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PREFACE

The present thesis entitled ”CERTAIN DIFFERENTIABLE STRUCTURES ON A

MANIFOLD” is an outcome of the researcher carried out by the author Mrs. Mayanglam-

bam Saroja Devi under the supervision of Dr. Jay Prakash Singh, Department of

Mathematics and Computer science, Mizoram University, Aizawl, Mizoram.

This thesis has been divided into six chapters and each chapter is subdivided into

a number of articles. The first chapter is general introduction which include basic

definitions, Differentiable manifolds, Tangent Vector, Tangent space and Vector field,

Tensors, Lie-bracket, Lie derivative, Covariant derivative, Connection, tensors, con-

tracted tensors, Riemannian manifolds, Torsion tensor, Riemannian connection, Exte-

rior derivative, quarter symmetric non-metric connection, semi-symmetric non-metric

connection, Ricci tensor, Curvature tensors on Riemannian manifolds, Almost contact

metric manifold, P -Sasakian manifold, Almost paracontact metric manifold, Recurrent

manifold, Lorentzian paracontact manifold, Kenmotsu manifold, submanifold and hy-

persurfaces.

The second chapter is related with the characterization of LP -Sasakian manifolds

admitting a semi-symmetric non-metric and a quarter symmetric non-metric connec-

tion in an LP -Sasakian manifold. We have shown that if an LP -Sasakian manifold

admits a semi symmetric non-metric connection D̃, then the necessary and sufficient

condition for the conformal curvature tensor of D̃ to coincide with that of the Rieman-

nian connection D is that the conharmonic curvature tensor of D̃ is equal to that of

D provided ψ = −1. Next, we have proved that if an LP -Sasakian manifold admits a

semi-symmetric non-metric connection D̃, then the necessary and sufficient condition

for the concircular curvature tensor of D̃ to coincide with that of D is that the curvature

tensor of D̃ coincides with that of D only when ψ = −1. Later, we have shown that an

n-dimensional LP -Sasakian manifold Mn with respect to semi-symmetric non-metric

connection is ξ−m-projectively flat if and only if the manifold is also ξ−m-projectively
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flat with respect to the Riemannian connection provided the vector fields X and Y are

orthogonal to ξ. Further, we have studied about LP -Sasakian manifold admitting a

quarter symmetric non-metric connection. An n-dimensional LP -Sasakian manifold

with quarter-symmetric non-metric connection is ξ-quasi conformally flat if and only if

the manifold is also ξ-quasi conformally flat with respect to the Riemannian connection

provided the vector fields X, Y are orthogonal to ξ. An n-dimensional LP -Sasakian

manifold is ξ-pseudo projectively flat with respect to the quarter-symmetric non-metric

connection if and only if the manifold is also ξ-pseudo projectively flat with respect to

the Riemannian connection provided the vector fields X and Y are orthogonal to ξ. We

also prove that an n-dimensional LP -Sasakian manifold is globally φ−m-projectively

symmetric with respect to the quarter symmetric non-metric connection if and only if

the manifold is also globally φ − m- projectively symmetric with respect to the Rie-

mannian connection provided the vector fields X, Y, Z, U are orthogonal to ξ. We also

discussed curvature conditions of submanifolds of LP -Sasakian manifolds with respect

to quarter symmetric non-metric connection.

The third chapter deals with study of hypersurfaces of LP -Sasakian manifolds. We

have shown that if an LP -Sasakian manifold Mn is recurrent, then the totally geodesic

hypersurface Mn−1 of LP -Sasakian manifold Mn is recurrent. Later, we prove that

the LP -Sasakian manifold is η- Einstein manifold, then its hypersurface Mn−1 is A-

Einstein whether it is totally geodesic or totally umbilical. Finally, we have got that

totally geodesic (totally umbilical) hypersurface Mn−1 of a generalized Ricci-recurrent

LP -Sasakian manifold is a generalized Ricci-recurrent manifold.

In the fourth chapter we have shown that if a Kenmotsu manifold is globally φ-

m-projectively symmetric, then the manifold is an Einstein manifold. Next, we have

proved that a 3-dimensional Kenmotsu manifold is locally φ-m-projectively symmetric

if and only if the scalar curvature r is constant. Later we prove that an n-dimensional

Kenmotsu manifold is ξ-m-projectively flat if and only if it is an Einstein manifold.
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After this, we have got that an n-dimensional φ-m-Projectively flat Kenmotsu man-

ifold is an η-Einstein manifold with constant curvature and an example of a locally

φ-m-Projectively symmetric Kenmotsu manifold in 3-Dimension are also discussed in

this chapter.

In the fifth chapter firstly, we show that an m-projectively symmetric LP -Sasakian

manifold Mn is Ricci-recurrent. Next, we have proved that a φ−m-projectively sym-

metric LP -Sasakian manifold Mn is an Einstein. Later, we have proved that if an

extended generalized concircularly φ -recurrent LP -Sasakian manifold Mn, n ≥ 3, is

an extended generalized φ-recurrent LP -Sasakian manifold, then the associated vector

field corresponding to the 1-form A is given by ρ1 = 1
r
grad r, r being the non-zero and

non-constant scalar curvature of the manifold. We also show that an extended gener-

alized concircularly φ-recurrent LP -Sasakian manifold Mn, n ≥ 3, is super generalized

Ricci recurrent manifold.

The last chapter is summary and conclusion.

In the end, the references of the papers of the authors have been given with surname

of the author and their years of the publication, which are decoded in chronological

order in the Bibliography.

Some portions of present thesis has been already published in National/International

journals. A brief account of published chapters is given in the list of publications.
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Chapter 1

Introduction

1.1 Differentiable Manifold

Let Mn be a Housdorff space. An open chart on Mn is a pair (U, φ), where U is an

open subset of Mn and φ is homeomorphism of U onto an open subset of Rn, where

Rn is an n-dimensional Euclidean space.

A differentiable structure on Mn of dimension n is a collection of open charts

(Uα, φα)α∈I on Mn, where φα(Uα) is an open subset of Rn, such that

(1) the union of all domains of charts coincides with itself.

i.e. Mn = ∪
α∈I

Uα

and

(2) for each pair α, β ∈ I, the mapping φαoφ
−1
β is a diffeomorphic mapping of φα(Uα ∩

Uβ) onto φβ(Uα ∩ Uβ).

A differentiable manifold (or C∞ manifold) of dimension n is a Housdorff space

with differentiable structure of dimension n. If Mn is a manifold, a local chart on Mn

is by definition a pair (Uα, φα). If p ∈ Uα and φα(p) = (x1(p), ..., xn(p)) then the set Uα

is called a coordinate neighbourhood of p and the numbers xα(p) are called the local

coordinate of p. If Mn has a C∞-differentiable structure, then Mn is called an analytic

manifold.
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1.2 Tangent vector

If the real valued function f is C∞ at every point in Mn, then f is said to be a C∞ or

a smooth function on Mn. The set of all smooth functions on Mn will be denoted by

C∞(Mn).

Tangent Vector: A tangent vector X at a point p ∈Mn is a mapping X : C∞(Mn)→

R such that

(i) Xf ∈ R for all f ∈ C∞(Mn),

(ii) X(αf + βg) = α(Xf) + β(Xg) for all α, β ∈ R, and f, g ∈ C∞(Mn),

(iii) X(fg) = f(Xg) + (Xf)g.

Tangent Space: The system consisting of

(i) the set Tp of all tangent vectors at p,

(ii) a binary operation ′+′ :

X, Y ∈ Tp ⇒ X + Y ∈ Tp,

satisfying

(X + Y )f = Xf + Y f ,

(iii) an operation of scalar multiplication ′·′ :

f ∈ C∞(p), X ∈ Tp ⇒ fX ∈ Tp,

satisfying

(aX)f = aXf ; a ∈ R,

is a vector space called tangent space to Mn at p.

The basis of Tp with respect to coordinate system (x1, x2, .....xn) is ( ∂
∂xi

), i = 1, 2, .....n.

2



Let T ∗p be the dual space of Tp whose basis with respect to the basis ( ∂
∂xi

) is (dx1, dx2, ......dxn).

We observe that the elements of Tp are the contravariant vectors and elements of T ∗p

are the covariant vectors with respect to the basis of Tp.

1.3 Vector Field

Vector Field: A vector field X on a smooth manifold Mn is a smooth assignment of

a tangent vector Xp ∈ Tp(Mn) at each point p ∈ Mn. Smooth assignment means for

all f ∈ C∞(Mn), the function Xf : Mn → R defined by

p→ (Xf)(p) = Xp(f)

is a C∞ function, that is, Xf ∈ C∞(M), where Xp is the real valued function

Xp : C∞(p)→ R, C∞(p) is the set of smooth functions at p ∈Mn.

A vector field X on Mn gives rise to a linear map X : C∞(Mn)→ C∞(Mn) such that

the map f → Xf satisfies the following properties:

X(f + g) = Xf +Xg (1.3.1)

X(αf) = αXf (1.3.2)

X(fg) = (Xf)g + f(Xg) (1.3.3)

for all f, g ∈ C∞(Mn), α ∈ R. This implies that X is also derivation of the algebraic

C∞(Mn). Thus a vector field X is defined as a derivation of the ring of functions

C∞(Mn) satisfying (1.3.1) - (1.3.3). Thus to each point p ∈ Mn such a derivation as-

signs a linear map Xp : C∞(Mn)→ R defined by Xpf = (Xf)(p) for each f ∈ C∞(Mn)

and hence the map p ∈ Xp assigns a field of tangent vectors.
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1.4 Lie-Bracket, Lie Derivative

Lie-Bracket: Let X and Y be C∞ vector fields on Mn. Then their Lie bracket is a

mapping

[ , ] : Mn ×Mn −→Mn

such that

[X, Y ]f = X(Y f)− Y (Xf),

where f is a C∞-function.

The Lie-bracket has the following properties:

[X, Y ](f + g) = [X, Y ]f + [X, Y ]g, (1.4.1)

[X, Y ](fg) = f [X, Y ]g + g[X, Y ]f, (1.4.2)

[X, Y ] + [Y,X] = 0 (1.4.3)

[fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X (1.4.4)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0 (Jacobi identity). (1.4.5)

Lie Derivative: A linear map £X : χ(Mn)→ χ(Mn) for all X ∈ χ(Mn) defined by

£XY = [X, Y ], (1.4.6)

is known as Lie derivative of the vector field Y with respect to the vector field X.

It satisfies the following properties:

4



(a) £Xf = Xf, f ∈ F

(b) (£XA)(Y ) = X(A(Y ))− A[X, Y ], A is 1-form

(c) (£XP )(A1, ..., Ar, X1, ..., Xs) = X(P (A1, ..., Ar, X1, ..., Xs))

− P (£XA1, ..., Ar, X1, ..., Xs)......

− P (A1, ..., Ar, [X,X1], X2, ..., Xs)......

...................

− P (A1, ..., Xs−1, [X,Xs]), p ∈ T rs .

1.5 Covariant Derivative

A linear affine connection on Mn is a function

D : Tp(M
n)× Tp(Mn)→ Tp(M

n)

such that

DfX+gYZ = f(DXZ) + g(DYZ), (1.5.1)

DXf = Xf, (1.5.2)

DX(fY + gZ) = f(DXY ) + g(DXZ) + (Xf)Y + (Xg)Z, (1.5.3)

for arbitrary vector fields X, Y, Z and smooth functions f, g on Mn. DX is called

covariant derivative operator and DXY is called covariant derivative of Y with respect

to X.

The covariant derivative of a 1-form w is given by

(DXw)(Y ) = X(w(Y ))− w(DXY ).

5



1.6 Connection

Connection: A connection D is a type preserving mapping that assigns to each pair

of C∞ fields (X,P ), X ∈ Tp, P ∈ T rs , a C∞ vector fields DXP such that if X, Y, Z ∈ Tp,

A ∈ T rp are C∞ fields and f is a C∞ function, then

(i) DXf = Xf, (1.6.1)

(ii) (a) DX(Y + Z) = DXY +DXZ,

(b) DX(fY ) = (Xf)Y + fDXY, (1.6.2)

(iii) (a) DX+YZ = DXZ +DYZ,

(b) DfXZ = fDXZ, (1.6.3)

(iv) (DXA)(Y ) = X(A(Y ))− A(DXY ), (1.6.4)

(v) (DXP )(A1, ..., Ar, X1, ..., Xs) = X(P (A1, ..., Ar, X1, ..., Xs))

− P (DXA1, ..., Ar, X1, ..., Xs)...

− P (A1..., Ar, X1, ..., DXXs). (1.6.5)

1.7 Tensors

If V is an n-dimensional vector space over the field F with dual space V ∗, then the

elements of the tensor product

V r
s = V ⊗ .....⊗ V︸ ︷︷ ︸

r

⊗ V ∗ ⊗ .....⊗ V ∗︸ ︷︷ ︸
s

, (1.7.1)

are called tensors of type (r, s), where r is the contravariant and s is the covariant

order.
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The elements of V r
0 = V r are called contravariant tensors of order r, and those of

V 0
s = V s are called covariant tensors of order s. We also have V 0

0 = F , V 1
0 = V ,

V 0
1 = V ∗. The elements of F = V 0

0 are called scalars and the elements of V = V 1
0

are called contravariant vectors whereas, the elements of V 0
1 = V ∗ are called covariant

vectors.

1.8 Contracted Tensors

The linear mapping

Ch
k : T rs → T r−1s−1 (i ≤ h ≤ r i ≤ k ≤ s)

such that

Ch
k (λ1 ⊗ λ2 ⊗ · · · ⊗ λr ⊗ α1 ⊗ · · · ⊗ αs) = αk(λ1 ⊗ · · ⊗λh−1 ⊗ λh+1 · · · ⊗λr

⊗α1 ⊗ α2 ⊗ · · αk−1 ⊗ λk+1 ⊗ · · αs),

where λ1, λ2...λr ∈ Tp and α1, α2....αs ∈ T̄p and ⊗ denote tensor product, is called con-

traction with respect to hth contravariant and kth covariant places. A tensor obtained

after contraction is called a contracted tensor.

1.9 Riemannian Manifold, Torsion Tensor and Rie-

mannian Connection

Let us consider a C∞ real valued, bilinear symmetric, non-singular positive definite

function g on the ordered pair of tangent vectors at each point p ∈Mn, such that

g(X, Y ) is a real number, (1.9.1)

g is symmetric ⇒ g(X, Y ) = g(Y,X),

7



g is non-singular i.e. g(X, Y ) = 0,∀Y 6= 0⇒ X = 0.

g is positive definite i.e. g(X, Y ) > 0,∀X 6= 0.

and

g(αX + βY, Z) = αg(X,Z) + βg(Y, Z); α, β ∈ R,

then g is said to be Riemannian metric tensor.

The manifold Mn with a Riemannian metric is called a Riemannian manifold and its

geometry is called a Riemannian geometry.

Torsion tensor: A vector valued, skew-symmetry, bilinear function T of the type

(1, 2) defined by

T (X, Y )
def
= DXY −DYX − [X, Y ] (1.9.2)

is called a torsion tensor of the connection D in a C∞-manifold Mn.

If the torsion tensor of a connection D vanishes, it is said to be symmetric or torsion

free.

Riemannian connection: A connection D is said to be Riemannian, if

T (X, Y ) = 0 (1.9.3)

and

DXg = 0. (1.9.4)

Hence, we can say that a linear connection is symmetric and metric if and only if it is

the Riemannian connection.

8



1.10 Exterior Derivative:

Let Vp be the set of all C∞ p-forms on an open set A. Then the mapping d : Vp → Vp+1

given by

(df)(X) = Xf, X ∈ Tp, f ∈ F (1.10.1)

and

(dA)(X1, ......., Xp+1) = X1 (A(X2, ......, Xp+1))

− X2 (A(X1, X3, ...Xp+1))

+ X3 (A(X1, X2, X4, ......, Xp+1)) ....

− A([X1, X2], X3, ......, Xp+1)

+ A([X1, X3], X2, X4, ......, Xp+1)

− A([X2, X3], X1, X4, ......, Xp+1) + ...... (1.10.2)

for arbitrary C∞ vector fields X ′s ∈ V 1 and A ∈ Vp , is called the exterior derivative.

1.11 Semi-symmetric non-metric connection

(Friedmann and Scouten, 1924) A linear connection ∇̃ in an n-dimensional differen-

tiable manifold Mn is said to be semi-symmetric connection if its torsion tensor T̃

satisfies

T̃ (X, Y ) = η(Y )X − η(X)Y, (1.11.1)

where η is a 1-form. Further, a semi-symmetric connection is called a semi-symmetric

metric connection if

(∇̃Xg)(Y, Z) = 0. (1.11.2)
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Otherwise, the linear connection is called semi-symmetric non-metric connection.

1.12 Quarter Symmetric Non-Metric Connection

A linear connection ∇ on an n-dimensional Riemannian manifold (Mn, g) is called a

quarter symmetric connection if its torsion tensor T of the connection ∇

T (X, Y ) = ∇XY −∇YX − [X, Y ], (1.12.1)

satisfies

T (X, Y ) = η(Y )φX − η(X)φY, (1.12.2)

where η is 1-form and φ is a (1, 1) tensor field. In particular, if φ(X) = X, then the

quarter symmetric connection reduces to a semi symmetric connection. Thus the notion

of quarter symmetric connection generalizes the notion of semi symmetric connection.

Moreover, if a quarter symmetric connection ∇ satisfies the condition

(∇Xg)(Y, Z) = 0, (1.12.3)

for all X, Y, Z ∈ Tp(M
n), where Tp(M

n) is the Lie algebra of vector fields of the

manifold Mn, then ∇ is said to be a quarter-symmetric metric connection, otherwise

it is said to be a quarter symmetric non-metric connection.

1.13 Ricci-Tensor

Let Mn is a Riemannian manifold with a Riemannian connection D. Then the Ricci

tensor field S is the covariant tensor field of degree 2 defined as Ric(Y, Z) = S(Y, Z) =

Trace of the linear map X → R(X, Y )Z for all X, Y, Z ∈ Tp(Mn).

If {e1, ..., en} is an orthonormal basis of the tangent space Tp, p ∈Mn and R is the
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Riemannian curvature tensor of the Riemannian manifold (Mn, g), then

S(X, Y ) =
n∑
i=1

g(R(ei, X)Y, ei) (1.13.1)

=
n∑
i=1

′R(ei, X, Y, ei) (1.13.2)

=
n∑
i=1

′R(X, ei, ei, Y ),

=
n∑
i=1

g(R(X, ei)ei, Y ),

where ′R is the Riemannian curvature tensor of the manifold of type (0, 4).

The linear map Q of the type (1, 1) defined by

g(QX, Y )
def
= S(X, Y ) (1.13.3)

is called a Ricci-map.It is self-adjoint,

i.e., g(QX, Y ) = g(X,QY ). (1.13.4)

The scalar r defined by

r
def
= (C1

1R) (1.13.5)

is called the scalar curvature of Mn at the point p.

A Riemannian manifold Mn is said to be Einstein manifold, if

S(X, Y ) =
r

n
g(X, Y ). (1.13.6)

A Riemannian manifold Mn is said to be η-Einstein manifold, if

S(X, Y ) = αg(X, Y ) + βη(X)η(Y ). (1.13.7)
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where α and β are smooth functions.

1.14 Curvature Tensor

The curvature tensor R of type (1, 3) with respect to the Riemannian connection D is

defined by the mapping

R : Tp(M
n)× Tp(Mn)× Tp(Mn) −→ Tp(M

n)

given by

R(X, Y )Z = DXDYZ −DYDXZ −D[X,Y ]Z, (1.14.1)

for all X, Y, Z ∈ Tp(Mn).

Let ′R be the associative curvature tensor of the type (0, 4) of the curvature tensor

R. Then

′R(X, Y, Z, U) = g(R(X, Y, Z)U), (1.14.2)

′R is called the Riemann-Christoffel curvature tensor.

The following identities are satisfied by associative curvature tensor ′R:

′R is skew-symmetric in first two slot

i.e., ′R(X, Y, Z, U) = − ′R(Y,X,Z, U) (1.14.3)

′R is skew-symmetric in last two slot

i.e., ′R(X, Y, Z, U) = − ′R(X, Y, U, Z) (1.14.4)

′R is symmetric in two pair of slot

i.e., ′R(X, Y, Z, U) = ′R(Z,U,X, Y ) (1.14.5)
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′R satisfies Bianchi’s first identities

i.e., ′R(X, Y, Z, U) + ′R(Y, Z,X, U) + ′R(Z,X, Y, U) = 0 (1.14.6)

and ′R satisfies Bianchi’s second identities

i.e., (DX
′R)(Y, Z, U, V ) + (DY

′R)(Z,X,U, V ) + (DZ
′R)(X, Y, U, V ) = 0.(1.14.7)

1.15 Important Curvature Tensors on Riemannian

Manifold

The m-projective curvature tensor ′W ∗ of the type (0, 4), is defined by (Pokhariyal and

Mishra, 1970)

′W ∗(X, Y, Z, U) = ′R(X, Y, Z, U)− 1

2(n− 1)
{g(X,U)S(Y, Z)− g(Y, U)S(X,Z)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)}. (1.15.1)

It satisfies the following algebraic properties

(a) ′W ∗(X, Y, Z, U) = ′W ∗(Z,U,X, Y ),

(b) ′W ∗(X, Y, Z, U) = − ′W ∗(Y,X, U, Z),

(c) ′W ∗(X, Y, Z, U) = − ′W ∗(X, Y, U, Z),

(d) ′W ∗(X, Y, Z, U) + ′W ∗(Y, Z,X, U) + ′W ∗(Z,X, Y, U) = 0,

where

′W ∗(X, Y, Z, U) = g(W ∗(X, Y, Z), U).

13



The concircular curvature tensor ′C of type (0, 4), is given by

′C(X, Y, Z, U) = ′R(X, Y, Z, U)− r

n(n− 1)
{g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)}. (1.15.2)

It satisfies the following algebraic properties

(a) ′C(X, Y, Z, U) = −′C(Y,X,Z, U),

(b) ′C(X, Y, Z, U) = −′C(X, Y, U, Z),

(c) ′C(X, Y, Z, U) = ′C(Z,U,X, Y ),

(d) ′C(X, Y, Z, U) + ′C(Y, Z,X, U) + ′C(Z,X, Y, U) = 0,

where

′C(X, Y, Z, U) = g(C(X, Y, Z), U).

The conharmonic curvature tensor ′L of the type (0, 4), is defined as follows

′L(X, Y, Z, U) = ′R(X, Y, Z, U)− 1

n− 1
{S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)}. (1.15.3)

It satisfies the following properties

(a)′L(X, Y, Z, U) = −′L(Y,X,Z, U),

(b)′L(X, Y, Z, U) = ′L(X, Y, U, Z),

(c)′L(X, Y, Z, U) = ′L(Z,U,X, Y ),

(d)′L(X, Y, Z, U) + ′L(Y, Z,X, U) + ′L(Z,X, Y, U) = 0,

where

′L(X, Y, Z, U) = g(L(X, Y, Z), U).
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The projective curvature tensor ′P of the type (0, 4), is defined by

′P (X, Y, Z, U) = ′R(X, Y, Z, U)− 1

n− 1
{S(Y, Z)g(X,U)

− S(X,Z)g(Y, U)}. (1.15.4)

The projective curvature tensor ′P satisfies the following identities

(a)′P (X, Y, Z, U) = −′P (Y,X,Z, U),

(b)C1
1P = C1

2P = C1
3P = 0,

(c)′P (X, Y, Z, U) + ′P (Y, Z,X, U) + ′P (Z,X, Y, U) = 0,

where

′P (X, Y, Z, U) = g(P (X, Y, Z), U).

The conformal curvature tensor ′V of the type (0, 4), is defined as

′V (X, Y, Z, U) = R(X, Y, Z, U)− 1

(n− 2)

[
S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+ g(Y, Z)S(X,U)− g(X,Z)S(Y, U)
]

+
r

(n− 1)(n− 2)

[
g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

]
. (1.15.5)

It satisfies the following properties

(a)′V (X, Y, Z, U) = −′V (Y,X,Z, U),

(b)′V (X, Y, Z, U) = −′V (X, Y, U, Z),

(c)′V (X, Y, Z, U) = ′V (Z,U,X, Y ),

(d)′V (X, Y, Z, U) + ′V (Y, Z,X, U) + ′V (Z,X, Y, U) = 0,

where

′V (X, Y, Z, U) = g(V (X, Y, Z), U).
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The Weyl projective curvature tensor ′W of the type (0, 4), defined as

′W (X, Y, Z, U) = R(X, Y, Z, U)− 1

n− 1
{S(Y, Z)g(X,U)

− S(X,Z)g(Y, U)}. (1.15.6)

It satisfies the following properties

(a)′W (X, Y, Z, U) = −′W (Y,X,Z, U),

(b)′W (X, Y, Z, U) = −′W (X, Y, U, Z),

(c)′W (X, Y, Z, U) = ′W (Z,U,X, Y ),

(d)′W (X, Y, Z, U) + ′W (Y, Z,X, U) + ′W (Z,X, Y, U) = 0,

where

′W (X, Y, Z, U) = g(W (X, Y, Z), U).

Finally the W2 curvature tensor ′W2 of the type (0, 4), is defined as (Pokhariyal and

Mishra, 1970)

′W2(X, Y, Z, U) = R(X, Y, Z, U) +
1

n− 1
{g(X,Z)g(QY,U)

− g(Y, Z)g(QX,U)}. (1.15.7)

It satisfies the following identities

(a)′W2(X, Y, Z, U) = −′W2(Y,X,Z, U),

(b)′W2(X, Y, Z, U) = −′W2(X, Y, U, Z),

(c)′W2(X, Y, Z, U) = ′W2(Z,U,X, Y ),

(d)′W2(X, Y, Z, U) + ′W2(Y, Z,X, U) + ′W2(Z,X, Y, U) = 0,

where

′W2(X, Y, Z, U) = g(W2(X, Y, Z), U).
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1.16 Almost Contact Metric Manifold

If Mn be an odd dimensional differentiable manifold on which there are defined a real

vector valued linear function φ, a 1-form η and a vector field ξ satisfying for arbitrary

vectors X, Y, Z, .....

φ2X = −X + η(X)ξ, (1.16.1)

η(ξ) = 1, (1.16.2)

φ(ξ) = 0, (1.16.3)

η(φX) = 0, (1.16.4)

and

rank(φ) = n− 1, (1.16.5)

is called an almost contact manifold (Sasaki, 1968) and the structure (φ, η, ξ) is called

an almost contact structure (Hatakeyama et al., 1963; Sasaki and Hatakeyama, 1961).

An almost contact manifold Mn on which a Riemannian metric tensor g satisfying

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.16.6)

and

g(X, ξ) = η(X), (1.16.7)

is called an almost contact metric manifold and the structure (φ, ξ, η, g) is called an

almost contact metric structure (Sasaki, 1960).
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The fundamental 2-form Φ of an almost contact metric manifold Mn is defined by

Φ(X, Y ) = g(φX, Y ). (1.16.8)

From the equations (1.16.6) and (1.16.8), we have

Φ(X, Y ) = − Φ(Y,X). (1.16.9)

If in an almost contact metric manifold

2 Φ(X, Y ) = (DXη)(Y )− (DY η)(X), (1.16.10)

then Mn is called an almost Sasakian manifold.

1.17 P - Sasakian manifolds

An n-dimensional differentiable manifold Mn is a P -Sasakian manifold if it admits a

(1, 1) tensor field φ, a contravariant vector field ξ, a covariant vector field η and a

Riemannian metric g, which satisfy (Matsumoto, 1977; Miyazawa, 1979)

φ2(X) = X − η(X)ξ, (1.17.1)

φξ = 0, (1.17.2)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.17.3)

g(X, ξ) = η(X), (1.17.4)

(DXφ)(Y ) = −g(X, Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (1.17.5)
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DXξ = φX, (1.17.6)

(a)η(ξ) = 1, (b) η(φX) = 0, (1.17.7)

rank(φ) = (n− 1), (1.17.8)

(DXη)(Y ) = g(φX, Y ) = g(φY,X), (1.17.9)

for any vector fields X, Y where D denotes covariant differentiation with respect to g.

1.18 Almost Paracontact Metric Manifold

Let Mn be an n-dimensional C∞-manifold. If there exist in Mn a tensor field φ of the

type (1, 1), consisting of a vector field ξ and 1-form η in Mn satisfying

φ2X = X − η(X)ξ, (1.18.1)

φ(ξ) = 0, η(ξ) = 1, (1.18.2)

then Mn is called an almost paracontact manifold.

Let g the Riemannian metric satisfying

η(X) = g(X, ξ), η(φX) = 0, (1.18.3)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.18.4)

then the structure (φ, ξ, η, g) satisfying (1.18.1) to (1.18.4) is called an almost para-

contact Riemannian structure. The manifold with such structure is called an almost

paracontact Riemannian manifold (Sato and Matsumoto, 1976).
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If we define Φ(X, Y ) = g(φX, Y ), then the following relations are satisfied

Φ(X, Y ) = Φ(Y,X), (1.18.5)

and

Φ(φX, φY ) = Φ(X, Y ). (1.18.6)

If in Mn the relation

(DXη)(Y )− (DY η)(X) = 0, (1.18.7)

dη(X, Y ) = 0, i.e. η is closed. (1.18.8)

(DXΦ)(Y, Z) = −g(X,Z)η(Y )− g(X, Y )η(Z)

+ 2 η(X)η(Y )η(Z), (1.18.9)

(DXη)(Y ) + (DXη)(X) = 2 Φ(X, Y ), (1.18.10)

and

DXξ = φX, (1.18.11)

hold, then (Mn, g) is called Para-Sasakian manifold or briefly P -Sasakian manifold.

1.19 Recurrent Manifold

Let Mn be an n-dimensional smooth Riemannian manifold and Tp(M
n) denotes the set

of differentiable vector fields on Mn. Let X, Y ∈ Tp(Mn); DXY denotes the covariant

derivative of Y with respect to X and R(X, Y, Z) be the Riemannian curvature tensor

of type (1, 3).
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A Riemannian manifold Mn is said to be recurrent (Kobayashi and Nomizu, 1963)

if

(DUR)(X, Y, Z) = α(U)R(X, Y, Z), (1.19.1)

where X, Y ∈ Tp(M
n) and α is a non-zero 1-form known as recurrence parameter.

If the 1-form α is zero in (1.19.1), then the manifold reduces to symmetric manifold

(Singh and Khan, 1999).

A Riemannian manifold (Mn, g) is said to be semi-symmetric if it satisfies the

relation (Szabo, 1982)

(R(X, Y ).R)(U, V )W = 0, (1.19.2)

where R(X, Y ) is considered as the tensor algebra at each point of the manifold i.e.

R(X, Y ) is curvature transformation or curvature operator.

A Riemannian manifold (Mn, g) is said to be Ricci-recurrent if it satisfies the rela-

tion

(DXS)(Y, Z) = A(X)S(Y, Z) (1.19.3)

for all X, Y, Z ∈ Tp(M
n), where D denotes the Riemannian connection and A is a

1-form on Mn. If the 1-form A vanishes identically on Mn, then a Ricci-recurrent

manifold becomes a Ricci-symmetric manifold.

A Riemannian manifold (Mn, g) is called a generalized recurrent manifold (De and

Guha, 1991) if its curvature tensor R satisfies the condition:

(DXR)(Y, Z)U = A(X)R(Y, Z)U +B(X)[g(Z,U)Y − g(Y, U)Z]. (1.19.4)

where A and B are two 1-forms, B is non-zero and these are defined by

A(X) = g(X,P1), B(X) = g(X,P2), (1.19.5)
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P1 and P2 are vector fields associated with 1-forms A and B, respectively.

A Riemannian manifold (Mn, g) is called generalized φ-recurrent if its curvature

tensor R satisfies the condition

φ2((DWR)(Y, Z)U) = A(W )R(Y, Z)U

+ B(W )[g(Z,U)Y − g(Y, U)Z] (1.19.6)

where A and B are two 1-forms, B is non-zero.

1.20 Lorentzian Paracontact Metric Manifold

Let Mn be an n-dimensional differentiable manifold endowed with a tensor field φ of

the type (1, 1), a vector field ξ, a 1-form η and a Lorentzian metric g satisfying

φ2X = X + η(X)ξ, (1.20.1)

η(ξ) = −1, (1.20.2)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (1.20.3)

g(X, ξ) = η(X), (1.20.4)

for arbitrary vector field X and Y , then Mn is called a Lorentzian paracontact (LP -

Contact) manifold and the structure (φ, ξ, η, g) is called the Lorentzian paracontact

structure (Matsumoto, 1989).

Let Mn be a Lorentzian paracontact manifold with structure (φ, ξ, η, g). Then it

satisfy

(a) φ(ξ) = 0, (b) η(φX) = 0, (c) rank(φ) = n− 1. (1.20.5)
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A Lorentzian paracontact manifold is called a Lorentzian Para-Sasakian manifold if

(Matsumoto and Mihai, 1988)

∇Xξ = φX, (1.20.6)

(∇Xφ)(Y ) = g(X, Y )ξ + η(Y )X + 2 η(X)η(Y )ξ, (1.20.7)

where ∇ denotes the covariant differentiation with respect to g.

Let us put Φ(X, Y ) = g(φX, Y ). Then the tensor field Φ is symmetric.

i.e. Φ(X, Y ) = Φ(Y,X), (1.20.8)

and

Φ(X, Y ) = (∇Xη)(Y ). (1.20.9)

Also, in an LP -Sasakian manifold the following relation holds

′R(X, Y, Z, ξ) = g(Y, Z)η(X)− g(X,Z)η(Y ), (1.20.10)

and

S(X, ξ) = (n− 1)η(X). (1.20.11)

1.21 Kenmotsu Manifold

Let (Mn, φ, ξ, η, g) be an n-dimensional (where n=2m+1) almost contact metric man-

ifold, where φ is a (1, 1)- tensor field, ξ is the structure vector field , η is a 1-form and

g is the Riemannian metric. It is well known that the (φ, ξ, η, g) structure satisfies the

conditions (Blair,1976)

φ2(X) = −X + η(X)ξ, (1.21.1)
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g(X, ξ) = η(X), (1.21.2)

φξ = 0, ηφ = 0, η(ξ) = 1, (1.21.3)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.21.4)

for any vector fields X and Y on Mn.

If moreover

(DXφ)(Y ) = −g(X,φY )ξ − η(Y )φX, (1.21.5)

DXξ = X − η(X)ξ, (1.21.6)

where D is the Riemannian connection, then (Mn, φ, ξ, η, g) is called a Kenmotsu man-

ifold.

1.22 Submanifold and Hypersurfaces

let Mn be a C∞-Riemannian manifold. A C∞ manifold Mm(m ≤ n) is called a

submanifold of Mn, if for each point in Mn, there is a coordinate neighbourhood U of

Mn with coordinate function {yα : α = 1, 2, ..., n} such that for the set

U = {p ∈ U : ym+1 = ...... = yn = 0 at p}

is a coordinate neighbourhood of P in Mm with coordinate functions

xi = yα|U, i = 1, 2, ...,m

If n = m+ 1, the submanifold Mm is called a hypersurface.

Let

b : Mm −→Mn

24



be the inclusion map such that p ∈Mm ⇒ bp ∈Mn.

The map b induces a linear transformation B called the Jaccobian map such that

b : Tmp −→ T np

where TmP is the tangent space to Mm at point p and T np is the tangent space to Mn

at bp, such that

X ∈Mn at p⇒ BX ∈Mn at bp.

Let g be the metric tensor at Mn and G the induced metric tensor of Mm at bp relative

to the metric tensor g of Mn at bp. Let X, Y be arbitrary vector fields to Mn. Then

G(X, Y ) = g(BX,BY ) ◦ b. (1.22.1)

A C∞ vector field N of Mn satisfying

(a) g(N,BX) ◦ b = 0

(b) g(N,N) ◦ b = 1, (1.22.2)

for arbitrary vector field X is called field of normal.

Let N
x
, x = m+ 1, ..., n. be a system of C∞-orthogonal unit normal vector fields to

Mm. Then

(a) g(N
x
, BX) ◦ b = 0

(b) g(N
x
, N
y

) = δxy. (1.22.3)

If Mm is a hypersurface, the equation (1.22.3)((a),(b)) assumes the form of (1.22.2).

Let D be the Riemannian connection in Mn and E be the induced connection in Mm.

Then the Gauss and the Weingarten equation can be written as

(a) DBXBY = BEXY + ′H
x

(X, Y )N
y

(Gauss Equation)

(b) DBXN
x

= −BH
x
X +

y

I
x
(X)N

y
(Weingarten Equation) (1.22.4)
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where

(a) G(H
x
, Y ) = ′H

x
(X, Y ) = ′H

x
(Y,X)

(b)
y

I
x

+
x

I
y

= 0. (1.22.5)

′H is called second fundamental magnitudes in Mm.

For a hypersurface Mm of Mn

(a) DBXBY = BEXY + ′H(X, Y )N (Gauss Equation)

(b) DBXN = −BHX (Weingarten Equation) (1.22.6)

1.23 Review of Literature

The idea of semi-symmetric linear connection on a differentiable manifold was in-

troduced by Friedman and Schouten (1924). Later, Hayden (1932) defined a semi-

symmetric metric connection on a Riemannian manifold and this was further devel-

oped by Yano (1970). This was also studied by many geometers like as Sasaki and

Hatakeyama (1961), Hatakeyama (1963), Hatakeyama et al. (1963), Yano (1972), Pra-

vanovic (1975), Sato (1976), Sharfuddin and Hussain (1976) and obtained a number

of interesting results. Further, semi-symmetric metric connections on a Riemannian

manifold have been studied by Amur and Pujar (1978), Binh (1990), De (1990, 1991),

De and Biswas (1997), Pathak and De (2002), Jun et al. (2005), Barmen and De

(2013), Chaubey and Ojha (2012), Singh and Pandey (2008), Singh et al. (2012, 2013)

and many other geometers.

Sasaki and Hatakeyama (1961), Hatakeyama(1963), Hatakeyama et al.(1963), Sasaki

(1960, 1968) defined an almost contact manifold. In the meantime, Sasaki(1960),

Hatakeyama et al. (1963) defined an almost contact metric manifold or an almost

Grayan manifold. Tanno(1971) classified connected almost contact metric manifolds

whose automorphism group possesses the maximum dimension. A semi-symmetric
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metric connection was defined in an almost contact manifold by Sharfuddin and Hus-

sain (1976). De and Sengupta (2001) investigated the curvature tensor of an almost

contact metric manifold admitting a type of semi-symmetric metric connection and

studied the curvature properties of conformal curvature tensor and projective cur-

vature tensor. Agashe and Chafle (1992) introduced a semi symmetric non-metric

connection on a Riemannian manifold and this was further studied by Prasad (1994),

Ojha and Prasad (1994), De and Kamilya(1995), Sengupta et al. (2000), Pandey and

Ojha (2001), Tripathi and Kakar (2001a, b), Prasad and Kumar (2002), Chaturvedi

and Pandey (2008), Murathan and Özgür (2008), Chaubey (2011), Singh (2014a) and

others.

On the other hand, the notion of quarter-symmetric connection in a Riemannian

manifold with an affine connection which generalized the idea of semi-symmetric con-

nection was introduced and studied by Golab(1975). Further this was developed by

Rastogi (1978, 1987), Mishra and Pandey (1980), Yano and Imai(1982), Mukhopad-

hyay, Roy and Barua(1991), Biswas and De (1997), Sengupta and Biswas (2003), Nivas

and Verma (2005), Singh and Pandey (2007) and many other geometers.

Matsumoto (1989) introduced the notion of Lorentzian Para Sasakian manifold.

Mihai and Rosca (1992) also introduced the same notion independently and they ob-

tained several results on this manifold. Lorentzian Para-Sasakian manifolds had also

been studied by Matsumoto and Mihai (1988), Mihai et al. (1999a, b), De et al.

(1999), Shaikh and De (2000), De and Sengupta (2002), Özgür (2003), Shaikh and

Biswas (2004), Venkatesha and Bagewadi (2008), Dhruwa et al. (2009), Perktas and

Tripathi (2010), Taleshian and Asghari (2010), Venkatesha et al. (2011), Prakash et al.

(2011), Taleshian and Asghari (2011) and Singh (2013, 2015) obtained some results on

Lorentzian Para-Sasakian manifolds. Prakash and Narain (2011) defined and studied

quarter-symmetric non metric connection on an LP -Sasakian manifolds and proved its

existence. They found some properties of the curvature tensor and the Ricci tensor
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of quarter-symmetric non metric connection. Singh (2013) studied weakly symmet-

ric, weakly Ricci symmetric, generalized recurrent LP -Sasakian manifolds admitting a

quarter-symmetric non metric connections.

Kenmotsu (1972) studied a class of contact Riemannian manifolds and called them

Kenmotsu manifold. He proved that if a Kenmotsu manifolds satisfies the condition

R(X, Y ).R = 0, then the manifold is of negative curvature −1, where R is the Rie-

mannian curvature of type (1, 3) and R(X, Y ) denotes the derivation of tensor algebra

at each point of the tangent space. A space form is said to be elliptic, hyperbolic or

Euclidean according as sectional curvature tensor is positive, negative or zero. The

properties of Kenmotsu manifold had been studied by authors such as Sinha and Sri-

vastava (1991), De and Pathak (2004), De(2008), De et al.(2008) and others. Wang and

Liu (2015a, b) studied almost Kenmotsu manifolds with some nullity distributions. Re-

cently, Mandal and De (2017) studied about the geometric conditions in 3-dimensional

almost Kenmotsu manifolds such that ξ belongs to the (k, µ)′ -nullity distribution and

h′ 6= 0.

The idea of recurrent manifolds was introduced by Walker (1950). On the other

hand, Dubey(1979) introduced the notion of generalized recurrent manifold and then

such a manifold was studied by De and Guha (1995). De et al.(1995) defined the

generalized recurrent Riemannian manifold and generalized Ricci-recurrent Rieman-

nian manifold. The notion of generalized φ - recurrency to Sasakian manifolds and

Lorentzian α-Sasakian manifolds are respectively studied in Patil et al.(2009) and

Prakasha and Yildiz (2010). By extending the notion of generalized φ -recurrency,

Shaikh and Hui (2011), introduced the notion of extended generalized φ -recurrent man-

ifolds. Prakasha (2013) considered the extended generalized φ -recurrent in Sasakian

manifold. Further Shaikh et al.(2013) studied this notion for LP -Sasakian manifolds.

Prasad (2000) introduced the idea of semi generalized recurrent manifold. Yildiz and
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Murathan (2005) studied Lorentzian α-Sasakian manifolds and proved that conformally

flat and quasi conformally flat Lorentzian α-Sasakian manifolds are locally isometric

with a sphere. Lorentzian α-Sasakian manifolds have been studied by De and Tripathi

(2003), Yildiz and Turan (2009), Yildiz et al. (2009), Prakasha and Yildiz (2010),

Lokesh, et al. (2012), Teleshian and Asghari (2012), Yadav and Suthar (2012), Bhat-

tacharya and Patra (2014), Berman (2014), and many others. Shaikh (2015) introduced

the notion of generalized φφ-recurrent LP -Sasakian manifold and studied its various

geometric properties.

Adati and Matsumoto (1977) defined P -Sasakian and Special Para Sasakian man-

ifold, which are special classes of an almost para-contact manifold introduced by Sato

(1976). Para Sasakian manifolds have been studied by Matsumoto (1977), Adati and

Miyazawa (1979), Matsumoto et.al. (1986), De and Pathak (1994), Özgür and Tri-

pathi (2007), De and Sarkar (2009), Shukla and Shukla (2010), Berman (2013), Singh

(2014b) and many others.

Takahashi (1977) introduced the notion of φ-symmetric Sasakian manifold and

obtained some interesting properties. Many authors like Shaikh and De (2000), De

and Pathak (2004) and Venkatesha and Bagewadi (2006) have extended this notion

to 3-dimensional LP -Sasakian manifold, 3-dimensional Kenmotsu manifold and 3-

dimensional trans-Sasakian manifolds respectively. De and Kamilya (1994) studied the

generalized concircular recurrent manifolds and De et al. (1995) studied the generalized

Ricci-recurrent manifolds. Generalizing the notion of recurrency Khan (2004) intro-

duced the notion of generalized recurrent Sasakian manifold. Jaiswal and Ojha (2009)

studied generalized φ-recurrent and generalized concircular φ-recurrent LP -Sasakian

manifolds. Sreenivasa et al. (2009) define φ-recurrent Lorentzian β-Kenmotsu manifold

and prove that a concircular φ-recurrent Lorentzian β-Kenmotsu manifold is an Ein-

stein manifold. Debnath and Bhattacharya (2013) studied the generalized φ-recurrent

trans-Sasakian manifolds. Pokhariyal and Mishra (1971) introduced new curvature
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tensor called m-projective curvature tensor in a Riemannian manifold and studied its

properties. Ojha (1975) studied a note on the m-projective curvature tensor. Later,

Pokhariyal (1982) studied some properties of this curvature tensor in a Sasakian man-

ifold. Ojha (1986), Chaubey (2012), Chaubey and Ojha (2010), Singh (2009, 2012,

2016) and many other geometers studied this curvature tensor in different manifolds.

Tripathi and Dwivedi (2008) studied projective curvature tensor in K -contact and

Sasakian manifolds and they proved that (i) if a K-contact manifold is quasi projec-

tively flat then it is Einstein and (ii) a K-contact manifold is ξ -projectively flat if and

only if it is Einstein Sasakian.

Chen and Ogive (1973,1974) introduced geometry of submanifolds and real sub-

manifolds. Eum (1968), Blair and Ludden (1969), Goldsberg and Yano (1970), Ludden

(1970) and others studied hypersurfaces of an almost contact manifold. Goldsberg and

Yano (1970) defined noninvariant hypersurface of the contact almost contact mani-

folds. Sato (1976) studied a structure similar to the almost contact structure, almost

paracontact structure. Adati (1981) studied hypersurfaces of an almost paracontact

manifold. Bucki(1989) considered hypersurfaces of an almost r-paracontact Rieman-

nian manifold. Bucki and Miernowski(1989) investigated some properties of invariant

hypersurfaces of an almost r-paracontact Riemannian manifold. Yano and Kon (1977)

studied anti invariant submanifold of Sasakian space forms. Al and Nivas (2000) stud-

ied on submanifolds of a manifold with quarter-symmetric connection. Ahmad et al.

(2011) studied the properties of hypersurfaces and submanifold on r-paracontact Rie-

mannian manifold with connection.
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Chapter 2

Semi-symmetric non-metric and

quarter symmetric non-metric

connections

In this chapter, we have studied some properties of certain curvatures on LP -

Sasakian manifolds admitting semi-symmetric non-metric connection. We also dis-

cussed different geometrical properties of LP -Sasakian manifolds admitting quarter-

symmetric non- metric connection and obtained some interesting results.

2.1 Introduction

In an n-dimensional LP -Sasakian manifold with structure (φ, ξ, η, g) defined in equa-

tions (1.20.1-1.20.8) the following relation holds (De et al., 2005, De and Shaikh, 1999):

(DXη)(Y ) = Φ(X, Y ) = g(φX, Y ),Φ(X, ξ) = 0, (2.1.1)

for all vector fields X, Y .

Also in an LP -Sasakian manifold the following relations hold (Shaikh and De, 2000):

η(R(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y ), (2.1.2)

1Science and Technology Journal, 1(4), 54-57(2016)
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R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (2.1.3)

R(X, Y )ξ = η(Y )X − η(X)Y, (2.1.4)

R(ξ,X)ξ = X + η(X)ξ, (2.1.5)

S(X, ξ) = (n− 1)η(X), (2.1.6)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (2.1.7)

for all vector fields X, Y, Z, where R and S are the Riemannian curvature tensor and

the Ricci tensor of the manifold respectively.

Here we consider a semi-symmetric non-metric connection D̃ on Mn given by

(Agashe and Chafle, 1992)

D̃XY = DXY + η(Y )X. (2.1.8)

The curvature tensor R̃ with respect to semi-symmetric non-metric connection D̃ is

defined as

R̃(X, Y, Z) = D̃XD̃YZ − D̃Y D̃XZ − D̃[X,Y ]Z

which satisfies

R̃(X, Y, Z) = R(X, Y, Z) + g(φX,Z)Y − g(φY, Z)X

+η(Y )η(Z)X − η(X)η(Z)Y. (2.1.9)

Contracting (2.1.9) with respect to X, we have

S̃(Y, Z) = S(Y, Z)− (n− 1)g(φY, Z) + (n− 1)η(Y )η(Z), (2.1.10)
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where S̃ is the Ricci tensor with respect to semi-symmetric non-metric connection D̃.

Again from the above relation it follows that

Q̃Y = QY − (n− 1)φY + (n− 1)η(Y )ξ (2.1.11)

and

r̃ = r − (n− 1)ψ − (n− 1), (2.1.12)

where ψ = traceφ, S̃(Y, Z) = g(Q̃Y, Z), S(Y, Z) = g(QY,Z) and r̃, r are the Ricci

tensors and scalar curvatures of the connections D̃ and D respectively.

2.2 Properties of some curvature tensors on an LP -

Sasakian manifold admitting semi-symmetric non-

metric connection

Definition 2.2.1 The W2-curvature tensor of Mn with respect to Reimannian connec-

tion D is defined as(Pokhariyal and Mishra, 1970)

W2(X, Y )Z = R(X, Y )Z +
1

(n− 1)
{g(X,Z)QY

− g(Y, Z)QX}. (2.2.1)

Definition 2.2.2 The m-projective curvature tensor W ∗ of an LP -Sasakian manifold

with respect to Riemannian connection is given as(Pokhariyal and Mishra, 1971)

W ∗(X, Y )Z = R(X, Y )Z − 1

2(n− 1)
{S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY }. (2.2.2)

Theorem 2.2.1 In an LP -Sasakian manifold admitting a semi-symmetric non-metric

connection D̃, the difference between the W2 curvature tensors of D̃ and D is equal to

twice of the difference between the m-projective curvature tensors of D̃ and D.

33



Proof: The W̃2-curvature tensor of Mn with respect to semi-symmetric non-metric

connection D̃ is defined as

W̃2(X, Y )Z = R̃(X, Y )Z +
1

(n− 1)
{g(X,Z)Q̃Y

− g(Y, Z)Q̃X}. (2.2.3)

Making use of (2.1.9) and (2.1.11) in the equation (2.2.3), we obtain

W̃2(X, Y )Z = R(X, Y )Z + g(φX,Z)Y

− g(φY, Z)X + η(Y )η(Z)X

− η(X)η(Z)Y +
1

(n− 1)

[
g(X,Z){QY

− (n− 1)φY + (n− 1)η(Y )ξ}

− g(Y, Z){QX − (n− 1)φX + (n− 1)η(X)ξ}
]

(2.2.4)

which is equivalent to

W̃2(X, Y )Z = W2(X, Y )Z − g(φY, Z)X + g(φX,Z)Y

+ η(Y )η(Z)X − η(X)η(Z)Y − g(X,Z)φY

+ η(Y )g(X,Z)ξ + g(Y, Z)φX − η(X)g(Y, Z)ξ. (2.2.5)

Taking inner product of the equation (2.2.5) with respect to U , we get

′W̃2(X, Y, Z, U) = ′W2(X, Y, Z, U)− g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U)− g(X,Z)g(φY, U)

+ η(Y )g(X,Z)g(ξ, U) + g(Y, Z)g(φX,U)

− η(X)g(Y, Z)g(ξ, U) (2.2.6)
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where

′W̃2(X, Y, Z, U)
def
= g(W̃2(X, Y )Z,U)

and

′W2(X, Y, Z, U)
def
= g(W2(X, Y, Z), U).

The equation (2.2.6) implies that

′W̃2(X, Y, Z, U)− ′W2(X, Y, Z, U) = −g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U)− g(X,Z)g(φY, U)

+ η(Y )g(X,Z)g(ξ, U) + g(Y, Z)g(φX,U)

− η(X)g(Y, Z)g(ξ, U). (2.2.7)

Again, the m- projective curvature tensor W̃ ∗ with respect to semi-symmetric non-

metric connection D̃ is given by

W̃ ∗(X, Y, Z) = R̃(X, Y, Z)− 1

2(n− 1)
{S̃(Y, Z)X

− S̃(X,Z)Y + g(Y, Z)Q̃X − g(X,Z)Q̃Y }. (2.2.8)

If we define

′W̃ ∗(X, Y, Z, U) = g(W̃ ∗(X, Y, Z), U), (2.2.9)
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then by virtue of the equations (2.1.9), (2.1.10), (2.1.11) and (2.2.8), we get

˜′W ∗(X, Y, Z, U) = ′W ∗(X, Y, Z, U) +
1

2
{−g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U)− g(X,Z)g(φY, U)

+ η(Y )η(U)g(X,Z) + g(Y, Z)g(φX,U)

− η(X)η(U)g(Y, Z)},

which is equivalent to

˜′W ∗(X, Y, Z, U)− ′W ∗(X, Y, Z, U) =
1

2
{−g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U)− g(X,Z)g(φY, U)

+ η(Y )η(U)g(X,Z) + g(Y, Z)g(φX,U)

− η(X)η(U)g(Y, Z)}, (2.2.10)

where

′W̃ ∗(X, Y, Z, U)
def
= g(W̃ ∗(X, Y )Z,U).

In consequence of (2.2.7) and (2.2.10), we have

˜′W ∗(X, Y, Z, U)− ′W ∗(X, Y, Z, U) =
1

2

{
′W̃2(X, Y, Z, U)− ′W2(X, Y, Z, U)

}
.

Hence, we obtain the statement of the theorem.

Definition 2.2.3 The conformal curvature tensor V of Riemannian curvature tensor

is defined (Mihai et al., 1999) as

V (X, Y, Z) = R(X, Y, Z)− 1

(n− 2)
{S(Y, Z)X

− S(X,Z)Y − g(X,Z)QY + g(Y, Z)QX}

+
r

(n− 1)(n− 2)
{g(Y, Z)X − g(X,Z)Y }. (2.2.11)
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Definition 2.2.4 The conharmonic curvature tensor L of Riemannian connection D

in an LP -Sasakian manifold is defined as

L(X, Y, Z) = R(X, Y, Z)− 1

(n− 2)
{S(Y, Z)X − S(X,Z)Y

− g(X,Z)QY + g(Y, Z)QX}. (2.2.12)

Theorem 2.2.2 If an LP -Sasakian manifold admits a semi symmetric non-metric

connection D̃, then the necessary and sufficient condition for the conformal curvature

tensor of D̃ to coincide with that of the Riemannian connection D is that the conhar-

monic curvature tensor of D̃ is equal to that of D provided ψ = −1.

Proof: The conformal curvature tensor of D̃ is defined as

Ṽ (X, Y, Z) = R̃(X, Y, Z)− 1

(n− 2)
{S̃(Y, Z)X

− S̃(X,Z)Y − g(X,Z)Q̃Y + g(Y, Z)Q̃X}

+
r̃

(n− 1)(n− 2)
[g(Y, Z)X − g(X,Z)Y ]. (2.2.13)

If we define

′Ṽ (X, Y, Z, U) = g(Ṽ (X, Y, Z), U), (2.2.14)

then by virtue of the equations (2.1.9), (2.1.10), (2.1.11), (2.1.12), (2.2.13) and (2.2.14),

we obtain

′Ṽ (X, Y, Z, U) = ′V (X, Y, Z, U)

− n

(n− 2)
{′R̃(X, Y, Z, U)− ′R(X, Y, Z, U)}

−
{1 + ψ

n− 2

}
[g(X,U)g(Y, Z)− g(Y, U)g(X,Z)]
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which is equivalent to

′Ṽ (X, Y, Z, U)−′ V (X, Y, Z, U) = − n

(n− 2)
{′R̃(X, Y, Z, U)

− ′R(X, Y, Z, U)} −
{1 + ψ

n− 2

}
[g(X,U)g(Y, Z)

− g(Y, U)g(X,Z)], (2.2.15)

where

′V (X, Y, Z, U)
def
= g(V (X, Y, Z), U).

Again, we define conharmonic curvature tensor L̃ of D̃ as

L̃(X, Y, Z) = R̃(X, Y, Z)− 1

(n− 2)
{S̃(Y, Z)X

− S̃(X,Z)Y − g(X,Z)QY + g(Y, Z)QX}. (2.2.16)

In view of (2.1.9), (2.1.10) and (2.2.12) the equation (2.2.16) takes the form as

′L̃(X, Y, Z, U) = ′L(X, Y, Z, U)− n

(n− 2)
{′R̄(X, Y, Z, U)

− ′R(X, Y, Z, U)}

which can be rewritten as

′L̃(X, Y, Z, U)− ′L(X, Y, Z, U) = − n

(n− 2)
{′R̄(X, Y, Z, U)

− ′R(X, Y, Z, U)}, (2.2.17)

where

′L̃(X, Y, Z, U)
def
= g(L̃(X, Y, Z), U)

and

′L(X, Y, Z, U)
def
= g(L(X, Y, Z), U).

38



In consequence of (2.2.15) and (2.2.17) and the fact ψ = −1, we have

′Ṽ (X, Y, Z, U)− ′V (X, Y, Z, U) = ′L̃(X, Y, Z, U)− ′L(X, Y, Z, U).

And thus we have the result.

Definition 2.2.5 The concircular curvature tensor C of D is defined as

C(X, Y, Z) = R(X, Y, Z)− r

n(n− 1)
{g(Y, Z)X

− g(X,Z)Y }. (2.2.18)

Theorem 2.2.3 If an LP -Sasakian manifold admits a semi-symmetric non-metric

connection D̃, then the necessary and sufficient condition for the concircular curvature

tensor of D̃ to coincide with that of D is that the curvature tensor of D̃ coincides with

that of D only when ψ = −1.

Proof: The concircular curvature tensor C̃ of D̃ is defined as

C̃(X, Y, Z) = R̃(X, Y, Z)− r̃

n(n− 1)
{g(Y, Z)X

− g(X,Z)Y }. (2.2.19)

If we define

′C̃(X, Y, Z, U) = g(C̃(X, Y, Z), U), (2.2.20)

then by virtue of (2.1.9), (2.1.12), (2.2.19) and (2.2.20), we obtain

′C̃(X, Y, Z, U) = ′C(X, Y, Z, U)− g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U) +
(1 + ψ)

n

{
g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)
}
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which is equivalent to

′C̃(X, Y, Z, U)− ′C(X, Y, Z, U) = −g(φY, Z)g(X,U)

− g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U) +
(1 + ψ)

n
{g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)}, (2.2.21)

where

′C(X, Y, Z, U) = g(C(X, Y, Z), U).

Taking inner product of (2.1.9) with respect to U , we obtain

′R̃(X, Y, Z, U)− ′R(X, Y, Z, U) = −g(φY, Z)g(X,U)

+ g(φX,Z)g(Y, U) + η(Y )η(Z)g(X,U)

− η(X)η(Z)g(Y, U) (2.2.22)

where

′R̃(X, Y, Z, U)
def
= g(R̃(X, Y, Z), U)

and

′R(X, Y, Z, U)
def
= g(R(X, Y, Z), U).

From the equations (2.2.21) and (2.2.22) and using the fact that ψ = −1, we obtain

the statement of the theorem.

Definition 2.2.6 The Weyl projective curvature tensor P of an LP -Sasakian manifold

Mn with respect to Riemannian connection D is defined (Mishra, 1984) as

P (X, Y )Z = R(X, Y )Z − 1

(n− 1)
{S(Y, Z)X

− S(X,Z)Y }. (2.2.23)
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Theorem 2.2.4 The Weyl projective curvature tensor of D̃ coincides with that of D

in LP -Sasakian manifold.

Proof: The Weyl projective curvature tensor P̃ with respect to semi-symmetric non-

metric connection D̃ is given by

P̃ (X, Y )Z = R̃(X, Y )Z − 1

(n− 1)
{S̃(Y, Z)X

− S̃(X,Z)Y }. (2.2.24)

Taking inner product of (2.2.24) with respect to U and using (2.1.9) and (2.1.10), we

get

′P̃ (X, Y, Z, U) = g(R(X, Y, Z), U) + g(φX,Z)g(Y, U)− g(φY, Z)g(X,U)

+ η(Y )η(Z)g(X,U)− η(X)η(Z)g(Y, U)

− 1

(n− 1)

[
{S(Y, Z)− (n− 1)g(φY, Z)

+ (n− 1)η(Y )η(Z)}g(X,U)− {S(X,Z)

− (n− 1)g(φX,Z) + (n− 1)η(X)η(Z)}g(Y, U)
]

(2.2.25)

which after simplification reduces to

′P̃ (X, Y, Z, U) = ′P (X, Y, Z, U). (2.2.26)

This completes the proof of the theorem.
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2.3 ξ − m-projectively flat LP -Sasakian manifolds

admitting semi-symmetric non-metric connec-

tion

Definition 2.3.1 An n-dimensional LP -Sasakian manifold Mn is ξ −m-projectively

flat if

W ∗(X, Y )ξ = 0. (2.3.1)

Theorem 2.3.1 An n-dimensional LP -Sasakian manifold Mn with respect to semi-

symmetric non-metric connection is ξ −m-projectively flat if and only if the manifold

is also ξ −m-projectively flat with respect to the Riemannian connection provided the

vector fields X and Y are orthogonal to ξ.

Proof: Using the equations (2.1.9), (2.1.10), (2.1.11) in (2.2.8), we obtain

W̃ ∗(X, Y )Z = R(X, Y )Z + g(φX,Z)Y − g(φY, Z)X

+ η(Y )η(Z)X − η(X)η(Z)Y − 1

2(n− 1)
{S(Y, Z)X

− (n− 1)g(φY, Z)X + (n− 1)η(Y )η(Z)X − S(X,Z)Y

+ (n− 1)g(φX,Z)Y − (n− 1)η(X)η(Z)Y + g(Y, Z)QX

− (n− 1)g(Y, Z)φX + (n− 1)g(Y, Z)η(X)ξ − g(X,Z)QY

+ (n− 1)g(X,Z)φY − (n− 1)η(Y )g(X,Z)ξ} (2.3.2)

which, after simplification reduces to

W̃ ∗(X, Y )ξ = W ∗(X, Y )ξ − 1

2
{η(Y )X − η(X)Y

− η(Y )φX − η(X)φY }.

Suppose X and Y are orthogonal to ξ, then the above relation becomes

W̃ ∗(X, Y )ξ = W ∗(X, Y )ξ. (2.3.3)
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Thus we obtain the statement of the theorem.

2.4 Einstein manifold with respect to semi-symmetric

non-metric connection

A Riemannian manifold is said to be an Einstein manifold with respect to Riemannian

connection if

S(X, Y ) =
r

n
g(X, Y ). (2.4.1)

Theorem 2.4.1 In an LP -Sasakian manifold Mn admitting a semi-symmetric non-

metric connection if the relation (2.4.4) holds, then the manifold is an Einstein mani-

fold for the Riemannian connection D if and only if it is an Einstein manifold for the

connection D̃.

Proof: Analogous to (2.4.1), we define Einstein manifold with respect to semi-symmetric

non-metric connection D̃ by

S̃(X, Y ) =
r̃

n
g(X, Y ). (2.4.2)

With the help of (2.1.10) and (2.1.12), we get

S̃(X, Y )− r̃

n
g(X, Y ) = S(X, Y )− (n− 1)g(φX, Y )

+ (n− 1)η(X)η(Y )−
[r − (n− 1)ψ − (n− 1)

n

]
g(X, Y )

= S(X, Y )− r

n
g(X, Y )− (n− 1)[g(φX, Y )

− η(X)η(Y )−
{1 + ψ

n

}
g(X, Y )]. (2.4.3)

Let us suppose that

g(φX, Y )− η(X)η(Y )−
{1 + ψ

n

}
g(X, Y ) = 0. (2.4.4)
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Then using (2.4.1) in (2.4.4), we get

S̃(X, Y )− r̃

n
g(X, Y ) = 0. (2.4.5)

This completes the theorem.

2.5 Quarter-symmetric non- metric connection

Consider a quarter-symmetric non-metric connection ∇ on LP -Sasakian manifolds

∇XY = DXY − η(X)φY, (2.5.1)

given by Mishra and Pandey (1980) which satisfies

(∇Xg)(Y, Z) = 2η(X)g(φY, Z). (2.5.2)

The curvature tensor R̄ with respect to a quarter-symmetric non-metric connection

∇ and the curvature tensor R with respect to the Riemannian connection D in LP -

Sasakian manifolds are related (Singh, 2013) as

R̄(X, Y )Z = R(X, Y )Z + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X. (2.5.3)

Contracting the above equation with respect to X we get

S̄(Y, Z) = S(Y, Z)− g(Y, Z)− nη(Y )η(Z). (2.5.4)

Putting Z = ξ in the equations (2.5.3) and (2.5.4) we get the following equations

R̄(X, Y )ξ = 2R(X, Y )ξ, (2.5.5)

S̄(Y, ξ) = 2S(Y, ξ) = 2(n− 1)η(Y ), (2.5.6)
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where S̄ is the Ricci tensor of Mn with respect to quarter-symmetric non-metric con-

nection.

Combining (2.5.5) and (2.1.4), it follows that,

η(R̄(X, Y )ξ) = 0. (2.5.7)

Theorem 2.5.1 In an LP -Sasakian manifold the curvature tensor with respect to

quarter-symmetric non -metric connection ∇ satisfies the followings

(i) R̄(X, Y, Z, U) = −R̄(Y,X,Z, U),

(ii) R̄(X, Y )Z + R̄(Y, Z)X + R̄(Z,X)Y = 0,

where R̄(X, Y, Z, U) = g(R(X, Y )Z,U) for all vector fields X, Y, Z, U ∈ χ(Mn).

Theorem 2.5.2 For an LP -Sasakian manifold Mn with respect to the quarter-symmetric

non- metric connection ∇, the following conditions hold:

(i) The scalar curvature r̄ is given by (2.5.10),

(ii)∇Xξ = φX, (2.5.8)

(iii)(∇Xη)Y = g(φX, Y ), (2.5.9)

(iv)(∇Xφ)Y = g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ.

Proof: Let {e1, e2, ..., en} be a local orthonormal basis of vector fields in Mn. Then

by putting Y = Z = ei in (2.5.4) and taking summation over i, 1 ≤ i ≤ n, we have

r̄ = r, (2.5.10)

where r̄ and r and the scalar curvature with respect to the quarter symmetric non-

metric connection and the Riemannian connection respectively.
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From the equation (2.5.4) we obtain

Q̄Y = QY − Y − nη(Y )ξ. (2.5.11)

Using (2.5.1) and (1.20.6), it follows that

∇Xξ = φX. (2.5.12)

Combining (2.5.1) and (2.1.1), it follows that

(∇Xη)Y = g(φX, Y ). (2.5.13)

Again combining (2.5.1) and (1.20.7) we obtain

(∇Xφ)Y = g(X, Y )ξ + η(Y )X + 2η(X)η(Y )ξ. (2.5.14)

Definition 2.5.1 (Yano and Sawaki, 1968)The quasi conformal curvature tensor C∗

for an n-dimensional LP -Sasakian manifold Mn with respect to Riemannian connection

D is given by

C∗(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]

− r

n

{ a

n− 1
+ 2b

}
[g(Y, Z)X − g(X,Z)Y ], (2.5.15)

where a and b are constants such that a, b 6= 0.

Definition 2.5.2 An n-dimensional LP -Sasakian manifold Mn is ξ-quasi conformally

flat if

C∗(X, Y )ξ = 0. (2.5.16)

Theorem 2.5.3 An n-dimensional LP -Sasakian manifold with quarter-symmetric non-

metric connection is ξ-quasi conformally flat if and only if the manifold is also ξ-quasi
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conformally flat with respect to the Riemannian connection provided the vector fields

X, Y are orthogonal to ξ.

Proof: The quasi-conformal curvature tensor of an LP -Sasakian manifold with respect

to the quarter-symmetric non- metric connection ∇ is given as

C̄∗(X, Y )Z = aR̄(X, Y )Z + b[S̄(Y, Z)X

− S̄(X,Z)Y + g(Y, Z)Q̄X − g(X,Z)Q̄Y ]

− r̄

n

{ a

n− 1
+ 2b

}
[g(Y, Z)X − g(X,Z)Y ]. (2.5.17)

Using (2.5.3), (2.5.4), (2.5.10) and (2.5.11) in (2.5.17), we obtain

C̄∗(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY ]− r

n

{ a

n− 1
+ 2b

}
[g(Y, Z)X

− g(X,Z)Y ] + a{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X} − b{g(Y, Z)X

+ nη(Y )η(Z)X − g(X,Z)Y − nη(X)η(Z)Y

+ g(Y, Z)X + nη(X)g(Y, Z)ξ − g(X,Z)Y

− nη(Y )g(X,Z)ξ} (2.5.18)

which is equivalent to

C̄∗(X, Y )Z = C∗(X, Y )Z + a{g(Y, Z)η(X)ξ

− g(X,Z)η(Y )ξ + η(X)η(Z)Y − η(Y )η(Z)X}

− b[2g(Y, Z)X + nη(Y )η(Z)X − 2g(X,Z)Y

− nη(X)η(Z)Y + nη(X)g(Y, Z)ξ − nη(Y )g(X,Z)ξ}. (2.5.19)

Putting Z = ξ in the equation (2.5.19) and making use of (1.20.2) and (1.20.4), we
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obtain

C̄∗(X, Y )ξ = C∗(X, Y )ξ + [a+ b(n− 2)]{η(Y )X − η(X)Y }. (2.5.20)

Suppose X and Y are orthogonal to ξ, then from (2.5.20), we obtain

C̄∗(X, Y )ξ = C∗(X, Y )ξ. (2.5.21)

Hence, we obtain the statement of the theorem.

2.6 ξ-pseudo-projectively flat LP -Sasakian manifolds

admitting quarter-symmetric non-metric con-

nection

Definition 2.6.1 The pseudo-projective curvature tensor P∗ on an LP -Sasakian man-

ifold is defined as (Prasad, 2002)

P∗(X, Y )Z = a0R(X, Y )Z + a1{S(Y, Z)X − S(X,Z)Y }

− r

n

{ a0
n− 1

+ a1
}

[g(Y, Z)X − g(X,Z)Y ] (2.6.1)

where a0, a1 are constants and a0, a1 6= 0.

Definition 2.6.2 An n-dimensional LP -Sasakian manifold Mn is ξ-pseudo projec-

tively flat if

P∗(X, Y )ξ = 0. (2.6.2)

Theorem 2.6.1 An n-dimensional LP -Sasakian manifold is ξ-pseudo projectively flat

with respect to the quarter-symmetric non-metric connection if and only if the manifold

is also ξ-pseudo projectively flat with respect to the Riemannian connection provided

the vector fields X and Y are orthogonal to ξ.
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Proof:The pseudo projective curvature tensor of LP -Sasakian manifold Mn with re-

spect to the quarter-symmetric non-metric connection ∇ is given by

P̄∗(X, Y )Z = a0R̄(X, Y )Z + a1[S̄(Y, Z)X − S̄(X,Z)Y ]

− r̄

n

{ a0
n− 1

+ a1

}
[g(Y, Z)X − g(X,Z)Y ]. (2.6.3)

Using (2.5.3),(2.5.4) and (2.5.10) in (2.6.3), we get

P̄∗(X, Y, Z) = a0[R(X, Y, Z) + g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X] + a1[S(Y, Z)X − g(Y, Z)X

− nη(Y )η(Z)X − S(X,Z)Y + g(X,Z)Y + nη(X)η(Z)Y ]

− r

n

{ a0
n− 1

+ a1

}
[g(Y, Z)X − g(X,Z)Y ] (2.6.4)

which is equivalent to

P̄∗(X, Y )Z = P∗(X, Y )Z + a0{g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(X)η(Z)Y − η(Y )η(Z)X}+ a1[g(X,Z)Y

− g(Y, Z)X − nη(Y )η(Z)X + nη(X)η(Z)Y }. (2.6.5)

Putting Z = ξ in (2.6.5), we get

P̄∗(X, Y )ξ = P∗(X, Y )ξ + {a0 + (n− 1)a1}[η(Y )X − η(X)Y }]. (2.6.6)

Suppose X and Y are orthogonal to ξ, then equation (2.6.6) implies

P̄∗(X, Y )ξ = P∗(X, Y )ξ.

Thus the proof of the theorem is over.
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2.7 Globally φ-m-projectively symmetric LP -Sasakian

manifolds with respect to the quarter symmet-

ric non-metric connection

Definition 2.7.1 An LP -Sasakian manifold Mn with respect to the Riemannian con-

nection is called to be globally φ−m-projectively symmetric if

φ2((∇UW
∗)(X, Y )Z) = 0. (2.7.1)

Theorem 2.7.1 An n-dimensional LP -Sasakian manifold is globally φ−m-projectively

symmetric with respect to the quarter symmetric non-metric connection if and only if

the manifold is also globally φ−m- projectively symmetric with respect to the Rieman-

nian connection provided the vector fields X, Y, Z, U are orthogonal to ξ.

Proof : Taking inner product of the equation (2.2.2) with respect to ξ and using

(2.1.2), we obtain

η(W ∗(X, Y )Z) = g(Y, Z)η(X)− g(X,Z)η(Y )

−
[ 1

2(n− 1)

]
{S(Y, Z)η(X)− S(X,Z)η(Y )

+ g(Y, Z)η(QX)− g(X,Z)η(QY )}. (2.7.2)

From the equation (2.5.6) we get

η(QX) = (n− 1)η(X). (2.7.3)

We know that

(∇UW
∗)(X, Y )Z = ∇UW

∗(X, Y )Z −W ∗(∇UX, Y )Z

− W ∗(X,∇UY )Z −W ∗(X, Y )∇UZ. (2.7.4)
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Moreover, using (2.5.1) in (2.7.4) and taking X, Y, Z, U orthogonal to ξ, it follows that

(∇UW
∗)(X, Y )Z = (DUW

∗)(X, Y )Z. (2.7.5)

We define the m-projective curvature tensor W̄ ∗ with respect to the quarter-symmetric

non-metric connection on LP -Sasakian manifolds as

W̄ ∗(X, Y )Z = R̄(X, Y )Z − 1

2(n− 1)
{S̄(Y, Z)X − S̄(X,Z)Y

+ g(Y, Z)Q̄X − g(X,Z)Q̄Y }, (2.7.6)

where

S̄(Y, Z) = g(Q̄Y, Z).

Using the equations (2.5.3), (2.5.4) and (2.5.11) in (2.7.6), we obtain

W̄ ∗(X, Y )Z = W ∗(X, Y )Z +
1

(n− 1)

{
g(Y, Z)X − g(X,Z)Y Big}

+
(3n− 2)

2(n− 1)

{
g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

}
+

(n− 2)

2(n− 1)

[
η(X)η(Z)Y − η(Y )η(Z)X

]
. (2.7.7)

Taking covariant differentiation of (2.7.7) with respect to U and also takingX, Y, Z, U

are orthogonal to ξ and using (2.5.2),(2.5.13), (2.5.14) and (2.7.4), we have

(∇UW̄ ∗)(X, Y )Z = (∇UW
∗)(X, Y )Z +

(3n− 2)

2(n− 1)

{
g(Y, Z)g(φU,X)

− g(X,Z)g(φU, Y )
}
ξ

which is equivalent to

(∇UW̄ ∗)(X, Y )Z = (DUW
∗)(X, Y )Z +

(3n− 2)

2(n− 1)

{
g(Y, Z)g(φU,X)

− g(X,Z)g(φU, Y )
}
ξ. (2.7.8)
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Now, applying φ2 on both sides of (2.7.8) we get

φ2((∇UW̄ ∗)(X, Y )Z) = φ2((DUW
∗)(X, Y )Z). (2.7.9)

This completes the proof.

2.8 Symmetric properties of projective Ricci tensor

with respect to quarter-symmetric non-metric

connection

Projective Ricci tensor in a Riemannian manifold is defined as follows (Chaki and Saha,

1994)

P (X, Y ) =
[ n

n− 1

]
{S(X, Y )− r

n
g(X, Y )}. (2.8.1)

Theorem 2.8.1 In an LP -Sasakian manifold the projective Ricci tensor P̄ with respect

to quarter-symmetric non-metric connection ∇ is symmetric.

Proof: Analogous to the relation (2.8.1), we define the projective curvature with

respect to quarter-symmetric non-metric connection ∇ by

P̄ (X, Y ) =
[ n

n− 1

]
{S̄(X, Y )− r̄

n
g(X, Y )}. (2.8.2)

With the help of (2.5.4) and (2.5.10), we have

P̄ (X, Y ) =
[ n

n− 1

]
{S(X, Y )− g(X, Y )

− nη(X)η(Y )− r

n
g(X, Y )}. (2.8.3)

This completes the proof.
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2.9 Induced connection on the submanifold

Let M̄n be a submanifold of Mn of dimension n. Let b : M̄n → Mn be the inclusion

map such that p ∈ M̄n and bp ∈ Mn. The map b induces a Jacobian map B : T̄ → T

where T̄ is a tangent space to M̄n at a point p and T is a tangent space to Mn at bp.

The Riemannian metric G induced on M̄n from that of Mn is given

g(BU,BV ) ◦ p = G(U, V ), (2.9.1)

where U, V ∈ T̄ M̄n.

Let N1 and N2 be two mutually orthogonal unit normals to M̄n such that

(a) g(BU,N1) = g(BU,N2) = g(N1, N2) = 0,

(b) g(N1, N1) = g(N2, N2) = 1. (2.9.2)

Let the LP -Sasakian manifold Mn admit a quarter-symmetric non-metric connection

given by (2.5.1), then we have

(a) φ(BU) = Bf(U) + α(U)N1 + γ(U)N2,

(b) ξ = Bt+ σN1 + δN2, (2.9.3)

where t ∈ M̄n and σ, δ are functions in M̄n.

Let ∇̄ be the induced connection on the submanifold from ∇ with respect to the unit

normals N1, N2.

Now the Gauss equation is given by

∇BUBV = B(∇̄UV ) + h1(U, V )N1 + h2(U, V )N2, (2.9.4)

where h1 and h2 are second fundamental tensors and U, V ∈ M̄n.

Denoting D̄ the connection induced on the submanifold from D with respect to the

unit normals N1, N2.
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The Gauss equation is given as

DBUBV = B(D̄UV ) +m1(U, V )N1 +m2(U, V )N2, (2.9.5)

where m1,m2 are tensor fields of type (0, 2) of submanifold M̄n.

Theorem 2.9.1 The induced connection on submanifold of an LP -Sasakian manifold

with quarter-symmetric non-metric connection is also a quarter-symmetric non-metric

connection.

Proof: From (2.5.1), we have

∇BUBV = DBUBV − η(BU)φBV . (2.9.6)

Making use of (2.9.4) and (2.9.5) in the above equation, we obtain

B(∇̄UV ) + h1(U, V )N1 + h2(U, V )N2 = B(D̄UV ) +m1(U, V )N1

+ m2(U, V )N2 − η(BU)φ(BV ). (2.9.7)

Comparing the tangent and normal parts from the above equation we get

(∇̄UV ) = (D̄UV )− a(U)f(V ), (2.9.8)

where

a(U) = η(BU)

and

(a)h1(U, V ) = m1(U, V )− a(U)α(V ),

(b)h2(U, V ) = m2(U, V )− a(U)γ(V ). (2.9.9)
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We know that

Ug(V,W ) = (∇̄Ug)(V,W ) + g(∇̄UV,W ) + g(V, ∇̄UW )

= g(D̄UV,W ) + g(V, D̄UW ).

Therefore from the above relations, we have

(∇̄Ug)(V,W ) = g(D̄UV − ∇̄UV,W ) + g(V, D̄UW − ∇̄UW ).

Using (2.5.1) in the above equation, we get

(∇̄Ug)(V,W ) = a(U)g(f(V ),W ) + a(U)g(V, f(W )).

Again in consequence of (2.9.8) we get

∇̄UV − ∇̄VU − [U, V ] = a(V )f(U)− a(U)f(V ).

Our theorem is thus proved.

Theorem 2.9.2 (a)The mean curvature of the submanifold M̄n with respect to the

Riemannian connection D̄ coincides with mean curvature of the submanifold M̄n with

respect to the quarter-symmetric non-metric connection ∇̄ provided α = 0 and γ = 0.

(b)The submanifold M̄n is totally geodesic with respect to the Riemannian connection

D̄ if and only if it is totally geodesic with respect to the quarter-symmetric non-metric

connection ∇̄ provided α = 0 and γ = 0.

(c) The submanifold M̄n is totally umbilical with respect to the Riemannian connection

D̄ if and only if it is totally umbilical with respect to the quarter-symmetric non-metric

connection ∇̄ provided α = 0 and γ = 0.

Proof: Define D̄B and ∇̄B respectively by

(D̄B)(λ, µ) = (D̄λB)µ = (DBλ)Bµ−B(D̄λµ). (2.9.10)
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(∇̄B)(λ, µ) = (∇̄λB)µ = (∇Bλ)Bµ−B(∇̄λµ). (2.9.11)

In view of (2.9.4) and (2.9.5), the equation (2.9.10) and (2.9.11) can be rewritten as

(D̄λB)µ = m1(λ, µ)N1 +m2(λ, µ)N2, (2.9.12)

(∇̄λB)µ = h1(λ, µ)N1 + h2(λ, µ)N2, (2.9.13)

respectively. Let e1, e2, ..., en−2 be (n−2) orthonormal local vector fields in the subman-

ifold M̄n. Then the function 1
n−2

∑n−2
i=1 m(ei, ei) is called the mean curvature of the sub-

manifold M̄n−2 with respect to the Riemannian connection D̄ and 1
n−2

∑n−2
i=1 h(ei, ei) is

called the mean curvature of the submanifold M̄n with respect to the quarter-symmetric

non-metric connection ∇̄.

If m1,m2 vanish, then the submanifold M̄n−2 is said to be totally geodesic with

respect to the Riemannian connection D̄ provided α = 0 and γ = 0 and if m1,m2 is

proportional to g, then the submanifold M̄n is called totally umbilical with respect

to the Riemannian connection D̄ provided α = 0 and γ = 0. Similarly if m1,m2

vanish, then the submanifold M̄n is said to be totally geodesic with respect to the

quarter-symmetric non-metric connection ∇̄ provided α = 0 and γ = 0 and if h1, h2 is

proportional to g, then the submanifold M̄n is called totally umbilical with respect to

the quarter-symmetric non-metric connection ∇̄ provided α = 0 and γ = 0.

The proof follows from the equation (2.9.9).
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Chapter 3

Some Hypersurfaces of Lorentzian

Para-Sasakian Manifolds

In this chapter totally geodesic and totally umbilical hypersurfaces of LP -Sasakian

manifolds and that of recurrent LP -Sasakian manifolds have been studied.

3.1 Introduction

A Lorentzian paracontact manifold of n = 2m+ 1-dimension defined in (1.20.1-1.20.5)

is called LP -Sasakian manifold with structure (φ, ξ, η, g) if (De et al., 1988)

∇Xξ = φX, (3.1.1)

(∇Xφ)(Y ) = g(X, Y )ξ + η(Y )X + 2 η(X)η(Y )ξ, (3.1.2)

where ∇ denotes the covariant differentiation with respect to g.

Let us put Φ(X, Y ) = g(φX, Y ). Then the tensor field Φ is symmetric

i.e. Φ(X, Y ) = Φ(Y,X), (3.1.3)
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and

(∇Xη)(Y ) = g(X,φY ) = g(φX, Y ), (3.1.4)

′R(X, Y, Z, ξ) = g(Y, Z)η(X)− g(X,Z)η(Y ), (3.1.5)

S(X, ξ) = (n− 1)η(X), (3.1.6)

R(X, Y, ξ) = η(Y )X − η(X)Y, (3.1.7)

R(X, ξ)Y = η(Y )X − g(X, Y )ξ, (3.1.8)

R(X, ξ)ξ = −X − η(X)ξ, (3.1.9)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (3.1.10)

for any vector fields X, Y, Z, where R is the curvature tensor, S is the Ricci tensor.

An LP -Sasakian manifold is called a generalized Ricci-recurrent manifold (Bhattacharya,

2003) if

(∇XS)(Y, Z) = η(X)S(Y, Z) + p(X)g(Y, Z), (3.1.11)

where η and p are 1-forms with associated vector-fields ξ and P , respectively.

Further an LP -Sasakian manifold is said to be η-Einstein manifold if its Ricci tensor

S is of the form

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (3.1.12)

where a and b are scalars. Also, if

(∇XS)(φY, φZ) = 0, (3.1.13)
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then the manifold is said to be η-parallel Ricci-tensor.

3.2 Hypersurfaces of an LP -Sasakian manifold

Let Mn−1(n = 2m+ 1) be a C∞ - manifold imbedded in Mn with the immersion map

b : Mn−1 → Mn such that any point x ∈ Mn−1 is mapped to a point bx ∈ Mn. Let

B : T (Mn−1) → T (Mn) be the Jacobian map which maps a vector field X at the

point x in Mn−1 into a vector BX at the point bx in Mn. Then Mn−1 is called the

hypersurface of Mn.

Now, we put

(a) φBX = BfX + p(X)N,

(b) φN = −BP, (3.2.1)

where N is the unit normal vector to Mn−1 and f is a vector valued linear function.

Now taking accounts of the equations (1.20.1) and (3.2.1)((a),(b)), we obtain

BX + η(BX)ξ = Bf 2X + p(fX)N − p(X)BP.

Putting ξ = Bt and η(BX)◦b = A(X) in the above equation and separating tangential

and normal parts, we have

(a) f 2X = X + A(X)t+ p(X)P,

(b) p(fX) = 0. (3.2.2)

Also from (3.2.1)((a),(b)) and using (1.20.1) we obtain

N + η(N)ξ = −BfP − p(P )N.

59



Since η(N) = 0, therefore, by separating the tangential and normal parts from the

above equation, we have

(a) p(P ) = −1,

(b) fP = 0. (3.2.3)

Further, φξ = 0 implies φBt = Bft+ p(t)N = 0; hence, we get

(a) ft = 0,

(b) p(t) = 0. (3.2.4)

Now, the metric tensor g in Mn induces the metric tensor G in Mn−1 such that

(a) g(BX,BY ) ◦ b = G(X, Y ),

(b) g(BX,N) ◦ b = 0. (3.2.5)

In view of (3.2.1)(a), η(φBX) = 0 implies G(t, fX) = 0

Or

(a)A(fX) = 0

also η(ξ) = −1 gives

(b)A(t) = −1. (3.2.6)

Again, using the equations (3.2.1)(a) and (3.2.5)((a),(b)) in the following relation

g(φBX, φBY ) ◦ b = g(BX,BY ) ◦ b+ η(BX) ◦ bη(BY ) ◦ b,

we obtain

g(BfX,BfY ) ◦ b+ p(X)p(Y )g(N,N) ◦ b

= G(X, Y ) + A(X)A(Y )
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which implies

G(fX, fY ) = G(X, Y ) + A(X)A(Y )− p(X)p(Y ). (3.2.7)

Now, Guass and Weingarten’s equations are given by

(a) ∇BXBY = BDXY +′ H(X, Y )N,

(b) ∇BXN = −BHX, (3.2.8)

where ′H(X, Y ) = G(HX, Y ) is symmetric and it is called the second fundamental

tensor in Mn−1 and D is the induced Riemannian connection. Then, from the equation

(3.1.2), we have

(∇BXφ)(BY ) = g(BX,BY ) ◦ bBt+ 2η(BX) ◦ bη(BY ) ◦ bBt

+ η(BY ) ◦ bBX

or

∇BXφBY − φ(∇BXBY ) = G(X, Y )Bt+ 2A(X)A(Y )Bt+ A(Y )BX.

Taking accounts of the equations (3.2.1)((a),(b)) and (3.2.8)((a),(b)) in the above equa-

tion, we obtain

∇BX{BfY + p(Y )N} − φ{BDXY + ′H(X, Y )N}

= G(X, Y )Bt+ 2A(X)A(Y )Bt+ A(Y )BX,

which is equivalent to

B(DXf)(Y )− p(Y )BHX + ′H(X, Y )BP + ′H(X, fY )N + (DXp)(Y )N

= G(X, Y )Bt+ 2A(X)A(Y )Bt+BA(Y )BX.
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Now separating the tangential and normal parts from both sides of the above equation,

we get

(a)(DXf)(Y )− p(Y )HX + ′H(X, Y )P = G(X, Y )t+ 2A(X)A(Y )t+ A(Y )X,

(b)′H(X, fY ) = −(DXp)(Y )

which is equivalent to

(a) (DXf)(Y ) = p(Y )HX − ′H(X, Y )P +G(X, Y )t+ 2A(X)A(Y )t+ A(Y )X

and

(b) (DXp)(Y ) = −′H(X, fY ). (3.2.9)

Again, from (3.1.2), we have

(∇BXφ)N = g(BX,N) ◦ bBt+ 2η(BX) ◦ bη(N)Bt+ η(N)BX

= 0

which implies

(∇BXφ)N = 0

or,

∇BXφN − φ(∇BXN) = 0.

Using (3.2.1)(b) and (3.2.8)((a),(b)) in the above equation, we have

∇BX(−BP )− φ(∇BXN) = 0

⇒

−∇BXBP − φ(−BHX) = 0
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⇒

−{BDXP + ′H(X,P )N}+ φBHX = 0

⇒

−BDXP −′ H(X,P )N +BfHX + p(HX)N = 0.

Separating tangential and normal parts from the above equation, we have

(a) DXP = fHX

(b) p(HX) = ′H(X,P ). (3.2.10)

In consequence of (3.1.1), we have

∇BXξ = φBX

which is equivalent to

∇BXBt = BfX + p(X)N.

Using (3.2.8)(a) in the above relation, we obtain

BDXt+ ′H(X, t)N = BfX + p(X)N

which on separation of tangential and normal parts yeilds

(a) DXt = fX,

(b) ′H(X, t) = p(X) = A(HX). (3.2.11)

Again, from (3.1.4), we have

(∇BXη) ◦ b = g(BX, φBY ) ◦ b
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⇒

g(∇BXξ, BY ) ◦ b = g(BX,BfY + p(Y )N) ◦ b.

Making use of (3.2.1)(a) and (3.2.8)(a) in the above equation we get

g(BDXt+ ′H(X, t)N,BY ) ◦ b = g(BX,BfY ) ◦ b+ p(Y )g(BX,N) ◦ b.

From the equation (3.2.5) and above relation, we have

g(BDXt, BY ) ◦ b+ ′H(X, t)g(N,BY ) ◦ b = G(X, fY )

which is equivalent to

G(DXt, Y ) = G(X, fY ).

The above relation can be expressed as

(DXA)Y = G(X, fY ). (3.2.12)

Now, taking account of the equations (3.2.8)((a),(b)) in the following relation

R(BX,BY,BZ) = ∇BX∇BYBZ −∇BY∇BXBZ −∇[BX,BY ]BZ

we obtain

R(BX,BY,BZ) = B{K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY }

+ {(DX
′H)(Y, Z)− (DY

′H)(X,Z)}N. (3.2.13)
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and

′R(BX,BY,BZ,BU)
def
= g(R(BX,BY,BZ), BU) ◦ b

= g(B{K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY }

+ {(DX
′H)(Y, Z)− (DY

′H)(X,Z)}N,BU) ◦ b

= ′K(X, Y, Z, U)− ′H(Y, Z)′H(X,U)

+ ′H(X,Z)′H(Y, U), (3.2.14)

where K is the Riemannian curvature tensor in Mn−1 and

′K(X, Y, Z, U)
def
= G(K(X, Y, Z), U).

Theorem 3.2.1 In the hypersurface Mn−1 of an LP -Sasakian manifold, the following

results hold:

(a) ′K(X, Y, t, Z) = A(Y )G(X,Z)− A(X)G(Y, Z)− p(X)′H(Y, Z) + p(Y )′H(X,Z).

Or,

(b) K(X, Y, t) = A(Y )X − A(X)Y − p(X)HY + p(Y )HX. (3.2.15)

(a) ′K(X, t, Y, Z) = A(Y )G(X,Z)− A(Z)G(X, Y )− p(Z)′H(X, Y ) + p(Y )′H(X,Z).

Or,

(b) K(X, t, Y ) = A(Y )X −G(X, Y )t+ p(Y )HX − ′H(X, Y )Ht. (3.2.16)

(a) ′K(X, t, t, Y ) = −G(X,Z)− A(X)A(Y )− p(X)p(Y ).

Or,

(b) K(X, t, t) = −X − A(X)t− p(X)Ht. (3.2.17)

Proof: Taking account of the equation (3.1.7) and using (3.2.11)(b) in (3.2.14), we

obtain (3.2.15)(a), which immediately, implies (3.2.15)(b). Further, from (3.1.7), we
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have

′R(BX, ξ,BY,BZ) = η(BY ) ◦ bg(BX,BZ) ◦ b− g(BX,BY ) ◦ bg(ξ, BZ) ◦ b.

Now, using (3.2.14), for ξ = Bt in the above equation, we easily obtain, in veiw of

(3.2.11)(b), the equation (3.2.16)(a). This, further, implies the equation (3.2.16)(b).

Again, from (3.2.16)(a), we obtain (3.2.17)(a) which, immediately, implies (3.2.17)(b).

Now, from (3.2.10)(a) and taking accounts of the equations (3.2.9)(a) and (3.2.11)(b),

we obtain,

K(X, Y, P ) = p(HY )HX − p(HX)HY + 2A(X)p(Y )t

− 2A(Y )p(X)t+ f{(DXH)Y − (DYH)X}

+ A(HY )X − A(HX)Y. (3.2.18)

Theorem 3.2.2 In a hypersurface Mn−1 of an LP -Sasakian manifold, we have

K(X, Y, P ) = 0, if Mn−1 is totally geodesic (3.2.19)

and

K(X, Y, P ) = 2{p(Y )X − p(X)Y }, if Mn−1 is totally umbilical. (3.2.20)

Proof: If the hypersurface Mn−1 is totally geodesic, then putting HX = 0. Taking

covariant derivative of HX = 0 with respect to Y , we immediately get

(DYH)X +H(DYX) = 0. (3.2.21)

Using (3.2.11)(b) in (3.2.18), we obtain

K(X, Y, P ) = p(HY )HX − p(HX)HY + 2A(X)A(HY )t− 2A(Y )A(HX)t

+ f{(DXH)Y − (DYH)X}+ A(HY )X − A(HX)Y
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which in consequence of the fact HX = 0 reduces to

K(X, Y, P ) = f{(DXH)Y − (DYH)X}.

Making use of (3.2.21) in the above relation we have

K(X, Y, P ) = f{−H(DXY ) +H(DYX)}

which is equivalent to

K(X, Y, P ) = −f(H[X, Y ]).

By virtue of the equation (3.2.21) the above relation reduces to the equation (3.2.19).

If the hypersurface is totally umbilical, then ′H(X, Y ) = G(X, Y ) and HX = X implies

(DXH)(Y ) = 0.

In consequence of (3.2.11)(b) and (3.2.18), we obtain

K(X, Y, P ) = p(Y )X − p(X)Y + 2A(X)A(Y )t

− 2A(Y )A(X)t+ A(Y )X − A(X)Y

which implies the equation (3.2.20).

This completes the proof.

3.3 Hypersurface of recurrent- LP -Sasakian mani-

folds

Now, taking covariant derivative of the equation (3.2.13) with respect to BU and using

(3.2.8)(a) and (3.2.8)(b), we get

(∇BUR)(BX,BY,BZ) = ∇BUB{K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY }

+ ∇BU{(DX
′H)(Y, Z)− (DY

′H)(X,Z)}N
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⇒

(∇BUR)(BX,BY,BZ) = BDU{K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY }

+ ′H(U,K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY )N

+
[
∇BU{(DX

′H)(Y, Z)− (DY
′H)(X,Z)}

]
N

+ {(DX
′H)(Y, Z)− (DY

′H)(X,Z)}∇BUN

⇒

(∇BUR)(BX,BY,BZ) = B{(DUK)(X, Y, Z)− (DU
′H)(Y, Z)HX

− ′H(Y, Z)(DUH)X + (DU
′H)(X,Z)HY

+ ′H(X,Z)(DUH)Y }+ {′K(X, Y, Z,HU)

− ′H(Y, Z)′H(U,HX) + ′H(X,Z)′H(U,HY )}N

+
[
∇BU{(DX

′H)(Y, Z)− (DY
′H)(X,Z)}

]
N

− B{(DX
′H)(Y, Z)− (DY

′H)(X,Z)}HU

which is equivalent to

(∇BUR)(BX,BY,BZ) = B[(DUK)(X, Y, Z)− (DU
′H)(Y, Z)HX

− ′H(Y, Z)(DUH)X + (DU
′H)(X,Z)HY

+ ′H(X,Z)(DUH)Y − {(DX
′H)(Y, Z)

− (DY
′H)(X,Z)}HU ] + [′K(X, Y, Z,HU)

− ′H(Y, Z)′H(U,HX) + ′H(X,Z)′H(U,HY )

+ ∇BU{(DX
′H)(Y, Z)− (DY

′H)(X,Z)}]N. (3.3.1)

Now, we suppose that the LP -Sasakian manifold Mn is a recurrent, then

(∇BUR)(BX,BY,BZ) = ν
′
(BU)R(BX,BY,BZ), (3.3.2)
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where ν
′
(BU) = g(V ′, BU) and V ′ is recurrence vector in Mn. Let us put V ′ = BV

such that g(BV,BU) ◦ b = G(V, U) = ν(U) so that ν
′
(BU) ◦ b = ν(U).

Taking accounts of the equations (3.2.13) and (3.3.1), and by equating tangential parts

on both sides of the above equation (3.3.2), we obtain

ν(U)
[
B{K(X, Y, Z)− ′H(Y, Z)HX + ′H(X,Z)HY }+ {(DX

′H)(Y, Z)

−(DY
′H)(X,Z)}N

]
= B

[
(DUK)(X, Y, Z)− (DU

′H)(Y, Z)HX

−′H(Y, Z)(DUH)X + (DU
′H)(X,Z)HY

+′H(X,Z)(DUH)Y + {(DX
′H)(Y, Z)

−(DY
′H)(X,Z)}HU

]
+ [′K(X, Y, Z,HU)

−′H(Y, Z)′H(U,HX) + ′H(X,Z)′H(U,HY )

+∇BU{(DX
′H)(Y, Z)− (DY

′H)(X,Z)}]N

which implies

(DUK)(X, Y, Z)− (DU
′H)(Y, Z)HX − ′H(Y, Z)(DUH)X

+(DU
′H)(X,Z)HY + ′H(X,Z)(DUH)Y

−{(DX
′H)(Y, Z)− (DY

′H)(X,Z)}HU

= ν(U){K(X, Y, Z)− ′H(Y, Z)HX

+′HX,Z)HY }. (3.3.3)

Theorem 3.3.1 If an LP -Sasakian manifold Mn is recurrent, then the totally geodesic

hypersurface Mn−1 of LP -Sasakian manifold Mn is recurrent.

Proof: For Mn−1 be totally geodesic hypersurface of recurrent LP -Sasakian manifold

Mn, we put HX = 0 in (3.3.3), which gives

(DUK)(X, Y, Z) = ν(U)K(X, Y, Z), (3.3.4)

i.e., Mn−1 is recurrent.
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This completes the statement of the theorem.

Theorem 3.3.2 If LP -Sasakian manifold is η- Einstein manifold, then its hypersur-

face Mn−1 is A-Einstein whether it is totally geodesic or totally umbilical.

Proof: From (3.2.14), the expression for the relation of Ricci tensor in Mn and Mn−1

is given by

S(BY,BZ) ◦ b = Ric(Y, Z)− ′H(Y, Z)h+ ′H(HY,Z) (3.3.5)

where h = C1
1HX is the mean curvature in Mn−1.

If the LP -Sasakian manifold is η- Einstein, then we have

S(BY,BZ) ◦ b = αg(BY,BZ) ◦ b+ βη(BY ) ◦ bη(BZ) ◦ b

= αG(Y, Z) + βA(Y )A(Z). (3.3.6)

In consequence of the equation (3.3.6) the equation (3.3.5) assume the following form

αG(Y, Z) + βA(Y )A(Z) = Ric(Y, Z)− ′H(Y, Z)h+ ′H(HY,Z). (3.3.7)

If the hypersurface Mn−1 is totally geodesic, then HX = 0 and hence the above

equation becomes

Ric(Y, Z) = αG(Y, Z) + βA(Y )A(Z),

showing that Mn−1 is A-Einstein manifold.

Again, if Mn−1 is totally umbilical, then for ′H(X, Y ) = G(X, Y ), the equation (3.3.7)

gives

Ric(Y, Z)− n ′H(Y, Z) +G(Y, Z) = αG(Y, Z) + βA(Y )A(Z),
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where

h = C1
1HX = C1

1X = n. It implies

Ric(Y, Z) = (α + n− 1)G(Y, Z) + βA(Y )A(Z),

which again shows that Mn−1 is A-Einstein.

The proof is complete.

Theorem 3.3.3 A totally geodesic (totally umbilical) hypersurface Mn−1 of a gener-

alized Ricci-recurrent LP -Sasakian manifold is also a generalized Ricci-recurrent man-

ifold.

Proof: From the equation (3.3.5), we get

(∇BXS)(BY,BZ) = (DXRic)(Y, Z)− (DX
′H)(Y, Z)h− ′H(Y, Z)DXh

+(DX
′H)(HY,Z) + ′H((DXH)Y, Z). (3.3.8)

If the LP -Sasakian manifold is generalized Ricci-recurrent, then we have

(∇BXS)(BY,BZ) = [η(BX)S(BY,BZ) + ν(BX)g(BY,BZ)] ◦ b.

Now, taking η(BX) ◦ b = A(X) and ν(BX) ◦ b = p(X) in the above equation, we have

(∇BXS)(BY,BZ) = A(X)S(BY,BZ) ◦ b+ p(X)g(BY,BZ) ◦ b.

Using (3.3.5) and (3.3.8) in the above equation, we have

(DXRic)(Y, Z)− (DX
′H)(Y, Z)h− ′H(Y, Z)DXh

+(DX
′H)(HY,Z) + ′H((DXH)Y, Z)

= A(X)S(BY,BZ) ◦ b+ p(X)g(BY,BZ) ◦ b (3.3.9)
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⇒

(DXRic)(Y, Z)− (DX
′H)(Y, Z)h− ′H(Y, Z)DXh

+(DX
′H)(HY,Z) + ′H((DXH)Y, Z)

= A(X)Ric(Y, Z)− A(X)′H(Y, Z)h+ A(X)′H(HY,Z)

+p(X)G(Y, Z). (3.3.10)

Now, from (3.3.10), for HX = 0, we have

(DXRic)(Y, Z) = A(X)Ric(Y, Z) + p(X)G(Y, Z),

which shows that Mn−1 is generalized Ricci-recurrent.

Further, for ′H(X, Y ) = G(X, Y ), we get, (DX
′H)(Y, Z) = 0. Then, the equation

(3.3.10) gives,

(DXRic)(Y, Z)−G(Y, Z)DXh = A(X)Ric(Y, Z)− A(X)G(Y, Z)h

+ A(X)G(Y, Z) + p(X)G(Y, Z)

⇒

(DXRic)(Y, Z) = A(X)Ric(Y, Z) +B(X)G(Y, Z),

where B(X) = p(X)− (n− 1)A(X).

This shows that Mn−1 is generalized Ricci-recurrent.

Hence the proof is over.
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Chapter 4

m-Projective Curvature Tensor on a

Kenmotsu Manifold

In this chapter, we have studied some properties of m-projective curvature tensor on

Kenmotsu manifolds and it has been shown that globally φ- m-projectively symmetric

Kenmotsu manifold is an Einstein manifold.

4.1 Introduction

In an n-dimensional manifold Mn defined in the (1.21.1-1.21.6), the following relations

hold

R(X, Y )ξ = η(X)Y − η(Y )X, (4.1.1)

S(X, ξ) = −(n− 1)η(X), (4.1.2)

(DXη)Y = g(X, Y )− η(X)η(Y ), (4.1.3)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (4.1.4)

2International Journal of Mathematical Sciences and Engineering Applications, 9(3),
37-49(2015).
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where X, Y are vector fields.

(Yildiz et al., 2009) A Kenmotsu manifold Mn is said to be η-Einstein if the Ricci

tensor S is given by

S(X, Y ) = λ1g(X, Y ) + λ2η(X)η(Y ),

where λ1 and λ2 are functions on Mn. If λ2 = 0, then η-Einstein manifold reduces to

Einstein manifold.

We know that for a 3-dimensional Kenmotsu manifold (De and Pathak, 2004)

R(X, Y )Z =
(r + 4)

2

[
g(Y, Z)X − g(X,Z)Y

]
− (r + 6)

2

[
g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y
]
, (4.1.5)

and

S(X, Y ) =
1

2
[(r + 2)g(X, Y )− (r + 6)η(X)η(Y )], (4.1.6)

where r is the scalar curvature of the manifold.

The m-projective curvature tensor W ∗ is defined by(Pokhariyal and Mishra, 1971)

W ∗(X, Y, Z) = R(X, Y, Z)− 1

2(n− 1)

{
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (4.1.7)

74



4.2 Globally φ-m-projectively symmetric Kenmotsu

manifolds

Definition 4.2.1 A Kenmotsu manifold Mn is said to be globally φ-m-projectively

symmetric if m-projective curvature tensor W ∗ satisfies

φ2((DUW
∗)(X, Y )Z) = 0, (4.2.1)

for all vector fields X, Y, Z, U ∈ TMn.

Theorem 4.2.1 If a Kenmotsu manifold is globally φ-m-projectively symmetric, then

the manifold is an Einstein manifold.

Proof: Let us suppose that Mn is a globally φ-m-projectively symmetric Kenmotsu

manifold. Then the equation(4.2.1) is satisfied.

Now using (1.21.1) in the equation (4.2.1), we get

−(DUW
∗)(X, Y )Z + η((DUW

∗)(X, Y )Z)ξ = 0. (4.2.2)

From (4.1.7) it follows that

−g((DUR)(X, Y )Z, V ) +
1

2(n− 1)

{
(DUS)(Y, Z)g(X, V )

−(DUS)(X,Z)g(Y, V ) + (DUS)(X, V )g(Y, Z)

−(DUS)(Y, V )g(X,Z)
}

+ η((DUR)(X, Y )Z)η(V )

− 1

2(n− 1)

{
(DUS)(Y, Z)η(X)− (DUS)(X,Z)η(Y )

+g(Y, Z)(DUS)(X, ξ)− g(X,Z)(DUS)(Y, ξ)
}
η(V ) = 0. (4.2.3)

Putting X = V = ei in the equation (4.2.3), where {ei}, (i = 1, 2, .....n) is an orthonor-

mal basis of the tangent space at each point of the manifold, and taking summation
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over i, we get

−(DUS)(Y, Z) +
n

2(n− 1)
(DUS)(Y, Z)− 1

2(n− 1)
(DUS)(Y, Z)

+
1

2(n− 1)
dr(U)g(Y, Z)− 1

2(n− 1)
(DUS)(Y, Z) + η((DUR)(ei, Y )Z)η(ei)

− 1

2(n− 1)

{
(DUS)(Y, Z)− (DUS)(Z, ξ)η(Y ) + g(Y, Z)(DUS)(ξ, ξ)

−(DUS)(Y, ξ)η(Z)
}

= 0.

Putting Z = ξ in the above expression and after some computations we obtain,

− n

2(n− 1)
(DUS)(Y, ξ) +

dr(U)

2(n− 1)
η(Y ) + η((DUR)(ei, Y )ξ)η(ei) = 0. (4.2.4)

We know that

g((DUR)(ei, Y )ξ, ξ) = g(DUR(ei, Y )ξ, ξ)− g(R(DUei, Y )ξ, ξ)

− g(R(ei, DUY )ξ, ξ)− g(R(ei, Y )DUξ, ξ) (4.2.5)

at p ∈Mn. Since {ei} is an orthonormal basis, DXei = 0 at p. Using (4.1.1) we find

g(R(ei, DUY )ξ, ξ) = g(η(ei)DUY − η(DUY )ei, ξ)

= η(ei)g(DUY, ξ)− η(DUY )g(ei, ξ)

= 0. (4.2.6)

Using (4.2.6) in the equation (4.2.5) we have

g((DUR)(ei, Y )ξ, ξ) = g(DUR(ei, Y )ξ, ξ)− g(R(ei, Y )DUξ, ξ). (4.2.7)

Since

g(R(ei, Y )ξ, ξ) = −g(R(ξ, ξ)Y, ei) = 0,

we get

g(DUR(ei, Y )ξ, ξ) + g(R(ei, Y )ξ,DUξ) = 0. (4.2.8)
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In consequence of (4.2.8), the equation (4.2.7) becomes

g((DUR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ,DUξ)− g(R(ei, Y )DUξ, ξ).

Using (1.21.6) in the above equation, we find

g((DUR)(ei, Y )ξ, ξ) = −g(R(ei, Y )ξ, U) + η(U)g(R(ei, Y )ξ, ξ)

− g(R(ei, Y )U, ξ) + η(U)g(R(ei, Y )ξ, ξ)

= 0

i.e.

g((DUR)(ei, Y )ξ, ξ) = 0. (4.2.9)

In consequence of (4.2.9) the equation (4.2.4) yields

(DUS)(Y, ξ) =
1

n
dr(U)η(Y ). (4.2.10)

Putting Y = ξ in (4.2.10), we get dr(U) = 0.

This implies that r is constant.

So from (4.2.10) and dr(U) = 0, we obtain

(DUS)(Y, ξ) = 0

which implies that

S(Y, U) = (1− n)g(Y, U). (4.2.11)

Hence proof of the theorem is completed.

Theorem 4.2.2 A globally φ-m-projectively symmetric Kenmotsu manifold is globally

φ-symmetric.
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Proof: From (4.1.7) we have

(DUW
∗)(X, Y )Z = (DUR)(X, Y )Z.

Applying φ2 on both sides of the above equation we have

φ2((DUW
∗)(X, Y )Z) = φ2((DUR)(X, Y )Z).

This proves the statement of the theorem.

Remark 4.2.1 Since a globally φ -symmetric Kenmotsu manifold is always a glob-

ally φ-m-projectively symmetric manifold, from Theorem (4.2.2),we conclude that on a

Kenmotsu manifold, globally φ-symmetry and globally φ-m-projectively symmetry are

equivalent.

4.3 3-Dimensional locally φ-m-projectively symmet-

ric Kenmotsu manifolds

Definition 4.3.1 A Kenmotsu manifold Mn is said to be locally φ − m-projectively

symmetric if m-projective curvature tensor W ∗ satisfies

φ2((DUW
∗)(X, Y )Z) = 0, (4.3.1)

where X, Y, Z and U are horizontal vectors.

Theorem 4.3.1 A 3-dimensional Kenmotsu manifold is locally φ-m-projectively sym-

metric if and only if the scalar curvature r is constant.

Proof:Using (4.1.5) and (4.1.6) in (4.1.7), in a 3-dimensional Kenmotsu manifold the
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m-projective curvature tensor is

W ∗(X, Y )Z =
{r + 6

4

}
[g(Y, Z)X − g(X,Z)Y ]

−
{3r + 18

8

}
[g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y ]. (4.3.2)

Taking the covariant differentiation to the both sides of the equation (4.3.2), we have

(DUW
∗)(X, Y )Z =

dr(U)

4

[
g(Y, Z)X − g(X,Z)Y

]
− 3

8
dr(U)

[
g(Y, Z)η(X)ξ − g(X,Z)η(Y )ξ

+ η(Y )η(Z)X − η(X)η(Z)Y
]

−
{3r + 18

8

}[
g(Y, Z)(DUη)(X)ξ + g(Y, Z)η(X)DUξ

− g(X,Z)(DUη)(Y )ξ − g(X,Z)η(Y )DUξ + (DUη)(Y )η(Z)X

+ η(Y )(DUη)(Z)X − (DUη)(X)η(Z)Y

− η(X)(DUη)(Z)Y
]
. (4.3.3)

Now assume that X, Y and Z are horizontal vector fields. So the equation (4.3.3)

becomes

(DUW
∗)(X, Y )Z =

dr(U)

4
[g(Y, Z)X − g(X,Z)Y ]

−
{3r + 18

8

}
[g(Y, Z)(DUη)(X)ξ

− g(X,Z)(DUη)(Y )ξ]. (4.3.4)

Applying φ2 on both sides of (4.3.4) and making use of (1.21.3), we obtain

φ2((DUW
∗)(X, Y )Z) = −dr(U)

4
[g(Y, Z)φ2X − g(X,Z)φ2Y ]. (4.3.5)

If dr(U) = 0 i.e. the manifold is of constant scalar curvature tensor then it is locally

φ − m projectively symmetric. On the other hand if it is locally φ − m projectively

symmetric then from the equation (4.3.5) it is clear that dr(U) = 0.
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This completes the proof of the theorem.

4.4 ξ-m-Projectively flat Kenmotsu manifolds

Definition 4.4.1 An n-dimensional Kenmotsu manifold is said to be ξ-m-projectively

flat if W ∗(X, Y )ξ = 0, where X, Y ∈ TMn.

Theorem 4.4.1 An n-dimensional Kenmotsu manifold is ξ-m-projectively flat if and

only if it is an Einstein manifold.

Proof: Let the manifold be ξ −m projectively flat. Then from the equation (4.1.7)

we obtain

R(X, Y )ξ =
1

2(n− 1)
{S(Y, ξ)X − S(X, ξ)Y

+ g(Y, ξ)QX − g(X, ξ)QY }. (4.4.1)

Using (4.1.1),(4.1.2) in (4.4.1), we get

η(Y )QX − η(X)QY + (n− 1){η(Y )X − η(X)Y } = 0. (4.4.2)

Putting Y = ξ in (4.4.2) and using (1.21.3), we get

QX = −(n− 1)X. (4.4.3)

Taking inner product of (4.4.3) with U , we obtain

S(X,U) = −(n− 1)g(X,U). (4.4.4)

From the relation (4.4.4), we conclude that the manifold is an Einstein manifold.

Conversely , we assume that an n-dimensional Kenmotsu manifold satisfies (4.4.4).

Then we easily obtain from (4.1.7) that

W ∗(X, Y )ξ = 0.
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Hence the proof of the theorem is completed.

4.5 φ-m-Projectively flat Kenmotsu manifolds

In an n-dimensional Kenmotsu manifold, if {e1, .......en−1, ξ} is a local orthonormal basis

of the tangent space of the manifold, then {φe1, .....φen−1, ξ} is also a local orthonormal

basis. In Kenmotsu manifold it is easy to verify that

n−1∑
i=1

g(R(φei, φY )φZ, φei) = S(φY, φZ) + g(φY, φZ), (4.5.1)

n−1∑
i=1

S(φei, φei) = r − n+ 1, (4.5.2)

n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (4.5.3)

n−1∑
i=1

g(φei, φei) = n− 1, (4.5.4)

and

n−1∑
i=1

g(φei, φZ)g(φY, φei) = g(φY, φZ). (4.5.5)

Definition 4.5.1 An n-dimensional Kenmotsu manifold is said to be φ-m-projectively

flat if

′W ∗(φX, φY, φZ, φU) = 0, (4.5.6)

where X, Y, Z, U ∈ TMn.

Theorem 4.5.1 An n-dimensional φ-m-projectively flat Kenmotsu manifold is an η-

Einstein manifold with constant curvature.
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Proof: From (4.1.7), we get

W ∗(φX, φY, φZ) = R(φX, φY, φZ)− 1

2(n− 1)

{
S(φY, φZ)φX

− S(φX, φZ)φY + g(φY, φZ)QφX

− g(φX, φZ)QφY
}
. (4.5.7)

Taking inner product of the above equation, we obtain

g(W ∗(φX, φY, φZ), φU) = g(R(φX, φY, φZ), φU)

− 1

2(n− 1)

{
S(φY, φZ)g(φX, φU)− S(φX, φZ)g(φY, φU)

+ g(φY, φZ)S(φX, φU)− g(φX, φZ)S(φY, φU)
}

(4.5.8)

which can be written as

′W ∗(φX, φY, φZ, φU) = ′R(φX, φY, φZ, φU)

− 1

2(n− 1)

{
S(φY, φZ)g(φX, φU)− S(φX, φZ)g(φY, φU)

+ g(φY, φZ)S(φX, φU)− g(φX, φZ)S(φY, φU)
}
. (4.5.9)

By virtue of (4.5.6) and (4.5.9), we get

′R(φX, φY, φZ, φU) =
1

2(n− 1)

{
S(φY, φZ)g(φX, φU)

− S(φX, φZ)g(φY, φU) + g(φY, φZ)S(φX, φU)

− g(φX, φZ)S(φY, φU)
}
. (4.5.10)

Let {e1, e2, ....., en−1, ξ} be a local orthonormal basis of the tangent space of the man-

ifold. Then {φe1, φe2, ...., φen−1, ξ} is also a local orthonormal basis of the tangent

space.
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Putting X = U = ei in (4.5.10) and summing up from 1 to (n-1) we have,

n−1∑
i=1

′R(φei, φY, φZ, φei) =
1

2(n− 1)

n−1∑
i=1

[
S(φY, φZ)g(φei, φei)

− S(φei, φZ)g(φY, φei) + g(φY, φZ)S(φei, φei)

− g(φei, φZ)S(φY, φei)
]
. (4.5.11)

Using (4.5.1),(4.5.2),(4.5.3) and (4.5.4) in (4.5.11), we obtain

S(φY, φZ) =
[r − 3n+ 3

n+ 1

]
g(φY, φZ). (4.5.12)

Replacing Y and Z by φY and φZ in (4.5.12) and using (1.21.1) we obtain

S(Y, Z) =
{r − 3n+ 3

n+ 1

}
g(Y, Z) +

{−r − n2 + 3n− 2

n+ 1

}
η(Y )η(Z). (4.5.13)

Putting Y = Z = ei in (4.5.13) and taking summation over i, 1 ≤ i ≤ n we get by

using (4.5.4) that

r = −(2n2 − 3n+ 1). (4.5.14)

This completes the proof.

4.6 Harmonic m-projective curvature tensor on Ken-

motsu manifolds

Let us assume that ξ is a killing vector, then S and r remain invariant under it,

i.e.

£ξS = 0 (4.6.1)

and

£ξr = 0, (4.6.2)
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where £ denotes Lie derivation.

Definition 4.6.1 The Riemannian curvature tensor R is harmonic if

(divR)(X, Y, Z) = 0. (4.6.3)

Definition 4.6.2 A Riemannian manifold Mn is of harmonic m-projective curvature

tensor if

(divW ∗)(X, Y, Z) = 0. (4.6.4)

In a Kenmotsu manifold it is known (Chaubey, 2012) that

(divW ∗)(X, Y, Z) =
1

2(n− 1)

[
(2n− 3){(DXS)(Y, Z)− (DY S)(X,Z)}

− 1

2
{dr(X)g(Y, Z)− dr(Y )g(X,Z)}

]
. (4.6.5)

Theorem 4.6.1 If a Kenmotsu manifold is of harmonic m-projective curvature tensor

and ξ is killing vector, then the manifold is an η -Einstein manifold.

Proof: Let Mn be a Kenmotsu manifold that satisfies divW ∗ = 0 .

Then from the equation (4.6.5) we have

(DXS)(Y, Z)− (DY S)(X,Z) =
1

2(2n− 3)
[dr(X)g(Y, Z)− dr(Y )g(X,Z)]. (4.6.6)

From (4.6.1), it follows that

(DξS)(Y, Z) = −S(DY ξ, Z)− S(Y,DZξ) (4.6.7)

and from (4.6.2), we get dr(ξ) = 0. Putting X = ξ in (4.6.6), we obtain

(DξS)(Y, Z)− (DY S)(ξ, Z) =
1

2(2n− 3)
[g(Y, Z)dr(ξ)

− η(Z)dr(Y )]. (4.6.8)
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Making use of (4.6.7) in (4.6.8), we have

−S(DY ξ, Z)− S(Y,DZξ)− (DY S)(ξ, Z) =
1

2(2n− 3)
[g(Y, Z)dr(ξ)

− η(Z)dr(Y )]. (4.6.9)

In consequence of dr(ξ) = 0, the above equation assume the form

−S(Y,DZξ)−DY S(ξ, Z) + S(ξ,DYZ) = − 1

2(2n− 3)
η(Z)dr(Y ). (4.6.10)

Using (1.21.6) and (4.1.3) in the above, we have

− S(Y, Z − η(Z)ξ) + (n− 1)DY η(Z)− (n− 1)η(DYZ)

= − 1

2(2n− 3)
η(Z)dr(Y ), (4.6.11)

which is equivalent to

− S(Y, Z) + (n− 1)g(Y, Z)− 2(n− 1)η(Y )η(Z)

= − 1

2(2n− 3)
η(Z)dr(Y ). (4.6.12)

Replacing Z by φZ in the above equation, we get

S(Y, φZ) = (n− 1)g(Y, φZ). (4.6.13)

Again replacing Y by φY and using (1.21.4) and (4.1.4) the above equation gives

S(Y, Z) = (n− 1)g(Y, Z)− 2(n− 1)η(Y )η(Z),

i.e. the manifold is an η-Einstein manifold.
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4.7 Example of a locally φ-m-Projectively symmet-

ric Kenmotsu manifold in 3-Dimension

Example 4.7.1 We consider the 3-dimensional manifold M3 = {(x, y, z) ∈ R3, z 6=

0}, where (x, y, z) are standard co-ordinate of R3.

The vector fields

e1 = z ∂
∂x
, e2 = z ∂

∂y
, e3 = −z ∂

∂z

are linearly independent at each point of M3.

Let g be the Riemannian meric defined by

g(e1, e3) = g(e1, e2) = g(e2, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any Z ∈ TMn.

Let φ be the (1, 1) tensor field defined by

φ(e1) = −e2, φ(e2) = e1, φ(e3) = 0.

Then using the linearity of φ and g, we have

η(e3) = 1,

φ2Z = −Z + η(Z)e3,

g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ TMn. Then for e3 = ξ , the structure (φ, ξ, η, g) defines an almost

contact metric structure on M3.
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Let D be the Levi-Civita connection with respect to metric g. Then we have

[e1, e3] = e1e3 − e3e1

= z
∂

∂x
(−z ∂

∂z
)− (−z ∂

∂z
)(z

∂

∂x
)

= −z2 ∂2

∂x∂z
+ z2

∂2

∂z∂x
+ z

∂

∂x

= e1. (4.7.1)

Similarly, [e1, e2] = 0 and [e2, e3] = e2.

The Riemannian connection D of the metric g is given by

2g(DXY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y )

− g(X, [Y, Z])− g(Y, [X,Z]) + g(Z, [X, Y ]), (4.7.2)

which is known as Koszul’s formula.

Using (4.7.2) we have

2g(De1e3, e1) = −2g(e1,−e1)

= 2g(e1, e1). (4.7.3)

Again by (4.7.3), we have

2g(De1e3, e2) = 0

= 2g(e1, e2) (4.7.4)

and

2g(De1e3, e3) = 0

= 2g(e1, e3). (4.7.5)

From (4.7.3),(4.7.4) and (4.7.5), we obtain

2g(De1e3, X) = 2g(e1, X), (4.7.6)
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for all X ∈ TMn. Thus De1e3 = e1. Therefore, (4.7.2) further yields

De1e3 = e1, De1e2 = 0, De1e1 = 0,

De2e3 = e2, De2e2 = −e3, De2e1 = 0,

De3e3 = 0, De3e2 = 0, De3e1 = 0. (4.7.7)

From the above it follows that the manifold satisfies

DXξ = X − η(X)ξ, for ξ = e3.

Hence the manifold is a Kenmotsu manifold.

Remark 4.7.1 (De and De, 2012) the authors have shown that the above example

establish that a 3-dimensional Kenmotsu manifold is locally φ-concircularly symmetric

iff the scalar curvature r is constant. Similarly we can show that the above example

supports Theorem (4.3.1).
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Chapter 5

Characterization of Lorentzian

Para-Sasakian Manifolds

This chapter deals with different geometrical properties of m-projective curvature

tensor and the extended generalized concircularly φ -recurrent LP -Sasakian manifolds.

5.1 Introduction

In an LP -Sasakian manifold defined in (1.20.1)-(1.20.11), the following relations hold

g(R(X, Y )Z, ξ) = η(R(X, Y )Z)

= g(Y, Z)η(X)− g(X,Z)η(Y ), (5.1.1)

R(ξ,X)Y = g(X, Y )ξ − η(Y )X, (5.1.2)

R(X, Y )ξ = η(Y )X − η(X)Y, (5.1.3)

R(ξ,X)ξ = X + η(X)ξ, (5.1.4)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (5.1.5)

3Global Journal of Pure and Applied Mathematics, 13(9), 5551-5563(2017)

89



for any vector fields X, Y, Z where R and S are the Riemannian curvature and the

Ricci tensor of the manifold respectively.

Also the following relation hold good in an LP -Sasakian manifold

(∇WR)(X, ξ)Z = g(Z, φW )X − g(X,Z)φW −R(X,φW )Z, (5.1.6)

for all vector fields X, Y, Z,W ∈ χ(Mn).

An LP -Sasakian manifold Mn is said to be η-Einstein manifold (Blair, 1976) if

S(X, Y ) = αg(X, Y ) + βη(X)η(Y ), (5.1.7)

where α and β are smooth functions.

The m-projective curvature tensor W ∗ is defined by (Pokhariyal and Mishra, 1971)

W ∗(X, Y, Z) = R(X, Y, Z)− 1

2(n− 1)

{
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (5.1.8)

5.2 m-projectively symmetric LP -Sasakian manifold

Definition 5.2.1 An LP -Sasakian manifold Mn is said to be m-projectively symmet-

ric if the m-projective curvature tensor W ∗ satisfies the relation

(∇UW
∗)(X, Y ), Z = 0, (5.2.1)

for all X, Y, Z and U .

Theorem 5.2.1 An m-projectively symmetric LP -Sasakian manifold Mn is Ricci-

recurrent.

Proof : Let Mn be an m-projectively symmetric LP -Sasakian manifold.

Firstly, taking covariant differentiation of the equation (5.1.8) with respect to U , then
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making use of the equations (5.2.1) and (5.1.8), we find

(∇UW
∗)(X, Y )Z = (∇UR)(X, Y )Z − 1

2(n− 1)

{
(∇US)(Y, Z)X

− (∇US)(X,Z)Y + g(Y, Z)∇U(QX)

− g(X,Z)∇U(QY )
}
. (5.2.2)

By virtue of (5.2.1), the equation (5.2.2) becomes

(∇UR)(X, Y )Z =
1

2(n− 1)

{
(∇US)(Y, Z)X − (∇US)(X,Z)Y

+ g(Y, Z)∇U(QX)− g(X,Z)∇U(QY )
}
. (5.2.3)

Taking inner product of the above equation with respect to V , we have

g((∇UR)(X, Y )Z, V ) =
1

2(n− 1)

{
(∇US)(Y, Z)g(X, V )

− (∇US)(X,Z)g(Y, V ) + g(Y, Z)(∇US)(X, V )

− g(X,Z)(∇US)(Y, V )
}
. (5.2.4)

Taking contraction over X and V , we secure

(∇US)(Y, Z) =
1

2(n− 1)
{n(∇US)(Y, Z)− (∇US)(Y, Z)

+ dr(U)g(Y, Z)− (∇US)(Y, Z)} (5.2.5)

which implies

(∇US)(Y, Z) =
{dr(U)

n

}
g(Y, Z). (5.2.6)

Hence the manifold is Ricci-recurrent.

Suppose the scalar curvature r is constant then we mention the following corollary:

Corollary 5.2.1 An m-projectively symmetric LP -Sasakian manifold Mn with con-

stant scalar curvature is Einstein.
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5.3 φ−m-projectively symmetric LP -Sasakian man-

ifold

Definition 5.3.1 An LP -Sasakian manifold Mn is said to be φ−m-projectively sym-

metric, if the m-projective curvature W ∗ satisfies the relation

φ2(∇UW
∗)(X, Y, Z) = 0, (5.3.1)

for all vector feilds X, Y, Z and U .

Theorem 5.3.1 A φ−m-projectively symmetric LP -Sasakian manifold Mn is an Ein-

stein.

Proof: Let us consider Mn is a φ−m -projectively symmetric LP -Sasakian manifold.

Then by the equations (5.3.1) and (1.20.1), we get

g((∇UW
∗)(X, Y, Z), V ) = −η((∇UW

∗)(X, Y, Z))g(ξ, V ). (5.3.2)

The existence of the relation (5.1.8), the above equation becomes

g((∇UR)(X, Y, Z), V )− 1

2(n− 1)

{
(∇US)(Y, Z)g(X, V )

−(∇US)(X,Z)g(Y, V ) + g(Y, Z)(∇US)(X, V )− g(X,Z)(∇US)(Y, V )
}

= −g((∇UR)(X, Y, Z), ξ)g(ξ, V ) +
1

2(n− 1)

{
(∇US)(Y, Z)g(X, ξ)

−(∇US)(X,Z)g(Y, ξ) + (∇US)(X, ξ)g(Y, Z)

−(∇US)(Y, ξ)g(X,Z)
}
g(ξ, V ). (5.3.3)

After contraction over X and Z, we secure

(∇US)(Y, V ) + (∇US)(Y, ξ)η(V ) =
[dr(U)

n

]
{g(Y, V )

+ η(Y )η(V )}. (5.3.4)
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Putting Y = ξ in the equation (5.3.4) we get

(∇US)(ξ, V ) = 0. (5.3.5)

By virtue of the relation (5.3.5), we have

S(φU, V ) = (n− 1)g(φU, V ). (5.3.6)

We put U = φU in the above relation and then using the equation (1.20.1), we find

S(U, V ) = (n− 1)g(U, V ). (5.3.7)

This shows that the manifold is Einstein and thus the proof of the theorem is over.

5.4 φ−m-projectively flat LP -Sasakian manifold

Definition 5.4.1 An LP -Sasakian manifold Mn is said to be φ −m-projectively flat

if the m-projective curvature tensor W ∗ satisfies the relation

φ2(W ∗(φX, φY, φZ)) = 0, (5.4.1)

for all vector fields X, Y and Z.

Theorem 5.4.1 A φ−m-projectively flat LP -Sasakian manifold Mn is an η-Einstein

manifold.

Proof: Let us assume that Mn be a φ−m-projectvely flat LP -Sasakian manifold.

Then by virtue of the relations (5.4.1) and (1.20.1), we have

W ∗(φX, φY, φZ) = −η(W ∗(φX, φY, φZ))ξ, (5.4.2)

which implies

g(W ∗(φX, φY, φZ), φU) = −η(W ∗(φX, φY, φZ))g(ξ, φU). (5.4.3)
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In consequence of (1.20.5) the equation (5.4.3) yields

g(W ∗(φX, φY, φZ), φU) = 0. (5.4.4)

Making use of (5.1.8) in the equation (5.4.4) we obtain

g(R(φX, φY, φZ), φU)− 1

2(n− 1)

{
S(φY, φZ)g(φX, φU)

−S(φX, φZ)g(φY, φU) + g(φY, φZ)S(φX, φU)

−g(φX, φZ)S(φY, φU)
}

= 0

which is equivalent to

g(R(φX, φY, φZ), φU) =
1

2(n− 1)
{S(φY, φZ)g(φX, φU)

− S(φX, φZ)g(φY, φU) + g(φY, φU)S(φX, φU)

− g(φX, φZ)S(φY, φU)}. (5.4.5)

Let {e1, e2, ..., en−1, ξ} be a local orthonormal basis of vector fields in Mn. By using

the fact that {φe1, φe2, ..., φen−1, ξ} is an orthonormal basis, if we put X = U = ei in

the above relation and taking summation over i, 1 ≤ i ≤ n− 1, then we have

n−1∑
i=1

g(R(φei, φY, φZ), φei) =
1

2(n− 1)

[ n−1∑
i=1

S(φY, φZ)g(φei, φei)

−
n−1∑
i=1

S(φei, φZ)g(φY, φei)

+
n−1∑
i=1

g(φY, φZ)S(φei, φei)

−
n−1∑
i=1

g(φei, φZ)S(φY, φei)
]
. (5.4.6)

Now we find that(Özgür, 2003)

n−1∑
i=1

g(R(φei, φY, φZ), φei) = S(φY, φZ) + g(φY, φZ), (5.4.7)
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n−1∑
i=1

S(φei, φei) = r + n− 1, (5.4.8)

n−1∑
i=1

g(φei, φZ)S(φY, φei) = S(φY, φZ), (5.4.9)

and

n−1∑
i=1

g(φei, φei) = n+ 1. (5.4.10)

By virtue of the relations (5.4.7)-(5.4.10), the equation (5.4.6) reduces to

S(φY, φZ) =
[ r

n− 1
− 1
]
g(φY, φZ). (5.4.11)

Then by making use of (1.20.3) and (5.1.5), the equation (5.4.11) takes the form

S(Y, Z) =
{ r

n− 1
− 1
}
g(Y, Z) +

{ r

n− 1
− n

}
η(Y )η(Z), (5.4.12)

which implies from (5.1.7) that Mn is an η- Einstein manifold.

This completes the proof of the theorem.

5.5 An extended generalized φ- recurrent LP -Sasakian

manifold

Definition 5.5.1 An LP -Sasakian manifold Mn is said to be extended generalized φ

-recurrent if its curvature tensor R satisfies the relation

φ2((∇WR)(X, Y )Z) = A(W )φ2(R(X, Y )Z) +B(W )φ2(G(X, Y )Z),(5.5.1)

where A and B are two 1-forms , B is non zero and these are defined by

g(W, ρ1) = A(W ), g(W, ρ2) = B(W ), and

G(X, Y, Z) = g(Y, Z)X − g(X,Z)Y,
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for all X, Y, Z,W ∈ χ(Mn) and ρ1, ρ2 being vector fields associated to the 1-forms A

and B respectively.

Lemma 5.5.1 In an extended generalized φ -recurrent LP -Sasakian manifold

(∇WS)(Y, ξ) = (n− 1)g(Y, φW )− S(Y, φW ). (5.5.2)

Proof: We know that

(∇WS)(Y, ξ) = ∇WS(Y, ξ)− S(∇WY, ξ)− S(Y,∇W ξ). (5.5.3)

Using (1.20.6), (1.20.9) and (1.20.11) in the above relation, we get

(∇WS)(Y, ξ) = (n− 1)(∇Wη)(Y ) + (n− 1)η(∇WY )

− (n− 1)η(∇WY )− S(Y, φW )

which gives the expression (5.5.2).

Theorem 5.5.1 In an extended generalized φ-recurrent LP -Sasakian manifold Mn,

the 1-forms A and B are in opposite direction.

Proof: Let us consider that Mn be an extended generalized φ-recurrent LP -Sasakian

manifold.

Then by virtue of relations (1.20.1), (1.20.2) and (1.20.5), the equation (5.5.1) becomes

(∇WR)(X, Y, Z) + η((∇WR)(X, Y, Z))ξ = A(W ){R(X, Y, Z) + η(R(X, Y, Z))ξ}

+B(W ){G(X, Y, Z) + η(G(X, Y, Z))ξ}.(5.5.4)

Taking inner product of the above relation with U we get

g((∇WR)(X, Y, Z), U) + g((∇WR)(X, Y, Z), ξ)g(U, ξ)

= A(W )[g(R(X, Y, Z), U) + g(R(X, Y, Z), ξ)g(U, ξ)]

+B(W )[g(G(X, Y, Z), U) + g(G(X, Y, Z), ξ)g(U, ξ)]. (5.5.5)
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Let us suppose that {e1, e2, ..., en} be an orthonormal basis of tangent space at any point

of the manifold. Setting X = U = ei in the relation (5.5.5) and taking summation over

i, 1 ≤ i ≤ n, we obtain

(∇WS)(Y, Z) + η((∇WR)(ξ, Y, Z)) = A(W )[S(Y, Z) + η(R(ξ, Y, Z))]

+ B(W )[(n− 2)g(Y, Z)

− η(Y )η(Z)]. (5.5.6)

Putting Z = ξ in the above equation, we find

(∇WS)(Y, ξ) = {A(W ) +B(W )}(n− 1)η(Y ) + g(Y, φW ). (5.5.7)

By virtue of the Lemma (5.5.1) in the above relation, we have

(n− 1)g(Y, φW )− S(Y, φW ) = (n− 1)η(Y )[A(W )

+B(W )] + g(Y, φW ). (5.5.8)

Replacing Y by ξ in equation (5.5.8) and after using the relations (1.20.5) and (1.20.11),

we get

A(W ) +B(W ) = 0. (5.5.9)

Hence the theorem is proved.

Theorem 5.5.2 An extended generalized φ-recurrent LP -Sasakian manifold Mn is an

η- Einstein manifold.

Proof: Let us consider Mn be an extended generalized φ-recurrent LP -Sasakian mani-

fold. In the theorem (5.5.1), we have proved that in an extended generalized φ-recurrent

LP -Sasakian manifold Mn, the 1-forms A and B are in opposite direction and so the

relation (5.5.9) holds.
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Now making use of (5.5.9) in (5.5.8) we have

(n− 2)g(Y, φW )− S(Y, φW ) = 0. (5.5.10)

Again replacingW by φW in the above relation and then using (1.20.1) and (1.20.11),we

obtain

S(Y,W ) = (n− 2)g(Y,W )− η(Y )η(W ). (5.5.11)

Our theorem is thus proved.

5.6 Extended generalized concircularly φ-recurrent

LP -Sasakian manifolds

Definition 5.6.1 An extended genaralized φ-recurrent LP -Sasakian manifold Mn is

said to be an extended generalized concircularly φ-recurrent LP -Sasakian manifold, if

the concircular curvature C satisfies the relation

φ2((∇WC)(X, Y, Z)) = A(W )φ2(C(X, Y, Z)) +B(W )φ2(G(X, Y, Z)),(5.6.1)

where A and B are two 1-forms, B is non-zero and

C(X, Y, Z) = R(X, Y, Z)− r

n(n− 1)
G(X, Y, Z) (5.6.2)

for all X, Y, Z ∈ χ(Mn) and r is the scalar curvature.

Theorem 5.6.1 An extended genaralized concircularly φ-recurrent LP -Sasakian man-

ifold Mn, n ≥ 3, is extended generalized φ-recurrent if and only if

{dr(W )− rA(W )

n(n− 1)

}{
g(Y, Z)X + g(Y, Z)η(X)ξ − g(X,Z)Y

−g(X,Z)η(Y )ξ
}

= 0. (5.6.3)

Proof: Let us consider an extended generalized concircularly φ-recurrent LP -Sasakian
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manifold Mn, n ≥ 3. Hence the defining condition of an extended generalized concir-

cularly φ-recurrent LP -Sasakian manifold yields by virtue of (5.6.2) that

φ2((∇WR)(X, Y )Z)− A(W )φ2(R(X, Y )Z)−B(W )φ2(G(X, Y )Z)

=
[dr(W )− rA(W )

n(n− 1)

]
{g(Y, Z)X + g(Y, Z)η(X)ξ − g(X,Z)Y

−g(X,Z)η(Y )ξ}. (5.6.4)

Using (5.5.1) in the above relation, we get

[dr(W )− rA(W )

n(n− 1)

]
{g(Y, Z)X + g(Y, Z)η(X)ξ − g(X,Z)Y

−g(X,Z)η(Y )ξ} = 0. (5.6.5)

This completes the proof of the theorem.

Theorem 5.6.2 If an extended generalized concircularly φ -recurrent LP -Sasakian

manifold Mn, n ≥ 3, is an extended generalized φ-recurrent LP -Sasakian manifold,

then the associated vector field corresponding to the 1-form A is given by ρ1 = 1
r
grad r,

r being the non-zero and non-constant scalar curvature of the manifold.

Proof: Taking inner product of the equation (5.6.5) with U , we obtain

[dr(W )− rA(W )

n(n− 1)

]
{g(Y, Z)g(X,U) + g(Y, Z)η(X)g(ξ, U)− g(X,Z)g(Y, U)

−g(X,Z)η(Y )g(ξ, U)} = 0. (5.6.6)

Taking contraction over X and U , we get

[dr(W )− rA(W )]{(n− 2)g(Y, Z)− η(Y )η(Z)} = 0. (5.6.7)

Again contracting the equation (5.6.7) with respect to Y and Z, we obtain

[dr(W )− rA(W )]{(n− 2)n+ 1} = 0 (5.6.8)
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which implies that

A(W ) =
dr(W )

r
(5.6.9)

for all vector field W and r 6= 0

i.e.,

ρ1 =
1

r
grad r,

where A(W ) = g(W, ρ1).

Our theorem is thus proved.

Theorem 5.6.3 In an extended generalized concircularly φ -recurrent LP -Sasakian

manifold Mn, n ≥ 3, the associated 1-forms A and B are related by the relation

dr(W ) = A(W )[r − n(n− 1)] +B(W )n(n− 1)2. (5.6.10)

Proof: By virtue of (1.20.1), it follows from (5.6.4) that

(∇WR)(X, Y )Z = −η((∇WR)(X, Y )Z)ξ + A(W )[R(X, Y )Z

+ η(R(X, Y )Z)ξ] +B(W )[G(X, Y )Z + η(G(X, Y )Z)ξ]

+
{dr(W )− rA(W )

n(n− 1)

}[
g(Y, Z)X + g(Y, Z)η(X)ξ

− g(X,Z)Y − g(X,Z)η(Y )ξ
]
. (5.6.11)

Taking inner product of the above relation with U and then contracting over X and

U , and then using (5.1.6), we get

(∇WS)(Y, Z) = A(W )S(Y, Z) + [(n− 2)B(W )− A(W )]g(Y, Z)

+
[ dr(W )

n(n− 1)

]
{(n− 2)g(Y, Z)− η(Y )η(Z)}

− A(W )
[{

1− r

n(n− 1)

}
η(Y )η(Z)

+
{ (n− 2)r

n(n− 1)

}
g(Y, Z)

]
−B(W )η(Y )η(Z). (5.6.12)
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Again contraction over Y and Z in (5.6.12) yields

dr(W ) = [r − n(n− 1)]A(W ) + n(n− 1)2B(W ). (5.6.13)

Corollary 5.6.1 In an extended generalized concircularly φ-recurrent LP -Sasakian

manifold Mn, n ≥ 3, with constant scalar curvature, the associated 1-forms A and

B are related by

{r − n(n− 1)}A+ n(n− 1)2B = 0. (5.6.14)

Definition 5.6.2 (Shaikh and Helaluddin, 2011) An n-dimensional Riemannian man-

ifold Mn, n > 2, is called a super generalized Ricci-recurrent if its Ricci tensor S of

type (0, 2) satisfies the relation

DS = α⊗ S + β ⊗ g + γ ⊗ π, (5.6.15)

where α, β, γ are nowhere vanishing unique 1-forms and π = η ⊗ η.

Theorem 5.6.4 An extended generalized concircularly φ-recurrent LP -Sasakian man-

ifold Mn, n ≥ 3, is super generalized Ricci recurrent manifold.

Proof: Using the equation (5.6.13) in (5.6.12), we get

(∇WS)(Y, Z) = A(W )S(Y, Z) + [(n− 2)B(W )− A(W )]g(Y, Z)

+
{ [r − n(n− 1)]A(W ) + n(n− 1)2B(W )

n(n− 1)

}
{(n− 2)g(Y, Z)

− η(Y )η(Z)} − A(W )
[{

1− r

n(n− 1)

}
η(Y )η(Z)

+
{ (n− 2)r

n(n− 1)

}
g(Y, Z)

]
−B(W )η(Y )η(Z)

which after simplification reduces to

(∇WS)(Y, Z) = A(W )S(Y, Z) + n(n− 2)B(W )g(Y, Z)

− (n− 1)A(W )g(Y, Z)− nB(W )η(Y )η(Z). (5.6.16)
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From (5.6.16), it follows that the Ricci tensor S satisfies the condition

DS = α⊗ S + β ⊗ g + γ ⊗ π, (5.6.17)

where α(W ) = A(W ), β(W ) = n(n− 2)B(W )− (n− 1)A(W ), γ(W ) = −nB(W ) and

π = η ⊗ η.

This completes the proof of the theorem.

Theorem 5.6.5 In an extended generalized concircularly φ-recurrent LP -Sasakian man-

ifold Mn, n ≥ 3, the Ricci tensor in the direction of ρ1 is given by

S(Y, ρ1) =
[r − (n− 1)(n− 2)

2

]
A(Y )

+
[n(n2 − 4n+ 5)

2

]
B(Y )− nη(Y )B(ξ). (5.6.18)

Proof: Taking contraction of (5.6.16) over W and Z, we get

1

2
dr(Y ) = S(Y, ρ1) + n(n− 2)B(Y )− (n− 1)A(Y ) + nη(Y )B(ξ). (5.6.19)

By virtue of (5.6.13), the above relation takes the form

S(Y, ρ1) =
[r − (n− 1)(n− 2)

2

]
A(Y )

+
[n(n2 − 4n+ 5)

2

]
B(Y )− nη(Y )β(ξ). (5.6.20)

This completes the desired result.

Theorem 5.6.6 In an extended generalized concircularly φ-recurrent LP-Sasakian man-

ifold Mn, n ≥ 3, the vector field ρ2 associated with the 1-form B and the characteristic

vector field ξ are in opposite direction.

Proof: By setting Z = ξ in (5.6.16) and then using (5.5.2) and (5.1.5) we obtain

S(Y, φW ) = (n− 1)g(Y, φW )− n(n− 1)B(W )η(Y ). (5.6.21)

Making replace of Y by φY in the equation (5.6.21) and using (1.20.3) and (5.1.5), we
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have

S(Y,W ) = (n− 1)g(Y,W ). (5.6.22)

Again, replacing W by φW in the above relation (5.6.21) and then using (1.20.1), we

get

S(Y,W ) = (n− 1)g(Y,W )− n(n− 1)B(φW )η(Y ). (5.6.23)

From (5.6.22) and (5.6.23) we have

B(φW ) = 0,

which implies that

B(W ) = −η(W )B(ξ).

This shows that the vector field ρ2 associated with the 1-form B and the characteristic

vector field ξ are in opposite direction.
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Chapter 6

Summary and Conclusion

Chapter 1 is all about the definitions which we use later. The chapter 2 is about the

study of some properties of semi-symmetric non-metric connections as well as quarter

symmetric non-metric connections on an LP -Sasakian manifold. We have obtained a

number of interesting results. We have established the relationship between different

curvature tensors with respect to semi-symmetric non-metric connection D̄ to the same

with respect to Riemannian connection D. One of the relation is that the necessary and

sufficient condition for the conformal curvature tensor of D̃ to coincide with that of the

Riemannian connection D is that the conharmonic curvature tensor of D̃ is equal to

that of D provided ψ = −1. In an LP -Sasakian manifold admitting quarter-symmetric

non-metric connection, we have shown that the manifold is ξ-quasi conformally flat with

respect to the quarter symmetric non-metric connection if and only if the manifold is

also ξ-quasi conformally flat with respect to the Riemannian connection provided the

vector fields X, Y are orthogonal to ξ. Again we found the result that ξ-pseudo pro-

jectively flat LP -Sasakian manifold with respect to the quarter-symmetric non-metric

connection is also ξ-pseudo projectively flat with respect to the Riemannian connec-

tion provided the vector fields X and Y are orthogonal to ξ and vice versa. The same

condition happens to the property of globally φ −m-projectively symmetric. Finally,

we have shown that in a submanifold of an LP -Sasakian manifold, the mean curvature
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with respect to the Riemannian connection coincides with mean curvature with respect

to the quarter-symmetric non-metric connection provided α = 0 and γ = 0. In addition

to this, we found that the submanifold is totally geodesic (umbilical) with respect to

the Riemannian connection if and only if it is totally geodesic (umbilical) with respect

to the quarter-symmetric non-metric connection provided α = 0 and γ = 0.

The chapter 3 is devoted to the study of hypersurfaces of LP -Sasakian manifolds.

We have shown that the totally geodesic hypersurface Mn−1 of the LP -Sasakian recur-

rent manifold Mn is also recurrent. Next, it is also proved that a hypersurface Mn−1

of an LP -Sasakian η- Einstein manifold is A-Einstein whether it is totally geodesic or

totally umbilical. Finally we obtain that a totally umbilical (totally geodesic) hypersur-

face Mn−1 of a generalized Ricci-recurrent LP -Sasakian manifold is also a generalized

Ricci-recurrent.

Chapter 4 deals with m-projective curvature tensor on Kenmotsu manifolds. It

is shown that a globally φ-m-projectively symmetric Kenmotsu manifold is an Ein-

stein manifold as well as globally φ-m-symmetric. Further we have shown that in

3-dimensional locally φ-m-projectively symmetric Kenmotsu manifold, the scalar cur-

vature r is constant. It is also shown that n-dimensional ξ-m-projectively flat Kenmotsu

manifold is an Einstein manifold and vice versa. An n-dimensional φ-m-projectively

flat Kenmotsu manifold is an η- Einstein manifold with constant curvature is obtained

later. Lastly, we have shown that a Kenmotsu manifold of harmonic m-projective cur-

vature tensor with killing vector ξ is an η -Einstein manifold. One example of a locally

φ-m-Projectively symmetric Kenmotsu manifold in 3-Dimension is also shown.

Chapter 5 is about the characterization of LP -Sasakian manifolds. Firstly we ob-

tained that if an LP -Sasakian manifold Mn is

(i) an m-projectively symmetric, then the manifold is Ricci-recurrent.

(ii) a φ−m-projectively symmetric, then the manifold is an Einstein.

(iii) a φ−m-projectively flat, then the manifold is an η-Einstein.
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Next, we have proved that an extended generalized φ-recurrent LP -Sasakian manifold

Mn

(i) is of which the 1-forms A and B are in opposite direction.

(ii) is an η- Einstein manifold.

In continuation of these, we have shown that an extended generalized concircularly φ

-recurrent LP -Sasakian manifold Mn, n ≥ 3, is an extended generalized φ-recurrent

LP -Sasakian manifold, then the associated vector field corresponding to the 1-form

A is given by ρ1 = 1
r
grad r, r being the non-zero and non-constant scalar curvature

of the manifold. Further, we have proved that an extended generalized concircularly

φ-recurrent LP -Sasakian manifold Mn, n ≥ 3, is super generalized Ricci recurrent

manifold and in which the vector field ρ2 associated with the 1-form B and the char-

acteristic vector field ξ are in opposite direction.

Finally we conclude that whole work of this thesis gives the properties and geometri-

cal structure of the LP -Sasakian manifolds equipped with semi-symmetric non-metric

connection and quarter symmetric non-metric connection respectively and geometri-

cal results of certain curvature tensors in LP -Sasakian manifolds, hypersurface of an

LP -Sasakian manifolds, extended generalized φ-recurrent LP -Sasakian manifolds and

Kenmotsu manifolds.
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