicate those peaks that undergo summing 

out and those green pale boxes, summing in. 

Coincidence Summing Out/In on Eu-152 

keV 121.8 244.7 344.3 444.1 

244.7 366.5    

444.1 565.9    

778.9   1123.2  

867.4  1112.1   

964.0 1085.8   1408.1 

1085.8     

1112.1 1233.9     

1408.0 1529.8    

 

 

 

Figure 17: Sum peaks in the 152Eu standard source spectrum due to coincidence 

summing. 
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2.5.3.1. Mathematical Summing corrections 

The coincidence summing correction factors can be calculated by using the 

methods of empirical, semi-empirical and theoretical. The empirical methods should 

be applied on the basis of the count rate ratio between close and far geometries of 

photons having similar energy. The semi-empirical methods should be based on the 

measurement of the detector total efficiency or the calculation of the total efficiency 

by measuring the full energy peak and the peak to total efficiencies. This method also 

requires the knowledge of the exact geometry (sample dimensions and materials) and 

detector dimensions. The theoretical methods are based on Monte Carlo simulation of 

the interaction of the photons with the detector, the shielding, and the sample materials. 

In these methods, there is no need of measuring any radioactivity but are sensitive to 

the exact value of the detector dimensions (Haquin, 2017). 

In principle, mathematically it is possible to correct for TCS errors, the simplest 

possible decay scheme in which we could expect TCS is shown in Figure 18. It shows 

that the beta decay to one of the two excited states followed by the emission of the 

three gamma-rays. To simplify matters for the purposes of illustration, the internal 

conversion coefficients for the gamma-rays are all assumed to be zero (Gilmore, 2008). 

According to Gilmore (2008), let the source activity be A Becquerels, in the 

absence of TCS, the count rate in the full-energy peak for 𝛾1 can be calculated as : 

𝑛1 = 𝐴𝑝1𝜀1 − − − (17) 

where, 𝑝1 is the gamma emission probability and 𝜀1 is the full-energy peak efficiency 

of detection of 𝛾1, respectively. Similar equations, with the appropriate 𝑝 and 𝜀, would 

be used to calculate the number of counts in the full-energy peak for 𝛾2 and 𝛾3. 
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Figure 18: Simple illustrative decay schemes liable to true coincidence summing. 

 

 

Now, we will lose the counts from the 𝛾1 peak due to summing of 𝛾1with 𝛾2. 

We do not need to consider 𝛾3 as de-excitation of the upper energy level can only give 

𝛾1 or 𝛾3, not both and we only need the partial decay scheme in Figure 18(b). The 

count rates (number of counts per second) lost by summing can be calculated as the 

product of: 

 the number of atoms decaying (A) 

 the probability of de-excitation producing 𝛾1(𝑝1) 

 the probability of 𝛾1 being detected and appearing in the full-energy peak (𝜀1) 

 the probability of 𝛾2 being detected and appearing in the total-energy peak 

(𝜀𝑇2) 

 

Therefore, we must consider all the coincidences whether giving rise to a sum 

peak count or not and hence, the final term uses 𝜀𝑇2, the total efficiency for the 

detection of 𝛾2. Hence, the net count rates for peak 1 would be: 

𝑛1
′ = 𝐴𝑝1𝜀1 − 𝐴𝑝1𝜀1𝜀𝑇2 − − − (18) 
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The ratio 𝑛1/𝑛1
′  would then be used to correct for the TCS losses of the 𝛾1 peak 

area.  

𝐶1 =
𝑛1

𝑛1
′ =

1

1 − 𝜀𝑇2
− − − (19) 

For 𝛾2, the situation is slightly different in that, not all gamma-rays emerging 

from the intermediate energy level are a consequence of the de-excitation from the 

higher level. Some are emanated immediately by the 𝛽− decay and cannot contribute 

to summing (see Figure 18(c)). The number of summing events is then the product of: 

 the number of events giving rise to 𝛾2(𝐴𝑝1) 

 the probability of detection of 𝛾2 in the full-energy peak (𝜀2) 

 the probability of the detection of 𝛾1 in the total-energy peak (𝜀𝑇1). 

And so, the net count rate for the peak 2 would be: 

𝑛2
′ = 𝐴𝑝2𝜀2 − 𝐴𝑝1𝜀2𝜀𝑇1 − − − (20) 

The ratio 𝑛2/𝑛2
′  would then be used to correct for the TCS losses of the 𝛾2 peak 

area, i.e., 

𝐶2 =
𝑛1

𝑛2
′ =

1

1 − (𝑝1/𝑝2)𝜀𝑇1
− − − (21) 

Every true summing event of completely absorbed gamma-rays will produce a 

count in a peak equivalent to the sum of the energies and so the peak corresponding to 

the crossover transition. 𝛾3, will be increased in the area rather than decreased. 

Following the same reasoning as above, the net count rate would be: 

𝑛3
′ = 𝐴𝑝3𝜀1 − 𝐴𝑝1𝜀1𝜀𝑇2 − − − (22) 

The summing correction that would be applied to correct for the TCS gains of 

the 𝛾3 peak area. 

𝐶3 =
𝑛3

𝑛3
′ =

1

1 + (𝑝1𝜀1𝜀2/𝑝3𝜀3)
− − − (23) 
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Often, the crossover transition probability is small and, because the emission 

probabilities for the normal cascade transitions are high, the summing-in can be much 

greater that the direct emission. Unless taken into consideration, the error from using 

peak areas due to this transition would be large (Gilmore, 2008). 

In general, we cannot depend upon the internal conversion coefficients which 

was being negligible as were treated in the above simplified and we have considered a 

much simpler decay scheme than we can normally expect. If we examine instead the 

152Eu decay scheme (which is more representative of the real situation), the correction 

for TCS becomes apparent. Then, we must not take into account only every possible 

𝛾 − 𝛾 coincidence, but also, the possibility of the coincidence of every cascade on the 

152Sm side of the scheme with the Sm X-rays emitted (Gilmore, 2008). 

The further complications occur if the source emits positrons. This is due to the 

presence of 511 keV annihilation quanta in coincidence with the gamma-rays coming 

from de-excitation of the daughter nucleus. For this problem, the analytical solution is 

to add a pseudo energy level to the decay scheme 511 keV above the level in which 

the positron emission leaves the daughter. Moreover, the triple coincidences between 

the most intense gamma-ray and bremsstrahlung coincidences lead to further 

complications. Obviously, in order to apply these calculations at all, we must have 

available a full-energy peak efficiency free of TCS errors and a total efficiency curve. 

According to the principle, the task is very ambitious, however, if the detailed decay 

scheme, adequate full energy peak efficiency data, total efficiency data, complete 

conversion coefficient data and detailed knowledge of the sample are available, then a 

mathematical correction is possible (Gilmore, 2008). 
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Semkow et al., 1990 developed the mathematical formula for the correction of 

coincidence summing and further simplified by De Felice et al., 2000 which is given 

by Eq. (24) (Xhixha, 2012). 

 

 

Figure 19: Simplified decay scheme showing the effect of summing in and out 

(Xhixha, 2012). 

 

According to Xhixha (2012), considering a simple decay scheme shown in the 

above Figure 19, the coincidence summing of 𝛾 − 𝛾 and 𝛾 − 𝐾𝑋 (normally only KX-

rays have sufficient energy to be observed by the HPGe detector) can be formulated 

as:    

𝐶𝐶𝑆(𝑖) = [1 −
∑ 𝑃𝑇𝑖𝑗𝑃𝑖𝑃𝑗𝜀𝑇𝑗𝑗

𝐼𝛾𝑖
] [1 +

∑ 𝑃𝑇𝑘𝑚𝑃𝑘𝑃𝑚𝜀𝑘𝜀𝑚𝑘,𝑚

𝐼𝛾𝑖𝜀𝑖
] − − − (24), 

where 𝑃𝑇𝑖𝑗 is the probability of coincident transitions (i, j); 𝑃𝑖 is the probability of 

photon emission in transition i; 𝐼𝛾𝑖 is the photon emission probability; 𝜀𝑖 is the full 

energy peak efficiency and 𝜀𝑇𝑗 is the total efficiency.  

The Eq. (24) can be simplified in a function of full energy photo-peak and total 

efficiencies as: 

𝐶𝐶𝑆(𝑖) = [1 − ∑ 𝐶𝑗𝜀𝑇𝑗

𝑗

] [1 + ∑ 𝐶𝑘,𝑚

𝑘,𝑚

𝜀𝑘𝜀𝑚

𝜀𝑖
] − − − (25) 
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where, 𝐶𝑗 and 𝐶𝑘,𝑚 can be calculated using the decay data. The gamma rays emission 

probability, 𝑃𝛾, can be calculated as: 

𝑃𝛾 =
1

1 + 𝛼𝑇
− − − (26) 

and transition probability of KX-rays, 𝑃𝐾𝑋 emitted as a result of the internal conversion 

of the electron capture process can be calculated as: 

𝑃𝐾𝑋(𝑖) =
𝜔𝐾𝛼𝐾𝑋(𝑖)

1 + 𝛼𝑇(𝑖)

− − − (27), 

where 𝛼𝑇  is the total internal conversion coefficient; 𝜔𝐾 is the K-fluorescence yield 

for the daughter nuclide and 𝛼𝐾(𝑖) is the K-conversion coefficient of transition i. For 

decay schemes with several transitions that decay by K-conversion, the total KX-ray 

emission probability is equal to the sum of the individual KX-ray emission probability 

of the transition (Xhixha, 2012).  

The coincidence summing correction is normally ignorable when it depends 

upon the angular correlation between gamma rays averaged over the solid angle which 

for close source-to-detector distances. Subsequently, it has been neglected in this 

treatment. By considering the angular correlation between two gamma rays, the Eq. 

(24) & (25) must be re-written as (Xhixha, 2012): 

𝐶𝐶𝑆(𝑖) = [1 − 𝑊𝑇𝑗

∑ 𝑃𝑇𝑖𝑗𝑃𝑖𝑃𝑗𝜀𝑇𝑗𝑗

𝐼𝛾𝑖
] [1 + 𝑊𝑘𝑚

∑ 𝑃𝑇𝑘𝑚𝑃𝑘𝑃𝑚𝜀𝑘𝜀𝑚𝑘,𝑚

𝐼𝛾𝑖𝜀𝑖
] − − − (28), 

where, 𝑊 is the angular correlation factor of two gamma rays. By using Legendre 

series, the angular correlation terms can be expanded as: 

𝑊(𝜃)𝑑𝛺 = ∑ 𝐴𝑖𝑗𝑃𝑖𝑗(cos θ)𝑑𝛺

𝐿

𝑖=1

− − − (29) 

where 𝐴𝑖𝑗 are catalogued for some standard radionuclides by IAEA (http://www-

nds.iaea.org/).  

http://www-nds.iaea.org/
http://www-nds.iaea.org/
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2.5.3.2. Software for Correction of TCS (EFFTRAN) 

Table 6 shows the 152Eu standard source characteristic γ energies and their 

corresponding γ intensities considered in the detector efficiency measurement. In order 

to correct the measured efficiency for the coincidence summing effect, the correction 

factor Kc was calculated using the Monte Carlo simulation code EFFTRAN (Vidmar, 

2005). We provided the detailed specifications of the HPGe detector (e.g., dimensions 

and materials of the crystal, crystal hole cavity, end cap, window, mount cup, absorber) 

and 152Eu γ source (e.g., dimension, material, characteristic γ- and X-rays) as inputs to 

the simulation. The simulation, therefore, takes care of γ-ray–γ-ray and γ-ray - X-ray 

coincidences. The detector efficiencies with and without the correction measured at 

the characteristic γ energies of the 152Eu point source are shown in Figure 20.  All 

characteristic γ-lines are affected by the summed out effect while only those with 

higher energies are affected by the summed in effect as can be seen in Table 6 where 

the γ-rays with lower energies, in general, have larger correction factors because the 

loss of their counts due to the summed out effect is not or less compensated by the 

summed in effect. Only the efficiency ratio is necessary for the determination of the 

cross sections, and therefore only the uncertainties in counting statistics and γ intensity 

were considered in the error propagation to the efficiencies of the 71Znm and 198Au 

characteristic γ lines. 

 

Table 6: Detection efficiencies for the point source geometry εp and for the foil stack 

geometry ε at the characteristic γ energies of 152Eu with their γ intensities Iγ (Martin, 

2013) adopted for efficiency determination, counts C and coincidence summing effect 

correction factors Kc. The 444.0 keV γ-line consists of 443.96 keV (Iγ = 2.827 ± 
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0.014%) and 444.01 keV (Iγ = 0.298 ± 0.011%) unresolved by our detector. The 

uncertainty in ε is propagated from the uncertainties in C and Iγ. 

 

E(keV) I(%) C Kc εp Ε 

121.8 28.530.16 328049.3 1.113 3.0514 3.0270 ± 0.0178 

244.7 7.550.04 53997.8 1.158 2.0083 1.9940 ± 0.0136 

344.3 26.590.20 157183.5 1.078 1.5550 1.5450 ± 0.0123 

411.1 2.2370.013 9647.2 1.193 1.2803 1.2720 ± 0.0149 

444.0 3.1250.018 13292.1 1.142 1.2087 1.2013 ± 0.0125 

778.9 12.930.08 32542.8 1.112 0.6964 0.6922 ± 0.0058 

1112.1 13.670.08 28712.2 1.033 0.5399 0.5368 ± 0.0045 

1408.0 20.870.09 34940.8 1.050 0.4374 0.4349 ± 0.0030 
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Figure 20: Experimental detection efficiency of the HPGe detector εp for the 152Eu 

standard point sources placed at distance of 1 cm from the detector with and without 

true coincidence summing corrections (COI). The error bar for the uncertainty due to 

counting statistics is within the symbol. 
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Since the calibration of the HPGe detector was carried out with the point source 

while the activated foil stack has a finite area (1cm × 1cm), the efficiency for the point 

source geometry εp was transferred by Monte Carlo Code EFFTRAN (Vidmar, 2005) 

to the efficiency for the foil stack geometry ε, which is shown in Figures 21 and Table 

6.  
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Figure 21: Detection efficiency calibration curve of the HPGe detector for the 1 cm 

×1 cm source placed at a distance of 1 cm from the detector. The error bar for the 

uncertainty due to counting statistics is within the symbol. 

 

2.6. Interpolation of Detection Efficiency 

In order to obtain the detector efficiencies at the characteristic γ energies of the 

71Znm (EZn = 386.28 keV) and 198Au (EAu = 411.802 keV), the point-wise   
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efficiencies in Table 6 were interpolated through the following fitting function (see 

Figure 21): 

𝜀(𝐸) = 𝜀0 exp(−𝐸/𝐸0) + 𝜀𝑐 − − − (30) 

The fitting parameter values are given in Table 7. This Eq. (30) gives the 

detection efficiencies of  386.28 keV γ-ray of 71Znm  and 411.802 keV γ-ray of 198Au 

as εZn = 1.404644 ± 0.034969%  and εAu = 1.319418 ± 0.034688%, respectively. 

 

            Table 7: The efficiency curve fitting parameter values. 

Parameter Value Uncertainty Correlation coefficient 

ε0 3.889 0.2083 1.000   

E0(keV) 279.541 16.880 -0.843 1.000  

εc 0.428 0.0194 0.408 -0.687 1.000 
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3. DATA ANALYSIS PROCEDURE 

 

3.1. Estimation of the Cross section 

The measured 70Zn(n, γ)71Znm cross section 〈𝜎𝑍𝑛
𝑚 〉𝑒𝑥𝑝 was derived with the 

197Au(n, γ)198Au reference cross section <σAu> by 

〈𝜎𝑍𝑛
𝑚 〉𝑒𝑥𝑝 = 〈𝜎𝐴𝑢〉(𝐴𝑍𝑛/𝐴𝐴𝑢)[𝑎𝐴𝑢𝑁𝐴𝑢𝐼𝐴𝑢𝜀𝐴𝑢𝑓𝐴𝑢/(𝑎𝑍𝑛𝑁𝑍𝑛𝐼𝑍𝑛𝜀𝑍𝑛𝑓𝑍𝑛)](𝐶𝑍𝑛/𝐶𝐴𝑢) 

                                                                                                         − − −(31), 

where,  𝐴𝑥 = Σ𝑖𝐴𝑥,𝑖  is the number of counts (𝐴𝑥,𝑖  is the number of counts from i-th 

counting), 𝑎𝑥 is the isotopic abundance of the sample, 𝑁𝑥 is the number of atoms, 𝐼𝑥 

is the γ intensity, 𝜀𝑥 is the detection efficiency,  

𝑓𝑥 = [1 − exp(−λ𝑥𝑡1)] ∑ exp(−λ𝑥𝑡2,𝑖)𝑖 [1 − exp(−λ𝑥𝑡3,𝑖)]/λ𝑥 − − − (32)       

is the timing factor for the irradiation time t1, cooling time for the i-th counting t2,i, 

measuring the time for the i-th counting t3,i, λx is the decay constant, and Cx is the 

correction factor (x = Zn or Au). See Tables 2 and 3 for timing parameters and decay 

data, respectively. The symbol <...> signifies that the cross section is averaged for the 

(p, n0) neutron flux energy spectrum φ0(E). The fractional uncertainty in the cross 

section was estimated by the quadrature sum of the fractional uncertainty in <σAu>, 

Ax, ax, Nx, Ix, fx, Cx (x = Zn and Au) as well as εAu/εZn. The fractional uncertainty in 

Δfx/fx was determined assuming that the uncertainty is due to the uncertainty in the 

half-lives of 71mZn and 198Au. See Section 3.4.1 for the determination of Δfx/fx. 

 

3.2. Reference Cross section 

The reference cross section <σAu> was obtained by folding the IAEA Neutron 

Cross Section Standards σAu(E) (Carlson et al., 2009) with the neutron flux energy 

spectrum φ0(E) obtained by EPEN: 

< σ𝐴𝑢 >= ∫ φ0(𝐸)σAu(𝐸)𝑑𝐸/ ∫ φ0 (𝐸)𝑑𝐸 − − − (33)    
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The energy integrated neutron flux determined from the 198Au activity after 

subtracting the contributions of (p, n1) neutrons is ~ 1.2 × 106 n/cm2/s at 0.96MeV and 

~ 1.4 × 106 n/cm2/s at 1.69 MeV. These fluxes agree well with those determined by 

the measured 115Inm counts and the evaluated 115In(n, n’)115Inm cross section in the 

IRDF-2002 library (Bersillon et al., 2006) within 5%.  

 

3.3. Corrections 

The correction factor Cx in Eq. (31) is decomposed to 

𝐶𝑥 = 𝐶𝑥,𝑓𝑙𝑢𝑐⦁𝐶𝑥,𝑙𝑜𝑤⦁𝐶𝑥,𝑠𝑐𝑎𝑡⦁𝐶𝑥,𝑎𝑡𝑡𝑛 − − − (34) 

(x = Zn or Au). Each term is the correction factor for 

1. neutron flux fluctuation (fluc) 

2. low energy neutron backgrounds due to 7Li(p, n1)
7Be neutrons (low) 

3. scattered neutron background originating from elastic, inelastic and 

multiple scattering in the foil stack and the surrounding materials (scat) 

4. γ-rays self-attenuation (attn). 

and summarized in Table 8. Some correction factors were determined for the two gold 

foils separately and their means were applied to Eq. (31) because we did not count γ-

rays from two gold foils separately. 

 

Table 8: Correction factors applied to the measured cross section derivation by Eq. 

(31). 

En (MeV) 0.96 1.69 

CZn,fluc/ CAu,fluc 0.869 0.748 

CAu,low 

0.920 (front) 

0.921 (back) 

0.921 (mean) 

0.884 (front) 

0.884 (back) 

0.884 (mean) 

CZn,low 0.948 0.888 

CZn,scat 0.985 0.975 

CAu,scat 

0.985 (front) 

0.983 (back) 

0.984 (mean) 

0.981 (front) 

0.979 (back) 

0.980 (mean) 
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CZn,attn. 1.015 1.016 

CAu,attn. 

1.019 (front) 

1.010 (back) 

1.01 (mean) 

1.020 (front) 

1.010 (back) 

1.015 (mean) 

 

 

3.3.1. Neutron Flux Fluctuation Correction Factor 

From the activity formula Eq. (7), we can see that the activity of the irradiated 

foil is proportional to the neutron flux. Hence, the activation formula assumes a 

constant neutron flux during the time of irradiation. The effect of the variation of 

neutron flux as a function of time due to proton current fluctuation during the long 

irradiation time was taken into consideration. Its correction factor for flux fluctuation 

was obtained by (Sage et al, 2010; Fessler et al., 2000): 

C𝑥,𝑓𝑙𝑢𝑐 =< Φ𝑚 > [1 − exp(−λ𝑥𝑡1)]/[∑ Φ𝑚,𝑖[1 − exp(−λ𝑥Δt1)] exp[−λ𝑥(𝑡1 −𝑖=1,𝑛

                                                                                                                       𝑖Δt1)]] − − − (35)   

where Φm,i is the neutron flux measured by the NE213 monitor detector during the i-th 

time interval ( i = 1,n i.e., time bin and n is number of  total time bins), Δt1 = t1/n is the 

dwell time (i.e., 30 min) and <Φm> = Σi = 1,n Φm,i / n is the mean flux during irradiation. 

This correction factor applied to the ratio of measured Zinc to Gold samples for each 

irradiation is significant, because, the half-lives of the captured products 71Znm (3.96 

± 0.05h) and 198Au (2.6947 ± 0.0003d ) which are formed simultaneously, are very 

different. 

 

3.3.2. Low Energy Background Neutron Correction Factor 

The correction of neutron background contributions for low-energy neutrons 

(p, n1) i.e., second group of neutrons produced due to the population of the first excited 

state of 7Be, were also applied using neutron energy spectra obtained from the EPEN. 

If the proton energy is above a cut-off energy, 𝐸𝑝
𝑐 = 2.37 MeV, a second neutron 



47 
 

production channel 7Li(p, n1)
7Be opens in addition to 7Li(p, n0)

7Be, which leads to a 

second neutron group at lower energies. Hence, the cut-off energy 𝐸𝑝
𝑐 was defined, 

above which the neutrons were found to be quasi-monoenergetic. The neutron group 

due to the 7Li(p, n2)
7Be reaction does not appear until Ep = 7.07 MeV, but the 7Li(p, 

n+3He+α) three-body breakup channel also opens at proton energies above Ep = 3.70 

MeV and shows a broad neutron spectrum. The position of this cut-off varied 

depending on the incident deuteron energy. The incident neutron spectrum obtained 

from EPEN clearly indicates the separation with a deep valley and then, the second 

group neutron spectra for 2.8MeV and 3.5 MeV proton energies can be clearly seen 

and their integrated neutron flux/intensity can be estimated from the Figures 11 & 12. 

The required correction factor was then calculated by forming the ratio of the sample 

activities produced by neutrons below the cut-off energy to those produced by the 

entire neutron spectrum. Then, the (p, n1) low energy neutron background was 

subtracted by the correction factor           

C𝑥,𝑙𝑜𝑤 = 1 − ∫ φ1 (𝐸)σ𝑥(𝐸)𝑑𝐸/ ∫ φ(E)σ𝑥(𝐸)𝑑𝐸 − − − (36) 

where φ1 (E) is the (p, n1) neutron flux energy spectrum calculated by EPEN (φ(E) = 

φ0(E) + φ1(E)), and σx(E) is the 70Zn(n, γ)71Znm cross section taken from the TENDL-

2015 library (Koning et al., 2015) or 197Au(n, γ)198Au cross section taken from the 

IAEA Neutron Cross Sections Standards (Carlson et al., 2009). 

 

3.3.3. Scattered Neutron Background Correction Factor 

Correction factors for the scattered neutron background Cscat originating from 

elastic, inelastic and multiple scattering in the foil stack and surrounding materials 

were evaluated by PHITS (Particle and Heavy Ion Transport code System) Ver 2.840 

(Sato et al., 2013). The experimental setup with all materials in and around the foil 
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stack placed downstream of the tantalum proton beam stopper in Figures 9(a-c) was 

modelled in the simulation. Neutrons were generated according to the (p, n0) neutron 

flux energy spectra φ0(E) calculated by EPEN and in the forward direction. 

Productions of 71Znm and 198Au were calculated with the (p, n0) neutron spectra from 

EPEN and evaluated cross sections of all foil stack and surrounding materials from the 

AceLibJ40 library (a library in the ACE Format based on JENDL-4.0). Cross sections 

were calculated by counting 71Znm and 198Au produced by all neutrons including 

neutrons scattered by a foil stack or surrounding material before the production (All), 

and those produced by neutrons not scattered before the production (True). The 

calculated cross sections and correction factors are summarized in Table 9. The 

uncertainties in Cscat are about 0.5% and 0.1% for Zn and Au foils, respectively. The 

weighted means of Cscat are adopted in determination of experimental cross sections 

because we cannot distinguish γ-rays from front and back foils in our measurement. 

 

 

Table 9: Cross sections (mb) and correction factors calculated by PHITS with neutron 

flux energy spectra from EPEN and evaluated cross sections of all foil stack and 

surrounding materials in JENDL-4.0. The uncertainties in cross sections are standard 

deviations due to statistics from 500 M (Zn) and 100 M neutrons (Au). 

En (MeV) Foil All True Cscat (mean) 

0.96 Au front 82.600 ± 0.076 81.350 ± 0.068 0.985 ± 0.001 
0.984 ± 0.001 

 Au back 82.330 ± 0.073 80.940 ± 0.068 0.983 ± 0.001 

 Zn 1.378 ± 0.004  1.358 ± 0.004  0.985 ± 0.004   

1.69 Au front 70.440 ± 0.073 69.120 ± 0.067 0.981 ± 0.001 
0.980 ± 0.001 

 Au back 66.750 ± 0.070 65.320 ± 0.063 0.979 ± 0.001 

 Zn 0.627 ± 0.003  0.611 ± 0.002  0.975 ± 0.005   
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3.3.4. γ-ray Self-attenuation Factors 

When a gamma ray passes through any material, including the sample in which 

it is generated, with a given probability, it undergoes specific interactions. In these 

interactions, the photon is attenuated either by absorption or scattering with losing 

energy partially or totally; in any case, it cannot contribute to the peak count-rate. This 

effect of gamma photon attenuation within the sample itself before being measured 

with a detector apparatus is called self-attenuation. The degree of self-attenuation 

depends on a number of factors such as samples geometry (shape and sample – detector 

geometry) and linear attenuation coefficient μ; the linear attenuation coefficient 

depends in turn on material density, sample composition, and photon energy E (Robu 

et al., 2008). The gamma photon attenuation in the sample can also induce serious 

systematic errors if a stack of foils is used since the gamma photon while passing 

through the second foil is reduced by absorption in the first foil and so on. It is usually 

a function of the total linear attenuation coefficient 𝜇𝑙 multiplied by the thickness of 

the sample as measured in the direction of the gamma photon. For the purposes of 

accuracy and precision that are needed in the analysis involving the NAA technique, 

gamma spectrometric analysis requires correction for the self-attenuation effect due to 

the interactions of the γ-rays with the foil stack. According to Beer-Lambert’s Law, 

the probability to find a photon penetrating a distance x1 with a fluence, I0, in a 

material-1(volume mass density ρ1) as shown in Figure 22 is given by  

𝐼1/𝐼0 = exp(−𝜇𝑙,1𝑥1) = exp(−𝜇m,1𝜌1𝑥1) − − − (37) 

where, μm is the mass attenuation coefficient of the γ energy and material-1, and I1 is 

gamma-ray flux at interface-1. If the 1st foil (thickness x1) is a homogeneous source of 

the γ-line, and it penetrates other n-1 foils (thickness xi) before reaching the detector, 
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the probability of the penetration is expressed by (Millsap et al., 2015; Robu et al., 

2009; Jackman, 2007). 

    CS,attn =  [(1/𝑥1) ∫ exp(−𝜇m,1𝜌1𝑥1)
𝑥1

0

d𝑥] ⦁ ∏ exp(−𝜇m,i𝜌i𝑥i)
i=2,n

 

= [[1 − exp(−𝜇m,1𝜌1𝑥1)]/(𝜇m,1𝜌1𝑥1)] ⦁ ∏ exp(−𝜇m,i𝜌i𝑥i)i=2,n − − − (38).         

If the measured sample is subject to attenuation and the calibration source is 

not, the correction factor  Cattn  must be applied to the peak area that is : 1/CS,attn , then,  

 Cattn  =  CS,attn
−1 = [(𝜇m,1𝜌1𝑥1)/[1 − exp(−𝜇m,1𝜌1𝑥1)]] ⦁ ∏ exp(−𝜇m,i𝜌i𝑥i)i=2,n −

                                                                                                                                         − − (39)    

 

 

Figure 22: Gamma-rays Attenuation with a Fluence, I0, Passing Through Five 

Different Samples. 

 

 

Table 10 shows the calculated self-attenuation factors of 71Znm 386.28 keV 

and 198Au 411.802 keV γ-rays penetrating the foil stack and detected by the detector 

behind the aluminium foil with the mass attenuation coefficients calculated by 

XMuDat Ver 1.01 (Nowotny, 1998). 

 

Table 10 : Self-attenuations factor at each medium of the foil stack calculated by 

XMuDat Ver 1.01 (Nowotny, 1998). 
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En (MeV) Sample 
198Au 

E = 411.802 keV 

71Znm 

E = 386.28 keV 

0.96 

Au (front) 0.9851  

Zn 0.9969 0.9916 

Au (back) 0.9859 0.9840 

In 0.9957 0.9957 

Al 0.9994 0.9994 

1.69 

Au (front) 0.9847  

Zn 0.9961 0.9915 

Au (back) 0.9855 0.9836 

In 0.9945 0.9945 

Al 0.9994 0.9994 

 

3.4. Error Propagation 

The accurate value of neutron capture cross sections is important for reactor 

applications, critical safety, neutron dosimetry and nuclear astrophysics. However, the 

accuracy of the experimental cross section result is limited by the uncertainty.  In order 

to get the accurate value, the covariance information is required. The uncertainty 

accompanied with the activation cross section is essential in determination of 

reasonable margin contributing to both safety and economy in nuclear applications. If 

several data points of the activation cross sections are involved in the determination of 

the quantity of interest (e.g., reaction rate obtained by folding of energy dependent 

activation cross sections by the spectrum characterizing the incident particle field), the 

correlation (covariance) among the data points has to also be considered to avoid 

overestimation or underestimation of the uncertainty in the quantity of interest. Due to 

this situation, modern evaluation tries to provide not only the best estimate of the cross 

section but also their uncertainty and covariance describing correlation among data 

points of the same reaction or even different reactions (“cross-correlation”). In order 
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to provide the uncertainty and covariance in addition to the best estimate of the cross 

section based on the experimental knowledge, data evaluators need detailed 

documentation of the uncertainties in each experiment. However, evaluators often face 

difficulty due to lack of sufficient documentation of the experiment. At the worst case, 

the evaluators cannot find any uncertainty in the measured cross section, and it is also 

not rare to see a total uncertainty without its breakdown (e.g., uncertainty due to 

counting statistics). The covariance measures the strength of the correlation between 

the variables. This information describes how the covariances of neutron capture cross 

section in reference standard cross section and efficiency of the HPGe detector, and 

the uncertainty in the timing factor were estimated.  

 

3.4.1. Determination of the Uncertainty in the Timing Factor, Δfx/fx 

Since, the γ-lines of the reaction product 71mZn and monitor product 198Au were 

measured simultaneously, we can set t2,x = t2,m = t2 and t3,x = t3,m = t3 (x = Zn and m = 

Au) in Eq. (32). Then these time factors contain five sources of uncertainties t1, t2, t3, 

λx and λm. In this experimental work, the uncertainties in t1, t2 and t3 are considered as 

negligible, therefore only the uncertainties in λx and λr have to be propagated. Some 

researchers include the uncertainty in the decay constants in the quadrature sum 

formula (∆σx + σx)
2 =  (∆λx + λx)

2 + (∆λr + λr)
2  + …, but it is not correct, because, the 

decay constant is related to the cross section through the exponential function. The 

correct way is to calculate the uncertainties in the time factors fx and fr, and propagate 

them to the uncertainty in σx by (∆σ + σ)2 = ….+ (∆fx + fx)
2 + (∆fr + fr)

2  + …  The 

uncertainties in the time factors should be propagated from the uncertainties in the 

decay constants. 
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For the timing factor in Eq. (32) 

𝑓x = [1 − exp(−𝜆x𝑡1)] ∑ exp(−𝜆x𝑡2,i)

𝑖

[1 − exp(−𝜆x, 𝑡3,i)]/𝜆x = ∑ 𝑓x,i

𝑖

  

                                                                                                         − − −(40), 

the uncertainty in the timing factor is: 

∆𝑓x,i = (∂𝑓x,i/ ∂λx)∆λx = (∂𝑓x,i/ ∂λx)(dλx/dT1/2,x)∆T1/2,x 

= (λx/T1/2,x)(∂𝑓x,i/ ∂λx)∆T1/2,x − − − (41) 

assuming that only the uncertainty in the half-life is responsible to the uncertainty in 

the timing factor. The uncertainty in the decay constant ∆λ = (ln 2∆T1/2) = T2
1/2 can be 

obtained from ∆T1/2 in the ENSDF library. The partial derivative ∂fx,i /∂λx can be 

calculated by: 

∂𝑓x,i/ ∂λx = 𝑓x,i𝑡1,i exp(−𝜆x𝑡1) /[1 − exp(−𝜆x𝑡1)] 

−𝑓x,i𝑡2,i 

+𝑓x,i𝑡3,i exp(−𝜆x𝑡3,i) /[1 − exp(−𝜆x, 𝑡3,i)] 

−𝑓x,i/λx − − − (42) 

This equation shows that the sensitivity depends not only on λ but also on t1, 

t2, and t3 even though the uncertainties in the latter three parameters are treated as 

negligible. Finally we obtain the fractional uncertainty in fx by: 

 ∆𝑓x/𝑓x = [∑(∆𝑓x,i)
2

𝑖

]

1

2

𝑓x  − − − (43), 

which is listed in Table 19 as the uncertainty in the cross section due to the uncertainty 

in the half-life. Taking the first, second, third and fourth parts of the right-hand side of 

Eq. (32) as Eq.(i), (ii), (iii) and (iv), and the parameters given in Table 11, the timing 

factors for 71Znm and 198Au at proton energies of 2.8 MeV and 3.5 MeV are calculated 

as shown in the Tables 12(a) & (b) and 13(a) & (b). 
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                       Table 11: Decay data adopted for calculation of timing factor taken from the ENSDF library. 

Nuclide 
T1/2 

(sec) 

ΔT1/2 

(sec) 

λ 

(1/sec) 

Δλ 

(1/sec) 
71Znm 14256 180 4.86214E-05 6.13907E-07 
198Au 232822.08 25.92 2.97715E-06 3.31446E-10 

 

 

           Table 12(a): Calculation of timing factor for 71Znm  at Ep = 2.8 MeV. 

For Ep = 2.8 MeV 

71Znm 

t1 

(sec) 

t2i    

(sec) 

t3i  

(sec) 

fi          

(sec) 

Eq.(i) 

(sec2) 

Eq.(ii)    

(sec2) 

Eq.(iii)    

(sec2) 

Eq.(iv)        

(sec2) 
∂fi/∂λ (sec2) 

Δf         

(sec) 

Δf/f 

(%) 

26580 1808 3875.6 2346.6536 23614353.1 -4242749.6 43859150.9 -48263765.7 14966988.6 

16.5875 0.177 

26580 5705.6 3636.9 1832.2432 18437846.3 -10454046.7 34450158.4 -37683856.4 4750101.5 

26580 9373.5 7313.7 2830.3354 28481638.9 -26530148.8 48473699.4 -58211679.2 -7786489.7 

26580 16746.2 7212.3 1954.7902 19671035.9 -32735307.9 33566177.2 -40204288.7 -19702383.5 

26580 24012.5 1836 396.41308 3989101.1 -9518869.0 7794558.06 -8153051.7 -5888261.5 
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           Table 12(b): Calculation of timing factor for 178Au  at Ep = 2.8 MeV. 

For Ep = 2.8 MeV 

198Au 

t1 

(sec) 

t2i    

(sec) 

t3i  

(sec) 

fi          

(sec) 
Eq.(i) (sec2) 

Eq.(ii)    

(sec2) 

Eq.(iii)    

(sec2) 

Eq.(iv)        

(sec2) 
∂fi/∂λ (sec2) 

Δf         

(sec) 

Δf/f 

(%) 

26580 1808 3875.6 291.5978 757444671.4 -4242749.6 783681820.4 -788220420.9 748663321.2 

0.4718 0.027 

26580 5705.6 3636.9 270.5773 591405080.7 -10454046.7 612108642.3 -615434472.3 577625204.0 

26580 9373.5 7313.7 535.284 913565809.8 -26530148.8 940372368.7 -950684920.4 876723109.4 

26580 16746.2 7212.3 516.4799 630960385.4 -32735307.9 649572909.5 -656596949.3 591201037.6 

26580 24012.5 1836 129.6956 127952833.5 -9518869.0 132788112.0 -133151687.6 118070388.8 

 

            Table 13(a): Calculation of timing factor for 71Znm  at Ep = 3.5 MeV. 

For Ep = 3.5 MeV 

71Znm 

t1 

(sec) 

t2i    

(sec) 

t3i  

(sec) 

fi          

(sec) 
Eq.(i) (sec2) 

Eq.(ii)    

(sec2) 

Eq.(iii)    

(sec2) 

Eq.(iv)        

(sec2) 
∂fi/∂λ  (sec2) 

Δf         

(sec) 

Δf/f 

(%) 

30300 1534 3591.2 2357.4 21237845.0 -3616256.74 44375026.8 -48484857.3 13511757.7 

34.7933 0.273 

30300 5180 3634.3 1996.09 17982772.8 -10340145.1 37533276.1 -41053702.7 4122201.1 

30300 8852 3616.9 1662.46 14977090.4 -14715254.4 31273491.6 -34191891.5 -2656563.9 

30300 12541 7253.3 2560.53 23067802.7 -32112616.9 43921099.7 -52662552.3 -17786266.7 

30300 20114 10368.6 2360.84 21268828.5 -47485278.2 37340325.5 -48555590.9 -37431715.1 

30300 30573 7950.3 1149.5 10355843.6 -35144005 19366058.4 -23641833.8 -29063936.8 

30300 38532 6353.3 647.088 5829611.9 -24933321.3 11358781.3 -13308690.2 -21053618.4 
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             Table 13(b): Calculation of timing factor for 178Au  at Ep = 3.5 MeV. 

For Ep = 3.5 MeV 

198Au 

t1 

(sec) 

t2i    

(sec) 

t3i  

(sec) 

fi          

(sec) 

Eq.(i)  

(sec2) 

Eq.(ii)  

(sec2) 

Eq.(iii)  

(sec2) 

Eq.(iv)  

(sec2) 

∂fi/∂λ   

(sec2) 

Δf         

(sec) 

Δf/f 

(%) 

30300 1534 3591.2 306.718 756653404.4 -3616256.7 787605770.7 -791831181 748811737.0 

0.5196 0.0151 

30300 5180 3634.3 307.028 640683001.2 -10340145.1 666848513.0 -670469167 626722202.2 

30300 8852 3616.9 302.245 533597757.3 -14715254.4 555404316.1 -558405394 515881424.8 

30300 12541 7253.3 596.269 821850403.3 -32112616.9 850806550.2 -860059271 780485065.2 

30300 20114 10368.6 829.528 757757271.7 -47485278.2 780810021.0 -792986369 698095645.8 

30300 30573 7950.3 618.766 368953834.5 -35144005.0 381555557.7 -386106966 329258420.8 

30300 38532 6353.3 484.04 207695068.8 -24933321.3 215301985.3 -217351076 180712656.7 
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3.4.2. Uncertainty in Detector Efficiency 

In this experiment, a hyperpure HPGe detector separated by 1 cm from the 

irradiated foil stack was used to determine CZn and CAu in Eq. (31). The detection 

efficiencies of the detector were measured by using eight γ-lines of a 152Eu calibration 

source. The detection efficiency for the i-th γ-line (emission probability Ii, Martin, 

2013) was determined by:  

𝜀𝑝,𝑖 =
𝐶𝜺𝑮,𝑖𝐾𝑐,𝑖

𝐴0𝑒−𝜆𝑡∆𝑡𝑐,𝑖𝐼𝛾,𝑖

− − − (44). 

We express the energy dependence of the detection efficiency by Eq. (30) in 

which the three parameters (ε0, E0 and εc) are determined by fitting this function to the 

measured detection efficiencies { εi } with their uncertainties propagated from ΔCi = 

√Ci and ΔIi determined by the ENSDF evaluator (Martin, 2013). Note that, we do not 

have to propagate the uncertainties in the parameters commonly applied to all γ-lines 

(e.g., ΔA0, Δλ) because only the ratio of the detection efficiency (ηr,x =εr /εx) is required 

in our cross section measurement. The parameters reproducing the efficiency { εi } in 

Table 7 gives the detection efficiency curve ε(Eγ ) in Figure 21. 

The counts C, gamma intensities Iγ, coincidence summing effect correction 

factors Kc, the detection efficiencies for the point source geometry εp and for the foil 

stack geometry E at the characteristic γ energies of 152Eu and the uncertainties Δε 

propagated from the C, ΔC, Iγ, ΔIγ, εp, and ε are given in Table 14. 

 

Table 14: The uncertainties Δε propagated from the C, ΔC, Iγ, ΔIγ, εp, and ε. 

Eγ 

(keV) 
C ΔC Iγ ΔIγ 

εp(uncor) 

(%) 
Kc 

εp(cor) 

(%) 
ε (%) Δε (%) 

121.8 328049.3 572.7559 0.2853 0.0016 2.7416 1.113 3.0514 3.0270 0.0178 

244.7 53997.8 232.3743 0.0755 0.0004 1.7343 1.158 2.0083 1.9940 0.0136 

344.3 157183.5 396.4637 0.2659 0.002 1.4425 1.078 1.5550 1.5450 0.0123 

411.1 9647.2 98.22016 0.02237 0.00013 1.0731 1.193 1.2803 1.2720 0.0149 

444.0 13292.1 115.2914 0.03125 0.00018 1.0584 1.142 1.2087 1.2013 0.0125 

778.9 32542.8 180.3962 0.1293 0.0008 0.6263 1.112 0.6964 0.6922 0.0058 

1112.1 28712.2 169.4467 0.1367 0.0008 0.5227 1.033 0.5399 0.5368 0.0045 

1408.0 34940.8 186.9246 0.2087 0.0009 0.4166 1.050 0.4374 0.4349 0.0030 
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The correlation coefficient of efficiency curve fitting parameters obtained from 

Eq. (30) is given in Table 7. On following the prescription by Mannhart (2013), we 

can propagate the covariances of the three fitting parameters of Eq. (30) to the two 

detection efficiencies at EZn and EAu on the curve by: 

𝑐𝑜𝑣(𝜀𝑍𝑛, 𝜀𝐴𝑢) = exp [−(𝐸𝑍𝑛 + 𝐸𝐴𝑢)/𝐸0](∆𝜀0)2 

+(ε0
2𝐸𝑍𝑛𝐸𝐴𝑢/E0

4)exp [−(𝐸𝑍𝑛 + 𝐸𝐴𝑢)/𝐸0](∆𝐸0)2 

+(∆𝜀0)2 

+𝜀0[(𝐸𝑍𝑛 + 𝐸𝐴𝑢)/E0
2]exp [−(𝐸𝑍𝑛 + 𝐸𝐴𝑢)/𝐸0]𝑐𝑜𝑣(𝐸0, 𝜀𝑐) 

+[𝑒𝑥𝑝(−𝐸𝑍𝑛/𝐸0) + exp (−𝐸𝐴𝑢/𝐸0)]𝑐𝑜𝑣(𝜀0, 𝜀𝑐) 

+[(𝜀0𝐸𝑍𝑛/E0
2)exp (−𝐸𝑍𝑛/𝐸0) + (𝜀0𝐸𝐴𝑢/E0

2)exp (−𝐸𝐴𝑢/𝐸0)]𝑐𝑜𝑣(𝜀0, 𝐸0) 

− − −(45) 

with (ΔεZn)
2 = var (εZn) and (ΔεAu)

2 = var (εAu). From the Eq. (31), we need only the 

detector efficiency ratio η = εZn/εAu , which fractional uncertainty (ΔηZn,Au/ ηZn,Au) is 

further propagated following to Eq. (46) from var (εZn), var (εAu) and cov(εZn,εAu) by  

(Δ η/η)2 = (Δε𝑍𝑛/ε𝑍𝑛)2 + (ΔεAu/ε𝐴𝑢)2 − 2𝑐𝑜𝑣(ε𝑍𝑛, ε𝐴𝑢)/(ε𝑍𝑛, ε𝐴𝑢) − − − (46), 

and we finally obtain η = 1.06459 ± 0.00274. 

Note that we do not have to propagate the uncertainties in the parameters 

commonly applied to all γ-lines (e.g., ∆A0, ∆λ) because only the ratio of the detection 

efficiency (ηm;x = εm = εx) is required in our cross section determination. 

 

3.4.3. Uncertainty in the Standard Gold Cross section (Monitor) 

The 197Au(n, γ)198Au cross section taken from the IAEA Neutron Cross Section 

Standards (A.D. Carlson, 2009) was adopted as the monitor cross section in this 

experiment. The Figure 23(a) shows the point-wise 197Au(n, γ)198Au monitor cross 

section σr(E) and its group-wise cross section <σr>k  compiled in the IAEA Neutron 
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Cross Section Standards. Since the 7Li(p, n0)
7Be incident neutron beam is quasi-

monoenergetic with having energy spread (En = 0.96 ± 0.15 and 1.69 ± 0.15 MeV), the 

point wise monitor cross section in the IAEA Neutron Cross Section Standards σr(E) 

was folded by the neutron flux energy spectrum 𝛷𝑖(𝐸), (∫ 𝛷𝑖(𝐸)d𝐸 = 1,
∝

0
 i = 1, 2 are 

for En = 0.96 or 1.05 MeV) calculated by a newly developed code EPEN (R. Pachuau, 

2017(a) and 2017(b)): 

𝜎𝑟,𝑖 = ∫ 𝛷𝑖(𝐸)𝜎𝑟(𝐸)d𝐸 − − − (47). 

The 7Li(p, n0)
7Be point-wise neutron flux energy spectrum ϕi (E) obtained from 

EPEN (Pachuau et al., 2017a, 2017b) and its group-wise expression Φi,k (i=1,2; k=1 

to 11 and k=12 to 15 for i = 1 and 2, respectively) are shown in the Figure 23(b). The 

covariance information of 𝜎r(𝐸) for its group-wise cross section in the IAEA Neutron 

Cross Section Standards can be expressed as: 

〈𝜎𝑟〉𝑘 = ( ∫ 𝜎𝑟(𝐸)d𝐸

𝐸𝑘,𝑚𝑎𝑥

𝐸𝑘,𝑚𝑖𝑛

) /(𝐸𝑘,𝑚𝑎𝑥 − 𝐸𝑘,𝑚𝑖𝑛) − − − (48) 

where, Ek,min  and  Ek,max  are the lower and upper boundaries of the k-th energy group. 

Similarly, we also introduce the group-wise neutron flux energy spectrum 𝛷𝑖,𝑘  by: 

𝛷𝑖,𝑘 = ∫ 𝛷𝑖(𝐸)d𝐸

𝐸k,max

𝐸k,min

− − − (49) 

which satisfies ∑ 𝛷𝑖,𝑘𝑘 = 1. These group-wise quantities are shown in Figure 19 and 

Table 8 & 9, where k=1–11 and 12–15 are for the E = 0.96 ± 0.15 n and 1.69 ± 0.15 

MeV neutrons, respectively. By using <σr>k and Φi,k , Eq. (47) is discretized to 

 

𝜎𝑟,𝑖 = ∑ 𝛷𝑖,𝑘

𝑘

〈𝜎𝑟〉𝑘 − − − (50) 
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Figure 23: (a) The point-wise 197Au(n,γ)198Au monitor cross section σr(E) in the IAEA 

Neutron Cross Section Standards (Carlson et al., 2009) and its group-wise expression 

<σr> k . (b) The 7Li(p, n0)
7Be point-wise neutron flux energy spectrum ϕi (E) calculated 

by EPEN (Pachuau et al., 2017a, 2017b) and its group-wise expression Φi,k (i=1,2; k=1 

to 11 and k=12 to 15 for i = 1 and 2, respectively). 

 

The uncertainty in <σAu> due to the uncertainty in the IAEA Neutron Cross 

Section Standards was obtained by: 

(∆< σ𝐴𝑢 >)2 = ∑[Φ𝑖
2𝑣𝑎𝑟(< σ𝑖 >)]

𝑖

/ (∑ Φ𝑖

𝑖

)

2

+ 2 ∑[Φ𝑖Φ𝑗𝑐𝑜𝑣(< σ𝑖 >, < σ𝑗 >)]

𝑖>𝑗

/ (∑ Φ𝑖

𝑖

)

2

 

− − −(51) 
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where cov (< σi >,< σj >) and var (< σi >) are the covariances between the i-th and j-th 

group-wise cross section compiled in the IAEA Neutron Cross Section Standards and 

its diagonal component (i = j), and Φi = ∫iφ0(E) dE is the neutron flux energy spectrum 

integrated over the i-th group of the IAEA Neutron Cross Section Standards. The 

summations for i and j are taken for all energy groups between 0.675 and 1.325 MeV 

for < En > = 0.96 MeV neutrons (11 groups), and between 1.325 and 2.100 MeV for < 

En > = 1.69 MeV neutrons (4 groups). In order to obtain the absolute covariance for 

the IAEA Neutron Cross Section Standards, the relative covariance (%2) compiled in 

the ENDF-6 format was converted to the corresponding absolute covariance (b2) by 

multiplying the un-weighted group-wise cross section < σi > constructed by ourselves. 

The Figure 24 shows that the relative uncertainty plotted with uncertainty % against 

incident energy (MeV) taken from IAEA site (https://www-nds.iaea.org/exfor/ 

servlet/E4sMakeE4).  The spectrum-averaged cross sections are < σAu > = 82.77 ± 

0.86 mb at 0.96 MeV and 64.09 ± 0.92 mb at 1.69 MeV. The fractional group-wise 

flux Φi/ΣΦi , obtained using EPEN neutron spectra, unweighted group-wise cross 

sections < σi > of the IAEA neutron cross section standard, and their correlation 

coefficients 

𝑐𝑜𝑟(〈𝜎𝑖〉, 〈𝜎𝑗〉) = 𝑐𝑜𝑣(〈𝜎𝑖〉, 〈𝜎𝑗〉)/[𝑣𝑎𝑟(〈𝜎𝑖〉)𝑣𝑎𝑟(〈𝜎𝑗〉)]
1

2 − − − (52) 

at 0.96  and 1.69 MeV are given in Tables 15 and 16, respectively. 

Similarly, the covariance between two spectrum averaged cross sections at 0.96 

and 1.69 MeV is obtained by:  

𝐶𝑜𝑣(𝜎𝑖, 𝜎𝑗) = ∑[Φ𝑖Φ𝑗𝐶𝑜𝑣(〈𝜎𝑖〉, 〈𝜎𝑗〉)]

𝑖,𝑗

/ (∑ Φ𝑖

𝑖

) (∑ Φ𝑗

𝑗

) − − − (53) 

where, the summation for i is taken for all energy groups between 0.675 and 

1.325 MeV for <En> = 0.96 MeV neutrons while the summation for j is taken for all 

https://www-nds/
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energy groups between 1.325 and 2.100 MeV for < En > =1.69 MeV neutrons. By using 

the correlation coefficients cor(<σi>,<σj>) given in Neutron Cross section Standard 

(Carlson, 2009), which is also given in Table 17, we obtain 0.059 mb2 as the 

covariance of the spectrum averaged cross sections between two energies. These 

results are also summarized in Table 18. 

 

Figure 24: The relative uncertainty plotted with uncertainty % against incident energy 

(MeV) taken from IAEA site (https://www-nds.iaea.org/exfor/servlet/ E4sMakeE4).  
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Table 15: The fractional group-wise flux Φi/ΣΦi of the 7Li(p, n0)
7Be spectrum, un-weighted group-wise cross section <σi> and correlation 

coefficient cor(<σi>,<σj>) in the IAEA Neutron Cross Section Standards for<En> = 0.96 MeV neutrons. 

Emin 

(MeV) 

 Emax 

(MeV) 
   Φi/ΣΦi 

  <σi> 

   (b) 

 Δ<σi> 

  (%) 
                                                                                                            cor(<σi>, <σj>) × 100 

0.675 0.725 5.7302E-10 0.0964 1.1287 100.000           

0.725 0.775 2.7463E-05 0.0932 1.2969 43.900 100.000          

0.775 0.825 9.6409E-03 0.0891 1.0479 34.120 51.770 100.000         

0.825 0.875 1.2307E-01 0.0859 1.6264 20.010 28.920 33.310 100.000        

0.875 0.920 1.9745E-01 0.0849 2.1847 13.070 11.730 12.760 10.720 100.000       

0.920 0.950 1.3143E-01 0.0851 1.9326 6.647 12.920 24.510 15.210 8.827 100.000      

0.950 0.970 8.5593E-02 0.0854 4.2426 2.581 4.046 5.590 9.520 3.219 6.007 100.000     

0.970 0.990 8.4304E-02 0.0841 3.1765 7.715 6.316 7.412 6.074 43.520 4.910 1.937 100.000    

0.990 1.050 2.4379E-01 0.0808 1.0412 18.680 15.450 24.820 25.120 20.390 38.090 11.400 11.690 100.000   

1.050 1.175 1.2469E-01 0.0773 1.3918 16.260 14.120 13.780 12.560 13.200 21.030 7.447 9.168 44.870 100.000  

1.175 1.325 2.8842E-07 0.0740 1.2621 17.280 16.130 18.170 12.910 11.790 6.297 3.395 12.260 27.560 40.740 100.000 

 

Table 16: The fractional group-wise flux Φi/ΣΦi of the 7Li(p, n0)
7Be spectrum, un-weighted group-wise cross section <σi> and correlation 

coefficient cor(<σi>,<σj>) in the IAEA Neutron Cross Section Standards for <En> = 1.69 MeV neutrons. 

Emin 

(MeV) 

Emax 

(MeV) 
Φi/ΣΦi 

<σi> 

(b) 

Δ<σi> 

(%) 
cor(<σi>, <σj>) × 100 

1.325 1.500 1.0181E-06 0.0708 1.7245 100.000    

1.500 1.700 5.2954E-01 0.0666 1.5090 34.570 100.000   

1.700 1.900 4.7046E-01 0.0600 2.0399 15.280 37.460 100.000  

1.900 2.100 3.0301E-08 0.0521 1.6346 12.010 25.040 38.210 100.000 
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Table 17: The correlation coefficient cor(<σi>,<σj>) in the IAEA Neutron Cross Section Standards between <En> = 0.96 and 1.69 MeV neutrons. 

 Emin 

(MeV) 

Emax 

(MeV) 
cor(<σi>, <σj>) × 100 

Emin 

(MeV) 
  0.675 0.725 0.775 0.825 0.875 0.920 0.950 0.970 0.990 1.050 1.175 

Emax 

(MeV) 
  0.725 0.775 0.825 0.875 0.920 0.950 0.970 0.990 1.050 1.175 1.325 

 1.325 1.500 11.87 10.39 12.03 9.145 8.119 10.56 6.673 6.962 15.54 17.22 39.12 

 1.500 1.700 14.01 12.28 14.40 11.14 10.95 10.76 4.417 8.172 18.60 14.93 22.76 

 1.700 1.900 10.34 9.03 10.71 8.154 9.124 7.886 6.538 7.369 13.89 10.68 12.57 

 1.900 2.100 12.09 10.5 12.47 9.483 10.09 9.439 4.228 7.915 16.07 12.78 14.88 

 

 

Table 18:  Reference cross section <σAu> with their uncertainty and correlation coefficient. 

En (MeV) Value (mb) Uncertainty (mb) Correlation coefficient 

0.96 82.77 0.86 1.00  

1.69 64.09 0.92 0.22 1.00 
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3.4.4. Total Uncertainty in the 70Zn(n, γ)71Znm Cross section 

Table 19 summarizes the uncertainties in various parameters to obtain the 

70Zn(n, γ)71mZn cross section. We use Eq. (31) for these parameters except for the 

replacement of εx and εm with η, and therefore, the total uncertainty is obtained by the 

quadratic sum rule. 

 

Table 19: The fractional (%) partial uncertainty in the measured cross sections 

propagated from various sources of uncertainties. The last column gives the property 

of the correlation between two data points for each source of the uncertainty. See 

Section 3.4.1 for the propagation of the uncertainties in the half-lives. 

   Source En=0.96 MeV En=1.69 MeV Correlation property a 

Count 
Zn 7.809 5.988 

Uncorrelated  
Au 3.247 2.471 

Sample 

Zn enrichment 1.381 Fully correlated  

Zn thickness 0.115 0.088 
Uncorrelated  

Au thickness 0.099 0.097 

Decay 

data 

Zn intensity 2.298 

Fully correlated  
Au intensity 0.063 

Zn half-life 0.177 0.273 

Au half-life 0.027 0.015 

Other 
Efficiency ratio 0.257 Fully correlated 

Au standard 1.043 1.433 Partially correlated b 

Total 8.94 7.17 Partially correlated c 

 

a Uncorrelated, fully correlated and partially correlated mean the correlation 

coefficient is 0, 1 or between them, respectively. See Ref. (Smith et al., 2012; Otuka 

et al., 2017) for more details. 

b Correlation coefficient is 0.22 (See Table 18). 

c Correlation coefficient is 0.12, which is obtained by (1.3812 + 2.2982 + 0.0632 + 0.177 

∙ 0.273 + 0.027 ∙ 0.015 + 0.2572 + 1.043 ∙ 1.433 ∙ 0.22) / (8.94 ∙ 7.17). 
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The 22 parameters in Table 19 form the 13 subsets CZn,1, CZn,2, CAu,1, CAu;2, 

(aZn,1, aZn,2), (nZn;1, nZn;2), (nAu,1, nAu,2), (IZn,1, IZn,2), (IAu,1, IAu,2), ( fZn,1,  fZn,2), ( fAu,1,  fAu,2), 

(η1, η2), (σAu,1, σAu,2). From the uncertainties and correlation coefficients summarized 

in Table 19, we can construct the fractional variance and covariance by adding the 

matrices of 13 subsets: 

 

(7.8092 0
0 0

) + (
0 0
0 5.9882) + (3.2472 0

0 0
) + (

0 0
0 2.4712) 

+ (1.3812 1.3812

1.3812 1.3812) + (0.1152 0
0 0.0882) + (0.0992 0

0 0.0972) 

+ (2.2982 2.2982

2.2982 2.2982) + (0.0632 0.0632

0.0632 0.0632) + ( 0.1772 0.177 × 0.27
0.177 × 0.27 o. 2732 ) 

+ ( 0.0272 0.027 × 0.015
0.027 × 0.015 0.0152 ) + (0.2572 0.2572

0.2572 0.2572) 

+ ( 1.0432 1.043 × 1.437 × 0.07
1.043 × 1.437 × 0.07 1.4372 ) = (

79.924 7.317
7.317 51.377

) 

                = ( 8.942 8.94 × 7.17 × 0.12
8.94 × 7.17 × 0.12 7.172 ) − − − (54) 

 

The last term shows that the total uncertainties in the cross sections are 8.94 

and 7.17% at 0.96 and 1.69 MeV, respectively, and also the correlation coefficient 

between the two cross sections is 0.12. 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER 4 

NUCLEAR MODELS 
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4. NUCLEAR MODELS  

 

  The excitation function of the 70Zn(n, γ)71Znm reaction from 0.4 MeV to 4 MeV 

was calculated using the nuclear reaction model code TALYS-1.6 (Koning et al., 

2008a, 2012,2013) which was then compared with the measured cross sections. The 

optical model parameters for neutrons were obtained by a local potential proposed by 

Koning and Delaroche (Koning et al., 2003). The compound nucleus contribution was 

calculated by the Hauser-Feshbach model (Hauser et al., 1952). There are six level 

density models available in TALYS-1.6 (Koning et al., 2012, 2013) which are 1)  

ldmodel 1: the constant temperature and Fermi-gas model, 2) ldmodel 2: the back-

shifted Fermi-gas model, 3) ldmodel 3: the generalized superfluid model, 4) ldmodel 

4: the microscopic level densities (Skyrme force) from Goriely’s table, 5) ldmodel 5: 

the microscopic level densities (Skyrme force) from Hilaire’s table and 6)  ldmodel 6: 

the Microscopic Level Densities (temperature-dependent HFD, Gogny force) from 

Hilaire’s table. 

The sensitivity of five different γ-ray strength functions available in TALYS-

1.6 was also studied. They are 1) strength 1: Kopecky-Uhl generalized Lorentzian 

(Kopecky et al., 1990), 2) strength 2: Brink-Axel Lorentzian (Brink, 1957; Axel, 

1962), 3) strength 3: Hartree-Fock BCS tables (Capote et al., 2009), 4) strength 4: 

Hartree-Fock-Bogolyubov tables (Capote et al., 2009) and, 5) strength 5: Goriely’s 

hybrid model (Goriely et al., 1998). 

The theoretical calculations have been done using the default parameter values 

except for the level density models and γ-ray strength functions.  

 

4.1. Hauser-Feshbach Model 

The theoretical model calculations to nuclear data evaluations have advantages  
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due to their ability to predict unknown nuclear reaction cross sections and some  

physical quantities that are very hard to measure experimentally including astrophysics 

and nuclear data for science and technology. The modern nuclear data libraries are 

calculated by using some model code like the optical model, the statistical Hauser-

Feshbach (HF) model, and the pre-equilibrium model. Here, we focus only the 

statistical Hauser-Feshbach model. In the statistical Hauser-Feshbach model, the 

compound nuclear reactions on the excited state are calculated with both transmission 

coefficients of outgoing particles and the nuclear level density (NLD) of the residual 

nucleus. The nuclear reaction code TALYS (Koning et al., 2013) implements the HF 

mechanism for evaluating the nuclear reaction cross sections using different input level 

density models. The nuclear level density is the essential input for the calculation of 

compound nuclear reactions reaction cross sections in the framework of Hauser-

Feshbach theory. 

In the Hauser-Feshbach Model, the (a; b) reaction cross section 𝜎𝑎,𝑏(𝐸) 

corresponding to the decay in channel b (particle type, energy, outgoing angular 

momentum) from the compound nucleus (CN) formed in the entrance channel a, is 

given by (Herman et al., 2013): 

𝜎𝑎,𝑏(𝐸) = ∑ 𝜎𝑎
𝐶𝑁

𝐽,𝜋

(𝐸, 𝐽, 𝜋)𝑃𝑏(𝐸, 𝐽, 𝜋) − − − (55) 

where, ∑ 𝜎𝑎
𝐶𝑁

𝐽,𝜋 (𝐸, 𝐽, 𝜋) is the compound nucleus formation cross section at a given 

energy, spin and parity (𝐸, 𝐽, 𝜋) associated to the incident channel a and 𝑃𝑏(𝐸, 𝐽, 𝜋) 

represents the decay probability of the compound nucleus with the excitation energy 

𝐸𝑥 in b channel. The decay probability defined in terms of transmission coefficients is 

given by 

𝑃𝑝(𝐸, 𝐽, 𝜋) =
𝑇𝑏(𝐸𝑥, 𝐽, 𝜋)

∑ 𝑇𝑐(𝐸𝑥, 𝐽, 𝜋)𝑐

− − − (56) 
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which is associated to the reaction channels which might be particles emission, photon 

emission or fission. Here, the transmission coefficients 𝑇𝑐 correspond to the decay 

probability in outgoing channel c. The expression for the transmission coefficient for 

the p particle emission is given by:  

𝑇𝑝(𝐸, 𝐽, 𝜋) = ∑ ∫ ∑ 𝑇𝑝,𝑙𝑗

𝑙𝑗

𝐸𝑥−𝐵𝑝

0

(𝐸𝑥 − 𝐵𝑝 + 𝜀)

𝐼=𝐽+𝑗

𝐼=|𝐽−𝑗|

𝜌(𝜀, 𝐼, 𝜋𝐼)𝛿(𝜋𝜋𝑙, (−1)𝑙)𝑑𝜀      

                                                                                                                              − − −(57), 
 

where 𝐵𝑝 is the separation energy of particle p in the compound nucleus, 𝜌(𝜀, 𝐼, 𝜋𝐼) is 

residual nucleus level density with the spin and parity (𝐼, 𝜋𝐼), and the excitation 

energy 𝜀 remaining in the residual nucleus obtained after emitting a particle in a 

channel c, and 𝑇𝑝,𝑙𝑗 is the transmission coefficient for particle c having channel energy 

(𝐸𝑥 − 𝐵𝑝 + 𝜀) and orbital angular momentum l, which together with the particle spin 

s couples to the channel angular momentum j used to select in the residual nucleus 

spins I populated for a given compound nucleus spin J. The factor 𝛿(𝜋𝜋𝑙 , (−1)𝑙) 

corresponds to the parity conservation. For the discrete levels characterized by the 

energy 𝐸𝑖, spin 𝐼𝑖, and parity 𝜋𝐼𝑖
, the level density 𝜌(𝜀, 𝐼, 𝜋𝛾) reduces to 𝛿(𝜀 −

𝐸𝑖)𝛿(𝐼, 𝐼𝑖)𝛿(𝜋𝐼 , 𝜋𝐼𝑖
). For the gamma-decay coefficient, a similar expression is applied 

(Herman et al., 2013) as: 

𝑇𝛾(𝐸, 𝐽𝜋) = ∑ 𝑇𝑝,𝑙𝑗

𝑙𝑗

∑ ∫ 𝑓
𝑋𝑙

(𝜀𝛾)
𝐸𝑥−𝐵𝑝

0

𝐼=𝐽+𝑗

𝐼=|𝐽−𝑗|

𝜌(𝐸𝑥 − 𝜀𝛾, 𝐽′, 𝜋′)𝛿(𝜋𝜋′, (−1)𝑙)𝑑𝜀𝛾 − −(58) 

 

where, XL represents the photon type and multipole, 𝑓𝑋𝐿(𝜀𝛾) is the γ-ray strength 

function and  (𝐽′, 𝜋′) are the spin and parity of the final states.  

 

4.2. Level Density Models 

In nuclear statistical models, nuclear level densities are used at excitation  

energies where discrete level information is not available or incomplete. Several 
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models are used for the level density in TALYS, which range from phenomenological 

analytical expressions to tabulated level densities derived from microscopic models. 

From Koning et al., 2008b, the complete details can be found. In order to set the 

notation, some preferred definitions is accustomed first. The nuclear level density 

𝜌(𝐸𝑥, 𝐽, 𝛱) is arising from the number of discrete nuclear levels per MeV within an 

excitation energy 𝐸𝑥, for a certain spin 𝐽 and parity 𝛱. The total level density 𝜌𝑡𝑜𝑡(𝐸𝑥)  

arising from the total number of nuclear levels per MeV within 𝐸𝑥 is obtained by 

summing the level densities over all spins and parities: 

𝜌𝑡𝑜𝑡(𝐸𝑥) = ∑ ∑ 𝜌(𝐸𝑥, 𝐽, 𝛱) − − − (
𝛱𝐽

59), 

The total state density 𝜔𝑡𝑜𝑡(𝐸𝑥) with the 2J + 1 states for each level is obtained 

when the magnetic quantum number M degenerates the nuclear levels. It is given by:  

𝜔𝑡𝑜𝑡(𝐸𝑥) = ∑ ∑(2𝐽 +  1 )𝜌(𝐸𝑥, 𝐽, 𝛱) − − − (

𝛱𝐽

60), 

When the analytical expressions provide the level densities, they are usually 

factorized as follows 

𝜌(𝐸𝑥, 𝐽, 𝛱) = 𝑃(𝐸𝑥, 𝐽, 𝛱)𝑅(𝐸𝑥, 𝐽)𝜌𝑡𝑜𝑡(𝐸𝑥) − − − (61), 

where, 𝑃(𝐸𝑥, 𝐽, 𝛱) is the parity distribution and 𝑅(𝐸𝑥, 𝐽)  the spin distribution. In all 

but one level density model in TALYS (ldmodel 5), the parity equipartition is 

assumed, i.e., 

𝑃(𝐸𝑥, 𝐽, 𝛱) =
1

2
− − − (62). 

However, in the programming, it has been accounted for the possibility to adopt 

non-equidistant parities, such as e.g. in the case of microscopic level density tables. 

The following five level density models available in TALYS-1.6 (Koning et 

al., 2008a; 2013) were explained in brief as: 
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4.2.1. ldmodel 1: the Constant Temperature and Fermi-gas Model  

In this model, the constant temperature model is used in the low excitation 

region and the Fermi-gas model is used in the high excitation energy region. The 

transition energy is around the neutron separation energy. 

 

4.2.1.1. The Fermi Gas Model 
 

The Fermi Gas model (FGM) is one of the best analytical level density 

expression. It is based on the assumption that, at the Fermi energy, the excited levels 

of the nucleus constructed by the single particle states are equally spaced, but not 

including the collective levels. For the density states of a two-fermion system, i.e., 

distinguishing between excited neutrons and protons, the total Fermi gas state density 

reads 

𝜔𝐹
𝑡𝑜𝑡(𝐸𝑥) =

√𝜋

12

𝑒𝑥𝑝[2√ɑ𝑈]

ɑ1/4𝑈5/4
− − − (63), 

here, the effective excitation energy, U is defined by: 

𝑈 = 𝐸𝑥 − ∆ − − − (64), 

where, the energy shift ∆ is an empirical parameter which is equivalent to, or for some 

models closely associated with, the pairing energy which is incorporated to simulate 

the known odd-even effects in nuclei. The underlying concept is that ∆ represents the 

way that pairs of nucleons should be separated before every part will 

be excited separately. Practically, ∆ plays an important function as the adjustable 

parameter to breed observables, and its definition can be diverse for the different 

models that are being mentioned here. Eq. (63) demonstrates that all through this 

manual, it will be used both the true excitation energy Ex, as fundamental running 

variable and for expressions associated with discrete levels, and the effective excitation 

energy U, mostly for expressions accompanying to the continuum. 
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Eq. (63) also contains the level density parameter a, given by ɑ =

𝜋2

6
(𝑔𝜋 + 𝑔𝑣), where 𝑔𝜋(𝑔𝑣) denotes the spacing of the proton (neutron) single particle 

states near the Fermi energy. In practice, Eq. (63) is used to determine a from the 

experimental information of the specific nucleus under consideration or from global 

systematics. In contemporary analytical models, a is energy-dependent. This will be 

discussed in more detail below. 

The expression of the Fermi gas level density can be derived with the total 

angular momentum (Ericson, 1960) as: 

𝜌𝐹(𝐸𝑥, 𝐽, 𝛱) =
1

2

2𝐽 + 1

√2𝜋𝜎3
𝑒𝑥𝑝 [−

(𝐽 +
1

2
)

2

2𝜎2
]

√𝜋

12

exp [2√ɑ𝑈]

ɑ1/4𝑈5/4
− − − (65) 

where 𝐽 and 𝛱 are the nuclear spin and parity, the first factor 1/2 represents the 

aforementioned equiparity distribution and 𝜎2 is the spin cut-off parameter, which 

represents the Gaussian width of the angular momentum distribution 𝐽. It relies on 

excitation energy. Eq. (65) is a special case of the factorization of Eq. (61), with the 

Fermi gas spin distribution given by, 

𝑅𝐹(𝐸𝑥, 𝐽) =
2𝐽 + 1

2𝜎2
𝑒𝑥𝑝 [−

(𝐽 +
1

2
)

2

2𝜎2
] − − − (66). 

Summing 𝜌𝐹(𝐸x, 𝐽, 𝛱) over all spins and parities provides the total Fermi gas 

level density: 

𝜌𝐹
𝑡𝑜𝑡(𝐸𝑥) =

1

√2𝜋𝜎

√𝜋

12

exp[2√ɑ𝑈]

ɑ
1

4𝑈
5

4

− − − (67), 

The above Eq. (67) is related through Eq. (86), to the total Fermi gas state density: 

𝜌𝐹
𝑡𝑜𝑡(𝐸𝑥) =

𝜔𝐹
𝑡𝑜𝑡(𝐸𝑥)

√2𝜋𝜎
− − − (68). 
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These equations show that the nuclear level densities 𝜌𝐹
𝑡𝑜𝑡 and 𝜌𝐹 are determined by 

three parameters, ɑ, 𝜎, and ∆.  

In the Fermi gas model, the level density parameter a can be determined from 

D0, the mean s-wave neutron level spacing at the neutron separation energy Sn of the 

compound nucleus, which is usually obtained from the available experimental set of 

s-wave resonances. For any level density, the average resonance spacing parameters 

𝐷0 at the neutron separation energy 𝑆n can be given as: 

1

𝐷0
= ∑ 𝜌𝐹(𝑆n , 𝐽, 𝛱 )

𝐽=𝐼+
1

2

𝐽=|𝐼−
1

2
|

− − − (69) 

where, I represents the spin of the target nucleus. From the above equation, it is 

possible to extract the level density parameter a by an iterative search procedure. 

The spin cut-off parameter 𝜎2 characterizes the Gaussian width of the angular 

momentum distribution of the level density. The general expression for the continuum 

can be formulated based on the observation that a nucleus possesses a collective 

rotational energy that cannot be utilized to excite the individual nucleons. Fermi gas 

spin cut-off parameter 𝜎𝐹
2 is given by: 

𝜎𝐹
2(𝐸𝑥) = 0.01389

𝐴5/3

ɑ̃
√ɑ𝑈 − − − (70) 

where, ɑ̃ is an asymptotic level density parameter obtained when all shell effects are 

damped and A is the atomic mass number. On average, the √ɑ𝑈/ɑ̃ term has the same 

energy- and mass-dependent behaviour as the temperature √𝑈/ɑ. Defining 𝐸𝑑 =

(1/2)(𝐸𝐿 + 𝐸𝑈) as the energy at the mid-point of a lower discrete level NL with energy 

EL and an upper level NU with energy EU region, we assume discrete spin cut-off 

parameter 𝜎𝑑
2 is constant up to this energy and can then be linearly interpolated to the 
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expression given by Eq. (70). The matching point is chosen to be the neutron 

separation energy Sn of the nucleus under consideration, i.e., 

𝜎2(𝐸𝑥) = 𝜎𝑑
2             𝑓𝑜𝑟 0 ≤ 𝐸𝑥 ≤ 𝐸𝑑 

                                  = 𝜎𝑑
2 +

𝐸𝑥−𝐸𝑑

𝑆𝑛−𝐸𝑑
(𝜎𝐹

2(𝐸𝑥) − 𝜎𝑑
2)     𝑓𝑜𝑟  𝐸𝑑 ≤ 𝐸𝑥 ≤ 𝑆𝑛 

                   = 𝜎𝐹
2(𝐸𝑥)     𝑓𝑜𝑟  𝐸𝑥 ≤ 𝑆𝑛       − − − (71). 

In the TALYS-output, all quantities of interest are printed, if requested. 

 

4.2.1.2. Constant Temperature Model 
 

Gilbert and Cameron (Gilbert et al., 1965) introduced the Constant 

Temperature Model (CTM). According to them, in this model, the excitation energy 

range is separated into two energy regions, such as: (i) a low energy region starting 

from 0 MeV up to a matching energy EM, where the so-called constant temperature 

law is used and (ii) a high energy region above EM, where the Fermi gas model is 

adopted. Therefore, in the CTM for the total level density, we have 

𝜌𝑡𝑜𝑡(𝐸𝑥) = 𝜌𝑇
𝑡𝑜𝑡(𝐸𝑥),   𝑖𝑓 𝐸𝑥 ≤ 𝐸𝑀 − − − (72), 

= 𝜌𝐹
𝑡𝑜𝑡(𝐸𝑥),   𝑖𝑓 𝐸𝑥 ≥ 𝐸𝑀 − − − (73), 

and similarly for the level density 

𝜌(𝐸𝑥, 𝐽, 𝛱) =
1

2
𝑅𝐹(𝐸𝑥, 𝐽)𝜌𝑇

𝑡𝑜𝑡(𝐸𝑥),   𝑖𝑓 𝐸𝑥 ≤ 𝐸𝑀 − − − (74), 

= 𝜌𝐹(𝐸𝑥, 𝐽, 𝛱)  𝑖𝑓 𝐸𝑥 ≥ 𝐸𝑀 − − − (75). 

It is noted that, in the constant temperature region, the Fermi gas spin 

distribution of Eq. (66)  and the low-energy behaviour for the Fermi gas spin cut-off 

parameter as expressed by Eq. (71) are also used. 

The effective excitation energy, 𝑈 = 𝐸𝑥 − ∆𝐶𝑇𝑀 is used for the Fermi gas 

expression, where the energy shift is given by 



75 
 

∆𝐶𝑇𝑀= 𝜒
12

√𝐴
− − − (76), 

with 

𝜒 = 0,   𝑓𝑜𝑟 𝑜𝑑𝑑 − 𝑜𝑑𝑑, 

    = 1,   𝑓𝑜𝑟 𝑜𝑑𝑑 − 𝑒𝑣𝑒𝑛, 

              = 2, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 − 𝑒𝑣𝑒𝑛 − − − (77). 

Note that, in TALYS, by using a default, no adjustable pairing shift parameter is used 

in the CTM. In Eq. (76), a number 12 in the numerator can be changed using the 

pairconstant keyword. This can also be applied to the other level density models. 

 

In the case of low excitation energy, the CTM relied on the experimental 

evidence that the cumulative number of levels 𝑁(𝐸x) of the first discrete levels can be 

well reproduced by an exponential law of the form 

𝑁(𝐸x) = exp (
𝐸x − 𝐸0

𝑇
) − − − (78). 

The above expression is called the constant temperature law. The adjustable 

parameters, the nuclear temperature T, and the normalization factor E0 adjust the 

formula to the experimental discrete levels. Accordingly, the constant temperature part 

𝑁(𝐸x) is related to the total level density by the equation: 

𝜌𝐹
𝑡𝑜𝑡(𝐸𝑥) =

𝑑𝑁(𝐸x)

𝑑𝐸x
=

1

𝑇
exp (

𝐸𝑥 − 𝐸0

𝑇
) − − − (79). 

 

In the case of higher energies, the Fermi gas model is more suitable and the 

total level density is given by Eq. (67). The expressions for 𝜌T
tot and 𝜌F

tot are adjusted 

to match each other at a matching energy 𝐸M in order to become they, and their 

derivatives, identical. According to continuity equation, we have, 

  𝜌T
tot(𝐸M) = 𝜌𝐹

𝑡𝑜𝑡(𝐸M) − − − (80). 
 

Putting Eq. (79) in the above equation, we have the condition, 
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𝐸0 = 𝐸M − 𝑇ln[𝑇𝜌F
tot(𝐸M)] − − − (81) . 

 

Again, according to the condition of continuity, the derivative of Eq. (80) becomes 

  

𝑑𝜌T
tot

𝑑𝐸x

(𝐸M) =
𝑑𝜌F

tot

𝑑𝐸x

(𝐸M) − − − (82). 

 

Thus, putting Eq. (79) in the above equation, we have the condition, 
 

𝑑𝜌T
tot

𝑇
(𝐸M) =

𝑑𝜌F
tot

𝑑𝐸x

(𝐸M) − − − (83), 

or 
 

1

𝑇
=

𝑑ln𝜌F
tot

𝑑𝐸x

(𝐸M) − − − (84) . 

 

In principle, Eq. (84) could be elaborated analytically for all Fermi gas type 

expressions including the energy dependent expressions for ɑ, 𝜎2, and Krot etc., but in 

practice, we use a numerical method of solution to allow any level density model to be 

used in the matching problem. For this, the inverse temperature of Eq. (84) is 

determined numerically by calculating 𝜌F
tot on a sufficiently dense energy grid. 

 

The matching problem given by Eqs. (81) and (84) provides two conditions 

with three unknowns: T, E0 and EM. Hence, another constraint is needed. This is 

obtained by demanding that in the discrete level region, the constant temperature law 

reproduces the experimental discrete levels from a lower level NL with energy EL to an 

upper level NU with energy EU, i.e., 𝜌T
tot needs to obey  

𝑁U = 𝑁L + ∫ 𝑑𝐸x𝜌tot(𝐸x)
𝐸U

𝐸L

− − − (85), 

 

or, after inserting Eq. (79), 

 𝑁U = 𝑁L + (exp [ 
𝐸U

𝑇
] − exp [

𝐸L

𝑇
]) exp [

−𝐸0

𝑇
] − − − (86). 

 

The combination of Eqs. (81), (84) and (86) determines T, E0 and EM. Putting 

Eq. (81) in Eq. (86), we have, 
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𝑇𝜌T
tot(𝐸M) exp [

−𝐸M

𝑇
] (exp [ 

𝐸U

𝑇
] − exp [

𝐸L

𝑇
]) + 𝑁L − 𝑁U = 0 − − − (87). 

From the above Eq. (87), EM can be elaborated by an iterative procedure with the 

simultaneous adoption of the tabulated values given by Eq. (84). When the discrete 

levels NL and NU are selected, 𝜌T(𝐸x) provides the best explanation of the observed 

discrete states and are stored in the nuclear structure database. For nuclides for which 

no, or not sufficient, discrete levels are given, we depend on empirical formula for the 

temperature. For the effective model (Koning et al., 2013), we have, 

𝑇 = −0.22 +
9.4

√𝐴(1 + 𝛾𝛿𝑊)
− − − (88) 

and for the collective model 

𝑇 = −0.25 +
10.2

√𝐴(1 + 𝛾𝛿𝑊)
− − − (89) 

where 𝛾 is the global parameter and its values are given in Talys manual. EM can be 

obtained directly from Eq. (84) and E0 from Eq. (88). Again, by fitting all individual 

values of the nuclides, Eqs. (84) and (89) were obtained, for which sufficient discrete 

level information exists. In a few cases, the global expression for T may lead to a value 

for EM that is too high. In such cases, we rely for the matching energy on the empirical 

expressions. For the effective model, we have, 

𝐸M = 2.33 +
253

𝐴
+ ∆𝐶𝑇𝑀 − − − (90), 

and for the collective model, we have, 
 

𝐸M = 2.67 +
253

𝐴
+ ∆𝐶𝑇𝑀 − − − (91), 

 

after which T is obtained from Eq. (84). 

 

4.2.2. ldmodel 2: The Back-shifted Fermi gas Model 

The Back-shifted Fermi gas Model (BFM) (Goriely et al., 2011) is a modified  
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model of Fermi Gas Model (FGM). In this model, the pairing energy is treated as an 

adjustable parameter and the Fermi gas expression is used to describe the level density 

all the way down to 0 MeV. Hence, the total level density is given as, 

𝜌𝐹
𝑡𝑜𝑡(𝐸𝑥) =

1

√2𝜋𝜎

√π

12

exp [2√ɑ𝑈]

ɑ1/4𝑈5/4
− − − (92), 

and the level density is,   

𝜌𝐹(𝐸𝑥, 𝐽, 𝛱) =
1

2

2𝐽 + 1

2√2𝜋𝜎3
exp [−

(J +
1

2
)2

2σ2
]

√π

12

exp [2√ɑ𝑈]

ɑ1/4𝑈5/4
− − − (93), 

respectively. These expressions, as well as the energy-dependent expressions for ɑ and 

σ2, contain the effective excitation energy U = Ex - ∆BFM, where the energy shift is 

given by 

∆𝐵𝐹𝑀= 𝜒
12

√𝐴
+ 𝛿 − − − (94), 

with 

𝜒 = −1,   𝑓𝑜𝑟 𝑜𝑑𝑑 − 𝑜𝑑𝑑, 

                                       = 0,   𝑓𝑜𝑟 𝑜𝑑𝑑 − 𝑒𝑣𝑒𝑛, 

                                       = 1, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 − 𝑒𝑣𝑒𝑛 − − − (95). 

and δ an adjustable parameter to fit experimental data per nucleus.  

When U goes to zero, a problem occurs in the original BFM, which may have 

hampered its use as the default level density option in nuclear model analyses, is the 

divergence of Eqs. (92) and (93). Grossjean and Feldmeier (1985) have been provided 

a solution for this problem and it has been put into a practical form by Demetriou and 

Goriely (2001), which is adopted in TALYS (Koning et al., 2008b). Thus, the total 

BFM level density is given by, 

𝜌𝐵𝐹𝑀
𝑡𝑜𝑡 (𝐸x) = [

1

𝜌𝐹
𝑡𝑜𝑡(𝐸x)

+
1

𝜌0(𝑡)
]

−1

− − − (96), 
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here,  𝜌0 is given by 

𝜌0(𝑡) =
exp (1)

24𝜎

(ɑn + ɑp)2

√ɑnɑp

exp(4ɑnɑp𝑡2) − − − (97), 

where, ɑn = ɑp = ɑ/2 and t is thermodynamical temperature given by √𝑈/ɑ. With the 

usual spin distribution, the level density can be given as, 

𝜌𝐵𝐹𝑀(𝐸𝑥, 𝐽, 𝛱) =
1

2

2𝐽 + 1

2𝜎2
exp [−

(J +
1

2
)

2

2σ2
] 𝜌BFM

tot (𝐸x) − − − (98). 

In sum, there are two adjustable parameters for the BFM, ɑ and δ. 

 

4.2.3. ldmodel 3: the Generalized Superfluid Model  

The Generalized Superfluid Model (GSM) is based on the Bardeen-Cooper-

Schrieffer theory, which includes pairing correlations that produce the superfluid 

characteristics of this model (Ignatyuk et al., 1993). The phenomenological model 

(Larsen et al., 2010a; Larsen et al., 2010b) is characterized by a phase transition from 

a super fluid behaviour at low energy, where the level density is strongly influenced 

by pairing correlations, to a high energy region which is described by the Fermi Gas 

Model (FGM). Therefore, the GSM is similar to the Constant Temperature Model to 

the extent that it distinguishes between a low energy and a high energy region, 

although for the GSM, this distinction follows naturally from the theory and does not 

rely upon specific discrete levels that determine a matching energy. Instead, at low 

energies, the model automatically provides a constant temperature-like behaviour. For 

the level density expressions, it is helpful to remember the general formula for the total 

level density, 

𝜌𝑡𝑜𝑡(𝐸𝑥) =
1

√2𝜋𝜎

𝑒𝑆

√𝐷
− − − (99), 

where, S is the entropy and D is the determinant related to the saddle-point  
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approximation. In the GSM, the level density has to be treated separately in two energy 

regions which are separated by the temperature called the critical temperature Tc and 

the excitation energy corresponding to the critical temperature called the critical 

energy Uc, can be expressed as 

𝑈c = 𝑎c𝑇c
2 + 𝐸cond − − − (100) . 

Here, the critical temperature Tc is 

𝑇𝑐 = 0.567∆0 − − − (101), 

where, the pairing correlation function is given by 

∆0=
12

√𝐴
− − − (102).    

Also, Econd is the condensation energy, which describes the decreasing of the superfluid 

phase in respect to the Fermi gas phase. It is given by: 

𝐸cond =
3

2𝜋2
ɑc∆0

2 − − − (103), 

where, ɑc is the critical level density parameter, which can be determined by the 

iterative equation 

ɑc = ɑ̃ [1 + 𝛿𝑊
1 − exp(−𝛾ɑc𝑇c

2)

ɑc𝑇c
2

] − − − (104) , 

where, ɑ̃ is the asymptotic value of the level density parameter, 𝛿𝑊 is the shell 

correction and 𝛾 is the shell effects damping parameter. Eq. (104) indicates that shell 

effects are again appropriately taken into account. For the determination of the level 

density, the critical entropy Sc, and the critical determinant Dc are defined by the 

following expressions: 

𝑆c = 2ɑc𝑇c − − − (105) , 

and,                                                                

𝐷c =
144

𝜋
ɑc

3𝑇c
5 − − − (106), 
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Also, the critical spin cut-off parameter 𝜎c
2 can be given by 

𝜎c
2 = 0.01389𝐴5/3

ɑc

ɑ̃
𝑇c − − − (107) 

Since everything is specified at Uc, we can utilize the superfluid Equation Of 

State (EOS) to characterize the level density below Uc. For this, we define the effective 

excitation energy 

                          𝑈′ = 𝐸x + 𝜒∆0 + 𝛿 − − − (108),   

where, 

                                 χ =  1, 𝑓𝑜𝑟 𝑜𝑑𝑑 − 𝑒𝑣𝑒𝑛, 

                                                 = 0, 𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 − 𝑒𝑣𝑒𝑛 

                                                 =  2, 𝑓𝑜𝑟 𝑜𝑑𝑑 –  𝑜𝑑𝑑, − − −(109). 

and δ is an adjustable shift parameter to obtain the best description of experimental 

data per nucleus (Koning et al., 2008b). The function 𝜑 introduced at effective 

excitation energies below Uc, in the energy range where the superconductivity model 

BCS (Ignatyuk et al., 1979) applies is given as 

𝜑2 = 1 −
𝑈′

𝑈𝑐
− − − (110). 

Then, the relation between the function 𝜑 and temperature T obeying the superfluid 

EOS for the excitation energy 𝑈′ ≤ 𝑈𝑐 (Ignatyuk et al., 1979), can be given by the 

equation, 

𝜑 = tanh (
𝑇c

𝑇
𝜑) − − − (111), 

which is equivalent to 

𝑇 = 2𝑇𝑐𝜑 [𝑙𝑛
1 + 𝜑

1 − 𝜑
]

−1

− − − (112) 

The other required functions for 𝑈′ ≤ 𝑈𝑐   are the entropy S, given by: 
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𝑆 = 𝑆c

𝑇𝑐

𝑇
(1 − 𝜑2) = 𝑆c

𝑇c

𝑇

𝑈′

𝑈c
− − − (113), 

the determinant D, given by the expression: 

𝐷 = 𝐷c(1 − 𝜑2)(1 + 𝜑2)2 = 𝐷c

𝑈′

𝑈c
(2 −

𝑈′

𝑈c
)2 − − − (114) 

and the spin cut-off parameter 

𝜎2 = 𝜎c
2(1 − 𝜑2) = 𝜎c

2
𝑈′

𝑈c
− − − (115) 

In sum, the level density can now be specified for the entire energy range. For 

𝑈′ ≤ 𝑈𝑐  , the total level density is given by 

𝜌𝐺𝑆𝑀
𝑡𝑜𝑡 (𝐸x) =

1

√2𝜋𝜎

𝑒𝑆

√𝐷
− − − (116), 

using Eqs. (113) and (114). Similarly, the level density is 

𝜌GSM(𝐸𝑥, 𝐽, 𝛱) =
1

2
𝑅F(𝐸𝑥, 𝐽)𝜌GSM

tot (𝐸x) − − − (117) 

For 𝑈′ ≤ 𝑈𝑐, the FGM applies though with an energy shift, that is, different 

from the pairing correction of the CTM and BFM. The total level density is                                             

𝜌𝐺𝑆𝑀
𝑡𝑜𝑡 (𝐸x) =

1

√2𝜋𝜎

√𝜋

12

[2√𝑎𝑈]

ɑ1/4𝑈5/4
− − − (118), 

where the effective excitation energy is defined by 𝑈 = 𝐸x − ∆GSM, with 

∆GSM= 𝐸cond − 𝜒∆0 − 𝛿 − − − (119), 

The spin cut-off parameter in the high-energy region reads 

𝜎2 = 𝐼0

ɑ

ɑ̃
√

𝑈

ɑ
 − − − (120), 

and I0 is the moment of inertia of the nucleus given by [(2/5)m0R
2A]/(ћc)2 where, 

R=1.2A1/3 is the radius and m0 is the neutron mass in amu. The level density is given 

by 
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𝜌GSM(𝐸x, 𝐽, 𝛱) =
1

2
𝑅F(𝐸x, 𝐽)𝜌GSM

tot (𝐸x) − − − (121). 

At the matching energy, i.e., for 𝐸x
′ = 𝑈c − 𝜒∆0 − 𝛿, it is easy to verify that 

Eqs. (116) and (118) match so that the total level density is perfectly continuous. In 

sum, there are two adjustable parameters for the GSM, ɑ and δ. 

 

4.2.4. ldmodel 4: the Microscopic Level Densities (Skyrme force) from Goriely’s 

table. 

Not only in TALYS, there are different options to employ more microscopic 

approaches to calculate the nuclear level densities. For the RIPL database, S. Goriely 

has calculated level densities using the Hartree-Fock calculations (Goriely et al., 2001) 

for excitation energies up to 150 MeV and for spin values up to I = 30. If ldmodel 4, 

these tables with microscopic level densities can be read. Moreover, Hilaire and 

Goriely (Goriely et al., 2008) have been proposed the new energy-, spin- and parity-

dependent nuclear level densities based on the microscopic combinatorial model. This 

combinatorial model consists of using single-particle level schemes obtained from the 

constrained axially symmetric Hartree-Fock-Bogoliubov (HFB) method and it 

describes an elaborated microscopic calculation of the intrinsic state density and 

collective enhancement. The phenomenological prospect of the model is only a simple 

damping function for the rotational effects. Within the deformed Skyrme-Hartree-

Fock-Bogolyubov framework, these calculations make coherent use of nuclear 

structure properties (Koning et al., 2008b; 2013).  

 

4.2.5. ldmodel 5: the Microscopic Level Densities (Skyrme force) from Hilaire’s 

table. 

In ldmodel 5, the nuclear level densities for more than 8500 nuclei are made 

available in the tabular format, for excitation energies up to 200 MeV and for spin  
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values up to J = 49 (Koning et al., 2008b; 2013).  

 

4.2.6. ldmodel 6: the Microscopic Level Densities (temperature-dependent HFD, 

Gogny force) from Hilaire’s table. 

 In ldmodel 6, the most recent option to employ the microscopic approaches to 

calculate the nuclear level densities is based on temperature-dependent Hartree-Fock-

Bogolyubov calculations using the Gogny force (Koning et al., 2008b; Hilaire et al., 

2012). 

For both microscopic level density models, tables for level densities on top of 

the fission barriers are automatically invoked for ldmodel 4, 5 or 6, when available in 

the structure database. The default Fermi gas model is used for nuclides outside the 

tabulated microscopic database (Koning et al., 2013). 

 

4.3. Gamma-ray Transmission Coefficients 

In order to describe the gamma emission channel in nuclear reactions, the 

gamma-ray transmission coefficients are very important. Generally, since the gamma 

rays may accompany emission of any other emitted particle, the gamma emission 

channel is an almost universal channel. For the calculation of the competition of 

photons with other particles, the gamma-ray transmission coefficients enter the 

Hauser-Feshbach model, like the particle transmission coefficients that emerge from 

the optical model, (Koning et al., 2012). 

For the multipolarity ℓ of type X (where X = M or E), the gamma-ray 

transmission coefficient 𝑇𝑋ℓ(𝐸𝛾) related to the corresponding strength function is 

given by 

𝑇𝑋ℓ(𝐸𝛾) = 2𝜋𝑓𝑋ℓ(𝐸𝛾)𝐸𝛾
2ℓ+1 − − − (122), 

where, E denotes the gamma energy. Gamma-ray strength functions are important  
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constituents of the compound nucleus model calculations of capture cross sections, γ-

ray production spectra, isomeric state populations, and competition between γ-ray and 

particle emission. The γ-ray strength functions include information on the nuclear 

structure, and are widely used to study the mechanisms of nuclear reactions as well as 

nuclear structure (Capote et al., 2009). The different γ-ray strength functions available 

in TALYS-1.6 were explained in brief in Sec-4.2.1. as (Koning et al., 2008a, 2013). 

 

4.3.1. Gamma-ray Strength Functions 

In Talys, there are four models for the gamma-ray strength function. The Brink-

Axel Lorentzian Model is called the strength 2 (Brink, 1957; Axel, 1962), in which a 

standard Lorentzian form describes the Giant Dipole Resonance (GDR) shape, i.e., 

𝑓𝑋ℓ(𝐸𝛾) = 𝐾𝑋ℓ

𝜎𝑋ℓ𝐸𝛾Γ𝑋ℓ
2

(𝐸𝛾
2 − 𝐸𝑋ℓ

2 )2 + 𝐸𝛾
2Γ𝑋ℓ

2 − − − (123), 

where `𝜎𝑋ℓ,  𝐸𝑋ℓ and Γ𝑋ℓ  are the strength, energy and width of the giant resonance, 

respectively, and 

𝐾𝑋ℓ =
1

(2ℓ + 1)𝜋2ℎ2𝑐2
− − − (124) 

For all transition types other than E1, at present, the Brink-Axel option is 

applied. For E1 radiation in TALYS, the Kopecky-Uhl Generalized Lorentzian Model 

called strength 1 is the default option (Kopecky, 1990), and is given as 

𝑓𝐸1(𝐸𝛾, 𝑇) = 𝐾𝐸1 [
𝐸𝛾Γ̃𝐸1(𝐸𝛾)

(𝐸𝛾
2 − 𝐸𝐸1

2 )2 + 𝐸𝛾
2Γ̃𝐸1(𝐸𝛾)2

+
0.7Γ𝐸14𝜋2𝑇2

𝐸𝐸1
3 ] 𝜎𝐸1Γ𝐸1 − −(125), 

where, the energy-dependent damping width Γ̃(𝐸𝛾) is given by 

Γ̃𝐸1(𝐸𝛾) = Γ𝐸1

𝐸𝛾
2 + 4𝜋2𝑇2

𝐸𝐸1
2  − − − (126), 

and T is the nuclear temperature given by (Kopecky et al., 1993) 
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𝑇 = √
𝐸𝑛 + 𝑆𝑛 − ∆ − 𝐸𝛾

𝑎(𝑆𝑛)
− − − (127) 

where, 𝐸𝑛 is the incident neutron energy, 𝑆𝑛 the neutron separation energy, ∆ the 

pairing correction and 𝑎 the level density parameter at 𝑆𝑛. 

The parameters of GDR for various individual nuclides exist for E1-transitions, 

and in the nuclear structure database of TALYS, these parameters are stored. In the 

case of deformed nuclides, GDR strength function splits into two components, i.e. a 

second set of Lorentzian parameters. The incoherent sum of two strength functions is 

taken in these cases. For all transitions other than E1, Kopecky (Capote et al., 2009), 

compiled the systematic formulae for the resonance parameters. For E1 transitions, the 

following default parameters have been adopted for which no tabulated data exist 

(Koning et al., 2013):  

− − −(128) 

    𝜎𝐸1 = 1.2 ×
120𝑁𝑍

(𝐴𝜋Γ𝐸1)
𝑚𝑏 , 

                                 𝐸𝐸1 = 31.2𝐴−1/3 + 20.66𝐴−1/6 MeV, 

Γ𝐸1 = 0.026𝐸𝐸1
1.91 MeV. 

For E2 transitions, the following adopted default parameters of GQR are: 

− − −(129) 

𝜎𝐸2 =
0.00014𝑍2𝐸𝐸2

𝐴1/3Γ𝐸2
 𝑚𝑏 , 

𝐸𝐸2 = 63. 𝐴−1/3 𝑀𝑒𝑉 MeV , 

Γ𝐸2 = 6.11 − 0.012𝐴 𝑀𝑒𝑉 . 

For multipole radiation higher than E2, the default parameters are: 

− − −(130) 
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                                             𝜎𝐸ℓ = 8.10−4𝜎𝐸(ℓ−1) , 

 𝐸𝐸ℓ = 𝐸𝐸(ℓ−1) , 

Γ𝐸ℓ = Γ𝐸(ℓ−1) 

For M1 transitions, the default parameterizations of the GMR are as follows: 

− − −(131) 

        𝑓𝑀1 = 1.58𝐴0.47 at 7 MeV, 

            𝐸𝑀1 = 41. 𝐴−1/3 𝑀𝑒𝑉 , 

Γ𝑀1 = 4 𝑀𝑒𝑉 , 

here, in order to obtain the Γ𝑀1 value, Eq. (123) needs to be applied at 7 MeV. For 

multipole radiation higher than M1, the following default parameters are used: 

− − −(132) 

                                            𝜎𝑀ℓ = 8.10−4𝜎𝑀(ℓ−1) , 

                                            𝐸𝑀ℓ = 𝐸𝑀(ℓ−1) , 

Γ𝑀ℓ = Γ𝑀(ℓ−1) 

The systematics can be overruled with user-defined input parameters for all the 

cases. 

Talys also provides two microscopic options for E1 radiation. According to the 

Hartree-Fock BCS Model, Stephane Goriely calculated gamma-ray strength function 

called strength 3, and he also calculated that function according to Hartree-Fock-

Bogolyubov model, it is known as strength 4, see also Ref. (Capote et al., 2009). In 

the microscopical strength functions, two adjustment parameters  𝑓𝑛𝑜𝑟 and 𝐸𝑠ℎ𝑖𝑓𝑡 are 

introduced which is given in Eq. (133) as: 

𝑓E1(𝐸𝛾) = 𝑓𝑛𝑜𝑟𝑓HFM(𝐸𝛾 + 𝐸𝑠ℎ𝑖𝑓𝑡) − − − (133) 

 

here, 𝑓𝑛𝑜𝑟 = 1  and 𝐸𝑠ℎ𝑖𝑓𝑡 = 0 are the default parameters (i.e. unaltered values from 

the tables). The energy shift 𝐸𝑠ℎ𝑖𝑓𝑡 simply suggests acquiring the level density from 
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the table at a different energy. By adjusting 𝑓𝑛𝑜𝑟 and 𝐸𝑠ℎ𝑖𝑓𝑡 together, it gives enough 

adjustment flexibility. A further detailed description of the model is given in TALYS 

user manual (Koning et al., 2013). 
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5. RESULTS AND DISCUSSIONS 

 

The measured 70Zn(n, γ)71Znm cross sections are given in Table 20 with their 

overall and partial uncertainties in Table 19. In Table 20, the ratio of the evaluated 

70Zn(n, γ)71Znm cross sections in the TENDL-2015 library folded by the (p, n0) neutron 

flux energy spectra <σZn
m>TENDL to the measured cross sections are also given. Among 

the latest major libraries, JENDL-4.0 also provides an original evaluated data set for 

the 70Zn(n, γ)71Zng+m cross section (Kopecky, 1990; Brink, 1957) but not for the70Zn(n, 

γ)71Znm cross section. 

Figures 25(a-e) show the comparison of the present measured spectrum 

averaged 70Zn(n, γ)71Znm reaction cross sections and the cross sections for mono 

energetic neutrons predicted by TALYS-1.6 with various level density models and γ-

ray strength functions. A sudden decrease in the 70Zn(n, n1)
70Znm cross section around 

0.9 MeV was predicted by both TALYS-1.6 and TENDL-2015. This was due to the 

70Zn(n, n1)
70Zn in elastic scattering channel. Figure 25(a-e) shows that the prediction 

by TALYS-1.6 was very sensitive to the choice of the level density models and the γ-

ray strength functions. It could also be clearly seen that TALYS-1.6 with the 

generalized superfluid level model (ldmodel 3) along with the Kopecky-Uhl 

generalized Lorentzian gamma ray strength function (strength 1) in Figure 25(c) best 

matched the present measured cross sections. 

In order to estimate the 70Zn(n, γ)71Zng+m  cross sections from the measured 

70Zn(n, γ)71Znm  cross sections, the measured cross sections<σZn
m>exp were multiplied 

by the isomeric ratios <σZn
g+m>TENDL/<σZn

m>TENDL evaluated in TENDL-2015 folded 

by the 7Li(p, n0) neutron spectra. The ratios obtained were 1.6698 and 1.6823 at 0.96 

and 1.69 MeV respectively as given in the Table 21. Table 22 compares the derived 
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total neutron capture cross sections <σZn
g+m>present with the (p, n0) neutron flux energy 

spectrum averaged 70Zn(n, γ)71Zng+m cross sections evaluated in TENDL-2015 

<σZn
g+m>TENDL, JENDL-4.0 <σZn

g+m>JENDL as well as calculated by TALYS-1.6 with 

the generalized superfluid level density model (ldmodel 3) and Kopecky-Uhl 

generalized Lorentzian γ-ray strength function (strength 1), <σZn
g+m>TALYS. 

 

Table 20: The 70Zn(n, γ)71Znm cross sections measured in the present 

experiment <σZn
m>exp with their total uncertainties. The ratio of the evaluated cross 

sections in TENDL-2015 averaged by the (p, n0) neutron flux energy spectra 

<σZn
m>TENDL to the measured cross sections are also given.  

En (MeV) 
<σZn

m>exp 

(mb) 

      Correlation         

      coefficients 

<σZn
m>TENDL/ 

    <σZn
m>exp 

0.96 ± 0.15 1.83 ± 0.16 1.00         1.89 

1.69 ± 0.15 1.33 ± 0.09 0.12 1.00        1.48 

 

 

(a) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

70
Zn(n,)

71
Zn

m

Neutron Energy (MeV)

C
r
o
ss

-s
e
c
ti

o
n

 (
m

b
)

ldmodel1

 strength 1

 strength 2

 strength 3

 strength 4

 strength 5

 TENDL-2015

 Present Expt. Result

 



91 
 

                                                                                                                                                 

(b) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

Neutron Energy (MeV)

C
r
o

ss
-s

e
c
ti

o
n

 (
m

b
)

70
Zn(n,)

71
Zn

m
ldmodel2

 strength 1

 strength 2

 strength 3

 strength 4

 strength 5

 TENDL-2015

 Present Expt. Result

 
                                                                        

(c) 

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

6

7

Neutron Energy (MeV)

C
r
o
ss

-s
e
c
ti

o
n

 (
m

b
)

70
Zn(n,)

71
Zn

m ldmodel3

 strength 1

 strength 2

 strength 3

 strength 4

 strength 5

 TENDL-2015

 Present Expt. Result

 
                                                                      

 



92 
 

(d) 
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Figure 25: Excitation functions of the 70Zn(n, γ)71Znm cross sections measured 

in this work, evaluated in TENDL-2015 (solid line) as well as  calculated by TALYS-

1.6 with  five different γ-ray strength functions (strength 1 to 5) with the level density 

models: (a) ldmodel 1 (b) ldmodel 2 (c) ldmodel 3 (d) ldmodel 4 and (e) ldmodel 5 . 
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See text for the details of the γ-ray strength functions and level density models. The 

experimental cross sections were (p, n0) neutron flux energy spectrum averaged while 

the evaluated and calculated cross sections were for mono energetic neutrons. 

 

Table 21: The 70Zn(n, γ)71Znm  and 70Zn(n, γ)71Zng+m cross sections folded by the (p, 

n0) neutron flux energy spectra as well as their  ratios in TENDL-2015. 

En (MeV) <σZn
m>TENDL

 <σZn
g+m>TENDL

 
<σZn

g+m>TENDL 

/<σZn
m>TENDL 

0.96 ± 0.15 3.4567 5.7720 1.6698 

1.69 ± 0.15 1.9689 3.3122 1.6823 

 

 

Table 22: The 70Zn(n, γ)71Zng+m captured cross sections derived from the experimental 

70Zn(n, γ)71Znm  cross sections <σZn
g+m>present. The ratio of the evaluated cross sections 

folded by the (p ,n0) neutron flux energy spectra for TENDL-2015 <σZn
g+m>TENDL, 

JENDL-4.0 <σZn
g+m>JENDL, TALYS-1.6 with generalized superfluid level density 

model <σZn
g+m>TALYS to the present cross sections are also given.  

En 

(MeV) 

<σZn
g+m>present 

(mb) 

<σZn
g+m>TENDL/ 

<σZn
g+m>present 

<σZn
g+m>JENDL/ 

<σZn
g+m>present 

<σZn
g+m>TALYS/ 

<σZn
g+m>present 

0.96 ± 0.15 3.05  0.27 1.90 1.15 1.33 

1.69 ± 0.15 2.24  0.16 1.48 0.66 1.46 

 

Figure 26 shows the excitation function for the 70Zn(n, γ)71Zng+m  cross 

sections. It can be seen in this figure that the measured cross section was close to the 

JENDL-4.0 library at 0.96 MeV whereas between TENDL-2015 and JENDL-4.0 

libraries at 1.69 MeV.  
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Figure 26: Excitation functions of the 70Zn(n, γ)71Zng+m cross sections derived in the 

present work, evaluated in TENDL-2015 and JENDL-4.0 as well as calculated by 

TALYS-1.6 with the generalized superfluid level density model (ldmodel 3) and the 

Kopecky-Uhl generalized Lorentzian γ-ray strength function (strength 1). The derived 

present cross sections are (p, n0) neutron flux energy spectrum averaged while the 

evaluated and calculated cross sections were for mono energetic neutrons. 
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6. SUMMARY AND CONCLUSIONS 

 

Measurement of neutron radiative capture cross sections for 70Zn(n, γ)71Znm  

reaction was carried out above the upper boundary of the resolved resonance region 

because there has been no experimental results so far from this region, and while 

comparing the evaluated total capture cross sections in the basic evaluated nuclear data 

libraries TENDL-2015, (Koning et al., 2015), JENDL-4.0 (Shibata et al., 2011 ; 

Iwamoto et al., 2007) and EAF-2010 (Sublet et al., 2010), there are large discrepancies 

between them. So, it is not possible to know which evaluation is correct in absence of 

the experimental data. Therefore, the present results in this energy region have been 

resolved this issue. The neutron capture cross sections of zinc isotopes are important 

for reactor applications. The radiative capture cross section of 70Zn is a candidate of 

Reactor Dosimetry (Trkov et al., 2013). It is also a candidate of dosimetry reactions to 

study deviation of the epithermal reactor neutron spectrum from 1/E distribution 

because there is no 70Zn+n resolved resonance below 10 keV (Trkov, 2015). The 

deviation from the 1/E distribution is of particular importance in determining the 

neutron leakage and absorption in the slowing down energy region. It is also important 

for nuclear astrophysics. In the solar system, about half of the nuclei beyond iron are 

produced by the slow neutron capture process (s-process), the other half by the rapid 

neutron capture process (r-process), and a marginal contribution is provided by the so-

called p-process (Burbidge et al., 1957). This work described how the 70Zn is bypassed 

through 69Zn in the s-process path between iron and arsenic (Reifarth, 2012) and how 

it has linked that path. 

The cross sections of the 70Zn(n, γ)71Znm (T1/2 = 3.96±0.05 hrs) reaction were 

measured relative to the 197Au(n, γ)198Au cross sections using activation technique. 
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The neutrons were obtained by the 7Li(p, n)7Be reaction at incident proton energies 

2.8 MeV and 3.5 MeV. The experiment was carried out at the Folded Tandem Ion 

Accelerator (FOTIA) Facility, Nuclear Physics Division, Bhabha Atomic Research 

Centre (BARC), Mumbai. The neutron spectra at those incident proton energies were 

obtained by 7Li(p, n)7Be neutron spectrum code EPEN (R. Pachuau et al., 2017a, 

2017b) developed and being tested by our group (NHERG). The EPEN (Energy of 

Proton-Energy of Neutron) is a tool for simulating neutron spectra resulting from the 

7Li(p, n)7Be reaction. This code is designed by using evaluated data from Ep = 1.95 - 

4 MeV taken from Horst Liskien and Arno Paulsen (Liskien et al., 1975) and below 

1.95 MeV up to threshold (1880.429 keV) is taken from Macklin and Gibbons 

(Macklin et al., 1958). The average energy of the ground state neutron group calculated 

with the EPEN (p, n0) neutron flux energy spectrum φ0(E) were 0.96 and 1.69 MeV 

for Ep = 2.80  and 3.50 MeV respectively. The width of the (p, n0) spectrum is ± 0.15 

MeV at both proton energies. The neutron flux was monitored online by a NE213 

(shown in the Figure 10) neutron detector at zero degree and at 1 m distance from the 

lithium target. The neutron flux was recorded and saved every 30 minutes to get the 

neutron flux fluctuation during the whole irradiation period. The γ-ray activity was 

measured using a pre-calibrated lead-shielded 185 cc high purity germanium (HPGe) 

detector having 30% relative efficiency, and 1.8 keV energy resolution at 1.33 MeV 

γ-energy. The data acquisition was carried out using CAMAC based LAMPS (Linux 

Advanced Multi Parameter System) software (TCAMCON-95/CC 2000 crates 

controller and CM-48 ADCs). Due to low count rate of 71Znm, the foil stack was place 

very close to the detector to obtain high count rate.  However, it introduces the 

coincidence-summing effect. In order to correct the measured efficiency for the 
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coincidence summing effect, the correction factor Kc was calculated using the Monte 

Carlo simulation code EFFTRAN (Vidmar, 2005). 

Therefore, the 70Zn(n, γ)71Znm cross sections have been newly measured by a 

7Li(p, n)7Be neutron source at 0.96 and 1.69 MeV, and their corresponding 70Zn(n, 

γ)71Znm+g cross sections have been derived. The data analysis was carried out using the 

latest decay data, and by taking into account the neutron flux fluctuation due to proton 

current fluctuation during irradiation, low energy (p, n1) neutron backgrounds coming 

from the neutron population of the first excites state of 7Be, scattered neutron 

background originating from elastic, inelastic and multiple scattering in the foil stack 

and surrounding materials, and γ self-attenuation due to a gamma photon during its 

passes through any material, including the sample in which it was generated, 

underwent specific interactions which attenuated the photon either by absorption or 

scattering with losing energy partially or totally. The measured 70Zn(n, γ)71Znm cross 

sections were compared with theoretical calculations using nuclear reaction model 

code TALYS-1.6 (Koning et al., 2008) with various level density models and γ-ray 

strength functions available in TALYS-1.6. It has been observed that the theoretical 

calculation with default parameter settings along with the generalized superfluid model 

(ldmodel 3) and Kopecky-Uhl generalized Lorentzian γ-ray strength function 

(strength 1) predicted well the measured 70Zn(n, γ)71Znm cross sections. The derived 

70Zn(n, γ)71Zng+m cross sections were compared with the latest evaluated cross sections 

in the TENDL-2015 and JENDL-4.0 libraries. It has been observed that the present 

derived total cross section agrees well with the JENDL-4.0 library at 0.96 MeV 

whereas at 1.69 MeV it best matches TALYS-1.6 with combination of ldmodel3 with 

strength 1 which was in between TENDL-2015 and JENDL-4.0 libraries. This work 

described how the covariances of neutron captured cross section in reference standard 
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cross section and efficiency of the HPGe detector were estimated. The uncertainties in 

the timing factor and HPGe detector were also estimated. The uncertainties in various 

parameters were summarized in Table 19 to obtain the 70Zn(n, γ)71mZn cross section 

uncertainties. Then, the total uncertainties in the cross sections were 8.94 and 7.17% 

at 0.96 and 1.69 MeV, respectively, and also the correlation coefficient between the 

two cross sections was 0.12. 

It can be seen from the Figure 26 that more experimental data was required in 

the energy region below 1 MeV, where the discrepancy between evaluated files were 

maximum to clearly establish which evaluation was correct in predicting the excitation 

function of 70Zn(n, γ)71Zng+m . In this regards, our group carried out experiment at 

FOTIA, BARC at incident proton energies of 2.25 MeV and 2.6 MeV. The data 

reduction is being carried out and is being studied as a separate Ph.D. research work 

by another Research Scholar. These experimental values are expected to resolve a 

large difference predicted by different evaluators. 
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