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Chapter-1 

Introduction 

1.1  Introduction  

Intrusion Detection System (IDS) is one of the burning research topics in today‟s date. Due 

to the exponential growth of computer users and computer network, the aspect of security has 

become a real challenge. Intrusion is defined as the unauthorized or illegitimate access to a 

system or a network. An IDS is basically a software to detect the intrusion and prevent the 

illegitimate user to access the computer or the computer network. Typically there are two types 

of IDS exist, one is Host based IDS and the other one is Network based IDS (NIDS). The host 

based IDS deals only with a particular system where NIDS is responsible for protecting a 

computer network. Because of the fastest growing IT industry and expansion of computer 

network which cover a huge numbers of systems and transmit large amount of data, the computer 

network became the prime target for the intruder. As a result the network became more risky and 

soft target for the intruder. To protect the data stored in the network system or safe data transfer 

over the network continuous updating and research in NIDS is essential. There are many 

research works carried out on NIDS in the last two decades by several researcher throughout the 

globe. But till date, researchers are yet to develop complete efficient system which can protect 

the network. Based on the style of detection and prevention, the intrusion detection is classified 

into two categories namely misuse detection or signature base detection and anomaly detection 

[Vokorokos et al. (2006)].  The misuse detection techniques refer to understanding the attack 

from the previous data set and detect similar kind of attack from fresh traffic. It can easily detect 

and stop the known attack. Signature detection technique or misuse detection technique analyze 
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the attack and based on the known attack [Sheikhan M. and Jadidi Z. (2009)]. But the problems 

arise with unknown attack.  Misuse detection system allows all traffic except the known attacks, 

so there is a problem of False Positive.  On the other hand in anomaly detection the detection 

system, the algorithms are trained with the old normal traffic data and a profile is created for 

normal traffic, if any new traffic data significantly deviates from the created profile then it is 

detected as anomaly or attack. The problem here in anomaly detection is that anything outside 

the created profile is considered as anomaly but there are always new kind of normal traffic or 

legitimate access which are not allowed to enter into the network or to the system. It can detect 

all known and unknown attacks but the problem arises when it blocks the normal traffic which is 

unknown to the system and causes False Negative. To deal with false positive and false negative, 

continuous effort is required to upgrade the signature or normal profile. Most of the 

commercially available IDS are signature based. Many researchers are presently working on IDS 

by combing both misuse detection and anomaly detection and named as hybrid IDS. 

The rapid development and expansion of the computer network and World Wide Web has 

increased the dependency of people over the network. Therefore it is very important to safeguard 

the computer network from the intruder. The goal of the network security is to provide the 

freedom of enjoying the facility of computer network fearlessly to the people [Wang (2009)]. 

Intrusion in computer network refers to the illegitimate access to the network. Intrusion detection 

is the technology to detect intrusion.  

 Because of the advancement of network technology to connect the distant corners of the 

globe and the internet, it continues to expand its influences as a medium and commerce and 

accordingly the threat from attackers, spammers and criminal enterprises has also increasing. The 

network security is becoming a major challenge as interconnections among computer systems are 
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growing at a fast pace. Computer networks faced the challenges from the unauthorized disclosure 

of information and the modification or destruction of data or denial of service attack (DoS); and 

the computer network is responsible for providing protected and the availability, confidentiality 

and integrity of critical information [Depren et al. (2005) ]. According to Animesh Patcha and 

Jung Min Park, an intrusion detection system gathers and analyzes information from various 

areas within a standalone computer or a computer network to identify possible security gap. 

Therefore intrusion detection can be defined as the act of detecting actions that attempt to 

compromise the confidentiality, integrity or availability of a system/ network. Intrusion detection 

system is a software tool used to detect illegitimate access to a computer system or a network 

[Patcha A. and Park J.M. (2007)]. Traditionally the research works on intrusion detection focuses 

on the analysis and detection. Intrusion Detection Systems are divided into two categories: Host 

based IDS systems and Network Based IDS systems (NIDS) [Anderson (1998); Biermann et al. 

(2001)]. Host based IDS systems are installed locally on host computer. Host based IDS systems 

evaluate the activities in the host machine. It monitors the characteristics of a single host 

computer and the events occurring within that for any suspicious activity [Lichodzijewski et al. 

(2002)]. Host-based IDSs get audit data from host audit trails and detect attacks against a single 

host. The NIDS which is responsible for analyzing, detecting and protecting the network use 

network traffic as the audit data source. The network based IDS systems inspect the packets 

passing through the network [Lichodzijewski (2002)]. An IDS system is a defense mechanism, 

which detects hostile activities or exploits in a network. Existing IDS systems can be divided into 

two categories according to the detection approaches namely anomaly detection and misuse 

detection or signature detection. The elements central to intrusion detection are namely resources 

to be protected in a target system, i.e., user accounts, file systems, system kernels, etc.; models 
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that characterize the “normal” or “legitimate” behavior of these resources; techniques that 

compare the actual system activities with the established models, and identify those that are 

“abnormal” or “intrusive [Lee W. and Stolfo S.J. (1998)]. An intrusion is a deliberate, 

unauthorized attempt to access or manipulate information or system and to render them 

unreliable or unusable.  

 Misuse detection and Anomaly detection are two approaches to detect and prevent 

intrusion [Singhal A. and Jajodia S. (2006); Jyothsna et al. (2011)]. Misuse detection catches the 

intrusions in terms of the characteristics of known attacks or system vulnerabilities and based on 

known attack actions. It can feature extract from known intrusions and integrate the Human 

knowledge where the rules are pre-defined but it cannot detect novel or unknown attacks. On the 

other hand Anomaly detection detects any action that significantly deviates from the normal 

behavior based on the normal behavior of a subject. Any action that significantly deviates from 

the normal behavior is considered intrusion. 

 Intrusion Detection system is also describes as pattern discovery and pattern recognition 

system. The Pattern (Rule) is the most important part in the Intrusion Detection System. Pattern 

(Rule) Discover, Pattern Matching and Pattern Recognition play important role in intrusion 

detection. [Esposito et al. (2005)]. Commercially available IDS are predominantly signature-

based IDS that are designed to detect known attacks, whereas anomaly detection system designs 

the system to detect both known and unknown attacks. Therefore the research trends are moving 

to anomaly detection. Like many other techniques data mining technique is one of the popular 

method to discover the pattern of anomaly. Among the other existing techniques the statistical 

techniques and machine learning techniques which include statistical analysis, Bayesian network, 

markov-model, principal component analysis etc. are popular. But because of some drawbacks in 
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the statistical system which is easy to train by the expert intruder and for machine learning 

techniques the resources are very expensive the researchers are hunting for new approach 

[Patcha A. and Park J.M. (2007)]. To overcome the drawbacks of the previous two methods 

researchers have started experimenting the use of data mining methods.  

1.2 Intrusion 

Intrusion in network security means that an illegitimate user, i.e. the intruder, gains 

access to someone else's computer systems. The intruder may turn a victim's computer into his 

own server which may result in stolen computing resources and network loopholes, protocol 

flaws, and software Side effects may all be exploited by Intruders. Opening TCP or UDP ports 

that should not be open IS a common configuration loophole. TCP and UDP ports are entry 

points of network application programs. 

Intrusion detection is a technology for detecting intrusion incidents. Closing TCP and 

UDP ports that may be exploited by intruders can also help reduce intrusions, bandwidth from 

the victim. The intruder may also steal useful information residing in the victim's computer.  

1.3 Intrusion Detection 

Many misuse and anomaly intrusion detection systems (IDSs) are based on the general 

model proposed by Denning [Denning (1987); Kemmerer A. and Vigna G. (2002)]. This model 

is independent of the platform, system vulnerability, and type of intrusion. It maintains a set of 

historical profiles for users, matches an audit record with the appropriate profile, updates the 

profile whenever necessary, and reports any anomalies detected. Another component, a rule set, 

is used for detecting misuse. Actual systems implement the general model with different 
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techniques. Statistical methods are used to measure how anomalous the behavior is, that is, how 

different e.g. the commands used are from normal behavior. Pattern matching techniques are 

then used to determine whether the sequence of events is part of normal behavior, constitutes an 

anomaly, or fits the description of a known attack. Although misuse and anomaly IDSs improve 

the security of an information system to a certain extent, both of them have limitations [Lee W. 

and Stolfo S.J. (1998)]. 

 Most current approaches to the process of misuse detection utilize some form of rule-

based analysis. Rule-Based analysis relies on sets of predefined rules that are provided by an 

administrator, automatically created by the system, or both. These rules are used by the system to 

make conclusions about the security-related data from the intrusion detection system. 

Unfortunately, the detection ability of misuse systems is limited to the rule base that they posses. 

Hence misuse detectors require frequent updates to remain current [Lee W. and Stolfo S.J. 

(2000)]. The required updates may be ignored or performed infrequently by the administrator 

and this may lead the system vulnerable to the attacks. In addition, writing a rule or signature of 

a new attack is not an easy task and can be time consuming.  Another limitation of misuse 

detectors is that the misuse intrusion detection systems do not have generalization property and 

hence fail to detect unknown and even variations of known attacks, thus misuse IDSs generally 

have high false negative rates. 

Anomaly detectors also have limitations. For instance, although anomaly detectors can 

detect an attack accurately, they can not identify the specific type of attack occurring. However, 

the most significant problem of anomaly detection approach is the high false positive rates. Any 

deviation from the baseline will be flagged as intrusion; legitimate behavior outside the baseline 
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will be labeled as intrusive. Another problem arises if an attack occurs during the establishment 

of the baseline, and then this intrusive behavior will be the part of the normal baseline. 

1.4 Intrusion Detection System 

An intrusion detection system is a defense mechanism whose goal is to detect when a 

system or network is being used inappropriately or without correct authorization. James 

Anderson has introduced a surveillance system that could detect malicious activity using event 

tracking records or audit logs. In 1985, Dorothy Denning and Peter Neumann provided a model 

on an intrusion detection expert system. Beginning with these researches, intrusion detection 

systems (IDS) were born.  They are needed because the other two major kinds of defenses, 

antivirus software and firewalls, are not adequate to cover all kinds of attacks [Endorf et al. 

(2004)]. Antivirus software protects only against malicious programs such as viruses, but not 

against hackers and many other kinds of threats [Richard et al. (2002)].  Firewalls limit the kind 

of traffic that can flow in and out of a system so that they do not allow unauthorized access to 

important information. But these do not protect entirely. The traffic left to flow freely can be 

harmful. Intrusion detection systems are needed because they can sense a variety of unusual 

activities, and notify the proper authorities and prevent further attacks. IDS add to system 

security, especially when they are used in addition to anti viruses and firewalls. 

1.5 Types of Intrusion Detection Systems 

An intrusion detection system can be divided into several kinds [Biermann et al. (2001)]. 

The type of detection system is determined by what type of system is being monitored. What is 

monitored can be a host, a network, or a large portion of the internet. 
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1.5.1 Host-based Intrusion Detection System  

A host-based IDS monitors the characteristics of a single host and the events occurring 

within that host for suspicious activity. Examples of the types of characteristics are host-based 

IDS might monitor are wired and wireless network traffic (only for that host), system logs, 

running processes, file access and modification, and system and application configuration 

changes. This section provides a detailed discussion of host-based IDS technologies. First, it 

covers the major components of the technologies and explains the architectures typically used for 

deploying the components. It also examines the security capabilities of the technologies in depth, 

including the methodologies they use to identify suspicious activity.  

Components and Architecture  

This section describes the major components of typical host-based IDSs and illustrates 

the most common network architectures for these components. It also provides recommendations 

for selecting which hosts should use host-based IDSs. This section also describes how host-based 

IDSs can affect a host‟s internal architecture, such as intercepting process calls.  

Most host-based IDSs have detection software known as agents installed on the hosts of 

interest. Each agent monitors activity on a single host and if IDS capabilities are enabled, also 

performs prevention actions. Some host-based IDS products use dedicated appliances running 

agent software instead of installing agent software on individual hosts. Each appliance is 

positioned to monitor the network traffic going to and from a particular host. Technically, these 

appliances could be considered network-based IDSs, because they are deployed inline to monitor 

network traffic.  
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Network Architectures  

The network architecture for host-based IDS deployments is typically very simple. 

Because the agents are deployed to existing hosts on the organization‟s networks, the 

components usually communicate over those networks instead of using a separate management 

network. Most products encrypt their communications, preventing eavesdroppers from accessing 

sensitive information. Appliance-based agents are typically deployed inline immediately in front 

of the hosts that they are protecting. Host-based IDS agents are most commonly deployed to 

critical hosts such as publicly accessible servers and servers containing sensitive information. 

However, because agents are available for various server and desktop/laptop operating systems, 

as well as specific server applications, organizations could potentially deploy agents to most of 

their servers and desktops/laptops. For example, network-based IDS sensors cannot analyze the 

activity within encrypted network communications, but host-based IDS agents installed on 

endpoints can see the unencrypted activity.  

1.5.2 Network-based Intrusion Detection System  

A network-based IDS [Tang (2002)] monitors network traffic for particular network 

segments or devices and analyzes network, transport, and application protocols to identify 

suspicious activity. This section provides a detailed discussion of network-based IDS 

technologies. First, it contains a brief overview of TCP/IP. Next, it covers the major components 

of network-based IDSs and explains the architectures typically used for deploying the 

components. It also examines the security capabilities of the technologies in depth, including the 

methodologies they use to identify suspicious activity.  
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 The research on IDS is generally confined into developing algorithm to detect the 

intrusions and prevent it. There are so many techniques or more specifically algorithms exist to 

protect a computer system or network. The algorithms are trained with train data set and then 

tested with test data set. The popularly used training data set as well as test data set is KDD99 

data set [Olusola et al. (2010)]. This data set is prepared and maintained by Lincon Lab of MIT 

for research purpose. The record in the data set have forty one attributes or characteristics and 

around 49, 00,000 records. Each record is labeled with normal or attack. Again attack can also be 

classified as denial of service (DoS), probing, user to root (U2R), remote to local (R2L). And the 

techniques or methods for intrusion detection include statistical data analysis, machine learning 

techniques, data mining approach etc. Among many other existing techniques to detect intrusion, 

data mining is comparatively new age technique. Data mining or knowledge discovery brought 

revolutionary changes in many other researches like bioinformatics, market research etc. Mining 

from data stored in data warehouse can unhide many hidden patterns and can discover interesting 

knowledge. Data mining approach covers a wide area of techniques [Nguyen H.A. and Choi D.. 

(2008)] and it includes clustering, classification, artificial neural network, support vector 

machine, association rule mining etc.  

 The proposed study will focus on storing and representing the old or historical intrusion 

data and analyze them to find interesting knowledge, which can help in improving the intrusion 

detection system. For this purpose network traffic data will be required to train and test. 

Research reveals that the popularly used KDD99 data set carry some redundant set of records 

which may cause biasness in the result. Therefore NSL-KDD data set which is claimed to be the 

updated or modified version of KDD99 data set is going to be used in this research work. The 

huge amount of data set is required to store and represent in a proper way so that the analysis 
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become easier. It is found that there is a research gap or unexplored area in storing and 

representing historical data. Therefore the proposed research work would like to make a noble 

effort to store historical data multidimensional using data cube, a data-warehousing technology. 

Once the data cube is ready than user can view the data or evaluate the patterns of the data from 

different perspectives using OLAP (online analytical processing) technologies.  

 Association rule mining approach in data mining techniques which is derived from 

market basket theory attracts the researcher in recent days. Compare to the other data mining 

techniques association rule is quiet unexplored. Association rule mining get the potential to 

measure the frequent pattern of specific data set or characteristics and dependency of one 

attribute over another attributes [Treinen et al. (2006)]. Therefore the proposed research work 

will continue with exploring the scope of association rule mining technique for NIDS research. 

 Research in intrusion detection system is an emerging area in computer science and in 

network security. The increasing volume of network traffic and unauthorized users into the 

network make the computer network more vulnerable and information security is in risk. To deal 

with the increasing network traffic and new kind of attack, continues research on IDS and 

specifically NIDS is very much expected. Everyday computer network are experiencing different 

kind of traffic, therefore to protect our data while transmitting system need regularly update.  

Analyze the fresh traffic data and protect the network from the intruder is a real challenge. 

Studying the existing system or research work a research gap is identified in IDS research; it 

reveals that there is no proper system to store the network traffic data more precisely historical 

data. Storing and representing the old data and comparatively huge database is very much needed 

to improve the analysis of data. Therefore my research area will include storing the historical 

data using data warehousing technology. Data Cube, a logical multidimensional model of data 
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warehousing technology can be designed to store and represent data multidimensional. The 

proposed data cube can help the users or security analyzer to analyze the data from different 

angles. Study of the mining association rule which is also a recent advancement in the field of 

data mining technology for NIDS research can be a useful tool for un-hiding many frequent 

patterns and interesting knowledge of the attributes. This research can make a framework for 

improving the attack detection method and prevent the computer network from intruder in 

efficient way. 

1.6 The objectives of the research work are as follows 

 To design a data cube for analysing the NSL-KDD data set of Network Intrusion 

Detection. 

 To evaluate the patterns of the data on the proposed data cube by performing the OLAP 

(Online Analytical Processing) operations. 

 Applying Association Rule Mining technique for designing Network Intrusion Detection 

System. 

As the security of our network and data is at continual risk, the network intrusion 

detection becomes a critical component of network administration. Most commercially available 

IDS do not provide a complete solution. These systems typically employ a misuse detection 

strategy to search for patterns of programs or user behavior that match known intrusion. Because 

of the failure of misuse detection technique to detect new or previously unknown intrusion, novel 

intrusions may be found by anomaly detection strategies. Anomaly detection builds a model of 

normal network behavior (called profile), which is uses to detect new patterns that significantly 
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deviate from the created profile. The limitations in the existing IDS have led to an increase 

interest in data mining for intrusion detection.  

 Data warehousing and data mining techniques can improve the performance and usability 

of IDS. Data warehouse uses a data model that is based on a multidimensional data model which 

is popularly known as data cube [Singhal A. and Jajodia S. (2006); Kalita (2010)]. A cube can be 

viewed in multiple dimensions and help in analyzing the historical database. Singhal A. and 

Jajodia S. (2006) have proposed a multidimensional model for Online Analytical Processing 

(OLAP) in a data cube to view the attack as multidimensional data.  

Once the cube is ready then OLAP operations are performed on the cube to evaluate the 

patterns of the data to find interesting rules. The OLAP operation includes the operations like 

Slicinng, Dicing, Roll-Up, Drill-dowan etc. Slicing refers to reducing one dimension from the 

cube and result a sub-cube. Dicing can reduce the cube by two or more dimensions. Roll-up or 

drill-up move from detailed level of data to aggregate level of data and drill-down or roll-down 

moves the data from an aggregate level to details level [Pujari (2008)]. 

  Association rule mining is generally applied to find the interesting rule from a large data 

set. The idea of mining association rules originates from the analysis of market-basket data 

where rules like “A customer who buys products x1, x2, . . . , xn will also buy product y with 

probability c%” are generated [Singhal A. and Jajodia S. (2006); Hipp et al. (2002); 

Bhattacharjee M. and Kalita P. (2012); Ziauddin et al. (2012)]. Association rules are particularly 

important in anomaly detection technique of IDS. The association rules can build a summary of 

anomalous connection and help to detect the deviated records [Patcha A. and Park J.M. (2007)]. 

As discussed in the methodology association rule mining include support and confidence 

calculation. Lift and Conviction also calculated these days for finding interesting pattern [Hipp et 
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al. (2002)]. Association rule mining has been applied successfully in many other research areas 

like market research, bioinformatics, banking and financial data analysis, retail business etc. 

Therefore applying association rule in intrusion detection can lay a strong foundation for IDS 

research [Pujari (2008); Bhattacharjee M.and Kalita P. (2012); Tsai (2009)]. Collecting data, pre-

processing it, storing and representing data then analyzing the stored data are the normal steps 

included in data mining or knowledge discovery process. With the help of the following figure 

(Figure: 1.2) the knowledge discovery process can be explained. 

  

Figure1.1: Data mining as a process of knowledge discovery [Singhal A. and Jajodia S. 

(2006)]. 

Referring to the figure 1.2, the research work will need to collect data, pre-process it, store it in 

data warehouse and analyse it using data mining technology to see a meaningful pattern which 

can be instrumental in intrusion detection. The methodology will include as follows. 

i) Data Collection- KDD99 data set is the popularly used data set introduced in the year 1999. But 

in 2009 three researchers from the University of Brunswick come with a new version of KDD99 

data set and named as NSL-KDD data set. This publicly available data set avoids duplicate 

records as from the previous one (KDD99). The data set need to be collected from the secondary 
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sources and require pre-processing it to remove any kind of noises or missing data. This KDD99 

data set was captured in DARPA‟98 IDS evaluation program which is a collection of about 

seven weeks of network traffic. And since 1999 these data are used as KDD99 data set and most 

of the research work for intrusion detection was carried out. The KDD data set consists of 

approximately 10, 00,000 single connection and each with 41 features. Each record is labelled 

as normal or attack. But because of some inherent problems in the data set the NSL-KDD data 

set are re-produced from the KDD99 data set. The NSL-KDD data set consists of around 1.25 

lac records, which tells the number of duplicate records exists in the old data set.  

ii) Designing the data cube- Very less attention has been paid towards the historical data in IDS 

research. Data warehousing is a proven methods for storing historical data for business 

transaction, bank data, bioinformatics data etc. Therefore developing a warehouse for old 

intrusion data can bring significant advancement in IDS research. Data Cube can provide a 

solution in this state to store and view the data multidimensional.  A data warehouse primarily 

stores past transactional data collected from different transactional databases. The second-hand 

data is kept in data warehouse, which is organized either from another application or external 

sources for the purpose of decision support making. Data warehouse can analyse the data 

collected from different types of databases. Data warehouse gives a way to the decision makers 

to extract information easily and quickly. In the data warehouse, disaggregate or detailed data 

has less important than the aggregate or summarized data. Aggregate data has a more significant 

role than individual records. Since summarized and integrated data from different databases is 

used to build the data warehouse, necessarily the size of the data warehouse is larger than any 

operational databases.  
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Data warehouse includes a set of data cube which can be exploited using OLAP 

operations like „slice‟, „dice‟, „roll-up‟, „drill-down‟ etc.  At the core of the design of the data 

warehouse lies on a multidimensional view of the data model. We can extract data from 

numerous data sources including operational databases and flat files. This data is then moved to 

the data warehouse. The cube is not necessarily a 3-dimensional model, it can be two or higher 

dimensional. The attributes in the databases are represented by the dimensions and the measure 

of interest by the cells in the data cube. The content in the cells of the cube is numeric in nature. 

Queries are carried out to get decision support information on the cube. 

 

Figure 1.2: 3-dimensional data cube. 

The figure 1.3 is an example of 3-dimensional data cube, where service, src_host and 

duration are three dimensions. The numbers inside the cell are the measures. Arun kumar pujari 

has defined data cube in his book [Pujari (2008)] as “An n-dimensional data cube C [A1, A2... 

An] is a database with n-dimensions as A1, A2 ..., An. Each of which represents a theme and 

contains |Ai| number of distinct elements in the dimension Ai. Each distinct element of Ai 

corresponds to a data row of C. A data cell in the cube C [a1, a2 ..., an] stores the numeric 
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measures of the data for Ai = ai (for all i). Thus data cell corresponds to an instantiation of all 

dimensions.“  

iii) OLAP system focuses on analysis of the data cube. Applications supported by a data warehouse 

with tools that allow one to drill into details of data, slice and dice data from multiple dimensions 

are examples of OLAP systems. OLAP can help one analyse data from all perspectives. It helps 

in trend analysis, data warehouse reporting, etc. The consistency in calculation is one important 

benefit of OLAP operations. OLAP uses multidimensional views of data for quick access to 

information. An OLAP application allows one to look at the data in terms of many dimensions 

[Han et al. (2006); Pujari (2008)]. For example Sliceduration=low C [service, src_host, duration] = 

C[service, src_host]. The slice operation has reduced the cube by one dimension and can analyse 

different combinations of attributes with the respective measures.  

iv) Association rule mining is a concept evolved from market basket analysis is used in frequent 

pattern mining in different kind of data set. The association rule mining technique is a popularly 

used data mining technique. Association rule mining involves counting frequent patterns (or 

associations) in large databases, reporting all that exist above a minimum frequency threshold 

known as the „support‟ [Han et al. (2006); Pujari (2008); Ziauddin et al. (2012)].   

1.7 Commercial and Open Source IDSs and some past work 

Some examples of existing available commercial and open source IDS are namely, Bro, 

Snort, Ethereal, Prelude, Multi router traffic grapher and Tamandua network based IDS [Caswell 

B. and Roesh M.. (2004)]. 

Bro Intrusion Detection System: Bro was developed by Vern Paxson of Lawrence Berkeley 

National Labs and the International Computer Science Institute. It is a UNIX based network 



18 
 

intrusion detection system (NIDS). Bro detects intrusion attempts by searching particular 

patterns in network traffic. So, it fall into the category of signature based NIDS. But, Bro 

distinguishes itself by offering high speed network capability. In order to achieve real time, high 

volume intrusion detection, Bro uses two network interfaces (one for each direction) to capture 

the network traffic. In addition, Bro provides a patched kernel for free BSD to reduce CPU load. 

With proper hardware and OS tuning, Bro is claimed to be able to keep up with gbps network 

speed and perform real time detection. More information about Bro intrusion detection system is 

available on www.bro-ids.org. 

Prelude Intrusion Detection System: Prelude is a hybrid intrusion detection system distributed 

under GNU General Public License, primarily developed under Linux. It also supports BSD and 

POSIX platforms. It works at both hosts and networks levels providing a more complete 

solutions. It also has dedicated plugins to enable communication with several other well known 

IDS. The sensor sends messages to a sender unit (i.e., manager) which processes them and is 

responsible for event loggings. Besides the manager, Prelude also includes a module responsible 

for graphical feedback to the user. It relies on signature based detection. Since Prelude analyzes 

user, system, and network activities, it targets both the host and network based intrusions. More 

information about Prelude intrusion detection system is available on www.prelude-ids.com 

Snort Intrusion Detection System: Snort is an open source intrusion detection system [Rehman 

(2003)], which is capable of packet logging, traffic analysis, and signature based intrusion 

detection. In addition to protocol analysis, Snort carries out various content matching on network 

packets looking for patterns of known attacks and probes. Snort uses a flexible language for 

rules, enables users to describe traffic that should be collected or passed, and has a detection 
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engine that utilizes the modular plugin architecture. More information about Snort intrusion 

detection system is available on www.snort.org. 

Ethereal Application – Network Protocol Analyzer: This application is a data capture and 

network monitoring tool for the network. This software includes different protocols such as TCP, 

UDP, ICMP, ARP, etc. The ETHEREAL program is capable of near real time operation. It can 

refresh its browser or resample automatically.  

Multi Router Traffic Grapher (MRTG): The Multi Router Traffic Grapher (MRTG) is 

available as a public-domain tool for monitoring the network traffic variables. It generates 

HTML pages containing graphical images in PNG format. Although it can be used for 

monitoring any continuous data, its main application is to provide a live visual representation of 

traffic on network links.  

Tamandua Network Intrusion Detection System: Tamandua is an open source, light-weight, 

signature-based, distributed network intrusion detection system created by Tamandua 

Laboratories, Brazil.  

Barbara et al. (2001a), have describes the design and experiences with the ADAM (Audit Data 

Analysis and Mining) system for intrusion detection using data mining approach. In another 

paper by Barbara et al. (2001b), propose the idea to develop an intrusion detection system based 

on a technique called pseudo-Bayes estimators which is based on an anomaly detection system 

called Audit Data Analysis and Mining (ADAM) to enhance an anomaly detection system‟s 

ability to detect new attacks.  

In Proceedings of ACM CSS Workshop on Data Mining Applied to Security (DMSA-2001), by 

Portnoy et al. (2001) have presented a paper titled „Intrusion detection with unlabeled data using 
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clustering‟ where they have presented a new type of clustering-based intrusion detection 

algorithm, unsupervised anomaly detection, which trains on unlabeled data in order to detect new 

intrusions. In their system, no manually or otherwise classified data is necessary for training. 

This proposed method is able to detect many different types of intrusions, while maintaining a 

low false positive rate as verified over the KDD CUP 1999 dataset. 

Valdes A. and Skinner K. (2000) have authored an article where the author have proposed a 

high-performance, adaptive, model-based technique using Bayes net technology for attack 

detection, to analyze bursts of traffic. This approach has the features of both signature based and 

statistical techniques: model specificity, adaptability, and generalization potential. 

 Abraham (2001) aims to determine the feasibility and effectiveness of data mining techniques in 

real-time intrusion detection and produce solutions for this purpose. The outcomes of the IDDM 

were the abilities to characterize network data and to detect variations in these characteristics 

over time. Combining this capability with tools that either recognize existing attack patterns or 

operate similarly to IDDM, it strengthens the ability of intrusion detection professionals to 

recognize and potentially react to unwanted violations to network operations. 

Lee W. and Stolfo S.J. (1998) has discussed the construction of intrusion detection model using  

low frequency but important patterns. Ertoz et al. (2003) have introduced the Minnesota 

Intrusion Detection System (MINDS) where data mining techniques are used to automatically 

detect the attack against computer network and system. Instead of going with traditional method 

based on attack signatures provided by human expert, data mining approach were proposed to 

detect the novel intrusion to overcome the limitation of traditional system. Cuppens F. and Miege 

A.. (2002)  have used the clustering and merging function for creating new alert. They have 

managed correlates and cluster the alert.   Ning P. and Xu D. (2003) have presented a practical 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
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technique to address the issue of traditional intrusion detection system which focuses on low 

level attacks. The proposed approach in this paper constructs attack scenarios by correlating 

alerts on the basis of prerequisites and consequences of intrusions. A paper by Ning et al. (2002) 

presented a technique to automatically learn attack strategies from intrusion alerts reported by 

IDSs. The approach is based on the recent advances in intrusion alert correlation. 

1.8 Conclusion 

In this chapter the problem of network intrusion detection system, its historical 

background and contemporary research work have been introduced. It has discussed the 

emergence of data mining applications in different field of research and its probable prospects in 

the field of intrusion detection system. Review of literature has by different researchers explain 

the scope of developing data cube and applying association rule mining in network intrusion 

detection system.  
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Chapter-2 

To design a data cube for analysing the NSL-KDD data set of 

Network Intrusion Detection 

 2.1 Introduction 

It has been found after study that there is no proper system to store the network traffic 

data more precisely historical data in NIDS research [Singhal (2006)]. Storing and representing 

the old data and comparatively huge database is very much required to improve the analysis of 

data. Data Cube, a logical multidimensional model of data warehousing technology can be 

designed to store and represent data multidimensional. In this chapter the authors made a noble 

effort to design a data cube for NSL-KDD data set which will certainly help in analyzing 

network traffic more efficiently for intrusion detection. The proposed data cube can help the 

users or security analyzer to analyze the data from different perspectives.  The data warehouse 

provides a global view of the intrusion detection systems which supports identification of attacks 

and helps in discovering new attacks, it can also train the system administrators about how 

attacks are mounted on their systems.  [Helmer (2006)]. In one research paper by Singhal A. and 

Jajodia S. (2006), it has been pointed out that storing historical data as research gap in NIDS, and 

presented a technique to model network traffic & alerts using multidimensional data model and 

star schemas. Based on a multidimensional data model, the data warehouses design a data model 

and this model is known as Data Cube which allows data to be modeled and viewed in 

multidimensional.  Dimension represents different perspectives of an entity that an user is 

interested in. Another research paper by Brahmi et al. (2012) has focused on integrating data 

cube, OLAP and association rule to improve the quality of IDS. They have introduce a new IDS 



23 
 

based on Data Warehousing perspectives to enhance the accuracy of detection as well as to 

minimize false alarm. Their proposed system integrates the OLAP and data mining techniques to 

improve the performance and usability of IDS. Firstly they have modeled the network traffic data 

as a multidimensional structure, called Audit Data Cube. The data cube contains fact tables 

related to several dimension tables. A fact table represents the focus of analysis and typically 

includes attributes called measures. Dimensions include attributes that form hierarchies.  The 

proposed audit data cube is based on Star schema. Singhal (2004) has described the design of 

data warehouse for AT&T business services. He has explained multidimensional data modeling 

and star schema for designing data warehouse of network data and Czedo et al. (2012) has 

explained how cyber security data warehouse enables domain experts to quickly traverse a multi 

scale aggregation space systematically. To design a data cube the first step is to filter the data by 

removing irrelevant information and a relational database is created with the filtered data. The 

selected attribute or dimension will be converted into dimension table and then the central fact 

table will be created with the primary keys form the dimension table [Han (2006) and Pujari 

(2008)]. The fact table and the sets of dimension tables will build the star schema. The measure 

for the fact table is „number of records‟ which is numeric in nature. 

2.1.1 Data Warehouse 

A data warehouse is a “subject-oriented, integrated, time varying, non-volatile collection 

of data that is used primarily in organizational decision making [Inmon (1992)]. Data 

warehousing is also described as collection of decision support technologies which aimed at 

enabling the knowledge worker (executive, manager, analyst etc.) to make better and faster 

decisions [Chadhuri et al. (1997)]. It is well known that data warehouse focus more on decision 

support than on transaction support [Rizzi et al. (2006)].  Data warehouses store huge amount of 
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information from multiple data sources which is used for query and analysis. Therefore, the data 

is stored in the multidimensional (M D) structure [Ponniah (2001)]. 

2.1.2 Data Cube  

A data cube, more precisely a hyper cube, provides a multidimensional view of data. Its 

dimensions can further be divided into sub-dimensions. At the core of the design of the data 

warehouse lies a multidimensional view of the data model. It is an increasingly popular data 

model for OLAP applications in the multidimensional database also known as the data cube 

[Gray et al. (1996); The OLAP Council (1996); Agarwal et al. (1997)]. A data cube consists of 

two kinds of attributes: measures and dimensions [Sarawagi et al. (1998].  An n-dimensional 

data cube C [A1, A2... An] is a database with n-dimensions as A1, A2 ..., An. Each of which 

represents a theme and contains |Ai| number of distinct elements in the dimension Ai. Each 

distinct element of Ai corresponds to a data row of C. A data cell in the cube C [a1, a2 ..., an] 

stores the numeric measures of the data for Ai = ai (for all i). Thus data cell corresponds to an 

instantiation of all dimensions.   

2.1.3 Star Schema 

One of the several schemas for designing a data warehouse is the star schema, where a 

central fact table is connected to a set of dimension tables. The fact table contains the actual 

transaction or values being analyzed. The dimension tables describe about the transactions or 

values. The star schema reflects how the users view their critical measures [kalita (2010)]. 

Srivastava et al. (2014) has defined Star Schema as one of the uncomplicated type of schema that 

represents relational database schema using more than one dimension tables. The basic concept 

of star schema is that there are more than one dimension table which are connected to one central 
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fact table. Each fact table contain foreign key which are the reference of primary key of the 

dimension table. 

2.1.4 Dimension Modeling 

The notion of a dimension provides a lot of semantic information, especially about the 

hierarchical relationship between its contents. Dimension modeling is a special technique for 

structuring data around business concepts. 

 

2.2 Data Source and Selection 

KDD 99 dataset is used as the main intrusion detection dataset for both training and 

testing purpose. KDD data set covers four major categories of attacks namely denial of service 

(DoS), User to Root (U2R), probing and remote to local (R2L), this data set divides into labeled 

and unlabeled records and consists of 41 attributes [Das A and Sathya S.S. (2012)]. In the year 

1998 and 1999, the Lincoln Laboratory of MIT conducted a comparative evaluation of IDSs. 

This evaluation represents an important and huge undertaking; there are a number of issues 

associated with its design and execution that remain unsettled. John Mchugh has argued some 

methodologies used in the evaluation are questionable and may have biased its results. One 

problem is that the evaluators have published relatively little concerning some of the more 

critical aspects of their work, such as validation of their test data [Mchuhg (2000)].  Study says 

that there are some inherent problems in KDD99 data set which is widely used and publicly 

available for NIDS. According to the Tavallaee et al. (2009) research findings, the first important 

deficiency in the KDD data set is the huge number of redundant or duplicate records. There are 

about 78% and 75% duplicate record exist in training and testing data set respectively.  Therefore 
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to provide a solution to solve the mentioned issue that does not suffer from redundancy the new 

version of the KDD99 data set was introduced. The NSL-KDD data set is the publicly available 

new version data set [Tavallaee et al. (2009)]. The NSL-KDD data set do not include redundant 

records in the train set and test set, the number of records in the train data set and test data set are 

reasonable which makes it affordable to run an experiment.  

2.2.1 NSL-KDD Database 

NSL-KDD is a dataset proposed by Tavallaee et al. (2009). NSL-KDD dataset is a 

reduced version of the original KDD 99 dataset. NSL-KDD consists of the same features as 

KDD 99. The KDD99 dataset consists of 41 features and one class attribute. The class attribute 

has 21 classes that fall under four types of attacks: Probe attacks, User to Root (U2R) attacks, 

Remote to Local (R2L) attacks and Denial of Service (DoS)  attacks.  This  dataset  has  a  binary  

class  attribute.  Also it has  a reasonable number of  training and  test  instances which makes  it 

practical to run the experiments [Ibrahim et al. (2013)].  

The NSL-KDD data set (both training and test data set) has been collected from 

secondary sources (http://nsl.cs.unb.ca/NSL-KDD/) as mentioned in the synopsis. The Train data 

set in the source are in text format. Each feature of the data set was separated with comma. The 

text data are manually transformed into MS-Excel format. There are 43 numbers of columns 

including the class label. The data set consists of 1, 25,773 numbers of rows for training data set 

and 11,850 number of rows for Test data set. This data set is originated from KDD 99 data set. 

After KDD 99 data set, NSL-KDD is the widely used publicly available intrusion data set. This 

data set is updated from KDD 99 data set by removing some redundant records. The number of 

columns or feature in both the data set is same.  
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Table: 2.1: List of features with their descriptions [Choudhary et al. (2015)] 

Sl. No Feature  Description 

1 Duration  Duration of the connection 

2 protocol_type  Connection protocol (e.g. TCP,UDP, 

ICMP)  

3 service  Destination service  

4 flag  Status flag of the connection  

5 src_byte  Bytes sent from source to destination  

6 dst_byte  Bytes sent from destination to source  

7 land  1 if connection is from/to the same 

host/port; 0 otherwise  

8 wrong_fragment  Number of wrong fragments  

9 urgent  Number of urgent packets  

10 hot  Number of “hot” indicators  

11 num_failed_login  Number of failed logins  

12 logged in  1 if successfully logged in; 0 otherwise  

13 num_compromised  Number of “compromised” conditions  

14 root_shell  1 if root shell is obtained; 0 otherwise  

15 su_attempted  1 if “su root” command attempted; 0 

otherwise  

16 num_root  Number of “root” accesses  
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17 num_file_creation  Number of file creation operations  

18 num_shells  Number of shell prompts  

19 num_access_file  Number of operations on access control 

files  

20 num_outbound cmds  Number of outbound commands in a ftp 

session  

21 is_host_login  1 if login belongs to the “hot” list; 0 

otherwise  

22 is_gust_login  1 if the login is the “guest” login; 0 

otherwise  

23 count  Number of connections to the same host as 

the current connection in the past 2 seconds  

24 srv_count  Number of connections to the same service 

as the current connection in the past two 

seconds  

25 serror_rate  % of connections that have “SYN” errors  

26 srv_serror_rate  % of connections that have “SYN” errors  

27 rerror_rate  % of connections that have REJ errors  

28 srv_rerror_rate  % of connections that have REJ errors  

29 same_srv_rate  % of connections to the same service  

30 diff_srv_rate  % of connections to different services  

31 srv_diff_host_rate  % of connections to different hosts  

32 dst_host_count  Count of connections having the same 
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destination host  

33 dst_host_srv_count  Count of connections having the same 

destination host and using the same service  

34 dst_host_same_srv_rate  % of connections having the same 

destination host and using the same service  

35 dst_host_diff_srv_rate  % of different services on the current host  

36 dst_host_same_src_port_rate  % of connections to the current host having 

the same src port  

37 dst_host_srv_diff_host_rate  % of connections to the same service 

coming from different hosts  

38 dst_host_serror_rate  % of connections to the current host that 

have an S0 error  

39 dst_host_srv_serro_rate  % of connections to the current host and 

specified service that have an SO error  

40 dst_host_rerror_rate  % of connections to the current host that 

have an RST error  

41 dst_host_srv_rerror_rate  % of connections to the current host and 

specified service that have an RST error  

 

2.3 Preprocessing 

Feature selection is important to improving the efficiency of data mining techniques. 

Most of the data includes irrelevant, redundant or noisy features. Feature selection reduces the 
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number of features, removes irrelevant, redundant or noisy features and brings about palpable 

effects on applications speeding up data mining application and accuracy [Liu et al. (2010); Chae 

et al. (2013)]. Among the 43 (including class) columns there are many features or columns 

which are irrelevant or weakly relevant. Therefore it is better to remove or delete those features 

from the data set, which will reduce the size of the data set and make the future work simpler. 

Initially the feature reduction was done with the simple concept, if most of the values are same in 

one feature; it reflects that that particular feature is not playing any role in network traffic 

whether it is normal or attack. 

At the very first phase, 15 columns are deleted namely- land, wrong_fragement, urgent, 

hot, num_failed_login, num_compromised, root_shell, su_attempted, num_root, 

num_file_creations, num_shells, num_access file, num_outbounds command, is_host login and 

is guest login. These 15 columns are deleted because it is found that they are weakly relevant. 

There are 53.44% normal and 46.56% attack records. The deleted 15 columns or features consist 

of one value only. In each column 99% or more values are 0 (zero). Therefore it can be easily 

derived that these column values are not playing any role to make a network traffic normal or 

attack.  

In a similar fashion few more columns namely dst_host_srv_reeeor_rate, 

dst_host_rerror_rate, reerror_rate, srv_reerror_rate and duration are deleted. In the mentioned 

five features 80-90% values are zero. 

The column „class‟ is pre-processed. The anomaly values are labeled into 22 different 

types of attack. All 22 different types of attack namely back, buffer_overflow, ftp_write, 

guess_password, imap, ipsweep, land, land module, multihop, Neptune, nmap, perl, phf, pod, 
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portswep, root kit, stan, spy, smurf, teardrop, warezclient and warzemaster are grouped into one 

label  Attack . Among all the 22 different types of attack 70.28% are Neptune. 

To make the analysis easier using data cube pre-processing is carried out in few more 

columns by grouping different continuous values into one label. The columns 

dst_host_srv_serror_rate, seerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_port_rate and 

dst_host_srv_dff_host_rate contains the binary value 0 and 1, apart from the binary values these 

columns consists of values from 0.01 to 0.99. Most of the values from 0.01 to 0.99 show similar 

kind of characteristics. Therefore these values are grouped into one label and named as fuzzy. 

Another column dst_host_count consists of discrete values from 0 to 255. But it is found that the 

value 255 has maximum number of records and reflects similar kind of characteristics. Therefore 

in this column 255 is one value and other than 255 (i.e. 0-254) are grouped into one and labeled 

as less than 255. In similar way another two feature src_bytes  and  dst_bytes  consists of values 

ranging from 0 to 1379963888. Interestingly the values other than zero show the close 

characteristics and most of the nonzero values are normal traffic. Therefore the values other than 

zero in these two columns are labeled as nonzero. The feature count, srv_count and 

dst_host_srv_count  are deleted because of their diverse values and their characteristics. 

Data transformation is a part of data pre-processing. According to the Ji Han‟s data 

mining book, generalization, normalization are some techniques of data pre-processing. 

Converting the attribute data e.g. 0-254 as „less than 255‟ or values other than zero as „nonzero‟ 

are known as generalization. Normalization refers to bringing the attribute data under one range. 

Like the values between 0.01 and 0.99 can be written as 0.01-0.99. But we did not apply the 
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normalization techniques so far. The generalization is used for those attribute data. E.g. 0.01-

0.99 are named as „fuzzy‟ [(Han et al. (2006)]. 

Now, the NSL-KDD Train data set is ready for analysis with 18 columns and 1,25,773 

number of rows. Among 18 columns 17 are the features of the network traffic and one is the 

class label whether normal or Attack. The 1,25,773 rows represent same number of distinct 

records. These 19 columns will be represented as dimension for the proposed Data Cube. The 

measures for the data cube will be distributive measure as count function will be used for 

calculating the measures which will tell the number of records against the selected dimension. 

2.4 Designing the cube 

   Once the data are pre-processed data are ready for use. Pre-processing of the data will be 

followed by dimension modeling with the filtered data (Pujari 2008). Each feature or columns 

are considered as one dimension. Eighteen dimensions (or attributes) including class are there for 

dimension modeling. The idea of dimension modeling provides a lot of semantic information, 

particularly about the hierarchical relationship in the attribute (Pujari 2008). The following are 

the dimension modeling for the proposed data cube. 
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Figure: 2.1: Dimension modelling of 18 dimensions 

The dimension modeling will be followed by star schema where a central fact table is 

connected to a set of dimension tables. The fact table contains the actual transaction or values 

being analyzed. The dimension tables describe about the transactions or values. The star schema 

reflects how the users view their critical measures. Combining or joining one or more 

dimensions tables with fact table, the data warehouse responds to the query made by the users 

[Kalita (2010)]. 
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Figure 2.2: Star Schema 

Eighteen dimension tables and a central fact table present the star schema. The 

„number of records‟ is the measure for this star schema. This distributive measure tells 

the number of selected record(s) for a particular combination or pattern. Count function is 

applied for getting the numerical value. Once the star schema is designed the data cube is 
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logically ready. Then the cube can be constructed using MS-SQL or MS Access. This 

cube will give the users a visual of the attributes. From the designed cube user or security 

analyser can analyse the data from several perspectives very easily. E.g. the number of 

records with the combination with flag is „REJ‟ and serror rate is „fuzzy‟ where the class 

is „attack‟ etc. Recognizing different pattern of features for attack or normal class can 

help in analysing the trend of data. The proposed study will focus on storing and 

representing the old or historical intrusion data and analyses them to find interesting 

knowledge, which can help in improving the intrusion detection system. 

2.5 Conclusion  

This data cube shows the need of storing historical database for summarize data. 

Eighteen dimensions (including class) from forty one existing dimensions are selected to 

simplify and reduce the size of the database which carries meaningful information only. 

Storing and representing multidimensional data using data cube can help the security 

analyser in data mining and analysing the trend of data. Online analytical processing 

(OLAP) operations can be performed on the cube for further analysis. This cube can be 

utilized as the summarized and meaningful source of data, where OLAP tools and data 

mining techniques can be integrated to improve the efficiency of network intrusion 

detection. 
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Chapter-3 

OLAP Analysis on the data cube to understand the trend and 

behavior 

3.1 Introduction 

 The first new tool for decision support was the data warehouse. The two new tools which 

have emerged following the data warehouse were OnLine Analytical Processing (OLAP) and 

data mining (Shim et al, 2002). More recently Codd‟s [Codd et al. (1993)] specification of 

OLAP standard has had an equally large impact on the creation of sophisticated data driven 

decision support system [Power (1999)]. Building large warehouse often leads to an increased 

interest in analyzing and using the accumulated historical DSS data. One solution into analyze 

the historical data in data warehouse is using OnLine Analytical Processing tools. 

  OLAP is a category of software technology that enables analysts, manager, and executive 

to gain insight data through fast, consistent, interactive access to a wide variety of possible views 

of information that has been transformed from raw data to reflect the real dimensionality of the 

enterprise as understood by user. Recently Data warehouse and OLAP technology have gained a 

widespread acceptance as a support for decision making.  In data-warehouse architecture, data 

are manipulated through OLAP tools which offer visualization and navigation mechanisms of 

multidimensional data views commonly called data cube [Chaudhuri A. and Dayal U. (1997)]. 

Brahmi et al. (2012) has introduced a new IDS based on the OLAP and data mining techniques. 

Singhal A. (2007) has focused on the OLAP techniques to represent network traffic data and 

relate it to the corresponding IDS alert. Different OLAP operations slice and dice (or select), 
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drilldown, rollup and pivot (or rotate) are described in [Kimball et al. (2002); Inmon (2002) and 

Adamson (2006)]. 

Slicing- The slice operation performs a selection on one dimension of the given cube, resulting in 

a sub cube.  

 

Figure: 3.1: e.g. of Slice  

Dicing- The dice operation defines a sub‐cube by performing a selection on two or more 

dimensions 

 

Figure 3.2: e.g. of Dice 
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1. Roll-up/drill-up Perform aggregation on a data cube by Climbing up a concept hierarchy 

for a dimension or Dimension reduction. 

 

Figure 3.3: e.g. of Roll-up 

Roll down/ drill-down- Drill‐down is the reverse of roll‐up. It navigates from less detailed data to 

more detailed data by Stepping down a concept hierarchy for a dimension or Introducing 

additional dimensions. 

 

Figure: 3.4: e.g. of Drill-down 

Pivot- Visualization operation that rotates the data axes in view in order to provide an alternative 

presentation of the data. 
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Figure: 3.5: e.g. of Pivot 

3.2 Experiments & Results  

The data CUBE that has been developed to store NSL-KDD data set with 18 numbers of 

dimensions in the previous chapters has been considered for performing OLAP operation to 

analysis the trend and pattern of the network traffic based on their features. Features which are 

referred as dimension in the data cube data are represented by alphabet letter in the following 

section to make the writing easy. 

Table: 3.1 Assigned Letter against feature name 

Attribute 
Corresponding 

Letter 
Attribute 

Corresponding 

Letter 

protocol_type  A flag  B 

src_byte  C dst_byte  D 

logged in  E serror_rate  F 

srv_serror_rate  G same_srv_rate  H 

diff_srv_rate  I srv_diff_host_rate  J 

dst_host_count  K dst_host_same_srv_rate  L 

dst_host_diff_srv_rate  M dst_host_same_src_port_rate  N 

dst_host_srv_diff_host_rate  O dst_host_serror_rate  P 

dst_host_srv_serro_rate  Q Class R 
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Now, mathematically we can represent our cube in the following way. 

Cube [A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R ] 

A, B, C,...., R represents the dimension of the data cube as shown in the above table. 

The OLAP operations Slicing and dicing are performed bellow for analyzing the cube. 

1. Slice R=‟normal‟ Cube [A,B,C,....,R] = Cube[A, B,C,....,Q] 

2. Slice R=‟attack‟ Cube [A,B,C,....,R] = Cube[A, B,C,.....,Q] 

3. Dice A=tcp and R=‟normal‟ Cube [A,B,C,....,R] = Cube[ B,C,D,.....,Q] 

4. Dice A=‟udp & icmp‟ and R=‟normal‟ Cube [A,B,C,....,R] = Cube[ B,C,D,.....,Q] 

5. Dice A=tcp and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ B,C,D,.....,Q] 

6. Dice A=‟udp & icmp‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ B,C,D,.....,Q] 

The following „chart‟ represents the sub cube result after slicing and dicing in the previous 

slide. The first column is slicing „class‟ by „normal‟ and „attack‟, the second column is dicing 

with protocol type=„tcp‟ & class=„normal‟ then protocol type = „tcp‟ and class = „attack‟ and 

the third one is protocol type=„udp & icmp‟ with class= „normal‟ OR „attack‟.  

Table 3.2: Dicing by Protocol Type and Class 

  Total Count Protocol type = tcp Protocol type = udp and icmp 

Normal 67215 53470 13745 

Attack 58556 49059 9499 

 



42 
 

 

Figure 3.6: Normal versus Attack when sliced by protocol 

 The figure 3.6 shows that whether the protocol is „tcp‟, „udp‟ or „icmp‟, it does not reflect 

in „class‟. Irrespective of protocol type value the network traffic behaves either towards normal 

or attack.  We can derive from it that the protocol type is not a deciding factor/ features for 

network traffic. The analysis with Test data set has been presented below. 

Table 3.3: Comparison of Train and Test data set when sliced by Protocol 

 
  Total Count Prtocol=tcp protocol= udp and icmp 

Train Data 

Set 

Normal 67215 53470 13745 

Attack 58558 49059 9499 

Test Data 

Set 

Normal 2152 685 1467 

Attack 9698 7947 1751 

 

Table 3.4: Comparisons of train and test data set in percentage 

  
Normal 
AND TCP 

Attack 
AND TCP 

Normal AND  
UDP & ICMP 

Attack AND 
UDP&ICMP 

Training 
Data 79.55 83.78 20.45 16.22 

Test 
Data  31.83 81.94 68.17 18.06 
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We have converted table 3.3 into percentage in the table 3.4 as the number of 

records/transactions in Train data set and Test data set are different. 

 

Figure 3.7: Protocol type in training and test data set 

The figure 3.7 reflects it that though in train data set, the protocol type did not show any 

interesting pattern but in Test data set the result are different. Therefore we can not make a 

conclusion from here that whether the protocol type can decide the class of network traffic.  

 Similarly the following dicing operations have been carried out to analyze the pattern of 

„class‟ whether normal or attack with the changes of values in source bytes (src_bytes) 

Dice C=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,D,E,......,Q] 

Dice C=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,D,E,......,Q] 

Dice C=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,D,E,......,Q] 

Dice C=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,D,E,......,Q] 
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Table 3.5: Sliced by Source bytes 

 

Total Count Src_bytes = zero Src_bytes = nonzero 

Normal 67215 3400 63815 

Attack 58556 49556 12623 

 

 

Figure 3.8: Normal versus attack sliced by source bytes 

The figure-3.8 shows that how the classes change when the „source bytes‟ changes. When the 

values of the source bytes are zero, the class tends to „attack‟ similarly when the source bytes 

values are nonzero or other than zero the class tends towards „normal‟. 

Table 3.6: The numbers after dicing by source bytes and class in Training and Test data set 

 

  
Total 

Coununt 

src bytes = 

zero 

src bytes = 

nonzero 

Training 

Data Set 

Normal 67215 3400 63815 

Attack 58558 49556 12623 

Test Data 

Set 

Normal 2152 111 2041 

Attack 9698 4373 5325 
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In the Table 3.6 the values after dicing by source bytes and class from Test data set are added 

with the Table 3.5 to make a comparative study.  

Table 3.7: Analysis of Training and Testing data in Percentage 

  
Normal  AND 

src bytes=zero 

Attack AND 

src bytes 

=zero 

Normal AND src 

bytes= nonzero 

Attack AND 

src bytes 

=nonzero 

Training Data 5.06 84.63 94.94 21.56 

Test Data  5.16 45.09 94.84 54.91 

 

Table 3.6 has been translated into the Table 3.7 by converting the values into percentage. 

Comparing the results after dicing operation of the training data set and test data set a graph has 

been plotted in the Figure 3.9.  

 

Figure: 3.9: Testing of results when sliced by source bytes 

Figure 3.9 clearly support the results obtained in Figure 3.8. It means that the training data set 

and test data set behaves in same manner. Therefore it can be concluded that the source bytes 
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value plays an important role in intrusion detection. If the source bytes values are other than zero 

then it tends to be attack traffic.  

 In the similar fashion the analysis of pattern, for the destination bytes when the values are 

zero or nonzero are carried out. But when source byte or destination bytes or both are nonzero 

(other than zero) the result/ pattern of network traffic behaves as „Normal‟ traffic. The analyses 

are as follows. 

Dice C=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,D,E,......,Q] 

Dice C=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,D,E,......,Q] 

Dice D=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,E,......,Q] 

Dice D=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,E,......,Q] 

Dice C=‟nonzero‟ and D=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,E,......,Q] 

Dice C=‟nonzero‟ and D=‟nonzero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,E,......,Q] 

The total numbers of records after the dice operation are tabled bellow. This table reflects total 

number of „normal‟ traffic when source bytes are zero, nonzero and both and similarly for 

„attack‟ traffic. 

Table 3.8: Dicing by Source bytes and destination bytes 

 

Normal Attack 

src_bytes=nonzero 63815 12623 

dst_bytes=nonzero 56299 1632 

src_bytes and dst_bytes =nonzero 56114 1539 
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Table 3.8 are the results obtained after dicing the data cube of Training data set by „source bytes 

= nonzero‟ with „class= normal‟ and „attack‟. Also with the destination bytes values is nonzero 

with class value is normal or attack. And at the end the dicing operations has been carried out 

with the both source bytes and destination bytes values are nonzero with class is normal or 

attack. 

 

Figure: 3.10: Normal versus Attack when source bytes and destination bytes are nonzero 

The graph that has been plotted in Figure 3.10 with the values from Table 3.8 tells that when the 

values of source bytes, destination bytes and both are nonzero or other than zero the traffic tends 

towards Normal. 

When the „source byte‟ is zero „attack‟ is much higher in number, on the other hand when 

„source bytes‟ is nonzero the classes tends to fall into normal category. When source byte or 

destination bytes or both are zero the result/ pattern of network traffic is tends towards „Attack‟ 

Table 3.9: Combined the Table 3.7 and Table 3.8 and based on it a graph has been plotted in 

Figure 3.11 
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Src_bytes and dst_bytes =0 3215 45842 

src_bytes=nonzero 63815 12623 

dst_bytes=nonzero 56299 1632 

Src_bytes and dst_bytes =nonzero 56114 1539 

 

 

Figure: 3.11: Normal versus Attack when source bytes and destination bytes values are zero and 

nonzero. 

 Table 3.9 has been represented in Figure 3.11which indicates that the changes in values 

for source bytes and destination bytes changes the behavior of the network traffic. Source bytes 

i.e. the bytes sent from source to destination and destination bytes i.e. bytes sent from destination 

to source are zero then the traffic tends towards „attack‟ and when the values are nonzero or 

other than zero then the traffic likely to fall in „normal‟ category. 

 The result from Figure 3.11 is required to test with the Test data set. After performing the 

dice operations with the NSL-KDD Test data set, the results are recorded in Table 3.10. C and D 

indicate source bytes and destination bytes respectively. And the values in the table are in 

percentage so that the comparisons of Training data set and Test data set become easy. 
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Table 3.10: Analysis of Training and Test data set after dicing by source bytes and destination 

bytes 

  Normal (values are in %) Attack (values are in %) 

  C=0 D = 0 
C &D 
=0 

C = 
nonzero 

D= 
nonzero 

C & D = 
nonzer
o C=0 D=0 

C & D 
=0 

C= 

nonzero 
D = 
nonzero 

C& D= 
nonzero 

Training 
data 5.06 16.24 4.78 94.94 83.76 83.48 84.63 97.21 78.28 21.56 2.79 2.29 

Testing 
data 5.16 23.93 3.21 94.84 76.07 74.12 45.09 56.62 54.91 54.91 43.38 32.58 

 

 

Figure 3.12: Testing of Normal versus Attack when source bytes and destination bytes values are 

zero and nonzero 

         The figure- 3.12 compares training data set with test data set. The changes of values (zero 

or nonzero) for source bytes and destination bytes has the similar pattern of normal traffic in 

training and test data where there is change in pattern for „attack‟ categories. It reflects the 

variations in the network traffic upon changes of the values of source bytes and destination bytes. 

Interestingly the Training and Test data results are very close and hence it can be derived that the 

changes in values of source bytes and destination bytes i.e. bytes from source to destination or 

bytes from destination to source can be make responsible for the changes of behaviour of 
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network traffic. When the values are zero there high chances of intrusion and if the values are 

other than zero then the network is likely to behave normal.   

The following are dicing operation performed by logged in and class. 

Dice E=0 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,D,F,......,Q] 

Dice E=‟0‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,CD,F,......,Q] 

Dice E=nonzero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,D,......,Q] 

Dice E=‟0‟ and R=‟attack‟ Cube [A,B,C,D,....,R] = Cube[ A,B,C,D,......,Q] 

Table 3.11: Diced by login in training data set 

  total normal attack 

logged in=0 76016 19465 56551 

logged in=1 49757 47750 2007 

 

Table 3.11 has shown the data after dicing the data cube of Training data set by „logged in‟ and 

„class. The corresponding graph has been plotted in Figure 3.13

 

Figure 3.13: Normal versus Attack when sliced by logged in 

 The Figure in 3.13 shows that when the logged in value is zero or there are login failure 

then the network traffic is tends towards attack or intrusive network. On the other hand if the 
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logged in value is „1‟or successful login then the network traffic likely to behave normal and less 

scope of intrusion. This result are required to be tested with the test data set so that the 

conclusion to make the login failure responsible for intrusion. 

Table 3.12: Comparing the results with Test data set in the following table and figure. 

 

Training Testing 

  total normal attack total normal attack 

logged in=0 76016 19465 56551 8851 1772 7079 

logged in=1 49757 47750 2007 2999 380 2619 

  

In Table 3.12, the values are derived by dicing the cube with „logged in‟ and „class‟ in both 

Training and Test data set and a comparison is made. As the denominator or the total number of 

records in Training data set and Test data are different, the values from Table 3.12 has been 

converted into percentage value in Table 3.13. 

Table 3.13: Comparisons of both the data set in percentage to analyze the pattern 

  Normal Attack 

  
logged 
in=0 

logged 
in =1 

logged 
in=0 

logged 
in =1 

Training 
Data 25.61 95.97 74.39 4.03 

Testing 
Data 20.02 12.67 79.98 87.33 
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Figure 3.14: Testing the result of Normal vs Attack when sliced by logged in 

 Figure 3.14, which has been plotted based on the Table 3.13 reflects the comparative 

analysis after validating the Training result with the Test result. It has been observed that when 

logged in value is „1‟ the traffic tends to Normal in Training data set but in Test data set it tends 

to Attack. But for logged in value= „zero‟ the behavior in Training data set and Test data set is 

almost same. Therefore it can be concluded in such a way that if there is a login failure or the 

logged in value is zero the network traffic tends to be intrusive but if the log in is successful it 

does not necessarily tells that the traffic will fall in to normal class.  

The following are the dice operation performed by destination host count and class. 

Dice K=255 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,...J,L,...,Q] 

Dice K=‟255‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,...J,L...,Q] 

Dice K=Less than 255 and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,..J, L....,Q] 

0.00

20.00

40.00

60.00

80.00

100.00

120.00

logged in=0 logged in =1 logged in=0 logged in =1

Normal Attack

Training Data

Testing Data



53 
 

Dice E=‟Less than 255‟ and R=‟attack‟ Cube [A,B,C,D,....,R] = Cube[ A,B,C,..J,L....,Q] 

Table 3.14: Diced by destination host count and class 

  Total normal attack 

dstination host count= 

255 73969 25769 48200 

dstination host count < 

255 51804 41446 10358 

 

Table 3.14 recorded the data after dicing the cube by „destinatin host count‟ and „class‟. 

Destination host count tell count of connections having the same destination host. It has two 

kinds of values either the value is „255‟ or the values are other than 255 which are less than 255.  

 

Figure 3.15: Normal versus Attack when sliced by destination host count 

The figure 3.15 shows that when the destination host count values are 255 or the count of 

connections having the same destination host are 255 then 65 % network are intrusive, but when 

the values are less than 255 then network behaves normal. Though the behavior of network 

traffic are not very distinct for the „destination host count values = 255‟ but also the lion share of 

the network traffic has the tendency to fall in „attack‟ class. Similarly for „destination host 

count= less than 255‟ the likelihood of that network is to behave normal. 
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Table 3.15: Comparison with the Training and Test Data set after diced by destination host count 

 
Train Data Set Test Data Set 

  Total normal attack Total normal attack 

destination host 

count= 255 73969 25769 48200 8901 1658 7243 

destination host 

count < 255 51804 41446 10358 2949 494 2455 

 

Table 3.15 has represented the records by adding the values after performing dice operation in 

the Test data set to the Table 3.14 

Table 3.16 Training and Test data set comparison after dicing by destination host count 

  normal attack 

  

destination host 

count= 255 

destination 

host count < 

255 

destination 

host count= 

255 

destination 

host count < 

255 

Train Data Set 34.84 80.01 65.16 19.99 

Test Data Set 18.63 16.75 81.37 83.25 

 

Table 3.16 is derived from the table 3.15, which is represented in percentage values to enable the 

comparison of Training data set result and Test data set result. 

 

Figure 3.16: Testing the results of Normal vs. Attack when sliced by destination host count 
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Figure 3.16 reflects interesting results. It can be derived that when the „destination host 

count= 255‟ it has similarity of in trends for Training data set and Test data set but for the 

„destination host count < 255‟ it gives different trend. Therefore it can be concluded that this 

features is meaningful when „destination host count= 255 information or can hold responsible for 

intrusion in network traffic. The count of connections having the same destination host does play 

a deciding role in intrusion detection system.  

The following are the dice operation by FLAG and class 

1. Dice B=‟OTH‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

2. Dice B=‟REJ‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

3. Dice B=‟RSTO‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

4. Dice B=‟RSTOS0‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

5. Dice B=‟RSTR‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

6. Dice B=‟S0‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

7. Dice B=‟S1‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

8. Dice B=‟S2‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

9. Dice B=‟S3‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

10. Dice B=‟SF‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

11. Dice B=‟SH‟ and R=‟normal‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

12. Dice B=‟OTH‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 
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13. Dice B=‟REJ‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

14. Dice B=‟RSTO‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

15. Dice B=‟RSTOS0‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

16. Dice B=‟RSTR‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

17. Dice B=‟S0‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

18. Dice B=‟S1‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

19. Dice B=‟S2‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

20. Dice B=‟S3‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

21. Dice B=‟SF‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

22. Dice B=‟SH‟ and R=‟attack‟ Cube [A,B,C,D....,R] = Cube[ A,C,D,.....,Q] 

Table 3.17: Values showing after diced by „Flag‟ and „Class‟ in training data set 

FLAG TOTAL NORMAL ATTACK 

OTH 46 11 35 

REJ 11218 2680 8538 

RSTO 1554 220 1334 

RSTOS0 105 0 105 

RSTR 2424 144 2280 

S0 34820 355 34465 

S1 363 359 4 

S2 126 118 8 

S3 48 44 4 

SF 74802 63282 11520 

SH 267 2 265 
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Figure: 3.17: Normal versus Attack when sliced by FLAG 

 The values for „FLAG‟ feature OTH, RSTOS0, S1, S2, S3 and SH are ignored because of 

comparatively small numbers. The values REJ, RSTO, RSTR and S0 are responsible for the 

network intrusion. On the other hand when the value is „SF‟ there is very little trend  of network 

intrusion or attack. 

Dicing operations are carried out when the values are „fuzzy‟/0/1 in serror_rate, srv_serror_rate, 

same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_same_srv_rate , 

dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, 

 dst_host_serror_rate, dst_host_srv_serror_rate columns then the tendency of traffic are 

represented in numbers and presented in tabular form.  

1. Dice F=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

2. Dice F=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

3. Dice F=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

4. Dice F=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

5. Dice F=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

6. Dice F=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

7. Dice G=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 
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8. Dice G=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

9. Dice G=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

10. Dice G=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

11. Dice G=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

12. Dice G=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

13. Dice H=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

14. Dice H=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

15. Dice H=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

16. Dice H=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

17. Dice H=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

18. Dice H=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

19. Dice I=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

20. Dice I=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

21. Dice I=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

22. Dice I=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

23. Dice I=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

24. Dice I=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

25. Dice J=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

26. Dice J=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

27. Dice J=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

28. Dice J=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

29. Dice J=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

30. Dice J=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 
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31. Dice L=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

32. Dice L=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

33. Dice L=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

34. Dice L=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

35. Dice L=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

36. Dice L=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

37. Dice M=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

38. Dice M=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

39. Dice M=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

40. Dice M=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

41. Dice M=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

42. Dice M=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

43. Dice N=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

44. Dice N=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

45. Dice N=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

46. Dice N=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

47. Dice N=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

48. Dice N=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

49. Dice O=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

50. Dice O=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

51. Dice O=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

52. Dice O=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

53. Dice O=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 
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54. Dice O=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

55. Dice P=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

56. Dice P=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

57. Dice P=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

58. Dice P=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

59. Dice P=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,Q] 

60. Dice P=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,Q] 

61. Dice Q=zero and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,P] 

62. Dice Q=‟zero‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,P] 

63. Dice Q=‟1‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,P] 

64. Dice Q=‟1‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,P] 

65. Dice Q=‟fuzzy‟ and R=‟normal‟ Cube [A,B,C,...,R] = Cube[ A,B,C,......,P] 

66. Dice Q=‟fuzzy‟ and R=‟attack‟ Cube [A,B,C,....,R] = Cube[ A,B,C,......,P] 
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Table 3.18: After Dicing operation by different values of 11 different dimension in Training data 

set 
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1793 1988 3918 3572 19721 24077 27147 42283 33427 5948 5438 
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k 

2905 351 
4241

1 
42694 522 45771 49552 10234 4897 5076 952 
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2 

6490

0 
30 62670 42918 1071 40016 22379 33673 61202 61745 

Zero 
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k 

2164

5 

2369

8 
2741 13411 54480 5876 6910 40547 53082 20008 23418 
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and 

Norm

al 

400 327 
6326

7 
973 4576 42067 52 2553 115 65 32 

One 

and 

Attac

k 

3400

8 

3450

9 

1340

6 
2453 3556 6911 2096 7772 579 33474 34188 

 

 Total Count in this table (3.18) means the numbers of „normal‟ and „attack‟ for all values 

(0/1/fuzzy). The previous table reflects that „fuzzy‟ values are not very influencing for five of the 

features, they are namely serror_rate, srv_serror_rate, dst_host_serror_rate, 

dst_host_srv_serror_rate, srv_diff_host_rate.  

 For same_srv_rate, diff_srv_rate, dst_host_same_srv_rate and dst_host_diff_srv_rate 

features, the traffics tends towards „Attack‟ because of „fuzzy values. For 

dst_host_same_src_port_rate  and dst_host_srv_diff_host_rate  features when the values are 

„fuzzy‟ the traffic tends towards „Normal‟. Also the traffic behaves towards normal when the 

values for the following features/dimension are zero, they are  serror_rate, srv_serror_rate, 

diff_srv_rate,  dst_host_serror_rate, dst_host_srv_serror_rate. 
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Table 3.19: After performing dicing operation by different values of 11 different dimension in 

Test data set 
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Fuzzy 
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and 
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l 
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7558 7919 678 6445 8434 1163 1853 6152 8264 6673 7379 
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and 
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l 

15 10 1860 35 74 1101 2 164 4 3 3 

One 
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Attack 

1200 1228 6445 1313 748 2196 548 1337 104 661 764 

 

 But when we analyzed the table 3.19 derived after performing the dice operation on the 

data cube of test data set only few outcomes of the training data set are been showing similar 

trend or pattern. The „same serve rate‟, „different serve rate‟, „destination host same serve rate‟ 

and „destination host different host rate‟ have shown the same trend that has been predicted in 

training data set, i.e. if the values of these four features are fuzzy or in between 0 and 1 excluding 

0 and 1 then the network traffic tends towards intrusive. Other features that have shown some 

deciding trend in training data set did not show any interesting trend here in test data set. 

Therefore we can derive it from here that the changes in values  for „same serve rate‟, „different 

serve rate‟, „destination host same serve rate‟ and „destination host different host rate‟ changes 

the behavior of network traffic. 

3.3 Conclusion 

  The finding from the OLAP analysis has hints out that the pattern of network traffic 

changes to either „normal‟ or „attack‟ with the change of values of some features. 
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Chapter-4 

Applying Association Rule Mining technique for designing Network 

Intrusion Detection System 

4.1 Introduction  

 To eliminate the manual and ad-hoc elements from the process of building an intrusion 

detection system, researcher are increasingly looking at using data mining techniques for 

anomaly detection [Lee W. and Stolfo S.J. (1998); Lee et al. (2000a); Lee et al. (2000b)]. 

Grossman define data mining technique as being concerned with uncovering patterns, 

associations, changes, anomalies and statistically significant structure and events data. Another 

term sometimes used as the Knowledge discovery. 

 Association rule [Agarwal et al. (1993); Hipp et al. (2000)] are one of the many data 

mining techniques that describes events that tend to occur together. Following the development 

of data cube and OLAP operation, the next crucial phase is to perform association rule mining. 

Association rule mining is generally applied to find the interesting rule from a large data set. The 

idea of mining association rules originates from the analysis of market-basket data where rules 

like “A customer who buys products x1, x2, . . . , xn will also buy product y with probability c%” 

are generated [Singhal A. and Jajodia S.. (2006); Hipp et al. (2002); Bhattacharjee M. and Kalita 

P. (2012); Ziauddin et al. (2012)]. Association rules are particularly important in anomaly 

detection technique of IDS. The association rules can build a summary of anomalous connection 

and help to detect the deviated records [Patcha A. and Park J.M. (2007)]. As discussed in the 

methodology association rule mining include support and confidence calculation. Lift and 
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Conviction also calculated these days for finding interesting pattern [Hipp et al. (2002)]. 

Association rule mining has been applied successfully in many other research areas like market 

research, bioinformatics, banking and financial data analysis, retail business etc.  

Table 4.1.1: Example of a transaction table („1‟ represents present and „0‟represent absent) 

 

transaction ID milk bread butter beer diapers 

1 1 1 0 0 0 

2 0 0 1 0 0 

3 0 0 0 1 1 

4 1 1 1 0 0 

5 0 1 0 0 0 

 

 Following the original definition by Agrawal et al. (1997), the problem of association 

rule mining is defined as: 

Let I = {i1, i2,……..,in} be a set of n binary attributes called items. 

Let  D = {t1, t2,…..,tm}be a set of transactions called the database. 

Each transaction in D has a unique transaction ID and contains a subset of the items in I. 

A rule is defined as an implication of the form: 

X=>Y 

Where  and . 

Every rule is composed by two different sets of items, also known as itemsets, X and Y , 

where X is called antecedent or left-hand-side (LHS) and Y consequent or right-hand-side 

(RHS).To illustrate the concepts, we use a small example from the supermarket domain. The set 
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of items is I = {milk, bread, butter, beer, diapers} and in the table is shown a small database 

containing the items, where, in each entry, the value 1 means the presence of the item in the 

corresponding transaction, and the value 0 represent the absence of an item in a that transaction. 

 An example rule for the supermarket could be {butter, bread} => {milk}   meaning that if 

butter and bread are bought, customers also buy milk. This example is extremely small. In 

practical applications, a rule needs a support of several hundred transactions before it can be 

considered statistically significant, and data-sets often contain thousands or millions of 

transactions. 

 In order to select interesting rules from the set of all possible rules, constraints on various 

measures of significance and interest are used. The best-known constraints are minimum 

thresholds on support and confidence. 

Let X is an item-set, X=>Y an association rule and T a set of transactions of a given database. 

Support 

The support value of X with respect to T is defined as the proportion of transactions in the 

database which contains the item-set X. In the example database, the item-set {butter, bread} => 

{milk}   has a support of 1/5= 0.2 since it occurs in 20% of all transactions (1 out of 5 

transactions). The argument of supp() is a set of preconditions, and thus becomes more restrictive 

as it grows (instead of more inclusive). 

Confidence 

 The confidence value of a rule X=> Y, with respect to a set of transactions T, is the 

proportion of the transactions that contains X which also contains Y. Confidence is defined as 
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Conf (X=> Y) = supp (X U Y)/ supp (X). For example, the rule {butter, bread}=> {milk}  has a 

confidence of  0.2/0.2= 1.0 in the database, which means that for 100% of the transactions 

containing butter and bread the rule is correct (100% of the times a customer buys butter and 

bread, milk is bought as well). It is to be noted that supp (X U Y) means the support of the union 

of the items in X and Y. This is somewhat confusing since we normally think in terms of 

probabilities of events and not sets of items. We can rewrite supp (X U Y) as the joint probability 

P (EX ∩ EY), where EX and EY  are the events that a transaction contains itemset X or Y, 

respectively. Thus confidence can be interpreted as an estimate of the conditional probability

, the probability of finding the RHS of the rule in transactions under the condition 

that these transactions also contain the LHS. 

Lift 

The lift of a rule is defined as: 

 

or the ratio of the observed support to that expected if X and Y were independent. 

For example, the rule {milk, bread} = > {butter} has a lift of 0.2/0.4X 0.4 = 1.25  

Conviction 

The conviction of a rule is defined as . 
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For example, the rule {milk, bead}=> {butter}  has a conviction of , and can be 

interpreted as the ratio of the expected frequency that X occurs without Y (that is to say, the 

frequency that the rule makes an incorrect prediction) if X and Y were independent divided by 

the observed frequency of incorrect predictions. In this example, the conviction value of 1.2 

shows that the rule {milk, bead}=> {butter} would be incorrect 20% more often (1.2 times as 

often) if the association between X and Y was purely random chance. 

Ziauddin et al. (2012) had reviewed the research work on association rule and presented 

association rule as one of the important areas of research work which is receiving increasing 

attention. It becomes an essential part of knowledge discovery. In one research paper by Lee and 

Stolfo, a systematic framework has been proposed for developing intrusion detection system 

using data mining. The framework consists of association rules and other data mining 

techniques. Patcha and Park (2007) has proposed anomaly detection model, one of two intrusion 

detection classes by using association rule mining. They have explained association rule, 

intrusion detection, and application of association rule for developing anomaly detection system. 

Flora S. Tsai (2009) has stated that a network intrusion detection system can be developed by 

performing association rule mining. Rules can be generated by calculating support and 

confidence for detecting network intrusion. The rules are simply viewed as [If Then Else 

structure].  The support tells the frequency of the itemset and confidence tells the associations 

among the itemset. Once the rules are generated, the rules are tested with NSL-KDD test data set 

for measuring the performance. After literature review we are confident that the Association rule 

mining technique can be used for developing network intrusion detection system. We will use 

NSL-KDD training data set to generate the rule and NSL-KDD test data set to test the 

performance. 
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4.2 Experiments & Results 

 Dimension/ features/ attributes that we have been already selected will be referred as 

itemset for performing association rule mining. Each record/row will be refers as transaction. 

Now support for these itemset will be calculated from 1,25,773 records or transaction. The 

support will tell the frequency of occurrence of an item.Confidence will tell the association 

among the itemset. 

 Mathematically the following two itemsets are used for analysis. IAttack set is for analyzing 

the support and confidence when Class= „Attack‟. INormal is for analyzing the transactions when 

Class=‟Normal‟. 

• IAttack ={Class, Source Bytes, Destination Bytes, logged in, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_srv_rate,  

dst_host_count,diff_srv_rate , same_srv_rate} 

• INormal ={Class, Source Bytes,Destination bytes, Destination, logged in, Destination 

host_count, dst_host_same_src_port_rate,  dst_host_srv_diff_host_rate, 

dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_same_src_port_rate }  

4.2.1 Calculation of Support 

 Calculation of support has been carried out by considering 1,25,773 as left hand 

side value for training data set and 11,850 for test data set. Threshold Percentage is 

considered as 30%. It is justified because 58,558 out of 1,25,773 are attack which is 
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46.5%. And we calculate the Support by considering denominator as total nos. of record 

(i.e.1,25,773 and 11,850 for training and test data set respectively).   

Table 4.2.1: The following are the support of features which behave towards attack 
     

Itemset Support Threshold 

Source Bytes=0 39.23 30 

Destination bytes=0 53.94 30 

Source Bytes ^ Destination bytes=0 39 30 

Class=Attack 46.56 30 

Source Bytes=0 ^ Class=Attack 36.52 30 

Source Bytes=0 ^ destinationbytes=0 ^ Class=Attack 36.45 30 

Destinatino Bytes= 0 ^ Class=Attack 45.26 30 

logged in =0  60.44 30 

logged in =0 ^ Class=attack 44.96 30 

dst_host_same_src_port_rate=0 50.03 30 

dst_host_srv_diff_host_rate=0 68.98 30 

dst_host_serror_rate=1 26.67 30 

dst_host_srv_serror_rate=1 27.21 30 

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0 48.56 30 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1 24.68 30 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s 24.68 30 
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rv_serror_rate=1 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1^ Class= Attack 24.68 30 

dst_host_same_srv_rate ='fuzzy' 55.53 30 

dst_host_diff_srv_rate= 'fuzzy' 60.98 30 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' 55.1 30 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^ 

Class=Attack 35.99 30 

dst_host_same_srv_rate ='fuzzy' ^ Class=Attack 36.39 30 

dst_host_diff_srv_rate= 'fuzzy' ^ Class=Attack 39.4 30 

dst_host_count=255 58.81 30 

dst_host_count=255 ^ Class = Attack 38.32 30 

same_srv_rate= fuzzy 36.84 30 

diff_srv_rate =fuzzy  36.79 30 

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy  35.33 30 

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack 32.99 30 

diff_srv_rate =fuzzy ^ Attack 33.95 30 

same_srv_rate= fuzzy ^ Class=Attack 33.72 30 

Protocol type= tcp 81.52 30 

Protocol type= tcp ^ Class= Attack 39.01 30 

Protocol type= tcp ^ flag= S0 27.68 30 

Protocol type= tcp ^ flag= S0^ Class= Attack 27.40 30 
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flag= S0^ Class= Attack 27.40 30 

flag= S0 27.68 30 

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 ^class= attack 26.46 30 

dst_host_serror_rate =1^class= attack 26.61 30 

dst_host_srv_serror_rate=1 ^class= attack 27.18 30 

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 26.47 30 

dst_host_serror_rate =1 26.67 30 

dst_host_srv_serror_rate=1 27.21 30 

 

In the above table the support for 43 different set of combinations have been calculated in 

the training data set. The threshold value is decided as 30. And it has been observed that in the 

training data set out of 43 different set of combinations 15 numbers of support values are less 

than threshold values. Those aredst_host_srv_serror_rate=1, dst_host_srv_serror_rate=1, 

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1, 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_serror_rate=1, 

dst_host_same_src_port_rate=0^dst_host_srv_diff_host_rate=0^ dst_host_serror_rate=1^ 

dst_host_srv_serror_rate=1^ Class= Attack, Protocol type= tcp ^ flag= S0, Protocol type= tcp ^ 

flag= S0^ Class= Attack, flag= S0^ Class= Attack, flag= S0, dst_host_serror_rate 

=1^dst_host_srv_serror_rate=1 ^class= attack, dst_host_serror_rate =1^class= attack, 

dst_host_srv_serror_rate=1 ^class= attack, dst_host_serror_rate =1^dst_host_srv_serror_rate=1, 

dst_host_serror_rate =1, dst_host_srv_serror_rate=1. Rest twenty eight different set of 

combination‟s support values are greater than the threshold value. 
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Figure 4.2.1: The Graph to represent Support or frequency of appearing 

This Figure has been plotted based on the Table 4.2.1 data. It reflects that in training data 

set out of 43 different combinations only twenty eight set of combinations lies above the 

threshold values and they are frequent itemset or features. The following set of combinations of 

itemset/features is found to be occurred frequently in the training data set. They are-Source 

Bytes=0, Destination bytes=0, Source Bytes ^ Destination bytes=0, Class=Attack, Source 

Bytes=0 ^ Class=Attack, Source Bytes=0 ^ destination bytes=0 ^ Class=Attack, Destination 

Bytes= 0 ^ Class=Attack, logged in =0, logged in =0 ^ Class=attack, 

dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 

'fuzzy', dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy', 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^ Attack, 

dst_host_same_srv_rate ='fuzzy' ^ Attack, dst_host_diff_srv_rate= 'fuzzy' ^ Attack, 

dst_host_count=255, dst_host_count=255 ^ class = Attack, same_srv_rate= fuzzy, diff_srv_rate 

=fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate 
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=fuzzy ^ Class= Attack, diff_srv_rate =fuzzy ^ Attack, same_srv_rate= fuzzy ^ Class=Attack, 

Protocol type= tcp and Protocol type= tcp ^ Class= Attack 

Table 4.2.2 The Test results which behave towards „Attack‟ 

Itemset 

Train 

Support 
Test 

Support 

Threshold 

Source Bytes=0 39.23 37.84 30 

Destination bytes=0 53.94 50.68 30 

Source Bytes ^ Destination bytes=0 39 28.65 30 

Class=Attack 46.56 81.84 30 

Source Bytes=0 ^ Class=Attack 36.52 36.9 30 

Source Bytes=0 ^destinatinationbytes=0 ^ Class=Attack 36.45 28.07 30 

Destinatino Bytes= 0 ^ Class=Attack 45.26 46.34 30 

logged in =0  60.44 74.69 30 

logged in =0 ^ Class=attack 44.96 59.74 30 

dst_host_same_src_port_rate=0 50.03 57.55 30 

dst_host_srv_diff_host_rate=0 68.98 86.16 30 

dst_host_serror_rate=1 26.67 4.3 30 

dst_host_srv_serror_rate=1 27.21 6.47 30 

dst_host_same_src_port_rate=0 ^dst_host_srv_diff_host_rate=0 48.56 56.62 30 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1 24.68 3.53 

30 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1 24.68 3.51 

30 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_s

rv_serror_rate=1^ Class= Attack 24.68 3.51 

30 

dst_host_same_srv_rate ='fuzzy' 55.53 61.9 30 

dst_host_diff_srv_rate= 'fuzzy' 60.98 72.36 30 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' 55.1 61.21 

30 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' ^ 

Attack 35.99 52.8 

30 

dst_host_same_srv_rate ='fuzzy' ^ Attack 36.39 53.49 30 

dst_host_diff_srv_rate= 'fuzzy' ^ Attack 39.4 61.58 30 

dst_host_count=255 58.81 75.11 30 

dst_host_count=255 ^ class = Attack 38.32 61.12 30 

same_srv_rate= fuzzy 36.84 24.18 30 



74 
 

diff_srv_rate =fuzzy  36.79 18.65 30 

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy  35.33 18.01 30 

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack 32.99 15.85 30 

diff_srv_rate =fuzzy ^ Attack 33.95 16.37 30 

same_srv_rate= fuzzy ^ Class=Attack 33.72 21.73 30 

Protocol type= tcp 81.52 72.84 30 

Protocol type= tcp ^ Class= Attack 39.01 67.06 30 

Protocol type= tcp ^ flag= S0 27.68 8.72 30 

Protocol type= tcp ^ flag= S0^ Class= Attack 27.4 8.72 30 

flag= S0^ Class= Attack 27.4 8.72 30 

flag= S0 27.68 8.72 30 

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 ^class= attack 26.46 5.24 30 

dst_host_serror_rate =1^class= attack 26.61 5.58 30 

dst_host_srv_serror_rate=1 ^class= attack 27.18 6.45 30 

dst_host_serror_rate =1^dst_host_srv_serror_rate=1 26.47 5.24 30 

dst_host_serror_rate =1 26.67 5.6 30 

dst_host_srv_serror_rate=1 27.21 6.47 30 

 

The above table is showing the support values for 43 different set of combinations for 

both training and test data set. The threshold values remain the same and a comparative analysis 

has been made by plotting a graph in Figure 4.2.2. Eight more set of combinations in addition to 

fifteen set of combinations in training data set are having support values which are less than the 

threshold values. Those are Source Bytes ^ Destination bytes=0, Source Bytes=0 ^ destination 

bytes=0 ^ Class=Attack, same_srv_rate= fuzzy, diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^ 

diff_srv_rate =fuzzy, same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy ^ Class= Attack, diff_srv_rate 

=fuzzy ^ Attack, same_srv_rate= fuzzy ^ Class=Attack. 
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Figure 4.2.2: Training and Test result together for class= attack 

Figure 4.2.2 has been plotted based on the data of Table 4.2.2. Out of 43 different set of 

combinations 35 set of combinations follow the similar trend in both training and test data set, 

where 15 set of combinations lies below the threshold value. Though, 28 set of combinations lies 

above the threshold value in training data set but in the test data set only 20 set of combinations 

falls above the line. Therefore we can conclude that these 20 set of combinations which falls 

above the threshold values in both training and test data set are frequent itemset or features in the 

network traffic. 

Table 4.2.3: The support of features which behave towards „Normal‟ 

itemset Support Threshold 

value 

Source Bytes=nonzero 60.77 30 

Destination bytes= nonzero 46.06 30 

Source Bytes=0 ^ Destination bytes= nonzero 45.84 30 

Class=Normal 53.44 30 
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Source Bytes=nonzero ^ Class=normal 50.74 30 

Source Bytes=nonzero ^ destination bytes=nonzero 

^Class=Normal 44.62 30 

destination Bytes=nonzero ^ Class=normal 44.76 30 

logged in =1 39.56 30 

logged in =1 ^ Class=normal 37.97 30 

destination host count = less than 255 41.19 30 

destination host count = less than 255 ^ Class= Normal 32.95 30 

dst_host_same_src_port_rate=1 38.94 30 

dst_host_same_src_port_rate=1 ^ Class= Normal 33.45 30 

dst_host_srv_diff_host_rate=1 60.98 30 

dst_host_srv_diff_host_rate=1 ^ Class= Normal 37.31 30 

dst_host_serror_rate=0= 64.57 30 

dst_host_serror_rate=0^ Class= Normal 48.66 30 

dst_host_srv_serror_rate=0 67.71 30 

dst_host_srv_serror_rate=0^Class= Normal 49.09 30 

dst_host_same_src_port_rate= fuzzy 41.76 30 

dst_host_same_src_port_rate= fuzzy ^ class= normal 33.62 30 

dst_host_srv_serror_rate=0 ^ Class=normal 49.09 30 

dst_host_srv_serror_rate=0 67.71 30 

In Table 4.2.3 the support for 23 set of different combinations which behave towards „normal‟ in 

training data set has been calculated and presented. From this table we can see that the support 
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values for all 23 set of combinations are more than the threshold values Thus we can derive it 

from this table that these 23 set of combinations are frequently occurring in training data set. But 

once we tested with the Test data set for the same set of combinations then only we can make a 

conclusive remarks. 

 

Figure 4.2.3: Graph to represent Support or frequency of the itemsets from the table 4.2.3 

The Figure 4.2.3, which has been plotted based on the Table 4.2.3 data reflects that all the 

23 set of combinations which behave towards normal class in training data set lies above the 

threshold values.  

The Test support for the combination is now compared with the test data set and 

following are the results. 

Table 4.2.4: Support of Training and Test data set which behaves towards Normal  

 itemset 
Training 

Support 

Test 

Support 

Threshold 

value 

Source Bytes=nonzero 60.77 62.16 30 

Destination bytes= nonzero 46.06 49.32 30 

Source Bytes ^ Destination bytes= nonzero 45.84 40.13 30 

Class=Normal 53.44 18.16 30 

Source Bytes=nonzero ^ Class=normal 50.74 17.22 30 
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Source 

Bytes=nonzero^destinatinationbytes=nonzero 

Class=Normal 44.62 13.46 

30 

destination Bytes=nonzero^ Class=normal 44.76 13.81 30 

logged in =1 39.56 25.31 30 

logged in =1 ^ Class=normal 37.97 3.21 30 

destination host count = less than 255 41.19 24.89 30 

destination host count = less than 255 ^ 

Class= Normal 32.95 4.17 

30 

dst_host_same_src_port_rate=1 38.94 12.67 30 

dst_host_same_src_port_rate=1 ^ Class= 

Normal 33.45 1.38 

30 

dst_host_srv_diff_host_rate=1 60.98 4.64 30 

dst_host_srv_diff_host_rate=1 ^ Class= 

Normal 37.31 0.02 

30 

dst_host_serror_rate=0 64.57 74.57 30 

dst_host_serror_rate=0^ Class= Normal 48.66 16.57 30 

dst_host_srv_serror_rate=0 67.71 79.77 30 

dst_host_srv_serror_rate=0^Class= Normal 49.09 17.5 30 

dst_host_same_src_port_rate= fuzzy  41.76 29.78 30 

dst_host_same_src_port_rate= fuzzy ^ class= 

normal 33.62 11.14 

30 

dst_host_srv_serror_rate=0 ^ Class=normal 49.09 17.5 30 

dst_host_srv_serror_rate=0 67.71 79.77 30 

 

Table 4.2.4 has added the support values of the test data set for the same set of 

combinations of Table 4.2.3 for making a comparative study and to validate the outcome from 

training data set. Here in this table it has been observed that out of 23 set of combinations, the 

support values for 16 set of combinations are less than the threshold values. Therefore only seven 

set of combinations follow the similar trend and occurred frequently in both training and test data 

set. These seven frequently occurred set of combinations of features are Source Bytes=nonzero, 

Destination bytes= nonzero, Source Bytes ^ Destination bytes= nonzero, dst_host_serror_rate=0,  

dst_host_srv_serror_rate=0 and dst_host_srv_serror_rate=0. 
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Figure 4.2.4: Support of Training and Test data set which behaves towards Normal  

The above figure reflects that how the frequency of occurrence of 23 different combinations 

changes from training data set to test data set. It has been clearly reflecting that 16 set of 

combinations are lying below the threshold values in test data set where for the same set of 

combinations in training data set are lying above the threshold values. Therefore we can make a 

conclusive remark that Source Bytes=nonzero, Destination bytes= nonzero, Source Bytes ^ 

Destination bytes= nonzero, dst_host_serror_rate=0, dst_host_srv_serror_rate=0 

anddst_host_srv_serror_rate=0 are only frequent itemset/features which behaves towards normal. 

 

4.2.2 Calculation of Confidence 

Confidence has been calculated in four different sets or styles. One each with class = normal 

or attack and one each for class is when normal or attack. We have considered 50% as threshold 

and based on the confidence calculated the following four graphs are drawn which reflect the 

strength of association among the itemset. 
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Table:  4.2.5: Association of 16 different features with„Class=Attack‟ 

Association Confidence Threshold 

Value 

Source Bytes=0 => Class=Attack 93.11 50 

Destination Bytes=0 => Class=Attack 83.91 50 

Source Bytes=0 ^ Destination bytes=0 => Class=Attack 67.57 50 

logged in =0 ^ Class=attack 74.39 50 

dst_host_same_src_port_rate=0 => Class= Attcak 64.44 50 

dst_host_srv_diff_host_rate=0 => Class= Attack 61.19 50 

dst_host_serror_rate=1=> Class= Attack 99.81 50 

dst_host_srv_serror_rate=1=>Class= Attack 99.91 50 

dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst

_host_srv_serror_rate=1=> Class= Attack 

100 50 

dst_host_same_srv_rate ='fuzzy' => Class= Attack 65.53 50 

dst_host_diff_srv_rate= 'fuzzy' => Class= Attack 64.61 50 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 

'fuzzy' => Class=Attack 

65.33 50 

dst_host_count=255 => class = Attack 65.16 50 

same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy =>Class= 

Attack 

93.37 50 

diff_srv_rate =fuzzy => Class=Attack 92.28 50 

same_srv_rate= fuzzy => Class=Attack 91.54 50 
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Confidence for 16 different set of combinations in the training data set which tends towards 

attack category has been calculated. If the confidence value is greater than or equal to the 

threshold value it means that the set of itemset/features are strongly associated. Here in the table 

4.2.5 all the calculated confidence values are greater than the threshold value.  

 

Figure 4.2.5: Association of 16 different features with „Class=Attack‟ 

The above figure reflects that the 16 set of combinations of the itemset or features are strongly 

associated as they lies above the threshold values. We can interpret the graph in the following 

way. When Source Bytes is zero or Destination Bytes is zero or both are zero then the traffic 

tends towards attack. Similarly for logged in =0, dst_host_same_src_port_rate=0, 

dst_host_srv_diff_host_rate=0, dst_host_serror_rate=1, dst_host_srv_serror_rate=1 or together 

dst_host_same_src_port_rate=0 and dst_host_srv_diff_host_rate=0 and dst_host_serror_rate=1 
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and dst_host_srv_serror_rate=1 the traffic tends towards attack. Likewise for 

dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_count=255, 

diff_srv_rate =fuzzy the network traffic behave towards attack or high probability of intrusion. If 

dst_host_same_srv_rate ='fuzzy' anddst_host_diff_srv_rate= 'fuzzy' or same_srv_rate= fuzzy 

anddiff_srv_rate =fuzzy then also the network is likely to be intrusive.  

 

Table 4.2.6: Association of different features with class =‟attack‟ in Test data set 

Association Confidence 
Threshold 
Value 

Source Bytes=0 => Class=Attack 97.52 50 

Destination Bytes=0 => Class=Attack 91.43 50 

Source Bytes=0 ^ Destination bytes=0 => Class=Attack 97.97 50 

logged in =0 => Class=attack 79.98 50 

dst_host_same_src_port_rate=0 => Class= Attcak 90.21 50 

dst_host_srv_diff_host_rate=0 => Class= Attack 80.94 50 

dst_host_serror_rate=1=> Class= Attack 99.55 50 

dst_host_srv_serror_rate=1=>Class= Attack 99.61 50 

dst_host_same_src_port_rate=0 
^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_se
rror_rate=1=> Class= Attack 100.00 50 

dst_host_same_srv_rate ='fuzzy' => Class= Attack 86.42 50 

dst_host_diff_srv_rate= 'fuzzy' => Class= Attack 85.10 50 

dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 'fuzzy' => 
Class=Attack 86.27 50 

dst_host_count=255 => class = Attack 81.37 50 
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same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy =>Class= Attack 88.00 50 

diff_srv_rate =fuzzy => Class=Attack 87.78 50 

same_srv_rate= fuzzy => Class=Attack 89.88 50 

 

Table 4.2.6 calculates the confidence for the same set of 16 combinations of features as in 

Table 4.2.5 in the Test data set. Threshold value remains the same. It can be read that all the 

values are greater than the threshold values. 

 

Figure 4.2.6: Association of different features with class =‟attack‟ in Test data set 

The above figure reflects that the set of combinations against who the confidence have been 

calculated to measures the strength of the association between or among different features in the 

test data set lies above the threshold values. And all the given 16 different set of combinations 

are strongly associated. 
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Figure 4.2.7: Confidence of Training and Test data set together with class= attack  

In figure 4.2.7, the comparative analysis for training data set result and test data set result has 

been plotted to validate the result obtained from training data set. The graph clearly reflects that 

the behavior or the trend that has been shown by the 16 different combinations of features in the 

training data set follows the same trend in the test data set. It can be derived that the set of 

combinations are strongly associated and when the left hand side value occur then there is a 

probability that the traffic tends towards intrusion. In simple way we can express it in the 

following style. If source bytes value is zero or destination bytes is zero or both source bytes 

value and destination bytes values are zero at a time then the network traffic has the probability 

that it will fall into attack class. In the similar way, if the logged in value is zero, or 

dst_host_same_src_port_rate value is zero or dst_host_srv_diff_host_rate value is zero, 

dst_host_serror_rate value is one or dst_host_srv_serror_rate value is one or together 

dst_host_same_src_port_rate value is zero and dst_host_srv_diff_host_rate value is zero and 

dst_host_serror_rate value is one and dst_host_srv_serror_rate value is one the traffic tends 
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towards attack. Likewise for dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy', 

dst_host_count=255, diff_srv_rate =fuzzy the network traffic behave towards attack or high 

probability of intrusion. If dst_host_same_srv_rate ='fuzzy' and dst_host_diff_srv_rate= 'fuzzy' 

or same_srv_rate= fuzzy and diff_srv_rate =fuzzy then also the network is likely to be intrusive. 

As the behavior of these 16 set of combinations are strongly associated and when validated the 

train data set result with test data set result it carries very meaningful information. This result can 

become the guiding principle for developing network intrusion detection system. 

Table 4.2.7: The association of 16 different features when class=Attack 

Association Confidence Threshold 

Value 

Class=Attack=> Source Bytes=0 78.44 50 

Class=Attack=> Destination Bytes=0   97.21 50 

Class=Attack=> Source Bytes=0 ^ Destination bytes=0 78.28 50 

Class=attack=> logged in =0 96.57 50 

Class= Attcak=>dst_host_same_src_port_rate=0  69.24 50 

Class= Attack=>dst_host_srv_diff_host_rate=0 90.65 50 

Class= Attack=>dst_host_serror_rate=1  57.16 50 

Class= Attack=>dst_host_srv_serror_rate=1 58.38 50 

 Class= Attack=>dst_host_same_src_port_rate=0 

^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_ser

ror_rate=1 53 50 

Class= Attack dst_host_same_srv_rate ='fuzzy'  78.16 50 

Class= Attack dst_host_diff_srv_rate= 'fuzzy'  84.62 50 
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Class= Attack =>dst_host_same_srv_rate ='fuzzy' ^ dst_host_diff_srv_rate= 

'fuzzy'  77.31 50 

class = Attack=>dst_host_count=255  82.31 50 

Class= Attack=>same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 70.85 50 

Class= Attack =>diff_srv_rate =fuzzy  72.91 50 

Class=Attack=>same_srv_rate= fuzzy  72.43 50 

 

In the above table, the confidence have been calculated for 16 different set of combinations 

in the training data set when the Class =‟attack‟. These set of combinations are slightly different 

from the previous sets in Table 4.2.5 and 4.4.6. The main difference is that, here class=attack is 

in the left hand side. We will read it as when the class is attack or the network is intrusive what is 

the probability or chance of occurring of the itemset/features in the right hand side or how 

strongly the features are associated when class is attack. In the table 4.2.7 all the calculated 

confidence values are greater than the threshold values. Therefore we can interpret in such a way 

that when class is attack, the features in the right hand side of the 16 different set of 

combinations are strongly associated. 
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Figure: 4.2.8: Association of 16 different features when class=Attack 

 

This figure represents the 16 different set of combinations when class is attack. The figure 

reflects that all the set of combinations are strongly associated as they falls above the 

threshold line. 

Table 4.2.8: Association of Test Data Set for the same set of combination as Table 4.2.7 

Association Confidence 
Threshold 
value 

Class=Attack=> Source Bytes=0 45.09 50 

Class=Attack=> Destination Bytes=0   56.62 50 

Class=Attack=> Source Bytes=0 ^ Destination bytes=0 34.30 50 

Class=attack=> logged in =0 72.99 50 

Class= Attcak=>dst_host_same_src_port_rate=0  63.44 50 

Class= Attack=>dst_host_srv_diff_host_rate=0 85.21 50 

Class= Attack=>dst_host_serror_rate=1  6.82 50 

Class= Attack=>dst_host_srv_serror_rate=1 7.88 50 
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 Class= Attack=>dst_host_same_src_port_rate=0 
^dst_host_srv_diff_host_rate=0^dst_host_serror_rate=1^dst_host_srv_s
error_rate=1 4.29 50 

Class= Attack dst_host_same_srv_rate ='fuzzy'  65.36 50 

Class= Attack =>dst_host_diff_srv_rate= 'fuzzy'  75.24 50 

Class= Attack =>dst_host_same_srv_rate ='fuzzy' ^ 
dst_host_diff_srv_rate= 'fuzzy'  64.52 50 

class = Attack=>dst_host_count=255  74.69 50 

Class= Attack=>same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy 19.36 50 

Class= Attack =>diff_srv_rate =fuzzy  20.00 50 

Class=Attack=>same_srv_rate= fuzzy  26.55 50 

 

The table calculates the confidence for same set of combinations when class =attack in the 

test data set to validate the results obtained from the training data set. But here out of 16 sets of 

combinations eight sets are not following the similar trend with the training data set. Confidence 

for eight different sets are less than the thresh hold values. Therefore the following 

combinations are not strongly associated. Class=Attack=> Source Bytes=0, Class=Attack=> 

Source Bytes=0 ^ Destination bytes=0, Class= Attack=>dst_host_serror_rate=1  

Class= Attack=>dst_host_srv_serror_rate=1, Class= Attack => 

dst_host_same_src_port_rate=0  ^ dst_host_srv_diff_host_rate=0 ^dst_host_serror_rate=1 ^ 

dst_host_srv_serror_rate=1, Class= Attack => same_srv_rate= fuzzy ^ diff_srv_rate =fuzzy, 

Class= Attack =>diff_srv_rate =fuzzy ,Class=Attack=>same_srv_rate= fuzzy 
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Figure 4.2.9: Association of Test Data Set when class=‟attack‟ 

The above plotted graph for table 4.2.8 has clearly reflected that eight set of combinations 

are below the threshold values and hence their associations are weak.  
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Figure 4.2.10: Analytical comparison for association for Train and Test data set when class= 

„attack‟  

Figure 4.2.10 has shown the comparative analysis of the 16 different set of combinations 

when class is attack in training and test data set. It has been observed that the behavior of 

network traffic when class is attack do not behave in similar fashion in training and test data 

set. Eight out of sixteen follow the similar trend in both training and test data set and rest 

eight differs the trend and behavior. Therefore after validating the training output with the 

test data set we can derive that when class is attack or intrusive then there is high probability 

of occurrence of the following itemset/features. Those are-Destination Bytes=0, logged in 

=0,dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate 

='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_same_srv_rate ='fuzzy' ^ 

dst_host_diff_srv_rate= 'fuzzy' and dst_host_count=255. Remaining eight set of 

combinations do not give any meaningful information. 

 

Table 4.2.9: Association of 10 different features with Class=Normal 

Association Confidence Threshold value 

Source Bytes=nonzero => Class=normal 83.49 50 

Destination bytes=nonzero =>Class=Normal 97.18 50 

Source Bytes=nonzero^ Destination bytes=nonzero => 

Class=normal 97.33 50 

logged in =1 => Class=normal 95.97 50 

destination host count = less than 255 => Class= 

Normal 80.01 50 
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dst_host_same_src_port_rate=1 => Class= Normal 85.89 50 

dst_host_srv_diff_host_rate=1 => Class= Normal 61.18 50 

dst_host_serror_rate=0=> Class= Normal 75.36 50 

dst_host_srv_serror_rate=0=>Class= Normal 72.5 50 

dst_host_same_src_port_rate= fuzzy => class= normal 80.51 50 

 

In the table 4.2.9 calculation of confidence for 10 different set of combinations in the 

training data set has been placed. These 10 combinations have the tendency towards normal or 

intrusion free network traffic. The class=normal is in the right hand side of the combinations 

during calculations. The values calculated are greater than the threshold values. Therefore it can 

be derived that itemset/features of all 10 set of combinations are strongly associated. In the 

simpler way we can interpret in the following way, If Source Bytes=nonzero or Destination 

bytes=nonzero or both Source Bytes=nonzero and Destination bytes=nonzero then the traffic has 

the probability of normal traffic. In the similar fashion if logged in =1 or destination host count = 

less than 255 or dst_host_same_src_port_rate=1 or dst_host_srv_diff_host_rate=1 or 

dst_host_serror_rate=0 ordst_host_srv_serror_rate=0 or dst_host_same_src_port_rate= fuzzy 

then the network traffic are likely to fall in normal class. 
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Figure 4.2.11: Association of 10 different features with Class=Normal 

 

The graph has been plotted based on the Table 4.2.9 clearly reflect the strength of all 10 

set of combinations and are strongly associated. 

 

Table 4.2.10: Confidence Calculation with Class=Normal for Test Data Set 

Association Confidence 

Threshold 

Value 

Source Bytes=nonzero => 

Class=normal 27.71 50 

Destination bytes=nonzero 

=>Class=Normal 28.01 50 

Source Bytes=nonzero^ Destination 

bytes=nonzero => Class=normal 33.54 50 

logged in =1 => Class=normal 12.67 50 

destination host count = less than 

255 => Class= Normal 16.75 50 

dst_host_same_src_port_rate=1 => 

Class= Normal 10.93 50 

dst_host_srv_diff_host_rate=1 => 

Class= Normal 0.36 50 

dst_host_serror_rate=0=> Class= 

Normal 22.22 50 
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dst_host_srv_serror_rate=0=>Class= 

Normal 21.94 50 

dst_host_same_src_port_rate= fuzzy 

=> class= normal 37.40 50 

 

In the above table the calculation of confidence has been done same set of data where 

class=normal in the right hand side in the test data set to validate the results obtained from 

training data set. The confidence values calculated for the test data set are less than the threshold 

values, hence the association is weak. 

 

Figure: 4.2.12: Confidence Calculation with Class=Normal for Test Data Set 

 

The above figure reflects that the confidence lies below the threshold value and the 

itemset or the features are weakly associated with „class= normal‟ 
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Figure 4.2.13: Comparison of confidence for Training and Test data set with class=‟normal‟ 

The figure 4.2.13 reflected the comparative representation of ten different set of 

combinations with class=normal in training data set and test data set. The results obtained from 

the training data set have been validated with the test data set. The results showing in the test 

data set are showing contradicting results or reverse trend and do not support the predication 

made in the training data set. Hence these ten set of combinations can‟t draw a conclusion. These 

itemsets are not carrying any meaningful information. 

Table 4.2.11: The association of 10 different features When „Class=Normal‟ 

Association Confidence Threshold 

value 

Class=normal=>Source Bytes=nonzero  94.94 50 

Class=Normal=>Destination bytes=nonzero  83.76 50 

 Class=normal =>Source Bytes=nonzero^ 

Destination bytes=nonzero  83.48 50 

Class=normal=> logged in =1  71.04 50 
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Class= Normal=> destination host count = less 

than 255 61.66 50 

Class= Normal=>dst_host_same_src_port_rate=1 62.59 50 

Class= Normal=>dst_host_srv_diff_host_rate=1 69.81 50 

Class= Normal=>dst_host_serror_rate=0 91.05 50 

Class= Normal=>dst_host_srv_serror_rate=0 91.86 50 

class= normal=>dst_host_same_src_port_rate= 

fuzzy  62.91 50 

 

 The above table calculates confidence for ten different set of combinations in the training 

data set when the class is normal or the class=normal is in the left hand side. The values 

calculated here are greater than the threshold value. Therefore in training data set when 

class=normal then Source Bytes=nonzero, Destination bytes=nonzero, both Source 

Bytes=nonzero and Destination bytes=nonzero logged in =1, destination host count = less than 

255, dst_host_same_src_port_rate=1, dst_host_srv_diff_host_rate=1, dst_host_serror_rate=0, 

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy are likely to occur as they are 

strongly associated with class=normal. 
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Figure 4.2.13: The association of 10 different features When „Class=Normal‟ 

 

The above graph reflects that all ten set of combinations lies above the threshold value. 

Therefore in training data set it can be predicated that if the network traffic is normal then Source 

Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and Destination 

bytes=nonzero logged in =1, destination host count = less than 255, 

dst_host_same_src_port_rate=1, dst_host_srv_diff_host_rate=1, dst_host_serror_rate=0, 

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur. 

Table 4.2.12: When class=‟normal‟ in Test Data Set 

Association Confidence 
Threshold 
Value 

Class=normal=>Source Bytes=nonzero  94.84 50 

Class=Normal=>Destination bytes=nonzero  76.07 50 

 Class=normal =>Source Bytes=nonzero^ 
Destination bytes=nonzero  74.12 50 

Class=normal=> logged in =1  17.66 50 
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Class= Normal=> destination host count = less than 
255 22.96 50 

Class= Normal=>dst_host_same_src_port_rate=1 69.75 50 

Class= Normal=>dst_host_srv_diff_host_rate=1 0.09 50 

Class= Normal=>dst_host_serror_rate=0 91.22 50 

Class= Normal=>dst_host_srv_serror_rate=0 96.38 50 

class= normal=>dst_host_same_src_port_rate= 
fuzzy  61.34 50 

 

In the above table the calculation of confidence for the same data set with table 4.2.11 has 

been carried out with the test data to validate the results obtained from training data set. Except 

three sets of combinations all the values are following the similar trend with the training data set 

and the values are greater than the threshold values. 

 

Figure 4.2.14: Comparison of association (confidence) in Training and Test data set when 

class=‟normal‟ 
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Figure 4.2.12 which represents a comparative analysis of training data set results and test 

data set results when class is normal. For Class=normal=> logged in =1, Class= Normal=> 

destination host count = less than 255 and Class= Normal=>dst_host_srv_diff_host_rate=1 set of 

combinations the values lies below the threshold value and rest combinations are lying above the 

threshold value. Therefore we can make a conclusion in the following way- When class is 

normal then Source Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and 

Destination bytes=nonzero, dst_host_same_src_port_rate=1, dst_host_serror_rate=0, 

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur and hence these 

seven features are strongly associated with class value. 

4.3 Conclusion 

The results which are reflected in the tables and in the figures have been derived into 

rules for developing a network intrusion detection system. The following is the algorithm 

developed after validating with the test data set. 

Step 1: READ Source Bytes, Destination Bytes, logged in, dst_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_count, diff_srv_rate,same_srv_rate 

Step 2: IF Source Bytes = 0 THEN GOTO Step 14 

Step 3: Else IF Destination Bytes =0 THEN GOTO Step 14 

Step 4: Else IF logged in =0 THEN GOTO Step 14 

Step 5: Else IF dst_same_src_port_rate =0 THEN GOTO Step 14 

Step 6: Else IF dst_host_srv_diff_host_rate =0 THEN GOTO Step 14 

Step 7: Else IF dst_host_serror_rate =1 THEN GOTO Step 14 
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Step 8: Else IF dst_host_srv_serror_rate=1 THEN GOTO Step 14 

Step 9: Else IF dst_host_same_srv_rate= „fuzzy‟ THEN GOTO Step 14 

Step 10: Else IF dst_host_diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14 

Step 11: Else IF dst_host_count=255 THEN GOTO Step 14 

Step 12: Else IF diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14 

Step 13: Else IF same_srv_rate= „fuzzy‟ THEN GOTO Step 14 Else GOTO Step 15 

Step 14: Display the network traffic belongs to „Attack‟ class 

Step 15: STOP 
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Chapter-5 

Performance Comparison of the proposed rule with other 

algorithms 

5.1 Introduction  

It is important to verify one algorithm/methodology whether it is working in right way or 

not after developing it; also it gives added advantage when its performance can be compared 

with some existing algorithms. We have already developed one rule/ methodology and presented 

in the last chapter to classify or detect „attack‟ or intrusion from network traffic. So far, we have 

used NSL-KDD training data set and then test data set for developing one methodology by 

applying data cube, OLAP and then association rule mining techniques. After validating with 

NSL-KDD test data set the draft rule was proposed. The rule has been modified little after 

checking the insight of the KDD99 data subsets. The modified rule to be used for detecting 

attack is as follows- 

Step 1: Read Source Bytes, Destination Bytes and logged in 

Step 2: If „Source Bytes=0‟ AND „Destination Bytes= 0‟ AND „logged in=0‟, Then 

Display the Network traffic is intrusive and goto Step 5. 

Step 3:  Else IF („Source Bytes=0‟ AND „Destination Bytes= 0‟) OR („Destination 

Bytes= 0‟ AND „logged in=0‟) OR („Source Bytes= 0‟ AND „logged in=0‟), Then Display 

Network traffic is intrusive and goto Step 5. 

Step 4: Else IF „Source Bytes=0‟ OR „Destination Bytes=0‟ OR „Logged in=0‟, Then 

Display Network traffic is intrusive and goto Step 5. 

Step 5: STOP 
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KDD99 is popularly used data set used for intrusion detection study has been considered 

for testing the proposed algorithm. At the beginning, the KDD99 data set has been divided into 

eight subsets, so that we can carry out the exercise of classification/attack detection in different 

datasets. These data sets have the similar attributes as in the NSL-KDD data set. Each subset 

consists of approximately 1,00,000 records and the subsets are created randomly from the main 

KDD99 data set.  

The rule developed has been translated into a MATLAB program for carrying out the 

exercise of testing the KDD99 data subsets. For each subset confusion matrix has been plotted. 

The confusion matrix reflects the accuracy of rule/methodology we have developed. The rule has 

been trained using the data subsets and then tested to detect the intrusion.  

 Similarly accuracy of these data subsets has been calculated by generating confusion 

matrix of Naïve-Bays, Logistic, and Decision Stamp algorithm through WEKA application 

software. Applying the cross validation method in each subset using WEKA application software 

the subsets are trained and tested. Weka is a well-known data mining tools which allows users to 

identify hidden information from database with user friendly interfaces. Classification is the 

process of classifying data of various kinds to classify items from a set of data.  [Kulkarni et al. 

(2016); Amin M.N. and Habib M.A. (2015)]. 

The subsets fed to the WEKA and the algorithms were run for classifying the „class‟ i.e. 

attack/normal. The accuracy derived after running these algorithms are compared the accuracy of 

our proposed rule.  
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5.2 Experiments & Results  

The following are the tested result for the subsets- 

1. KDD 99 Subset 1 

Table 5.2.1: Nos. of records in KDD99 data subset1 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
22112 

Source Bytes=0 
22204 

If Source Bytes=0 and Class= „attack‟ 
22106 

Destination Bytes=0 
22968 

If Destination Bytes=0 and Class= „attack‟ 
22108 

logged in=0 
24243 

If logged in =0 and Class= „attack‟ 
22108 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
22180 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
22102 
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Fig 5.2.1: Confusion Matrix for KDD Data Subset 1 

Table 5.2.2: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset 1 

Methodology Accuracy (in%) 

Proposed Rule 99.9 

NaiveBays 99.9 

Logistic 99.9 

Decission Stamp 99.8 
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Fig 5.2.2: Comparison of the accuracies in KDD 99 Data set 1  

. 

2. KDD 99 Subset 2 

Table 5.2.3: Nos. of records in KDD99 data subset2 against each itemset/attributes 

Itemset Count in the dataset 

Attack 1145 

Source Bytes=0 1132 

If Source Bytes=0 and Class= „attack‟ 1091 

Destination Bytes=0 1144 

If Destination Bytes=0 and Class= „attack‟ 1091 

logged in=0 1199 

If logged in =0 and Class= „attack‟ 1116 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 1063 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 1063 
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Fig 5.2.3: Confusion Matrix for KDD Data Subset 2 

 

Table 5.2.4: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset 2 

Methodology Accuracy (in%) 

Proposed Rule 
99.9 

NaiveBays 
99.2 

Logistic 
99.9 

Decission Stamp 
99.7 
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Fig 5.2.4: Comparison of the algorithms in KDD 99 Data set 2 

 

3. KDD 99 Subset 3 

 

Table 5.2.5: Nos. of records in KDD99 data subset3 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
99998 

Source Bytes=0 
99789 

If Source Bytes=0 and Class= „attack‟ 
99789 

Destination Bytes=0 
100000 

If Destination Bytes=0 and Class= „attack‟ 
99998 

logged in=0 
100000 

If logged in =0 and Class= „attack‟ 
99998 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
99789 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= „attack‟ 
99789 
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Fig 5.2.5: Confusion Matrix for KDD Data Subset 3 

 

Table 5.2.6: Accuracies of the proposed rule and other three algorithms in KDD99 data subset 3 

Methodology Accuracy (in %) 

Proposed Rule 
99.8 

NaiveBays 
99.8 

Logistic 
99.9 

Decision Stamp 
99.9 
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Fig 5.2.4: Comparison of the algorithms in KDD 99 Data set 4, where the proposed algorithm 

has performed better 

 

4. KDD 99 Subset 4 

Table 5.2.7: Nos. of records in KDD99 data subset4 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
78964 

Source Bytes=0 
77747 

If Source Bytes=0 and Class= „attack‟ 
77744 

Destination Bytes=0 
77998 

If Destination Bytes=0 and Class= „attack‟ 
77944 

logged in=0 
78454 

If logged in =0 and Class= „attack‟ 
77951 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
77741 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
77741 
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Fig 5.2.7: Confusion Matrix for KDD Data Subset 4 

Table 5.2.8: Accuracies of the proposed rule and other three algorithms in KDD99 data subset4 

Methodology Accuracy (in %) 

Proposed Rule 
98.8 

NaiveBays 
99.0 

Logistic 
99.9 

Decision Stamp 
96.5 
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Fig 5.2.8: Comparison of the algorithms in KDD 99 Data set 4 

 

5. KDD 99 Subset 5 

Table 5.2.9: Nos. of records in KDD99 data subset5 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
88790 

Source Bytes=0 
88791 

If Source Bytes=0 and Class= „attack‟ 
88790 

Destination Bytes=0 
88787 

If Destination Bytes=0 and Class= „attack‟ 
88782 

logged in=0 
88796 

If logged in =0 and Class= „attack‟ 
88790 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
88782 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
88782 

 

94

95

96

97

98

99

100

Proposed
Rule

NaiveBays logistic Decision
Stamp

98.8 99.098 
99.97 

96.53 

Accuracy (in %) 

Accuracy (in %)



111 
 

 

Fig 5.2.9: Confusion Matrix for KDD Data Subset 5 

 

Table 5.2.10: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset 5 

Methodology Accuracy (in %) 

Proposed Rule 
100 

NaiveBays 
97.8 

Logistic 
99.9 

Decision Stamp 
95.1 
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Fig 5.2.10: Comparison of the algorithms in KDD 99 Data set 5 

 

6. KDD 99 Subset 6 

Table 5.2.11: Nos. of records in KDD99 data subset6 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
99999 

Source Bytes=0 
99999 

If Source Bytes=0 and Class= „attack‟ 
99999 

Destination Bytes=0 
99999 

If Destination Bytes=0 and Class= „attack‟ 
99999 

logged in=0 
99999 

If logged in =0 and Class= „attack‟ 
99999 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
99999 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
99999 
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Fig 5.2.11: Confusion Matrix for KDD Data Subset 6 

 

Table 5.2.12: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset 6 
Methodology Accuracy (in %) 

Proposed Rule 
100 

NaiveBays 
99.9 

Logistic 
99.9 

Decision Stamp 
99.9 
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Fig 5.2.12: Comparison of the algorithms in KDD 99 Data set 6 

 

7. KDD 99 Subset 7 

Table 5.2.13: Nos. of records in KDD99 data subset7 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
21956 

Source Bytes=0 
21306 

If Source Bytes=0 and Class= „attack‟ 
20922 

Destination Bytes=0 
22403 

If Destination Bytes=0 and Class= „attack‟ 
21932 

logged in=0 
23008 

If logged in =0 and Class= „attack‟ 
21952 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
20904 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
20904 
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Fig 5.2.13: Confusion Matrix for KDD Data Subset 7 

 

Table 5.2.14: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset7 

 

Methodology Accuracy (in%) 

Proposed Rule 
98.9 

NaiveBays 
98.4 

Logistic 
95.6 

Decision Stamp 
98.9 
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Fig 5.2.14: Comparison of the algorithms in KDD 99 Data set 7 
 

8. KDD 99 Subset 8 

Table 5.2.15: Nos. of records in KDD99 data subset8 against each itemset/attributes 

Itemset Count in the dataset 

Attack 
8671 

Source Bytes=0 
7538 

If Source Bytes=0 and Class= „attack‟ 
7287 

Destination Bytes=0 
8655 

If Destination Bytes=0 and Class= „attack‟ 
8639 

logged in=0 
9479 

If logged in =0 and Class= „attack‟ 
8649 

Source bytes =0 ^ Destination bytes=0 ^ logged in=0 
7287 

If Source bytes =0 ^ Destination bytes=0 ^ logged in=0 and Class= 

„attack‟ 
7287 
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Fig 5.2.15: Confusion Matrix for KDD Data Subset 8 

 

Table 5.2.16: Accuracies of the proposed algorithm and other three algorithms in KDD99 data 

subset8 

Methodology Accuracy (in %) 

Proposed Rule 
98.6 

NaiveBays 
99.2 

logistic 
99.9 

Decision Stamp 
96.4 
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Fig 5.2.16: Comparison of the algorithms in KDD 99 Data set 8 

 

5.3 Conclusion 

The experiments carried out in eight different subsets of KDD99 data set have been 

presented above. The results of the experiments are presented in graph for viewing the 

comparative results. From the comparative analysis, it has been found that, out of eight dataset 

our proposed rule has performs better in four datasets.  

 

Fig 5.2.17: Accuracies of four different methodologies in eight subsets. 
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Table 5.2.17: Average Accuracy of four different methodologies 

Methodology Average Performance 

Proposed Rule 99.4875 

NaiveBays 99.15 

logistic 99.3625 

Decission Stamp 98.275 

 

 

Fig 5.2.18: Average accuracies four different methodologies 

And the average accuracy is also found to be better (99.488%) than the rest three 

algorithms/methodology. Therefore it can be derived that, applying this rule/methodology one 

can detect intrusion or unauthorized access in the computer network with reliable accuracy. 
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Chapter-6 

Summary and Conclusion 

6.1.Summary 

Research in intrusion detection system is an emerging area. In this thesis we made a 

noble effort to implement the idea of data cube and association rule for analyzing the features of 

network traffic and develop a network intrusion detection system based on the findings. An 18 

dimensional logical data cube has been developed for storing and analyzing the data from 

different perspectives followed by OLAP analysis to learn the pattern or trend of the traffic and 

at the end association rules has been applied to understand the strength of association 

between/among different features/dimension for normal or attack category. After reviewing a 

good numbers of research article and studying the recent works in the field of intrusion detection 

system it was felt that the storing the historical data and analysis on it is an important thought for 

developing network intrusion detection system.  

The objectives set for this research work are as follows- 

 To design a data cube for analysing the NSL-KDD data set of Network Intrusion 

Detection. 

 To evaluate the patterns of the data on the proposed data cube by performing the OLAP 

(Online Analytical Processing) operations. 

 Applying Association Rule Mining technique for designing Network Intrusion Detection 

System. 
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 These objectives have been fulfilled and the findings after the experiments are 

presented in this thesis. This thesis has been divided into six chapters including this. In the first 

chapter, the basic idea of intrusion detection system and its research has been explained.  It has 

been explained as, because of the advancement of network technology to connect the distant 

corners of the globe and the internet, it continues to expand its influences as a medium and 

commerce and accordingly the threat from attackers, spammers and criminal enterprises has also 

increasing. The network security is becoming a major challenge today as interconnections among 

computer systems are growing in fast pace. Computer networks faced the challenges from the 

unauthorized disclosure of information and the modification or destruction of data or denial of 

service attack (DoS); and the computer network is responsible for providing protected and the 

availability, confidentiality and integrity of critical information [Depren et al. (2005)]. According 

to Animesh Patcha and Jung Min Park an intrusion detection system gathers and analyzes 

information from various areas within a standalone computer or a computer network to identify 

possible security gap. Therefore intrusion detection can be defined as the act of detecting actions 

that attempt to compromise the confidentiality, integrity or availability of a system/ network. 

Intrusion detection system is a software tool used to detect illegitimate access to a computer 

system or a network [Patcha A. and Park J.M. (2007)]. Traditionally the research works on 

intrusion detection focuses on the analysis and detection. Intrusion Detection Systems are 

divided into two categories: Host based IDS systems and Network Based IDS systems (NIDS) 

[Anderson (1998); Biermann et al. (2001)]. Host based IDS systems are installed locally on host 

computer. Host based IDS systems evaluate the activities in the host machine. It monitors the 

characteristics of a single host computer and the events occurring within that for any suspicious 

activity [Lichodzijewski et al. (2002)]. Host-based IDSs get audit data from host audit trails and 
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detect attacks against a single host. The NIDS which is responsible for analyzing, detecting and 

protecting the network use network traffic as the audit data source. The network based IDS 

systems inspect the packets passing through the network [Lichodzijewski (2002)]. An IDS 

system is a defense mechanism, which detects hostile activities or exploits in a network. Existing 

IDS systems can be divided into two categories according to the detection approaches namely 

anomaly detection and misuse detection or signature detection. The elements central to intrusion 

detection are namely resources to be protected in a target system, i.e., user accounts, file systems, 

system kernels, etc.; models that characterize the “normal” or “legitimate” behavior of these 

resources; techniques that compare the actual system activities with the established models, and 

identify those that are “abnormal” or “intrusive [Lee W. and Stolfo S.J. (1998)]. An intrusion is a 

deliberate, unauthorized attempt to access or manipulate information or system and to render 

them unreliable or unusable.  

  Misuse detection and Anomaly detection are two approaches to detect and prevent 

intrusion [Singhal A. and Jajodia S. (2006); Jyothsna et al. (2011)]. Misuse detection catches the 

intrusions in terms of the characteristics of known attacks or system vulnerabilities and based on 

known attack actions. It can feature extract from known intrusions and integrate the Human 

knowledge where the rules are pre-defined but it cannot detect novel or unknown attacks. On the 

other hand Anomaly detection detects any action that significantly deviates from the normal 

behavior based on the normal behavior of a subject. Any action that significantly deviates from 

the normal behavior is considered intrusion. 

  Intrusion Detection system is also describes as pattern discovery and pattern 

recognition system. The Pattern (Rule) is the most important part in the Intrusion Detection 

System. Pattern (Rule) Discover, Pattern Matching and Pattern Recognition play important role 
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in intrusion detection. [Esposito et al. (2005)]. Commercially available IDS are predominantly 

signature-based IDS that are designed to detect known attacks, whereas anomaly detection 

system designs the system to detect both known and unknown attacks. Therefore the research 

trends are moving to anomaly detection. Like many other techniques data mining technique is 

one of the popular method to discover the pattern of anomaly. Among the other existing 

techniques, the statistical techniques and machine learning techniques which include statistical 

analysis, Bayesian network, markov-model, principal component analysis etc. are popular. But 

because of some drawbacks in the statistical system which is easy to train by the expert intruder 

and for machine learning techniques the resources are very expensive the researchers are hunting 

for new approach [Patcha A. and Park J.M. (2007)]. To overcome the drawbacks of the previous 

two methods researchers has started experimenting by using data mining methods.  

            Most current approaches to the process of misuse detection utilize some form of rule-

based analysis. Rule-Based analysis relies on sets of predefined rules that are provided by an 

administrator, automatically created by the system, or both. These rules are used by the system to 

make conclusions about the security-related data from the intrusion detection system. 

Unfortunately, the detection ability of misuse systems is limited to the rule base that they 

possess. Hence misuse detectors require frequent updates to remain current [Lee W. and Stolfo 

S.J. (2000)]. 

 Data warehousing and data mining techniques can improve the performance and usability 

of IDS. Data warehouse uses a data model that is based on a multidimensional data model which 

is popularly known as data cube [Singhal A. and Jajodia S. (2006); Kalita (2010)]. A cube can be 

viewed in multiple dimensions and help in analyzing the historical database. Singhal A. and 

Jajodia S. (2006) have proposed a multidimensional model for Online Analytical Processing 
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(OLAP) in a data cube to view the attack as multidimensional data. In Proceedings of ACM CSS 

Workshop on Data Mining Applied to Security (DMSA-2001), by Portnoy et al. (2001)] have 

presented a paper titled „Intrusion detection with unlabeled data using clustering‟ where they 

have presented a new type of clustering-based intrusion detection algorithm, unsupervised 

anomaly detection, which trains on unlabeled data in order to detect new intrusions. This 

proposed method is able to detect many different types of intrusions, while maintaining a low 

false positive rate as verified over the KDD CUP 1999 dataset. 

Valdes A. and Skinner K.. (2000) have authored an article where the author have 

proposed a high-performance, adaptive, model-based technique using Bayes net technology for 

attack detection, to analyze bursts of traffic. This approach has the features of both signature 

based and statistical techniques: model specificity, adaptability, and generalization potential. 

 Abraham (2001) aims to determine the feasibility and effectiveness of data mining 

techniques in real-time intrusion detection and produce solutions for this purpose. The outcomes 

of the IDDM were the abilities to characterize network data and to detect variations in these 

characteristics over time. Combining this capability with tools that either recognize existing 

attack patterns or operate similarly to IDDM, it strengthens the ability of intrusion detection 

professionals to recognize and potentially react to unwanted violations to network operations. 

Lee W. and Stolfo S.J. (1998) have discussed the construction of intrusion detection model using 

data mining framework. They have proposed the idea of using association rule to uncover the 

low frequency but important patterns. Ertoz et al. (2003) have introduced the Minnesota 

Intrusion Detection System (MINDS) where data mining techniques are used to automatically 

detect the attack against computer network and system. Instead of going with traditional method 

based on attack signatures provided by human expert, data mining approach were proposed to 
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detect the novel intrusion to overcome the limitation of traditional system. Cuppens F. and Miege 

A. (2002) have used the clustering and merging function for creating new alert. They have 

managed correlates and cluster the alert.   Ning P. and Xu D. (2003) have presented a practical 

technique to address the issue of traditional intrusion detection system which focuses on low 

level attacks. The proposed approach in this paper constructs attack scenarios by correlating 

alerts on the basis of prerequisites and consequences of intrusions. A paper by Ning et al. (2002) 

presented a technique to automatically learn attack strategies from intrusion alerts reported by 

IDSs. The approach is based on the recent advances in intrusion alert correlation. 

In the second chapter, discussion about designing the data cube for analyzing the NSL-

KDD data set of Network Intrusion Detection took place. Data warehouse, Data cube, Star 

Schema and Dimension Modeling have been defined and explained in details. The pre-

processing of NSL-KDD training data set was carried out manually. The NSL-KDD data set 

(both training and test data set) have been collected from secondary sources 

(http://nsl.cs.unb.ca/NSL-KDD/). There are 41 numbers of attributes excluding the class label. 

The data set consists of 1, 25, 773 numbers of rows for training data set and 11,850 number of 

rows for Test data set. This data set is originated from KDD 99 data set. At the very first phase 

15 columns were deleted namely- land, wrong_fragement, urgent, hot, num_failed_login, 

num_compromised, root_shell, su_attempted, num_root, num_file_creations, num_shells, 

num_access file, num_outbounds command, is_host login and is guest login. These 15 columns 

have been deleted because it is found that they were weakly relevant. There are 53.44% normal 

and 46.56% attack records but the deleted 15 columns or features consist of only one value (i.e. 

in these column 99% or more values are 0 (zero)). Therefore it can be easily derived that these 

column values are not playing any role to make a network traffic normal or attack.  

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Cuppens,%20F..QT.&newsearch=true
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In a similar fashion few more columns namely dst_host_srv_reeeor_rate, 

dst_host_rerror_rate, reerror_rate, srv_reerror_rate and duration have been deleted.  

The column „class‟ has been pre-processed by grouping different types of attack into one 

label. The anomaly values were labeled into 22 different types of attack. All 22 different types of 

attack namely back, buffer_overflow, ftp_write, guess_password, imap, ipsweep, land, land 

module, multihop, Neptune, nmap, perl, phf, pod, portswep, root kit, stan, spy, smurf, teardrop, 

warezclient and warzemaster are grouped into one label  „Attack‟ . Among all the 22 different 

types of attack 70.28% are Neptune.To make the analysis easier using data cube pre-processing 

is carried out in few more columns by grouping different continues values into one label. The 

columns dst_host_srv_serror_rate, seerror_rate, same_srv_rate, diff_srv_rate, srv_diff_host_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_port_rate and 

dst_host_srv_dff_host_rate contains the binary value 0 and 1, apart from the binary values these 

columns consists of values from 0.01 to 0.99. Most of the values from 0.01 to 0.99 show similar 

kind of characteristics. Therefore these values are grouped into one label and named as fuzzy. 

Another column dst_host_count consists of discrete values from 0 to 255. But it is found that the 

value 255 has maximum number of records and reflects similar kind of characteristics. Therefore 

in this column 255 is one value and other than 255 (i.e. 0-254) are grouped into one and labeled 

as less than 255. In similar way another two feature src_bytes  and dst_bytes  consists of values 

ranging from 0 to 1379963888 and interestingly the values other than zero shows the close 

characteristics and most of the nonzero values are normal traffic. Therefore the values other than 

zero in these two columns are labeled as „nonzero‟. 

Data transformation is a part of data pre-processing. According to the Ji Han‟s data 

mining book, generalization and normalization are some techniques of data pre-processing. 
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Converting the attribute data e.g. 0-254 as „less than 255‟ or values other than zero as „nonzero‟ 

are known as generalization. Normalization refers to bringing the attribute data under one range. 

Like the values between 0.01 and 0.99 can be written as 0.01-0.99. The generalization has been 

used for those attribute who have values ranging from 0.01 to 0.99 are labeled as „fuzzy‟ [(Han 

et al. (2006)]. 

Now, the NSL-KDD Train data set is ready for analysis with 18 columns and 1, 25,773 

numbers of rows. Among 18 columns 17 are the feature of the network traffic and one is the 

„class‟ label whether normal or Attack.  

Once the data are pre-processed data are ready for use. Pre-procession of the data has 

been followed by dimension modeling for 18 selected dimensions (Pujari 2008). Each feature or 

columns are considered as one dimension. Dimension modeling for eighteen dimensions (or 

attributes) including class were carried out to provide lots of semantic information. The 

dimension modeling of 18 dimensions namely protocol type, src_bytes, dst_bytes, logged_in, 

serror_rate, srv_serror_rate, same_srv_rate, diff_srv_rate, srv_diff-host_rate, dst_host_count, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, flag and class were 

followed by star schema where a central fact table is connected to a set of dimension tables. The 

fact table contains the actual transaction or values being analyzed and the dimension tables 

describe about the transactions or values. The star schema reflects how the users view their 

critical measures. Eighteen dimension tables and a central fact table present the star schema. The 

„number of records‟ is the measure for this star schema. This distributive measure tells the 

number of selected record(s) for a particular combination or pattern. Count function is applied 

for getting the numerical value. This data cube shows the need of storing historical database for 
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summarize data. Storing and representing multidimensional data using data cube can help the 

security analyzer in data mining and analyzing the trend of data. Online analytical processing 

(OLAP) operations can be performed on the cube for further analysis. This cube can be utilized 

as the summarized and meaningful source of data, where OLAP tools and data mining 

techniques can be integrated to improve the efficiency of network intrusion detection. 

 In the chapter-3, the analysis using OLAP on the 18 dimensional data cube that has been 

designed and developed in the previous chapter has been discussed. OLAP is a category of 

software technology that enables analysts, manager, and executive to gain insight data through 

fast, consistent, interactive access to a wide variety of possible views of information that has 

been transformed from raw data to reflect the real dimensionality of the enterprise as understood 

by user. Recently Data warehouse and OLAP technology have gained a widespread acceptance 

as a support for decision making.  Though there are many OLAP operations available, but in our 

analysis basically two operations i.e. slice and dice have been used. The Slice operation for 

„class= normal‟ and „class=attack‟ has been done at the beginning. Dice operation with class and 

protocol type has also been analysed. The result that has been obtained from training data set has 

been validated with the test data set. The figure 3.7 reflects that though in train data set, the 

protocol type did not show any interesting pattern but in test data set the result are different. 

Therefore we cannot make a conclusion from here that whether the protocol type can decide the 

class of network traffic.  Figure 3.9 clearly support the results obtained in training data set.  It 

means that the training data set and test data set behaves in same manner. Therefore it can be 

concluded that the source bytes value plays an important role in intrusion detection. If the source 

bytes values are other than zero then it tends to be attack traffic.  In the similar fashion the 

analysis of pattern, for the destination bytes when the values are zero or nonzero are carried out. 
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But when source byte or destination bytes or both are nonzero (other than zero) the result/ pattern 

of network traffic behaves as „Normal‟ traffic. Figure 3.10 tells that when the values of source 

bytes, destination bytes and both are nonzero or other than zero the traffic tends towards Normal.  

When the „source byte‟ is zero „attack‟ is much higher in number, on the other hand when 

„source bytes‟ is nonzero the classes tends to fall into normal category. When source byte or 

destination bytes or both are zero the result/ pattern of network traffic is tends towards „Attack‟.  

Figure 3.11, which indicate that the changes in values for source bytes and destination bytes 

change the behaviour of the network traffic. Source bytes i.e. the bytes sent from source to 

destination and destination bytes i.e. bytes sent from destination to source are zero then the 

traffic tends towards „attack‟ and when the values are nonzero or other than zero then the traffic 

likely to fall in „normal‟ category. The result from Figure 3.11 is required to test with the Test 

data set by performing the dice operations with the NSL-KDD Test data set. The values in the 

table are in percentage so that the comparisons of Training data set and Test data set become 

easy. The figure- 3.12 compares training data set with test data set. The changes of values (zero 

or nonzero) for source bytes and destination bytes has the similar pattern of normal traffic in 

training and test data where there is change in pattern for „attack‟ categories. It reflects the 

variations in the network traffic upon changes of the values of source bytes and destination bytes. 

Interestingly the Training and Test data results are very close and hence it can be derived that the 

changes in values of source bytes and destination bytes i.e. bytes from source to destination or 

bytes from destination to source can be make responsible for the changes of behaviour of 

network traffic. When the values are zero there high chances of intrusion and if the values are 

other than zero then the network is likely to behave normal.   
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 In Figure in 3.13 shows that when the logged in value is zero or there are login failure 

then the network traffic is tends towards attack or intrusive network. On the other hand if the 

logged in value is „1‟or successful login then the network traffic likely to behave normal and less 

scope of intrusion. This result are required to be tested with the test data set so that the 

conclusion to make the login failure responsible for intrusion. Figure 3.14, has validated the 

Training result with the Test result. It has been observed that when logged in value is „1‟ the 

traffic tends to Normal in Training data set but in Test data set it tends to Attack. But for logged 

in value= „zero‟ the behavior in Training data set and Test data set is almost same. Therefore it 

can be concluded in such a way that if there is a login failure or the logged in value is zero the 

network traffic tends to be intrusive but if the log in is successful it does not necessarily tells that 

the traffic will fall in to normal class.  

Figure 3.16 reflects interesting results. It can be derived that when the „destination host 

count= 255‟ it has similarity in trends for Training data set and Test data set but reverse for the 

„destination host count < 255‟. Therefore it can be concluded that „destination host count= 255‟ 

giving meaningful information and can hold responsible for intrusion in network traffic. 

Therefore the count of connections having the same destination host does play a deciding role in 

intrusion detection system.  

 The values for „FLAG‟ feature OTH, RSTOS0, S1, S2, S3 and SH are ignored because of 

comparatively small numbers. The values REJ, RSTO, RSTR and S0 are responsible for the 

network intrusion. On the other hand when the value is „SF‟ there is very little reflection of trend 

of network intrusion or attack. 
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Dicing operations are carried out when the values are „fuzzy‟/0/1 in serror_rate, srv_serror_rate, 

same_srv_rate, diff_srv_rate, srv_diff_host_rate, dst_host_same_srv_rate , 

dst_host_diff_srv_rate, dst_host_same_src_port_rate, dst_host_srv_diff_host_rate, 

 dst_host_serror_rate, dst_host_srv_serror_ratecolumns.  Here the total Count means the 

numbers of „normal‟ and „attack‟ for all values (0/1/fuzzy). In the training data set „fuzzy‟ values 

are not very influencing for five of the features, they are namely serror_rate, srv_serror_rate, 

dst_host_serror_rate, dst_host_srv_serror_rate, srv_diff_host_rate. For same_srv_rate, 

diff_srv_rate, dst_host_same_srv_rate and dst_host_diff_srv_rate features, the traffics tends 

towards „Attack‟ because of „fuzzy values. For dst_host_same_src_port_rate and 

dst_host_srv_diff_host_rate features when the values are „fuzzy‟ the traffic tends towards 

„Normal‟. Also the traffic behaves towards normal when the values for the following 

features/dimension are zero, they are serror_rate, srv_serror_rate, diff_srv_rate,  

dst_host_serror_rate, dst_host_srv_serror_rate. But when we analysed the table 3.20 which has 

been derived after performing the dice operation on the data cube of test data set only few 

outcomes of the training data set have been showing similar trend or pattern. The „same serve 

rate‟, „different serve rate‟, „destination host same serve rate‟ and „destination host different host 

rate‟ have shown the same trend that has been predicted in training data set, i.e. if the values of 

these four features are fuzzy or in between 0 and 1 excluding 0 and 1 then the network traffic 

tends towards intrusive. Other features that have shown some deciding trend in training data set 

did not show any interesting trend here in test data set. Therefore we can derive it from here that 

the changes in values  for „same serve rate‟, „different serve rate‟, „destination host same serve 

rate‟ and „destination host different host rate‟ changes the behaviour of network traffic. 
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 In the chapter-4, the use of association rule mining techniques and analyzing of the data 

by calculating support and confidence in training and test data set was done. Association rule are 

one of the many data mining techniques that describes events that tend to occur together. 

Following the development of data cube and OLAP operation, the next crucial phase is to 

perform association rule mining. Association rule mining is generally applied to find the 

interesting rule from a large data set. In one research paper by Lee and Stolfo (2000), a 

systematic framework has been proposed for developing intrusion detection system using data 

mining. The framework consists of association rules and other data mining techniques. Patcha 

and Park (2007) have proposed anomaly detection model, one of two intrusion detection classes 

by using association rule mining. They have explained association rule, intrusion detection, and 

application of association rule for developing anomaly detection system. Flora S. Tsai (2009) has 

stated that a network intrusion detection system can be developed by performing association rule 

mining. Rules can be generated by calculating support and confidence for detecting network 

intrusion. The rules are simply viewed as [If Then Else structure]. 

 Mathematically the following two itemsets are used for analysis. IAttackset is for analyzing 

the support and confidence when Class= „Attack‟. INormalis for analyzing the transactions when 

Class=‟Normal‟. 

• IAttack ={Class, Source Bytes, Destination Bytes, logged in, dst_host_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_same_srv_rate,  

dst_host_count,diff_srv_rate , same_srv_rate} 
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• INormal ={Class, Source Bytes,Destination bytes, Destination, logged in, Destination 

host_count, dst_host_same_src_port_rate,  dst_host_srv_diff_host_rate, 

dst_host_serror_rate, dst_host_srv_serror_rate, dst_host_same_src_port_rate }  

In the Figure 4.2.2, the comparative results of training data set and test data set has been 

reflected. Out of 43 different set of combinations 35 set of combinations follow the similar trend 

in both training and test data set, where 15 set of combinations lies below the threshold value. 

Though 28 sets of combination lies above the threshold value in training data set, but in the test 

data set only 20 set of combinations falls above the line. Therefore we can conclude that these 20 

set of combinations which falls above the threshold values in both training and test data set are 

frequent itemset or features in the network traffic. 

The figure 4.2.4 reflects that how the frequency of occurrence of 23 different combinations 

changes from training data set to test data set. It has been clearly reflecting that 16 set of 

combinations are lying below the threshold values in test data set where for the same set of 

combinations in training data set are lying above the threshold values. Therefore we can make a 

conclusion that Source Bytes = nonzero, Destination bytes= nonzero, Source Bytes and 

Destination bytes= nonzero, dst_host_serror_rate=0, dst_host_srv_serror_rate=0 

anddst_host_srv_serror_rate=0 are only frequent itemset/features which behaves towards normal. 

 

Confidence has been calculated in four different sets or styles. One each with class = normal 

or attack and one each for class is when normal or attack. We have considered 50% as threshold 

and based on these calculation the strength of association among the itemset have been reflected.  

In figure 4.2.7, the comparative analysis for training data set result and test data set result 

has been plotted to validate the result obtained from training data set. The graph clearly reflects 
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that the behavior or the trend that has been shown by the 16 different combinations of features in 

the training data set follows the same trend in the test data set. It can be derived that the set of 

combinations are strongly associated and when the left hand side value occur then there is a 

probability that the traffic tends towards intrusion. In simple way we can express it in the 

following way. If Source Bytes value is zero or Destination Bytes is zero or both source bytes 

value and destination bytes values are zero at a time then the network traffic has the probability 

that it will fall into attack class. In the similar way, if the logged in value is zero, or 

dst_host_same_src_port_rate value is zero or dst_host_srv_diff_host_rate value is zero, 

dst_host_serror_rate value is one or dst_host_srv_serror_rate value is one or together 

dst_host_same_src_port_rate value is zero and dst_host_srv_diff_host_rate value is zero and 

dst_host_serror_rate value is one and dst_host_srv_serror_rate value is one the traffic tends 

towards attack. Likewise for dst_host_same_srv_rate ='fuzzy', dst_host_diff_srv_rate= 'fuzzy', 

dst_host_count=255, diff_srv_rate =fuzzy the network traffic behave towards attack or high 

probability of intrusion. If dst_host_same_srv_rate ='fuzzy' and dst_host_diff_srv_rate= 'fuzzy' 

or same_srv_rate= fuzzy anddiff_srv_rate =fuzzy then also the network is likely to be intrusive. 

As the behavior of these 16 set of combinations are strongly associated and when validated the 

train data set result with test data set result it carries very meaningful information. This result can 

become the guiding principle for developing network intrusion detection system. 

Figure 4.2.10 has shown the comparative analysis of the 16 different set of combinations 

when class is attack in training and test data set. It has been observed that the behavior of 

network traffic when class is attack do not behave in similar fashion in training and test data set. 

Eight out of sixteen follow the similar trend in both training and test data set and rest eight 

differs the trend and behavior. Therefore after validating the training output with the test data set 
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we can derive that when class is attack or intrusive then there is high probability of occurrence of 

the following itemset/features. Those are-Destination Bytes=0, logged in 

=0,dst_host_same_src_port_rate=0, dst_host_srv_diff_host_rate=0, dst_host_same_srv_rate 

='fuzzy', dst_host_diff_srv_rate= 'fuzzy', dst_host_same_srv_rate ='fuzzy' ^ 

dst_host_diff_srv_rate= 'fuzzy' and dst_host_count=255. Remaining eight set of combinations do 

not give any meaningful information. 

The figure 4.2.13 reflected the comparative representation of ten different set of 

combinations with „class=normal‟ in training data set and test data set. The results obtained from 

the training data set have been validated with the test data set. The results showing in the test 

data set are showing contradicting results or reverse trend and do not support the predication 

made in the training data set. Hence these ten set of combinations can‟t draw a conclusion. These 

itemset are not carrying any meaningful information. 

Figure 4.2.12 which represents a comparative analysis of training data set results and test 

data set results when class is normal. For Class=normal=> logged in =1, Class= Normal=> 

destination host count = less than 255 and Class= Normal=>dst_host_srv_diff_host_rate=1 set of 

combinations the values lies below the threshold value and rest combinations are lying above the 

threshold value. Therefore we can make a conclusion in the following way, when class is normal 

then Source Bytes=nonzero, Destination bytes=nonzero, both Source Bytes=nonzero and 

Destination bytes=nonzero, dst_host_same_src_port_rate=1, dst_host_serror_rate=0, 

dst_host_srv_serror_rate=0, dst_host_same_src_port_rate= fuzzy will occur and hence these 

seven features are strongly associated with class value. 
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The results have been derived into rules [IF-THEN-ELSE] for developing a network 

intrusion detection system. The following is the rules derived after validating with the test data 

set. 

Step 1: READ Source Bytes, Destination Bytes, logged in, dst_same_src_port_rate, 

dst_host_srv_diff_host_rate, dst_host_serror_rate, dst_host_srv_serror_rate, 

dst_host_same_srv_rate, dst_host_diff_srv_rate, dst_host_count, diff_srv_rate,same_srv_rate 

Step 2: IF Source Bytes = 0 THEN GOTO Step 14 

Step 3: Else IF Destination Bytes =0 THEN GOTO Step 14 

Step 4: Else IF logged in =0 THEN GOTO Step 14 

Step 5: Else IF dst_same_src_port_rate =0 THEN GOTO Step 14 

Step 6: Else IF dst_host_srv_diff_host_rate =0 THEN GOTO Step 14 

Step 7: Else IF dst_host_serror_rate =1 THEN GOTO Step 14 

Step 8: Else IF dst_host_srv_serror_rate=1 THEN GOTO Step 14 

Step 9: Else IF dst_host_same_srv_rate= „fuzzy‟ THEN GOTO Step 14 

Step 10: Else IF dst_host_diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14 

Step 11: Else IF dst_host_count=255 THEN GOTO Step 14 

Step 12: Else IF diff_srv_rate =‟fuzzy‟ THEN GOTO Step 14 

Step 13: Else IF same_srv_rate= „fuzzy‟ THEN GOTO Step 14 Else GOTO Step 15 

Step 14: Display the network traffic belongs to „Attack‟ class 

Step 15: STOP 
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This rule will explain the trend, pattern and association of network traffic. The support 

and confidence calculated for other combinations with class= „normal‟ or when class=‟normal‟ 

did not carry or reflect any meaningful information. Though those combinations have showed 

some interesting trend and pattern in training data set but during testing with the test data set, the 

result has been deviated with large difference hence could be considered for develop a general 

rule based on the findings from Training data set. 

In fifth chapter, the accuracy of the rule/methodology that has been developed and 

proposed has been analyzed and compared with three existing algorithms. For analyzing and 

comparing the algorithms widely used KDD99 data set has been considered. The KDD99 data 

set has the similar characteristics/attributes like in NSL-KDD data set; therefore the analysis had 

become easier. The proposed rule has been translated to MATLAB program and confusion 

matrix for each data subset has been generated. WEKA is a data mining application software 

which contains collection of visualization tools and algorithms for data analysis has been used 

for analyzing the accuracy. There are many classification algorithms; we have randomly chosen 

three of them they are namely Naïve-Bays, Logistic and Decision Stamp. The eight data subset 

in „.csv‟ format has been fed to the WEKA and the output has been generated and accuracy has 

been reflected. The cross-validation method of classification has been applied. After calculating 

the accuracy in eight data sub-sets for these four algorithms, the results have been compared with 

the accuracy of our proposed rule/methodology for the same data subsets. The results are 

compared for each data subset and presented in tabular format. The results are presented in 

tabular format and graphs have been plotted to visualize the comparisons clearly. The tables and 

figures reflect that the proposed rule/methodology has performed better than the rest of the 

algorithm in terms of accuracy when we compare with the rest of the algorithms.  
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6.2 Conclusion 

This research work has addressed all the three objectives that have been mentioned in the 

first chapter. The NSL-KDD data set (both training and test data set) have been collected from 

secondary sources. The data set consists of 1, 25, 773 numbers of rows for training data set and 

11,850 number of rows for Test data set. There were 41 numbers of attributes excluding the class 

label. Preprocessing of the NSL KDD Data set has been done by removing weakly relevant data, 

generalizing etc. Dimension modelling and star schema have been designed for developing the 

data cube and finally a logical 18 dimension data cube has been conceptualized to store historical 

network traffic data and allowing performing OLAP operations. 

After designing the data cube, the OLAP analysis has allowed an insight view of the 

network traffic data in the data cube. The results after slice and dice operation by different 

dimensions have been presented in the form of tabular data and graphical form. The OLAP 

analysis has projected 13 dimension from 18 dimension data cube which behaves towards attack 

and 11 dimensions which behaves towards normal.  

After the completion of the second objective, support and confidence of association rule 

mining have been performed to calculate the frequency of any attributes in the database and the 

strength of association among the different attributes. The [IF-THEN-ELSE] rule derived after 

performing the association rule mining to detect the intrusion with reliable accuracy by analyzing 

the network traffic data.  

The accuracies have been compared with the accuracy of other three existing algorithms 

and are presented below. The following table reflects a better accuracy for the derived rule than 

the naïvebays, logistic and decision stamp algorithm. 
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Table 6.1: Comparative Accuracies 

Methodology Average Performance 

Proposed Rule 99.4875 

NaiveBays 99.15 

logistic 99.3625 

Decission Stamp 98.275 

 

The final rule/methodology for detecting network intrusion or more specifically misuse 

detection is presented below. 

Step 1: Read Source Bytes, Destination Bytes and logged in 

Step 2: If („Source Bytes=0‟ AND „Destination Bytes= 0‟ AND „logged in=0‟), Then 

Display the Network traffic is intrusive and GOTO Step 5. 

Step 3:  Else IF („Source Bytes=0‟ AND „Destination Bytes= 0‟) OR („Destination 

Bytes= 0‟ AND„logged in=0‟)OR („Source Bytes= 0‟ AND„logged in=0‟), Then Display 

Network traffic is intrusive and GOTO Step 5. 

Step 4: Else IF „Source Bytes=0‟ OR „Destination Bytes=0‟ OR „Logged in=0‟, Then 

Display Network traffic is intrusive and GOTO Step 5. 

Step 5: STOP 

This research work is a noble effort to develop a network intrusion detection system by 

understanding and using the concept of data mining. Data Cube, a part of data warehouse 

technology and association rule mining of data mining technique which was not used in wide 

extent for intrusion detection and the [IF-THEN-ELSE] rule that has been developed can detect 
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intrusion with reliable accuracy. This research work has focused more on building a conceptual 

framework to develop network intrusion detection system. The findings from this research echo 

that „source byte‟, „destination byte‟ and „logged in‟ characteristics/attributes are responsible for 

network intrusion.  

6.3 Future Work 

This research will open-up a new dimension in intrusion detection research by brining 

data mining and network security together. The future scope of this work includes but not limited 

to adding more dataset into the data cube for analysis, commercially developing a platform for 

IDS by using the derived rule by considering time and space complexity. More data mining 

algorithm for classification can be explored for developing NIDS.  
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ABSTRACT 

 

This thesis entitled “Developing Network Intrusion Detection Systems using Data 

Cube and Association Rule” is an outcome of the research work carried out by the author 

under the supervision of Prof. Jamal Hussain, Department of Mathematics & Computer 

Science, Mizoram University.  

This Thesis has been divided into six chapters which covers the introduction and 

background study of intrusion detection system, developing a data cube by considering the 

features of network traffic as dimension followed by OLAP analysis, an in depth analysis 

using association rule mining to unhide the hidden pattern and trend of the network traffic to 

detect intrusion followed by the testing and accuracy analysis by comparing with three other 

existing algorithms are presented. The Chapter wise abstract has been presented below. 

In the first chapter, the problem of network intrusion detection system, its historical 

background and contemporary research work has been introduced. It has explained the 

emergence of data mining applications in different field of research and its probable 

prospects in the field of intrusion detection system. Review of literature has been included 

here in this first chapter. Referring to several research works by different researchers the 

scope of developing data cube and applying association rule mining in network intrusion 

detection system is being discussed in the first chapter.  

In the second chapter, discussion about designing the data cube for analyzing the 

NSL-KDD data set of Network Intrusion Detection has been taken place. Data warehouse, 

Data cube, Star Schema, Dimension Modeling have been defined and explained in details. 

The pre-processing of NSL-KDD training data set was carried out manually. The NSL-KDD 

data set (both training and test data set) have been collected from secondary sources 

(http://nsl.cs.unb.ca/NSL-KDD/). There were 41 numbers of features in the source data set. 

http://nsl.cs.unb.ca/NSL-KDD/


The training data set consists of 1, 25, 773 numbers of rows where the test data set consists of 

11,850 number of rows. This data set has been originated from KDD 99 data set. Eighteen 

dimensions have been selected to develop the data cube in a simplified meaningful manner. 

This 18 dimension data cube including class helped in storing the data in an organized 

manner and allowed to view the data from different perspectives. 

In chapter-3, the analysis using OLAP on the 18 dimensional data cube that has been 

designed and developed in second chapter has been discussed. OLAP operation especially 

slicing and dicing have been used extensively to analysis the dimensions/features to 

understand the trend and behavior of the features of the network traffic. The training data set 

are analyzed first from different aspects then the outcome has been validated with the test 

data set followed by a conclusive remarks based on the findings of the analysis. The 

numerical values after the analysis are represented in tabular form followed by graphical 

representation to visualize the trend and behavior of the network traffic. 

In the capter-4 a thorough analysis of the features of the network traffic by applying 

association rule mining has been carried out. Support and confidence, two popularly used 

methods to calculate the frequency and strength of association among the itemset (features) is 

being explored and used at optimum level to unhide the hidden pattern and discover the 

knowledge of the network traffic behavior for the users. Several combinations are being 

analyzed which behaves towards normal traffic or attack traffic by calculating support and 

confidence. These analyses have shown several interesting patterns and trends which can be 

translated into a guiding theory for developing network intrusion detection system. The 

results obtained after analyzing the training data set are being validated with the test data set. 

In many cases the outcome of the training data set are not matching with the test data set 

outcome. Those set of combinations are discarded. Graphical representation of all accepted 

and discarded such results are presented in a systematic way and explained in details. 



In the fifth chapter a comparative study has been made among three different existing 

algorithms and the derived rule/methodology. The rule that has been derived in the fouth 

chapter has been modified and accuracy has been calculated with the new one. The existing 

algorithms are Naïve-Bays, Logistic and Decision stamp. Eight data subset derived from 

KDD99 data set has been fed to these algorithms for classification through the WEKA 

application software and the accuracy has been reflected in their output. The proposed rule 

has been translated into MATLAB program and accuracy has been calculated by generating 

confusion matrix. The details results of analysis are placed at in this chapter and the average 

accuracy is found reliable. 

The last chapter made the summary of previous five chapters and made the conclusion 

remarks with the findings of the analysis made during the research works. One simple IF-

THEN-ELSE rule which describes the steps to detect network intrusion based on the final 

findings has been developed and presented. This rule can become a guiding principle for the 

user, researcher or network security analyzer.  

Bibliography section has been placed as the last part of the thesis. References that 

have been used throughout the research are listed in this section. The references include 

books, research papers, web reference etc.  
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