
DEVELOPING NETWORK INTRUSION DETECTION

SYSTEMS USING DATA CUBE AND ASSOCIATION RULE

By

PRANJAL KALITA

(MZU/Ph.D./677 of 16.05.2014)

Thesis submitted in fulfillment for the requirement of the Degree of Doctor

of Philosophy in Computer Science

Department of Mathematics & Computer Science

School of Physical Sciences

Mizoram University

Aizawl - 796 004

Mizoram, India

October, 2018

i

CERTIFICATE

This is to certify that the thesis entitled ”Developing Network Intrusion Detection

Systems using Data Cube and Association Rule” submitted by Sri Pranjal Kalita (Registration

No: MZU/Ph.D./677 of 16.05.2014) for the degree of Doctor of Philosophy (Ph. D.) of the

Mizoram University, embodies the record of original investigation carried out by him under

my supervision. He has been duly registered and the thesis presented is worthy of being

considered for the award of the Ph.D. degree. This work has not been submitted for any

degree of any other universities.

(Prof. Jamal Hussain)

(Supervisor)

Dr. Jamal Hussain
Professor and Head

Post Box No. 190
Gram: MZU
Mobile: 94363 52389
E-mail: jamal.mzu@gmail.com
University Website: www.mzu.edu.in

MIZORAM UNIVERSITY

 TANHRIL : 796004

ii

CANDIDATE'S DECLARATION

Date:

I, Pranjal Kalita, hereby declare that the subject matter of this thesis entitled

“Developing Network Intrusion Detection Systems using Data Cube and Association Rule” is

the record of work done by me, that the contents of this thesis do not form basis of the award

of any previous degree to me or the best of my knowledge to anybody else, and that the thesis

has not been submitted by me for any research degree in other University/Institute.

This is being submitted to the Mizoram University for the degree of Doctor of

Philosophy (Ph. D.) in Computer Science.

 (Pranjal Kalita)

(MZU/Ph.D./677 of 16.05.2014)

(Candidate)

(Prof. Jamal Hussain)

Head,

Department of Mathematics and

Computer Science

Mizoram University

(Prof. Jamal Hussain)

Supervisor,

Department of Mathematics and

Computer Science

Mizoram University

iii

ACKNOWLEDGEMENT

At the very outset, I would like to express my heartiest gratitude to my supervisor and

Head of the Mathematics and Computer Science Department, Prof. Jamal Hussain, for his

constant guidance and encouragement throughout the tenure. I am grateful to the members of

the DRC and BOS who has accepted my synopsis proposal and allowed me to carry out my

research work. My Sincere thanks goes to the Dean, School of Physical Sciences, Mizoram

University for his co-operation during my research work. I would like to offer my thanks to

the Faculty Members of the department of Mathematics and Computer Science for their

support and encouragement during this research work. My heartiest gratitude goes to Prof. N.

Senthil Kumar of Biotechnology department, MZU for his encouragement to join Ph.D.

program. My heartfelt thanks go to the non-teaching staffs of the department for their

supports and kind assistance.

I would also like to offer my sincere thanks to my friend Shamim Akhtar of ICFAI

University Mizoram and Manjit Nath of Microsoft Corporation for their constant

encouragement and help wherever required. Let me take the opportunity to thank Samuel

Lalmuanawma, my friend and senior research scholar who has provided me the helping hand

whenever required during this tenure, also to Vanlalruata who has helped me a lot during my

PhD work. I will remain thankful to my fellow research scholar for creating a co-operative

learning environment in the department. Last but not the least, I would like to offer my

sincere thanks to my family members who were very supportive and stand by me all the time

during this tenure.

Place: Aizawl (Pranjal Kalita)

iv

List of Figures

1.1 Data mining as a process of knowledge discovery 14

1.2 3-dimensional data cube 16

2.1 Dimension modelling of 18 dimensions 32-34

2.2 Star Schema 35

3.1 e.g. of Slice 38

3.2 e.g. of Dice 38

3.3 e.g. of Roll-up 39

3.4 e.g. of Drill-down 39

3.5 e.g. of Pivot 40

3.6 Normal versus Attack when sliced by protocol 42

3.7 Protocol type in training and test data set 43

3.8 Normal versus attack sliced by source bytes 44

3.9 Testing of results when sliced by source bytes 45

3.10 Normal versus Attack when source bytes and destination bytes are nonzero 47

3.11 Normal versus Attack when source bytes and destination bytes values are zero

and nonzero

48

3.12 Testing of Normal versus Attack when source bytes and destination bytes

values are zero and nonzero

49

3.13 Normal vs Attack when sliced by logged in 50

3.14 Testing the result of Normal vs Attack when sliced by logged in 52

3.15 Normal vs Attack when sliced by destination host count 53

3.16 Testing the results of Normal vs Attack when sliced by destination host count 54

3.17 Normal vs Attack when sliced by FLAG 57

4.2.1 The Graph to represent Support or frequency of appearing 72

4.2.2 Training and Test result together for class= attack 75

v

4.2.3 Graph to represent Support or frequency of the itemsets from the table 4.2.3 77

4.2.4 Support of Training and Test data set which behaves towards Normal 79

4.2.5 Association of 16 different features with „Class=Attack‟ 81

4.2.6 Association of different features with class =‟attack‟ in Test data set 83

4.2.7 Confidence of Training and Test data set together with class= attack 84

4.2.8 Association of 16 different features when class=Attack 87

4.2.9 Association of Test Data Set when class=‟attack‟ 89

4.2.10 Analytical comparison for association for Train and Test data set when class=

„attack‟

89

4.2.11 Association of 10 different features with Class=Normal 92

4.2.12 Confidence Calculation with Class=Normal for TEST Data Set 93

4.2.13 Comparison of confidence for Training and Test data set with class=‟normal‟ 94

4.2.14 The association of 10 different features When „Class=Normal‟ 96

4.2.15 Comparison of association (confidence) in Training and Test data set when

class=‟normal‟

97

5.2.1 Confusion Matrix for KDD Data Subset 1 103

5.2.2 Comparison of the accuracies in KDD 99 Data set 1 104

5.2.3 Confusion Matrix for KDD Data Subset 2 105

5.2.4 Comparison of the accuracies in KDD 99 Data set 2 106

5.2.5 Confusion Matrix for KDD Data Subset 3 107

5.2.6 Comparison of the accuracies in KDD 99 Data set 3 108

5.2.7 Confusion Matrix for KDD Data Subset 4 109

5.2.8 Comparison of the accuracies in KDD 99 Data set 4 110

5.2.9 Confusion Matrix for KDD Data Subset 5 111

5.2.10 Comparison of the accuracies in KDD 99 Data set 5 112

5.2.11 Confusion Matrix for KDD Data Subset 6 113

vi

5.2.12 Comparison of the accuracies in KDD 99 Data set 6 114

5.2.13 Confusion Matrix for KDD Data Subset 7 115

5.2.14 Comparison of the accuracies in KDD 99 Data set 7 116

5.2.15 Confusion Matrix for KDD Data Subset 8 117

5.2.16 Comparison of the accuracies in KDD 99 Data set 8 118

5.2.17 Accuracies of four different methodologies in eight subsets 118

5.2.18 Average accuracies four different methodologies 119

vii

List of Tables

2.1 List of features with their descriptions and data types 27-29

3.1 Assigned Letter against feature name 40

3.2 Dicing by Protocol Type and Class 41

3.3 Comparison of Train and Test data set when sliced by Protocol 42

3.4 Comparisons of train and test data set in percentage

42

3.5 Sliced by Source bytes 44

3.6 The numbers after dicing by src bytes & class in Training and Test data set 44

3.7 Analysis of Training and Testing data in Percentage 45

3.8 Dicing by Source bytes and destination bytes 46

3.9 Combined the Table 3.7 and Table 3.8 and based on it a graph has been

plotted in Figure 3.11

47-48

3.10 Analysis of Training and Test data set after dicing by source bytes and

destination bytes

49

3.11 Diced by login in training data set

50

3.12 Comparing the results with Test data set in the following table and figure 51

3.13 Comparisons of both the data set in percentage to analyze the pattern 51

3.14 Diced by destination host count and class

53

3.15 Comparison with the Training and Test Data set after diced by destination

host count

54

3.16 Training and Test data set comparison after dicing by destination host count 54

3.17 Values showing after diced by „Flag‟ and „Class‟ in training data set 56

3.18 After Dicing operation by different values of 11 different dimension in

Training data set

61

3.19 After performing dicing operation by different values of 11 different

dimension in Test data set

62

4.1.1 Example of a transaction table 64

viii

4.2.1 The following are the support of features which behave towards attack 69-71

4.2.2 The Test results which behave towards „Attack‟

72-74

4.2.3 The support of features which behave towards „Normal‟ 75-76

4.2.4 Support of Training and Test data set which behaves towards Normal 77-78

4.2.5 Association of 16 different features with „Class=Attack‟ 80

4.2.6 Association of different features with class =‟attack‟ in Test data set 82-83

4.2.7 The association of 16 different features when class=Attack

85-86

4.2.8 Association of Test Data Set for the same set of combination as Table 4.2.7 87-88

4.2.9 Association of 10 different features with Class=Normal 90-91

4.2.10 Confidence Calculation with Class=Normal for TEST Data Set 92-93

4.2.11 The association of 10 different features When „Class=Normal‟ 93-94

4.2.12 When class=‟normal‟ in Test Data Set 96-97

5.2.1 Nos. of records in KDD99 data subset1 against each itemset/attributes 102

5.2.2 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 1

103

5.2.3 Nos. of records in KDD99 data subset2 against each itemset/attributes. 104

5.2.4 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 2

105

5.2.5 Nos. of records in KDD99 data subset3 against each itemset/attributes 106

5.2.6 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 3

107

5.2.7 Nos. of records in KDD99 data subset4 against each itemset/attributes. 108

5.2.8 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 4

109

5.2.9 Nos. of records in KDD99 data subset5 against each itemset/attributes. 110

5.2.10 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 5

111

5.2.11 Nos. of records in KDD99 data subset6 against each itemset/attributes 112

ix

5.2.12 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 6

113

5.2.13 Nos. of records in KDD99 data subset7 against each itemset/attributes. 114

5.2.14 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 7

115

5.2.15 Nos. of records in KDD99 data subset8 against each itemset/attributes. 116

5.2.16 Accuracies of the proposed algorithm and other three algorithms in KDD99

data subset 8

117

5.2.17 Average Accuracy of four different methodologies 119

6.1 Comparing the Accuracies with existing algorithm 139

x

Contents

Certificate i

Declaration ii

Acknowledgement iii

List of Figures iv-vi

List of Tables vii-ix

Chapter 1: Introduction 1- 21

1.1 Introduction 1

1.2 Intrusion 5

1.3 Intrusion Detection 5

1.4 Intrusion Detection System 7

1.5 Types of Intrusion Detection System 7

1.5.1 Host-based Intrusion Detection System 8

1.5.2 Network-based Intrusion Detection System 9

1.6 The objectives of the research works 12

1.7 Commercial and Open Source IDSs and some past work 17

1.8 Conclusion 21

Chapter 2: To design a data cube for analyzing the NSL-KDD data set of Network

Intrusion Detection

22- 36

2.1 Introduction 22

 2.1.1 Data Warehouse 23

 2.1.2 Data Cube 23

 2.1.3 Star Schema 24

 2.1.4 Dimension Modeling 24

2.2 Data Source and Selection 25

 2.2.1 NSL-KDD Database 25

2.3 Preprocessing 29

xi

2.4 Designing the cube 32

2.5 Conclusion 36

Chapter 3: OLAP Analysis on the data cube to understand the trend and behavior 37-62

3.1 Introduction 37

3.2 Experiments & Results 40

3.3 Conclusion 62

Chapter 4: Applying Association Rule Mining technique for designing Network

Intrusion Detection System

63-99

4.1 Introduction 63

4.2 Experiments & Results 68

4.3 Conclusion 99

Chapter 5: Performance Comparison of the proposed rule with other algorithms

100-119

5.1 Introduction 100

5.2 Experiments& Results 102

5.3 Conclusion 118

Chapter 6: Summary and Conclusion 120-140

6.1 Summary 120

6.2 Conclusion 138

6.3 Future Work 140

Bibliography 141-146

List of Publications 147

i

1

Chapter-1

Introduction

1.1 Introduction

Intrusion Detection System (IDS) is one of the burning research topics in today‟s date. Due

to the exponential growth of computer users and computer network, the aspect of security has

become a real challenge. Intrusion is defined as the unauthorized or illegitimate access to a

system or a network. An IDS is basically a software to detect the intrusion and prevent the

illegitimate user to access the computer or the computer network. Typically there are two types

of IDS exist, one is Host based IDS and the other one is Network based IDS (NIDS). The host

based IDS deals only with a particular system where NIDS is responsible for protecting a

computer network. Because of the fastest growing IT industry and expansion of computer

network which cover a huge numbers of systems and transmit large amount of data, the computer

network became the prime target for the intruder. As a result the network became more risky and

soft target for the intruder. To protect the data stored in the network system or safe data transfer

over the network continuous updating and research in NIDS is essential. There are many

research works carried out on NIDS in the last two decades by several researcher throughout the

globe. But till date, researchers are yet to develop complete efficient system which can protect

the network. Based on the style of detection and prevention, the intrusion detection is classified

into two categories namely misuse detection or signature base detection and anomaly detection

[Vokorokos et al. (2006)]. The misuse detection techniques refer to understanding the attack

from the previous data set and detect similar kind of attack from fresh traffic. It can easily detect

and stop the known attack. Signature detection technique or misuse detection technique analyze

2

the attack and based on the known attack [Sheikhan M. and Jadidi Z. (2009)]. But the problems

arise with unknown attack. Misuse detection system allows all traffic except the known attacks,

so there is a problem of False Positive. On the other hand in anomaly detection the detection

system, the algorithms are trained with the old normal traffic data and a profile is created for

normal traffic, if any new traffic data significantly deviates from the created profile then it is

detected as anomaly or attack. The problem here in anomaly detection is that anything outside

the created profile is considered as anomaly but there are always new kind of normal traffic or

legitimate access which are not allowed to enter into the network or to the system. It can detect

all known and unknown attacks but the problem arises when it blocks the normal traffic which is

unknown to the system and causes False Negative. To deal with false positive and false negative,

continuous effort is required to upgrade the signature or normal profile. Most of the

commercially available IDS are signature based. Many researchers are presently working on IDS

by combing both misuse detection and anomaly detection and named as hybrid IDS.

The rapid development and expansion of the computer network and World Wide Web has

increased the dependency of people over the network. Therefore it is very important to safeguard

the computer network from the intruder. The goal of the network security is to provide the

freedom of enjoying the facility of computer network fearlessly to the people [Wang (2009)].

Intrusion in computer network refers to the illegitimate access to the network. Intrusion detection

is the technology to detect intrusion.

 Because of the advancement of network technology to connect the distant corners of the

globe and the internet, it continues to expand its influences as a medium and commerce and

accordingly the threat from attackers, spammers and criminal enterprises has also increasing. The

network security is becoming a major challenge as interconnections among computer systems are

3

growing at a fast pace. Computer networks faced the challenges from the unauthorized disclosure

of information and the modification or destruction of data or denial of service attack (DoS); and

the computer network is responsible for providing protected and the availability, confidentiality

and integrity of critical information [Depren et al. (2005)]. According to Animesh Patcha and

Jung Min Park, an intrusion detection system gathers and analyzes information from various

areas within a standalone computer or a computer network to identify possible security gap.

Therefore intrusion detection can be defined as the act of detecting actions that attempt to

compromise the confidentiality, integrity or availability of a system/ network. Intrusion detection

system is a software tool used to detect illegitimate access to a computer system or a network

[Patcha A. and Park J.M. (2007)]. Traditionally the research works on intrusion detection focuses

on the analysis and detection. Intrusion Detection Systems are divided into two categories: Host

based IDS systems and Network Based IDS systems (NIDS) [Anderson (1998); Biermann et al.

(2001)]. Host based IDS systems are installed locally on host computer. Host based IDS systems

evaluate the activities in the host machine. It monitors the characteristics of a single host

computer and the events occurring within that for any suspicious activity [Lichodzijewski et al.

(2002)]. Host-based IDSs get audit data from host audit trails and detect attacks against a single

host. The NIDS which is responsible for analyzing, detecting and protecting the network use

network traffic as the audit data source. The network based IDS systems inspect the packets

passing through the network [Lichodzijewski (2002)]. An IDS system is a defense mechanism,

which detects hostile activities or exploits in a network. Existing IDS systems can be divided into

two categories according to the detection approaches namely anomaly detection and misuse

detection or signature detection. The elements central to intrusion detection are namely resources

to be protected in a target system, i.e., user accounts, file systems, system kernels, etc.; models

4

that characterize the “normal” or “legitimate” behavior of these resources; techniques that

compare the actual system activities with the established models, and identify those that are

“abnormal” or “intrusive [Lee W. and Stolfo S.J. (1998)]. An intrusion is a deliberate,

unauthorized attempt to access or manipulate information or system and to render them

unreliable or unusable.

 Misuse detection and Anomaly detection are two approaches to detect and prevent

intrusion [Singhal A. and Jajodia S. (2006); Jyothsna et al. (2011)]. Misuse detection catches the

intrusions in terms of the characteristics of known attacks or system vulnerabilities and based on

known attack actions. It can feature extract from known intrusions and integrate the Human

knowledge where the rules are pre-defined but it cannot detect novel or unknown attacks. On the

other hand Anomaly detection detects any action that significantly deviates from the normal

behavior based on the normal behavior of a subject. Any action that significantly deviates from

the normal behavior is considered intrusion.

 Intrusion Detection system is also describes as pattern discovery and pattern recognition

system. The Pattern (Rule) is the most important part in the Intrusion Detection System. Pattern

(Rule) Discover, Pattern Matching and Pattern Recognition play important role in intrusion

detection. [Esposito et al. (2005)]. Commercially available IDS are predominantly signature-

based IDS that are designed to detect known attacks, whereas anomaly detection system designs

the system to detect both known and unknown attacks. Therefore the research trends are moving

to anomaly detection. Like many other techniques data mining technique is one of the popular

method to discover the pattern of anomaly. Among the other existing techniques the statistical

techniques and machine learning techniques which include statistical analysis, Bayesian network,

markov-model, principal component analysis etc. are popular. But because of some drawbacks in

5

the statistical system which is easy to train by the expert intruder and for machine learning

techniques the resources are very expensive the researchers are hunting for new approach

[Patcha A. and Park J.M. (2007)]. To overcome the drawbacks of the previous two methods

researchers have started experimenting the use of data mining methods.

1.2 Intrusion

Intrusion in network security means that an illegitimate user, i.e. the intruder, gains

access to someone else's computer systems. The intruder may turn a victim's computer into his

own server which may result in stolen computing resources and network loopholes, protocol

flaws, and software Side effects may all be exploited by Intruders. Opening TCP or UDP ports

that should not be open IS a common configuration loophole. TCP and UDP ports are entry

points of network application programs.

Intrusion detection is a technology for detecting intrusion incidents. Closing TCP and

UDP ports that may be exploited by intruders can also help reduce intrusions, bandwidth from

the victim. The intruder may also steal useful information residing in the victim's computer.

1.3 Intrusion Detection

Many misuse and anomaly intrusion detection systems (IDSs) are based on the general

model proposed by Denning [Denning (1987); Kemmerer A. and Vigna G. (2002)]. This model

is independent of the platform, system vulnerability, and type of intrusion. It maintains a set of

historical profiles for users, matches an audit record with the appropriate profile, updates the

profile whenever necessary, and reports any anomalies detected. Another component, a rule set,

is used for detecting misuse. Actual systems implement the general model with different

6

techniques. Statistical methods are used to measure how anomalous the behavior is, that is, how

different e.g. the commands used are from normal behavior. Pattern matching techniques are

then used to determine whether the sequence of events is part of normal behavior, constitutes an

anomaly, or fits the description of a known attack. Although misuse and anomaly IDSs improve

the security of an information system to a certain extent, both of them have limitations [Lee W.

and Stolfo S.J. (1998)].

 Most current approaches to the process of misuse detection utilize some form of rule-

based analysis. Rule-Based analysis relies on sets of predefined rules that are provided by an

administrator, automatically created by the system, or both. These rules are used by the system to

make conclusions about the security-related data from the intrusion detection system.

Unfortunately, the detection ability of misuse systems is limited to the rule base that they posses.

Hence misuse detectors require frequent updates to remain current [Lee W. and Stolfo S.J.

(2000)]. The required updates may be ignored or performed infrequently by the administrator

and this may lead the system vulnerable to the attacks. In addition, writing a rule or signature of

a new attack is not an easy task and can be time consuming. Another limitation of misuse

detectors is that the misuse intrusion detection systems do not have generalization property and

hence fail to detect unknown and even variations of known attacks, thus misuse IDSs generally

have high false negative rates.

Anomaly detectors also have limitations. For instance, although anomaly detectors can

detect an attack accurately, they can not identify the specific type of attack occurring. However,

the most significant problem of anomaly detection approach is the high false positive rates. Any

deviation from the baseline will be flagged as intrusion; legitimate behavior outside the baseline

7

will be labeled as intrusive. Another problem arises if an attack occurs during the establishment

of the baseline, and then this intrusive behavior will be the part of the normal baseline.

1.4 Intrusion Detection System

An intrusion detection system is a defense mechanism whose goal is to detect when a

system or network is being used inappropriately or without correct authorization. James

Anderson has introduced a surveillance system that could detect malicious activity using event

tracking records or audit logs. In 1985, Dorothy Denning and Peter Neumann provided a model

on an intrusion detection expert system. Beginning with these researches, intrusion detection

systems (IDS) were born. They are needed because the other two major kinds of defenses,

antivirus software and firewalls, are not adequate to cover all kinds of attacks [Endorf et al.

(2004)]. Antivirus software protects only against malicious programs such as viruses, but not

against hackers and many other kinds of threats [Richard et al. (2002)]. Firewalls limit the kind

of traffic that can flow in and out of a system so that they do not allow unauthorized access to

important information. But these do not protect entirely. The traffic left to flow freely can be

harmful. Intrusion detection systems are needed because they can sense a variety of unusual

activities, and notify the proper authorities and prevent further attacks. IDS add to system

security, especially when they are used in addition to anti viruses and firewalls.

1.5 Types of Intrusion Detection Systems

An intrusion detection system can be divided into several kinds [Biermann et al. (2001)].

The type of detection system is determined by what type of system is being monitored. What is

monitored can be a host, a network, or a large portion of the internet.

8

1.5.1 Host-based Intrusion Detection System

A host-based IDS monitors the characteristics of a single host and the events occurring

within that host for suspicious activity. Examples of the types of characteristics are host-based

IDS might monitor are wired and wireless network traffic (only for that host), system logs,

running processes, file access and modification, and system and application configuration

changes. This section provides a detailed discussion of host-based IDS technologies. First, it

covers the major components of the technologies and explains the architectures typically used for

deploying the components. It also examines the security capabilities of the technologies in depth,

including the methodologies they use to identify suspicious activity.

Components and Architecture

This section describes the major components of typical host-based IDSs and illustrates

the most common network architectures for these components. It also provides recommendations

for selecting which hosts should use host-based IDSs. This section also describes how host-based

IDSs can affect a host‟s internal architecture, such as intercepting process calls.

Most host-based IDSs have detection software known as agents installed on the hosts of

interest. Each agent monitors activity on a single host and if IDS capabilities are enabled, also

performs prevention actions. Some host-based IDS products use dedicated appliances running

agent software instead of installing agent software on individual hosts. Each appliance is

positioned to monitor the network traffic going to and from a particular host. Technically, these

appliances could be considered network-based IDSs, because they are deployed inline to monitor

network traffic.

9

Network Architectures

The network architecture for host-based IDS deployments is typically very simple.

Because the agents are deployed to existing hosts on the organization‟s networks, the

components usually communicate over those networks instead of using a separate management

network. Most products encrypt their communications, preventing eavesdroppers from accessing

sensitive information. Appliance-based agents are typically deployed inline immediately in front

of the hosts that they are protecting. Host-based IDS agents are most commonly deployed to

critical hosts such as publicly accessible servers and servers containing sensitive information.

However, because agents are available for various server and desktop/laptop operating systems,

as well as specific server applications, organizations could potentially deploy agents to most of

their servers and desktops/laptops. For example, network-based IDS sensors cannot analyze the

activity within encrypted network communications, but host-based IDS agents installed on

endpoints can see the unencrypted activity.

1.5.2 Network-based Intrusion Detection System

A network-based IDS [Tang (2002)] monitors network traffic for particular network

segments or devices and analyzes network, transport, and application protocols to identify

suspicious activity. This section provides a detailed discussion of network-based IDS

technologies. First, it contains a brief overview of TCP/IP. Next, it covers the major components

of network-based IDSs and explains the architectures typically used for deploying the

components. It also examines the security capabilities of the technologies in depth, including the

methodologies they use to identify suspicious activity.

10

 The research on IDS is generally confined into developing algorithm to detect the

intrusions and prevent it. There are so many techniques or more specifically algorithms exist to

protect a computer system or network. The algorithms are trained with train data set and then

tested with test data set. The popularly used training data set as well as test data set is KDD99

data set [Olusola et al. (2010)]. This data set is prepared and maintained by Lincon Lab of MIT

for research purpose. The record in the data set have forty one attributes or characteristics and

around 49, 00,000 records. Each record is labeled with normal or attack. Again attack can also be

classified as denial of service (DoS), probing, user to root (U2R), remote to local (R2L). And the

techniques or methods for intrusion detection include statistical data analysis, machine learning

techniques, data mining approach etc. Among many other existing techniques to detect intrusion,

data mining is comparatively new age technique. Data mining or knowledge discovery brought

revolutionary changes in many other researches like bioinformatics, market research etc. Mining

from data stored in data warehouse can unhide many hidden patterns and can discover interesting

knowledge. Data mining approach covers a wide area of techniques [Nguyen H.A. and Choi D..

(2008)] and it includes clustering, classification, artificial neural network, support vector

machine, association rule mining etc.

 The proposed study will focus on storing and representing the old or historical intrusion

data and analyze them to find interesting knowledge, which can help in improving the intrusion

detection system. For this purpose network traffic data will be required to train and test.

Research reveals that the popularly used KDD99 data set carry some redundant set of records

which may cause biasness in the result. Therefore NSL-KDD data set which is claimed to be the

updated or modified version of KDD99 data set is going to be used in this research work. The

huge amount of data set is required to store and represent in a proper way so that the analysis

11

become easier. It is found that there is a research gap or unexplored area in storing and

representing historical data. Therefore the proposed research work would like to make a noble

effort to store historical data multidimensional using data cube, a data-warehousing technology.

Once the data cube is ready than user can view the data or evaluate the patterns of the data from

different perspectives using OLAP (online analytical processing) technologies.

 Association rule mining approach in data mining techniques which is derived from

market basket theory attracts the researcher in recent days. Compare to the other data mining

techniques association rule is quiet unexplored. Association rule mining get the potential to

measure the frequent pattern of specific data set or characteristics and dependency of one

attribute over another attributes [Treinen et al. (2006)]. Therefore the proposed research work

will continue with exploring the scope of association rule mining technique for NIDS research.

 Research in intrusion detection system is an emerging area in computer science and in

network security. The increasing volume of network traffic and unauthorized users into the

network make the computer network more vulnerable and information security is in risk. To deal

with the increasing network traffic and new kind of attack, continues research on IDS and

specifically NIDS is very much expected. Everyday computer network are experiencing different

kind of traffic, therefore to protect our data while transmitting system need regularly update.

Analyze the fresh traffic data and protect the network from the intruder is a real challenge.

Studying the existing system or research work a research gap is identified in IDS research; it

reveals that there is no proper system to store the network traffic data more precisely historical

data. Storing and representing the old data and comparatively huge database is very much needed

to improve the analysis of data. Therefore my research area will include storing the historical

data using data warehousing technology. Data Cube, a logical multidimensional model of data

12

warehousing technology can be designed to store and represent data multidimensional. The

proposed data cube can help the users or security analyzer to analyze the data from different

angles. Study of the mining association rule which is also a recent advancement in the field of

data mining technology for NIDS research can be a useful tool for un-hiding many frequent

patterns and interesting knowledge of the attributes. This research can make a framework for

improving the attack detection method and prevent the computer network from intruder in

efficient way.

1.6 The objectives of the research work are as follows

 To design a data cube for analysing the NSL-KDD data set of Network Intrusion

Detection.

 To evaluate the patterns of the data on the proposed data cube by performing the OLAP

(Online Analytical Processing) operations.

 Applying Association Rule Mining technique for designing Network Intrusion Detection

System.

As the security of our network and data is at continual risk, the network intrusion

detection becomes a critical component of network administration. Most commercially available

IDS do not provide a complete solution. These systems typically employ a misuse detection

strategy to search for patterns of programs or user behavior that match known intrusion. Because

of the failure of misuse detection technique to detect new or previously unknown intrusion, novel

intrusions may be found by anomaly detection strategies. Anomaly detection builds a model of

normal network behavior (called profile), which is uses to detect new patterns that significantly

13

deviate from the created profile. The limitations in the existing IDS have led to an increase

interest in data mining for intrusion detection.

 Data warehousing and data mining techniques can improve the performance and usability

of IDS. Data warehouse uses a data model that is based on a multidimensional data model which

is popularly known as data cube [Singhal A. and Jajodia S. (2006); Kalita (2010)]. A cube can be

viewed in multiple dimensions and help in analyzing the historical database. Singhal A. and

Jajodia S. (2006) have proposed a multidimensional model for Online Analytical Processing

(OLAP) in a data cube to view the attack as multidimensional data.

Once the cube is ready then OLAP operations are performed on the cube to evaluate the

patterns of the data to find interesting rules. The OLAP operation includes the operations like

Slicinng, Dicing, Roll-Up, Drill-dowan etc. Slicing refers to reducing one dimension from the

cube and result a sub-cube. Dicing can reduce the cube by two or more dimensions. Roll-up or

drill-up move from detailed level of data to aggregate level of data and drill-down or roll-down

moves the data from an aggregate level to details level [Pujari (2008)].

 Association rule mining is generally applied to find the interesting rule from a large data

set. The idea of mining association rules originates from the analysis of market-basket data

where rules like “A customer who buys products x1, x2, . . . , xn will also buy product y with

probability c%” are generated [Singhal A. and Jajodia S. (2006); Hipp et al. (2002);

Bhattacharjee M. and Kalita P. (2012); Ziauddin et al. (2012)]. Association rules are particularly

important in anomaly detection technique of IDS. The association rules can build a summary of

anomalous connection and help to detect the deviated records [Patcha A. and Park J.M. (2007)].

As discussed in the methodology association rule mining include support and confidence

calculation. Lift and Conviction also calculated these days for finding interesting pattern [Hipp et

14

al. (2002)]. Association rule mining has been applied successfully in many other research areas

like market research, bioinformatics, banking and financial data analysis, retail business etc.

Therefore applying association rule in intrusion detection can lay a strong foundation for IDS

research [Pujari (2008); Bhattacharjee M.and Kalita P. (2012); Tsai (2009)]. Collecting data, pre-

processing it, storing and representing data then analyzing the stored data are the normal steps

included in data mining or knowledge discovery process. With the help of the following figure

(Figure: 1.2) the knowledge discovery process can be explained.

Figure1.1: Data mining as a process of knowledge discovery [Singhal A. and Jajodia S.

(2006)].

Referring to the figure 1.2, the research work will need to collect data, pre-process it, store it in

data warehouse and analyse it using data mining technology to see a meaningful pattern which

can be instrumental in intrusion detection. The methodology will include as follows.

i) Data Collection- KDD99 data set is the popularly used data set introduced in the year 1999. But

in 2009 three researchers from the University of Brunswick come with a new version of KDD99

data set and named as NSL-KDD data set. This publicly available data set avoids duplicate

records as from the previous one (KDD99). The data set need to be collected from the secondary

15

sources and require pre-processing it to remove any kind of noises or missing data. This KDD99

data set was captured in DARPA‟98 IDS evaluation program which is a collection of about

seven weeks of network traffic. And since 1999 these data are used as KDD99 data set and most

of the research work for intrusion detection was carried out. The KDD data set consists of

approximately 10, 00,000 single connection and each with 41 features. Each record is labelled

as normal or attack. But because of some inherent problems in the data set the NSL-KDD data

set are re-produced from the KDD99 data set. The NSL-KDD data set consists of around 1.25

lac records, which tells the number of duplicate records exists in the old data set.

ii) Designing the data cube- Very less attention has been paid towards the historical data in IDS

research. Data warehousing is a proven methods for storing historical data for business

transaction, bank data, bioinformatics data etc. Therefore developing a warehouse for old

intrusion data can bring significant advancement in IDS research. Data Cube can provide a

solution in this state to store and view the data multidimensional. A data warehouse primarily

stores past transactional data collected from different transactional databases. The second-hand

data is kept in data warehouse, which is organized either from another application or external

sources for the purpose of decision support making. Data warehouse can analyse the data

collected from different types of databases. Data warehouse gives a way to the decision makers

to extract information easily and quickly. In the data warehouse, disaggregate or detailed data

has less important than the aggregate or summarized data. Aggregate data has a more significant

role than individual records. Since summarized and integrated data from different databases is

used to build the data warehouse, necessarily the size of the data warehouse is larger than any

operational databases.

16

Data warehouse includes a set of data cube which can be exploited using OLAP

operations like „slice‟, „dice‟, „roll-up‟, „drill-down‟ etc. At the core of the design of the data

warehouse lies on a multidimensional view of the data model. We can extract data from

numerous data sources including operational databases and flat files. This data is then moved to

the data warehouse. The cube is not necessarily a 3-dimensional model, it can be two or higher

dimensional. The attributes in the databases are represented by the dimensions and the measure

of interest by the cells in the data cube. The content in the cells of the cube is numeric in nature.

Queries are carried out to get decision support information on the cube.

Figure 1.2: 3-dimensional data cube.

The figure 1.3 is an example of 3-dimensional data cube, where service, src_host and

duration are three dimensions. The numbers inside the cell are the measures. Arun kumar pujari

has defined data cube in his book [Pujari (2008)] as “An n-dimensional data cube C [A1, A2...

An] is a database with n-dimensions as A1, A2 ..., An. Each of which represents a theme and

contains |Ai| number of distinct elements in the dimension Ai. Each distinct element of Ai

corresponds to a data row of C. A data cell in the cube C [a1, a2 ..., an] stores the numeric

17

measures of the data for Ai = ai (for all i). Thus data cell corresponds to an instantiation of all

dimensions.“

iii) OLAP system focuses on analysis of the data cube. Applications supported by a data warehouse

with tools that allow one to drill into details of data, slice and dice data from multiple dimensions

are examples of OLAP systems. OLAP can help one analyse data from all perspectives. It helps

in trend analysis, data warehouse reporting, etc. The consistency in calculation is one important

benefit of OLAP operations. OLAP uses multidimensional views of data for quick access to

information. An OLAP application allows one to look at the data in terms of many dimensions

[Han et al. (2006); Pujari (2008)]. For example Sliceduration=low C [service, src_host, duration] =

C[service, src_host]. The slice operation has reduced the cube by one dimension and can analyse

different combinations of attributes with the respective measures.

iv) Association rule mining is a concept evolved from market basket analysis is used in frequent

pattern mining in different kind of data set. The association rule mining technique is a popularly

used data mining technique. Association rule mining involves counting frequent patterns (or

associations) in large databases, reporting all that exist above a minimum frequency threshold

known as the „support‟ [Han et al. (2006); Pujari (2008); Ziauddin et al. (2012)].

1.7 Commercial and Open Source IDSs and some past work

Some examples of existing available commercial and open source IDS are namely, Bro,

Snort, Ethereal, Prelude, Multi router traffic grapher and Tamandua network based IDS [Caswell

B. and Roesh M.. (2004)].

Bro Intrusion Detection System: Bro was developed by Vern Paxson of Lawrence Berkeley

National Labs and the International Computer Science Institute. It is a UNIX based network

18

intrusion detection system (NIDS). Bro detects intrusion attempts by searching particular

patterns in network traffic. So, it fall into the category of signature based NIDS. But, Bro

distinguishes itself by offering high speed network capability. In order to achieve real time, high

volume intrusion detection, Bro uses two network interfaces (one for each direction) to capture

the network traffic. In addition, Bro provides a patched kernel for free BSD to reduce CPU load.

With proper hardware and OS tuning, Bro is claimed to be able to keep up with gbps network

speed and perform real time detection. More information about Bro intrusion detection system is

available on www.bro-ids.org.

Prelude Intrusion Detection System: Prelude is a hybrid intrusion detection system distributed

under GNU General Public License, primarily developed under Linux. It also supports BSD and

POSIX platforms. It works at both hosts and networks levels providing a more complete

solutions. It also has dedicated plugins to enable communication with several other well known

IDS. The sensor sends messages to a sender unit (i.e., manager) which processes them and is

responsible for event loggings. Besides the manager, Prelude also includes a module responsible

for graphical feedback to the user. It relies on signature based detection. Since Prelude analyzes

user, system, and network activities, it targets both the host and network based intrusions. More

information about Prelude intrusion detection system is available on www.prelude-ids.com

Snort Intrusion Detection System: Snort is an open source intrusion detection system [Rehman

(2003)], which is capable of packet logging, traffic analysis, and signature based intrusion

detection. In addition to protocol analysis, Snort carries out various content matching on network

packets looking for patterns of known attacks and probes. Snort uses a flexible language for

rules, enables users to describe traffic that should be collected or passed, and has a detection

19

engine that utilizes the modular plugin architecture. More information about Snort intrusion

detection system is available on www.snort.org.

Ethereal Application – Network Protocol Analyzer: This application is a data capture and

network monitoring tool for the network. This software includes different protocols such as TCP,

UDP, ICMP, ARP, etc. The ETHEREAL program is capable of near real time operation. It can

refresh its browser or resample automatically.

Multi Router Traffic Grapher (MRTG): The Multi Router Traffic Grapher (MRTG) is

available as a public-domain tool for monitoring the network traffic variables. It generates

HTML pages containing graphical images in PNG format. Although it can be used for

monitoring any continuous data, its main application is to provide a live visual representation of

traffic on network links.

Tamandua Network Intrusion Detection System: Tamandua is an open source, light-weight,

signature-based, distributed network intrusion detection system created by Tamandua

Laboratories, Brazil.

Barbara et al. (2001a), have describes the design and experiences with the ADAM (Audit Data

Analysis and Mining) system for intrusion detection using data mining approach. In another

paper by Barbara et al. (2001b), propose the idea to develop an intrusion detection system based

on a technique called pseudo-Bayes estimators which is based on an anomaly detection system

called Audit Data Analysis and Mining (ADAM) to enhance an anomaly detection system‟s

ability to detect new attacks.

In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001), by

Portnoy et al. (2001) have presented a paper titled „Intrusion detection with unlabeled data using

20

clustering‟ where they have presented a new type of clustering-based intrusion detection

algorithm, unsupervised anomaly detection, which trains on unlabeled data in order to detect new

intrusions. In their system, no manually or otherwise classified data is necessary for training.

This proposed method is able to detect many different types of intrusions, while maintaining a

low false positive rate as verified over the KDD CUP 1999 dataset.

Valdes A. and Skinner K. (2000) have authored an article where the author have proposed a

high-performance, adaptive, model-based technique using Bayes net technology for attack

detection, to analyze bursts of traffic. This approach has the features of both signature based and

statistical techniques: model specificity, adaptability, and generalization potential.

 Abraham (2001) aims to determine the feasibility and effectiveness of data mining techniques in

real-time intrusion detection and produce solutions for this purpose. The outcomes of the IDDM

were the abilities to characterize network data and to detect variations in these characteristics

over time. Combining this capability with tools that either recognize existing attack patterns or

operate similarly to IDDM, it strengthens the ability of intrusion detection professionals to

recognize and potentially react to unwanted violations to network operations.

Lee W. and Stolfo S.J. (1998) has discussed the construction of intrusion detection model using

low frequency but important patterns. Ertoz et al. (2003) have introduced the Minnesota

Intrusion Detection System (MINDS) where data mining techniques are used to automatically

detect the attack against computer network and system. Instead of going with traditional method

based on attack signatures provided by human expert, data mining approach were proposed to

detect the novel intrusion to overcome the limitation of traditional system. Cuppens F. and Miege

A.. (2002) have used the clustering and merging function for creating new alert. They have

managed correlates and cluster the alert. Ning P. and Xu D. (2003) have presented a practical

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true

21

technique to address the issue of traditional intrusion detection system which focuses on low

level attacks. The proposed approach in this paper constructs attack scenarios by correlating

alerts on the basis of prerequisites and consequences of intrusions. A paper by Ning et al. (2002)

presented a technique to automatically learn attack strategies from intrusion alerts reported by

IDSs. The approach is based on the recent advances in intrusion alert correlation.

1.8 Conclusion

In this chapter the problem of network intrusion detection system, its historical

background and contemporary research work have been introduced. It has discussed the

emergence of data mining applications in different field of research and its probable prospects in

the field of intrusion detection system. Review of literature has by different researchers explain

the scope of developing data cube and applying association rule mining in network intrusion

detection system.

22

Chapter-2

To design a data cube for analysing the NSL-KDD data set of

Network Intrusion Detection

 2.1 Introduction

It has been found after study that there is no proper system to store the network traffic

data more precisely historical data in NIDS research [Singhal (2006)]. Storing and representing

the old data and comparatively huge database is very much required to improve the analysis of

data. Data Cube, a logical multidimensional model of data warehousing technology can be

designed to store and represent data multidimensional. In this chapter the authors made a noble

effort to design a data cube for NSL-KDD data set which will certainly help in analyzing

network traffic more efficiently for intrusion detection. The proposed data cube can help the

users or security analyzer to analyze the data from different perspectives. The data warehouse

provides a global view of the intrusion detection systems which supports identification of attacks

and helps in discovering new attacks, it can also train the system administrators about how

attacks are mounted on their systems. [Helmer (2006)]. In one research paper by Singhal A. and

Jajodia S. (2006), it has been pointed out that storing historical data as research gap in NIDS, and

presented a technique to model network traffic & alerts using multidimensional data model and

star schemas. Based on a multidimensional data model, the data warehouses design a data model

and this model is known as Data Cube which allows data to be modeled and viewed in

multidimensional. Dimension represents different perspectives of an entity that an user is

interested in. Another research paper by Brahmi et al. (2012) has focused on integrating data

cube, OLAP and association rule to improve the quality of IDS. They have introduce a new IDS

23

based on Data Warehousing perspectives to enhance the accuracy of detection as well as to

minimize false alarm. Their proposed system integrates the OLAP and data mining techniques to

improve the performance and usability of IDS. Firstly they have modeled the network traffic data

as a multidimensional structure, called Audit Data Cube. The data cube contains fact tables

related to several dimension tables. A fact table represents the focus of analysis and typically

includes attributes called measures. Dimensions include attributes that form hierarchies. The

proposed audit data cube is based on Star schema. Singhal (2004) has described the design of

data warehouse for AT&T business services. He has explained multidimensional data modeling

and star schema for designing data warehouse of network data and Czedo et al. (2012) has

explained how cyber security data warehouse enables domain experts to quickly traverse a multi

scale aggregation space systematically. To design a data cube the first step is to filter the data by

removing irrelevant information and a relational database is created with the filtered data. The

selected attribute or dimension will be converted into dimension table and then the central fact

table will be created with the primary keys form the dimension table [Han (2006) and Pujari

(2008)]. The fact table and the sets of dimension tables will build the star schema. The measure

for the fact table is „number of records‟ which is numeric in nature.

2.1.1 Data Warehouse

A data warehouse is a “subject-oriented, integrated, time varying, non-volatile collection

of data that is used primarily in organizational decision making [Inmon (1992)]. Data

warehousing is also described as collection of decision support technologies which aimed at

enabling the knowledge worker (executive, manager, analyst etc.) to make better and faster

decisions [Chadhuri et al. (1997)]. It is well known that data warehouse focus more on decision

support than on transaction support [Rizzi et al. (2006)]. Data warehouses store huge amount of

24

information from multiple data sources which is used for query and analysis. Therefore, the data

is stored in the multidimensional (M D) structure [Ponniah (2001)].

2.1.2 Data Cube

A data cube, more precisely a hyper cube, provides a multidimensional view of data. Its

dimensions can further be divided into sub-dimensions. At the core of the design of the data

warehouse lies a multidimensional view of the data model. It is an increasingly popular data

model for OLAP applications in the multidimensional database also known as the data cube

[Gray et al. (1996); The OLAP Council (1996); Agarwal et al. (1997)]. A data cube consists of

two kinds of attributes: measures and dimensions [Sarawagi et al. (1998]. An n-dimensional

data cube C [A1, A2... An] is a database with n-dimensions as A1, A2 ..., An. Each of which

represents a theme and contains |Ai| number of distinct elements in the dimension Ai. Each

distinct element of Ai corresponds to a data row of C. A data cell in the cube C [a1, a2 ..., an]

stores the numeric measures of the data for Ai = ai (for all i). Thus data cell corresponds to an

instantiation of all dimensions.

2.1.3 Star Schema

One of the several schemas for designing a data warehouse is the star schema, where a

central fact table is connected to a set of dimension tables. The fact table contains the actual

transaction or values being analyzed. The dimension tables describe about the transactions or

values. The star schema reflects how the users view their critical measures [kalita (2010)].

Srivastava et al. (2014) has defined Star Schema as one of the uncomplicated type of schema that

represents relational database schema using more than one dimension tables. The basic concept

of star schema is that there are more than one dimension table which are connected to one central

25

fact table. Each fact table contain foreign key which are the reference of primary key of the

dimension table.

2.1.4 Dimension Modeling

The notion of a dimension provides a lot of semantic information, especially about the

hierarchical relationship between its contents. Dimension modeling is a special technique for

structuring data around business concepts.

2.2 Data Source and Selection

KDD 99 dataset is used as the main intrusion detection dataset for both training and

testing purpose. KDD data set covers four major categories of attacks namely denial of service

(DoS), User to Root (U2R), probing and remote to local (R2L), this data set divides into labeled

and unlabeled records and consists of 41 attributes [Das A and Sathya S.S. (2012)]. In the year

1998 and 1999, the Lincoln Laboratory of MIT conducted a comparative evaluation of IDSs.

This evaluation represents an important and huge undertaking; there are a number of issues

associated with its design and execution that remain unsettled. John Mchugh has argued some

methodologies used in the evaluation are questionable and may have biased its results. One

problem is that the evaluators have published relatively little concerning some of the more

critical aspects of their work, such as validation of their test data [Mchuhg (2000)]. Study says

that there are some inherent problems in KDD99 data set which is widely used and publicly

available for NIDS. According to the Tavallaee et al. (2009) research findings, the first important

deficiency in the KDD data set is the huge number of redundant or duplicate records. There are

about 78% and 75% duplicate record exist in training and testing data set respectively. Therefore

26

to provide a solution to solve the mentioned issue that does not suffer from redundancy the new

version of the KDD99 data set was introduced. The NSL-KDD data set is the publicly available

new version data set [Tavallaee et al. (2009)]. The NSL-KDD data set do not include redundant

records in the train set and test set, the number of records in the train data set and test data set are

reasonable which makes it affordable to run an experiment.

2.2.1 NSL-KDD Database

NSL-KDD is a dataset proposed by Tavallaee et al. (2009). NSL-KDD dataset is a

reduced version of the original KDD 99 dataset. NSL-KDD consists of the same features as

KDD 99. The KDD99 dataset consists of 41 features and one class attribute. The class attribute

has 21 classes that fall under four types of attacks: Probe attacks, User to Root (U2R) attacks,

Remote to Local (R2L) attacks and Denial of Service (DoS) attacks. This dataset has a binary

class attribute. Also it has a reasonable number of training and test instances which makes it

practical to run the experiments [Ibrahim et al. (2013)].

The NSL-KDD data set (both training and test data set) has been collected from

secondary sources (http://nsl.cs.unb.ca/NSL-KDD/) as mentioned in the synopsis. The Train data

set in the source are in text format. Each feature of the data set was separated with comma. The

text data are manually transformed into MS-Excel format. There are 43 numbers of columns

including the class label. The data set consists of 1, 25,773 numbers of rows for training data set

and 11,850 number of rows for Test data set. This data set is originated from KDD 99 data set.

After KDD 99 data set, NSL-KDD is the widely used publicly available intrusion data set. This

data set is updated from KDD 99 data set by removing some redundant records. The number of

columns or feature in both the data set is same.

27

Table: 2.1: List of features with their descriptions [Choudhary et al. (2015)]

Sl. No Feature Description

1 Duration Duration of the connection

2 protocol_type Connection protocol (e.g. TCP,UDP,

ICMP)

3 service Destination service

4 flag Status flag of the connection

5 src_byte Bytes sent from source to destination

6 dst_byte Bytes sent from destination to source

7 land 1 if connection is from/to the same

host/port; 0 otherwise

8 wrong_fragment Number of wrong fragments

9 urgent Number of urgent packets

10 hot Number of “hot” indicators

11 num_failed_login Number of failed logins

12 logged in 1 if successfully logged in; 0 otherwise

13 num_compromised Number of “compromised” conditions

14 root_shell 1 if root shell is obtained; 0 otherwise

15 su_attempted 1 if “su root” command attempted; 0

otherwise

16 num_root Number of “root” accesses

28

17 num_file_creation Number of file creation operations

18 num_shells Number of shell prompts

19 num_access_file Number of operations on access control

files

20 num_outbound cmds Number of outbound commands in a ftp

session

21 is_host_login 1 if login belongs to the “hot” list; 0

otherwise

22 is_gust_login 1 if the login is the “guest” login; 0

otherwise

23 count Number of connections to the same host as

the current connection in the past 2 seconds

24 srv_count Number of connections to the same service

as the current connection in the past two

seconds

25 serror_rate % of connections that have “SYN” errors

26 srv_serror_rate % of connections that have “SYN” errors

27 rerror_rate % of connections that have REJ errors

28 srv_rerror_rate % of connections that have REJ errors

29 same_srv_rate % of connections to the same service

30 diff_srv_rate % of connections to different services

31 srv_diff_host_rate % of connections to different hosts

32 dst_host_count Count of connections having the same

29

destination host

33 dst_host_srv_count Count of connections having the same

destination host and using the same service

34 dst_host_same_srv_rate % of connections having the same

destination host and using the same service

35 dst_host_diff_srv_rate % of different services on the current host

36 dst_host_same_src_port_rate % of connections to the current host having

the same src port

37 dst_host_srv_diff_host_rate % of connections to the same service

coming from different hosts

38 dst_host_serror_rate % of connections to the current host that

have an S0 error

39 dst_host_srv_serro_rate % of connections to the current host and

specified service that have an SO error

40 dst_host_rerror_rate % of connections to the current host that

have an RST error

41 dst_host_srv_rerror_rate % of connections to the current host and

specified service that have an RST error

2.3 Preprocessing

Feature selection is important to improving the efficiency of data mining techniques.

Most of the data includes irrelevant, redundant or noisy features. Feature selection reduces the

30

number of features, removes irrelevant, redundant or noisy features and brings about palpable

effects on applications speeding up data mining application and accuracy [Liu et al. (2010); Chae

et al. (2013)]. Among the 43 (including class) columns there are many features or columns

which are irrelevant or weakly relevant. Therefore it is better to remove or delete those features

from the data set, which will reduce the size of the data set and make the future work simpler.

Initially the feature reduction was done with the simple concept, if most of the values are same in

one feature; it reflects that that particular feature is not playing any role in network traffic

whether it is normal or attack.

At the very first phase, 15 columns are deleted namely- land, wrong_fragement, urgent,

hot, num_failed_login, num_compromised, root_shell, su_attempted, num_root,

num_file_creations, num_shells, num_access file, num_outbounds command, is_host login and

is guest login. These 15 columns are deleted because it is found that they are weakly relevant.

There are 53.44% normal and 46.56% attack records. The deleted 15 columns or features consist

of one value only. In each column 99% or more values are 0 (zero). Therefore it can be easily

derived that these column values are not playing any role to make a network traffic normal or

attack.

In a similar fashion few more columns namely dst_host_srv_reeeor_rate,

dst_host_rerror_rate, reerror_rate, srv_reerror_rate and duration are deleted. In the mentioned

five features 80-90% values are zero.

The column „class‟ is pre-processed. The anomaly values are labeled into 22 different

types of attack. All 22 different types of attack namely back, buffer_overflow, ftp_write,

guess_password, imap, ipsweep, land, land module, multihop, Neptune, nmap, perl, phf, pod,

31

portswep, root kit, stan, spy, smurf, teardrop, warezclient and warzemaster are grouped into one

label Attack . Among all the 22 different types of attack 70.28% are Neptune.

To make the analysis easier using data cube pre-processing is carried out in few more

columns by grouping different continuous values into one label. The columns

dst_host_srv_serror_rate, seerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_port_rate and

dst_host_srv_dff_host_rate contains the binary value 0 and 1, apart from the binary values these

columns consists of values from 0.01 to 0.99. Most of the values from 0.01 to 0.99 show similar

kind of characteristics. Therefore these values are grouped into one label and named as fuzzy.

Another column dst_host_count consists of discrete values from 0 to 255. But it is found that the

value 255 has maximum number of records and reflects similar kind of characteristics. Therefore

in this column 255 is one value and other than 255 (i.e. 0-254) are grouped into one and labeled

as less than 255. In similar way another two feature src_bytes and dst_bytes consists of values

ranging from 0 to 1379963888. Interestingly the values other than zero show the close

characteristics and most of the nonzero values are normal traffic. Therefore the values other than

zero in these two columns are labeled as nonzero. The feature count, srv_count and

dst_host_srv_count are deleted because of their diverse values and their characteristics.

Data transformation is a part of data pre-processing. According to the Ji Han‟s data

mining book, generalization, normalization are some techniques of data pre-processing.

Converting the attribute data e.g. 0-254 as „less than 255‟ or values other than zero as „nonzero‟

are known as generalization. Normalization refers to bringing the attribute data under one range.

Like the values between 0.01 and 0.99 can be written as 0.01-0.99. But we did not apply the

32

normalization techniques so far. The generalization is used for those attribute data. E.g. 0.01-

0.99 are named as „fuzzy‟ [(Han et al. (2006)].

Now, the NSL-KDD Train data set is ready for analysis with 18 columns and 1,25,773

number of rows. Among 18 columns 17 are the features of the network traffic and one is the

class label whether normal or Attack. The 1,25,773 rows represent same number of distinct

records. These 19 columns will be represented as dimension for the proposed Data Cube. The

measures for the data cube will be distributive measure as count function will be used for

calculating the measures which will tell the number of records against the selected dimension.

2.4 Designing the cube

 Once the data are pre-processed data are ready for use. Pre-processing of the data will be

followed by dimension modeling with the filtered data (Pujari 2008). Each feature or columns

are considered as one dimension. Eighteen dimensions (or attributes) including class are there for

dimension modeling. The idea of dimension modeling provides a lot of semantic information,

particularly about the hierarchical relationship in the attribute (Pujari 2008). The following are

the dimension modeling for the proposed data cube.

33

34

Figure: 2.1: Dimension modelling of 18 dimensions

The dimension modeling will be followed by star schema where a central fact table is

connected to a set of dimension tables. The fact table contains the actual transaction or values

being analyzed. The dimension tables describe about the transactions or values. The star schema

reflects how the users view their critical measures. Combining or joining one or more

dimensions tables with fact table, the data warehouse responds to the query made by the users

[Kalita (2010)].

35

Figure 2.2: Star Schema

Eighteen dimension tables and a central fact table present the star schema. The

„number of records‟ is the measure for this star schema. This distributive measure tells

the number of selected record(s) for a particular combination or pattern. Count function is

applied for getting the numerical value. Once the star schema is designed the data cube is

36

logically ready. Then the cube can be constructed using MS-SQL or MS Access. This

cube will give the users a visual of the attributes. From the designed cube user or security

analyser can analyse the data from several perspectives very easily. E.g. the number of

records with the combination with flag is „REJ‟ and serror rate is „fuzzy‟ where the class

is „attack‟ etc. Recognizing different pattern of features for attack or normal class can

help in analysing the trend of data. The proposed study will focus on storing and

representing the old or historical intrusion data and analyses them to find interesting

knowledge, which can help in improving the intrusion detection system.

2.5 Conclusion

This data cube shows the need of storing historical database for summarize data.

Eighteen dimensions (including class) from forty one existing dimensions are selected to

simplify and reduce the size of the database which carries meaningful information only.

Storing and representing multidimensional data using data cube can help the security

analyser in data mining and analysing the trend of data. Online analytical processing

(OLAP) operations can be performed on the cube for further analysis. This cube can be

utilized as the summarized and meaningful source of data, where OLAP tools and data

mining techniques can be integrated to improve the efficiency of network intrusion

detection.

37

Chapter-3

OLAP Analysis on the data cube to understand the trend and

behavior

3.1 Introduction

 The first new tool for decision support was the data warehouse. The two new tools which

have emerged following the data warehouse were OnLine Analytical Processing (OLAP) and

data mining (Shim et al, 2002). More recently Codd‟s [Codd et al. (1993)] specification of

OLAP standard has had an equally large impact on the creation of sophisticated data driven

decision support system [Power (1999)]. Building large warehouse often leads to an increased

interest in analyzing and using the accumulated historical DSS data. One solution into analyze

the historical data in data warehouse is using OnLine Analytical Processing tools.

 OLAP is a category of software technology that enables analysts, manager, and executive

to gain insight data through fast, consistent, interactive access to a wide variety of possible views

of information that has been transformed from raw data to reflect the real dimensionality of the

enterprise as understood by user. Recently Data warehouse and OLAP technology have gained a

widespread acceptance as a support for decision making. In data-warehouse architecture, data

are manipulated through OLAP tools which offer visualization and navigation mechanisms of

multidimensional data views commonly called data cube [Chaudhuri A. and Dayal U. (1997)].

Brahmi et al. (2012) has introduced a new IDS based on the OLAP and data mining techniques.

Singhal A. (2007) has focused on the OLAP techniques to represent network traffic data and

relate it to the corresponding IDS alert. Different OLAP operations slice and dice (or select),

38

drilldown, rollup and pivot (or rotate) are described in [Kimball et al. (2002); Inmon (2002) and

Adamson (2006)].

Slicing- The slice operation performs a selection on one dimension of the given cube, resulting in

a sub cube.

Figure: 3.1: e.g. of Slice

Dicing- The dice operation defines a sub‐cube by performing a selection on two or more

dimensions

Figure 3.2: e.g. of Dice

39

1. Roll-up/drill-up Perform aggregation on a data cube by Climbing up a concept hierarchy

for a dimension or Dimension reduction.

Figure 3.3: e.g. of Roll-up

Roll down/ drill-down- Drill‐down is the reverse of roll‐up. It navigates from less detailed data to

more detailed data by Stepping down a concept hierarchy for a dimension or Introducing

additional dimensions.

Figure: 3.4: e.g. of Drill-down

Pivot- Visualization operation that rotates the data axes in view in order to provide an alternative

presentation of the data.

40

Figure: 3.5: e.g. of Pivot

3.2 Experiments & Results

The data CUBE that has been developed to store NSL-KDD data set with 18 numbers of

dimensions in the previous chapters has been considered for performing OLAP operation to

analysis the trend and pattern of the network traffic based on their features. Features which are

referred as dimension in the data cube data are represented by alphabet letter in the following

section to make the writing easy.

Table: 3.1 Assigned Letter against feature name

Attribute
Corresponding

Letter
Attribute

Corresponding

Letter

protocol_type A flag B

src_byte C dst_byte D

logged in E serror_rate F

srv_serror_rate G same_srv_rate H

diff_srv_rate I srv_diff_host_rate J

dst_host_count K dst_host_same_srv_rate L

dst_host_diff_srv_rate M dst_host_same_src_port_rate N

dst_host_srv_diff_host_rate O dst_host_serror_rate P

dst_host_srv_serro_rate Q Class R

41

Now, mathematically we can represent our cube in the following way.

Cube [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R]

A, B, C,...., R represents the dimension of the data cube as shown in the above table.

The OLAP operations Slicing and dicing are performed bellow for analyzing the cube.

1. Slice R=‟normal‟ Cube [A,B,C,....,R] = Cube[A, B,C,....,Q]

2. Slice R=‟attack‟ Cube [A,B,C,....,R] = Cube[A, B,C,.....,Q]

3. Dice A=tcp and R=‟normal‟ Cube [A,B,C,....,R] = Cube[B,C,D,.....,Q]

4. Dice A=‟udp & icmp‟ and R=‟normal‟ Cube [A,B,C,....,R] = Cube[B,C,D,.....,Q]

5. Dice A=tcp and R=‟attack‟ Cube [A,B,C,....,R] = Cube[B,C,D,.....,Q]

6. Dice A=‟udp & icmp‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[B,C,D,.....,Q]

The following „chart‟ represents the sub cube result after slicing and dicing in the previous

slide. The first column is slicing „class‟ by „normal‟ and „attack‟, the second column is dicing

with protocol type=„tcp‟ & class=„normal‟ then protocol type = „tcp‟ and class = „attack‟ and

the third one is protocol type=„udp & icmp‟ with class= „normal‟ OR „attack‟.

Table 3.2: Dicing by Protocol Type and Class

 Total Count Protocol type = tcp Protocol type = udp and icmp

Normal 67215 53470 13745

Attack 58556 49059 9499

42

Figure 3.6: Normal versus Attack when sliced by protocol

 The figure 3.6 shows that whether the protocol is „tcp‟, „udp‟ or „icmp‟, it does not reflect

in „class‟. Irrespective of protocol type value the network traffic behaves either towards normal

or attack. We can derive from it that the protocol type is not a deciding factor/ features for

network traffic. The analysis with Test data set has been presented below.

Table 3.3: Comparison of Train and Test data set when sliced by Protocol

 Total Count Prtocol=tcp protocol= udp and icmp

Train Data

Set

Normal 67215 53470 13745

Attack 58558 49059 9499

Test Data

Set

Normal 2152 685 1467

Attack 9698 7947 1751

Table 3.4: Comparisons of train and test data set in percentage

Normal
AND TCP

Attack
AND TCP

Normal AND
UDP & ICMP

Attack AND
UDP&ICMP

Training
Data 79.55 83.78 20.45 16.22

Test
Data 31.83 81.94 68.17 18.06

0

10000

20000

30000

40000

50000

60000

70000

Total Count Prtocol=tcp protocol= udp or icmp

Normal

Attack

43

We have converted table 3.3 into percentage in the table 3.4 as the number of

records/transactions in Train data set and Test data set are different.

Figure 3.7: Protocol type in training and test data set

The figure 3.7 reflects it that though in train data set, the protocol type did not show any

interesting pattern but in Test data set the result are different. Therefore we can not make a

conclusion from here that whether the protocol type can decide the class of network traffic.

 Similarly the following dicing operations have been carried out to analyze the pattern of

„class‟ whether normal or attack with the changes of values in source bytes (src_bytes)

Dice C=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,D,E,......,Q]

Dice C=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,D,E,......,Q]

Dice C=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,D,E,......,Q]

Dice C=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,D,E,......,Q]

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

Normal TCP Attack TCP Normal UDP &
ICMP

Attack UDP&ICMP

Training Data

Test Data

44

Table 3.5: Sliced by Source bytes

Total Count Src_bytes = zero Src_bytes = nonzero

Normal 67215 3400 63815

Attack 58556 49556 12623

Figure 3.8: Normal versus attack sliced by source bytes

The figure-3.8 shows that how the classes change when the „source bytes‟ changes. When the

values of the source bytes are zero, the class tends to „attack‟ similarly when the source bytes

values are nonzero or other than zero the class tends towards „normal‟.

Table 3.6: The numbers after dicing by source bytes and class in Training and Test data set

Total

Coununt

src bytes =

zero

src bytes =

nonzero

Training

Data Set

Normal 67215 3400 63815

Attack 58558 49556 12623

Test Data

Set

Normal 2152 111 2041

Attack 9698 4373 5325

0

10000

20000

30000

40000

50000

60000

70000

Total Coununt src bytes = zero src bytes = nonzero

Normal

Attack

45

In the Table 3.6 the values after dicing by source bytes and class from Test data set are added

with the Table 3.5 to make a comparative study.

Table 3.7: Analysis of Training and Testing data in Percentage

Normal AND

src bytes=zero

Attack AND

src bytes

=zero

Normal AND src

bytes= nonzero

Attack AND

src bytes

=nonzero

Training Data 5.06 84.63 94.94 21.56

Test Data 5.16 45.09 94.84 54.91

Table 3.6 has been translated into the Table 3.7 by converting the values into percentage.

Comparing the results after dicing operation of the training data set and test data set a graph has

been plotted in the Figure 3.9.

Figure: 3.9: Testing of results when sliced by source bytes

Figure 3.9 clearly support the results obtained in Figure 3.8. It means that the training data set

and test data set behaves in same manner. Therefore it can be concluded that the source bytes

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

100.00

Normal src
bytes=zero

Attack src bytes
=zero

Normal src bytes=
nonzero

Attack src bytes
=nonzero

Training Data

Test Data

46

value plays an important role in intrusion detection. If the source bytes values are other than zero

then it tends to be attack traffic.

 In the similar fashion the analysis of pattern, for the destination bytes when the values are

zero or nonzero are carried out. But when source byte or destination bytes or both are nonzero

(other than zero) the result/ pattern of network traffic behaves as „Normal‟ traffic. The analyses

are as follows.

Dice C=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,D,E,......,Q]

Dice C=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,D,E,......,Q]

Dice D=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,E,......,Q]

Dice D=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,E,......,Q]

Dice C=‟nonzero‟ and D=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,E,......,Q]

Dice C=‟nonzero‟ and D=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,E,......,Q]

The total numbers of records after the dice operation are tabled bellow. This table reflects total

number of „normal‟ traffic when source bytes are zero, nonzero and both and similarly for

„attack‟ traffic.

Table 3.8: Dicing by Source bytes and destination bytes

Normal Attack

src_bytes=nonzero 63815 12623

dst_bytes=nonzero 56299 1632

src_bytes and dst_bytes =nonzero 56114 1539

47

Table 3.8 are the results obtained after dicing the data cube of Training data set by „source bytes

= nonzero‟ with „class= normal‟ and „attack‟. Also with the destination bytes values is nonzero

with class value is normal or attack. And at the end the dicing operations has been carried out

with the both source bytes and destination bytes values are nonzero with class is normal or

attack.

Figure: 3.10: Normal versus Attack when source bytes and destination bytes are nonzero

The graph that has been plotted in Figure 3.10 with the values from Table 3.8 tells that when the

values of source bytes, destination bytes and both are nonzero or other than zero the traffic tends

towards Normal.

When the „source byte‟ is zero „attack‟ is much higher in number, on the other hand when

„source bytes‟ is nonzero the classes tends to fall into normal category. When source byte or

destination bytes or both are zero the result/ pattern of network traffic is tends towards „Attack‟

Table 3.9: Combined the Table 3.7 and Table 3.8 and based on it a graph has been plotted in

Figure 3.11

 Normal Attack

src_bytes=0 3400 49556

dst_bytes=0 10916 56926

0

10000

20000

30000

40000

50000

60000

70000

Normal Attack

src_bytes=nonzero

dst_bytes=nonzero

src+dst=nonzero

48

Src_bytes and dst_bytes =0 3215 45842

src_bytes=nonzero 63815 12623

dst_bytes=nonzero 56299 1632

Src_bytes and dst_bytes =nonzero 56114 1539

Figure: 3.11: Normal versus Attack when source bytes and destination bytes values are zero and

nonzero.

 Table 3.9 has been represented in Figure 3.11which indicates that the changes in values

for source bytes and destination bytes changes the behavior of the network traffic. Source bytes

i.e. the bytes sent from source to destination and destination bytes i.e. bytes sent from destination

to source are zero then the traffic tends towards „attack‟ and when the values are nonzero or

other than zero then the traffic likely to fall in „normal‟ category.

 The result from Figure 3.11 is required to test with the Test data set. After performing the

dice operations with the NSL-KDD Test data set, the results are recorded in Table 3.10. C and D

indicate source bytes and destination bytes respectively. And the values in the table are in

percentage so that the comparisons of Training data set and Test data set become easy.

0

10000

20000

30000

40000

50000

60000

70000

Normal

Attack

49

Table 3.10: Analysis of Training and Test data set after dicing by source bytes and destination

bytes

 Normal (values are in %) Attack (values are in %)

 C=0 D = 0
C &D
=0

C =
nonzero

D=
nonzero

C & D =
nonzer
o C=0 D=0

C & D
=0

C=

nonzero
D =
nonzero

C& D=
nonzero

Training
data 5.06 16.24 4.78 94.94 83.76 83.48 84.63 97.21 78.28 21.56 2.79 2.29

Testing
data 5.16 23.93 3.21 94.84 76.07 74.12 45.09 56.62 54.91 54.91 43.38 32.58

Figure 3.12: Testing of Normal versus Attack when source bytes and destination bytes values are

zero and nonzero

 The figure- 3.12 compares training data set with test data set. The changes of values (zero

or nonzero) for source bytes and destination bytes has the similar pattern of normal traffic in

training and test data where there is change in pattern for „attack‟ categories. It reflects the

variations in the network traffic upon changes of the values of source bytes and destination bytes.

Interestingly the Training and Test data results are very close and hence it can be derived that the

changes in values of source bytes and destination bytes i.e. bytes from source to destination or

bytes from destination to source can be make responsible for the changes of behaviour of

50

network traffic. When the values are zero there high chances of intrusion and if the values are

other than zero then the network is likely to behave normal.

The following are dicing operation performed by logged in and class.

Dice E=0 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,D,F,......,Q]

Dice E=‟0‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,CD,F,......,Q]

Dice E=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,D,......,Q]

Dice E=‟0‟ and R=‟attack‟ Cube [A,B,C,D,....,R] = Cube[A,B,C,D,......,Q]

Table 3.11: Diced by login in training data set

 total normal attack

logged in=0 76016 19465 56551

logged in=1 49757 47750 2007

Table 3.11 has shown the data after dicing the data cube of Training data set by „logged in‟ and

„class. The corresponding graph has been plotted in Figure 3.13

Figure 3.13: Normal versus Attack when sliced by logged in

 The Figure in 3.13 shows that when the logged in value is zero or there are login failure

then the network traffic is tends towards attack or intrusive network. On the other hand if the

0

20000

40000

60000

80000

logged in=0 logged in=1

total

normal

attack

51

logged in value is „1‟or successful login then the network traffic likely to behave normal and less

scope of intrusion. This result are required to be tested with the test data set so that the

conclusion to make the login failure responsible for intrusion.

Table 3.12: Comparing the results with Test data set in the following table and figure.

Training Testing

 total normal attack total normal attack

logged in=0 76016 19465 56551 8851 1772 7079

logged in=1 49757 47750 2007 2999 380 2619

In Table 3.12, the values are derived by dicing the cube with „logged in‟ and „class‟ in both

Training and Test data set and a comparison is made. As the denominator or the total number of

records in Training data set and Test data are different, the values from Table 3.12 has been

converted into percentage value in Table 3.13.

Table 3.13: Comparisons of both the data set in percentage to analyze the pattern

 Normal Attack

logged
in=0

logged
in =1

logged
in=0

logged
in =1

Training
Data 25.61 95.97 74.39 4.03

Testing
Data 20.02 12.67 79.98 87.33

52

Figure 3.14: Testing the result of Normal vs Attack when sliced by logged in

 Figure 3.14, which has been plotted based on the Table 3.13 reflects the comparative

analysis after validating the Training result with the Test result. It has been observed that when

logged in value is „1‟ the traffic tends to Normal in Training data set but in Test data set it tends

to Attack. But for logged in value= „zero‟ the behavior in Training data set and Test data set is

almost same. Therefore it can be concluded in such a way that if there is a login failure or the

logged in value is zero the network traffic tends to be intrusive but if the log in is successful it

does not necessarily tells that the traffic will fall in to normal class.

The following are the dice operation performed by destination host count and class.

Dice K=255 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,...J,L,...,Q]

Dice K=‟255‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,...J,L...,Q]

Dice K=Less than 255 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,..J, L....,Q]

0.00

20.00

40.00

60.00

80.00

100.00

120.00

logged in=0 logged in =1 logged in=0 logged in =1

Normal Attack

Training Data

Testing Data

53

Dice E=‟Less than 255‟ and R=‟attack‟ Cube [A,B,C,D,....,R] = Cube[A,B,C,..J,L....,Q]

Table 3.14: Diced by destination host count and class

 Total normal attack

dstination host count=

255 73969 25769 48200

dstination host count <

255 51804 41446 10358

Table 3.14 recorded the data after dicing the cube by „destinatin host count‟ and „class‟.

Destination host count tell count of connections having the same destination host. It has two

kinds of values either the value is „255‟ or the values are other than 255 which are less than 255.

Figure 3.15: Normal versus Attack when sliced by destination host count

The figure 3.15 shows that when the destination host count values are 255 or the count of

connections having the same destination host are 255 then 65 % network are intrusive, but when

the values are less than 255 then network behaves normal. Though the behavior of network

traffic are not very distinct for the „destination host count values = 255‟ but also the lion share of

the network traffic has the tendency to fall in „attack‟ class. Similarly for „destination host

count= less than 255‟ the likelihood of that network is to behave normal.

0
10000
20000
30000
40000
50000
60000
70000
80000

dstination host count= 255 dstination host count <
255

total

normal

attack

54

Table 3.15: Comparison with the Training and Test Data set after diced by destination host count

Train Data Set Test Data Set

 Total normal attack Total normal attack

destination host

count= 255 73969 25769 48200 8901 1658 7243

destination host

count < 255 51804 41446 10358 2949 494 2455

Table 3.15 has represented the records by adding the values after performing dice operation in

the Test data set to the Table 3.14

Table 3.16 Training and Test data set comparison after dicing by destination host count

 normal attack

destination host

count= 255

destination

host count <

255

destination

host count=

255

destination

host count <

255

Train Data Set 34.84 80.01 65.16 19.99

Test Data Set 18.63 16.75 81.37 83.25

Table 3.16 is derived from the table 3.15, which is represented in percentage values to enable the

comparison of Training data set result and Test data set result.

Figure 3.16: Testing the results of Normal vs. Attack when sliced by destination host count

0.00
10.00
20.00
30.00
40.00
50.00
60.00
70.00
80.00
90.00

dstination
host count=

255

dstination
host count <

255

dstination
host count=

255

dstination
host count <

255

normal attack

Train Data Set

Test Data Set

55

Figure 3.16 reflects interesting results. It can be derived that when the „destination host

count= 255‟ it has similarity of in trends for Training data set and Test data set but for the

„destination host count < 255‟ it gives different trend. Therefore it can be concluded that this

features is meaningful when „destination host count= 255 information or can hold responsible for

intrusion in network traffic. The count of connections having the same destination host does play

a deciding role in intrusion detection system.

The following are the dice operation by FLAG and class

1. Dice B=‟OTH‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

2. Dice B=‟REJ‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

3. Dice B=‟RSTO‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

4. Dice B=‟RSTOS0‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

5. Dice B=‟RSTR‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

6. Dice B=‟S0‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

7. Dice B=‟S1‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

8. Dice B=‟S2‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

9. Dice B=‟S3‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

10. Dice B=‟SF‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

11. Dice B=‟SH‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

12. Dice B=‟OTH‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

56

13. Dice B=‟REJ‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

14. Dice B=‟RSTO‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

15. Dice B=‟RSTOS0‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

16. Dice B=‟RSTR‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

17. Dice B=‟S0‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

18. Dice B=‟S1‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

19. Dice B=‟S2‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

20. Dice B=‟S3‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

21. Dice B=‟SF‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

22. Dice B=‟SH‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[A,C,D,.....,Q]

Table 3.17: Values showing after diced by „Flag‟ and „Class‟ in training data set

FLAG TOTAL NORMAL ATTACK

OTH 46 11 35

REJ 11218 2680 8538

RSTO 1554 220 1334

RSTOS0 105 0 105

RSTR 2424 144 2280

S0 34820 355 34465

S1 363 359 4

S2 126 118 8

S3 48 44 4

SF 74802 63282 11520

SH 267 2 265

57

Figure: 3.17: Normal versus Attack when sliced by FLAG

 The values for „FLAG‟ feature OTH, RSTOS0, S1, S2, S3 and SH are ignored because of

comparatively small numbers. The values REJ, RSTO, RSTR and S0 are responsible for the

network intrusion. On the other hand when the value is „SF‟ there is very little trend of network

intrusion or attack.

Dicing operations are carried out when the values are „fuzzy‟/0/1 in serror_rate, srv_serror_rate,

same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_same_srv_rate ,

dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,

 dst_host_serror_rate, dst_host_srv_serror_rate columns then the tendency of traffic are

represented in numbers and presented in tabular form.

1. Dice F=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

2. Dice F=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

3. Dice F=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

4. Dice F=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

5. Dice F=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

6. Dice F=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

7. Dice G=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

0

10000

20000

30000

40000

50000

60000

70000

80000

REJ RSTO RSTR S0 SF

Total

Normal

Attack

58

8. Dice G=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

9. Dice G=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

10. Dice G=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

11. Dice G=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

12. Dice G=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

13. Dice H=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

14. Dice H=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

15. Dice H=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

16. Dice H=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

17. Dice H=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

18. Dice H=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

19. Dice I=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

20. Dice I=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

21. Dice I=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

22. Dice I=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

23. Dice I=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

24. Dice I=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

25. Dice J=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

26. Dice J=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

27. Dice J=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

28. Dice J=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

29. Dice J=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

30. Dice J=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

59

31. Dice L=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

32. Dice L=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

33. Dice L=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

34. Dice L=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

35. Dice L=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

36. Dice L=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

37. Dice M=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

38. Dice M=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

39. Dice M=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

40. Dice M=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

41. Dice M=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

42. Dice M=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

43. Dice N=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

44. Dice N=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

45. Dice N=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

46. Dice N=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

47. Dice N=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

48. Dice N=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

49. Dice O=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

50. Dice O=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

51. Dice O=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

52. Dice O=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

53. Dice O=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

60

54. Dice O=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

55. Dice P=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

56. Dice P=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

57. Dice P=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

58. Dice P=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

59. Dice P=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,Q]

60. Dice P=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,Q]

61. Dice Q=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,P]

62. Dice Q=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,P]

63. Dice Q=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,P]

64. Dice Q=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,P]

65. Dice Q=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[A,B,C,......,P]

66. Dice Q=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[A,B,C,......,P]

61

Table 3.18: After Dicing operation by different values of 11 different dimension in Training data

set

serr

or

rate

serv

e

serr

or

rate

sam

e

serv

e

rate

differe

nt

serve

rate

serve

differe

nt host

rate

destinati

on host

same

serve

rate

destinati

on host

serve

different

serve

rate

destinati

on host

same

source

port rate

destinati

on host

serve

different

host rate

destinati

on host

serror

rate

destinati

on host

serve

serror

rate

Fuzzy

and

Norm

al

1793 1988 3918 3572 19721 24077 27147 42283 33427 5948 5438

Fuzzy

and

Attac

k

2905 351
4241

1
42694 522 45771 49552 10234 4897 5076 952

Zero

and

Norm

al

6502

2

6490

0
30 62670 42918 1071 40016 22379 33673 61202 61745

Zero

and

Attac

k

2164

5

2369

8
2741 13411 54480 5876 6910 40547 53082 20008 23418

One

and

Norm

al

400 327
6326

7
973 4576 42067 52 2553 115 65 32

One

and

Attac

k

3400

8

3450

9

1340

6
2453 3556 6911 2096 7772 579 33474 34188

 Total Count in this table (3.18) means the numbers of „normal‟ and „attack‟ for all values

(0/1/fuzzy). The previous table reflects that „fuzzy‟ values are not very influencing for five of the

features, they are namely serror_rate, srv_serror_rate, dst_host_serror_rate,

dst_host_srv_serror_rate, srv_diff_host_rate.

 For same_srv_rate, diff_srv_rate, dst_host_same_srv_rate and dst_host_diff_srv_rate

features, the traffics tends towards „Attack‟ because of „fuzzy values. For

dst_host_same_src_port_rate and dst_host_srv_diff_host_rate features when the values are

„fuzzy‟ the traffic tends towards „Normal‟. Also the traffic behaves towards normal when the

values for the following features/dimension are zero, they are serror_rate, srv_serror_rate,

diff_srv_rate, dst_host_serror_rate, dst_host_srv_serror_rate.

62

Table 3.19: After performing dicing operation by different values of 11 different dimension in

Test data set

serro

r rate

serve

serro
r rate

same
serv

e

rate

different

serve
rate

serve

different
host rate

destination

host same
serve rate

destination
host

different

serve rate

destination
host same

source

port rate

destination
host serve

different

host rate

destination

host serror
rate

destination

host serve
serror rate

Fuzzy

and
Norma

l

45 54 290 270 366 996 1278 1320 202 186 75

Fuzzy
and

Attack

940 551 2575 1940 516 6339 7297 2209 1330 2364 1555

Zero

and

Norma

l

2092 2088 2 1847 1712 55 872 668 1946 1963 2074

Zero

and

Attack

7558 7919 678 6445 8434 1163 1853 6152 8264 6673 7379

One
and

Norma

l

15 10 1860 35 74 1101 2 164 4 3 3

One

and

Attack

1200 1228 6445 1313 748 2196 548 1337 104 661 764

 But when we analyzed the table 3.19 derived after performing the dice operation on the

data cube of test data set only few outcomes of the training data set are been showing similar

trend or pattern. The „same serve rate‟, „different serve rate‟, „destination host same serve rate‟

and „destination host different host rate‟ have shown the same trend that has been predicted in

training data set, i.e. if the values of these four features are fuzzy or in between 0 and 1 excluding

0 and 1 then the network traffic tends towards intrusive. Other features that have shown some

deciding trend in training data set did not show any interesting trend here in test data set.

Therefore we can derive it from here that the changes in values for „same serve rate‟, „different

serve rate‟, „destination host same serve rate‟ and „destination host different host rate‟ changes

the behavior of network traffic.

3.3 Conclusion

 The finding from the OLAP analysis has hints out that the pattern of network traffic

changes to either „normal‟ or „attack‟ with the change of values of some features.

63

Chapter-4

Applying Association Rule Mining technique for designing Network

Intrusion Detection System

4.1 Introduction

 To eliminate the manual and ad-hoc elements from the process of building an intrusion

detection system, researcher are increasingly looking at using data mining techniques for

anomaly detection [Lee W. and Stolfo S.J. (1998); Lee et al. (2000a); Lee et al. (2000b)].

Grossman define data mining technique as being concerned with uncovering patterns,

associations, changes, anomalies and statistically significant structure and events data. Another

term sometimes used as the Knowledge discovery.

 Association rule [Agarwal et al. (1993); Hipp et al. (2000)] are one of the many data

mining techniques that describes events that tend to occur together. Following the development

of data cube and OLAP operation, the next crucial phase is to perform association rule mining.

Association rule mining is generally applied to find the interesting rule from a large data set. The

idea of mining association rules originates from the analysis of market-basket data where rules

like “A customer who buys products x1, x2, . . . , xn will also buy product y with probability c%”

are generated [Singhal A. and Jajodia S.. (2006); Hipp et al. (2002); Bhattacharjee M. and Kalita

P. (2012); Ziauddin et al. (2012)]. Association rules are particularly important in anomaly

detection technique of IDS. The association rules can build a summary of anomalous connection

and help to detect the deviated records [Patcha A. and Park J.M. (2007)]. As discussed in the

methodology association rule mining include support and confidence calculation. Lift and

64

Conviction also calculated these days for finding interesting pattern [Hipp et al. (2002)].

Association rule mining has been applied successfully in many other research areas like market

research, bioinformatics, banking and financial data analysis, retail business etc.

Table 4.1.1: Example of a transaction table („1‟ represents present and „0‟represent absent)

transaction ID milk bread butter beer diapers

1 1 1 0 0 0

2 0 0 1 0 0

3 0 0 0 1 1

4 1 1 1 0 0

5 0 1 0 0 0

 Following the original definition by Agrawal et al. (1997), the problem of association

rule mining is defined as:

Let I = {i1, i2,……..,in} be a set of n binary attributes called items.

Let D = {t1, t2,…..,tm}be a set of transactions called the database.

Each transaction in D has a unique transaction ID and contains a subset of the items in I.

A rule is defined as an implication of the form:

X=>Y

Where and .

Every rule is composed by two different sets of items, also known as itemsets, X and Y ,

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side

(RHS).To illustrate the concepts, we use a small example from the supermarket domain. The set

65

of items is I = {milk, bread, butter, beer, diapers} and in the table is shown a small database

containing the items, where, in each entry, the value 1 means the presence of the item in the

corresponding transaction, and the value 0 represent the absence of an item in a that transaction.

 An example rule for the supermarket could be {butter, bread} => {milk} meaning that if

butter and bread are bought, customers also buy milk. This example is extremely small. In

practical applications, a rule needs a support of several hundred transactions before it can be

considered statistically significant, and data-sets often contain thousands or millions of

transactions.

 In order to select interesting rules from the set of all possible rules, constraints on various

measures of significance and interest are used. The best-known constraints are minimum

thresholds on support and confidence.

Let X is an item-set, X=>Y an association rule and T a set of transactions of a given database.

Support

The support value of X with respect to T is defined as the proportion of transactions in the

database which contains the item-set X. In the example database, the item-set {butter, bread} =>

{milk} has a support of 1/5= 0.2 since it occurs in 20% of all transactions (1 out of 5

transactions). The argument of supp() is a set of preconditions, and thus becomes more restrictive

as it grows (instead of more inclusive).

Confidence

 The confidence value of a rule X=> Y, with respect to a set of transactions T, is the

proportion of the transactions that contains X which also contains Y. Confidence is defined as

66

Conf (X=> Y) = supp (X U Y)/ supp (X). For example, the rule {butter, bread}=> {milk} has a

confidence of 0.2/0.2= 1.0 in the database, which means that for 100% of the transactions

containing butter and bread the rule is correct (100% of the times a customer buys butter and

bread, milk is bought as well). It is to be noted that supp (X U Y) means the support of the union

of the items in X and Y. This is somewhat confusing since we normally think in terms of

probabilities of events and not sets of items. We can rewrite supp (X U Y) as the joint probability

P (EX ∩ EY), where EX and EY are the events that a transaction contains itemset X or Y,

respectively. Thus confidence can be interpreted as an estimate of the conditional probability

, the probability of finding the RHS of the rule in transactions under the condition

that these transactions also contain the LHS.

Lift

The lift of a rule is defined as:

or the ratio of the observed support to that expected if X and Y were independent.

For example, the rule {milk, bread} = > {butter} has a lift of 0.2/0.4X 0.4 = 1.25

Conviction

The conviction of a rule is defined as .

67

For example, the rule {milk, bead}=> {butter} has a conviction of , and can be

interpreted as the ratio of the expected frequency that X occurs without Y (that is to say, the

frequency that the rule makes an incorrect prediction) if X and Y were independent divided by

the observed frequency of incorrect predictions. In this example, the conviction value of 1.2

shows that the rule {milk, bead}=> {butter} would be incorrect 20% more often (1.2 times as

often) if the association between X and Y was purely random chance.

Ziauddin et al. (2012) had reviewed the research work on association rule and presented

association rule as one of the important areas of research work which is receiving increasing

attention. It becomes an essential part of knowledge discovery. In one research paper by Lee and

Stolfo, a systematic framework has been proposed for developing intrusion detection system

using data mining. The framework consists of association rules and other data mining

techniques. Patcha and Park (2007) has proposed anomaly detection model, one of two intrusion

detection classes by using association rule mining. They have explained association rule,

intrusion detection, and application of association rule for developing anomaly detection system.

Flora S. Tsai (2009) has stated that a network intrusion detection system can be developed by

performing association rule mining. Rules can be generated by calculating support and

confidence for detecting network intrusion. The rules are simply viewed as [If Then Else

structure]. The support tells the frequency of the itemset and confidence tells the associations

among the itemset. Once the rules are generated, the rules are tested with NSL-KDD test data set

for measuring the performance. After literature review we are confident that the Association rule

mining technique can be used for developing network intrusion detection system. We will use

NSL-KDD training data set to generate the rule and NSL-KDD test data set to test the

performance.

68

4.2 Experiments & Results

 Dimension/ features/ attributes that we have been already selected will be referred as

itemset for performing association rule mining. Each record/row will be refers as transaction.

Now support for these itemset will be calculated from 1,25,773 records or transaction. The

support will tell the frequency of occurrence of an item.Confidence will tell the association

among the itemset.

 Mathematically the following two itemsets are used for analysis. IAttack set is for analyzing

the support and confidence when Class= „Attack‟. INormal is for analyzing the transactions when

Class=‟Normal‟.

• IAttack ={Class, Source Bytes, Destination Bytes, logged in, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_srv_rate,

dst_host_count,diff_srv_rate , same_srv_rate}

• INormal ={Class, Source Bytes,Destination bytes, Destination, logged in, Destination

host_count, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,

dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_same_src_port_rate }

4.2.1 Calculation of Support

 Calculation of support has been carried out by considering 1,25,773 as left hand

side value for training data set and 11,850 for test data set. Threshold Percentage is

considered as 30%. It is justified because 58,558 out of 1,25,773 are attack which is

69

46.5%. And we calculate the Support by considering denominator as total nos. of record

(i.e.1,25,773 and 11,850 for training and test data set respectively).

Table 4.2.1: The following are the support of features which behave towards attack

Itemset Support Threshold

Source Bytes=0 39.23 30

Destination bytes=0 53.94 30

Source Bytes ^ Destination bytes=0 39 30

Class=Attack 46.56 30

Source Bytes=0 ^ Class=Attack 36.52 30

Source Bytes=0 ^ destinationbytes=0 ^ Class=Attack 36.45 30

Destinatino Bytes= 0 ^ Class=Attack 45.26 30

logged in =0 60.44 30

logged in =0 ^ Class=attack 44.96 30

dst_host_same_src_port_rate=0 50.03 30

dst_host_srv_diff_host_rate=0 68.98 30

dst_host_serror_rate=1 26.67 30

dst_host_srv_serror_rate=1 27.21 30

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0 48.56 30

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1 24.68 30

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s 24.68 30

70

rv_serror_rate=1

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1^ Class= Attack 24.68 30

dst_host_same_srv_rate ='fuzzy' 55.53 30

dst_host_diff_srv_rate= 'fuzzy' 60.98 30

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' 55.1 30

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^

Class=Attack 35.99 30

dst_host_same_srv_rate ='fuzzy' ^ Class=Attack 36.39 30

dst_host_diff_srv_rate= 'fuzzy' ^ Class=Attack 39.4 30

dst_host_count=255 58.81 30

dst_host_count=255 ^ Class = Attack 38.32 30

same_srv_rate= fuzzy 36.84 30

diff_srv_rate =fuzzy 36.79 30

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 35.33 30

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack 32.99 30

diff_srv_rate =fuzzy ^ Attack 33.95 30

same_srv_rate= fuzzy ^ Class=Attack 33.72 30

Protocol type= tcp 81.52 30

Protocol type= tcp ^ Class= Attack 39.01 30

Protocol type= tcp ^ flag= S0 27.68 30

Protocol type= tcp ^ flag= S0^ Class= Attack 27.40 30

71

flag= S0^ Class= Attack 27.40 30

flag= S0 27.68 30

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 ^class= attack 26.46 30

dst_host_serror_rate =1^class= attack 26.61 30

dst_host_srv_serror_rate=1 ^class= attack 27.18 30

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 26.47 30

dst_host_serror_rate =1 26.67 30

dst_host_srv_serror_rate=1 27.21 30

In the above table the support for 43 different set of combinations have been calculated in

the training data set. The threshold value is decided as 30. And it has been observed that in the

training data set out of 43 different set of combinations 15 numbers of support values are less

than threshold values. Those aredst_host_srv_serror_rate=1, dst_host_srv_serror_rate=1,

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1,

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_serror_rate=1,

dst_host_same_src_port_rate=0^dst_host_srv_diff_host_rate=0^ dst_host_serror_rate=1^

dst_host_srv_serror_rate=1^ Class= Attack, Protocol type= tcp ^ flag= S0, Protocol type= tcp ^

flag= S0^ Class= Attack, flag= S0^ Class= Attack, flag= S0, dst_host_serror_rate

=1^dst_host_srv_serror_rate=1 ^class= attack, dst_host_serror_rate =1^class= attack,

dst_host_srv_serror_rate=1 ^class= attack, dst_host_serror_rate =1^dst_host_srv_serror_rate=1,

dst_host_serror_rate =1, dst_host_srv_serror_rate=1. Rest twenty eight different set of

combination‟s support values are greater than the threshold value.

72

Figure 4.2.1: The Graph to represent Support or frequency of appearing

This Figure has been plotted based on the Table 4.2.1 data. It reflects that in training data

set out of 43 different combinations only twenty eight set of combinations lies above the

threshold values and they are frequent itemset or features. The following set of combinations of

itemset/features is found to be occurred frequently in the training data set. They are-Source

Bytes=0, Destination bytes=0, Source Bytes ^ Destination bytes=0, Class=Attack, Source

Bytes=0 ^ Class=Attack, Source Bytes=0 ^ destination bytes=0 ^ Class=Attack, Destination

Bytes= 0 ^ Class=Attack, logged in =0, logged in =0 ^ Class=attack,

dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate=

'fuzzy', dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy',

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^ Attack,

dst_host_same_srv_rate ='fuzzy' ^ Attack, dst_host_diff_srv_rate= 'fuzzy' ^ Attack,

dst_host_count=255, dst_host_count=255 ^ class = Attack, same_srv_rate= fuzzy, diff_srv_rate

=fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate

0
10
20
30
40
50
60
70
80
90

So
u

rc
e

 B
yt

es
=0

So
u

rc
e

 B
yt

es
 ^

…

D
e

st
in

at
in

o
 B

yt
es

=
0

 ^
…

lo
gg

ed
 in

 =
0

 ^
…

d
st

_
h

o
st

_
sr

v_
d

if
f_

h
o

st
…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
ra

…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

r…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

r…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

=…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
t…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

=…

d
st

_
h

o
st

_
co

u
n

t=
2

5
5

 ^
…

d
if

f_
sr

v_
ra

te
 =

fu
zz

y

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
^

…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
^

…

P
ro

to
co

l t
yp

e=
 t

cp
 ^

…

P
ro

to
co

l t
yp

e=
 t

cp
 ^

…

fl
ag

=
S0

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
…

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
ra

…

Support

Threshold

73

=fuzzy ^ Class= Attack, diff_srv_rate =fuzzy ^ Attack, same_srv_rate= fuzzy ^ Class=Attack,

Protocol type= tcp and Protocol type= tcp ^ Class= Attack

Table 4.2.2 The Test results which behave towards „Attack‟

Itemset

Train

Support
Test

Support

Threshold

Source Bytes=0 39.23 37.84 30

Destination bytes=0 53.94 50.68 30

Source Bytes ^ Destination bytes=0 39 28.65 30

Class=Attack 46.56 81.84 30

Source Bytes=0 ^ Class=Attack 36.52 36.9 30

Source Bytes=0 ^destinatinationbytes=0 ^ Class=Attack 36.45 28.07 30

Destinatino Bytes= 0 ^ Class=Attack 45.26 46.34 30

logged in =0 60.44 74.69 30

logged in =0 ^ Class=attack 44.96 59.74 30

dst_host_same_src_port_rate=0 50.03 57.55 30

dst_host_srv_diff_host_rate=0 68.98 86.16 30

dst_host_serror_rate=1 26.67 4.3 30

dst_host_srv_serror_rate=1 27.21 6.47 30

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0 48.56 56.62 30

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1 24.68 3.53

30

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1 24.68 3.51

30

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1^ Class= Attack 24.68 3.51

30

dst_host_same_srv_rate ='fuzzy' 55.53 61.9 30

dst_host_diff_srv_rate= 'fuzzy' 60.98 72.36 30

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' 55.1 61.21

30

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^

Attack 35.99 52.8

30

dst_host_same_srv_rate ='fuzzy' ^ Attack 36.39 53.49 30

dst_host_diff_srv_rate= 'fuzzy' ^ Attack 39.4 61.58 30

dst_host_count=255 58.81 75.11 30

dst_host_count=255 ^ class = Attack 38.32 61.12 30

same_srv_rate= fuzzy 36.84 24.18 30

74

diff_srv_rate =fuzzy 36.79 18.65 30

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 35.33 18.01 30

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack 32.99 15.85 30

diff_srv_rate =fuzzy ^ Attack 33.95 16.37 30

same_srv_rate= fuzzy ^ Class=Attack 33.72 21.73 30

Protocol type= tcp 81.52 72.84 30

Protocol type= tcp ^ Class= Attack 39.01 67.06 30

Protocol type= tcp ^ flag= S0 27.68 8.72 30

Protocol type= tcp ^ flag= S0^ Class= Attack 27.4 8.72 30

flag= S0^ Class= Attack 27.4 8.72 30

flag= S0 27.68 8.72 30

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 ^class= attack 26.46 5.24 30

dst_host_serror_rate =1^class= attack 26.61 5.58 30

dst_host_srv_serror_rate=1 ^class= attack 27.18 6.45 30

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 26.47 5.24 30

dst_host_serror_rate =1 26.67 5.6 30

dst_host_srv_serror_rate=1 27.21 6.47 30

The above table is showing the support values for 43 different set of combinations for

both training and test data set. The threshold values remain the same and a comparative analysis

has been made by plotting a graph in Figure 4.2.2. Eight more set of combinations in addition to

fifteen set of combinations in training data set are having support values which are less than the

threshold values. Those are Source Bytes ^ Destination bytes=0, Source Bytes=0 ^ destination

bytes=0 ^ Class=Attack, same_srv_rate= fuzzy, diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^

diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack, diff_srv_rate

=fuzzy ^ Attack, same_srv_rate= fuzzy ^ Class=Attack.

75

Figure 4.2.2: Training and Test result together for class= attack

Figure 4.2.2 has been plotted based on the data of Table 4.2.2. Out of 43 different set of

combinations 35 set of combinations follow the similar trend in both training and test data set,

where 15 set of combinations lies below the threshold value. Though, 28 set of combinations lies

above the threshold value in training data set but in the test data set only 20 set of combinations

falls above the line. Therefore we can conclude that these 20 set of combinations which falls

above the threshold values in both training and test data set are frequent itemset or features in the

network traffic.

Table 4.2.3: The support of features which behave towards „Normal‟

itemset Support Threshold

value

Source Bytes=nonzero 60.77 30

Destination bytes= nonzero 46.06 30

Source Bytes=0 ^ Destination bytes= nonzero 45.84 30

Class=Normal 53.44 30

0
10
20
30
40
50
60
70
80
90

100

So
u

rc
e

 B
yt

es
=0

So
u

rc
e

 B
yt

es
 +

…

So
u

rc
e

 B
yt

es
=0

 +
…

D
e

st
in

at
in

o
 B

yt
es

=
0

 ^
…

lo
gg

ed
 in

 =
0

 ^
…

d
st

_
h

o
st

_
sr

v_
d

if
f_

h
o

s…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
r…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

…

d
st

_
h

o
st

_
co

u
n

t=
2

5
5

 ^
…

d
if

f_
sr

v_
ra

te
 =

fu
zz

y

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y…

P
ro

to
co

l t
yp

e=
 t

cp
 ^

…

P
ro

to
co

l t
yp

e=
 t

cp
 ^

…

fl
ag

=
S0

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
…

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
r…

Train Support

Test Support

Threshhold

76

Source Bytes=nonzero ^ Class=normal 50.74 30

Source Bytes=nonzero ^ destination bytes=nonzero

^Class=Normal 44.62 30

destination Bytes=nonzero ^ Class=normal 44.76 30

logged in =1 39.56 30

logged in =1 ^ Class=normal 37.97 30

destination host count = less than 255 41.19 30

destination host count = less than 255 ^ Class= Normal 32.95 30

dst_host_same_src_port_rate=1 38.94 30

dst_host_same_src_port_rate=1 ^ Class= Normal 33.45 30

dst_host_srv_diff_host_rate=1 60.98 30

dst_host_srv_diff_host_rate=1 ^ Class= Normal 37.31 30

dst_host_serror_rate=0= 64.57 30

dst_host_serror_rate=0^ Class= Normal 48.66 30

dst_host_srv_serror_rate=0 67.71 30

dst_host_srv_serror_rate=0^Class= Normal 49.09 30

dst_host_same_src_port_rate= fuzzy 41.76 30

dst_host_same_src_port_rate= fuzzy ^ class= normal 33.62 30

dst_host_srv_serror_rate=0 ^ Class=normal 49.09 30

dst_host_srv_serror_rate=0 67.71 30

In Table 4.2.3 the support for 23 set of different combinations which behave towards „normal‟ in

training data set has been calculated and presented. From this table we can see that the support

77

values for all 23 set of combinations are more than the threshold values Thus we can derive it

from this table that these 23 set of combinations are frequently occurring in training data set. But

once we tested with the Test data set for the same set of combinations then only we can make a

conclusive remarks.

Figure 4.2.3: Graph to represent Support or frequency of the itemsets from the table 4.2.3

The Figure 4.2.3, which has been plotted based on the Table 4.2.3 data reflects that all the

23 set of combinations which behave towards normal class in training data set lies above the

threshold values.

The Test support for the combination is now compared with the test data set and

following are the results.

Table 4.2.4: Support of Training and Test data set which behaves towards Normal

 itemset
Training

Support

Test

Support

Threshold

value

Source Bytes=nonzero 60.77 62.16 30

Destination bytes= nonzero 46.06 49.32 30

Source Bytes ^ Destination bytes= nonzero 45.84 40.13 30

Class=Normal 53.44 18.16 30

Source Bytes=nonzero ^ Class=normal 50.74 17.22 30

78

Source

Bytes=nonzero^destinatinationbytes=nonzero

Class=Normal 44.62 13.46

30

destination Bytes=nonzero^ Class=normal 44.76 13.81 30

logged in =1 39.56 25.31 30

logged in =1 ^ Class=normal 37.97 3.21 30

destination host count = less than 255 41.19 24.89 30

destination host count = less than 255 ^

Class= Normal 32.95 4.17

30

dst_host_same_src_port_rate=1 38.94 12.67 30

dst_host_same_src_port_rate=1 ^ Class=

Normal 33.45 1.38

30

dst_host_srv_diff_host_rate=1 60.98 4.64 30

dst_host_srv_diff_host_rate=1 ^ Class=

Normal 37.31 0.02

30

dst_host_serror_rate=0 64.57 74.57 30

dst_host_serror_rate=0^ Class= Normal 48.66 16.57 30

dst_host_srv_serror_rate=0 67.71 79.77 30

dst_host_srv_serror_rate=0^Class= Normal 49.09 17.5 30

dst_host_same_src_port_rate= fuzzy 41.76 29.78 30

dst_host_same_src_port_rate= fuzzy ^ class=

normal 33.62 11.14

30

dst_host_srv_serror_rate=0 ^ Class=normal 49.09 17.5 30

dst_host_srv_serror_rate=0 67.71 79.77 30

Table 4.2.4 has added the support values of the test data set for the same set of

combinations of Table 4.2.3 for making a comparative study and to validate the outcome from

training data set. Here in this table it has been observed that out of 23 set of combinations, the

support values for 16 set of combinations are less than the threshold values. Therefore only seven

set of combinations follow the similar trend and occurred frequently in both training and test data

set. These seven frequently occurred set of combinations of features are Source Bytes=nonzero,

Destination bytes= nonzero, Source Bytes ^ Destination bytes= nonzero, dst_host_serror_rate=0,

dst_host_srv_serror_rate=0 and dst_host_srv_serror_rate=0.

79

Figure 4.2.4: Support of Training and Test data set which behaves towards Normal

The above figure reflects that how the frequency of occurrence of 23 different combinations

changes from training data set to test data set. It has been clearly reflecting that 16 set of

combinations are lying below the threshold values in test data set where for the same set of

combinations in training data set are lying above the threshold values. Therefore we can make a

conclusive remark that Source Bytes=nonzero, Destination bytes= nonzero, Source Bytes ^

Destination bytes= nonzero, dst_host_serror_rate=0, dst_host_srv_serror_rate=0

anddst_host_srv_serror_rate=0 are only frequent itemset/features which behaves towards normal.

4.2.2 Calculation of Confidence

Confidence has been calculated in four different sets or styles. One each with class = normal

or attack and one each for class is when normal or attack. We have considered 50% as threshold

and based on the confidence calculated the following four graphs are drawn which reflect the

strength of association among the itemset.

0
10
20
30
40
50
60
70
80
90

Training Support

Test Support

Threshhold

80

Table: 4.2.5: Association of 16 different features with„Class=Attack‟

Association Confidence Threshold

Value

Source Bytes=0 => Class=Attack 93.11 50

Destination Bytes=0 => Class=Attack 83.91 50

Source Bytes=0 ^ Destination bytes=0 => Class=Attack 67.57 50

logged in =0 ^ Class=attack 74.39 50

dst_host_same_src_port_rate=0 => Class= Attcak 64.44 50

dst_host_srv_diff_host_rate=0 => Class= Attack 61.19 50

dst_host_serror_rate=1=> Class= Attack 99.81 50

dst_host_srv_serror_rate=1=>Class= Attack 99.91 50

dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst

_host_srv_serror_rate=1=> Class= Attack

100 50

dst_host_same_srv_rate ='fuzzy' => Class= Attack 65.53 50

dst_host_diff_srv_rate= 'fuzzy' => Class= Attack 64.61 50

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate=

'fuzzy' => Class=Attack

65.33 50

dst_host_count=255 => class = Attack 65.16 50

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy =>Class=

Attack

93.37 50

diff_srv_rate =fuzzy => Class=Attack 92.28 50

same_srv_rate= fuzzy => Class=Attack 91.54 50

81

Confidence for 16 different set of combinations in the training data set which tends towards

attack category has been calculated. If the confidence value is greater than or equal to the

threshold value it means that the set of itemset/features are strongly associated. Here in the table

4.2.5 all the calculated confidence values are greater than the threshold value.

Figure 4.2.5: Association of 16 different features with „Class=Attack‟

The above figure reflects that the 16 set of combinations of the itemset or features are strongly

associated as they lies above the threshold values. We can interpret the graph in the following

way. When Source Bytes is zero or Destination Bytes is zero or both are zero then the traffic

tends towards attack. Similarly for logged in =0, dst_host_same_src_port_rate=0,

dst_host_srv_diff_host_rate=0, dst_host_serror_rate=1, dst_host_srv_serror_rate=1 or together

dst_host_same_src_port_rate=0 and dst_host_srv_diff_host_rate=0 and dst_host_serror_rate=1

82

and dst_host_srv_serror_rate=1 the traffic tends towards attack. Likewise for

dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_count=255,

diff_srv_rate =fuzzy the network traffic behave towards attack or high probability of intrusion. If

dst_host_same_srv_rate ='fuzzy' anddst_host_diff_srv_rate= 'fuzzy' or same_srv_rate= fuzzy

anddiff_srv_rate =fuzzy then also the network is likely to be intrusive.

Table 4.2.6: Association of different features with class =‟attack‟ in Test data set

Association Confidence
Threshold
Value

Source Bytes=0 => Class=Attack 97.52 50

Destination Bytes=0 => Class=Attack 91.43 50

Source Bytes=0 ^ Destination bytes=0 => Class=Attack 97.97 50

logged in =0 => Class=attack 79.98 50

dst_host_same_src_port_rate=0 => Class= Attcak 90.21 50

dst_host_srv_diff_host_rate=0 => Class= Attack 80.94 50

dst_host_serror_rate=1=> Class= Attack 99.55 50

dst_host_srv_serror_rate=1=>Class= Attack 99.61 50

dst_host_same_src_port_rate=0
^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_se
rror_rate=1=> Class= Attack 100.00 50

dst_host_same_srv_rate ='fuzzy' => Class= Attack 86.42 50

dst_host_diff_srv_rate= 'fuzzy' => Class= Attack 85.10 50

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' =>
Class=Attack 86.27 50

dst_host_count=255 => class = Attack 81.37 50

83

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy =>Class= Attack 88.00 50

diff_srv_rate =fuzzy => Class=Attack 87.78 50

same_srv_rate= fuzzy => Class=Attack 89.88 50

Table 4.2.6 calculates the confidence for the same set of 16 combinations of features as in

Table 4.2.5 in the Test data set. Threshold value remains the same. It can be read that all the

values are greater than the threshold values.

Figure 4.2.6: Association of different features with class =‟attack‟ in Test data set

The above figure reflects that the set of combinations against who the confidence have been

calculated to measures the strength of the association between or among different features in the

test data set lies above the threshold values. And all the given 16 different set of combinations

are strongly associated.

0.00

20.00

40.00

60.00

80.00

100.00

120.00

So
u

rc
e

 B
yt

es
=0

 =
>…

D
e

st
in

at
io

n
 B

yt
es

=0
 =

>…

So
u

rc
e

 B
yt

es
=0

 ^
 D

es
ti

n
at

io
n

…

lo
gg

ed
 in

 =
0

 =
>

 C
la

ss
=

at
ta

ck

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

rt
_r

at
…

d
st

_
h

o
st

_
sr

v_
d

if
f_

h
o

st
_r

at
e

=…

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
=1

=
>…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
ra

te
=

1
=

…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

rt
_r

at
…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
te

…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

=…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
te

…

d
st

_
h

o
st

_
co

u
n

t=
2

5
5

 =
>

cl
as

s…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
^

…

d
if

f_
sr

v_
ra

te
 =

fu
zz

y
=

>…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
=

>…

Confidence

Threshold Point

84

Figure 4.2.7: Confidence of Training and Test data set together with class= attack

In figure 4.2.7, the comparative analysis for training data set result and test data set result has

been plotted to validate the result obtained from training data set. The graph clearly reflects that

the behavior or the trend that has been shown by the 16 different combinations of features in the

training data set follows the same trend in the test data set. It can be derived that the set of

combinations are strongly associated and when the left hand side value occur then there is a

probability that the traffic tends towards intrusion. In simple way we can express it in the

following style. If source bytes value is zero or destination bytes is zero or both source bytes

value and destination bytes values are zero at a time then the network traffic has the probability

that it will fall into attack class. In the similar way, if the logged in value is zero, or

dst_host_same_src_port_rate value is zero or dst_host_srv_diff_host_rate value is zero,

dst_host_serror_rate value is one or dst_host_srv_serror_rate value is one or together

dst_host_same_src_port_rate value is zero and dst_host_srv_diff_host_rate value is zero and

dst_host_serror_rate value is one and dst_host_srv_serror_rate value is one the traffic tends

0

20

40

60

80

100

120

So
u

rc
e

 B
yt

es
=0

 =
>…

D
e

st
in

at
io

n
 B

yt
es

=0
 =

>…

So
u

rc
e

 B
yt

es
=0

 ^
…

lo
gg

ed
 in

 =
0

 ^
 C

la
ss

=a
tt

ac
k

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

rt
…

d
st

_
h

o
st

_
sr

v_
d

if
f_

h
o

st
_r

…

d
st

_
h

o
st

_
se

rr
o

r_
ra

te
=1

=
…

d
st

_
h

o
st

_
sr

v_
se

rr
o

r_
ra

te
…

d
st

_
h

o
st

_
sa

m
e_

sr
c_

p
o

rt
…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
te

…

d
st

_
h

o
st

_
d

if
f_

sr
v_

ra
te

=…

d
st

_
h

o
st

_
sa

m
e_

sr
v_

ra
te

…

d
st

_
h

o
st

_
co

u
n

t=
2

5
5

 =
>…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
^

…

d
if

f_
sr

v_
ra

te
 =

fu
zz

y
=

>…

sa
m

e
_s

rv
_

ra
te

=
 f

u
zz

y
=

>…

Training Confidence

Test Confidence

Threshold

85

towards attack. Likewise for dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy',

dst_host_count=255, diff_srv_rate =fuzzy the network traffic behave towards attack or high

probability of intrusion. If dst_host_same_srv_rate ='fuzzy' and dst_host_diff_srv_rate= 'fuzzy'

or same_srv_rate= fuzzy and diff_srv_rate =fuzzy then also the network is likely to be intrusive.

As the behavior of these 16 set of combinations are strongly associated and when validated the

train data set result with test data set result it carries very meaningful information. This result can

become the guiding principle for developing network intrusion detection system.

Table 4.2.7: The association of 16 different features when class=Attack

Association Confidence Threshold

Value

Class=Attack=> Source Bytes=0 78.44 50

Class=Attack=> Destination Bytes=0 97.21 50

Class=Attack=> Source Bytes=0 ^ Destination bytes=0 78.28 50

Class=attack=> logged in =0 96.57 50

Class= Attcak=>dst_host_same_src_port_rate=0 69.24 50

Class= Attack=>dst_host_srv_diff_host_rate=0 90.65 50

Class= Attack=>dst_host_serror_rate=1 57.16 50

Class= Attack=>dst_host_srv_serror_rate=1 58.38 50

 Class= Attack=>dst_host_same_src_port_rate=0

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_ser

ror_rate=1 53 50

Class= Attack dst_host_same_srv_rate ='fuzzy' 78.16 50

Class= Attack dst_host_diff_srv_rate= 'fuzzy' 84.62 50

86

Class= Attack =>dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate=

'fuzzy' 77.31 50

class = Attack=>dst_host_count=255 82.31 50

Class= Attack=>same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 70.85 50

Class= Attack =>diff_srv_rate =fuzzy 72.91 50

Class=Attack=>same_srv_rate= fuzzy 72.43 50

In the above table, the confidence have been calculated for 16 different set of combinations

in the training data set when the Class =‟attack‟. These set of combinations are slightly different

from the previous sets in Table 4.2.5 and 4.4.6. The main difference is that, here class=attack is

in the left hand side. We will read it as when the class is attack or the network is intrusive what is

the probability or chance of occurring of the itemset/features in the right hand side or how

strongly the features are associated when class is attack. In the table 4.2.7 all the calculated

confidence values are greater than the threshold values. Therefore we can interpret in such a way

that when class is attack, the features in the right hand side of the 16 different set of

combinations are strongly associated.

87

Figure: 4.2.8: Association of 16 different features when class=Attack

This figure represents the 16 different set of combinations when class is attack. The figure

reflects that all the set of combinations are strongly associated as they falls above the

threshold line.

Table 4.2.8: Association of Test Data Set for the same set of combination as Table 4.2.7

Association Confidence
Threshold
value

Class=Attack=> Source Bytes=0 45.09 50

Class=Attack=> Destination Bytes=0 56.62 50

Class=Attack=> Source Bytes=0 ^ Destination bytes=0 34.30 50

Class=attack=> logged in =0 72.99 50

Class= Attcak=>dst_host_same_src_port_rate=0 63.44 50

Class= Attack=>dst_host_srv_diff_host_rate=0 85.21 50

Class= Attack=>dst_host_serror_rate=1 6.82 50

Class= Attack=>dst_host_srv_serror_rate=1 7.88 50

88

 Class= Attack=>dst_host_same_src_port_rate=0
^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_s
error_rate=1 4.29 50

Class= Attack dst_host_same_srv_rate ='fuzzy' 65.36 50

Class= Attack =>dst_host_diff_srv_rate= 'fuzzy' 75.24 50

Class= Attack =>dst_host_same_srv_rate ='fuzzy' ^
dst_host_diff_srv_rate= 'fuzzy' 64.52 50

class = Attack=>dst_host_count=255 74.69 50

Class= Attack=>same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 19.36 50

Class= Attack =>diff_srv_rate =fuzzy 20.00 50

Class=Attack=>same_srv_rate= fuzzy 26.55 50

The table calculates the confidence for same set of combinations when class =attack in the

test data set to validate the results obtained from the training data set. But here out of 16 sets of

combinations eight sets are not following the similar trend with the training data set. Confidence

for eight different sets are less than the thresh hold values. Therefore the following

combinations are not strongly associated. Class=Attack=> Source Bytes=0, Class=Attack=>

Source Bytes=0 ^ Destination bytes=0, Class= Attack=>dst_host_serror_rate=1

Class= Attack=>dst_host_srv_serror_rate=1, Class= Attack =>

dst_host_same_src_port_rate=0 ^ dst_host_srv_diff_host_rate=0 ^dst_host_serror_rate=1 ^

dst_host_srv_serror_rate=1, Class= Attack => same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy,

Class= Attack =>diff_srv_rate =fuzzy ,Class=Attack=>same_srv_rate= fuzzy

89

Figure 4.2.9: Association of Test Data Set when class=‟attack‟

The above plotted graph for table 4.2.8 has clearly reflected that eight set of combinations

are below the threshold values and hence their associations are weak.

0

20

40

60

80

100

120

C
la

ss
=A

tt
ac

k=
>

So
u

rc
e

…

C
la

ss
=A

tt
ac

k=
>

So
u

rc
e

…

C
la

ss
=a

tt
ac

k=
>

 lo
gg

e
d

 in
 =

0

C
la

ss
=

A
tt

ac
k=

>…

C
la

ss
=

A
tt

ac
k=

>…

 C
la

ss
=

 A
tt

ac
k=

>
…

C
la

ss
=

A
tt

ac
k=

>…

Train Confidence

Test Confidence

Threshold

90

Figure 4.2.10: Analytical comparison for association for Train and Test data set when class=

„attack‟

Figure 4.2.10 has shown the comparative analysis of the 16 different set of combinations

when class is attack in training and test data set. It has been observed that the behavior of

network traffic when class is attack do not behave in similar fashion in training and test data

set. Eight out of sixteen follow the similar trend in both training and test data set and rest

eight differs the trend and behavior. Therefore after validating the training output with the

test data set we can derive that when class is attack or intrusive then there is high probability

of occurrence of the following itemset/features. Those are-Destination Bytes=0, logged in

=0,dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate

='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_same_srv_rate ='fuzzy' ^

dst_host_diff_srv_rate= 'fuzzy' and dst_host_count=255. Remaining eight set of

combinations do not give any meaningful information.

Table 4.2.9: Association of 10 different features with Class=Normal

Association Confidence Threshold value

Source Bytes=nonzero => Class=normal 83.49 50

Destination bytes=nonzero =>Class=Normal 97.18 50

Source Bytes=nonzero^ Destination bytes=nonzero =>

Class=normal 97.33 50

logged in =1 => Class=normal 95.97 50

destination host count = less than 255 => Class=

Normal 80.01 50

91

dst_host_same_src_port_rate=1 => Class= Normal 85.89 50

dst_host_srv_diff_host_rate=1 => Class= Normal 61.18 50

dst_host_serror_rate=0=> Class= Normal 75.36 50

dst_host_srv_serror_rate=0=>Class= Normal 72.5 50

dst_host_same_src_port_rate= fuzzy => class= normal 80.51 50

In the table 4.2.9 calculation of confidence for 10 different set of combinations in the

training data set has been placed. These 10 combinations have the tendency towards normal or

intrusion free network traffic. The class=normal is in the right hand side of the combinations

during calculations. The values calculated are greater than the threshold values. Therefore it can

be derived that itemset/features of all 10 set of combinations are strongly associated. In the

simpler way we can interpret in the following way, If Source Bytes=nonzero or Destination

bytes=nonzero or both Source Bytes=nonzero and Destination bytes=nonzero then the traffic has

the probability of normal traffic. In the similar fashion if logged in =1 or destination host count =

less than 255 or dst_host_same_src_port_rate=1 or dst_host_srv_diff_host_rate=1 or

dst_host_serror_rate=0 ordst_host_srv_serror_rate=0 or dst_host_same_src_port_rate= fuzzy

then the network traffic are likely to fall in normal class.

92

Figure 4.2.11: Association of 10 different features with Class=Normal

The graph has been plotted based on the Table 4.2.9 clearly reflect the strength of all 10

set of combinations and are strongly associated.

Table 4.2.10: Confidence Calculation with Class=Normal for Test Data Set

Association Confidence

Threshold

Value

Source Bytes=nonzero =>

Class=normal 27.71 50

Destination bytes=nonzero

=>Class=Normal 28.01 50

Source Bytes=nonzero^ Destination

bytes=nonzero => Class=normal 33.54 50

logged in =1 => Class=normal 12.67 50

destination host count = less than

255 => Class= Normal 16.75 50

dst_host_same_src_port_rate=1 =>

Class= Normal 10.93 50

dst_host_srv_diff_host_rate=1 =>

Class= Normal 0.36 50

dst_host_serror_rate=0=> Class=

Normal 22.22 50

93

dst_host_srv_serror_rate=0=>Class=

Normal 21.94 50

dst_host_same_src_port_rate= fuzzy

=> class= normal 37.40 50

In the above table the calculation of confidence has been done same set of data where

class=normal in the right hand side in the test data set to validate the results obtained from

training data set. The confidence values calculated for the test data set are less than the threshold

values, hence the association is weak.

Figure: 4.2.12: Confidence Calculation with Class=Normal for Test Data Set

The above figure reflects that the confidence lies below the threshold value and the

itemset or the features are weakly associated with „class= normal‟

0.00

10.00

20.00

30.00

40.00

50.00

60.00

Confidence

Threshold Point

94

Figure 4.2.13: Comparison of confidence for Training and Test data set with class=‟normal‟

The figure 4.2.13 reflected the comparative representation of ten different set of

combinations with class=normal in training data set and test data set. The results obtained from

the training data set have been validated with the test data set. The results showing in the test

data set are showing contradicting results or reverse trend and do not support the predication

made in the training data set. Hence these ten set of combinations can‟t draw a conclusion. These

itemsets are not carrying any meaningful information.

Table 4.2.11: The association of 10 different features When „Class=Normal‟

Association Confidence Threshold

value

Class=normal=>Source Bytes=nonzero 94.94 50

Class=Normal=>Destination bytes=nonzero 83.76 50

 Class=normal =>Source Bytes=nonzero^

Destination bytes=nonzero 83.48 50

Class=normal=> logged in =1 71.04 50

0

20

40

60

80

100

120

Train Confidence

Test Confidence

Threshold

95

Class= Normal=> destination host count = less

than 255 61.66 50

Class= Normal=>dst_host_same_src_port_rate=1 62.59 50

Class= Normal=>dst_host_srv_diff_host_rate=1 69.81 50

Class= Normal=>dst_host_serror_rate=0 91.05 50

Class= Normal=>dst_host_srv_serror_rate=0 91.86 50

class= normal=>dst_host_same_src_port_rate=

fuzzy 62.91 50

 The above table calculates confidence for ten different set of combinations in the training

data set when the class is normal or the class=normal is in the left hand side. The values

calculated here are greater than the threshold value. Therefore in training data set when

class=normal then Source Bytes=nonzero, Destination bytes=nonzero, both Source

Bytes=nonzero and Destination bytes=nonzero logged in =1, destination host count = less than

255, dst_host_same_src_port_rate=1, dst_host_srv_diff_host_rate=1, dst_host_serror_rate=0,

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy are likely to occur as they are

strongly associated with class=normal.

96

Figure 4.2.13: The association of 10 different features When „Class=Normal‟

The above graph reflects that all ten set of combinations lies above the threshold value.

Therefore in training data set it can be predicated that if the network traffic is normal then Source

Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and Destination

bytes=nonzero logged in =1, destination host count = less than 255,

dst_host_same_src_port_rate=1, dst_host_srv_diff_host_rate=1, dst_host_serror_rate=0,

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur.

Table 4.2.12: When class=‟normal‟ in Test Data Set

Association Confidence
Threshold
Value

Class=normal=>Source Bytes=nonzero 94.84 50

Class=Normal=>Destination bytes=nonzero 76.07 50

 Class=normal =>Source Bytes=nonzero^
Destination bytes=nonzero 74.12 50

Class=normal=> logged in =1 17.66 50

97

Class= Normal=> destination host count = less than
255 22.96 50

Class= Normal=>dst_host_same_src_port_rate=1 69.75 50

Class= Normal=>dst_host_srv_diff_host_rate=1 0.09 50

Class= Normal=>dst_host_serror_rate=0 91.22 50

Class= Normal=>dst_host_srv_serror_rate=0 96.38 50

class= normal=>dst_host_same_src_port_rate=
fuzzy 61.34 50

In the above table the calculation of confidence for the same data set with table 4.2.11 has

been carried out with the test data to validate the results obtained from training data set. Except

three sets of combinations all the values are following the similar trend with the training data set

and the values are greater than the threshold values.

Figure 4.2.14: Comparison of association (confidence) in Training and Test data set when

class=‟normal‟

0

20

40

60

80

100

120

Train Confidence

Test Confidence

Threshold

98

Figure 4.2.12 which represents a comparative analysis of training data set results and test

data set results when class is normal. For Class=normal=> logged in =1, Class= Normal=>

destination host count = less than 255 and Class= Normal=>dst_host_srv_diff_host_rate=1 set of

combinations the values lies below the threshold value and rest combinations are lying above the

threshold value. Therefore we can make a conclusion in the following way- When class is

normal then Source Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and

Destination bytes=nonzero, dst_host_same_src_port_rate=1, dst_host_serror_rate=0,

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur and hence these

seven features are strongly associated with class value.

4.3 Conclusion

The results which are reflected in the tables and in the figures have been derived into

rules for developing a network intrusion detection system. The following is the algorithm

developed after validating with the test data set.

Step 1: READ Source Bytes, Destination Bytes, logged in, dst_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_count, diff_srv_rate,same_srv_rate

Step 2: IF Source Bytes = 0 THEN GOTO Step 14

Step 3: Else IF Destination Bytes =0 THEN GOTO Step 14

Step 4: Else IF logged in =0 THEN GOTO Step 14

Step 5: Else IF dst_same_src_port_rate =0 THEN GOTO Step 14

Step 6: Else IF dst_host_srv_diff_host_rate =0 THEN GOTO Step 14

Step 7: Else IF dst_host_serror_rate =1 THEN GOTO Step 14

99

Step 8: Else IF dst_host_srv_serror_rate=1 THEN GOTO Step 14

Step 9: Else IF dst_host_same_srv_rate= „fuzzy‟ THEN GOTO Step 14

Step 10: Else IF dst_host_diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14

Step 11: Else IF dst_host_count=255 THEN GOTO Step 14

Step 12: Else IF diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14

Step 13: Else IF same_srv_rate= „fuzzy‟ THEN GOTO Step 14 Else GOTO Step 15

Step 14: Display the network traffic belongs to „Attack‟ class

Step 15: STOP

100

Chapter-5

Performance Comparison of the proposed rule with other

algorithms

5.1 Introduction

It is important to verify one algorithm/methodology whether it is working in right way or

not after developing it; also it gives added advantage when its performance can be compared

with some existing algorithms. We have already developed one rule/ methodology and presented

in the last chapter to classify or detect „attack‟ or intrusion from network traffic. So far, we have

used NSL-KDD training data set and then test data set for developing one methodology by

applying data cube, OLAP and then association rule mining techniques. After validating with

NSL-KDD test data set the draft rule was proposed. The rule has been modified little after

checking the insight of the KDD99 data subsets. The modified rule to be used for detecting

attack is as follows-

Step 1: Read Source Bytes, Destination Bytes and logged in

Step 2: If „Source Bytes=0‟ AND „Destination Bytes= 0‟ AND „logged in=0‟, Then

Display the Network traffic is intrusive and goto Step 5.

Step 3: Else IF („Source Bytes=0‟ AND „Destination Bytes= 0‟) OR („Destination

Bytes= 0‟ AND „logged in=0‟) OR („Source Bytes= 0‟ AND „logged in=0‟), Then Display

Network traffic is intrusive and goto Step 5.

Step 4: Else IF „Source Bytes=0‟ OR „Destination Bytes=0‟ OR „Logged in=0‟, Then

Display Network traffic is intrusive and goto Step 5.

Step 5: STOP

101

KDD99 is popularly used data set used for intrusion detection study has been considered

for testing the proposed algorithm. At the beginning, the KDD99 data set has been divided into

eight subsets, so that we can carry out the exercise of classification/attack detection in different

datasets. These data sets have the similar attributes as in the NSL-KDD data set. Each subset

consists of approximately 1,00,000 records and the subsets are created randomly from the main

KDD99 data set.

The rule developed has been translated into a MATLAB program for carrying out the

exercise of testing the KDD99 data subsets. For each subset confusion matrix has been plotted.

The confusion matrix reflects the accuracy of rule/methodology we have developed. The rule has

been trained using the data subsets and then tested to detect the intrusion.

 Similarly accuracy of these data subsets has been calculated by generating confusion

matrix of Naïve-Bays, Logistic, and Decision Stamp algorithm through WEKA application

software. Applying the cross validation method in each subset using WEKA application software

the subsets are trained and tested. Weka is a well-known data mining tools which allows users to

identify hidden information from database with user friendly interfaces. Classification is the

process of classifying data of various kinds to classify items from a set of data. [Kulkarni et al.

(2016); Amin M.N. and Habib M.A. (2015)].

The subsets fed to the WEKA and the algorithms were run for classifying the „class‟ i.e.

attack/normal. The accuracy derived after running these algorithms are compared the accuracy of

our proposed rule.

102

5.2 Experiments & Results

The following are the tested result for the subsets-

1. KDD 99 Subset 1

Table 5.2.1: Nos. of records in KDD99 data subset1 against each itemset/attributes

Itemset Count in the dataset

Attack
22112

Source Bytes=0
22204

If Source Bytes=0 and Class= „attack‟
22106

Destination Bytes=0
22968

If Destination Bytes=0 and Class= „attack‟
22108

logged in=0
24243

If logged in =0 and Class= „attack‟
22108

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
22180

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
22102

103

Fig 5.2.1: Confusion Matrix for KDD Data Subset 1

Table 5.2.2: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset 1

Methodology Accuracy (in%)

Proposed Rule 99.9

NaiveBays 99.9

Logistic 99.9

Decission Stamp 99.8

104

Fig 5.2.2: Comparison of the accuracies in KDD 99 Data set 1

.

2. KDD 99 Subset 2

Table 5.2.3: Nos. of records in KDD99 data subset2 against each itemset/attributes

Itemset Count in the dataset

Attack 1145

Source Bytes=0 1132

If Source Bytes=0 and Class= „attack‟ 1091

Destination Bytes=0 1144

If Destination Bytes=0 and Class= „attack‟ 1091

logged in=0 1199

If logged in =0 and Class= „attack‟ 1116

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 1063

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟ 1063

99.75

99.8

99.85

99.9

Proposed
Rule

NaiveBays logistic Decission
Stamp

99.9 99.9 99.9

99.8

Accuracy (in%)

Accuracy (in%)

105

Fig 5.2.3: Confusion Matrix for KDD Data Subset 2

Table 5.2.4: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset 2

Methodology Accuracy (in%)

Proposed Rule
99.9

NaiveBays
99.2

Logistic
99.9

Decission Stamp
99.7

106

Fig 5.2.4: Comparison of the algorithms in KDD 99 Data set 2

3. KDD 99 Subset 3

Table 5.2.5: Nos. of records in KDD99 data subset3 against each itemset/attributes

Itemset Count in the dataset

Attack
99998

Source Bytes=0
99789

If Source Bytes=0 and Class= „attack‟
99789

Destination Bytes=0
100000

If Destination Bytes=0 and Class= „attack‟
99998

logged in=0
100000

If logged in =0 and Class= „attack‟
99998

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
99789

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= „attack‟
99789

98.8

99

99.2

99.4

99.6

99.8

100

Proposed
Rule

NaiveBays logistic Decission
Stamp

99.9

99.2

99.9
99.7

Accuracy (in%)

Accuracy (in%)

107

Fig 5.2.5: Confusion Matrix for KDD Data Subset 3

Table 5.2.6: Accuracies of the proposed rule and other three algorithms in KDD99 data subset 3

Methodology Accuracy (in %)

Proposed Rule
99.8

NaiveBays
99.8

Logistic
99.9

Decision Stamp
99.9

108

Fig 5.2.4: Comparison of the algorithms in KDD 99 Data set 4, where the proposed algorithm

has performed better

4. KDD 99 Subset 4

Table 5.2.7: Nos. of records in KDD99 data subset4 against each itemset/attributes

Itemset Count in the dataset

Attack
78964

Source Bytes=0
77747

If Source Bytes=0 and Class= „attack‟
77744

Destination Bytes=0
77998

If Destination Bytes=0 and Class= „attack‟
77944

logged in=0
78454

If logged in =0 and Class= „attack‟
77951

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
77741

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
77741

99.7

99.8

99.9

99.8 99.8
99.9 99.9

Accuracy (in %)

Accuracy (in %)

109

Fig 5.2.7: Confusion Matrix for KDD Data Subset 4

Table 5.2.8: Accuracies of the proposed rule and other three algorithms in KDD99 data subset4

Methodology Accuracy (in %)

Proposed Rule
98.8

NaiveBays
99.0

Logistic
99.9

Decision Stamp
96.5

110

Fig 5.2.8: Comparison of the algorithms in KDD 99 Data set 4

5. KDD 99 Subset 5

Table 5.2.9: Nos. of records in KDD99 data subset5 against each itemset/attributes

Itemset Count in the dataset

Attack
88790

Source Bytes=0
88791

If Source Bytes=0 and Class= „attack‟
88790

Destination Bytes=0
88787

If Destination Bytes=0 and Class= „attack‟
88782

logged in=0
88796

If logged in =0 and Class= „attack‟
88790

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
88782

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
88782

94

95

96

97

98

99

100

Proposed
Rule

NaiveBays logistic Decision
Stamp

98.8 99.098
99.97

96.53

Accuracy (in %)

Accuracy (in %)

111

Fig 5.2.9: Confusion Matrix for KDD Data Subset 5

Table 5.2.10: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset 5

Methodology Accuracy (in %)

Proposed Rule
100

NaiveBays
97.8

Logistic
99.9

Decision Stamp
95.1

112

Fig 5.2.10: Comparison of the algorithms in KDD 99 Data set 5

6. KDD 99 Subset 6

Table 5.2.11: Nos. of records in KDD99 data subset6 against each itemset/attributes

Itemset Count in the dataset

Attack
99999

Source Bytes=0
99999

If Source Bytes=0 and Class= „attack‟
99999

Destination Bytes=0
99999

If Destination Bytes=0 and Class= „attack‟
99999

logged in=0
99999

If logged in =0 and Class= „attack‟
99999

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
99999

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
99999

92

94

96

98

100

Proposed
Rule

NaiveBays logistic Decision
Stamp

100
97.881

99.997

95.13

Accuracy (in %)

Accuracy (in %)

113

Fig 5.2.11: Confusion Matrix for KDD Data Subset 6

Table 5.2.12: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset 6
Methodology Accuracy (in %)

Proposed Rule
100

NaiveBays
99.9

Logistic
99.9

Decision Stamp
99.9

114

Fig 5.2.12: Comparison of the algorithms in KDD 99 Data set 6

7. KDD 99 Subset 7

Table 5.2.13: Nos. of records in KDD99 data subset7 against each itemset/attributes

Itemset Count in the dataset

Attack
21956

Source Bytes=0
21306

If Source Bytes=0 and Class= „attack‟
20922

Destination Bytes=0
22403

If Destination Bytes=0 and Class= „attack‟
21932

logged in=0
23008

If logged in =0 and Class= „attack‟
21952

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
20904

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
20904

99.85

99.9

99.95

100

Proposed
Rule

NaiveBays logistic Decision
Stamp

100

99.9 99.9 99.9

Accuracy (in %)

Accuracy (in %)

115

Fig 5.2.13: Confusion Matrix for KDD Data Subset 7

Table 5.2.14: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset7

Methodology Accuracy (in%)

Proposed Rule
98.9

NaiveBays
98.4

Logistic
95.6

Decision Stamp
98.9

116

Fig 5.2.14: Comparison of the algorithms in KDD 99 Data set 7

8. KDD 99 Subset 8

Table 5.2.15: Nos. of records in KDD99 data subset8 against each itemset/attributes

Itemset Count in the dataset

Attack
8671

Source Bytes=0
7538

If Source Bytes=0 and Class= „attack‟
7287

Destination Bytes=0
8655

If Destination Bytes=0 and Class= „attack‟
8639

logged in=0
9479

If logged in =0 and Class= „attack‟
8649

Source bytes =0 ^ Destination bytes=0 ^ logged in=0
7287

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class=

„attack‟
7287

93

94

95

96

97

98

99

Proposed
Rule

NaiveBays logistic Decision
Stamp

98.9 98.4

95.6

98.921

Accuracy (in%)

Accuracy (in%)

117

Fig 5.2.15: Confusion Matrix for KDD Data Subset 8

Table 5.2.16: Accuracies of the proposed algorithm and other three algorithms in KDD99 data

subset8

Methodology Accuracy (in %)

Proposed Rule
98.6

NaiveBays
99.2

logistic
99.9

Decision Stamp
96.4

118

Fig 5.2.16: Comparison of the algorithms in KDD 99 Data set 8

5.3 Conclusion

The experiments carried out in eight different subsets of KDD99 data set have been

presented above. The results of the experiments are presented in graph for viewing the

comparative results. From the comparative analysis, it has been found that, out of eight dataset

our proposed rule has performs better in four datasets.

Fig 5.2.17: Accuracies of four different methodologies in eight subsets.

94

95

96

97

98

99

100

Proposed
Rule

NaiveBays logistic Decision
Stamp

98.6 99.231
99.967

96.433

Accuracy (in %)

Accuracy (in %)

94

95

96

97

98

99

100

101

0 2 4 6 8 10

M
e

th
o

d
o

lo
gi

e
s

KDD99 Data Subset

Proposed Rule

NaiveBays

logistic

Decission Stamp

119

Table 5.2.17: Average Accuracy of four different methodologies

Methodology Average Performance

Proposed Rule 99.4875

NaiveBays 99.15

logistic 99.3625

Decission Stamp 98.275

Fig 5.2.18: Average accuracies four different methodologies

And the average accuracy is also found to be better (99.488%) than the rest three

algorithms/methodology. Therefore it can be derived that, applying this rule/methodology one

can detect intrusion or unauthorized access in the computer network with reliable accuracy.

Proposed Rule,
99.4875

NaiveBays, 99.15

logistic, 99.3625

Decission Stamp,
98.275 98.2

98.4

98.6

98.8

99

99.2

99.4

99.6

0 1 2 3 4 5

A
cc

u
ra

cy

Methodologies

Average Accuracy (in%)

Average Accuracy (in%)

120

Chapter-6

Summary and Conclusion

6.1.Summary

Research in intrusion detection system is an emerging area. In this thesis we made a

noble effort to implement the idea of data cube and association rule for analyzing the features of

network traffic and develop a network intrusion detection system based on the findings. An 18

dimensional logical data cube has been developed for storing and analyzing the data from

different perspectives followed by OLAP analysis to learn the pattern or trend of the traffic and

at the end association rules has been applied to understand the strength of association

between/among different features/dimension for normal or attack category. After reviewing a

good numbers of research article and studying the recent works in the field of intrusion detection

system it was felt that the storing the historical data and analysis on it is an important thought for

developing network intrusion detection system.

The objectives set for this research work are as follows-

 To design a data cube for analysing the NSL-KDD data set of Network Intrusion

Detection.

 To evaluate the patterns of the data on the proposed data cube by performing the OLAP

(Online Analytical Processing) operations.

 Applying Association Rule Mining technique for designing Network Intrusion Detection

System.

121

 These objectives have been fulfilled and the findings after the experiments are

presented in this thesis. This thesis has been divided into six chapters including this. In the first

chapter, the basic idea of intrusion detection system and its research has been explained. It has

been explained as, because of the advancement of network technology to connect the distant

corners of the globe and the internet, it continues to expand its influences as a medium and

commerce and accordingly the threat from attackers, spammers and criminal enterprises has also

increasing. The network security is becoming a major challenge today as interconnections among

computer systems are growing in fast pace. Computer networks faced the challenges from the

unauthorized disclosure of information and the modification or destruction of data or denial of

service attack (DoS); and the computer network is responsible for providing protected and the

availability, confidentiality and integrity of critical information [Depren et al. (2005)]. According

to Animesh Patcha and Jung Min Park an intrusion detection system gathers and analyzes

information from various areas within a standalone computer or a computer network to identify

possible security gap. Therefore intrusion detection can be defined as the act of detecting actions

that attempt to compromise the confidentiality, integrity or availability of a system/ network.

Intrusion detection system is a software tool used to detect illegitimate access to a computer

system or a network [Patcha A. and Park J.M. (2007)]. Traditionally the research works on

intrusion detection focuses on the analysis and detection. Intrusion Detection Systems are

divided into two categories: Host based IDS systems and Network Based IDS systems (NIDS)

[Anderson (1998); Biermann et al. (2001)]. Host based IDS systems are installed locally on host

computer. Host based IDS systems evaluate the activities in the host machine. It monitors the

characteristics of a single host computer and the events occurring within that for any suspicious

activity [Lichodzijewski et al. (2002)]. Host-based IDSs get audit data from host audit trails and

122

detect attacks against a single host. The NIDS which is responsible for analyzing, detecting and

protecting the network use network traffic as the audit data source. The network based IDS

systems inspect the packets passing through the network [Lichodzijewski (2002)]. An IDS

system is a defense mechanism, which detects hostile activities or exploits in a network. Existing

IDS systems can be divided into two categories according to the detection approaches namely

anomaly detection and misuse detection or signature detection. The elements central to intrusion

detection are namely resources to be protected in a target system, i.e., user accounts, file systems,

system kernels, etc.; models that characterize the “normal” or “legitimate” behavior of these

resources; techniques that compare the actual system activities with the established models, and

identify those that are “abnormal” or “intrusive [Lee W. and Stolfo S.J. (1998)]. An intrusion is a

deliberate, unauthorized attempt to access or manipulate information or system and to render

them unreliable or unusable.

 Misuse detection and Anomaly detection are two approaches to detect and prevent

intrusion [Singhal A. and Jajodia S. (2006); Jyothsna et al. (2011)]. Misuse detection catches the

intrusions in terms of the characteristics of known attacks or system vulnerabilities and based on

known attack actions. It can feature extract from known intrusions and integrate the Human

knowledge where the rules are pre-defined but it cannot detect novel or unknown attacks. On the

other hand Anomaly detection detects any action that significantly deviates from the normal

behavior based on the normal behavior of a subject. Any action that significantly deviates from

the normal behavior is considered intrusion.

 Intrusion Detection system is also describes as pattern discovery and pattern

recognition system. The Pattern (Rule) is the most important part in the Intrusion Detection

System. Pattern (Rule) Discover, Pattern Matching and Pattern Recognition play important role

123

in intrusion detection. [Esposito et al. (2005)]. Commercially available IDS are predominantly

signature-based IDS that are designed to detect known attacks, whereas anomaly detection

system designs the system to detect both known and unknown attacks. Therefore the research

trends are moving to anomaly detection. Like many other techniques data mining technique is

one of the popular method to discover the pattern of anomaly. Among the other existing

techniques, the statistical techniques and machine learning techniques which include statistical

analysis, Bayesian network, markov-model, principal component analysis etc. are popular. But

because of some drawbacks in the statistical system which is easy to train by the expert intruder

and for machine learning techniques the resources are very expensive the researchers are hunting

for new approach [Patcha A. and Park J.M. (2007)]. To overcome the drawbacks of the previous

two methods researchers has started experimenting by using data mining methods.

 Most current approaches to the process of misuse detection utilize some form of rule-

based analysis. Rule-Based analysis relies on sets of predefined rules that are provided by an

administrator, automatically created by the system, or both. These rules are used by the system to

make conclusions about the security-related data from the intrusion detection system.

Unfortunately, the detection ability of misuse systems is limited to the rule base that they

possess. Hence misuse detectors require frequent updates to remain current [Lee W. and Stolfo

S.J. (2000)].

 Data warehousing and data mining techniques can improve the performance and usability

of IDS. Data warehouse uses a data model that is based on a multidimensional data model which

is popularly known as data cube [Singhal A. and Jajodia S. (2006); Kalita (2010)]. A cube can be

viewed in multiple dimensions and help in analyzing the historical database. Singhal A. and

Jajodia S. (2006) have proposed a multidimensional model for Online Analytical Processing

124

(OLAP) in a data cube to view the attack as multidimensional data. In Proceedings of ACM CSS

Workshop on Data Mining Applied to Security (DMSA-2001), by Portnoy et al. (2001)] have

presented a paper titled „Intrusion detection with unlabeled data using clustering‟ where they

have presented a new type of clustering-based intrusion detection algorithm, unsupervised

anomaly detection, which trains on unlabeled data in order to detect new intrusions. This

proposed method is able to detect many different types of intrusions, while maintaining a low

false positive rate as verified over the KDD CUP 1999 dataset.

Valdes A. and Skinner K.. (2000) have authored an article where the author have

proposed a high-performance, adaptive, model-based technique using Bayes net technology for

attack detection, to analyze bursts of traffic. This approach has the features of both signature

based and statistical techniques: model specificity, adaptability, and generalization potential.

 Abraham (2001) aims to determine the feasibility and effectiveness of data mining

techniques in real-time intrusion detection and produce solutions for this purpose. The outcomes

of the IDDM were the abilities to characterize network data and to detect variations in these

characteristics over time. Combining this capability with tools that either recognize existing

attack patterns or operate similarly to IDDM, it strengthens the ability of intrusion detection

professionals to recognize and potentially react to unwanted violations to network operations.

Lee W. and Stolfo S.J. (1998) have discussed the construction of intrusion detection model using

data mining framework. They have proposed the idea of using association rule to uncover the

low frequency but important patterns. Ertoz et al. (2003) have introduced the Minnesota

Intrusion Detection System (MINDS) where data mining techniques are used to automatically

detect the attack against computer network and system. Instead of going with traditional method

based on attack signatures provided by human expert, data mining approach were proposed to

125

detect the novel intrusion to overcome the limitation of traditional system. Cuppens F. and Miege

A. (2002) have used the clustering and merging function for creating new alert. They have

managed correlates and cluster the alert. Ning P. and Xu D. (2003) have presented a practical

technique to address the issue of traditional intrusion detection system which focuses on low

level attacks. The proposed approach in this paper constructs attack scenarios by correlating

alerts on the basis of prerequisites and consequences of intrusions. A paper by Ning et al. (2002)

presented a technique to automatically learn attack strategies from intrusion alerts reported by

IDSs. The approach is based on the recent advances in intrusion alert correlation.

In the second chapter, discussion about designing the data cube for analyzing the NSL-

KDD data set of Network Intrusion Detection took place. Data warehouse, Data cube, Star

Schema and Dimension Modeling have been defined and explained in details. The pre-

processing of NSL-KDD training data set was carried out manually. The NSL-KDD data set

(both training and test data set) have been collected from secondary sources

(http://nsl.cs.unb.ca/NSL-KDD/). There are 41 numbers of attributes excluding the class label.

The data set consists of 1, 25, 773 numbers of rows for training data set and 11,850 number of

rows for Test data set. This data set is originated from KDD 99 data set. At the very first phase

15 columns were deleted namely- land, wrong_fragement, urgent, hot, num_failed_login,

num_compromised, root_shell, su_attempted, num_root, num_file_creations, num_shells,

num_access file, num_outbounds command, is_host login and is guest login. These 15 columns

have been deleted because it is found that they were weakly relevant. There are 53.44% normal

and 46.56% attack records but the deleted 15 columns or features consist of only one value (i.e.

in these column 99% or more values are 0 (zero)). Therefore it can be easily derived that these

column values are not playing any role to make a network traffic normal or attack.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true

126

In a similar fashion few more columns namely dst_host_srv_reeeor_rate,

dst_host_rerror_rate, reerror_rate, srv_reerror_rate and duration have been deleted.

The column „class‟ has been pre-processed by grouping different types of attack into one

label. The anomaly values were labeled into 22 different types of attack. All 22 different types of

attack namely back, buffer_overflow, ftp_write, guess_password, imap, ipsweep, land, land

module, multihop, Neptune, nmap, perl, phf, pod, portswep, root kit, stan, spy, smurf, teardrop,

warezclient and warzemaster are grouped into one label „Attack‟ . Among all the 22 different

types of attack 70.28% are Neptune.To make the analysis easier using data cube pre-processing

is carried out in few more columns by grouping different continues values into one label. The

columns dst_host_srv_serror_rate, seerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_port_rate and

dst_host_srv_dff_host_rate contains the binary value 0 and 1, apart from the binary values these

columns consists of values from 0.01 to 0.99. Most of the values from 0.01 to 0.99 show similar

kind of characteristics. Therefore these values are grouped into one label and named as fuzzy.

Another column dst_host_count consists of discrete values from 0 to 255. But it is found that the

value 255 has maximum number of records and reflects similar kind of characteristics. Therefore

in this column 255 is one value and other than 255 (i.e. 0-254) are grouped into one and labeled

as less than 255. In similar way another two feature src_bytes and dst_bytes consists of values

ranging from 0 to 1379963888 and interestingly the values other than zero shows the close

characteristics and most of the nonzero values are normal traffic. Therefore the values other than

zero in these two columns are labeled as „nonzero‟.

Data transformation is a part of data pre-processing. According to the Ji Han‟s data

mining book, generalization and normalization are some techniques of data pre-processing.

127

Converting the attribute data e.g. 0-254 as „less than 255‟ or values other than zero as „nonzero‟

are known as generalization. Normalization refers to bringing the attribute data under one range.

Like the values between 0.01 and 0.99 can be written as 0.01-0.99. The generalization has been

used for those attribute who have values ranging from 0.01 to 0.99 are labeled as „fuzzy‟ [(Han

et al. (2006)].

Now, the NSL-KDD Train data set is ready for analysis with 18 columns and 1, 25,773

numbers of rows. Among 18 columns 17 are the feature of the network traffic and one is the

„class‟ label whether normal or Attack.

Once the data are pre-processed data are ready for use. Pre-procession of the data has

been followed by dimension modeling for 18 selected dimensions (Pujari 2008). Each feature or

columns are considered as one dimension. Dimension modeling for eighteen dimensions (or

attributes) including class were carried out to provide lots of semantic information. The

dimension modeling of 18 dimensions namely protocol type, src_bytes, dst_bytes, logged_in,

serror_rate, srv_serror_rate, same_srv_rate, diff_srv_rate, srv_diff-host_rate, dst_host_count,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, flag and class were

followed by star schema where a central fact table is connected to a set of dimension tables. The

fact table contains the actual transaction or values being analyzed and the dimension tables

describe about the transactions or values. The star schema reflects how the users view their

critical measures. Eighteen dimension tables and a central fact table present the star schema. The

„number of records‟ is the measure for this star schema. This distributive measure tells the

number of selected record(s) for a particular combination or pattern. Count function is applied

for getting the numerical value. This data cube shows the need of storing historical database for

128

summarize data. Storing and representing multidimensional data using data cube can help the

security analyzer in data mining and analyzing the trend of data. Online analytical processing

(OLAP) operations can be performed on the cube for further analysis. This cube can be utilized

as the summarized and meaningful source of data, where OLAP tools and data mining

techniques can be integrated to improve the efficiency of network intrusion detection.

 In the chapter-3, the analysis using OLAP on the 18 dimensional data cube that has been

designed and developed in the previous chapter has been discussed. OLAP is a category of

software technology that enables analysts, manager, and executive to gain insight data through

fast, consistent, interactive access to a wide variety of possible views of information that has

been transformed from raw data to reflect the real dimensionality of the enterprise as understood

by user. Recently Data warehouse and OLAP technology have gained a widespread acceptance

as a support for decision making. Though there are many OLAP operations available, but in our

analysis basically two operations i.e. slice and dice have been used. The Slice operation for

„class= normal‟ and „class=attack‟ has been done at the beginning. Dice operation with class and

protocol type has also been analysed. The result that has been obtained from training data set has

been validated with the test data set. The figure 3.7 reflects that though in train data set, the

protocol type did not show any interesting pattern but in test data set the result are different.

Therefore we cannot make a conclusion from here that whether the protocol type can decide the

class of network traffic. Figure 3.9 clearly support the results obtained in training data set. It

means that the training data set and test data set behaves in same manner. Therefore it can be

concluded that the source bytes value plays an important role in intrusion detection. If the source

bytes values are other than zero then it tends to be attack traffic. In the similar fashion the

analysis of pattern, for the destination bytes when the values are zero or nonzero are carried out.

129

But when source byte or destination bytes or both are nonzero (other than zero) the result/ pattern

of network traffic behaves as „Normal‟ traffic. Figure 3.10 tells that when the values of source

bytes, destination bytes and both are nonzero or other than zero the traffic tends towards Normal.

When the „source byte‟ is zero „attack‟ is much higher in number, on the other hand when

„source bytes‟ is nonzero the classes tends to fall into normal category. When source byte or

destination bytes or both are zero the result/ pattern of network traffic is tends towards „Attack‟.

Figure 3.11, which indicate that the changes in values for source bytes and destination bytes

change the behaviour of the network traffic. Source bytes i.e. the bytes sent from source to

destination and destination bytes i.e. bytes sent from destination to source are zero then the

traffic tends towards „attack‟ and when the values are nonzero or other than zero then the traffic

likely to fall in „normal‟ category. The result from Figure 3.11 is required to test with the Test

data set by performing the dice operations with the NSL-KDD Test data set. The values in the

table are in percentage so that the comparisons of Training data set and Test data set become

easy. The figure- 3.12 compares training data set with test data set. The changes of values (zero

or nonzero) for source bytes and destination bytes has the similar pattern of normal traffic in

training and test data where there is change in pattern for „attack‟ categories. It reflects the

variations in the network traffic upon changes of the values of source bytes and destination bytes.

Interestingly the Training and Test data results are very close and hence it can be derived that the

changes in values of source bytes and destination bytes i.e. bytes from source to destination or

bytes from destination to source can be make responsible for the changes of behaviour of

network traffic. When the values are zero there high chances of intrusion and if the values are

other than zero then the network is likely to behave normal.

130

 In Figure in 3.13 shows that when the logged in value is zero or there are login failure

then the network traffic is tends towards attack or intrusive network. On the other hand if the

logged in value is „1‟or successful login then the network traffic likely to behave normal and less

scope of intrusion. This result are required to be tested with the test data set so that the

conclusion to make the login failure responsible for intrusion. Figure 3.14, has validated the

Training result with the Test result. It has been observed that when logged in value is „1‟ the

traffic tends to Normal in Training data set but in Test data set it tends to Attack. But for logged

in value= „zero‟ the behavior in Training data set and Test data set is almost same. Therefore it

can be concluded in such a way that if there is a login failure or the logged in value is zero the

network traffic tends to be intrusive but if the log in is successful it does not necessarily tells that

the traffic will fall in to normal class.

Figure 3.16 reflects interesting results. It can be derived that when the „destination host

count= 255‟ it has similarity in trends for Training data set and Test data set but reverse for the

„destination host count < 255‟. Therefore it can be concluded that „destination host count= 255‟

giving meaningful information and can hold responsible for intrusion in network traffic.

Therefore the count of connections having the same destination host does play a deciding role in

intrusion detection system.

 The values for „FLAG‟ feature OTH, RSTOS0, S1, S2, S3 and SH are ignored because of

comparatively small numbers. The values REJ, RSTO, RSTR and S0 are responsible for the

network intrusion. On the other hand when the value is „SF‟ there is very little reflection of trend

of network intrusion or attack.

131

Dicing operations are carried out when the values are „fuzzy‟/0/1 in serror_rate, srv_serror_rate,

same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_same_srv_rate ,

dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,

 dst_host_serror_rate, dst_host_srv_serror_ratecolumns. Here the total Count means the

numbers of „normal‟ and „attack‟ for all values (0/1/fuzzy). In the training data set „fuzzy‟ values

are not very influencing for five of the features, they are namely serror_rate, srv_serror_rate,

dst_host_serror_rate, dst_host_srv_serror_rate, srv_diff_host_rate. For same_srv_rate,

diff_srv_rate, dst_host_same_srv_rate and dst_host_diff_srv_rate features, the traffics tends

towards „Attack‟ because of „fuzzy values. For dst_host_same_src_port_rate and

dst_host_srv_diff_host_rate features when the values are „fuzzy‟ the traffic tends towards

„Normal‟. Also the traffic behaves towards normal when the values for the following

features/dimension are zero, they are serror_rate, srv_serror_rate, diff_srv_rate,

dst_host_serror_rate, dst_host_srv_serror_rate. But when we analysed the table 3.20 which has

been derived after performing the dice operation on the data cube of test data set only few

outcomes of the training data set have been showing similar trend or pattern. The „same serve

rate‟, „different serve rate‟, „destination host same serve rate‟ and „destination host different host

rate‟ have shown the same trend that has been predicted in training data set, i.e. if the values of

these four features are fuzzy or in between 0 and 1 excluding 0 and 1 then the network traffic

tends towards intrusive. Other features that have shown some deciding trend in training data set

did not show any interesting trend here in test data set. Therefore we can derive it from here that

the changes in values for „same serve rate‟, „different serve rate‟, „destination host same serve

rate‟ and „destination host different host rate‟ changes the behaviour of network traffic.

132

 In the chapter-4, the use of association rule mining techniques and analyzing of the data

by calculating support and confidence in training and test data set was done. Association rule are

one of the many data mining techniques that describes events that tend to occur together.

Following the development of data cube and OLAP operation, the next crucial phase is to

perform association rule mining. Association rule mining is generally applied to find the

interesting rule from a large data set. In one research paper by Lee and Stolfo (2000), a

systematic framework has been proposed for developing intrusion detection system using data

mining. The framework consists of association rules and other data mining techniques. Patcha

and Park (2007) have proposed anomaly detection model, one of two intrusion detection classes

by using association rule mining. They have explained association rule, intrusion detection, and

application of association rule for developing anomaly detection system. Flora S. Tsai (2009) has

stated that a network intrusion detection system can be developed by performing association rule

mining. Rules can be generated by calculating support and confidence for detecting network

intrusion. The rules are simply viewed as [If Then Else structure].

 Mathematically the following two itemsets are used for analysis. IAttackset is for analyzing

the support and confidence when Class= „Attack‟. INormalis for analyzing the transactions when

Class=‟Normal‟.

• IAttack ={Class, Source Bytes, Destination Bytes, logged in, dst_host_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_srv_rate,

dst_host_count,diff_srv_rate , same_srv_rate}

133

• INormal ={Class, Source Bytes,Destination bytes, Destination, logged in, Destination

host_count, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate,

dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_same_src_port_rate }

In the Figure 4.2.2, the comparative results of training data set and test data set has been

reflected. Out of 43 different set of combinations 35 set of combinations follow the similar trend

in both training and test data set, where 15 set of combinations lies below the threshold value.

Though 28 sets of combination lies above the threshold value in training data set, but in the test

data set only 20 set of combinations falls above the line. Therefore we can conclude that these 20

set of combinations which falls above the threshold values in both training and test data set are

frequent itemset or features in the network traffic.

The figure 4.2.4 reflects that how the frequency of occurrence of 23 different combinations

changes from training data set to test data set. It has been clearly reflecting that 16 set of

combinations are lying below the threshold values in test data set where for the same set of

combinations in training data set are lying above the threshold values. Therefore we can make a

conclusion that Source Bytes = nonzero, Destination bytes= nonzero, Source Bytes and

Destination bytes= nonzero, dst_host_serror_rate=0, dst_host_srv_serror_rate=0

anddst_host_srv_serror_rate=0 are only frequent itemset/features which behaves towards normal.

Confidence has been calculated in four different sets or styles. One each with class = normal

or attack and one each for class is when normal or attack. We have considered 50% as threshold

and based on these calculation the strength of association among the itemset have been reflected.

In figure 4.2.7, the comparative analysis for training data set result and test data set result

has been plotted to validate the result obtained from training data set. The graph clearly reflects

134

that the behavior or the trend that has been shown by the 16 different combinations of features in

the training data set follows the same trend in the test data set. It can be derived that the set of

combinations are strongly associated and when the left hand side value occur then there is a

probability that the traffic tends towards intrusion. In simple way we can express it in the

following way. If Source Bytes value is zero or Destination Bytes is zero or both source bytes

value and destination bytes values are zero at a time then the network traffic has the probability

that it will fall into attack class. In the similar way, if the logged in value is zero, or

dst_host_same_src_port_rate value is zero or dst_host_srv_diff_host_rate value is zero,

dst_host_serror_rate value is one or dst_host_srv_serror_rate value is one or together

dst_host_same_src_port_rate value is zero and dst_host_srv_diff_host_rate value is zero and

dst_host_serror_rate value is one and dst_host_srv_serror_rate value is one the traffic tends

towards attack. Likewise for dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy',

dst_host_count=255, diff_srv_rate =fuzzy the network traffic behave towards attack or high

probability of intrusion. If dst_host_same_srv_rate ='fuzzy' and dst_host_diff_srv_rate= 'fuzzy'

or same_srv_rate= fuzzy anddiff_srv_rate =fuzzy then also the network is likely to be intrusive.

As the behavior of these 16 set of combinations are strongly associated and when validated the

train data set result with test data set result it carries very meaningful information. This result can

become the guiding principle for developing network intrusion detection system.

Figure 4.2.10 has shown the comparative analysis of the 16 different set of combinations

when class is attack in training and test data set. It has been observed that the behavior of

network traffic when class is attack do not behave in similar fashion in training and test data set.

Eight out of sixteen follow the similar trend in both training and test data set and rest eight

differs the trend and behavior. Therefore after validating the training output with the test data set

135

we can derive that when class is attack or intrusive then there is high probability of occurrence of

the following itemset/features. Those are-Destination Bytes=0, logged in

=0,dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate

='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_same_srv_rate ='fuzzy' ^

dst_host_diff_srv_rate= 'fuzzy' and dst_host_count=255. Remaining eight set of combinations do

not give any meaningful information.

The figure 4.2.13 reflected the comparative representation of ten different set of

combinations with „class=normal‟ in training data set and test data set. The results obtained from

the training data set have been validated with the test data set. The results showing in the test

data set are showing contradicting results or reverse trend and do not support the predication

made in the training data set. Hence these ten set of combinations can‟t draw a conclusion. These

itemset are not carrying any meaningful information.

Figure 4.2.12 which represents a comparative analysis of training data set results and test

data set results when class is normal. For Class=normal=> logged in =1, Class= Normal=>

destination host count = less than 255 and Class= Normal=>dst_host_srv_diff_host_rate=1 set of

combinations the values lies below the threshold value and rest combinations are lying above the

threshold value. Therefore we can make a conclusion in the following way, when class is normal

then Source Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and

Destination bytes=nonzero, dst_host_same_src_port_rate=1, dst_host_serror_rate=0,

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur and hence these

seven features are strongly associated with class value.

136

The results have been derived into rules [IF-THEN-ELSE] for developing a network

intrusion detection system. The following is the rules derived after validating with the test data

set.

Step 1: READ Source Bytes, Destination Bytes, logged in, dst_same_src_port_rate,

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate,

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_count, diff_srv_rate,same_srv_rate

Step 2: IF Source Bytes = 0 THEN GOTO Step 14

Step 3: Else IF Destination Bytes =0 THEN GOTO Step 14

Step 4: Else IF logged in =0 THEN GOTO Step 14

Step 5: Else IF dst_same_src_port_rate =0 THEN GOTO Step 14

Step 6: Else IF dst_host_srv_diff_host_rate =0 THEN GOTO Step 14

Step 7: Else IF dst_host_serror_rate =1 THEN GOTO Step 14

Step 8: Else IF dst_host_srv_serror_rate=1 THEN GOTO Step 14

Step 9: Else IF dst_host_same_srv_rate= „fuzzy‟ THEN GOTO Step 14

Step 10: Else IF dst_host_diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14

Step 11: Else IF dst_host_count=255 THEN GOTO Step 14

Step 12: Else IF diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14

Step 13: Else IF same_srv_rate= „fuzzy‟ THEN GOTO Step 14 Else GOTO Step 15

Step 14: Display the network traffic belongs to „Attack‟ class

Step 15: STOP

137

This rule will explain the trend, pattern and association of network traffic. The support

and confidence calculated for other combinations with class= „normal‟ or when class=‟normal‟

did not carry or reflect any meaningful information. Though those combinations have showed

some interesting trend and pattern in training data set but during testing with the test data set, the

result has been deviated with large difference hence could be considered for develop a general

rule based on the findings from Training data set.

In fifth chapter, the accuracy of the rule/methodology that has been developed and

proposed has been analyzed and compared with three existing algorithms. For analyzing and

comparing the algorithms widely used KDD99 data set has been considered. The KDD99 data

set has the similar characteristics/attributes like in NSL-KDD data set; therefore the analysis had

become easier. The proposed rule has been translated to MATLAB program and confusion

matrix for each data subset has been generated. WEKA is a data mining application software

which contains collection of visualization tools and algorithms for data analysis has been used

for analyzing the accuracy. There are many classification algorithms; we have randomly chosen

three of them they are namely Naïve-Bays, Logistic and Decision Stamp. The eight data subset

in „.csv‟ format has been fed to the WEKA and the output has been generated and accuracy has

been reflected. The cross-validation method of classification has been applied. After calculating

the accuracy in eight data sub-sets for these four algorithms, the results have been compared with

the accuracy of our proposed rule/methodology for the same data subsets. The results are

compared for each data subset and presented in tabular format. The results are presented in

tabular format and graphs have been plotted to visualize the comparisons clearly. The tables and

figures reflect that the proposed rule/methodology has performed better than the rest of the

algorithm in terms of accuracy when we compare with the rest of the algorithms.

138

6.2 Conclusion

This research work has addressed all the three objectives that have been mentioned in the

first chapter. The NSL-KDD data set (both training and test data set) have been collected from

secondary sources. The data set consists of 1, 25, 773 numbers of rows for training data set and

11,850 number of rows for Test data set. There were 41 numbers of attributes excluding the class

label. Preprocessing of the NSL KDD Data set has been done by removing weakly relevant data,

generalizing etc. Dimension modelling and star schema have been designed for developing the

data cube and finally a logical 18 dimension data cube has been conceptualized to store historical

network traffic data and allowing performing OLAP operations.

After designing the data cube, the OLAP analysis has allowed an insight view of the

network traffic data in the data cube. The results after slice and dice operation by different

dimensions have been presented in the form of tabular data and graphical form. The OLAP

analysis has projected 13 dimension from 18 dimension data cube which behaves towards attack

and 11 dimensions which behaves towards normal.

After the completion of the second objective, support and confidence of association rule

mining have been performed to calculate the frequency of any attributes in the database and the

strength of association among the different attributes. The [IF-THEN-ELSE] rule derived after

performing the association rule mining to detect the intrusion with reliable accuracy by analyzing

the network traffic data.

The accuracies have been compared with the accuracy of other three existing algorithms

and are presented below. The following table reflects a better accuracy for the derived rule than

the naïvebays, logistic and decision stamp algorithm.

139

Table 6.1: Comparative Accuracies

Methodology Average Performance

Proposed Rule 99.4875

NaiveBays 99.15

logistic 99.3625

Decission Stamp 98.275

The final rule/methodology for detecting network intrusion or more specifically misuse

detection is presented below.

Step 1: Read Source Bytes, Destination Bytes and logged in

Step 2: If („Source Bytes=0‟ AND „Destination Bytes= 0‟ AND „logged in=0‟), Then

Display the Network traffic is intrusive and GOTO Step 5.

Step 3: Else IF („Source Bytes=0‟ AND „Destination Bytes= 0‟) OR („Destination

Bytes= 0‟ AND„logged in=0‟)OR („Source Bytes= 0‟ AND„logged in=0‟), Then Display

Network traffic is intrusive and GOTO Step 5.

Step 4: Else IF „Source Bytes=0‟ OR „Destination Bytes=0‟ OR „Logged in=0‟, Then

Display Network traffic is intrusive and GOTO Step 5.

Step 5: STOP

This research work is a noble effort to develop a network intrusion detection system by

understanding and using the concept of data mining. Data Cube, a part of data warehouse

technology and association rule mining of data mining technique which was not used in wide

extent for intrusion detection and the [IF-THEN-ELSE] rule that has been developed can detect

140

intrusion with reliable accuracy. This research work has focused more on building a conceptual

framework to develop network intrusion detection system. The findings from this research echo

that „source byte‟, „destination byte‟ and „logged in‟ characteristics/attributes are responsible for

network intrusion.

6.3 Future Work

This research will open-up a new dimension in intrusion detection research by brining

data mining and network security together. The future scope of this work includes but not limited

to adding more dataset into the data cube for analysis, commercially developing a platform for

IDS by using the derived rule by considering time and space complexity. More data mining

algorithm for classification can be explored for developing NIDS.

141

Bibliography

Abraham T (2001). IDDM: intrusion detection using data mining techniques, Technical report

DSTO- GD- 0286, DSTO electronics and surveillance research laboratory, Australia.

Adamson C. (2006). Mastering data warehouse aggregates: solutions for star schema

performance, Wiley Computer Publishing.

Agrawal R., Imielinski T. and Swami A. (1993). Mining association rules between sets of items

in large databases, Proceedings of the ACM SIGMOD Conference on Management of Data,

Washington DC, 207–216.

Agrawal R., Gupta A. and Sarawagi S. (1997). Modeling multidimensional databases.

Proceedings of the 13th Intl. Conference on Data Engineering, Birmingham, U.K., April 1997.

Amin M.N. and Habib M.A. (2015). Comparison of different classification techniques using

weka for hematological data, American Journal of Engineering Research (AJER), 4(3): 55-61.

Anderson J. (1998). Artificial neural networks for misuse detection, Proceedings of the 1998

National Information Systems Security Conference NISSC’98, 443–456.

Barbará D., Couto J., Jajodia S., Popyack L. and Wu N. (2001a) ADAM: Detecting intrusions by

data mining, Proceedings of the 2nd annual IEEE Workshop on Information Assurance and

Security.

Barbara D., Wu N. and Jajodia S. (2001b). Detecting novel network intrusions using bayes

estimators, Proceedings of First SIAM conference on data mining, Chicago, IL April 2001.

Bhattacharjee M. and Kalita P. (2012). Application of market basket analysis to understand

students career options: a study on management under graduate at IU, Mizoram, Indian Journal

of Marketing 42(4): 42- 49.

Biermann E., Cloete E., Venter L.M. (2001). A Comparison of Intrusion Detection Systems.

Computers Security, 20: 676–83.

Brahmi H., Brahmi I., and Yahia S.B. (2012). OMC-IDS: At the cross-roads of OLAP mining

and intrusion detection. PAKDD part II, LNAI 7302, Springer, 5: 13-24.

Caswell B. and Roesch M. (2004). Snor: The open source network intrusion detection system.

Chae H.S., Jo B.H., Choi S.H. and Park T.K. (2013). Feature selection for intrusion detection

using NSL-KDD, Recent advancement of Computer Science, ISBN- 978-960-474-354-4,184-

187.

142

Choudhary A., Sharma S. and Gupta P. (2015). A Technique by using Neuro-Fuzzy Inference

System for Intrusion Detection and Forensics, International Journal Of Modern Engineering

Research (IJMER), 5(3), 24-33.

Chaudhuri S. and Dayal U. (1997). An over view of data warehouse technology, SIGMOD

Record 26(1): 65-74.

Codd E.F. and Associates (1993). Providing OLAP to user-analyst: An IT mandate, a white

paper commissioned by Arbor software.

Cuppens F. and Miege A. (2002). Alert correlation in a cooperative intrusion detection

framework, Proceedings of. IEEE symposium on security and privacy.

Czedo B.D., Ferragut E.M., Goodall J.R. and Laska J. (2012). „Network Intrusion detection and

visualization using aggregations in a cyber security data warehouse‟, International Journal

communications, Network System Sciences.

Das A. and Sathya S.S. (2012). Association rule mining for KDD intrusion detection data set,

International journal of computer science and informatics 2(3): 50-54.

Denning D.E. (1987). An Intrusion Detection Model, IEEE Transaction on Software

Engineering.

Depren O., Topallar M., Anarim E. and Ciliz M.K. (2005). An intelligent intrusion detection

system (IDS) for anomaly and misuse detection in computer networks, Expert Systems with

Applications.

Endorf E., Schultz and Mellander J. (2004). Intrusion Detection and Prevention, The McGraw-

Hill/Osborne Companies.

Ertoz L., Eilertson E., Lazarevic A, Tan P, Dokes P., Kumar V. and Srivastava J. (2003).

Detection of novel attacks using data mining, Proceedings of IEEE workshop on data mining

and computer security.

Esposito M., Mazzariello C., Oliviero F., Romano S.P. and Sansone C. (2005). Evaluating

pattern recognition techniques in intrusion detection systems, The Fifth International Workshop

on Pattern Recognition in Information Systems, PRIS 2005.

Gray J., Bosworth A., Layman A. and Pirahesh H. (1996). Data cube: A relational aggregation

operator generalizing group-by, cross-tabs and sub-totals, Proceedings of the 12th Intl.

Conference on Data Engineering, 152-159.

Han J., Kamber M. (2006). Data Mining- Concepts and techniques, second edition, Elsevier

publication.

143

Helmer G., Wong J.S.K., Honavar V., Miller L. and Wang Y. (2003). Lightweight agents for

intrusion detection, The Journal of Systems and Software, Elsevier, 67: 109–122.

Hipp J., Guntzer U. and Nakhaeizadeh G. (2000). Algorithms for association rule mining - a

general survey and comparison, Proceedings of the ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 58–64.

Hipp J., Guntzer U. and Nakhaeizadeh G., (2002). Data mining of association rules and the

process of knowledge discovery in databases, Advances in data mining: applications in E-

commerce, medicine, and knowledge management, Springer, 15-36.

Ibrahim L.M., Basheer D.T. and Mahmod S.M. (2013). A Comparison study for intrusion

database (Kdd99, Nsl-Kdd) Based On Self Organization Map (Som) Artificial Neural Network,

Journal of Engineering Science and Technology, 8(1):107 – 119.

Inmon, W. H. (2002). Building the Data Warehouse, 3rd edition. Wiley Computer Publishing,

428.

Jyothsna V., Prasad V.V.R. and Prasad K.M., (2011). A review of anomaly based intrusion

detection systems, International Journal of Computer Applications 28(2): 26-35.

Kalita P. (2010). Designing a data cube for student drop-out study, The IUP Journal of

Information Technology 6(4): 52-60.

Kemmerer A. and Vigna G. (2002). Intrusion Detection: A brief history and overview,

Computer, 35(4): 27–30.

Kimball R. and Ross M. (2002). The Data Warehouse Toolkit 2nd Ed: The Complete Guide to

Dimensional Modeling, John Wiley & Sons, Inc.

Kulkarni E.G. and Kulkarni R.B., (2016). WEKA- powerful tool in data mining, International

Journal of Computer Applications, 0975 – 8887: 1-15.

Kumar V., Lazarevic A., Ertoz L., Ozgur A. and Srivastava J. (2003). A comparative study of

anomaly detection schemes in network intrusion detection, Proceedings of 3rd SIAM

international conference on data mining, San Francisco..

Lee W. and Stolfo S.J. (1998). Data mining approaches for intrusion detection, Proceedings of

the 7th USENIX Security Symposium SECURITY, 9: 79–94.

Lee W., Nimbalkar R.A.,Yee K.K., Patil S.B., Desai P.S. Tran T.T. and Stolfo S.J. (2000a). A

data mining and CIDF based approach for detecting novel and distributed intrusions,

Proceedings of the 3rd International Workshop on Recent Advances in Intrusion Detection

(RAID 2000), 49–65.

144

Lee W., Stolfo S.J. and Mok K.W. (2000b). Adaptive intrusion detection: a data mining

approach, Artificial Intelligence Review 14: 533–567.

 Lee W., Stolfo S.J. and Wok K.W.K. (1998). Mining audit data to build intrusion detection

model, Proceedings of fourth international conference on knowledge discovery and data mining,

New York.

 Lee W. and Stolfo S.J. (2000). A framework for constructing features and models for intrusion

detection systems, ACM Transaction on Information and System Security (TISSEC), 3(4): 227-

261.

Li T., Li Q., Zhu S. and Ogihara M. (2003). A Survey on Wavelet Applications in Data Mining,

ComputerScience Univ. of Rochester, 4(2): 49-68.

Lichodzijewski A.N., Heywood Z. and Heywood M.I. (2002). Host based intrusion detection

using self organizing maps, Proceedings of the 2002 IEEE world congress on computational

intelligence, Honolul, 1714-1719.

Lichodzijewski P. (2002). Network based anomaly detection using self organizing maps,

Technical Report, Nova Scotia: Dalhousie University Halifax.

Liu H., Setino R., Motoda H. and Zhao Z. (2010). Feature selection: An ever evolving frontier in

data mining , JMLR: Workshop and conference proceedings 10: 4-13.

Mchuhg J. (2000). Critique of the 1998 and 1999 DARPA Intrusion Detection System

Evaluations as Performed by Lincoln Laboratory, ACM Transactions on Information and System

Security 3: 262–294.

Nguyen H.A. and Choi D. (2008). Application of data mining to network intrusion detection:

classifier selection model, APNOMS 2008, LNCS 5297, Springer, 399–408.

Ning P. and Xu D. (2003). Learning attack strategies from intrusion alerts, Proceedings of ACM

computer and communications security conference.

Ning P., Cui Y. and Reeves D.S. (2002). Constructing attack scenarios through correlation of

intrusion alerts, Proceedings of, ACM computer and communications security Conference.

Olusola A.A., Oladele A.S. and Abosede D.O. (2010). Analysis of KDD ‟99 intrusion detection

dataset for selection of relevance features, Proceedings of the World Congress on Engineering

and Computer Science.

Patcha A. and Park J.M. (2007). An overview of anomaly detection techniques: Existing

solutions and latest technology trends, Computer Networks 51: 3448-3470.

145

Ponniah P. (2001). Data Warehousing Fundamentals: A Comprehensive Guide for IT

Professionals, 402.

Portnoy L., Eskin E. and Stolfo S.J. (2001). Intrusion detection with unlabeled data using

clustering, Proceedings of ACM workshop on data mining applied to security2001.

Power D.J. (1999). Decision support systems glossary, DSS Resources.

Prather J.C., Lobach D.F., Goodwin L.K., Hales J.W., Hage M.L. and Hammond W.E. (1997).

Medical Data Mining: Knowledge Discovery in a Clinical Data Warehouse, Proceedings of the

American Medical Informatics Association Symposium. Philadelphia, United States of America,

101-105.

Pujari A.K. (2008). Data Mining Techniques, Tenth impression, University press private limited.

Qwaider W.Q. (2012). Apply on-line analytical processing (OLAP) with data mining for clinical

decision support, International Journal of Managing Information Technology (IJMIT), 4(1): 25-

37.

Rehman R.U. (2003). Intrusion Detection Systems with Snort, Prentice Hall PTR, Upper Saddle

River, New Jersey 07458.

Richard L., Seth W. and Douglas S. (2002). The Effect of Identifying Vulnerabilities and

Patching Software on the Utility of Network Intrusion Detection, Recent advances in intrusion

detection (RAID2002). Springer-Verla, 307-26.

Rizzi S. (2006). DOLAP Research in Data Warehouse Modeling and Design: Dead or Alive?

ACM 1-59593-530-4/06/0011.

Sarawagi S., Agrawal R., and Megiddo N. (1998). Discovery-driven exploration of OLAP data

cubes. Research Report RJ 10102 (91918), IBM Almaden Research Center, San Jose, CA 95120.

Sheikhan M. and Jadidi Z. (2009). Misuse detection using hybrid of association rule mining and

connectionist modeling, World Applied Sciences Journal, 7: 31-37.

Shim J.P., Warkentin M., Courtney J.F., Power D.J., Sharda R. and Carlsson C. (2002). Past,

Present, and future of decision support technology, Decision support systems 931, Elsevier

Science.

Singhal A. (2004). Designing of a data warehouse system for network/web services, CIKM’04.

Singhal A. and Jajodia S. (2006). Data warehousing and data mining techniques for intrusion

detection system, Distributed parallel database, Springer.

146

Singhal A. (2007). Warehousing and data mining techniques for cyber security, Advances in

information security, springer, 31.

Srivastava K., Srivastava S., Sharma A. and Pandey A. (2014). Comparison of Star Schema and

Snow Flake Schema using Telecommunication Database, ISSN: 2055-530X International

Journal of Latest Trends in Engineering, Science and Technology 1(5): 1-9.

Tang Z.J. (2002). Designing and Implementing of Network Intrusion Detection System,

Publishing House of Electronics Industry of China, Beijing, China.

Tavallaee M., Bagheri E., Lu W. and Ghorbani A.A., (2009). A detailed analysis of the KDD

CUP 99 data set, Proceedings of the 2009 IEEE symposium on computational intelligence in

security and defense applications.

The OLAP Council (1996). MD-API the OLAP Application Program Interface Version 0.5

Specication.

Treinen J.J. and Thurimella R. (2006). A Framework for the Application of Association Rule

Mining in Large Intrusion Detection Infrastructures, RAID 2006, LNCS 4219, Springer, 1-18.

Tsai F.S. (2009). Network Intrusion Detection Using Association Rules, International Journal of

Recent Trends in Engineering, 2: 202-204.

Valdes A. and Skinner K. (2000). Adaptive model based monitoring for cyber attack detection,

Proceedings of Recent advances on intrusion detection, France, Springer Verlag, 80-93.

Vokorokos L., Balaz A. and Chovanec M. (2006). Intrusion Detection System Using Self

Organizing Map, Acta Electro technicaet Informatica 6: 1-6.

Wang J. (2009). Computer network security: Theory and practice, Higher education press.

Ziauddin, kammal S., Khan K.Z. and Khan M.I. (2012). Research on Association Rule Mining,

Advances in computational mathematics and its applications 2: 226-236.

Web References:

OLAP Council, definitions, www.dssresource.com/glossary/olaptrmms.html

http://nsl.cs.unb.ca/NSL-KDD/

http://www.ittc.ku.edu/~nivisid/WEKA_MANUAL.pdf

147

List of Publications

1. Hussain J. and Kalita P. (2015a). Designing a data cube for NSL-KDD data set to

improve the quality of network intrusion detection, Proceedings of ICFM 201, March 26-

28, 2015, Gauhati University, Guwahati, Assam, India, 78-81.

2. Hussain J. and Kalita P. (2015b). Understanding network intrusion detection system

using OLAP on NSL-KDD dataset, The IUP Journal of Computer Sciences, 9(2): 59-66.

3. Hussain J. and Kalita P. (2017). Application of association rule mining for developing

network intrusion detection system: an analysis using NSL-KDD data set, Indian Journal

of Computer Science & Engineering, 8(5): 571-574.

ABSTRACT

This thesis entitled “Developing Network Intrusion Detection Systems using Data

Cube and Association Rule” is an outcome of the research work carried out by the author

under the supervision of Prof. Jamal Hussain, Department of Mathematics & Computer

Science, Mizoram University.

This Thesis has been divided into six chapters which covers the introduction and

background study of intrusion detection system, developing a data cube by considering the

features of network traffic as dimension followed by OLAP analysis, an in depth analysis

using association rule mining to unhide the hidden pattern and trend of the network traffic to

detect intrusion followed by the testing and accuracy analysis by comparing with three other

existing algorithms are presented. The Chapter wise abstract has been presented below.

In the first chapter, the problem of network intrusion detection system, its historical

background and contemporary research work has been introduced. It has explained the

emergence of data mining applications in different field of research and its probable

prospects in the field of intrusion detection system. Review of literature has been included

here in this first chapter. Referring to several research works by different researchers the

scope of developing data cube and applying association rule mining in network intrusion

detection system is being discussed in the first chapter.

In the second chapter, discussion about designing the data cube for analyzing the

NSL-KDD data set of Network Intrusion Detection has been taken place. Data warehouse,

Data cube, Star Schema, Dimension Modeling have been defined and explained in details.

The pre-processing of NSL-KDD training data set was carried out manually. The NSL-KDD

data set (both training and test data set) have been collected from secondary sources

(http://nsl.cs.unb.ca/NSL-KDD/). There were 41 numbers of features in the source data set.

http://nsl.cs.unb.ca/NSL-KDD/

The training data set consists of 1, 25, 773 numbers of rows where the test data set consists of

11,850 number of rows. This data set has been originated from KDD 99 data set. Eighteen

dimensions have been selected to develop the data cube in a simplified meaningful manner.

This 18 dimension data cube including class helped in storing the data in an organized

manner and allowed to view the data from different perspectives.

In chapter-3, the analysis using OLAP on the 18 dimensional data cube that has been

designed and developed in second chapter has been discussed. OLAP operation especially

slicing and dicing have been used extensively to analysis the dimensions/features to

understand the trend and behavior of the features of the network traffic. The training data set

are analyzed first from different aspects then the outcome has been validated with the test

data set followed by a conclusive remarks based on the findings of the analysis. The

numerical values after the analysis are represented in tabular form followed by graphical

representation to visualize the trend and behavior of the network traffic.

In the capter-4 a thorough analysis of the features of the network traffic by applying

association rule mining has been carried out. Support and confidence, two popularly used

methods to calculate the frequency and strength of association among the itemset (features) is

being explored and used at optimum level to unhide the hidden pattern and discover the

knowledge of the network traffic behavior for the users. Several combinations are being

analyzed which behaves towards normal traffic or attack traffic by calculating support and

confidence. These analyses have shown several interesting patterns and trends which can be

translated into a guiding theory for developing network intrusion detection system. The

results obtained after analyzing the training data set are being validated with the test data set.

In many cases the outcome of the training data set are not matching with the test data set

outcome. Those set of combinations are discarded. Graphical representation of all accepted

and discarded such results are presented in a systematic way and explained in details.

In the fifth chapter a comparative study has been made among three different existing

algorithms and the derived rule/methodology. The rule that has been derived in the fouth

chapter has been modified and accuracy has been calculated with the new one. The existing

algorithms are Naïve-Bays, Logistic and Decision stamp. Eight data subset derived from

KDD99 data set has been fed to these algorithms for classification through the WEKA

application software and the accuracy has been reflected in their output. The proposed rule

has been translated into MATLAB program and accuracy has been calculated by generating

confusion matrix. The details results of analysis are placed at in this chapter and the average

accuracy is found reliable.

The last chapter made the summary of previous five chapters and made the conclusion

remarks with the findings of the analysis made during the research works. One simple IF-

THEN-ELSE rule which describes the steps to detect network intrusion based on the final

findings has been developed and presented. This rule can become a guiding principle for the

user, researcher or network security analyzer.

Bibliography section has been placed as the last part of the thesis. References that

have been used throughout the research are listed in this section. The references include

books, research papers, web reference etc.

	1. first page.pdf
	2.certificates and contents.pdf
	3.chapters.pdf
	ABSTRACT.pdf

