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PREFACE

The present thesis entitled ”Some dynamical problems in the micropolar thermoelastic ma-

terials with voids” is an outcome of the research carried out by me under the supervision of

Dr. S. Sarat Singh, Department of Mathematics & Computer Science, Mizoram University,

Aizawl - 796 004, Mizoram, INDIA.

The thesis studies the phenomena of wave propagation in micropolar thermoelastic ma-

terials with voids. It consists of six chapters. The first chapter is the general introduction

which consists of microcontinuum theories, linear micropolar theory, Hookes law, elastic

waves, helmholtz decomposition theorem, applications of wave propagation and review of

literatures.

The second chapter deals with the problem of plane waves in micropolar tharmoelastic

materials with voids. The phase velocity and attenuation coefficients of the longitudinal and

transverse waves are obtained analytically and numerically. The effects of micro-inertia and

thermal relaxation time on the phase velocity and attenuation are discussed.

The third chapter attempts the problem of effect of micro-inertia in the propagation of

waves in micropolar thermoelastic materials with voids. We have obtained the amplitude

and energy ratios of the reflected waves due to incident longitudinal/shear waves at the plane

free surface of micropolar thermoelastic materials with voids. These ratios are numerically

computed for a particular model.

Chapter 4 concerns with the problem of effects of thermal and micro-inertia on the refrac-

tion of elastic waves in micropolar thermoelastic materials with voids. We have obtained the

amplitude and energy ratios corresponding to the reflected and refracted waves separately

for the case of incident longitudinal/shear waves at the plane interface between two dissimi-

lar half-spaces of micropolar thermoelastic materials with voids. These ratios are computed

numerically to see the effects of thermal and micro-inertia are discussed.

Chapter 5 discusses the problem of effect of micro-inertia on reflection/refraction of plane

waves at the orthotropic and thermoelastic micropolar materials with voids. The amplitude

v



and energy ratios corresponding to the reflected and refracted waves due to incident longi-

tudinal wave are obtained analytically and numerically. The effect of micro-inertia on these

ratios are discussed.

Chapter 6 is the last chapter of the thesis and it is the summary and conclusions of the

thesis.

In the end of the thesis, a list of references of the books/papers has been given in alpha-

betical order in the bibliography.
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Chapter 1

Chapter 1

General Introduction

1.1 Microcontinuum theories

A microcontinuum is a continuous collection of deformable points particles. Physically, these

points particles are infinitesimally small in size. They do not violate the continuity of matter

and are deformable which leads to microcontinuum theories. A particle, P is identified by

its position vector XK (K = 1, 2, 3) in the reference state B and vector attached to P as Ξα,

α = 1, 2, ..., N which represent the inner structure of P . They have their own motions as

X(t) −→ x, Ξα(X, t) −→ ξα, α = 1, 2, ...., N. (1.1)

Such a material medium is called microcontinuum of grade N . We consider Ξ and ξ as

the relativistic positions of material points called microelements which are contained in the

particle P called macroelements. The undeformed and deformed states in Figure 1.1 give

x′ = x(X, t) + ξ(X,Ξ, t). (1.2)

The micromorphic continuum is a special form of Equation (1.2) as

x′ = x(X, t) + χK(X, t)ΞK , (1.3)

1



Chapter 1

where χK are deformation vectors.

Figure 1.1: Deformation of microelement.

Consider a material point P (X,Ξ) ∈ B which is characterized by its centroid C and

vector Ξ attached to C. The point C is identified by X1, X2, X3 and vector components

Ξ1, Ξ2, Ξ3 in the coordinate frame XK . The point P (X,Ξ) is deformed to p(x, ξ) in a

spatial frame of reference b so that XK −→ xk, ΞK −→ ξk (K = 1, 2, 3; k = 1, 2, 3).

Mathematically, these mappings are defined as

X −→ x = x̂(X, t) or xk = x̂k(XK , t), (1.4)

Ξ −→ ξ = ξ̂(X, t) or ξk = ξ̂k(XK ,ΞK , t), (1.5)

which are called macromotion and micromotion respectively. The material particles are

assumed to be very small size as compared to the macroscopic scale of the body. This makes

possible for a linear approximation in Ξ as

ξk = χkK(X, t)ΞK , (1.6)

where χkK is microdeformation tensor.

A material body is called a micromorphic continuum of grade one if its motions are described

2



Chapter 1

by (1.4) and (1.6) which possess continuous partial derivatives with respect to XK and t,

and they are invertible uniquely as

XK = X̂k(x, t), k = 1, 2, 3, (1.7)

ΞK = XKk(x, t)ξk, K = 1, 2, 3; k = 1, 2, 3, (1.8)

where XKk is inverse microdeformation tensor.

Theorem 1.1 If, for a fixed t, the function x̂k(X, t) is continuous and possesses continuous

first-order partial derivatives with respect to XK in a neighborhood |X ′−X| < ε of a point

C and if the Jaccobians

J ≡ det(
∂xk
∂Xk

), j ≡ detχkK , (1.9)

do not vanish there, then unique inverses of (1.4) and (1.6) in the forms (1.7) and (1.8) exist

in the neighborhood |x′ − x| < δ of a point c, at time t, and (1.7) possess continuous first

order partial derivatives with respect to xk(See Eringen, 1999).

Figure 1.2: Deformation of directors.

The existence of unique inverses (1.4) and (1.6) makes possible for the physical assumption

of continuity, indestructibility and impenetrability of matter. No region of positive finite

volume is deformed into one of zero or infinite volume. Every region goes into a region,

3



Chapter 1

every surface goes into a surface and every curve into a curve. The three independent

directors XK go to the independent directors χk as

χK = χkK(X, t)ık, Xk = XKk(x, t)IK , (1.10)

where IK and ık are Cartesian unit vectors in the material and spatial frames of references

B and b. Thus, a material point in the body has three microdeformable directors (χK and

Xk) which represent nine degrees of freedom arising from microdeformation of the physical

particle.

1.1.1 Rotation

A matrix F may be decomposed as product of two matrices of an orthogonal and a symmetric

matrix due to Cauchy’s theorem (Eringen, 1980)

F = RU = V R, (1.11)

with

U 2 = F ′F , V 2 = FF ′,

where F ′ is the transpose of F , R is a classical macrorotation tensor (or microrotation

tensor) if FkK = χkK (or FkK = χkK), U and V are right and left stretch tensor for

macrodeformation and microdeformations. In the microdeformation, the above equations

may be represented as

χ = ru = vr (1.12)

and

u2 = χ′χ, v2 = χχ′.

There exist microstretch tensors due to the gradients of χ and Equation (1.12) may be

written as

χ,K = r,Ku+ ru,K = v,Kr + vr,K . (1.13)

4



Chapter 1

In case of micropolar continuum, u2 = v2 = 1 is significant because of χ′ = X and χX = 1.

Equations (1.13) and (1.12) give

χ,K = r,K1 = 1r,K , (1.14)

χ = r, u2 = v2 = 1. (1.15)

We come to know that χ is the microrotation tensor for the micropolar continua.

The deformation of a particle P in a micromorphic continuum is show in Figure 1.3

Figure 1.3: Microdeformation of a particle P

This deformation consists of

(i) a classical macrodeformation with a translation of C to c, a macrorotation at c and

macrostretch at c,

(ii) microdeformation that carries directors at C with the translation of C to c,

(iii) microrotation of directors at c,

(iv) microstretch of directors at c which may lead to a further microrotation of directors.

For micropolar continuum, directors are rigid. Here it is possible to represent the motions

of directors as a rigid body rotation with respect to an axis.

5
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Theorem 1.2 The finite microrotation tensor, χkl is characterized by

χkl = cosϕδkl − sinϕϵklmnm + (1 + cosϕ)nknl, (1.16)

χkl = χkLδLl, (1.17)

where ϕ is the rotation and nk is unit vector given by

ϕ = (ϕkϕl)
1/2, nk =

ϕk

ϕ
.

Figure 1.4: Finite microrotation

Proof: Consider a centroidal vector
−→
CP = Ξ at the undeformed particle P as shown in

Figure 1.4. After ϕ rotation about the axis
−−→
CM , the point P moves to Q so that

ξ = Ξ+
−→
PQ,

−→
PQ =

−→
PR +

−→
RQ, (1.18)

where
−→
QR is perpendicular to

−−→
PM and

−→
PR = −(1− cosϕ)(Ξ−

−−→
CM),

−→
RQ = n×Ξ sinϕ,

−−→
CM = (n · Ξ)n. (1.19)

6
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With the help of Equations (1.18) and (1.19), we get

ξ = cosϕΞ+ n×Ξ sinϕ+ (1− cosϕ)(n ·Ξ)n, (1.20)

which follows the proof of (1.16) by the fact of (1.6) and (1.17).

Corollary 1.2.1 The necessary and sufficient conditions that the micropolar directors remain

parallel to their original directions, are the vanishing ϕ.

Figure 1.5: Chronological order of continua

1.1.2 Microstretch and micropolar continua

A micromorphic continuum is called microstretch if its directors are related by

XKk =
1

j2
χkK , (k = 1, 2, 3;K = 1, 2, 3). (1.21)

7
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We have the orthogonality relations as

χkKXKl = δkl, xk,KXL,K = δKL, (1.22)

where δkl and δKL are shifters defined by

Ik · ıl = δkl, ıK · IL = δKL.

The relations (1.22) follows

j = detχkK = 1/detXKk. (1.23)

Consequently, χkK of microstretch continua satisfy

χkKχlK = j2δkl, χkKχkL = j2δKL. (1.24)

Theorem 1.3 A microstretch continuum is a micromorphic continuum that is constrained to

undergo microrotation and microstretch (expansion and contraction) without microshearing

(breathing microrotations).

A micromorphic continuum is called micropolar if its directors are orthonormal (Eringen and

Suhubi, 1964; Eringen, 1970). The directors of the micropolar continua satisfy

χkKχlK = δkl, XKkXLk = δKL. (1.25)

In this case, χkK = XKk and Equation (1.23) reduces to

χkKχlK = δkl, χkKχkL = δKL, (1.26)

which follows that

j = detχkK = 1. (1.27)

Equation (1.26) expresses that the directors of micropolar continuum are rigid.

8
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1.2 Linear Micropolar theory

The micropolar continuum is a special case of micromorphic continua in which the directors

are rigid and orthonormal. This means that only the microrotation of material particles

is allowed in addition to macromotion. The micro-volume does not change with micro-

deformation due to rigid directors. In the micropolar theory, the director may be envisaged

as an orthogonal tripod circumscribed by a unit sphere, centered within an anisometric

particle, i.e. a triaxial ellipsoid. Micropolar media may represent materials that are made

up of dipole atoms or dumbbell type molecules subjected to surface and body couples. The

theory of micropolar elasticity was developed by Eringen (1966, 1968).

The theory of linear micropolar elasticity is based on the following basic laws:

(a) Conservation of mass, (b) Conservation of micro-inertia, (c) Balance of momentum, (d)

Balance of first stress moments, (e) Conservation of energy and (f) Principle of entropy.

The constitutive relations of linear micropolar elasticity are given by (Eringen, 1966)

Tkl = λur,rδkl + µ(uk,l + ul,k) + κ(ul,k − ϵklrϕr),

Mkl = αϕr,rδkl + βϕk,l + γϕl,k, (l, k, r = 1, 2, 3) (1.28)

where Tkl is stress tensors, and Mkl is coupled stress tensors, ul is components of displace-

ment, ϕl is components of microrotation vectors, ϵklr is alternating symbol, λ, µ are elastic

parameters and α, β, γ, κ are micropolar parameters.

1.2.1 Orthotropic micropolar elasticity

The orthotropic material is an anisotropic material. The material that possesses certain phys-

ical properties vary along with certain directions is called anisotropic materials. Iesan (1973)

derived the uniqueness theorem and existence theorem for the homogeneous orthotropic mi-

cropolar elastic solid and reduced the boundary value problems to integral equations for

which the Fredholm’s basic theorems are valid. The linear theory of homogeneous and

9
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anisotropic micropolar elastic solids are based on the following equations (Iesan, 1969)

(a) Kinematic relations:

eij = uj,i − ϵijkϕk, κij = ϕj,i, (i, j = 1, 2, 3) (1.29)

(b) The equations of motion:

tij + Fi = ρüi, mij,j + ϵijktjk +Mi = Iijϕ̈j, (i, j, k = 1, 2, 3) (1.30)

(c) The constitutive laws:

tij = Aijklekl +Bijklκkl, mij = Bklijekl +ijkl κkl, (i, j, k, l = 1, 2, 3) (1.31)

or equivalently,

eij = aijkltkl + bijklmkl, κij = bklijtkl + cijklmkl, (i, j, k, l = 1, 2, 3) (1.32)

where ρ is a mass density of the material, tij and mij are the stress and couple stress tensor

in the orthotropic micropolar elasticity, eij and κkl are kinematic characteristics of strain, Fi

and Mi are respectively components of body force and body couple, Aijkl, Bijkl, Cijkl and

Iij are the characteristic constants so that

Aijkl = Aklij, Cijkl = Cklij, aijkl = aklij, cijkl = aklij, Iij = Iji.

Orthotropic materials have material properties that differ along three mutually orthogonal

two fold axes of rotational symmetry. Such materials have three planes of symmetry. If

we restrict our analysis into two dimensional plane deformation parallel to x1x2-plane, we

have u = (u1, u2, 0) and ϕ = (0, 0, ϕ3) as the displacement vector and microrotation vector

respectively. The constitutive equations for orthotropic micropolar are given by (Iesan, 1973)

t11 = A11u1,1 + A12u2,2, t12 = A78u1,2 + A77u2,1 + (A78 − A77)ϕ3,

t22 = A12u1,1 + A22u2,2, t21 = A78u2,1 + A88u1,2 + (A88 − A78)ϕ3,

10
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m13 = B66ϕ3,1, m23 = B44ϕ3,2, (1.33)

where t22, t21, t12, t11, m13 and m23 are the traction due to normal force stresses, tangential

force stresses and tangential couple stresses respectively, and A11, A12, A22, A77, A78, A88,

B44, B66 are the characteristic constants.

1.2.2 Micropolar thermoelasticity

Thermoelasticity is the study of the relationship between the elastic properties of a material

and its temperature, or between thermal conductivity and its stresses. It is a fusion theory

of heat conduction and the theory of elasticity. The theory of uncoupled thermoelasticity

was introduced by Duhamel (1837) and Neumann (1885). This theory has two major flaws,

ie., the mechanical state of the elastic body has no effect on the temperature and the heat

equation being parabolic predicts an infinite speed of propagation for the temperature. Biot

(1956) introduced the term strain-rate in the uncoupled uncoupled thermoelasticity which

removed the first flaw. Lord and Shulman (1967) introduced the first theory of generalized

thermoelasticity with one relaxation time by postulating a new law of heat conduction to

replace the classical Fouriers law.

The constitutive relations of linear theory of micropolar thermoelasticity was constructed

by Tauchert et al. (1968). They proved the uniqueness theorem in this theory and pre-

sented the displacement, micro-rotation and the stresses. They also extended the Duhamel-

Neumann analogy of classical thermoelasticity (Sokolnikof, 1946) to micropolar theory. Erin-

gen (1970) also worked on the constitutive relations of different types of micropolar materials

including both linear and non-linear thermoelasticity. Boschi and Iesan (1973) incorporated

the linear theory of thermoelasticity (Green and Lindsay, 1972) to a homogeneous micropolar

continuum with the help of an entropy production inequality proposed by Green and Laws

(1972). They derived the basic equations using invariance conditions under superposed rigid

body motions. Chanrasekhariah (1986b) introduced the heat-flux among the constitutive

variables in the theory of micropolar thermoelasticity. This theory uses the Clausius-Duhem
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inequality

ρη̇ − ρq

Θ
−
(qk
Θ

)
,k
≥ 0, (1.34)

where Θ is temperature, qk is heat flux vector, and q is heat source density.

The constitutive equations of linear micropolar thermoelasticity is given as (Tauchert et al.,

1968)

Tkl = λur,rδkl + µ(ul,k + uk,l) + κ(ul,k − ϵklrϕr)− (3λ+ 2µ+ κ)νΘδkl,

Mkl = αϕr,rδkl + βϕk,l + γϕl,k,

ρη = (3λ+ 2µ+ κ)νuk,k + dΘ, τ q̇r = k0Θ,r − qr, (1.35)

where ν is a linear thermal expansion, and k0 correspond to thermal conductivity and d is

thermal parameter.

1.2.3 Micropolar thermoelasticity with voids

The elastic materials are often found with voids or pores or porous which are uniformly

distributed. Voids mean gaps or air or vacuum which contain nothing of mechanical or

energetic significant. Goodman and Cowin (1972) introduced the theory of granular materials

using an independent kinematical variable called the volume distribution function. The

elastic theory with voids generalized the classical theory of elasticity by adding a function

which describes the distributions of voids volume fraction within the body (Cowin and

Nunziato, 1983). Nunziato and Cowin (1979) developed the linear theory of elastic material

with voids as a special case of the non-linear theory. In this theory, the changes in void volume

fraction and the strain are taken as independent kinematic variables. Chanrasekhariah

(1987b) formulated an initial boundary value problem in terms of stress and volume fraction

fields in the context of the linear theory of homogeneous and isotropic elastic materials with

voids. Iesan (1985, 1986) studied the linear theory of thermoelastic materials with voids

and presented the existence and uniqueness, the reciprocity relations and the variational
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characterization in the thermoelastic materials with voids. The constitutive relations of

thermoelastic materials with voids are (Iesan, 1986)

Tij = λuk,kδij + µ(ui,j + uj,i) + sψδij −mΘδij, g = −suk,k − ζψ − ξΘ,

ρη = m′uk,k − ζψ + dΘ, hi = aψi, qi = k0Θ,i (1.36)

where ui is components of displacement vector, ψ and Θ are change in volume fraction and

temperature change, s, ζ, ξ, a are void’s parameters and d, m are thermal parameters,

k0 and ν are thermal conductivity and linear thermal expansion, Tij is a stress tensor, g

and hi are intrinsic equilibrated body force and equilibrated stress vector, qi and q are heat

flux vector and strength of internal heat source, ρ is bulk mass density and η is an entropy

change.

Eringen (2003) developed a continuum theory for a mixture of a micropolar elastic solid

and a micropolar viscous fluid describe the soil with grains and tortuous rock containing dirty

fluids. Passarella (1996) derived the field and constitutive equations of porous micropolar

thermoelastic materials using second laws of thermodynamics. The constitutive relations of

linear homogeneous micropolar thermoelasticity with voids are (Passarella, 1996)

Tij = µ(ui,j + uj,i) + λuk,kδij + κ(ui,j + ϵijkϕk) + sψδij −mΘδij,

Mij = αϕk,kδij + βϕj,i + γϕi,j, hi = aψ,i, (1.37)

g = −suk,k − ζψ − ξΘ, q̇iτ = Θ,ik0 − qi, ρη = muk,k − ξψ + dΘ, (1.38)

where m = (3λ+ 2µ+ κ)ν, Mij is a couple stress tensor, ϕi is components of microrotation

vector, α, β, γ, κ are micropolar parameters and λ, µ are well known lame’s parameters.

The field equations in linear homogeneous micropolar thermoelastic materials with voids are

(balance of momentum)

Tij,j + ρfi = ρüi, (1.39)
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(balance of angular momentum)

Mij,j − ϵijkTjk + ρli = ρjijϕ̈i (1.40)

(balance of equilibrated stress)

hi,i + g + ρl = ρχψ̈i. (1.41)

(entropy inequality)

ρη̇ ≥
(ρq
Θ

)
−

(qk
Θ

)
,k
, (1.42)

where fi and li are body force and body couple, jij is micro-inertia tensor, l and χ are

extrinsic body force and equilibrated inertia.

Using the constitutive relations (1.37)-(1.38) into the field equations (1.39)-(1.42), we get

(µ+ κ)ui,kk + (λ+ µ)uk,ki + κϵijkϕk,j + sψ,i −mΘδij + ρfi = ρüi,

γϕi,kk + (α + β)ϕk,ki − κϵijkuj,k − 2κϕi + ρli = ρjϕ̈i,

aψ,kk − suk,k − ζψ − ξΘ+ ρl = ρχψ̈,

k0Θ,kk −Θ0(1 + τ
δ

δt
)

(
mu̇k,k − ξψ̇ + dΘ̇− ρq

Θ0

)
= 0, (1.43)

where τ is thermal relaxation time.

If d > 0, τ > 0 and k0 > 0, the hyperbolic type heat equation has a finite speed which is√
k0(Θ0τd)−1. Eqs. (1.43) can be written in vector form in the absence of body forces and

heat sources as

(µ+ κ)∇2u+ (λ+ µ)∇∇ · u+ κ∇× ϕ+ s∇ψ −m∇Θ = ρü, (1.44)

(γ∇2 − 2κ)ϕ+ (α + β)∇∇ · ϕ+ κ∇× u = ρ1ϕ̈, (1.45)

(a∇2 − ζ)ψ − s∇ · u− ξΘ = ρ2ψ̈, (1.46)

k0∇2Θ−Θ0(1 + τ
∂

∂t
)(dΘ̇ +m∇ · u̇− ξψ̇) = 0, (1.47)
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where u = (u1, u2, u3), ϕ = (ϕ1, ϕ2, ϕ3), ρ1 = ρJ and ρ2 = ρχ are coefficients of inertia.

This field equations correspond to Fourier classical law of micropolar thermoelastic material

with voids if τ = 0. If τ ≥ 0, the above system of equations correspond to the micropolar

thermoelastic material based on Lebon’s law of heat conduction. The internal energy density

is a positive definite quadratic form (Eringen, 1990a)

2µ+ κ > 0, κ > 0, ζ > 0, (3λ+ 2µ+ κ)ζ > 3s2,

3α + β + γ > 0, α± β > 0, a > 0, k0 > 0, (1.48)

which is the necessary and sufficient conditions for the strain energy density to be non-

negative.

1.3 Hooke’s law

A continuum body gets deformed when subjected to external loads and returns to its original

shape and size after the removal of external forces. The relative position of the constituent

particles of a continuous body gets altered when an external force is applied and the con-

tinuum body is said to be strained and the change in the relative position of the particles

is known as deformation. At this stage, the particles resist to change their positions but

the external force makes them to change their positions up to some extent and when the

external forces are withdrawn, these particles at once regain their original shape and size.

The elastic property of a continuum body depends on the strength of resistance, so greater

the resistance of a body to deform the more is the elasticity. The measure of intensity of

internal forces generated in a body is called Stress and the deformation of the body due to

application of stress is called strain. The strain set up in a body in such a way that there is a

change in volume but no change in shape is called dilatation. Compression (volume reduces)

and rarefaction (volume increases) are two kinds of dilatation. The elastic deformation is

called shear if there is a change in shape and size but not in a volume. Within the elastic
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limit, stress is a linear combination of strain. The stress tensor (τij) is related with the strain

tensor (ekl) as (Achenbach, 1973)

τij = Cijklekl, (i, j, k, l = 1, 2, 3) (1.49)

where Cijkl = Cjikl = Cklij = Cijlk is the elastic constant which is of fourth order tensor

and characterizes the elastic property of the materials. If the elastic constants are functions

of the position, then the body is said to be inhomogeneous and if they are same for all

points of the medium, then the body is called homogeneous. A continuum body is said to be

isotropic if there are no preferred directions so that the elastic constants are same whatever

the orientation.

1.4 Elastic waves

The study of wave propagation in elastic continuum has a long and distinguished history.

In the 19th century, great Mathematicians such as Cauchy and Poisson exposed that light

could be regarded as the propagation of a disturbance in an elastic aether which lead to

the development of the theory of elasticity. Poisson, Ostrogradsky, Cauchy, Green, Lame,

Stokes, Clebsch, Christoffel, Rayleigh, Lamb, and Love carried out early investigation on the

propagation of waves in elastic solids(Love, 1892).

A wave is an oscillation accompanied by a transfer of energy from one point to another

which displace particles of the transmission medium with little or no associated mass trans-

port. There are two main types of waves: (i) Mechanical waves propagate through a medium

and (ii) electromagnetic waves which do not require a medium. We will discuss more about

elastic waves/acoustic waves which travel through an elastic solid with finite velocity. Elastic

waves are examples of mechanical waves. These waves may be divided into two kinds: (i)

Body waves and (ii) Surface waves. Body waves travel through the interior of the medium.

The density and modulus vary according to temperature, composition and phase. Surface

waves travel along the surface of the medium and the strength or amplitude of these waves
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decrease exponentially with increasing distance from the boundary surface. There are mainly

three types of surface waves: Rayleigh waves, Stoneley waves and Love waves.

Rayleigh waves are the surface waves that travel along the stress free boundary of an elas-

tic half-space such that the disturbance is largely confined to the neighborhood of the free

boundary of the half-space. It was introduced by Rayleigh (1877) and hence, called Rayleigh

waves. These waves are the result of superposing longitudinal and transverse waves. It is a

combination of vibrations due to longitudinal and transverse waves. In the Rayleigh wave

propagation, the surface particle motion is found to be counterclockwise elliptical (retro-

grade), which changes from retrograde at the surface to prograde (clockwise elliptical) at

depth, passing through a node at which there is no horizontal motion.

Stoneley waves are those surface waves which can propagate along the interface between

liquid-solid or solid-solid half-spaces. They are non-dispersive in nature and can travel along

the solid - solid interface when their elastic properties are nearly same. The amplitudes of

Stoneley waves have their maximum values at the boundary and decay exponentially towards

the depth of each of them.

Love (1911) found that certain type of shear wave can travel in a layer lying over an

elastic half-space provided that the phase speed of the wave lies between the phase speed of

shear wave in the layer and that of in the half-space. Love waves are horizontally polarized

shear waves (SH waves) existing only in the presence of a semi-infinite medium overlain by

an upper layer of finite thickness. It is the fastest surface wave and moves the ground side

to side in a horizontal plane parallel to the earth’s surface but at the right angle to the

direction of propagation.
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1.5 Helmholtz decomposition theorem

Theorem 1.1 Let Z(x) be a vector field. Then there exist a scalar potential V (x) and a

vector potential Y(x) such that

Z = ∇V +∇×Y, ∇ ·Y = 0. (1.50)

This representation is called Helmholtz decomposition(Pujol, 2003).

Proof: Let us take a vector Poission equation of the form

∇2W(x) = Z(x). (1.51)

Using the definition of Laplacian of a vector, we have

∇2W = ∇(∇ ·W)−∇× (∇×W) ≡ ∇V +∇×Y (1.52)

with

V = ∇ ·W, Y = −∇×W (1.53)

and

∇ ·Y = −∇ · (∇×W) = 0. (1.54)

In the Equation (1.51), Z(x) is a piecewise differentiable vector in a finite open region V ′

and this vector is associated with

W(x) = − 1

4π

∫
V ′

Z(ξ)

|x− ξ|
dV′

ξ, (1.55)

where dV′
ξ = dξ1 dξ2 dξ3, and |x− ξ| = {(x1 − ξ1)

2 + (x2 − ξ2)
2 + (x3 − ξ3)

2}(1/2).

Then, W(x) satisfies the vector equation (1.51) at interior points where Z is continuous and

∇2W = 0 at points outside the region V ′.
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1.6 Applications of wave propagation

The elastic wave propagation has numerous applications in various fields. The subject of

elastic wave propagation and their phenomena of reflection and refraction from a boundary

surface are very important in the field of Seismology, Earthquake engineering and geophysics.

Elastic waves carry lots of information about the characteristics of the medium through which

they travel and so it becomes a very reliable tool to the oil exploration and mining sites.

They give valuable information about the interior of the material body. The body waves are

used in earthquake engineering for predicting earthquake in the dynamic response of soils

and man-made structures.

In geophysics, the study of wave propagation and their phenomena of reflection and

refraction are helpful not only in exploration of internal structure of the earth but also in

exploration of valuable materials buried inside the earth like minerals, metals, hydrocarbons

and petroleum. The method of wave propagation used in the exploration of oils, minerals,

crystals and others is one of the best suitable method because it is cheap and less time

consuming. The wave propagation technique is also used for the estimation of the earths

internal composition. The body waves have been sent from one station and then, the signals

are received in another station and examined. These signals give indirect information about

the internal structure of the earth. To know about the deep interior of the earth materials,

the seismic body waves are very useful. It is proved in the literature that S-waves can not

travel through the interior of the core (the innermost part of the earth). This had led to

the conclusion that the earth core is composed of material which is non-viscous liquid like.

Thus, the earth core is believed to be in liquid form at high temperature (which makes the

liquid of the core almost a non-viscous) and harder than the solid.

Wave motion is helpful in the production of ceramics or certainly in ceramic behavior.

Saggio-Woyansky et al.(1992) have observed that porous ceramics are either reticulate or

foam and are made up of a porous network which has relatively low mass, low thermal

conductivity and low density. Raiser et al.(1994) have reported experimental results where
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microcracking along grain boundaries in ceramics is caused by compressive waves. The

study of wave motion in porous ceramics is useful (Straughan, 2008) since they are used

for molten metal filters, diesel engine exhaust filters as catalyst supports and industrial hot-

gas filters, and both reticulate and foam porous ceramics are used as light-structure plates,

in gas combustion burners and in fire protection and thermal insulation materials. Elastic

materials with voids is applied in the production of building materials such as bricks and

wave propagation in such materials may be helpful.

Acoustic waves comprise a very useful therapeutic modality. Three types of acoustic

waves: Extracorporeal Shock Waves(ESWs), Pressure Waves (PWs) and Ultrasound (US)

are used in the medical field. Shock waves (Tsaklis, 2010) are characterized by high pressure

amplitudes and an abrupt increase in pressure that propagates rapidly through a medium.

The energy distribution in the treatment area differs from being wide over a large area or

concentrated in a narrow treatment zone and as such influences the therapeutic and biological

effect of the shock wave. Pressure waves are usually generated by the collision of solid bodies

with an impact speed of a few meters per second, far below the speed the shock wave travels.

Ultrasound therapy is one of the modalities of physical medicine used for pain management

and for increasing blood flow and mobility.

1.7 Review of Literatures

The subject of wave propagation is an interesting area of research since long. Many problems

of waves and vibrations are in open literatures and notable among them are Rayleigh (1885),

Voigt (1887), Lamb (1917), Ewing et al. (1957), Brekhoviskikh (1960), Green and Rivlin

(1964), Suhubi and Eringen (1964), Green(1965), Acharya and Sengupta (1976), Ben Mena-

hem and Singh (1981), Bullen and Bolt (1985), Chanrasekhariah (1991), Graff (1991), Ciar-

letta and Iesan (1993), Ciarletta and Scalia (1993b), Wang and Dhaliwal (1993), Tomar and

Kumar (1995), Sinha and Elsibai (1997), Abd-Alla (1999), Udias (1999), Xia et al. (1999),

Sharma (2001), Singh (2002, 2007a), Kumar and Choudhary (2003), Abd-Alla and Ah-
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mad (2003), Kumar and Ailawalia (2005), Muller (2007), Ciarletta and Straughan (2007a),

Sharma (2007), Das et al. (2008), Chirita and Giba (2010), Singh and Chakraborty (2013),

Vinh (2013), Sharma and Kaur (2014) and many others.

Puri and Cowin (1985) analyzed the behavior of plane harmonic waves in linear elastic

materials with voids. Chanrasekhariah (1986a) studied surface waves in a homogeneous and

isotropic linear elastic half-space containing a distribution of vacuous voids. Singh and Tomar

(2006a) obtained the reflection and transmission coefficients of the reflected and transmitted

waves due to incident transverse wave between two different porous elastic half-spaces. Dere-

siewicz and Rice (1962) derived a general solution of Blot’s field equations governing small

motions of a porous solid saturated with a viscous liquid. The solution is also employed

to study some of the phenomena attendant upon the reflection from a plane, traction-free

boundary of each of the three body waves predicted by the equations. Cruz et al.(1992)

analyzed the mode conversions which occur during the reflection and transmission of seismic

waves at the boundaries of porous media. They have shown the energy partitioned to the

various modes depends on the incident angle and on the physical properties of the fluid and

solid components on each side of the boundary. Ciarletta and Sumbatyan (2003) studied

the reflection of incident plane waves at a free boundary of an elastic solid with voids. Ciar-

letta and Straughan (2006) investigated the problem of acoustic waves in a porous medium.

Ciarletta et al. (2005), Chirita et al. (2006), Straughan (2009), Ciarletta et al.(2014) and

Nield and Bejan (2017) also discussed problems of wave propagation in elastic materials with

voids.

Chandrasekhariah (1981) investigated the problem of dynamical disturbances in thermoe-

lastic half-spaces with plane boundary due to the application of a step in strain or tempera-

ture on the boundary in the context of the linearized Green-Lindsay thermoelasticity theory.

Inan and Eringen (1991) discussed the problem of longitudinal wave in thermoelastic plates

in the context of non-local thermoelasticity. Green and Naghdi (1993) studied the problem

of linear and non-linear theory of thermoelastic materials without energy dissipation. Sinha
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and Elsibai (1996) attempted the problem of reflection of thermoelastic waves from the free

surface of a generalized thermoelastic materials. Abd-Alla and Al Dawy (2000) discussed

the reflection phenomena of SV -waves in a generalized thermoelastic medium and obtained

the reflection coefficients. Sharma et al. (2003a) studied the problem of reflection of ther-

moelastic wave from the insulated and isothermal stress free boundaries of a solid half-space

in the context of different theories of generalized thermoelasticity. Singh et al.(2011) applied

the theory of generalized thermo-elastic diffusion to study the reflection and transmission of

P and SV -waves at an interface of two dissimilar thermo-elastic solids with diffusion. Some

problems of wave propagation in thermoelastic materials are Ivanov (1988), Iesan (2004),

Singh (2005), Aouadi (2007), Othman and Song (2008), Sharma and Sharma (2009), Singh

et al. (2010), Chirita (2011) and Vashishth and Sukhija (2015).

Ciarletta and Scalia (1993a) discussed the problem of non-linear theory of non-simple

thermoelastic materials with voids. Dhaliwal and Wang (1995) formulated thermoelastic-

ity theory for elastic materials with voids by including heat-flux among the constitutive

variables. Ciarletta and Straughan (2007b) attempted the problem of thermo-poroacoustic

acceleration waves in elastic materials with voids. Ciarletta et al. (2007b) introduced ther-

mal displacement wave in a model of wave propagation in a porous material. Singh (2007b)

obtained the reflection coefficients of the reflected waves in generalized thermoelastic half-

space with voids in context of Lord-Shulman theory. Singh and Tomar (2007) investigated

the reflection phenomenon of a set of coupled longitudinal waves from a free plane boundary

of a thermo-elastic half-space with voids and obtained amplitude and energy ratios of various

reflected waves. Sharma (2008) concluded that the thermal properties of the thermoelastic

waves in poroelastic medium have no effect on the transverse wave. The problems of the

theory of thermoelastic materials with voids are also analyzed by Ciarletta and Scalia (1990),

Pompei and Scalia (1994), Pampolona et al. (2009), Aouadi (2010), Singh and Tomar (2011),

Singh (2011) and Boccur et al. (2014).

Cosserat and Cosserat(1909) developed the complete non-linear theory of the asymmetric
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elasticity by assuming each of the material’s particles can displace and rotate independently

during the process of deformation. Mindlin and Tiersten (1962) and Toupin (1962) intro-

duced the couple stress theory. Mindlin (1964) reduced the micromorphic theory into the

theory of microstructure by assuming small deformation and slow motion. The Eringen’s

theories (1964) of micromorphic, microstretch and micropolar continua are the generaliza-

tion of the classical theory of elasticity. Parfitt and Eringen (1969) investigated the problem

of reflection of plane waves from the flat boundary of micropolar half-space and shown the

existence of four plane waves. The extensive problems of micropolar and microstrecth con-

tinua are found in open literatures, i.e., Eringen (1984), Nowacki and Nowacki (1969), Smith

(1967), Ariman (1972), Tomar and Gogna (1995), Huang and Liang (1997), Tomar et al.

(1998), Pabs (2005), Kumar and Partap (2006), Ramezani and Naghdabadi (2007), Marin

(2010) and Kumar and Kaur (2014).

Eringen (1990b) derived the equations of motions, constitutive equations and boundary

conditions for the thermomicropolar fluid whose micro-elements could undergo dynamical

expansions and contractions. Chanrasekhariah (1987a) obtained the variational principles

of Biot and Hamilton-types and a reciprocal principle of Betti Rayleigh-type in the context

of a in the context of a linearized anisotropic micropolar thermoelasticity theory. Das and

Sengupta (1990) discussed the problem of surface waves in the general theory of microp-

olar thermoelasticity under the influence of gravity. Boffils and Quintanilla (1995) proved

the uniqueness theorem for the solutions in the linear theory of thermo-microstretch elastic

solids. Svanadze and De Cicco (2005) constructed the fundamental solution of the system

of differential equations in the case of steady oscillations in terms of elementary functions

of linear theory of thermomicrostretch elastic solids. Sharma and Marin (2014) attempted

the problem of reflection and transmission of plane waves at an imperfect boundary between

two thermally conducting micropolar elastic solid half-spaces with two temperatures. The

following problems may also be mentioned for the materials of micropolar thermoelasticity,

i.e., Kumar and Partab (2007), Othman and Singh (2007), Singh (2001, 2010), Kumar and
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Sharma (2008), Aouadi (2009), Passarella and Zampoli (2010), Shaw and Mukhopadhyay

(2011), Othman and Atwa (2012) and Kumar et al. (2014).

Scalia (1992) derived a linear grade consistent micropolar theory of thermoelastic mate-

rials with voids with the help of an entropy production inequality proposed by Green and

Laws (1972). Diabels (1999) derived the deformation tensors and the corresponding de-

formation velocities based on the motion and micromotion of micropolar materials. Singh

(2000) studied the problem of reflection and refraction of plane sound wave at an interface

between a liquid half-space and a micropolar generalized thermoelastic solid half-space us-

ing the theories of Lord and Shulman (1967) and Green and Lindsay (1972). Mondal and

Acharya (2006) investigated the effect of voids and micropolar characters on the propaga-

tion of surface waves in a homogeneous micropolar solid medium. Singh and Tomar (2006b)

studied the problem of propagation of waves in an infinite porous continuum consisting of a

micropolar elastic solid and a micropolar viscous fluid using the theory of Eringen (2003).

Tomar (2005) discussed the frequency equations in micropolar elastic plates with voids cor-

responding to symmetric and antisymmetric modes of vibrations of the plate. Tomar and

Singh (2006) attempted the problem of propagation of plane waves and their reflection from

a free boundary of a micropolar porous elastic half space. They have found that the presence

of the voids in the medium is significant in the the reflection from the free boundary of a

half-space for the incident longitudinal wave having low frequency. Ciarletta et al. (2007a)

constructed the fundamental solution of the system of differential equations in the case of

steady oscillations in terms of elementary functions for micropolar thermoelasticity with

voids. Passarella et al.(2011a) studied the problem of heat-flux dependent thermoelasticity

for micropolar porous media. Ailawalia and Kumar (2011) discussed the deformation of mi-

cropolar generalized thermoelastic medium with voids under the influence of various sources

acting on the plane surface. Marin (2016) formulated a heat-flux theory in the context of

micropolar porous media by taking into account a new set of state variables, the heat-flux

vector and an evolution equation.
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Hosten (1991) presented a method of characterizing orthotropic and viscoelastic behavior

of some composite materials. He proposed a numerical method for computing the reflection

and transmission coefficients of plane waves for any incidence plane through an orthotropic,

lossy solid layer. Sharma (2006) derived a mathematical model for the wave propagation in

anisotropic generalized thermoelastic medium and showed the existence of four quasi-waves

in the medium. Singh (2007c) studied two-dimensional plane wave propagation in an or-

thotropic micropolar elastic solid and obtained the reflection coefficients of various reflected

waves. Kumar and Gupta (2009) solved the problem of plane strain deformation in an or-

thotropic micropolar generalized thermoelastic half-space subjected to an arbitrary point

heat source. Iesan (1974) discussed the torsion problem of homogeneous and orthotropic

cylinders in the linear theory of micropolar elasticity and proved the existence theorem. Vinh

and Ogden (2004) obtained the formulas for the speed of Rayleigh waves in orthotropic com-

pressible elastic materials in explicit form by using the theory of cubic equations. Passarella

et al. (2011b) considered an orthotropic micropolar elastic material subject to a state of

plane strain and established the necessary and sufficient conditions for the strong ellipticity

of constitutive coefficients. The problems of wave propagation in anisotropic micropolar

materials are also studied by Nakamura et al. (1984), Sharma (1988), Singh (2003), Sharma

et al. (2003b), Kumar and Choudhary (2004), Zhu and Tsvankin (2006), Aouadi (2008) and

Iesan (2010).
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Chapter 2

Plane waves in micropolar

thermoelastic materials with voids1

2.1 Introduction

The theory of micropolar continua describes the behavior of complex materials such as bones,

blood, cellular solids and polymers. A continuum model is embedded with microstructures

which can explain the microscopic motion along with the long range materials interaction.

Eringen (1964, 1966, 1968) introduced the linear theory of micropolar elasticity. In this the-

ory, the motion of the particles are expressed in terms of the displacement and micro-rotation

vector. Marin (1996) proved the reciprocal theorem, uniqueness results and minimum prin-

ciple that satisfy the constitutive and field equations of the micropolar materials with voids.

Passarella (1996) derived the constitutive and field equations for micropolar porous ther-

moelasticity.

In this chapter, we study the problem of plane waves in the micropolar thermoelastic ma-

terials with voids. There exist six waves in such materials medium, of which, four of them

are dilatational waves (micropolar wave and three coupled dilatational waves) and the other

two are coupled shear waves. These waves are attenuated. We obtain the phase velocities

and attenuations of these waves analytically and numerically. The effects of micro-inertia

1Science and Technology Journal, 4(2), 141-151(2016)
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and thermal relaxation time on the phase velocity and attenuation are discussed.

2.2 Basic equations

The equations of motion for the dilatational waves, micropolar wave and shear waves in a

homogeneous micropolar thermoelastic materials with voids are given by

(a) Dilatational waves

(i) Coupled dilatational waves:

(c21 + c22)∇2u′ + c23ψ − c24Θ = ü′, (2.1)

c28∇2u′ − (c29∇2 − c210)ψ + c211Θ = −ψ̈, (2.2)

k0∇2Θ−Θ0(1 + τ
∂

∂t
)(dΘ̇ +m∇2u̇′ − ξψ̇) = 0, (2.3)

(ii) Micropolar wave/uncoupled dilatational wave:

(c25 + c26)∇2ϕ′ − c27ϕ
′ = ϕ̈′, (2.4)

(a) Coupled shear waves

c212∇2u′′ + c22∇× ϕ′′ = ü′′, (2.5)

(c26∇2 − c27)ϕ
′′ + c213∇× u′′ = ϕ̈′′, (2.6)

where λ, µ are Lame’s parameters; k0 is the thermal conductivity, τ is thermal relaxation

time; m, d are thermal parameters; a, ζ, ξ, s are void parameters; α, β, γ, κ are microp-

olar parameters, ρ is mass density; ρ1 = ρJ, ρ2 = ρχ are coefficients of inertia, Θ is the

temperature measure from the reference temperature, ψ is the change of volume fraction,

Θ0 is temperature of the material in a reference state; u′, ϕ′ are the scalar potentials cor-

responding to dilatational waves and u′′, ϕ′′ are vector potentials corresponding to shear
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waves obtained from Helmholtz’s decompositions of u and ϕ as

u = ∇u′ +∇× u′′, ϕ = ∇ϕ′ +∇× ϕ′′. (2.7)

The expressions of c1, c2, c3, ...., c13 are given by

c21 =
λ+ 2µ

ρ
, c22 =

κ

ρ
, c23 =

s

ρ
, c24 =

m

ρ
, c25 =

α+ β

ρ1
, c26 =

γ

ρ1
, c27 =

2κ

ρ1
,

c28 =
s

ρ2
, c29 =

a

ρ2
, c210 =

ζ

ρ2
, c211 =

ξ

ρ2
, c212 =

µ+ κ

ρ
, c213 =

κ

ρ1
.

2.3 Harmonic waves

The time harmonic waves may be represented by

{u′, ϕ′, ψ,Θ,u′′,ϕ′′} = {u0, ϕ0, ψ0, T0,A,B} exp{ık(n · r− ct)}, (2.8)

where ω(= kc) is the angular frequency, c is phase velocity, n is the unit normal vector and

r is position vector.

Using the Equation (2.8) into (2.1)-(2.4), we obtain the system of equations
c20k

2 − ω2 − c23 c24

c28k
2 ω2 − c210 − c29k

2 − c211

c2mk
2 c2ξ c2kk

2 − c2d




u0

ψ0

T0

 =


0

0

0

 , (2.9)

and

[
ω2 − (c25 + c26)k

2 − c27
]
ϕ0 = 0, (2.10)

where

c20 = c21 + c22, c2m =
m

ρ1
, c2ξ =

ξ

ρ1
, c2d =

d

ρ1
, c2k =

k0
Θ0ρ1ω(ωτ + ı)

.
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These equations will help to find the phase velocity of the dilatation waves.

Similarly, using the Equation (2.8) into (2.5)-(2.6), we get

(ω2 − k2c212)A+ ıkc22(n×B) = 0, (2.11)

ıkc213(n×A)− (c26k
2 + c27 − ω2)B = 0, (2.12)

which correspond to shear waves.

For non-trivial solutions of Equation (2.9), we have

Ak6 +Bk4ω2 + Ck2ω4 +Dω6 = 0, (2.13)

where

A = −c20c29c2k, B = c24c
2
mc

2
9/ω

2 + c28c
2
kc

2
3/ω

2 − c20c
2
10c

2
k/ω

2 + c20c
2
9c

2
d/ω

2 + c29c
2
k + c20c

2
k,

C = c20c
2
11c

2
ξ/ω

4 + c24c
2
mc

2
10/ω

4 + c20c
2
10c

2
d/ω

4 + c23c
2
11c

2
m/ω

4 + c24c
2
ξc

2
8/ω

4 − c28c
2
dc

2
3/ω

4

−c20c2d/ω2 − c29c
2
d/ω

2 − c24c
2
m/ω

2 + c210c
2
k/ω

2 − c2k, D = c2d/ω
2 − c211c

2
ξ/ω

4 − c210c
2
d/ω

4.

The above equation may be written as

Dc6 + Cc4 +Bc2 + A = 0. (2.14)

Eq. (2.14) is cubic in c2 and by taking c2 = V , we have

DV 3 + CV 2 +BV + A = 0. (2.15)

The roots of Eq. (2.15) correspond to the phase velocity of coupled dilatational waves.

Similarly, with the help of Equations (2.11)-(2.12), we get

Lk4 +Mk2ω2 +Nω4 = 0, (2.16)

where

L = c212c
2
6, M = −c26 − c212 + c212c

2
7/ω

2 + c213c
2
2/ω

2, N = 1− c27/ω
2.
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Equation (2.16) can be written as

Nc4 +Mc2 + L = 0. (2.17)

Equation (2.17) is quadratic in c2 and by taking c2 = V , we have

NV 2 +MV + L = 0. (2.18)

This equation gives the phase velocity corresponding to the coupled shear waves (Parfitt and

Eringen, 1969).

2.4 Phase velocity & Attenuation

We have seen that if the roots are complex and hence the corresponding waves are attenuating

in nature. If we take cRi = Re(
√
Vi) and cIi = Im(

√
Vi) for (i = 1, 2, ..., 6), then the phase

velocity and attenuation coefficients of the dilatational and shear waves may defined as

vi =
(c2Ri + c2Ii)

cRi

, Atti = −2cIi
cRi

(i = 1, 2, ..., 6), (2.19)

where Vi are the solutions of frequency equations corresponding to the dilatational and shear

waves.

2.4.1 For dilatational waves

If Vi (i = 1, 2, 3) are the roots of Equation (2.15), their analytical expressions are given by

V1 =
(√

H2 + I3 −H
)1/3

− I
(√

H2 + I3 −H
)−1/3

− C/3D, (2.20)

V2 =
(√

H2 + I3 −H
)−1/3

I/2−
(√

H2 + I3 −H
)1/3

/2

+
(√

H2 + I3 −H
)−1/3√

3I/2− C/3D +
(√

H2 + I3 −H
)1/3

ı/2, (2.21)

V3 =
(√

H2 + I3 −H
)−1/3

I/2−
(√

H2 + I3 −H
)1/3

/2

30



Chapter 2

−
(√

H2 + I3 −H
)−1/3√

3I/2− C/3D +
(√

H2 + I3 −H
)1/3

ı/2, (2.22)

where

H = A/2D + C3/27D3 −BC/6D2, I = B/3D − C2/9D2.

Equation (2.10) gives the phase velocity corresponding to the fourth dilatational wave as

V4 = ω2(c25 + c26)/(ω
2 − c27). (2.23)

This wave is also know as micropolar wave and dispersive. The phase velocity of the fourth

dilatational wave depend on the angular momentum and micropolar parameters. We have

seen that c7 is the cutoff frequency for the microplar wave below which the wavenumber

vanishes.

Theorem 2.1. If the condition (1.48) is satisfied, then the roots of Eq. (2.15) satisfy the

following properties:

(a) Vi, (i = 1, 2, 3) are complex for G ̸= 0.

(b) If G = 0, then one of Vi (say V1) is real and the others are complex.

Also V1 > 0 for G0 > 0, and V1 < 0 for G0 < 0,

where

G = (c24ω
2 − c24c

2
10 − c23c

2
11)(c

2
4c

2
8 + c20c

2
11)− c24c

2
9c

2
11ω

2, G0 = c20 + c24c
2
8/c

2
11.

Proof: Let us take V0 be a real root of Eq. (2.15). The real and imaginary parts of this

equation gives

(DV 2
0 +B1V0 +B2)V0ωτ + (B3V

2
0 +B0V0 − c20c

2
9)k0/(ρ1ωΘ0) = 0,

DV 2
0 +B1V0 +B2 = 0, (2.24)

where

B0 = c28c
2
3/ω

2 − c20c
2
10/ω

2 + c29 + c20, B1 = c20c
2
11c

2
ξ/ω

4 + c24c
2
mc

2
10/ω

4 + c0c
2
10c

2
d/ω

4 + c24c
2
ξc

2
8/ω

4
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−c28c23/ω4c20c
2
d/ω

2 − c29c
2
d/ω

2 − c24c
2
m, B2 = c24c

2
mc

2
9/ω

2 + c20c
2
9c

2
d/ω

2, B3 = c210/ω
2 − 1.

This equation may be written as

(c29 + c210/ω
2 − V0)(c

2
0 − V0) = c28c

2
3/ω

2,

(c24c
2
10/ω

2 + c23c
2
11/ω

2 − c24)c
2
m/ω

2 − (c24V0/ω
2 − c24c

2
8/ω

2 − c24c
2
9/ω

2)c2ξV0/ω
2 = 0, (2.25)

which again reduces to

c29c
2
4ω

2 = (c24ω
2 − c24c

2
10 − c23c

2
11)V0, c211V0 = c24c

2
8 + c20c

2
11. (2.26)

Hence, from Eq. (2.26), we get

GV0 = 0. (2.27)

If G ̸= 0, it follows that Vi (i = 1, 2, 3) are complex.

If G = 0, then G0 ̸= 0 and from Eq. (2.26), we have V0 = G0. Hence the theorem.

Theorem 2.2. If the condition (1.48) are satisfied, then V4 has the following properties:

(i) V4 > 0 for ω > c7 > 0,

(ii) V4 → ∞ when ω → c7,

(iii) V4 < 0 for 0 < ω < c7.

Proof: The proof is trivial and is the consequence of Equation (2.23).

2.4.2 For the shear waves

The phase velocities corresponding to the coupled shear waves are obtained by solving Equa-

tion (2.18) and their expressions are given by

V5,6 = −M

2N
± R

2N
, (2.28)

where

R2 =M2 − 4NL.
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We come to know that the phase velocities corresponding to the coupled shear waves in

micropolar thermoelastic materials with voids depend on the angular frequency, micropolar

parameters and elastic constants .

Theorem 2.3. If the condition (1.48) are satisfied, then V5 and V6 has the following properties:

(i) V6 > 0, V5 > 0 for ω > c7,

(ii) V6 > 0, and V5 → ∞ when ω → c7,

(iii) V6 > 0, and V5 < 0 for 0 < ω < c7.

Proof: The proof is clear from Equation (2.28). We have seen that the phase velocity

corresponding to fourth dilatation wave (FDW )/micropolar wave and first coupled shear

waves (FCSW ) are undefined if ω → c7. Therefore, this value c7 is the cut off frequency for

FDW and FCSW . In this case, the Eq. (2.18) becomesMV +L = 0 and the corresponding

phase velocity is given by √
2γ(µ+ κ)

2γ − Jκ
.

If ω < c7, in this case, the FDW and FCSW will degenerate into distance decaying vibration

(See Parfitt and Eringen, 1969) and
√
V4,

√
V5 are purely imaginary satisfying the theorems

2.2 and 2.3.

2.5 Special cases

Case (i): In the absence of thermal effect, the materials reduces to the micropolar elastic

materials with voids with

m = k0 = τ = 0

and consequently, cm = c4 = ck = 0. Therefore, Equation (2.15) in this condition reduces to

DV 2 + CV +B = 0, (2.29)
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where

D = c2d−c211c2ξ/ω2−c210c2d/ω2; C = c20c
2
11c

2
ξ/ω

2+c20c
2
10c

2
d/ω

2−c28c2dc23/ω2−c20c2d−c29c2d; B = c20c
2
dc

2
9.

Solving Equation (2.29), we get the phase velocities of coupled dilatational waves as

V1,2 =
(
−C ±

√
C2 − 4BD

)
/2D. (2.30)

We have seen that there is no changed in the phase velocities corresponding to fourth di-

latation and the two coupled shear waves. Their values are given by Equations (2.23) and

(2.28). So, there are five waves in which three are dilatational and two are coupled shear

waves.

Case (ii): In the absence of voids, the material reduces to the micropolar thermoelastic

materials with

a = ζ = s = ξ = 0

and consequently, c3 = c8 = c9 = c10 = cξ = c11 = 0. Equation (2.15) in this condition

becomes

DV 2 + CV +B = 0, (2.31)

where

D = c2d/ω
2, C = −c24c2m/ω2 − c20c

2
d/ω

2 − c2k; B = c20c
2
k.

This equation gives the phase velocities of coupled dilatational waves

V1,2 =
(
−C ±

√
C2 − 4BD

)
/2D. (2.32)

There is no effect on the fourth dilatational wave and the coupled shear waves. So, we come

to know there are five waves in the micropolar thermoelastic materials.

Case (iii): If we neglect thermal and voids effect simultaneously, the material reduces to

micropolar elastic material with

m = k0 = a = ζ = ξ = τ = s = 0.
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Consequently, cm = c4 = ck = c3 = c8 = c9 = c10 = c11 = cξ = 0. Inserting all these values

in Eq. (2.15), we get

V = (λ+ 2µ+ κ)/ρ. (2.33)

This is the phase velocity of dilatational wave so call longitudinal displacement wave. There

are no changes in the phase velocities of microplar dilatational wave and two coupled shear

waves. These are the results of Ariman (1972).

Case (iv): If the micropolar effect is neglected, the medium becomes thermo-elastic mate-

rials with voids with

α = β = γ = κ = 0.

Consequently, we get c20 = c21 = (λ+ 2µ)/ρ, c212 = µ/ρ and c2 = c5 = c6 = c7 = c13 = 0.

In such materials, there are three coupled dilatational waves and their phase velocities are

given by Equation (2.15) (see Singh, 2011). The phase velocity of shear wave is obtained

from Equation (2.18) as

V = c212 = µ/ρ. (2.34)

Case (v): If we neglect thermal, voids and micropolar effect, the medium reduces to isotropic

elastic material with

α = β = γ = κ = s = a = ζ = τ = k0 = ξ = m = k0 = τ = 0.

Consequently,

c2 = c3 = c4 = c5 = c6 = c7 = c8 = c9 = c10 = c11 = c13 = cξ = ck = cm = 0,

c0 = c1, c
2
12 = µ/ρ.

Inserting all these values into Equations (2.15) and (2.18), we get the phase velocities of

dilatational and shear waves, respectively as

V = c21 = (λ+ 2µ)/ρ and V = µ/ρ. (2.35)
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These results are the results of the classical elasticity (see Achenbach, 1976).

2.6 Numerical results and discussion

In order to compute the phase velocities and attenuation coefficients, the following pa-

rameters of the modified aluminium-epoxy composite material are considered (Sharma and

Kumar, 2009) and void parameters are taken arbitrarily:

λ = 7.59×1010 N/m2, µ = 1.89×1010 N/m2, κ = 0.0149×1010 N/m2, ρ = 2.19×103 Kg/m3,

α = 3.688× 1010 N, β = 2.68× 1010 N, γ = 2.68× 105 N, k0 = 1.7 Jm−1s−1K−1,

Θ0 = 293 K, ν = 0.02× 10−5 K−1, χ = 0.00753 m2, d = 2.16× 1010 N/m2

and

s = 1.05× 1010 N/m2, ζ = 1.49× 1010 N/m2, ξ = 1.475× 1010 N/m2, a = 0.668× 1010 N

with τ = 0.5 s, J = 0.3 m2 whenever not mention.
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Figure 2.1: Variation of Phase Velocity of FCDW with ω for different values of J
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Figure 2.2: Variation of Phase Velocity of SCDW with ω for different values of J
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Figure 2.3: Variation of Phase Velocity of TCDW with ω for different values of J

The variation of phase velocities and attenuation coefficients with angular frequency at

different values of micro-inertia parameter, J = {0.3, 0.5, 0.7}m2 are depicted in Figures

2.1-2.9, while at different values of thermal relaxation time, τ = {0, 0.5}s are depicted in
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Figures 2.10-2.15. The later is a comparison between the Fourier classical law and Lebon’s

law of heat conduction. It may be noted that Figures 2.1-2.3 correspond to the phase

velocities of coupled dilatational waves (FCDW,SCDW,TCDW ), Figure 2.4 corresponds

to the phase velocity of fourth dilatation wave (FDW ), Figures 2.5 & 2.6 correspond to the

phase velocities of the coupled shear waves (FCSW,SCSW ) and Figures 2.7-2.9 correspond

to the attenuation coefficients of the coupled dilatational waves. We come to know that

fourth dilatational wave (FDW ) and first coupled shear wave (FCSW ) are attenuated only

when ω < c7; and second coupled shear wave (SCSW ) is non attenuated. In Figure 2.1,

Curves I and II show that the phase velocity of first couple dilatational wave (FCDW )

starts from certain value which decreases with the increase of angular frequency (ω), while

curve III starts decreasing from certain point up to the minimum value and then increases

with increasing angular frequency. It may be noted that the values of phase velocity increase

with the increase of J . It is shown that the phase velocities of second coupled dilatational

wave (SCDW ) and third coupled dilatational wave (TCDW ) increase with the increase
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of the angular frequency in Figures 2.2 & 2.3. We have observed that the values of phase

velocity of SCDW and TCDW decrease and increase respectively with the increase of J .

In Figure 2.4, Curves I & II show that the phase velocity of the FDW increase initially upto
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the maximum value and then, they decrease to the minimum value near ω = 0.5 thereby

making a constant value with the increase of ω, while Curve III show that it is decreasing

initially and makes a constant value with the increase of ω. We have observed that with
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Figure 2.7: Attenuation coefficient of FCDW with ω for different values of J
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Figure 2.8: Attenuation coefficient of SCDW with ω for different values of J
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Figure 2.9: Attenuation coefficient of TCDW with ω for different values of J
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Figure 2.10: Variation of Phase Velocity of FCDW with ω for different values of τ

the increase of J , the values of phase velocity of FDW decrease. Figure 2.5 shows that

the phase velocity of FCSW increases initially and then makes a constant value with the

increase of ω. We have seen in Figure 2.6 that the nature of phase velocity of SCSW is
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similar to that of FDW . In Figure 2.7 & 2.8, the attenuation coefficient corresponding to

FCDW increases with the increase of ω, while that of TCDW decreases with the increase of

ω. The values of the attenuation coefficients of FCDW and SCDW increases and decreases
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Figure 2.11: Variation of Phase Velocity of SCDW with ω for different values of τ
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Figure 2.12: Variation of Phase Velocity of TCDW with ω for different values of τ
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Figure 2.13: Attenuation coefficient of FCDW with ω for different values of τ
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Figure 2.14: Attenuation coefficient of SCDW with ω for different values of τ

respectively with the increase of J . The attenuation coefficient of TCDW in Figure 2.9

increases initially and then decreases with the increase of ω. We have observed that the

values of attenuation coefficient corresponding to FCSW increases with the increase of J ,

43



Chapter 2

0 1 2 3 4 5
−12

−10

−8

−6

−4

−2

Angular frequency

A
tte

nu
at

io
n 

co
ef

fic
ie

nt

 

 

II

I

I: τ=0.5
II: τ=0.0

Figure 2.15: Attenuation coefficient of TCDW with ω for different values of τ

while that of SCDW and TCDW decrease with the increase of J . Thus, phase velocities of

the dilatational and shear waves are affected by the micro-inertia parameter (J) and angular

frequency (ω). In Figures 2.10-2.15, we have compared the two theories, i.e., Fourier classical

law (τ = 0) and Lebon’s laws of heat conduction (τ ≥ 0). It may be noted that the variation

of phase velocities corresponding to coupled dilatational waves with ω at different values

of thermal relaxation time (τ) are seen in Figures 2.10-2.12, while that of the attenuation

coefficients are seen in Figures 2.13-2.15. In Figure 2.10-2.12, the values of phase velocity

of FCDW, SCDW and TCDW are greater in Fourier classical law than that of Lebon’s

laws of heat conduction. We have seen that the values of the attenuation coefficients of

FCDW in Figure 2.13 and SCDW in Figure 2.14 have same values for the two theory at

ω = {0.1, 3} s−1 and ω = {0.1, 3.2} s−1 respectively. In Figure 2.15, we have seen that the

values of attenuation coefficient of TCDW are greater in Lebon’s laws of heat conduction

than that of Fourier classical law.
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2.7 Conclusions

The problem of propagation of plane harmonic waves in micropolar thermoelastic ma-

terials with voids has been investigated. We have obtained the phase velocities of the

dilatational and shear waves using the linear theory of micropolar thermoelastic mate-

rials with voids. There exists four dilatational waves, which three of them are coupled

(FCDW, SCDW, TCDW ) and an uncoupled micropolar dilatational waves (FDW ); and

two shear waves (FCSW, SCSW) which are coupled together. These phase velocities and

their attenuation coefficients are computed numerically and presented graphically. We may

conclude the following remarks:

(i) The phase velocity of micropolar wave (FDW ) is a function of micropolar parameters.

(ii) The shear waves (FCSW, SCSW ) are independent of thermal and void parameters.

(iii) The phase velocity of dilatational waves depend on the Lame’s constants, micropolar,

thermal and void parameters.

(iv) All the coupled dilatational waves are attenuated only when G ̸= 0.

(v) One of the coupled dilatational waves is non attenuated and others are attenuated when

G = 0.

(vi) The phase velocities corresponding to SCDW , TCDW and attenuation coefficient of

FCDW increase with the increase of angular frequency (ω).

(vii) The attenuation coefficient of SCDW decreases with the increase of ω.

(viii) The values of phase velocity of FCDW increase with the increase of J .

(ix) The values of phase velocity of SCDW and TCDW decrease and increase respectively

with the increase of J .

(x) The values of the attenuation coefficients of FCDW and SCDW, TCDW increases and

decrease respectively with the increase of J .
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Chapter 3

Effect of micro-inertia in the

propagation of waves in micropolar

thermoelastic materials with voids2

3.1 Introduction

The theory of micropolar elasticity is concerned with material media whose constituents are

dumbbell molecules. These elements are allowed to rotate independently without stretch.

The theory is expected to find applications in the treatment of mechanics of granular ma-

terials with elongated rigid grains and composite fibreous materials. Ciarletta et al. (2009)

studied the problem of plane waves and vibrations in the theory of micropolar thermoelastic-

ity for materials with voids. They proved the existence theorems of non-trivial solutions and

eigenfrequencies of the interior homogeneous boundary value problems of steady vibrations.

In this work, we will investigate the effect of micro-inertia on the wave propagation in mi-

cropolar thermoelastic materials with voids. We have obtained the amplitude and energy

ratios of the reflected coupled longitudinal and shear waves from a plane free boundary of

micropolar thermoelastic materials with voids. These ratios are computed separately for the

incident longitudinal wave and shear wave. The effect of micro-inertia on these ratios are

discussed and presented graphically.

2Applied Mathematical Modelling, 49, 478-497(2017)
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3.2 Basic Equation

The equations of motion in homogeneous and isotropic micropolar thermoelastic materials

with voids are given as

(λ+ 2µ+ κ)∇2u′ + sψ −mΘ = ρü′, (3.1)

s∇2u′ − (a∇2 − ζ)ψ + ξΘ = −ρ2ψ̈, (3.2)

k0∇2Θ−Θ0(1 + τ
∂

∂t
)(dΘ̇ +m∇2u̇′ − ξψ̇) = 0, (3.3)

(α + β + γ)∇2ϕ′ − 2κϕ′ = ρ1ϕ̈′, (3.4)

(µ+ κ)∇2u′′ + κ∇× ϕ′′ = ρü′′, (3.5)

(γ∇2 − 2κ)ϕ′′ + κ∇× u′′ = ρ1ϕ̈
′′, (3.6)

where u′, ϕ′ are the scalar potentials and u′′, ϕ′′ are vector potentials of displacement and

micro-rotation vectors respectively given by Eq. (2.7), λ, µ are Lame’s parameters, k0 is the

thermal conductivity, τ is thermal relaxation time, m, d are thermal parameters, a, ζ, ξ, s

are void parameters, α, β, γ, κ are micropolar parameters, ρ is mass density, ρ1, ρ2 are

coefficients of inertia, Θ is the temperature measure from the reference temperature, ψ is

the change of volume fraction, Θ0 is temperature of the material in a reference state. It is

cleared that u′, ψ and Θ are coupled dilatational waves and u′′ and ϕ′′ are coupled shear

waves.

3.3 Wave Propagation

Consider the Cartesian co-ordinates with x and y-axis lying horizontally and z axis as verti-

cally pointing downward. Let us take two dimensional problem of wave propagation in the

half-space, M = {(x, z);−∞ < x <∞, z ≥ 0} which is of micropolar thermoelastic material

with voids. We know that the displacement (u), microrotation vector (ϕ), change in volume
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fraction (ψ) and temperature measured (Θ) may be expressed as

u = (u1, 0, u3), ϕ = (0, ϕ2, 0), ψ = ψ(x, z), Θ = Θ(x, z), (3.7)

in which

u1 =
∂u′

∂x
− ∂U2

∂z
& u3 =

∂u′

∂z
+
∂U2

∂x
,

where U2 is the y−component of u′′.

The boundary of the half-space, M at z = 0 is thermally insulated so that there is no

variations of temperature and is free from all traction. Mathematically, these conditions

may be written as

T33 = 0, T31 = 0, M32 = 0, h3 = 0, Θ,3 = 0 at z = 0,

which may be represented as

λ
∂2u′

∂x2
+ (λ+ 2µ+ κ)

∂2u′

∂z2
+ (2µ+ κ)

∂2U2

∂x∂z
+ sψ −mΘ = 0, (3.8)

(2µ+ κ)
∂2u′

∂x∂z
− (µ+ κ)

∂2U2

∂z2
+ µ

∂2U2

∂x2
− κϕ2 = 0, (3.9)

∂ϕ2

∂z
= 0,

∂ψ

∂z
= 0,

∂Θ

∂z
= 0. (3.10)

The potentials form of u′, ψ, Θ, U2 and ϕ2 in the half-space, M may be written as

{u′, ψ,Θ} = A0{1, η0, η′0} exp(P0) +
3∑

r=1

Ar{1, ηr, η′r} exp(Pr), (3.11)

{U2, ϕ2} = A00{1, η00} exp(P0) +
5∑

r=4

Ar{1, ηr} exp(Pr), (3.12)

where

P0 = ık0(x sin θ0 − z cos θ0 − V0t), Pr = ıkr(x sin θr + z cos θr − Vrt),

A0 and A00 are the amplitudes for the incident coupled longitudinal and coupled shear

waves respectively at an angle of incidence θ0 with phase velocity V0, Ar(r = 1, 2, 3) are
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the amplitudes of the reflected coupled longitudinal waves with angles θr(r = 1, 2, 3) and

Ar(r = 4, 5) are amplitudes of reflected coupled shear waves with angles θr(r = 4, 5), kr is

the wavenumber and Vr is the phase velocity given by Eqs (2.15), (2.18) and (2.23). We

know that the fourth longitudinal wave/micropolar wave is not reflected for the incident

wave is coupled longitudinal wave and coupled shear waves (Parfitt and Eringen, 1969). The

expressions of the coupling parameters ηr and η
′
r are given by

ηr =


c28c

2
kk

4
r − (c28c

2
d − c211c

2
m)k

2
r

c29c
2
kk

4
r − (ω2c2k − c210c

2
k + c29c

2
d)k

2
r − c211c

2
ξ − c210c

2
d + ω2c2d

, r = 1, 2, 3

c213/{c26 + c27/k
2
r − V 2

r }, r = 4, 5

η′r =


c2mc

2
9k

4
r + (c2mc

2
10 + c28c

2
ξ − c2mω

2)k2r
−c29c2kk4r + (ω2c2k − c210c

2
k + c29c

2
d)kr

2 + c211c
2
ξ + c210c

2
d − ω2c2d

, r = 1, 2, 3

0, r = 4, 5.

The expressions of c1, c2, c3, ...., c13 are given by

c21 =
λ+ 2µ

ρ
, c22 =

κ

ρ
, c23 =

s

ρ
, c24 =

m

ρ
, c25 =

α+ β

ρ1
, c26 =

γ

ρ1
, c27 =

2κ

ρ1
,

c28 =
s

ρ2
, c29 =

a

ρ2
, c210 =

ζ

ρ2
, c211 =

ξ

ρ2
, c212 =

µ+ κ

ρ
, c213 =

κ

ρ1
.

The Snell’s law, for this problem, may be written as

k0 sin θ0 = k1 sin θ1 = k2 sin θ2 = k3 sin θ3 = k4 sin θ4 = k5 sin θ5. (3.13)

It may be noted that the angle of incidence is equal to the angle of reflected wave.

3.4 Amplitude ratio

Using Eqs. (3.11)-(3.13) into (3.8)-(3.10), we get a system of equations

5∑
r=1

airZr = bi, i = 1, 2, 3, 4, 5 (3.14)
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where non-zero air are given by

a1r = {λ+ (2µ+ κ) cos2 θr − (sηr −mη′r)/k
2
r}k2r , (r = 1, 2, 3),

a1r = (2µ+ κ)k2r sin θr cos θr, (r = 4, 5), a2r = −(2µ+ κ)k2r sin θr cos θr, (r = 1, 2, 3),

a2r = {µ(cos2 θr − sin2 θr) + κ cos2 θ4 − κηr/k
2
r}k2r , (r = 4, 5),

a3r = ηrkr cos θr, (r = 4, 5), a4r = ηrkr cos θr, (r = 1, 2, 3), a5r = η′rkr cos θr, (r = 1, 2, 3).

For the incident coupled longitudinal wave, we have

θ0 = θ1, V0 = V1, b1 = −a11, b2 = a21, b3 = 0, b4 = a41, b5 = a51.

In the case when incident wave is coupled shear wave, we get

θ0 = θ4, V0 = V4, b1 = a14, b2 = −a24, b3 = a34, b4 = 0, b5 = 0.

The amplitude ratios Zi = {Ai

A0
, Ai

A00
}, i = 1, 2, 3 correspond to the reflected coupled longitu-

dinal waves and Zi = {Ai

A0
, Ai

A00
}, i = 4, 5 correspond to the reflected coupled shear waves. It

may be noted that the ratios Ai/A0 represents for the incident coupled longitudinal wave,

while Ai/A00 represents for the incident coupled shear wave.

3.5 Energy Partition

Let us consider the energy partition among the various reflected waves at the free surface.

The rate of energy transmission at the surface (z = 0) per unit area is given by (Achenbach,

1976 & Singh and Tomar, 2007)

P ∗ = ⟨T33, u̇3⟩+ ⟨T31, u̇1⟩+ ⟨M32, ϕ̇2⟩+ ⟨h3, ψ̇⟩. (3.15)
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The rate of energy transmission for the incident coupled longitudinal and coupled shear

waves are respectively written as

Einc =

(
λ+ 2µ+ κ− (s+ aη1)η1 −mη′1

k21

)
ωk31 cos θ1A

2
1 exp{Λ1}, (3.16)

Einc =

(
µ+ κ− η4

k24
(γη4 + κ)

)
ωk34 cos θ4A

2
4 exp{Λ4}, (3.17)

where Λ1 = 2ık1(x sin θ1 − z cos θ1 − V1t), Λ4 = 2ık4(x sin θ4 − z cos θ4)− V4t.

The energy ratios of the various reflected waves for the incident coupled longitudinal and

coupled shear waves are given below.

For incident coupled longitudinal wave:

Ei =
{λ+ 2µ+ κ− (sηi + aη2i −mη′i)/k

2
i }k3i cos θi

{λ+ 2µ+ κ− (sη1 + aη21 −mη′1)/k
2
1}k31 cos θ1

Z2
i , i = 1, 2, 3

Ei =
{µ+ κ− ηi(κ+ γηi)/k

2
i }k3i cos θi

{λ+ 2µ+ κ− (sη1 + aη21 −mη′1)/k
2
1}k31 cos θ1

Z2
i , i = 4, 5. (3.18)

For incident coupled shear wave:

Ei =
{λ+ 2µ+ κ− (sηi + aη2i −mη′i)/k

2
i }k3i cos θi

{µ+ κ− η4(κ+ γη4)/k24}k34 cos θ4
Z2

i , i = 1, 2, 3

Ei =
{µ+ κ− ηi(κ+ γηi)/k

2
i }k3i cos θi

{µ+ κ− η4(κ+ γη4)/k24}k34 cos θ4
Z2

i , i = 4, 5. (3.19)

It may be noted that Ei (i = 1, 2, 3) represent for the energy ratios of the reflected coupled

longitudinal waves and Ei (i = 4, 5) represent for the reflected coupled shear waves. We

come to know that the energy ratios are the functions of angle of propagation, amplitude

ratios, elastic, micropolar, thermal and void parameters.

3.6 Special cases

Case 1: In the absence of thermal effect, the materials reduces to the micropolar elastic

materials with voids, in this case, m = k0 = τ = 0. Consequently, the thermal wave does
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not exist and Equation (3.14) is reduced with the following non-zero modified values of air

a1r = {λ+ (2µ+ κ) cos2 θr − sηr/k
2
r}k2r , a2r = −(2µ+ κ) sin θr cos θrk

2
r ,

a4r = ηr cos θrkr, r = 1, 2.

It gives the amplitude ratios of the corresponding reflected waves. In this case, the energy

ratios, E4 and E5 for the incident coupled shear wave are given by Equation (3.19)2 and the

expression of the rest of the energy ratios are reduced as:

(for the incident coupled longitudinal wave)

E1 = Z2
1 ; E2 =

{λ+ 2µ+ κ− (sη2 + aη22)/k
2
2}k32 cos θ2

{λ+ 2µ+ κ− (sη1 + aη21)/k
2
1}k31 cos θ1

Z2
2 ,

Ei =
{µ+ κ− ηi(κ+ γηi)/k

2
i }k3i cos θi

{λ+ 2µ+ κ− (sη1 + aη21)/k
2
1}k31 cos θ1

Z2
i , i = 4, 5. (3.20)

(for the incident coupled shear wave)

Ei =
{λ+ 2µ+ κ− (sηi + aη2i )/k

2
i }k3i cos θi

{µ+ κ− η4(κ+ γη4)/k24}k34 cos θ4
Z2

i , i = 1, 2. (3.21)

Case 2: In the absence of voids, the material reduces to the micropolar thermoelastic

materials, in this case a = ζ = s = ξ = 0. Consequently, one of the couple longitudinal

waves does not exist and Eq. (3.14) is changed with the following non-zero modified values

of air

a1r = {λ+ (2µ+ κ)cos2θr +mη′r/k
2
r}k2r , a2r = −(2µ+ κ) sin θr cos θrk

2
r ,

a5r = η′r cos θrkr, r = 1, 2.

This will help to find the corresponding amplitude ratios of the reflected waves. Here, the

expression of energy ratios, E4 and E5 for incident coupled shear wave are given by Eq.

(3.19)2 and rest of the ratios are given as
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(for incident coupled longitudinal wave)

E1 = Z2
1 , E2 =

(λ+ 2µ+ κ+mη′2/k
2
2) k

3
2 cos θ2

(λ+ 2µ+ κ+mη′1/k
2
1) k

3
1 cos θ1

Z2
2 ,

Ei =
(µ+ κ− ηi(κ+ γηi)/k

2
i ) k

3
i cos θi

(λ+ 2µ+ κ+mη′1/k
2
1) k

3
1 cos θ1

Z2
i , i = 4, 5. (3.22)

(for incident coupled shear wave)

Ei =
(λ+ 2µ+ κ+mη′i/k

2
i ) k

3
i cos θi

(µ+ κ− η4(κ+ γη4)/k24) k
3
4 cos θ4

Z2
i , i = 1, 2. (3.23)

This result is perfectly matched with Singh (2007a).

Case 3: If we neglect thermal and voids effect simultaneously, the material reduces to

micropolar elastic material and in this case, m = k0 = a = ζ = ξ = τ = s = 0. Consequently,

only one longitudinal wave is reflected and Eq. (3.14) is modified with non-zero, a11:

a11 = {λ+ (2µ+ κ) cos2 θ1}k21.

It helps to find the amplitude ratios of the reflected waves. These results are similar with

Parfitt and Eringen (1969). The energy ratios, E4 and E5 for the incident coupled shear

wave are given by Eq. (3.19)2 and others are reduced as

(for incident coupled longitudinal wave)

E1 = Z2
1 , Ei =

(µ+ κ− ηi(κ+ γηi)/k
2
i ) k

3
i cos θi

(λ+ 2µ+ κ) k31 cos θ1
Z2

i , i = 4, 5. (3.24)

(for incident coupled shear wave)

E1 =
(λ+ 2µ+ κ) k31 cos θ1

(µ+ κ− η4(κ+ γη4)/k24) k
3
4 cos θ4

Z2
1 . (3.25)

Case 4: If the micropolar effect is neglected, the medium becomes thermo-elastic materials

with voids with α = β = γ = κ = 0 and c21 = (λ + 2µ)/ρ, c212 = µ/ρ. Consequently, one

of the couple shear wave does not exist and Eq. (3.14) changes with the following non-zero
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modified values of air

a1r = {λ+ 2µ cos2 θr − (sηr −mη′r)/k
2
r}k2r , a2r = −2µ sin θr cos θrk

2
r , (r = 1, 2, 3),

a14 = 2µ sin θ4 cos θ4k
2
4, a24 = µ(cos2 θ4 − sin2 θ4)k

2
4.

It helps to find the amplitude ratios of the reflected waves. Also, the energy ratios of the

reflected waves are given below

(for incident coupled longitudinal wave)

E1 = Z2
1 , Ei =

{λ+ 2µ− (sηi + aη2i −mη′i)/k
2
i }k3i cos θi

{λ+ 2µ− (sη1 + aη21 −mη′1)/k
2
1}k31 cos θ1

Z2
i , (i = 2, 3)

E4 =
µk34 cos θ4

{λ+ 2µ− (sη1 + aη21 −mη′1)/k
2
1}k31 cos θ1

Z2
4 . (3.26)

(for incident coupled shear wave)

Ei =
{λ+ 2µ− (sηi + aη2i −mη′i)/k

2
i }k3i cos θi

µk34 cos θ4
Z2

i , i = 1, 2, 3, E4 = Z2
4 . (3.27)

These results are exactly match with Singh and Tomar (2007).

3.7 Numerical results and discussion

In this section, the numerical values of the amplitude and energy ratios of the reflected

waves are computed and the results are represented graphically for a particular model. The

physical constants for micropolar thermoelastic solid are taken from Gauthier (1982) and

the values corresponding to the voids are taken arbitrarily as

λ = 7.59 × 1010 N/m2, µ = 1.89 × 1010N/m2, κ = 0.0149 × 1010 N/m2, ρ = 2190 Kg/m3,

γ = 0.268× 106 N , Θ0 = 293 K, τ = 0.13s, k0 = 1.7× 102 Jm−1s−1K−1, ν = 2× 10−7 K−1,

χ = 0.00753 m2, d = 2.16 × 106 N/m2, s = 1.02 × 1010 N/m2, ζ = 1.49 × 1010 N/m2,

ξ = 1.475× 106 N/m2, a = 0.668× 10−9 N .

In these figures, we use J={Curves I & IV: 0.10, Curves II & V: 0.13, Curves III &

VI: 0.16 }×10−4 m2. The variation of amplitude (|Zi|, i = 1, 2, 3, 4, 5) and energy ratios
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(|Ei|, i = 1, 2, 3, 4, 5) of reflected waves for incident coupled longitudinal wave with angle

of incidence are depicted in Figures 3.1-3.3 and Figures 3.4-3.6 respectively for different

values of J , while those of reflected waves for the incident coupled shear wave are depicted

respectively in Figures 3.7-3.9 and 3.10-3.12 for different values of J .

3.7.1 For incident coupled longitudinal wave

In Figure 3.1, the amplitude ratio |Z1| starts from certain values which decreases to the

minimum value at θ0 = 620 and then increases with the increase of angle of incidence. We

have observed that the values of |Z1| increase with the increase of J . The amplitude ratios,

|Z2| (Curves I, II, III) & |Z3| (Curves IV, V, VI) in Figure 3.2 of the reflected coupled

longitudinal waves decrease with the increase of angle of incidence. In Figure 3.3, Curves I

and II are magnified with 104 and 103 respectively and it is clear that |Z4| (Curves I, II, III)

of the coupled reflected wave increases to the maximum value near θ0 = 500 which decreases

thereafter with the increase of the angle of incidence. Here, we see that |Z4| increases with
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Figure 3.1: Variation of |Z1| with θ0 for incident coupled longitudinal wave
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Figure 3.3: Variation of |Z4| and |Z5| with θ0 for incident coupled longitudinal wave

the increase of J . Similar nature of |Z5|(Curves IV, V, VI) with that of |Z4| is seen in

the same figure, where Curve VI is magnified with 103 but their values decrease with the

increase of J . In Figure 3.4, the energy ratio, |E1| for the reflected coupled wave starts from
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certain value which decreases to the minimum value near θ0 = 640 and then increases with

the increase of the angle of incidence. The values of |E1| increase with the increase of J .

The energy ratios, |E2| (Curves I, II, III) and |E3| (Curves IV, V, VI) in Figure 3.5 of the
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Figure 3.4: Variation of |E1| with θ0 for incident coupled longitudinal wave
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Figure 3.5: Variation of |E2| and |E3| with θ0 for incident coupled longitudinal wave
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Figure 3.6: Variation of |E4| and |E5| with θ0 for incident coupled longitudinal wave

reflected coupled longitudinal waves decrease with the increase of θ0. Figure 3.6 shows that

|E4| (Curves I, II, III) and |E5| (Curves IV, V, VI) increase to their maximum values and

then decrease with the increase of θ0. We have observed that the values of |E4| and |E5|

increase and decrease respectively with the increase of J . The sum of energy ratios is close

to unity.

3.7.2 For incident coupled shear wave

In Figure 3.7, the amplitude ratio, |Z1| (Curves I, II, III) increases initially upto θ0 = 220

for Curve I and 290 for Curves II and III which decreases to the minimum value at θ0 = 330

for Curve I, 430 for Curve II and 450 for Curve III. Thereafter, all the curves increase with

the increase of the angle of incidence. We have observed that the values of |Z1| increase with

the increase of J and there are critical angles for different values of J . The natures of |Z2|

(Curves IV, V, VI) in Figure 3.7 and |Z3| in Figure 3.8 of the reflected coupled longitudinal

waves are interesting in the fact that different parabolic regions can be seen for different

values of J and their values are very small. In the Figure 3.9, Curves I and II show that |Z4|
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Figure 3.7: Variation of |Z1| and |Z2| with θ0 for incident coupled shear wave
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Figure 3.8: Variation of |Z3| with θ0 for incident coupled shear wave

almost constant, while Curve III shows that |Z4| is parabolic in the region 00 ≤ θ0 ≤ 270 and

then takes a constant value with the increase of θ0. Curve IV in the same figure shows that
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|Z5| starts from certain value which decreases upto θ0 = 330 and then makes a parabolic

region which increases with the increase of angle of incidence. The value of |Z5| decreases

in Curve V upto θ0 = 220 and increases upto certain value of θ0 and then it decreases to

the minimum value at θ0 = 450 which increases again thereafter. Curve VI is magnified
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Figure 3.9: Variation of |Z4| and |Z5| with θ0 for incident coupled shear wave
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Figure 3.10: Variation of |E1| with θ0 for incident coupled shear wave

60



Chapter 3

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
x 10

−4

Angle of incidence

|E
2|, 

|E
3|

 

 

VI

I

V

III

II

I×6×1013&IV×102:J=0.10
II× 6×1012&V×5×10:J=0.13
III× 6×1010&VI:J=0.16

IV

Figure 3.11: Variation of |E2| and |E3| with θ0 for incident coupled shear wave

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Angle of incidence

|E
4|, 

|E
5|

 

 

V
VI

I×0.8&IV×103:J=0.10
II×0.9&V×2.5×10:J=0.13
III&VI×107:J=0.16

III
II

IV

I

Figure 3.12: Variation of |E4| and |E5| with θ0 for incident coupled shear wave

with 103 and it shows the decreasing nature of |Z5| thereby making a parabolic region in

450 ≤ θ0 ≤ 900. We have observed similar nature of |E1| in Figure 3.10 and |E2| (Curves

I, II, III) and |E3| (Curves IV, V, VI) in Figure 3.11. Curves I, II, IV & V show that they
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increase with the increase of angle of incidence, while Curve III & VI show three parabolic

regions with the increase of angle of incidence. In Figure 3.12, |E4| (Curves I, II, III) of the

reflected coupled shear wave makes a constant value in Curves I and II, while Curve III is

parabolic in the region 0 ≤ θ0 ≤ 280 and then it makes a constant value with the increase of

θ0. The energy ratio, |E5| (Curves IV, V, VI) increases with the increase of θ0 in Curves IV

and V. In case of Curve VI, |E5| decreases initially and then it increases with the increase

of θ0. In this case also, the sum of energy ratios is close to unity. We have seen that both

the amplitude and energy ratios depend on the J and angle of incidence.

3.8 Conclusions

The effect of micro-inertia in the wave propagation in plane half-space of micropolar ther-

moelastic materials with voids has been investigated. Using the appropriate boundary condi-

tions, the expressions of the amplitude and energy ratios of the reflected waves are obtained

analytically and numerically. We come to know that there exist six plane waves of three

coupled longitudinal waves, one uncoupled longitudinal wave and two coupled shear waves.

The following remarks may be mentioned:

(i) Amplitude and energy ratios are the functions of elastic, micropolar, thermal and void

parameters and angle of incidence.

(ii) The micropolar wave is not reflected for the incident coupled longitudinal/shear wave.

(iii) Amplitude ratios, |Z1|, |Z2|, |Z3|, |Z4| for the incident coupled longitudinal wave in-

crease with the increase of J , while |Z5| decrease with the increase of J .

(iv) Energy ratios of the reflected coupled longitudinal waves for incident coupled waves

increase with the increase of J .

(v) We have observed that the effect of J on the amplitude and energy ratios for the incident

shear wave are more than that of incident longitudinal wave.

(vi) The sum of energy ratios of reflected waves for the incident coupled longitudinal and

coupled shear waves are found to be closed to unity.
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Chapter 4

Effect of thermal and micro-inertia on

the refraction of elastic waves in

micropolar thermoelastic materials

with voids3

4.1 Introduction

The phenomena of reflection and refraction of elastic waves are very common in the field

of Seismology, Geophysics and Earthquake engineering. Tomar and Gogna (1995) studied

the problem of longitudinal waves at an interface between two micropolar elastic solids in

welded contact and obtained amplitude and energy ratios of the reflected and refracted

waves. Chakraborty and Singh (2011) discussed the problem of reflection and refraction

of a plane thermoelastic wave at a solidsolid interface under perfect boundary condition in

presence of normal initial stress. They obtained the amplitude ratios of various reflected and

refracted waves using an ideal boundary for the incident SV -wave.

In the present work, the reflection and refraction of plane waves at the interface between two

dissimilar half-spaces of micropolar thermoelastic materials with voids has been investigated.

The amplitude and energy ratios of the reflected and refracted waves are obtained analytically

3Communicated to International Journal of Computational Method for Engeneering Sci-
ences and Mechanics (2017)
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and numerically for a particular model. The effects of thermal and micro-inertia on these

ratios are discussed for two separate cases, i.e., (i) incident longitudinal wave and (ii) incident

shear wave. In the case of incident longitudinal wave, the effect of linear thermal expansion

on the amplitude and energy ratios is discussed, while for the incident shear wave, we have

discussed the effect of micro-inertia.

4.2 Basic Equations

The equations of motion for a homogeneous and isotropic micropolar thermoelastic materials

with voids are written as

(c21 + c22)∇2p+ c23ψ − c24Θ = p̈, (4.1)

c28∇2p− (c29∇2 − c210)ψ + c211Θ = −ψ̈, (4.2)

K0∇2Θ− (1 + τ
∂

∂t
)(c2dΘ̇ + c2m∇2ṗ− c2ξψ̇) = 0, (4.3)

(c213 + c26)∇2ϕ′ − c27ϕ
′ = ϕ̈′, (4.4)

c212∇2P+ c22∇× ϕ′′ = P̈, (4.5)

(c26∇2 − c27)ϕ
′′ + c25∇×P = ϕ̈′′, (4.6)

where

c21 =
λ+ 2µ

ρ
, c22 =

κ

ρ
, c23 =

s

ρ
, c24 =

m

ρ
, c25 =

κ

ρ1
, c26 =

γ

ρ1
, c27 =

2κ

ρ1
, c28 =

s

ρ2
, c29 =

a

ρ2
,

c210 =
ζ

ρ2
, c211 =

ξ

ρ2
, c212 =

µ+ κ

ρ
, c213 =

α + β

ρ1
, c2d =

d

ρ1
, c2m =

m

ρ1
, c2ξ =

ξ

ρ1
, K0 =

k0
ρ1Θ0

.

It may be notated that p, ψ and Θ are coupled dilatational waves andP, ϕ′′ are coupled shear

waves obtained from the Helmholtz’s decomposition of displacement (u) and microrotation

vectors (ϕ). The micropolar wave is given by Eq. (4.4) and it participates neither in

reflection nor in refraction from any discontinuity in the material body (Parfitt and Eringen,
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1969).

4.3 Wave propagation

Consider the Cartesian co-ordinate system with x and y-axis lying horizontally and z-axis

vertically downward. The two dissimilar half-spaces of micropolar thermoelastic materials

with voids are represented by M = {(x, z), x ∈ R, z ∈ (0,∞)} and M ′ = {(x, z), x ∈ R, z ∈

(−∞, 0)}. The material parameters in M will denote without prime and the corresponding

parameters in M ′ will be denoted with prime (′). A train of longitudinal wave or shear wave

with amplitude constant A at an angle θ with the positive direction of z-axis be incident at

the plane interface. This wave gives five reflected waves (three coupled longitudinal waves

and two coupled shear waves) in M and five refracted waves (three coupled longitudinal

waves and two coupled shear waves) in M ′. The complete geometry of the problem is shown

in Figure 4.1.

Figure 4.1: Geometry of the problem
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The complete potential structures of the various reflected and refracted waves are given

below.

For the reflected waves in the half-space, M

{p, ψ, Θ} = {1, η0, π0}A exp(Q0) +
3∑

i=1

{1, ηi, πi}Ai exp(Qi), (4.7)

{P, ϕ2} = {1, η00}A exp(Q0) +
5∑

i=4

{1, ηi}Ai exp(Qi), (4.8)

where

Q0 = ık(x sin θ + z cos θ − V t), Qi = ıki(x sin θi − z cos θi − Vit),

ϕ2 is the y-component of ϕ′′ and P is the y-component of P of the reflected waves, Ai is

the amplitude constant of the reflected wave at angle θi with wavenumber ki and V is the

velocity of the incident wave with wavenumber, k.

For the refracted waves in the half-space M ′

{p′, ψ′, Θ′} =
8∑

i=6

{1, ηi, πi}Ai exp(Qi), (4.9)

{P ′, ϕ′
2} =

10∑
i=9

{1, ηi}Ai exp(Qi), (4.10)

where

Qi = ıki(x sin θr + z cos θr − Vit),

ϕ′
2 and P

′ are similar form of ϕ2 and P respectively in the half-spaceM ′ and Ai is amplitude

constant of the refracted wave with wavenumber, ki.

The expressions of phase velocities, Vi are given in (2.20), (2.21), (2.22) and (2.28), and the

coupling parameters, ηi and πi (i = 1, ..., 10) are given below.
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ηi =



{c28c2kk4i − (c28c
2
d − c211c

2
m)k

2
i }/{c29c2kk4i−

(ω2c2k − c210c
2
k + c29c

2
d)k

2
i − c211c

2
ξ − c210c

2
d + ω2c2d}, (i = 1, 2, 3)

c25/{c26 + c27/k
2
i − Vi}, (i = 4, 5)

{c′28 c
′2
k k

4
i − (c

′2
8 c

′2
d − c

′2
11c

′2
m)k

2
i }/{c

′2
9 c

′2
k k

4
i−

(ω2c
′2
k − c

′2
10c

′2
k + c

′2
9 c

′2
d )k

2
i − c

′2
11c

′2
ξ − c

′2
10c

′2
d + ω2c

′2
d }, (i = 6, 7, 8)

c
′2
5 /{c

′2
6 + c

′2
7 /k

2
i − Vi}, (i = 9, 10)

πi =



{c2mc29k4i + (c2mc
2
10 + c28c

2
ξ − c2mω

2)k2i }/{−c29c2kk4i+

(ω2c2k − c210c
2
k + c29c

2
d)k

2
i + c211c

2
ξ + c210c

2
d − ω2c2d}, (i = 1, 2, 3)

{c′2mc
′2
9 k

4
i + (c

′2
mc

′2
10 + c

′2
8 c

′2
ξ − c

′2
mω

2)k2i }/{−c
′2
9 c

′2
k k

4
i+

(ω2c
′2
k − c

′2
10c

′2
k + c

′2
9 c

′2
d )k

′2
i + c

′2
11c

′2
ξ + c

′2
10c

′

d2− ω2c
′2
d }, (i = 6, 7, 8),

where

c
′2
1 =

λ′ + 2µ′

ρ′
, c

′2
2 =

κ′

ρ′
, c

′2
3 =

s′

ρ′
, c

′2
4 =

m′

ρ′
, c

′2
5 =

κ′

ρ′1
, c

′2
6 =

γ′

ρ′1
, c

′2
7 =

2κ′

ρ′1
, c

′2
8 =

s′

ρ′2
, c

′2
9 =

a′

ρ′2
,

c
′2
10 =

ζ ′

ρ′2
, c

′2
11 =

ξ′

ρ′2
, c

′2
12 =

µ′ + κ′

ρ′
, c

′2
13 =

α′ + β′

ρ′1
, c

′2
d =

d′

ρ′1
, c

′2
m =

m′

ρ′1
, c

′2
ξ′ =

ξ′

ρ′1
, K ′

0 =
k′0
ρ′1Θ0

.

It many be noted that when the incident wave is longitudinal wave (three coupled longi-

tudinal waves), the coupling constants (η0, π0, η00, θ) = (ηi, πi, 0, θi) for i = 1 as incident

first coupled longitudinal wave (FCLW ), i = 2 as incident second coupled longitudinal

wave (SCLW ) and i = 3 as incident third coupled longitudinal wave (TCLW ). Similarly,

(η0, π0, η00, θ) = (0, 0, ηi, θi) for incident two coupled shear waves, i.e., i = 4 corresponds

for incident first coupled shear wave (FCSW ) and i = 5 corresponds for incident second

coupled shear wave (SCSW ).
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The Snell’s law can be written for our problem as

sin θ

V
=

sin θi
Vi

=
sin θi+5

Vi+5

(i = 1, 2, ..., 5). (4.11)

4.4 Boundary conditions

The displacements, stress tensors, equilibrated stress vector, temperature gradient, change

in void volume fraction, micro-rotation vector and change in temperature are continuous at

z = 0. Mathematically, these conditions at z = 0 are

Tzz = T ′
zz, Tzx = T ′

zx, Mzy =M ′
zy, h,z = h′,z, ux = u′x, uz = u′z, (4.12)

Θ,z = Θ′
,z, ψ = ψ′, Θ = Θ′, ϕ2 = ϕ′

2, (4.13)

Using Eq. (1.37) into (4.12), we have

λ
∂2p

∂x2
+ (λ+ 2µ+ κ)

∂2p

∂z2
+ (2µ+ κ)

∂2P

∂x∂z
+ sψ −mΘ =

λ′
∂2p′

∂x2
+ (λ′ + 2µ′ + κ′)

∂2p′

∂z2
+ (2µ′ + κ′)

∂2P ′

∂x∂z
+ s′ψ′ −m′Θ′, (4.14)

(2µ+ κ)
∂2p

∂x∂z
− (µ+ κ)

∂2P

∂z2
+ µ

∂2P

∂x2
− κϕ2 =

(2µ′ + κ′)
∂2p′

∂x∂z
− (µ′ + κ′)

∂2P ′

∂z2
+ µ′∂

2P ′

∂x2
− κ′ϕ′

2, (4.15)

γ
∂ϕ2

∂z
= γ′

∂ϕ′
2

∂z
, a

∂ψ

∂z
= a′

∂ψ′

∂z
, (4.16)

∂p

∂x
− ∂P

∂z
=
∂p′

∂x
− ∂P ′

∂z
,

∂p

∂z
+
∂P

∂x
=
∂p′

∂z
+
∂P ′

∂x
. (4.17)

Inserting Equations (4.7)-(4.11) into (4.13)-(4.4), we get a system of equations

10∑
j=1

aijZj = bi (i = 1, 2, ...., 10) (4.18)

where the non-zero aij are given as

a1j = {λ+ (2µ+ κ) cos2 θj − (sηj −mπj)/k
2
j}k2j , (j = 1, 2, 3);

a1j = −(2µ+ κ) sin θj cos θrk
2
j , (j = 4, 5);
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a1j = −{λ′ + (2µ′ + κ′) cos2 θj − (s′ηj −m′πj)/k
2
j}k2j , (j = 6, 7, 8);

a1j = −(2µ′ + κ′) sin θj cos θjk
2
j , (j = 9, 10);

a2j = (2µ+ κ) sin θj cos θjk
2
j , (j = 1, 2, 3);

a2j = {µ(cos2 θj − sin2 θj) + κ cos2 θj − κηj/k
2
j}k2j , (j = 4, 5);

a2j = (2µ′ + κ′) sin θj cos θjk
2
j , (j = 6, 7, 8);

a2j = −{µ′(cos2 θj − sin2 θj) + κ′ cos2 θj − κ′ηj/k
2
j}k2j , (j = 9, 10);

a3j = γηj cos θjkj (j = 4, 5), a3j = γ′ηj cos θjkj, (j = 9, 10);

a4j = aηj cos θjkj (j = 1, 2, 3), a4j = a′ηj cos θjkj, (j = 6, 7, 8);

a5j = πj cos θjkj (j = 1, 2, 3), a5j = πj cos θjkj, (j = 6, 7, 8);

a6j = sin θjkj (j = 1, 2, 3), a6j = cos θjkj, (j = 4, 5);

a6j = − sin θjkj (j = 6, 7, 8), a6j = cos θjkj, (j = 9, 10);

a7j = − cos θjkj (j = 1, 2, 3), a7j = sin θjkj, (j = 4, 5);

a7j = − cos θjkj (j = 6, 7, 8), a7j = − sin θjkj, (j = 9, 10);

a8j = ηj (j = 1, 2, 3), a8j = −ηj (j = 6, 7, 8), a9j = πj (j = 1, 2, 3);

a9j = −πj (j = 6, 7, 8), a10j = ηj (j = 4, 5), a10j = −ηj (j = 9, 10).

The non-zero bi, (i = 1, ..., 10) for the incident longitudinal waves are given as

b1 = −a1j, b2 = a2j, b4 = a4j, b5 = a5j, b6 = −a6j,

b7 = a7j, b8 = −a8j, b9 = −a9j, (j = 1, 2, 3).

Here, j = 1 corresponds for the incident first coupled longitudinal wave (FCLW ), j = 2 cor-

responds for the incident second coupled longitudinal wave (SCLW ) and j = 3 corresponds

for the incident third coupled longitudinal wave (TCLW ).

The non-zero bi, (i = 1, ..., 10) for the incident shear waves are given as

b1 = a1j, b2 = −a2j, b3 = a3j, b6 = a6j, b7 = −a7j, b10 = −a10j, (j = 4, 5).

In this case, j = 4 corresponds for incident first coupled shear wave (FCSW ) and j = 5

corresponds for incident second coupled shear wave (SCSW ).
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The amplitude ratios Zj(= Aj/A), j = 1, 2, 3 represent for the reflected coupled longi-

tudinal waves and Zj(= Aj/A), j = 4, 5 represent reflected coupled shear waves, while

Zj(= Aj/A), j = 6, 7, 8 represent for the refracted coupled longitudinal waves and Zj(=

Aj/A), j = 9, 10 represent refracted coupled shear waves.

4.5 Energy partition

Consider the energy partitioning among the various reflected and refracted waves at the

plane interface. Following Achenbach (1976), the energy distribution per unit area at the

plane interface (z = 0) is given by

℘ = ⟨Tzz, u̇z⟩+ ⟨Tzx, u̇x⟩+ ⟨Mzy, ϕ̇y⟩+ ⟨hz, ψ̇⟩. (4.19)

The expression of incident waves are given below:

(a) for incident longitudinal waves

℘inc = r0ωk
3 cos θA2 exp(2Q0), (4.20)

where r0 = λ+ 2µ+ κ− (sη0 + aη20 −mπ0)/k
2,

(b) for incident shear waves

℘inc = s0ωk
3 cos θA2 exp(2Q0), (4.21)

where s0 = µ+ κ− η00(γη00 + κ)/k2.

The expressions of energy ratios of various reflected and refracted waves are given by

(i) for incident longitudinal waves

Ei =
rik

3
i cos θi

r0k3 cos θ
Z2

i , (i = 1, 2, ..., 10), (4.22)

where

ri = λ+ 2µ+ κ− (sηi + aη2i −mπi)/k
2
i , (i = 1, 2, 3),
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ri = µ+ κ− ηi(κ+ γηi)/k
2
i , (i = 4, 5),

ri = λ′ + 2µ′ + κ′ − (s′ηi + a′η2i −m′πi)/k
2
i , (i = 6, 7, 8),

ri = µ′ + κ′ − ηi(κ
′ + γ′ηi)/k

2
i , (i = 9, 10),

and (ii) for incident shear waves

Ei =
rik

3
i cos θi

s0k3 cos θ
Z2

i , (i = 1, 2, ..., 10). (4.23)

We note that the energy ratios Ei, (i = 1, 2, 3) corresponds for the reflected coupled longi-

tudinal waves and Ei, (i = 6, 7, 8) corresponds for the refracted coupled longitudinal waves,

while Ei, (i = 4, 5) corresponds for the reflected coupled shear waves and Ei, (i = 9, 10)

corresponds for the refracted coupled shear waves.

4.6 Particular cases

Case 1: If we neglect the effect of micropolar in the two half-spaces M and M ′, then the

problem reduces to the reflection and refraction of elastic waves in two dissimilar half-spaces

of thermoelastic materials with voids. Then, α = β = γ = κ = α′ = β′ = γ′ = κ′ = 0.

Consequently,

V 2
5 = 0, V 2

4 = µ/ρ, V 2
10 = 0, V 2

9 = µ′/ρ′.

There are one each reflected and refracted shear waves in this case. Eq. (4.18) reduces to 8

equations with the following non-zero aij

a1j = {λ+ 2µ cos2 θj − (sηj −mπj)/k
2
j}k2j , (j = 1, 2, 3), a14 = −2µ sin θ4 cos θ4k

2
4,

a1j = −{λ′ + 2µ′ cos2 θj − (s′ηj −m′πj)/k
2
j}k2j , (j = 6, 7, 8), a19 = −2µ′ sin θ9 cos θ9k

2
9,

a2j = 2µ sin θj cos θjk
2
j , (j = 1, 2, 3), a24 = µ(cos2 θ4 − sin2 θ4)k

2
4,

a2j = 2µ′ sin θj cos θjk
2
j , (j = 6, 7, 8), a29 = −µ′(cos2 θ9 − sin2 θ9)k

2
9,

a4j = aηj cos θjkj, (j = 1, 2, 3), a4j = a′ηj cos θjkj, (j = 6, 7, 8),
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a5j = πj cos θjkj, (j = 1, 2, 3), a5j = πj cos θjkj, (j = 6, 7, 8),

a6r = sin θjkj, (j = 1, 2, 3), a64 = cos θ4k4, a6j = − sin θjkj, (j = 6, 7, 8),

a69 = cos θ9k9, a7j = − cos θjkj, (j = 1, 2, 3), a74 = sin θ4k4,

a7j = − cos θjkj, (j = 6, 7, 8), a79 = sin θ9k9, a8j = ηj, (j = 1, 2, 3),

a8j = −ηj, (j = 6, 7, 8), a9j = πj, (j = 1, 2, 3), a9j = −πj, (j = 6, 7, 8).

The corresponding energy ratios of the reflected and refracted waves for incident longitudinal

and shear waves are given by Eqs. (4.22) and (4.23) with the following modified values

r0 = λ+ 2µ− (sη0 + aη20 −mπ0)/k
2, ri = λ+ 2µ− (sηi + aη2i −mπi)/k

2
i , (i = 1, 2, 3),

r4 = s0 = µ, r9 = µ′, ri = λ′ + 2µ′ − (s′ηi + a′η2i −m′πi)/k
2
i , (i = 6, 7, 8).

These results are exactly same as those of Singh (2011, 2013).

Case 2: If micropolar and voids effects are neglected, then M and M ′ reduce to two half-

spaces of thermoelastic materials. In this case,

α = β = γ = κ = a = s = ζ = ξ = a′ = s′ = ζ ′ = ξ′ = α′ = β′ = γ′ = κ′ = 0.

Then, Equation (4.18) reduces to six linear equations with the following non-zero aij

a1j = (λ+ 2µ cos2 θr +mπj/k
2
j )k

2
j , (j = 1, 2); a14 = −2µ sin θ4 cos θ4k

2
4,

a1j = −(λ′ + 2µ′ cos2 θj +m′πj/k
2
j )k

2
j , (j = 6, 7); a19 = −2µ′ sin θ9 cos θ9k

2
9,

a2j = 2µ sin θj cos θjk
2
j , (j = 1, 2); a24 = µ(cos2 θ4 − sin2 θ4)k

2
4,

a2j = 2µ′ sin θj cos θjk
2
j , (j = 6, 7); a29 = −µ′(cos2 θ9 − sin2 θ9)k

2
9,

a5j = πj cos θrkj, (j = 1, 2); a5j = πj cos θjkj, (j = 6, 7); a6j = sin θjkj, (j = 1, 2);

a64 = cos θ4k4, a6j = − sin θjkj, (j = 6, 7); a69 = cos θ9k9,

a7j = − cos θjkj, (j = 1, 2); a74 = sin θ4k4, a7j = − cos θjkj, (j = 6, 7);
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a79 = sin θ9k9, a9j = πj, (j = 1, 2); a9j = −πj, (j = 6, 7).

These results are similar with those of Kumar and Sarthi (2006).

The corresponding energy ratios of the reflected and refracted waves for incident longitudinal

and shear waves are given by Eqs. (4.22) and (4.23) with the following modified values

r0 = λ+ 2µ+mπ0/k
2, ri = λ+ 2µ+mπi/k

2
i , (i = 1, 2),

r4 = s0 = µ, r9 = µ′, ri = λ′ + 2µ′ +m′πi/k
2
i , (i = 6, 7).

Case 3: If we neglect micropolar, voids and thermal effect, then M and M ′ reduce to two

half-spaces of isotropic elastic medium. In this case, α = β = γ = κ = a = s = ζ = ξ =

k0 = τ = m = α′ = β′ = γ′ = κ′ = a′ = s′ = ζ ′ = ξ′ = k′0 = τ ′ = m′ = 0. Consequently,

V 2
1 = (λ+ 2µ)/ρ, V 2

6 = (λ′ + 2µ′)/ρ′, V2 = V7 = 0.

Equation (4.18) becomes a system of four linear equations with the following aij:

a11 = (λ+ 2µ cos2 θ1)k
2
1, a14 = −2µ sin θ4 cos θ4k

2
4, a16 = −(λ′ + 2µ′ cos2 θ6)k

2
6,

a19 = −2µ′ sin θ9 cos θ9k
2
9, a21 = 2µ sin θ1 cos θ1k

2
1, a24 = µ(cos2 θ4 − sin2 θ4)k

2
4,

a26 = 2µ′ sin θ6 cos θ6k
2
6, a29 = −µ′(cos2 θ9 − sin2 θ9)k

2
9, a61 = sin θ1k1,

a64 = cos θ4k4, a66 = − sin θ6k6, a69 = cos θ9k9, a71 = − cos θ1k1,

a74 = sin θ4k4, a76 = − cos θ6k6, a79 = sin θ9k9.

The corresponding energy ratios of the reflected and refracted waves for incident longitudinal

and shear waves are given by Eqs. (4.22) and (4.23) with the following modified values

r0 = r1 = λ+ 2µ, s0 = r4 = µ, r6 = λ′ + 2µ′, r9 = µ′.

These results are exactly same with those of Achenbach (1976) for classical elasticity.
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4.7 Numerical results and discussion

We are interested in computing the numerical values of amplitude and energy ratios of re-

flected and refracted waves for the incident longitudinal and shear waves. For this model,

we consider two separate cases for incident first couple longitudinal wave (FCLW ) and for

incident first couple shear wave (FCSW ). The parameters for half-spaces, M (Khurana and

Tomar, 2007) and M ′ (Gauthier, 1982) are considered, shown below in table 4.1.

M M ′

Symbol Value Unit Symbol Value Unit

λ 7.85× 1010 N/m2 λ′ 7.59× 1010 N/m2

µ 6.46× 1010 N/m2 µ′ 1.89× 1010 N/m2

ρ 2.2× 103 Kg/m3 ρ′ 2.19× 103 Kg/m3

κ 0.0139× 1010 N/m2 κ′ 0.0149× 1010 N/m2

γ 0.386× 106 N γ′ 0.268× 106 N

χ 0.00791 m2 χ′ 0.00753 m2

ζ 1.64× 1010 N/m2 ζ ′ 1.49× 1010 N/m2

s 1.02× 1010 N/m2 s′ 1.06× 1010 N/m2

a 0.676× 10−9 N/m2 a′ 0.667× 10−9 N/m2

ξ 1.375× 106 N/m2 ξ′ 1.475× 106 N/m2

d 2.13× 106 N/m2 d′ 2.16× 106 N/m2

k0 1.6× 102 Jm−1s−1K−1 k′0 1.7× 102 Jm−1s−1K−1

τ 0.25 s τ ′ 0.12 s

Table 4.1: Numerical values of the parameters with Θ0 = 293 K and ω = 5 s−1.

It may be noted that the following values of the micro-inertia and linear thermal expansion

are used whenever not mentioned:

J = 0.0212× 10−4 m2, J ′ = 0.0196× 10−4 m2, ν = 5× 10−4 K−1 and ν ′ = 3× 10−4 K−1.
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We developed a program on MATLAB for the computation of amplitude and energy ratios

of reflected and refracted waves due to incident longitudinal and shear waves. Figures 4.2-4.9

shows the variation of modulus of amplitude and energy ratios due to incident longitudinal

wave for different values of linear thermal expansions, while Figures 4.10-4.17 represent the

variation of modulus of amplitude and energy ratios due to incident shear wave for different

values of micro-inertia (J) and (J ′).

4.7.1 Effect of linear thermal expansion

The variation of amplitude ratios with angle of incidence (θ) for different values of ν and

ν ′ are depicted in Figures 4.2-4.5 and those of energy ratios are represented by Figures

4.6-4.9. In all these figures, Curve I & IV : (ν, ν ′) = (1, 3) × 10−4 K−1; Curve II & V :

(ν, ν ′) = (2, 4) × 10−4 K−1; Curve III & VI : (ν, ν ′) = (3, 5) × 10−4 K−1. In Figure 4.2(a),

|Z1| increases with increase of θ from certain values at the normal incidence. The value of

|Z1| decreases with the increase of linear thermal expansion. Figure 4.2(b) shows that the

ratios |Z2| (Curves I, II, III) and |Z3| (Curves IV, V, VI) decrease with the increase θ to zero

at the grazing angle of incidence. The value of |Z3| decreases with the increase of ν and ν ′.
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Figure 4.2: Variation of amplitude ratios, |Z1| in (a), |Z2| and |Z3| in (b) for incident longitudinal
wave with θ at different values of ν and ν ′
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Figure 4.3: Variation of amplitude ratios, |Z4| and |Z5| for incident longitudinal wave with θ at
different values of ν and ν ′

In Figure 4.3, |Z4| (Curves I, II, III) and |Z5| (Curves IV, V, VI) are represented by parabolic

curves between θ = 00 and θ = 900 with the maximum values at 450 and 540 respectively. It

is observed that their values are decreased with the increase of ν and ν ′. The variation of the
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Figure 4.4: Variation of amplitude ratios, |Z6|, |Z7| in (a) and |Z8| in (b) for incident longitudinal
wave with θ at different values of ν and ν ′

amplitude ratios, |Z6| (Curves I, II, III), |Z7| (Curves IV, V, VI) and |Z8| of the refracted

coupled waves with θ have similar nature in Figures 4.4(a) and (b). They decrease with the

increase of θ and obtain zero at the grazing angle of incidence. The value of |Z6| increases,

while |Z7| and |Z8| decrease with the increase of linear thermal expansion. Similar nature

of the ratios |Z9| (Curves I, II, III) and |Z10| (Curves IV, V, VI) with |Z4| is seen in Figure

4.5. In Figure 4.6(a), the energy ratio |E1| starts from certain value and increases with the
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increase of angle of incidence with the maximum value at grazing angle of incidence. With

the increase of ν and ν ′, the value of |E1| decreases. Similar nature of |E2| (Curves I, II, III)

and |E3| (Curves IV, V, VI) may be seen in Figure 4.6(b). They start from certain values,

which decrease with the increase of θ and obtain the minimum value at the grazing angle of
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Figure 4.5: Variation of amplitude ratios, |Z9| and |Z10| for incident longitudinal wave with θ at
different values of ν and ν ′
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Figure 4.6: Variation of energy ratios, |E1| in (a), |E2| and |E3| in (b) for incident longitudinal
wave with θ at different values of ν and ν ′
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Figure 4.7: Variation of energy ratios, |E4| and |E5| for incident longitudinal wave with θ at
different values of ν and ν ′

incidence. The values of |E2| and |E3| increase and decrease respectively with the increase

of ν and ν ′. The energy ratios, |E4| (Curves I, II, III) and |E5| (Curves IV, V, VI) in Figure

4.7 increase initially and attain the maximum value at 550 and 630 respectively with the

increase of θ. Then, they decrease again with the increase of θ. The values of |E4| and |E5|
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Figure 4.8: Variation of energy ratios, |E6|, |E7| in (a) and |E8| in (b) for incident longitudinal
wave with θ at different values of ν and ν ′

decrease with the increase of ν and ν ′. The values of |E6| (Curves I, II, III), |E7| (Curves

IV, V, VI) and |E8| in Figures 4.8 (a) and (b), decrease with the increase of θ attaining the

minimum value at grazing angle of incidence. The value of |E7| increase with the increase of

ν and ν ′. Similar nature of |E9| (Curves I, II, III) and |E10| (Curves IV, V, VI) with |E4| is

seen in Figure 4.9. We have observed that the sum of energy ratios is close to unity. Thus,
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Figure 4.9: Variation of energy ratios, |E9| and |E10| for incident longitudinal wave with θ at
different values of ν and ν ′

we have seen that amplitude and energy ratios depend on angle of incidence (θ) and linear

thermal expansion (ν and ν ′).

4.7.2 Effect of micro-inertia

We shall discuss the effects of micro-inertia on the amplitude and energy ratios of the reflected

and refracted waves due to incident shear wave. In all figures, Curve I & IV :(J, J ′) =

(0.020, 0.015) × 10−4 m2; Curve II & V: (J, J ′) = (0.025, 0.020) × 10−4 m2; Curve III & VI

: (J, J ′) = (0.030, 0.025) × 10−4 m2. In Figure 4.10 (a), |Z1| increases initially upto certain

value and then it decreases sharply with the increase of θ. The value of |Z1| increases again

to the maximum value and thereafter, it decreases to zero with the increase of θ. We have

observed similar nature |Z2| (Curves I, II, III) and |Z3| (Curves IV, V, VI) in Figure 4.10 (b).

They increase initially, after that, decrease sharply and then increase again to the maximum

value, which are followed by decreasing to zero with the increase of θ. The values of |Z2| and

|Z3| increases with the increase of micro-inertia. Critical angles are observed for |Z1|, |Z2|

and |Z3|. The value of |Z4| (Curves I, II, III), in Figure 4.11, starts slow decreases from a
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Figure 4.10: Variation of amplitude ratios, |Z1| in (a), |Z2| and |Z3| in (b) for incident shear wave
with θ at different values of J and J ′

certain value to zero and then it increases with the increase of θ attaining the maximum

value at the grazing angle of incidence. In the same figure, |Z5| (Curves IV, V, VI) decreases

from certain value to the minimum value at θ = 540 for Curve IV, θ = 490 for Curve V and

θ = 450 for Curve VI, thereafter, it increases upto certain value and then decreases to zero
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with the increase of θ. Figures 4.12(a, b) show the similar natures of |Z6|, |Z7| (Curves I,

II, III) and |Z8| (Curves IV, V, VI). They increase initially upto certain value, followed by

sharp decreasing nature and then, again they increase upto certain extend and thereafter,

decrease to zero with the increase of θ. They increase with the increase of micro-inertia.
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Figure 4.13: Variation of amplitude ratios, |Z9| and |Z10| for incident shear wave with θ at
different values of J and J ′

Here, also critical angles for |Z6|, |Z7| and |Z8| are observed. The minimum effect of micro-

inertia is observed near normal and grazing angle of incidence. In Figure 4.13, |Z9| (Curves I,

II, III) starts from certain value and decreases to zero with the increase of θ. The minimum

effect of J and J ′ is observed near the grazing angle of incidence and value of |Z9| decreases
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Figure 4.14: Variation of energy ratios, |E1|, |E2| in (a) and |E3| in (b) for incident shear wave
with θ at different values of J and J ′

with the increase of micro-inertia. In the same figure, we have observed the decreasing nature

of |Z10| (Curves IV, V, VI) upto θ = 630 for Curve IV, θ = 690 for Curve V and θ = 780

for Curve VI. The maximum effect of micro-inertia is observed near the normal incidence.

In Figures 4.14(a), |E1| (Curves I, II, III) and |E2| (Curves IV, V, VI) has similar nature.
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They increase to the maximum value and decrease with the increase of θ. The effect of

micro-inertia is minimum near the normal and grazing angle of incidence. The value of |E3|

in Figure 4.14(b) increases initially upto certain value, which followed by sharp decrease and

then, it increases to the maximum value, thereafter, it decreases again with the increase of
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Figure 4.15: Variation of energy ratios, |E4| and |E5| for incident shear wave with θ at different
values of J and J ′
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Figure 4.16: Variation of energy ratios, |E6|, |E7| in (a) and |E8| in (b) for incident shear wave
with θ at different values of J and J ′
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Figure 4.17: Variation of energy ratios |E9| and |E10| for incident shear wave with θ at different
values of J and J ′

θ. The value of |E4| (Curves I, II, III), in Figure 4.15, decreases initially and then increases

with the increase of θ. In the same figure, |E5| (Curves IV, V, VI) starts from certain value

and decreases upto θ = 520 for Curve IV, θ = 480 for Curve V and θ = 440 for Curve VI with

the increase of θ, which followed by a parabolic region. The minimum effect of micro-inertia
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is found at θ = 350 and θ = 900. In Figure 4.16, it is noted that the energy ratio, |E6|

(Curves I, II, III) is similar with that of |E2|, while |E7| (Curves IV, V, VI) and |E8| are

similar with that of |E3|. The values of |E6|, |E7| and |E8| increase with the increase of J and

J ′. In Figure 4.17, |E9| (Curves I, II, III) decreases to zero with the increase of θ, while |E10|

(Curves IV, V, VI) decreases upto certain value of θ and then increases which is followed by

decreasing again with the increase of θ. Here, also we see critical angles for |E1|, |E2|, |E3|

of the reflected coupled longitudinal waves and |E6|, |E7|, |E8| of the refracted coupled

longitudinal waves. The sum of the energy ratios of reflected and refracted waves is closed

to unity.

4.8 Conclusions

The reflection and refraction of elastic waves from a plane interface between two dissimilar

half-spaces of micropolar thermoelastic materials with voids has been analysed. The am-

plitude and energy ratios of the reflected and refracted waves due to incident longitudinal

and shear waves are obtained. These ratios are the functions of angle of incidence, thermal,

micropolar and voids parameters. These ratios are computed numerically for different values

of the linear thermal expansion and micro-inertia. The effect of linear thermal expansion

and micro-inertia on the amplitude and energy ratios are depicted graphically. We may

summarize with the following concluding remarks:

(i) The amplitude ratios, |Z1|, |Z3|, |Z4|, |Z5|, |Z7|, |Z8|, |Z9| and |Z10| of the reflected and

refracted waves due to incident longitudinal wave decrease with the increase of linear thermal

expansion, while |Z6| increases with the increase of ν and ν ′.

(ii)The energy ratios, |E1|, |E3|, |E4|, |E5|, |E9| and |E10| of the reflected and refracted waves

due to incident longitudinal wave decrease with the increase of ν and ν ′, while |E7| and |E2|

increase with the increase of linear thermal expansion.

(iii) The amplitude ratios, |Z2|, |Z3|, |Z6|, |Z7| and |Z8| of the reflected and refracted waves

due to incident shear wave increase with the increase of micro-inertia, while |Z9| decreases
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with the increase of J and J ′.

(iv) The energy ratios, |E1|, |E2|, |E3|, |E6|, |E7| and |E8| of the reflected and refracted

waves due to incident shear wave increase with the increase of J and J ′.

(v) The amplitude and energy ratios of the reflected and refracted coupled longitudinal waves

due to incident shear wave are found to have critical angles.

(vi) The sum of energy ratios of the reflected and refracted waves is close to unity.
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Chapter 5

Effect of micro-inertia on

reflection/refraction of plane waves at

the orthotropic and thermoelastic

micropolar materials with voids4

5.1 Introduction

The problems of wave propagation in orthotropic micropolar materials and thermoelastic

micropolar materials with voids are very important for the possibility of their extensive ap-

plications in various branches of sciences, particularly in optics, acoustics, geophysics and

Seismology. Kumar and Choudhary (2002a, b) obtained the normal displacement, normal

force stress and tangential couple stress in the physical domain with the help of integral trans-

forms in orthotropic micropolar materials. Singh (2007c) studied two-dimensional problem

of wave propagation in the orthotropic micropolar elastic medium and discussed the effects

of anisotropy upon the velocities and reflection coefficients of the three coupled reflected

waves.

In this chapter, the problem of the effect of micro-inertia on the reflection and refraction of

plane waves at the orthotropic and thermoelastic micropolar materials with voids has been

4Global Journal of Pure and Applied Mathematics, 13(7), 2907-2921(2017)
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investigated. We have obtained the amplitude and energy ratios of the reflected and refracted

waves using appropriate boundary conditions. These ratios are numerically computed for a

particular model and discussed the effect of micro-inertia.

5.2 Basic Equations

Let us consider the cartesian co-ordinate system with x−axis lying horizontally and y−axis

vertically with positive direction pointing downward. We assume that an orthotropic microp-

olar elastic half-space, M = {(x, y); x ∈ R, y ∈ (0,∞)} and another half-space of micropolar

thermoelastic materials with voids, M̄ = {(x, y); x ∈ R, y ∈ (−∞, 0)} are welded contact

and are separated by y = 0.

Orthotropic micropolar elastic half-space, M :

The equations of motion in xy−plane for homogeneous orthotropic micorpolar solid without

body couples and forces are written as (Singh, 2007b)

A11u1,11 + (A12 + A78)u2,12 + A88u1,22 −K1ϕ3,2 = ϱü1, (5.1)

(A12 + A78)u1,12 + A77u2,11 + A22u2,22 −K2ϕ3,1 = ϱü2, (5.2)

B66ϕ3,11 +B44ϕ3,22 −K3ϕ3 +K1u1,2 +K2u2,1 = ϱfϕ̈3, (5.3)

where A11, A12, A22, A77, A78, A88, A44, B44 and B66 are characteristic constants of the mate-

rial, f is micro-inertia, ϱ is density, K1 = A78 − A88, K2 = A77 − A78 and K3 = K2 −K1.

Here, the displacement vector and micro-rotation vector are respectively represented by

u = (u1, u2, 0) and ϕ = (0, 0, ϕ3). The subscripts preceded by coma indicate coordinate

derivatives and superposed dots mean time derivatives.

Half-space of micropolar thermoelastic materials with voids, M̄ :

The equation of motions of homogeneous and isotropic micropolar thermoelastic materials

with voids in the absence of body forces and body couples are (1.44)-(1.47)

(λ+ 2µ+ κ)∇2u′ + sψ −mΘ = ρü′, (5.4)
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s∇2u′ − (a∇2 − ζ)ψ + ξΘ = −ρ2ψ̈, (5.5)

k0∇2Θ−Θ0(1 + τ
∂

∂t
)(dΘ̇ +m∇2u̇′ − ξψ̇) = 0, (5.6)

(α + β + γ)∇2ϕ′ − 2κϕ′ = ρ1ϕ̈′, (5.7)

(µ+ κ)∇2u′′ + κ∇× ϕ′′ = ρü′′, (5.8)

(γ∇2 − 2κ)ϕ′′ + κ∇× u′′ = ρ1ϕ̈
′′, (5.9)

where λ, µ are lame’s parameters, α, β, γ, κ are micropolar parameters, s, a, ζ, ξ are voids

parameters and m, k0, d, τ are thermal parameters, ρ is mass density, ρ1(= ρJ) and ρ2(= ρχ)

are inertial coefficients, J, χ are micro-inertia and equilibrated inertia respectively. Here, ψ

is the void volume fraction and Θ is temperature measured from a reference temperature

Θ0. The displacement (ū) and micro-rotation (ϕ̄) vectors are represented as

ū = ∇u′ +∇× u′′, ϕ̄ = ∇ϕ′ +∇× ϕ′′. (5.10)

Equations (5.2)-(5.2) are couple in u′, ψ and Θ, while Equations (5.2) and (5.2) are also

couple in u′′ and ϕ′′. Equation (5.2) is uncouple longitudinal waves or micropolar waves

(Parfitt and Eringen, 1969).

5.3 Wave propagation

A train of longitudinal wave with amplitude, A0 is incident at the plane interface making an

angle θ0 with the normal. This wave gives three reflected coupled waves in the half-space,

M and five refracted waves (three coupled longitudinal waves and two coupled shear waves)
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in half-space, M̄ . The complete geometry of the problem is shown in Figure 5.1.

Figure 5.1: Geometry of the problem

The structures of the various reflected and refracted waves are given below.

(For the reflected waves in the half-space, M)

{u1, u2, ϕ3} =
3∑

i=0

{1, ηi, ıkiπi}kiAi exp(Qi), (5.11)

(For the refracted waves in the half-space, M̄)

{u′, ψ,Θ} =
6∑

i=4

{1, ηi, πi}Ai exp(Qi), (5.12)

{u′′, Φ3} =
8∑

i=7

{1, ηi}Ai exp(Qi), (5.13)

where ϕ3 is the z−component of ϕ, u′′ and Φ3 are the z−component of u′′ and ϕ′′ respectively,

Qi = ıki(xp
(i)
1 + yp

(i)
2 − vit), p

(i) = (p
(i)
1 , p

(i)
2 , 0) is propagation vector, vi is the phase velocity
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and ki is the wavenumber and Ai is the amplitude constant at angle θi with wavenumber ki.

The coupling constants, ηi and πi are defined as

ηi =



{a25(a21 − v2i )− a22a
2
3}/{a23(a24 − v2i )− a22a

2
5}, (i = 0, 1, 2, 3)

{c24c2kk4i − (c24c
2
d − c27c

2
m)k

2
i }/{c25c2kk4i − (ω2c2k − c26c

2
k + c25c

2
d)k

2
i−

c27c
2
ξ − c26c

2
d + ω2c2d}, (i = 4, 5, 6)

c21/{c22 + c23/k
2
i − v2i }, (i = 7, 8)

πi =


{a27ηi + a26}/{a29/v2i + a28 − 1}, (i = 0, 1, 2, 3)

{c2mc25k4i + (c2mc
2
6 + c24c

2
ξ − c2mω

2)k2i }/{−c25c2kk4i + (ω2c2k − c26c
2
k+

c25c
2
d)k

2
i + c27c

2
ξ + c26c

2
d − ω2c2d}, (i = 6, 7, 8).

where

a21 = (A11p
2
1 + A88p

2
2)/ϱ, a22 = p1p2(A12 + A78)/ϱ, a23 = K1p2/ϱ, a24 = (A77p

2
1 + A22p

2
2)/ϱ,

a25 = K2p1/ϱ, a26 = K1p2/ϱjω
2, a27 = K2p1/ϱjω

2, a28 = K3/ϱjω
2, a29 = (B66p

2
1 +B44p

2
2)/ϱj

c21 = (α + β)/ρ1, c22 = γ/ρ1, c23 = 2κ/ρ1, c24 = s/ρ2, c25 = a/ρ2, c26 = ζ/ρ2, c27 = ξ/ρ2,

c2m = m/ρ1, c2ξ = ξ/ρ1, c
2
d = d/ρ1, c

2
k = k0/Θ0ρ1ω(ωτ + ı).

The Snell’s law in this problem may be written as

p
(0)
0 k0 = p

(i)
1 ki, (i = 1, 2, ..., 8). (5.14)

It is also noted that θi (i = 1, 2, 3) correspond to angles of reflected waves in the half-space,

M and θi (i = 4, 5, 6, 7, 8) correspond to angles of refracted waves in the half-space, M̄ .
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5.4 Boundary conditions

The boundary conditions are the continuity of tensors (force stresses and couple stresses) at

y = 0. Mathematically, these conditions at y = 0 may be written as

t22 = T̄22, t21 = T̄21, m23 = M̄23. (5.15)

The displacement components, micro-rotation vectors, temperature gradient and the equili-

brated stress vector are also continuous at y = 0 as

u1 = ū1, u2 = ū2, ϕ3 = Φ3, Θ,2 = 0, h2 = 0. (5.16)

With the help of Equations (1.33) and (1.37), Equation (5.15) may be written to

A12
∂u1
∂x

+ A22
∂u2
∂y

= λ
∂2u′

∂x2
+ (λ+ 2µ+ κ)

∂2u′

∂y2
+ (2µ+ κ)

∂2u′′

∂x∂y
+ sψ −mΘ, (5.17)

A78
∂u2
∂x

+ A88
∂u1
∂y

+ (A88 − A78)ϕ3 = (2µ+ κ)
∂2u′

∂x∂y
− (µ+ κ)

∂2u′′

∂y2
+ µ

∂2u′′

∂x2
− κΦ3, (5.18)

B44
∂ϕ3

∂y
= γ

∂Φ3

∂y
. (5.19)

Using Equations (5.11)-(5.14) into the boundary conditions (5.16)-(5.19), we get a system

of eight equations as

8∑
j=1

aijZj = bi, (i = 1, 2, ..., 8). (5.20)

The non-zero, aij are given as

a1j =


(A12p

(j)
1 + A22p

(j)
2 )ık2j , (j = 0, 1, 2, 3)

{λ+ p
(j)
2

2
(2µ+ κ)− (sηj −mπj)/k

2
j}k2j , (i = 4, 5, 6)

(2µ+ κ)p
(j)
1 p

(j)
2 k2j , (i = 7, 8)
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a2j =


(A78ηjp

(j)
1 + A88p

(j)
2 −K1πj)ık

2
j , (j = 0, 1, 2, 3)

(2µ+ κ)p
(j)
1 p

(j)
2 k2j , (i = 4, 5, 6)

−{µ(p(j)2

2
− p

(j)
1

2
) + κp

(j)
1

2
− κηj/k

2
j}, (i = 7, 8)

a3j =


B44πjp

(j)
2 k3j , (j = 0, 1, 2, 3)

ıγηjp
(j)
2 kj, (j = 7, 8)

a4j =


kj, (j = 0, 1, 2, 3)

−ıp(j)1 kj, (j = 4, 5, 6)

ıp
(j)
2 kj, (j = 7, 8),

a5j =


ıηjkj, (j = 0, 1, 2, 3)

p
(j)
2 kj, (j = 4, 5, 6)

p
(j)
1 kj, (j = 7, 8)

a6j =


πjk

2
j , (j = 0, 1, 2, 3)

ıηj, (7, 8)

a7j = p
(j)
2 ηjkj, (j = 4, 5, 6), a8j = p

(j)
2 πjkj, (j = 4, 5, 6), bi = −ai0, (i = 1, 2, ..., 8)

and Zi(= Ai/A0) are the amplitude ratios of the reflected and refracted waves for the incident

longitudinal wave. It may be noted that Zi, (i = 1, 2, 3) correspond to the amplitude ratios

of reflected waves, while Zi, (i = 4, 5, 6, 7, 8) correspond to the amplitude ratios of the

refracted waves.
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5.5 Energy partition

Let us consider energy partition between the reflected and refracted waves at the plane

interface, y = 0. The rate of energy transmission per unit area at y = 0 is given by

P ∗ = ⟨t22, u̇2⟩+ ⟨t21, u̇1⟩+ ⟨m23, ϕ̇3⟩+ ⟨h2, ψ̇⟩. (5.21)

The energy of the incident, reflected and refracted waves are given as

Pi = liωk
3
iA

2
i exp(2Qi), (i = 0, 1, 2, 3, 4, 5, 6, 7, 8) (5.22)

where

li =


(A12 + A78ηi)p

(i)
1 + (A22ηi + A88 −B44π

2
i k

2
i )p

(i)
2 −K1πi, (i = 0, 1, 2, 3)

{λ+ 2µ+ κ− (sηi + aη2i −mπi)/k
2
i }p

(i)
2 , (i = 4, 5, 6)

{µ+ κ− ηi(κ+ γηi)/k
2
i }p

(i)
2 , (i = 7, 8).

It may be noted that i = 0 represents for the energy of incident wave, i = 1, 2, 3 represent for

the energy of reflected waves and i = 4, 5, 6, 7, 8 represent for the energy of refracted waves.

The energy ratios of the reflected and refracted waves are

Ei =
Pi

P0

, (i = 1, 2, ..., 8) (5.23)

Here, the energy ratios, Ei, (i = 1, 2, 3) correspond for the reflected waves and Ei, (i =

4, 5, 6, 7, 8) correspond for the refracted waves. We come to know that these ratios are

functions of the angle of propagation, elastic, micropolar, thermal and void parameters.

5.6 Numerical results and discussion

We are interested in the computation of amplitude and energy ratios of reflected and refracted

waves for the incident longitudinal wave. We have developed programs on MATLAB for

the computation of amplitude and energy ratios and discussed the effects of micro-inertia
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parameters, f and J . The following relevant parameters are considered.

For the orthotropic micropolar half-space, M(modified values of Singh, 2007c):

ϱ = 2290 Kg/m3, A11 = 1.165× 1011 N/m2, A22 = 1.265× 1011 N/m2,

A12 = 7.69× 1010 N/m2, A77 = 1.669× 1010 N/m2, A78 = 1.59× 1010 N/m2,

A88 = 2.29× 1010 N/m2, B44 = 4.9× 104 N , B66 = 4.8× 104 N .

For the half-space, M̄ of thermoelastic micropolar materials with voids (Sharma and Kumar,

2009):

ρ = 2190 Kg/m3, λ = 7.59× 1010 N/m2, µ = 1.89× 1010 N/m2, κ = 1.49× 108 N/m2, χ =

0.00753 m2, ζ = 1.49× 1010 N/m2, s = 1.05× 1010 N/m2, a = 6.68× 10−10 N/m2,

γ = 2.68×105 N , ξ = 1.475×106 N/m2, d = 2.16×106 N/m2, k0 = 1.7×102 Jm−1s−1K−1,

ν = 0.02 K−1, τ = 0.12 s, Θ0 = 293 K, ω = 5 s−1.

The variation of amplitude ratios with angle of incidence are depicted at Figures 5.2-5.6 and

those of energy ratios are shown in Figures 5.7-5.11. In all the figures, we take

Curve I & IV: (f, J) = (0.016, 0.014)× 10−4m2,

Curve II & V: (f, J) = (0.018, 0.016)× 10−4m2 and

Curve III & VI: (f, J) = (0.020, 0.018)× 10−4m2.

5.6.1 Effect of micro-inertia on amplitude ratios

In Figure 5.2, the value of |Z1| increases from a certain value with the increase of angle of

incidence, θ0 attaining the maximum value at the grazing angle of incidence. The values

of |Z1| decrease with the increase of micro-inertia and the minimum effect of micro-inertia

is found near θ0 = 900. In Figure 5.3, Curve I shows the decreasing nature of |Z2| thereby

making local minimums at θ0 = 770 and θ0 = 900, but Curves II and III represent increasing

|Z2| with the increase of θ0 upto the maximum value at θ0 = 150 and θ0 = 340 respectively.

In this figure, we come to know that the value |Z3|(Curves IV, V, VI) increases with the

increase of θ0. The minimum and maximum effects of micro-inertia on |Z2| are observed

near grazing and normal angle of incidence. But in the case of |Z3|, the minimum effect is
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Figure 5.2: Variation of |Z1| with θ0 at different values of f&J .
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Figure 5.3: Variation of |Z2| (I, II, III) & |Z3| (IV, V, VI) with θ0 at different values of f&J .

observed near normal angle of incidence. The amplitude ratios, |Z4| (Curves I, II, III) and

|Z5| (Curves IV, V, VI) in Figure 5.4, and |Z6| in Figure 5.5 have similar nature. They

increase to the maximum value and then decrease with the increase of θ0. The values of

these amplitude ratios increase with the increase of the micro-inertia. The minimum effect
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Figure 5.4: Variation of |Z4| (I, II, III) & |Z5| (IV, V, VI) with θ0 at different values of f&J .
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Figure 5.5: Variation of |Z6| with θ0 at different values of f&J .

is observed near the normal angle of incidence. The similar nature of |Z7| and |Z8| is ob-

served in Figure 5.6 and they increase with the increase of angle of incidence. The values of

these amplitude ratios increase with the increase of micro-inertia.
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Figure 5.6: Variation of |Z7| (I, II, III) & |Z8| (IV, V, VI) with θ0 at different values of f&J .

5.6.2 Effect of micro-inertia on energy ratios

In Figures 5.7, |E1| starts from certain values and increases with the increase of angle of

incidence. The minimum effect of the micro-inertia is found near grazing angle of incidence.
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Figure 5.7: Variation of |E1| with θ0 at different values of f&J .
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The Energy ratio, |E2| (Curves I, II, III) in Figure 5.8, decreases upto θ0 = 110 and thereafter,

it increases to the maximum values with the increase of θ0. It may be noted that it decreases

to the minimum value near grazing angle of incidence. In this figure, we have seen that |E3|
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Figure 5.10: Variation of |E6| with θ0 at different values of f&J .
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Figure 5.11: Variation of |E7| (I, II, III) & |E8| (IV, V, VI) with θ0 at different values of f&J .

starts with very small values and it increases to the maximum value which leads to the

decrease with the increase of θ0. The values of these energy ratios decrease with the increase

of micro-inertia. The energy ratios, |E4|(Curves I, II, III), |E5|(Curves IV, V, VI) and |E6|

have similar nature in Figures 5.9 and 5.10. They initially start from zero and increase to

103



Chapter 5

the maximum value, which then decrease with the increase of θ0. The minimum effect of

micro-inertia is observed near normal and grazing angle of incidence. The energy ratios,

|E7| and |E8| in Figure 5.11 decrease with the increase of θ0. The values of these ratios

increase with the increase of micro-inertia. The sum of the energy ratios due to reflected

and refracted waves is close to unity.

5.7 Conclusions

The problem of the effect of micro-inertia on the reflection and refraction of elastic waves at

a plane interface between two half-spaces of an orthotropic micropolar materials and microp-

olar thermoelastic materials with voids has been investigated. The amplitude and energy

ratios of the reflected and refracted waves due to incident longitudinal wave are obtained.

These ratios are computed numerically for different values of micro-inertia to study their

effects. We may summarize with the following concluding remarks:

(i) The amplitude and energy ratios are functions of angle of incidence, micropolar, thermal

and voids parameters.

(ii) The amplitude ratio, |Z4|, |Z5|, |Z6|, |Z7| and |Z8| increase with increasing micro-inertia,

while |Z1| decreases with the increase of micro-inertia.

(iii) The energy ratios, |E7| and |E8| increase with the increase of micro-inertia, while

|E1|, |E2| and |E3| decrease with the increase of micro-inertia.

(iv) The amplitude ratios, |Z3|, |Z4|, |Z5| and |Z6| have minimum effect of micro-inertia near

normal angle of incidence, while |Z1| and |Z2| have minimum effect near grazing angle of

incidence.

(v) The energy ratios, |E1|, |E2|, |E7| and |E8| have minimum effect of micro-inertia near

grazing angle of incidence, while |E4|, |E5| and |E6| have minimum effect of micro-inertia

near the normal and grazing angle of incidence.

(vi) The sum of energy ratios is close to unity.
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Chapter 6

Summary and Conclusions

In the present thesis, the problems of wave propagation in homogeneous isotropic micropolar

thermoelastic materials with voids and orthotropic micropolar materials have been investi-

gated. The phenomena of reflection and refraction of longitudinal and transverse waves are

discussed with the help of appropriate boundary conditions. Amplitude and energy ratios

are obtained analytically and numerically for a particular model.

Chapter 1 is the general introduction of the thesis. It consists of microcontinuum theories,

linear micropolar theory, Hookes law, elastic waves, helmholtz decomposition theorem, ap-

plications of wave propagation and review of literatures.

In Chapter 2, the problem of plane wave in micropolar thermoelastic materials with

voids is attempted. There exist six plane waves which are three coupled dilatational waves

(FCDW, SCDW, TCDW ), two coupled shear waves (FCSW,SCSW ) and one uncoupled

dilatational wave (FDW ). The phase velocities of these waves are obtained analytically and

numerically for a particular model. We may conclude with the following remarks:

(i) The phase velocity of micropolar wave (FDW ) is a function of micropolar parameters.

(ii) The shear waves (FCSW, SCSW ) are independent of thermal and void parameters.

(iii) The phase velocity of dilatational waves depend on the Lame’s constants, micropolar,

thermal and void parameters.

(iv) All the coupled dilatational waves are attenuated only when G ̸= 0.

105



Chapter 6

(v) One of the coupled dilatational waves is non-attenuated for G = 0.

(vi) The phase velocities corresponding to SCDW , TCDW and attenuation coefficient of

FCDW increase with the increase of angular frequency (ω).

(vii) The attenuation coefficient of SCDW decreases with the increase of ω.

(viii) The values of phase velocity of FCDW increase with the increase of J .

(ix) The values of phase velocity of SCDW and TCDW decrease and increase respectively

with the increase of J .

(x) The values of the attenuation coefficients of FCDW and SCDW, TCDW increase and

decrease respectively with the increase of J .

In Chapter 3, the problem of reflection of elastic waves due to incident longitudinal and

shear waves at a plane free boundary of a micropolar thermoelastic materials with voids has

been investigated. The micropolar wave is not reflected for the incident coupled longitudi-

nal/shear wave. The expressions of the amplitude and energy ratios of the reflected waves

are obtained analytically and numerically. These ratios are the functions of elastic, microp-

olar, thermal and void parameters and angle of incidence. We conclude with the following

points:

(i) Amplitude and energy ratios are the functions of elastic, micropolar, thermal and void

parameters and angle of incidence.

(ii) The micropolar wave is not reflected for the incident coupled longitudinal/shear wave.

(iii) Amplitude ratios, |Z1|, |Z2|, |Z3|, |Z4| for the incident coupled longitudinal wave in-

crease with the increase of J , while |Z5| decrease with the increase of J .

(iv) Energy ratios of the reflected coupled longitudinal waves for incident coupled waves

increase with the increase of J .

(v) We have observed that the effect of J on the amplitude and energy ratios for the incident

shear wave are more than that of incident longitudinal wave.

(vi) The sum of energy ratios of reflected waves for the incident coupled longitudinal and

coupled shear waves are found to be closed to unity.
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In Chapter 4, the problem of reflection and refraction of elastic waves at a plane interface

between two dissimilar half-space of micropolar thermoelastic materials with voids has been

studied. The amplitude and energy ratios of the reflected and refracted waves are obtained

separately for the cases of incident longitudinal and shear waves. We have observed that

these ratios are functions of angle of incidence, thermal, micropolar and voids parameters.

These ratios are computed numerically for different values of the linear thermal expansion

and micro-inertia. The following concluding remarks may be mentioned:

(i) The amplitude ratios, |Z1|, |Z3|, |Z4|, |Z5|, |Z7|, |Z8|, |Z9| and |Z10| of the reflected and

refracted waves due to incident longitudinal wave decrease with the increase of linear thermal

expansion, while |Z6| increases with the increase of ν and ν ′.

(ii)The energy ratios, |E1|, |E3|, |E4|, |E5|, |E9| and |E10| of the reflected and refracted waves

due to incident longitudinal wave decrease with the increase of ν and ν ′, while |E7| and |E2|

increase with the increase of linear thermal expansion.

(iii) The amplitude ratios, |Z2|, |Z3|, |Z6|, |Z7| and |Z8| of the reflected and refracted waves

due to incident shear wave increase with the increase of micro-inertia, while |Z9| decreases

with the increase of J and J ′.

(iv) The energy ratios, |E1|, |E2|, |E3|, |E6|, |E7| and |E8| of the reflected and refracted

waves due to incident shear wave increase with the increase of J and J ′.

(v) The amplitude and energy ratios of the reflected and refracted coupled longitudinal waves

due to incident shear wave are found to have critical angles.

(vi) The sum of energy ratios of the reflected and refracted waves is close to unity.

In Chapter 5, the problem of the effect of micro-inertia on reflection/refraction of plane

waves at the orthotropic and thermoelastic micropolar materials with voids has been in-

vestigated. The amplitude and energy ratios of the reflected and refracted waves due to

incident longitudinal wave are obtained using appropriate boundary conditions. These ra-

tios are computed numerically for a particular model. These ratios are found to be functions

of angle of incidence, micropolar, thermal and voids parameters. We summarize with the
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following concluding remarks:

(i) The amplitude ratio, |Z4|, |Z5|, |Z6|, |Z7| and |Z8| increase, while |Z1| decreases with the

increase of micro-inertia. The energy ratios, |E7| and |E8| increase, while |E1|, |E2| and |E3|

decrease with the increase of micro-inertia.

(ii) The amplitude ratios, |Z3|, |Z4|, |Z5| and |Z6| have minimum effect of micro-inertia near

normal angle of incidence, while |Z1| and |Z2| have minimum effect near grazing angle of

incidence.

(iii) The energy ratios, |E1|, |E2|, |E7| and |E8| have minimum effect of micro-inertia near

grazing angle of incidence, while |E4|, |E5| and |E6| have minimum effect of micro-inertia

near the normal and grazing angle of incidence.

Future scopes of the work

The works in the present thesis may be useful in the field of Earthquake Engineering, Seis-

mology, Explorations of oil and minerals, etc.

The following problems may be extended:

(i) Plane waves at the interface between a mocropolar fluid and micropolar thermoelastic

materials with voids.

(ii) Symmetric and Anti-symmetric vibration in the plate of micropolar thermoelastic ma-

terials with voids.
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