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1. INTRODUCTION 

1.1. BACKGROUND 

Statistical mechanics is one of the fundamental branches of theoretical science. 

It concerns itself primarily with the prediction of the behavior of large numbers of 

atoms and molecules from the basic laws describing the interactions of small numbers 

of atoms or molecules. Within the broader field of theoretical chemistry and Physics, 

statistical mechanics occupies a central place between thermodynamics, which treats the 

behavior of bulk matter without reference to the possible validity of the atomic 

hypothesis, and quantum mechanics, which treats the electronic structure of single 

molecule but does not readily treat systems containing substantial numbers of 

unbounded atoms (Phillies, 2000).  

 Statistical mechanics requires a description of the motion of individual atoms 

and molecules. Such motion may be treated either with classical or quantum mechanics. 

In some cases (e.g., internal molecular motions or translational motions of light atoms 

(He, Ne) at low temperature) the use of quantum mechanics is mandatory. However, 

modern chemistry and modern statistical mechanics largely treat systems in which the 

quantum nature of matter is not readily apparent. To calculate the shape of molecules, 

the forces between them, or the stages of a chemical reaction, quantum mechanics is 

needed. To treat translational and rotational (but not internal vibration) of molecules in 

liquids classical mechanics is almost always good enough (Phillies, 2000). 

The primary goal of statistical thermodynamics (also known as equilibrium 

statistical mechanics) is to derive the classical thermodynamics of materials in terms of 

the properties of their constituent particles and the interactions between them. Statistical 

Mechanics makes it possible to relate the macroscopic properties of a system to the 

https://en.wikipedia.org/wiki/Classical_thermodynamics
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microscopic states and energy levels. The subject of statistical mechanics has been 

successfully applied in various fields including the prediction of the microscopic 

function, S(k) of liquid metals (Gosh et al., 2007; Taylor et al., 2001; Gopala Rao and 

Venkatesh, 1989). Statistical mechanics provides numerical relations between 

structures, dynamic and thermodynamic properties of liquid metals and alloys (Ma et 

al., 2013). 

In a crystalline solids there is a perfect or regular arrangement of the atoms, 

molecules or ions with maximum attractive force, which is referred as lattice points in 

the three dimensional space. Such an arrangement is called space lattice and 

constituting particles can move from one lattice site to another with suitable amount of 

activation energy of diffusion.  

Liquid state is the intermediate between solid state and gaseous state as regards 

to inter-particle forces, packing of particles, etc. In solids, there is close packing of 

molecules or atoms or ions. The definite and ordered arrangement of the constituents of 

solids extends over a large distance. This is termed as long range order. The liquid may 

be considered to have an ordered pattern over a short range instead of the entire mass 

i.e. short - range order while gases show no order at all.  

Since molecules of liquids are not far apart from one another, the intermolecular 

forces are fairly strong. Characteristic properties of liquids arise from the nature and the 

magnitude of these intermolecular forces. Liquid structure is continuously changing 

because of the thermal motion of the particles. In solids as the temperature of the crystal 

is increased the frequencies with which the particles vibrate about their mean positions 

increased. The increase in thermal vibration of atom at elevated temperatures 

overcomes the potential energy which keeps the particles in their positions. As a result, 

some atoms which have kinetic energy greater than their potential energy jump out of 
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their positions of lowest energy and create vacancies, thus forming defects. The 

existence of vacancies also enables easy movements of atoms or ions in the crystal 

changing places with one another. This accounts for the phenomenon of diffusion in 

solids. If the number of such defects is increased by increasing the temperature, the 

network structure of crystal will collapse and becomes liquid. 

The study on structural, dynamical and surface properties of liquid metals and 

alloys helps in various metallurgical processes and also help their study in solid state. 

The study of liquid state is considered to be very complicated due to irregular structure 

of liquids. Theoretical development on the structural and associated properties 

(dynamic, transport, surface, thermodynamics) of liquids become a big challenge in 

present time for complete understanding of liquid state. Metals have been extensively 

studied in the liquid phase by using classical and quantum statistical mechanics to 

understand their microscopic as well as macroscopic properties under equilibrium and 

non-equilibrium conditions. The structure of a liquid is investigated by means of X – 

rays scattering and Neutron diffraction techniques. X-ray diffraction has been found to 

be useful for the studies of liquids as liquids survived some features of lattice structure 

of solids. It was found that the wavelength of X-rays was of about the same order as the 

inter-atomic distances. If the crystal contains more than one kind of atoms, the atom 

containing greater number of electrons scatters the X-rays to a greater extend. The 

scattering factor, f of an atom is defined as 

drr
kr

krsin 
ρ(r)4π     f 2

0




        (1.1) 

Where ρ(r) is the spherical symmetric electron density (number of electrons per 

unit volume) of the atom and k = (4π/λ)Sinθ, where λ is the wavelength of the X-rays 

and θ is the scattering angle. 
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It is difficult to differentiate a liquid and a solid on a microscopic level although 

their difference is very clear in everyday life. The static properties like Structure factor 

etc. cannot distinct between amorphous solids and liquids, and therefore the dynamical 

diffusion properties are also necessary to make the distinction (March and Alonso, 

1998) between them. The atoms in liquid will diffuse away from their original position 

even at low temperature but the atoms in a solid will not self-diffuse in the absence of 

defect. Further, the diffusion phenomena and the temperature dependence in liquids 

both from microscopic and macroscopic points of view are one of the most difficult 

problems in condensed matter because temperature dependence of many body 

interactions should be taken into account. Hence the studies of atomic transport 

properties of liquid metals and liquid binary alloys are much more complicated than the 

study of structure alone (Wax et al., 2000). Many properties of the materials depend on 

the rate (at the given temperature) at which the atoms in liquids diffuse (Shimoji and 

Itami, 1986). 

 

1.2. INTERMOECULAR FORCES IN LIQUIDS 

 In general liquids are characterized by their high density and finite 

compressibility. In order to discuss the interaction in liquids, it is necessary first to 

assume that the mutual interaction energy U of a liquid collection of N molecules is 

independent of intermolecular energy levels (Faber, 1972; Skhrishevsij, 1980). 

 It is assumed that the interactions between the neighboring molecules in liquids 

are not sufficiently strong to excite new vibrational or electronic levels or to influence 

the occupation of rotational levels (Faber, 1972; Skhrishevsij, 1980; Waseda, 1980). In 

terms of partition function, the internal degrees of freedom of the molecules can be 
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factored out, to leave the configurational or interaction part. Although it is the 

intermolecular forces of attraction and repulsion which lend the liquid and its properties 

(Glazov et al., 1969; Hafner and Kahl, 1984; Percus, 1962).  

 The square well (SW) potential has been successfully applied for studying of 

various liquids for long time (Gopala Rao and Murthy, 1974; Liu et al., 1998; Gopala 

Rao and Sathpathy, 1982; Venkatesh et al., 2003; Gopala Rao and Venkatesh, 1989; 

Venkatesh and Mishra, 2005; Dubinin et al., 2008; Dubinin et al., 2014; Yu et al., 

2001). SW potential includes both repulsive and attractive parts and easy to solve 

numerically and hence it is most suitable for different theoretical techniques, such as 

integral equations or perturbation theories. The SW potential is an extension of hard 

sphere potential as it retains hard sphere repulsive properties but allows the particles to 

attract one another and this potential function is defined by 

 

λσrfor        0                  

λσrσfor     ε       (r)U

σ r for              (r)U

SW

SW







      (1.2) 

where λ and ε are the breadth and depth of the potential well, σ is the radius of the atom.  

 

1.3. PERTURBATION THEORIES 

 Intermolecular forces generally separate into a harsh short-range repulsion and a 

long-range smoothly varying attraction. At high density the structure of the liquid is 

largely determined by geometric packing effects associated with the hard core of the 

potential. On the other hand, in a first approximation, the attractive forces give rise to a 

uniform background potential which provides the cohesive energy of the liquid and also 

affects their structures and associated properties. A further plausible approximation 

consists in modeling the harsh repulsion is due to the elastic interaction between hard 
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spheres. This amounts to a relating the properties of a given liquid to those of a hard-

sphere “reference system” having equilibrium properties which are well known; the 

attractive forces can then be treated as a perturbation (Hansen and McDonald, 1976).  

 The general theory of perturbation treatment was first described by Zwanzig 

(Zwanzig, 1954) and the reference system is usually taken to be hard sphere system. We 

consider the positions of N atoms or molecules, as a sum of two terms namely the 

reference potential, UN
(0) and the perturbing potential, UN

(1). Thus we have 

 UN = UN
(0) + UN

(1)        (1.3) 

            Examining various degrees of freedom, it is necessary to consider the energy 

contribution in calculating the canonical partition function. The partition function is 

more generally written in terms of Hamiltonian. The Hamiltonian operator is separated 

into two parts, one involving only the center of mass i.e. cmH


 and the other involving 

the intra molecular degrees of freedom i.e intH


, so that the total Hamiltonian 


H is 

written as 

 intcm HHH


         (1.4) 

 The canonical partition function (QT) according to the assumption can be 

separated and is given as 

 



j i, B

int

j

cm

i

T ]
Tk

EE
[ expQ        

 ] 
Tk

E
[ exp      ]

Tk

E
[ exp   

j B

int

j

i B

cm

i    

 T) (N,Q           T) V, (N,Q int cm       (1.5) 

 Where kB is the Boltzmann constant, T is the absolute temperature and other 

symbols have their usual meaning. It is to be noted that the internal degrees of freedom 
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depend only on the intra-molecular structure (hence effect of vibrational, rotational etc. 

are to be considered) and is independent of volume or density, whereas, translational 

degrees of freedom depend on center of mass (cm). 

 The translational Hamiltonian for the centre of mass cmH


for the system of ‘N’ 

particles in which the potential energy depends only on positions r1, r2,………,r3N is 

given by 

  





i
3N21 N

2
iZ

2
iY

2
iX

cm ) r,………,r ,(r  U 
2m

PPP
H    (1.6) 

Pix, Piy, Piz are the three components of momentum vector Pi.  

 Assuming that the translational degrees of freedom are evaluated classically, 

Qcm is given by 

 
3N3N

B

cm

3Ncm ...drdp  
Tk

H
 exp...  

h  N!

1
Q   








     (1.7) 

            Substituting the value of Hcm from Eqn. (1.7) and integrating we get 

   
  N!

Z
Q

3N

N
cm


          (1.8) 

Where 

 

1/2

B

2

Tmk  π2

h
Λ 








   

Λ is called thermal de Broglie wave length and 

 

_

N

_

1

B

N
N r...drd  

Tk

U
 exp... Z   








       (1.9) 

 Here UN is the potential energy of interaction, which depends on the relative 

positions of N atoms or molecules. ZN is called the configurational integral, which is 

involved in various distribution functions. 
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 Substituting the value of UN in Eqn. (1.9), the configurational integral, ZN is 

obtained. The configurational integral of the hard spheres is given by ZN
(0), which is 

expressed as 

 

_

N

_

1

B

(0)

N(0)

N r...drd  
Tk

U
 exp... Z   








                 (1.10) 

So, 
(0)
N

N(0)
NN

Z

Z
 ZZ   

   0B

(1)

N

(0)

N T/kU expZ                   (1.11) 

  0B

(1)

N T/kU exp   indicates a canonical average in the unperturbed system. 

 

1.4. INTEGRAL EQUATIONS AND CORRELATION FUNCTIONS 

 For simple liquids, which are characterized by spherically symmetric 

interaction, it is assumed that the force act through the centre of gravity and are pair 

decomposable i.e total ‘N’ body configurational energy can be represented as a sum of 

pair interaction and hence it can be written as 

 )rU()r......r ,r( U ij

N

ji

N21N 


                 (1.12) 

 The important four theories involving integral equations are Yvon - Born- Green 

equation (YBG) theory, the Hyper-netted chain (HNC) theory, the Percus – Yevick 

(PY) theory and the perturbation theory, which correlate the distribution function with 

potential function. 

 The YBG is the simplest of these and least accurate among the rest. The HNC 

and Percus – Yevick (PY) equations gives the idea of the direct correlation functions 

(DCF), C(r) which was first introduced by Ornstein and Zernike (OZ) in 1914 in their 

investigation of density fluctuations near the critical point. The linear response of a 



Chapter-1 

 

  
   9 

 

  

system to a static external field is intimately related to structure factor.  In establishing 

the link between these two we find that a second function appears in natural way; this is 

the DCF. 

 The PY (Percus and Yevick, 1957) and HNC (Baxter, 1967) approximation 

gives expression for C(r) in terms of g(r) and potential function U(r). These are given by  

  
Tk

U(r)
exp-1g(r)  C(r)     :PY

B


















                 (1.13) 

 
Tk

U(r)
-g(r)ln -1-g(r)  C(r)     :HNC

B

                (1.14) 

 The well-known OZ equation involves direct correlation function between two 

particles which can be shown by following diagram (Hansen and McDonald, 1976) 

C(1,2)={the sum of all distinct connected diagrams consisting of two white 

circles, labeled 1 and 2, black circles and f-bonds, and which are free of 

connecting circles}.                                                                 (1.15) 

 

C (1,2) =                     +                     +                      +                     +                      

         1        2            1        2           1        2             1         2           1        2             

 

                         +                    +                      +                     +                    + .…. (1.16)               

        1         2            1         2            1         2            1        2                     

And thus OZ equation can be given as

    ...d4  4)C(4,2)d3C(1,3)C(3,(3)ρρd3 C(3,2) (3)C(1,3)ρC(1,2) )2,1(h (1)(1)(1)

                     
(1.17)

 

            Where h (1, 2) is the total correlation function between the two particles. First 

part of the right hand side represents the direct correlation between particle 1 and 
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particle 2, whereas the integral parts are due to various indirect correlations between 

particle 1 and 2 with many other particles present in the system. Above expression can 

be represented by the following diagram (Hansen and McDonald, 1976) 

h(1,2)={ the sum of all distinct connected chain diagrams composed of black  

circles and c-bonds, terminated at each end by a white circle, labelled 1 and 2  

respectively}.                    (1.18) 

Specifically,   

h(1,2)  =                       +                               +                         (1.19) 

          1         2            1                   2            1                             2 

 It describe the fact that the total correlation between particles 1 and 2  is due to, 

in part, the direct correlation function between 1 and 2, but also to the indirect 

correlation function via an increasing number of intermediate particles, corresponding 

to the integration variables 3, 4, etc. For a translational invariant and isotropic system 

the OZ relation becomes  

 rd )rh( |)rrC(|ρC(r) )(h  r                 (1.20) 

 

1.5. STRUCTURAL CHARACTERISTICS IN LIQUIDS 

The structural information about the liquid state can be obtained by X-ray 

diffraction technique. In liquid metals and alloys, the individual atoms work as 

scattering centers and the scattering results are presented as angle dependent scattering 

intensities, I(), where instead of the angle the variable k is used 

 θSin 
λ

4π
 k                    (1.21) 
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 Here 2 is the scattering angle and  is the wavelength of the incident beam. 

The intensity in electron units scattered by a non-crystalline array of atoms at a 

scattering angle is given by ‘Debye’s equation’ 

 
ij

ij

j

i j

i

coh

eu
kr

krsin 
ff (k)I                   (1.22) 

 Where fi and fj are the atomic scattering factors for the ith and jth atoms 

respectively, rij is the magnitude of the vector separating these two atoms. For 

monatomic liquids fi= fj=f. The summation in Debye’s equation i.e. Eqn. (1.22) should 

performed at first for the atom at the origin and next extending to all atoms of the liquid 

specimen over all distances. Summation for the atom at the origin lead to unity, since in 

the limit as rij→0, (sin krij/ krij)→1. If N is the total number of atoms, 

 ]

' ij
kr

ij
krsin 

1[ 2Nf (k)coh
eu

I 

i
                (1.23) 

 Where 
i'

excludes the atom at the origin. If it is assumed that there is 

continuous distribution of atoms, then above summation may be replaced by an integral. 

If ρ(r) is the density of atoms at distance r from the atom at the origin, then the number 

of atoms in the spherical shell of radius r and thickness dr is 4πr2ρ(r)dr, then Eqn. (1.23) 

can be written as 

 ]dr
kr

krsin 
ρ(r)r 4π1[ Nf (k)I

ij

ij

0

22coh

eu 


                (1.24) 

If we take  as the constant average density of atoms, then Eqn. (1.24) can be written as 

 



0 ij

ij2

0 ij

ij22coh

eu dr 
kr

krsin 
 ρr 4π  ]dr 

kr

krsin 
ρ] - (r) [ρr 4π  [1Nf  (k)I            (1.25) 
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The second integral is negligible since it corresponds to forward scattering 

(Clark, 1989). Hence Eqn. (1.25) can be written as 

 ]dr 
kr

krsin 
ρ] - (r) [ρr 4π  [1Nf  (k)I

0 ij

ij22coh

eu 


              (1.26) 

 The structure factor of a liquid S(k), which is the autocorrelation function of the 

Fourier  components of density of particles is defined as  

2

coh

eu

Nf

(k)I
      S(k)                  (1.27) 

So that,  

 dr 
kr

krsin 
 ρ 1]- (r) [gr 4π  1           

 dr 
kr

krsin 
ρ] - (r) [ρr 4π  1    S(k)

0 ij

ij2

0 ij

ij2









             (1.28) 

 

1.6. PAIR DISTRIBUTION FUNCTION (RADIAL DISTRIBUTION 

FUNCTION) 

Radial distribution function is used to describe the probability of finding a 

particle (atom, molecule or ion) at a distance r if a particle is placed at the origin. 

 Equilibrium probability densities and distribution functions allow a complete but 

compact description of the microscopic structure of liquids and fluids, as well as 

providing a quantitative measure of the correlations between the positions of different 

particles. Further, more knowledge of the lowest order distribution function is generally 

sufficient to calculate most equilibrium properties of the system. 

 The normalized canonical probability density for a system of N identical 

particles can be taken as (Mc. Quarrie, 1976; Rice and Gray, 1963; Ross, 1956) 
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






            (1.29) 

Where Λ is again the de Broglie wavelength and )(PK N

N is the kinetic energy term. 

The probability density factorizes into 3N independent Maxwellian distributions density 

for the components of the momenta of particles, and into a probability density for the 

coordinates which does not separate in general because of correlations between the 

positions of particles. We therefore define (Mc. Quarrie, 1976; Rice and Gray, 1963; 

Ross, 1956) 

 
N1N1N

N

N1N1
(N)
N ....drdr )]r,...,(rβV[ exp 

Z

1
 ...dr)drr,....,(rP            (1.30) 

as the probability of simultaneously finding particle 1 in a volume dr1 around r1, particle 

2 in dr2 around r2, etc. 

 The n-body probability density 
(n)

NP is obtained from
(N)

NP by integrating over the 

coordinates of the remaining N – n particles: 

 N1nN1

(N)

Nn1

(n)

N ....drdr )r,....,(rP... )r,....,(rP                 (1.31) 

 As the mutual distances between the n particles increase, the correlations 

between their positions are expected to decrease. Consequently, in the limit |ri – rj| →∞ 

for all 1≤ i, j≤ n, the n-particle probability density will factorize into the product of n 

single-particle probability densities: 

 )(P).....(P ~)r,....,(rP (1)

N1

(N)

Nn1

(n)

N nrr                (1.32) 

 In this limit the position of each of the n particles is independent of the positions 

of the remaining n-1 particles. Advantage can be taken of the resulting factorization to 

define the n-particle distribution functions: 
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(N)
N
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(n)
N




                (1.33) 

 We see that 1 )(rg n(n)

N  for all n as the mutual distances between the n particles 

increase indefinitely. Strictly speaking the limit of infinite mutual distances makes sense 

only in the thermodynamic limit. 

 Here N is the total no’s of particle in the system. n-particle correlation function 

can be given as 

   )r......r ,r( ρ   
ρ

1
       )r......r ,r( g n21

(n)

nn21
n              (1.34) 

Here ρ is the number density. 

 At this juncture, it is worth to mention that two particles correlation function 

  )r ,r( g 21

2 plays a very important role in understanding liquid state properties. Two 

particles correlation function is designated as pair distribution function g(r). 

  (1) There is zero probability of the two particles occupying the same space, 

hence g(r) at r = 0 is zero. 

  (2) At a distance r0, which is the minimum of the potential energy curve 

between two particles, there is maximum probability of finding a particle and hence g(r) 

is expected to be maximum as a first approximation. 

 (3) As r , there is no long – range order, and so g(r)  1. 

  (4) g(r) multiplies with number density gives local density (r). 

  (5) The Fourier inverse of g(r) gives structure factor, S(k) in momentum 

space (k-space). 
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1.7. CORRELATION FUNCTIONS IN BINARY ALLOYS 

In a binary alloy the scattering function depends upon, in general, three 

independent partial structure factors (PSFs), Sij(k) (Keating, 1963), which are Faber-

Ziman (FZ) and Ashcroft-Langreth (AL) type partial structure factors (Mishra and 

Venkatesh, 2008). The pair correlation functions and potential parameters contribute 

mainly to describe the structure of alloys (Mishra and Venkatesh, 2008; Echendua et al., 

2010; Gonz’alez and Gondz’alez, 2008). Thus, PSFs can be defined for a binary 

mixture as 

  (r)drjr 1(r)g )ρ4ππ( δ     (k)S
0

0

2

ij

1/2

jiijij 


             (1.35) 

Here j0(r) is a spherical Bessel function of the zeroth order, δij is the kronecker 

delta and it is defined as 














jifor       0

jifor       1
δ ij                    (1.36) 

Hence in a binary system in principle three partial structure factors are S11(k), 

S22(k) and S12(k). These Sij(k) are related to partial pair distribution function gij(r) which 

give the probability that a particle of species i is at a distance r from one of the particle 

of a species j in a binary alloy. 

  (kr)drksin δ(k)S  
)ρ(ρ2π

1
     1(r)g

0

ijij1/2

ji

2ij 


              (1.37) 

Keating (Keating, 1963) observed that by varying the scattering factor of two 

components, fi and fj, say by isotopic substitution, without altering the structure, it is 

possible to obtained three different curves for S(k), corresponding to three different 

values for the ratio f1/f2 and thus it is possible to evaluate S11(k), S22(k) and S12(k) by 
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solving three simultaneous equations for each value of k with assumption S12(k)= 

S21(k). 

The change in electrical resistivity on alloying is also available as an indicator of 

the variation of concentration, if the relation between concentration and resistivity is 

accurately known. Krishnan and Bhatia (Krishnan and Bhatia, 1944) pointed out that 

the temperature dependence of resistivity of an alloy is due to the corresponding 

temperature dependence of the concentration fluctuation in that alloy. Bhatia and 

Thornton (BT) (Bhatia and Thornton, 1970) generalized the above fluctuation approach 

and made it applicable at shorter wavelength and low temperatures also. Under the 

weak scattering approximation they defined three more correlation functions which are 

thermodynamically important and they are 

(1) the particle density or number density or number-number correlation 

function, SNN(k) 

(2) the concentration-concentration correlation function (i.e. total concentration 

as in mole fraction ), SCC(k) 

(3) the cross correlation between number and composition, the number-

concentration correlation function, SNC(k) 

Further, to understand the mixing behavior of two elemental metals forming a 

binary alloy has always been a subject of considerable interest to physicist, chemist and 

metallurgist (Singh and Somer, 1997). 

BT correlation functions have proved to be of great physical significance as they 

furnish important structural information about α, the chemical short-range order 

parameter (CSRO) in the system. Bhatia - Thornton fluctuations are linearly related to 

PSFs (AL or FZ) and can be presented as 
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1.8. DIFFUSION, SURFACE AND SCALING PROPERTIES   

Knowledge of diffusion in liquid state is very important for understanding the 

material processing and metallurgy. However, the experimental determination of the 

diffusivity in liquid state is difficult because it is not fully understood that how the 

diffusion coefficient depends on the structure and thermodynamics of the liquids as it 

can be understood in non-crystalline solids. 

The diffusion coefficients of liquid metals have been evaluated from the well-

known Einstein’s formula of self-diffusion coefficient, D )
ξ

Tk
    (D B using the square 

well potential parameters. The friction coefficient, ξ is the sum of ξH, ξS and ξSH. Here 

ξH, ξS and ξSH are the friction coefficients due to hard part, soft part and soft-hard part 

respectively. These friction coefficients were computed on the basis of Helfand-Rice-

Nachtrieb approach (Shimoji and Itami, 1986) using square well potential as soft part of 

the inter particle pair potential. 

Friction coefficients were obtained by solving the following equations in 

repulsive and attractive regions of a square well potential (Venkatesh et al., 2003). 





















   
t

0

t

0

t

0

HSSSHH

B

s)(t(t)FFdss)(t(t)FFdss)(t(t)FFds
T3k

1
    ξ

                   

(1.39)

 
Here FH and FS are the forces due to hard-core and soft-force. 

Further, self-diffusion coefficients and mutual diffusion coefficients in binary 

liquids (Al-Cu and Ag-Cu) were computed by extending the Einstein’s equation 
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)
k

    (D B

i

T


 for binary alloys. Here ξi is the friction coefficient due to ith particle in a 

binary mixture. 

The study of the relationship between structure and dynamics of metallic liquids 

is of major importance since their coupling governs different processes such as 

nucleation, crystal growth and glass transition (Pasturel and Jakse, 2015) and thus 

finding a correlation between them becomes a challenging task in condensed matter 

research. For this reason considerable attention has been paid on such problems by 

many workers. The relation between structure and dynamic properties using square well 

potential have been reported (Gopala Rao and Venkatesh, 1989; Venkatesh et al., 2003; 

Venkatesh and Mishra, 2005; Dubinin et al., 2009; Yu et al., 2001). The correlation 

between self-diffusion coefficients and their surface tension has also been studied by 

many authors with different approaches (Lu et al., 2005; Blairs, 2006). Lu et al. 

reported that the surface tension values are not well known experimentally even for 

many simple liquid metals (Lu et al., 2005). 

A new correlation between surface tension and diffusion coefficient was 

established by incorporating modified Stokes - Einstein relation for square well 

potential with statistical mechanical expressions for surface tension and viscosity. 

Surface entropy in considered liquids was also determined through temperature 

derivative of diffusion coefficients. Computed results were compared with available 

experimental data which gives us confidence in our square well calculations. 

Dzugutov introduced a new universal scaling law relating the diffusion 

coefficients and the excess entropy of a liquid (Dzugutov, 1996). This information 

advances our knowledge of liquid transport properties. Recently many workers 

examined the scaling law proposed by Dzugutov (Dzugutov, 1996) for liquid metals 
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and binary liquid mixtures by ab initio molecular dynamic simulations (Jakse and 

Pasturel, 2015; Jakse and Pasturel, 2016; Hoyt  et al., 2000; Samantha et al., 2004; Li et 

al., 2005) using embedded atom method (EAM). This study provides a relationship 

between the dynamic properties with microscopic static structural functions and with 

static thermodynamic quantity, S, entropy.  

Thus one of the objectives of this thesis is to test the Dzugutov idea by 

computing the excess entropies for several liquids through a square well model of pair 

correlation functions and diffusion coefficients using atomistic scale computing.          

 

1.9. SCOPE OF THE STUDY 

When we know the properties of a material, we can know their applicability. So 

to evaluate various properties of the liquid metals and alloys we used SW model to 

compute the microscopic property structure factor and coordination number in liquid 

metals and liquid binary alloys. The computed structural functions were successfully 

employed in the same system for computing diffusion coefficients, surface tension, 

surface entropy, shear viscosity. 

Recently developed universal scaling law, which correlates diffusion coefficient 

with excess entropy in real fluids, was tested for the considered systems. The scaling 

law study can predict correctly the diffusivity of pure fluids as well as binary fluid 

mixtures over a wide range of densities. 

The study on structural, dynamical and surface properties of liquid metals and 

alloys helps in various metallurgical, industrial, material processing technologies and 

also help their study in solid state. 
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The structure of liquids is described by means of the correlation functions called 

the structure factor, which is shown to play an important role to obtain both equilibrium 

and non-equilibrium properties. Such liquid metals and alloys (Al-Cu and Ag-Cu) will 

be investigated through proposed model for which experimental results will be 

available, so that, we may compare theoretical calculations with experimental results.  

At this juncture it is worth to mention that all structural and associated 

properties of binary alloys are to be evaluated using potential parameters of pure 

components. 
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2. STRUCTURE AND TRANSPORT PROPERTIES 

OF LIQUID METALS 

2.1. INTRODUCTION 

 The auto correlation function, S(k) (where k=(4π/λ)Sinθ) and its Fourier 

component g(r), pair correlation function (PCF) are most prominent quantities to 

characterize the structure of a liquid. Experimentally these quantities have been 

determined using neutron or X-rays scattering intensities. PCF is obtained by Fourier 

analysis of experimental S(k), which is a laborious and costly procedure. The analysis 

of results on structure and thermodynamic properties of liquid metals and alloys enable 

us to understand their structural ordering and complexities (Mishra and Venkatesh, 

2008; Wax et al., 2000; Li et al., 2003; Lai et al., 1990). Hence, a detailed knowledge of 

the S(k) and g(r) is essential for a quantitative understanding of the structure of liquids 

and also sufficient to determine numerous other equilibrium and transport properties 

(Lai et al., 1990; Stadler et al., 1999; Balucani et al., 1993; Herrera et al., 1999). 

 The subject of statistical mechanics has been successfully applied in various 

fields including the prediction of the microscopic function, S(k) of liquid metals 

(Gopala Rao andVenkatesh, 1989; Gosh et al., 2007; Taylor et al., 2001). Wertheim 

(Wertheim, 1963) and Thiele (Thiele, 1963) (WT) solved Percus - Yevick’s (PY) 

equation for hard sphere fluids to obtain the hard sphere direct correlation function 

Chs(r). Liquid metals static structure factors behave like hard sphere fluids and 

calculations for thermo-physical and thermodynamic properties with such reference 

system have been found to be reasonable in many cases (Zalid et al., 1999). However, 

we believe with other researchers that hard sphere reference system lacks realistic 
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properties because thermodynamics and the relation between thermodynamics with 

S(k)or g(r) are different for hard sphere and real fluids (Ravi  et al., 2001; Venkatesh et 

al., 2005). Hence, it is important to include attraction between the particles in deriving 

structure factor of liquids. It must be mentioned that the hard sphere repulsive forces act 

up to a short – range and primarily determine the structure peak of a liquid and the 

relatively long - range uniform attractive part of the potential brings atoms in short – 

range order. Further, it is pointed out that the success of any theoretical model depends 

on its experimental confirmation (Prakash et al., 2004; Boulahbak et al., 1998). Thus in 

the present work the square-well (SW) attractive tail has been perturbed over Wertheim 

and Thiele (Wertheim, 1963; Thiele, 1963) solutions for hard sphere mixture to evaluate 

the direct correlation function C(k) in momentum space in order to compute S(k) of real 

liquids. The analytical solution of this model in the mean spherical model 

approximation (MSMA) was introduced by Rao and Murthy (Gopala Rao and Murthy, 

1974; Gopala Rao and Murthy, 1975; Gopala Rao and Murthy, 1975). The model is 

applied to set of liquid metals to obtain microscopic structural characteristics with their 

application in the determination of various properties of the considered liquid metals. 

The SW fluid is the simplest one possessing the basic characteristics of real 

fluids. It is an excellent model (Yu et al., 2001; Mishra and Venkatesh, 2008; Glazov 

and Aivazov, 1980; Li and Gong, 2004; Rah and Eu, 2002; Xin et al., 2001) for liquids 

in which internal degrees of freedom of individual particles are important. Here we 

considered that pair wise potential plays a significant role and multi-particle interactions 

do not play a major role. 

The SW potential has been successfully applied for metallic liquids (Gopala Rao 

and Murthy, 1974; Gopala Rao and Murthy, 1975; Venkatesh and Mishra, 2005), 

colloidal particles (Asherie et al., 1996; Noro and Frenkel, 2000), hetro-chain molecules 
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(Zaccarelli, et al., 2001; Cui and Elliot, 2001) and complex systems (Zhou et al., 2002; 

Zhou et al., 1997). 

Here we consider that the multi-particle interactions are due to the sum of pair 

wise interactions. 

Transport coefficients such as diffusion and viscosity coefficients are important 

quantities not only for chemical engineer and chemist but also for life scientist, 

environmental administrators and workers in many other fields. Diffusion is involved in 

the efficiency of mass transfer equipment, the dispersion of pollutants, the dyeing of 

wool and the transport phenomena in living cells (Fei, W., Bart, H.J., 1998). Several 

authors have reported self-diffusion coefficients for real dense fluids interacting with 

hard sphere (HS) (Dymond, 1985; Speedy, 1987), Lennard - Jones (LJ) (Liu et al., 

1998; Speedy et al., 1989; Yu and Gao, 1999) and Square-well (SW) (Liu et al., 1998; 

Yu et al., 2000; Venkatesh and Mishra, 2005). The viscosity parameter of liquids 

dictates their critical cooling rates for glass transition. On the other hand, it is not fully 

understand how they depend on structure and thermodynamic properties of liquid as 

well (Sonvane et al., 2012) 

The study of coordination number, diffusion coefficient and viscosity of liquid 

metals is of fundamental importance and the better understanding of these properties is 

helpful in material processing technology. Coordination number of liquid metals is 

determined by integrating g(r) functions between first two minima. The shear viscosity, 

ηv is obtained by replacing the hydrodynamic radius in the Stokes - Einstein relation by 

the first peak position of g(r) and computed values of diffusion coefficients, D. To the 

best of our knowledge the limited work is available for ηv calculation of liquids metals 

and alloys. These are important dynamic properties which decide cooling rate of a 

liquid and these two governs the dynamics in fluids. While viscosity describes the 
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macroscopic transport of momentum by the collective motion of particles, atomic 

diffusion describes single-particle diffusive transport (Brilo et al., 2011). 

 

2.2. THEORY  

2.2.1. EVALUATION OF STATIC STRUCTURE FACTOR AND 

COORDINATION NUMBER 

 The SW is an extension of hard sphere potential as it retains hard sphere 

repulsive properties but allows the particles to attract one another and the interaction 

energy U(r) between two square well particles separated by a distance r is given by 

 

















λσ r              ;             0  

        λσr      σ    ;            ε- 

σ r             ;              

             βU(r)     (2.1) 

where  is the hard core diameter,  (-1) and  (<0) are the breadth and depth of the 

potential well, β = 1/ kBT. 

 An important model system is the MSMA and was first proposed by Lebowitz 

and Percus (Lebowitz and Percus, 1966) which expressed g(r) and the direct correlation 

function C(r) as 

 

   r            ;             Tk /  U(r)-      C(r)

   

 r            ;                             0       g(r)

B 











    (2.2) 

 The Ornstein-Zernike direct correlation function (DCF) of one component liquid 

using the SW model in momentum space under MSMA can be written as  

 (k).C      (k)C     C(k) swhs         (2.3)  

with 
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(2.5) 

where x= k,  is the number density,  and  represent depth and breadth respectively, 

of the square well and the other terms that enter in Eqn. (2.4) are given by following 

expressions (Block et al., 1977). 
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      α
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         (2.6) 
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
        (2.7) 

 
2

α η
      γ           (2.8) 

where  is called packing fraction i.e. volume occupied by the atoms divided by total 

volume and is given by   

 
3π ρ σ

η      .
6

         (2.9) 

 The S(k) of one component liquid can be given in terms of C(k) as  

 .C(k)] ρ    [1      S(k) 1                 (2.10) 

 The Fourier inversion of S(k) gives the radial distribution function, g(r). 

   dk.
kr

)krsin(
1)(k 

ρ2π

1
 +1=g(r)

0 ij

ij2

2 


kS

               

(2.11) 

 Experimentally obtained g(r) provides limited information about the short range 

order of liquids but the nearest-neighbor coordination number,, which can be obtained 

by integrating the g(r) function between the first two minimum i.e. the left edge of the 

first peak to the first minimum on the right hand side of the first peak, rmin.  
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characterizes several types of short - range order present in the liquids. The 

microstructure of liquids can also be characterized by . 

 .dr r  g(r) ρ  π4    ψ
minr

0

2
                  (2.12) 

Here rmin is the first minimum of the radial distribution function.  

 

2.2.2. EVALUATION OF DIFFUSION COEFFICIENTS AND VISCOSITY OF 

LIQUID METALS 

The self-diffusion coefficients of all the concerned liquid metals is derived  

using well known Einstein’s formula .
ξξξ

Tk
    D

HSSH

B


 Here ξH, ξS and ξHS are the 

friction coefficients due to hard, soft and hard-soft part of the potential function 

respectively. In evaluating the ξ and in handling the soft potential contribution to kinetic 

equations we introduced the Helfand’s Linear Trajectory Principle (Davis and Polyvos, 

1966). This principle is used to calculate time integral of auto correlation function by 

replacing the actual trajectories of the interacting molecules with linear trajectories. 

Here particle is assumed to move along a linear trajectory without acceleration during 

the times affected by soft potentials of the remaining particles. Thus the inter-particle 

pair potential is separated into two parts i.e, (r)U(r)  U U(r) SH   with 

σr        0,          

σr       , (r)UH




                  (2.13) 

and 

σr          U(r),        

σr             0, (r)US




                 (2.14) 
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Accordingly the force may be divided into two terms, FH a hard core 

contribution and FS, a soft force, and one can write friction coefficient in the form as 

follows  
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
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           (2.15) 

SHSH ξ  ξ  ξ                    (2.16) 

F(t) being the molecular force on a particle at time t and F(t+s) at time t+s. 
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Here USW(k)  is the Fourier transform of SW potential  
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 The shear viscosity coefficient, ηv is obtained under the SW model with the 

Stokes - Einstein relation 

 

          
Dr 2π

Tk
 η

max

B
v                    (2.21) 

 Where kB is the Boltzmann’s constant, rmax is the first peak position of g(r) and D is the 

diffusion coefficient. 
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2.3. RESULTS AND DISCUSSION 

The WT solution of PY hard sphere fluid within the MSMA with SW 

perturbation can be solved numerically with the input data: temperature, T, atomic 

density, ρ, and the SW parameters. The molar volumes of pure liquid metals given by 

Singh and Sommer (Singh and Somer, 1997) and hence the number density could be 

calculated. The input parameters of liquid metals were given by Rao and Murthy 

(Gopala Rao and Murthy, 1975) and were listed in Table 2.1. 

 

TABLE 2.1. Input parameters of liquid metals with  as the diameter, /kB as the depth, 

 as the breath of the square well potential and  as the number density.  

Metals Temperature (K) σ (Å) /kB(K) (Å)  (1025 m-3) 

Sodium 

Potassium 

Cesium 

Magnesium 

Aluminum 

Indium 

Lead 

Silver 

Copper 

Gold 

378 

343 

303 

953 

943 

433 

613 

1273 

1423 

1373 

3.30 

4.11 

4.81 

2.75 

2.45 

2.83 

2.97 

2.60 

2.25 

2.60 

111.60 

96.14 

109.5 

127.82 

160.00 

173.76 

70.00 

500.00 

300.00 

600.00 

1.65 

1.65 

1.70 

1.43 

1.30 

1.70 

1.4 

1.75 

1.68 

1.73 

2430 

1276 

0813 

3900 

6459 

3686 

3099 

5159 

7408 

5271 

 

The first peak position of g(r) and S(k) are of considerable interest (Kalidoss and 

Ravi, 2002). The first peak positions and peak heights of the computed S(k) and g(r)for 
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all the considered liquid metals were presented in Table 2.2 with their experimental data 

(Waseda, 1980), which give the detailed information regarding the principal peak and 

structural characteristics of the metals. It can be seen from Table 2.2 that the agreement 

between our computed S(k) and the experimental results (Waseda, 1980) around the 

first peak appears to be very good. But in the case of Cs, Ag and Cu the peak heights 

from the calculation were slightly lower than that from the experiment but the peak 

positions were same. It is pointed out that the principal peak dominates in evaluating 

transport properties of real liquids. Similar trend was observed by Rao and Murthy 

(Gopala Rao and Murthy, 1974; Gopala Rao and Murthy, 1975; Gopala Rao and 

Murthy, 1975) while calculating S(k) for four liquid metals using the SW model under 

the random phase approximation. The difference in peak heights for these three metals 

may be due to existence of some small atomic cluster in these liquids which is not 

signifying by this model. However, other properties obtained with the same parameter 

were in fair agreement with the experimental values. 
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TABLE 2.2. Theoretical and experimental values of first positions (k) and peak heights 

S(k); first peak positions (r) and peak heights g(r) of liquid metals. 

Metals First Peak of S(k) 

Theoretical         Experimental 

k (Å-1)    S(k)      k (Å-1)   S(k) 

First Peak position g(r) 

Theoretical        Experimental 

r (Å)     g(r)        r (Å)     g(r) 

Na 

K 

Cs 

Mg 

Al 

In 

Pb 

Ag 

Cu 

Au 

2.0 

1.6 

1.4 

2.5 

2.7 

2.3 

2.3 

2.6 

3.0 

2.6 

2.7 

2.6 

2.5 

2.5 

2.4 

2.4 

2.5 

2.3 

2.4 

2.4 

2.0 

1.6 

1.4 

2.4 

2.7 

2.3 

2.3 

2.6 

3.0 

2.6 

2.7 

2.6 

2.7 

2.5 

2.4 

2.5 

2.5 

2.5 

2.7 

2.5 

3.6 

4.5 

5.0 

2.9 

2.7 

3.0 

3.2 

2.8 

2.5 

2.8 

3.24 

2.80 

3.61 

2.84 

2.47 

2.64 

2.37 

2.98 

2.35 

2.68 

3.7 

4.6 

5.1 

3.1 

2.8 

3.1 

3.2 

2.8 

2.5 

2.8 

2.42 

2.35 

2.58 

2.46 

2.83 

2.66 

2.98 

2.58 

2.75 

2.77 

 

The calculated results for S(k) of these metals at their respective temperatures 

along with their experimental results in the entire momentum space were depicted in  

Fig. 2.1. The agreement between the computed results and the experimental results 

(Waseda, 1980) is good throughout the k regions. It can be seen from Fig. 2.1 that 

structure factors of all the considered metals become constant around one in high k 

region. It shows the presence of short range order in liquid materials.  Further, it may be 

noted that the simulation result with different approaches (Waxet al., 2000; Herrera et 

al., 1999; Boulahbak et al., 1998) for the peak height and position of S(k) of number of 
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liquid metals did not agree well with experiment. However, ab initio molecular dynamic 

simulation for the study of the structure and dynamic properties of liquids has been 

widely considered by research community (Dahlborg et al., 2013). 
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The peak positions and peak heights of the g(r), computed from Eqn. (2.11), for 

all the considered metals along with their experimental values (Waseda, 1980) were 

listed in Table 2.2 and also presented in Fig. 2.2(a) and Fig. 2.2(b). The ratio of the 

positions of the first and second peaks of the calculated and the experimental g(r) for all 

the liquids taken under investigation is about 0.51 and 0.53 respectively. This suggests 

that the model calculation of g(r) gives the structural properties of real liquids fairly 

well.  

Computed results for g(r) were compared with the available experimental results 

and presented in Figs. 2.2(a) and 2.2(b). There is a good agreement between theoretical 

values and experimental values (Waseda, 1980). 
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The computed g(r) were used for determination of short range order parameters 

such as the shortest atomic distance, first peak position in g(r) and the first coordination 

cell. The knowledge of the distance between the nearest neighbor atoms in crystalline 

and liquid phases of a metal helps in understanding the mechanism of crystal lattice 

destruction during the melting (Zhakova and Afanayeva, 2008). Further it is pointed out 

that the first maximum cannot give the detailed representation of the inside structure of 

the first atomic coordination shell.   

The deviation of g(r) from unity is a measure of the local order around the 

reference atoms. There are few maxima and minima in the g(r) which rapidly damped 
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around unity, where the first maximum corresponds to the position of the nearest 

neighbors around an origin atom. 

The nearest-neighbor distance, a, and the first coordination numbers () were 

obtained by using Eqn. (2.12), for liquid metals and the computed values are presented 

with their corresponding experimental results (Tao, 2005) in Table 2.3. In all cases the 

first peak and first minimum lie between  to . The computed values of  for the 

considered metals lie between 10.3 and 11.4 and that of the experimental values lie 

between 10.4 and 11.6. It is worth to mention here that the variation in values of ψ even 

for simple liquids depends on the theoretical approach of the computation (Tao, 2005). 

Detailed study of the first cell coordination number in liquid and crystalline form of the 

metals helps to understand the local structure in two phases (Li et al., 2003).  of liquid 

metals is also an important parameter that influences many of the properties of liquid 

metals such as density, viscosity and diffusivity (Cahoon, 2004). 
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TABLE 2.3. First minimum position of computed g(r); theoretical and experimental 

values of first coordination number () of liquid metals. 

Metals First minimum 

position of g(r) 

Computed  Experimental  

Na 

K 

Cs 

Mg 

Al 

In 

Pb 

Ag 

Cu 

Au 

 

4.9 

6.2 

7.0 

4.2 

3.9 

4.3 

4.5 

3.8 

3.4 

3.7 

 

         10.5 

         10.8 

         11.4 

         10.2 

         11.2 

         11.4 

         10.5 

         10.6 

         10.7 

         10.3 

Average =10.7 

10.4 

10.5 

- 

10.9 

11.5 

11.6 

10.9 

11.3 

11.3 

10.9 

11.03 

Average percentage deviation =
(𝜓average)computed − (𝜓average)experimental

(𝜓average)computed
× 100 

 

Table 2.3 illustrates that the computed values of  are in good agreement with 

the experimental data. The computed average  of the ten liquid metals is 10.76 which 

is closed to the experimental average  of the considered metals which is 11.03 and the 

average deviation is of around 2.51 pct. This shows that the theoretical and 

computational method presented in this work is suitable for the determination of 

coordination number of liquid metals. Computed values of friction coefficients ξH, ξS 
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and ξHS are presented in Table 2.4. H is dominating in all cases however ξS and ξHS also 

contribute significantly in case of all the liquid metals.  

 

TABLE 2.4. Friction coefficients of liquid metals due to hard sphere ξH, square well ξS 

and hard sphere- square well interaction ξHS. 

 Metals ξH×10-13(Kg/s) ξS×10-13(Kg/s) ξHS×10-13(Kg/s) 

Na 

K 

Cs 

Mg 

Al 

In 

Pb 

Ag 

Cu 

Au 

7.41 

7.55 

7.56 

11.78 

11.98 

18.14 

25.59 

42.28 

31.96 

62.19 

1.56 

1.12 

1.50 

1.36 

1.76 

4.39 

2.04 

8.25 

2.78 

11.05 

1.94 

1.58 

1.89 

1.19 

 1.07  

5.38 

1.75 

12.56 

4.53 

18.65 

 

 The diffusivity in liquid metals has been evaluated under LT principle 

(Venkatesh and Mishra, 2005) using well known Einstein equation for coefficient of 

diffusion (Berne and Pecora, 2000). Computed results are compared with available 

experimental results (Shimoji and Itami, 1986) and presented in Table 2.5. The shear 

viscosity coefficient, ηv is obtained under the SW model with the Stokes - Einstein 

relation. Computed results are compared with the available experimental data (Shimoji 

and Itami, 1986) in Fig. 2.5. 
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TABLE 2.5. Theoretical and experimental values of Diffusion coefficient, D (10-9 

m2/sec) and Shear viscosity (ηv) of liquid metals. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The SW potential is analytically solved and successfully applied for computing 

static structure factor, coordination number and thermodynamic properties of the 

considered liquids which are important information for metallurgical industry. Our 

results indicate that the SW model leads to a good agreement between computed and 

experimental results of structure factors and derived associated properties and hence 

such kind of theoretical works increase our confidence in present model. This model 

calculation provides an option to use the SW potential in the framework of the MSMA 

to derive the various thermo-physical and thermodynamic properties of liquid metals 

without using any adjustable parameter. 

Metals            D(10-9 m2/sec) 

       theort.          expt. 

    ηV(mPas) 

theort.       expt. 

Na 

K 

Cs 

Mg 

Al 

In 

Pb 

Ag 

Cu 

Au 

4.70 

4.28 

2.18 

5.23 

4.93 

2.10 

2.87 

2.61 

4.85 

2.10 

4.23 

3.76 

2.31 

5.63 

4.87 

2.60 

2.19 

2.55 

3.97 

- 

0.49         0.70 

0.39         0.54  

0.61         0.68 

1.38         1.25 

1.56         1.46 

1.51           - 

1.47          2.61 

3.8            3.70 

2.6            3.50 

5.3            4.30 
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Coordination number calculations with number density and square well 

parameters are important findings to understand phase change at microscopic level. 

Thus the results of this chapter prove the usefulness of square well model in predicting 

various properties of liquid metals. Perturbation theory with hard sphere reference 

system is a good first approximation for the study of static and dynamic properties of 

liquid metals.  
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3. THERMO-PHYSICAL, THERMODYNAMIC, 

SURFACE AND SCALING PROPERTIES IN 

LIQUID METALS 

3.1. INTRODUCTION  

Statistical mechanics provides numerical relations between structures, dynamic 

and thermodynamic properties of liquid metals and alloys (Ma et al., 2013). In the last 

fifty years, studies on static and dynamical properties of liquid metals and alloys have 

been reported by different theoretical models and computer simulation techniques. 

However, all these model calculations and simulations provide a better understanding 

about microscopic structural characteristic and thermodynamics of liquid metals and 

alloys. Understanding a relationship between the transfer coefficients, thermodynamic 

properties, surface properties, thermo-physical properties and structural properties 

remains one of the most challenging task in the condense matter  (Li et al., 2005;  Li et 

al., 2004; Korkmaz and Korkmaz, 2009; Korkmaz, et al., 2006; Korkmaz and Kormaz, 

2007; Yokoyama, 2000).  

Inter-atomic forces are the key factor in molecular dynamic simulations also. The 

effective ab initio method to attain a high level of accuracy using embedded atom method 

(EAM) or the glue model is still expensive and are not easy to implement (Adebayo et 

al., 2005).  It is rather difficult to determine some properties of a material by systematic 

theoretical calculations with many body potential functions. The Lennard-Jones potential 

was extensively tested for various liquid state theories in various computational 

experiments or within different theoretical approaches such as integral equations or 
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perturbation theories (Lang et al., 1999). Adebayo et al. investigated the temperature 

dependent structure and associated properties of liquid Al and Mg using Lennard-Jones 

potential (Adebayo et al., 2005). They observed a discrepancy in the first peak position 

and peak height at higher temperature (1063K and 1153K). They also reported that the 

Lennard-Jones model predict the Stokes – Einstein equation very poorly. Further, it may 

be noted that molecular dynamic simulation results of first peak of S(k) of liquid Al did 

not agree well with experiment especially at the principal peak position (Ji and Gong, 

2004). It is worth to mention here that first peak of structural functions dictate various 

properties of materials. But in this square well model calculation on liquid Al, an 

excellent agreement was found between theory and experiment (Mishra and Venkatesh, 

2008). Alfe and Gillan in their work with ab initio calculations on first-Principles 

Calculation of Transport Coefficients observed that model calculation predict value of 

viscosity based on the Stokes - Einstein equation with 40% accuracy (Alfe and Gillan, 

1998).  

Several authors have reported that the surface properties of liquids are very 

much depending on their bulk micro structural characteristics and their transport 

properties (Lu and Jiang, 2005; Blairs, 2006; Lu and Jiang, 2005; Gosh et al., 2007; 

Yokoyamoa and Tsuchiya, 2002). The surface tension and temperature coefficient of 

the surface tension, Sv (𝑆𝑣 = −
𝑑𝛾

𝑑𝑇
) have been reported for most of the metallic melts 

(Nogi et al., 1985; Gosh et al., 2007; Yokoyamoa and Tsuchiya, 2002; Lu and Jiang, 

2005). Several theories have been reported in last fifty years (Chacon et al., 1984; 

Yokoyamoa and Tsuchiya, 2002; Lu and Jiang, 2005) which provides a microscopic 

description of liquid metal surfaces. However, there is still uncertainty regarding 
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absolute values of ST and particularly its temperature derivative which is called surface 

entropy due to the effect of impurities (Lu and Jiang, 2005). 

In this thesis, self-diffusion coefficient, D, of liquids were determined using 

microscopic structure S(k), g(r) and pair wise interaction SW. Obtained D of considered 

liquids were employed in the determination of surface tension, ST, recently published 

by many authors with different approaches (Lu and Jiang, 2005; Blairs, 2006). It is 

reported that the ST is not well known experimentally even for many simple metals (Lu 

and Jiang, 2005).  

In recent years different scaling laws relating the equilibrium thermodynamic 

properties, excess entropy with dimensionless transport coefficients have been reported 

by many authors (Li et al., 2005; Dzugutov, 1996; Rosenfeld, 1999; Samanta et al., 

2004; Yokoyama, 1998). The Dzugutov universal scaling law (Yokoyama, 1998) is very 

important function among many scaling laws, which links the dynamic behavior of a 

liquid particle with pair correlation function, g(r), microscopic reducing parameter  

and excess entropy. Dzugutov in his original work approximated the excess entropy per 

particle by two body approximations, which is denoted as S2 and defined by 

 S2 = −2 ∫ {g(r) ln[g(r)] − [g(r) − 1]}
∞

0
r2dr     (3.1) 

Here  is the number density. Yokoyama has modified Dzugutov’s two body 

approximation by the term SE (Yokoyama and Tsuchiya, 2002). The SE per atom in 

liquid metals is the difference between the total thermodynamic entropy and that of the 

equivalent ideal gas. 

In last two decades a considerable efforts have been made using molecular 

dynamics simulation to verify the Dzugutov’s universal scaling law by other researchers 
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with embedded atom method (EAM) or Stillinger-Weber scheme or Tersoff potential 

or glue potential or second-moment approximation of tight-binding scheme for several 

liquid metals and alloys (Hoyt et al., 2000; Li et al., 2005; Rosenfeld, 1999; Samanta et 

al., 2004; Yokoyama, 1998; Yokoyama and Tsuchiya, 2002; Kreckelberg et al., 2009), 

by Dzugutov himself with Lennard-Jones and hard sphere potential functions. Recently, 

Ma et al. tested the scaling law in colloidal monolayers using optical microscopy and 

particle tracking techniques (Blairs, 2006).  

The SW fluid is basic one possessing all characteristics of real liquid and the 

SW potential has been successfully applied for studying of various liquids for long time 

(Gopala Rao and Venkatesh, 1989; Venkatesh and Mishra, 2005; Venkatesh et al., 2003; 

Gopala Rao and Murthy, 1974; Liu et al., 1998; Gopala Rao and Sathpathy, 1982; 

Dubinin et al., 2009; Dubinin et al., 2014; Yu et al., 2001). Study of thermophysical and 

thermodynamic properties of liquids and their relation with microscopic structure 

functions are of long interest (Gosh et al., 2007; Qian et al., 1990; Ivanov and 

Berezutski, 1996; Nath and Joarder, 2005; Shih and Stroud, 1985). 

We agree with other workers that the Dzugutov’s hypothesis for dimensionless 

quantities must be tested with different form of inter atomic interactions (Hoyt et al., 

2000). Thus the universal scaling law was tested by estimating the excess entropy of 

liquid metals as function of reduced diffusion. Technologically important surface 

properties like γ and its temperature derivative i.e. surface entropy, Sv (𝑆𝑣 = −
𝑑𝛾

𝑑𝑇
) were 

studied through D and its temperature derivatives. Computed g(r) was employed to 

obtain .  
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Further, new equations have been derived through equation of state of the SW 

potential (Gopala Rao and Joarder, 1976) and employed them to compute long 

wavelength limit of S(k) i.e. S(0) in liquid metals. S(0) can be related with various 

thermo-physical and thermodynamic properties of liquids (Blairs, 2007).  

 

3.2. THEORY  

   The statistical mechanical approach is also useful to predict the 

relationship between various thermo physical and thermodynamic properties (March, 

1999). 

3.2.1. EVALUATION OF DEBYE TEMPERATURE 

 Another important quantity that is calculated is the Debye temperature D. The 

Debye temperature plays the same role in the theory of lattice vibrations as the Fermi 

temperature plays in the theory of electrons in metal. Both are a measure of the 

temperature, separating the low temperature region where quantum statistics must be 

used from the high temperature region where classical statistical mechanics is valid.  

 The structure of many liquid metals in the vicinity of their melting temperature 

shows a similar characteristic as their structure in solid phase (Glazov and Aivazov, 

1980; Tatarinova, 1988). During the melting of metals, partial breaking of bonds occur; 

as temperature increases a change in the melt structure can be observed which leads to 

post melting effects – an anomaly of structure sensitive properties (Diffusion, sound 

velocity, viscosity, etc.). The change in this structure with temperature can be predicted 

by a quantity called scaled flux (Panfilovich and Sagadeev, 2000) which is proportional 

to Debye temperature.  
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  Recently Singh and Ali (Singh and Ali, 2013) computed the Debye temperature, 

θD of a number of liquid metals and presented a comparison between Debye temperature 

of crystalline, amorphous and liquid phases of metals. They found that the θD of several 

metals for amorphous state are lowered on average by 40% from the corresponding 

crystalline phase and are lowered by 6% to the corresponding values of liquid phase. 

This is well-known fact that metallic glasses shows some features of liquid metals (Li 

et al., 2003; Mishra et al., 2002) and hence computed diffusion coefficients were 

verified by calculating θD, using the equation obtained by Lal and Singh (Lal and Singh, 

1993). 

 

.
rk

h D 96
      θ

2

maxB

D           (3.2) 

 Here h is Planck’s constant, kB is Boltzmann’s constant, rmax is the nearest-

neighbor distance in g(r) and D is the self-diffusion coefficient of liquid metals. 

  

 

3.2.2. EVALUATION OF SURFACE TENSION AND SURFACE ENTROPY OF 

LIQUID METALS 

The detail studies of surface properties of condensed matter help in 

understanding their metallurgical processing. 

The surface tension of elemental liquids can be given by statistical mechanical 

approach under zeroth order approximation as (Fowler, 1937) 

dr.g(r)r 
dr

 U(r)d
 

8

πρ
    γ 4

0

2

ST 


       (3.3)  

Born and Green (Born and Green, 1949) derived the coefficient of viscosity of 

liquid metals using statistical mechanical approach as 
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dr.r g(r) 
dr

dU(r)
 )

TK

m
(  

15

ρ  π2
      η 4

0

1/2

B

2

V 


      (3.4)  

Here m is the atomic mass of the liquid metals. Eqns. (3.3) and (3.4) were 

derived on a strong scientific basis for hard sphere model but it is not easy to get the 

numerical solution of the integral equations. As we know that the statistical mechanics 

also provides various useful relationships between structure and thermodynamic 

properties of liquids.  

A striking result can be obtained using Eqns. (3.3) and (3.4) with the well-known 

Stokes-Einstein relation, ηV = kBT/(2πrmaxD), here rmax, the nearest neighbor 

distance, can be taken as first peak position of g(r) for real liquids as (Shimoji and Itami, 

1986) 

. 
 D r   π32

15
  

m

T)(k
    γ

max
1/2

3/2
B

ST 

 

      (3.5)   

 Since, D can be evaluated from well-known Einstein’s relation using the SW 

long range interaction and hence the surface tension of liquid metals is obtained through 

Eqn. (3.5). 

 A study on temperature dependent structural and dynamic properties of materials 

enhances our knowledge and understanding about their surface and bulk properties. The 

temperature derivative of surface tension i.e., surface entropy of pure liquid at constant 

volume is defined as (Gosh et al., 2007) 

 𝑆𝑉 = −
𝑑𝛾

𝑑𝑇
         (3.6) 

 
.

dT

dξ

ξ

1

dT

dσ

σ

1

T

1
 γ  

dT

 γd








        (3.7) 
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.

dT

dξ

dT

dξ

dT

dξ
  

dT

ξ d SHSH

        (3.8) 

 The temperature derivative of friction coefficients for liquid metals is taken from 

(Venkatesh and Mishra, 2005). 

 

3.2.3     SCALING LAW FOR SQUARE WELL LIQUID METALS 

  In order to test the Dzugutov scaling law for diffusion for liquid metals, we 

compute the collision frequency and excess entropy with SW model under RPA. 

Rosenfeld (Rosenfeld, 1999) defines the reduced transport coefficients in terms of 

reducing by macroscopic parameters, density and temperature, however, microscopic 

reducing parameters like hard sphere collision frequency, Γ and inter atomic distance σ 

(hard sphere diameter) according to Enskog theory (Chapman and Cowling, 1970) were 

chosen for deriving normalized diffusion. This concept was also extended by Li et al. 

for defining the reduced (Li et al., 2005) transport coefficients. Further, reduced 

transport coefficients were scaled by exponential of excess entropy with different values 

of pre-exponential factors (Hoyt et al., 2000; Blairs, 2006; Born and Green, 1949; Li et 

al., 2005; Dzugutov, 1996; Rosenfeld, 1999; Samanta et al., 2004; Yokoyama, 1998: 

Yokoyama et al., 2002). 

As we have already mentioned that SW liquids possess all characteristics of real 

liquids. Thus we define the Γ for SW liquids in terms of g(r) from Eqn. (2.11) as 

Γ = 4rmax
2 g(rmax)ρ (

πkBT

m
)

1/2

      (3.9) 

Here, rmax and g(rmax) are first peak position and value of pair correlation function 

respectively, m is the mass of diffusing species in atomic unit and other symbols have 
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their usual meanings. Dzugutov (Dzugutov, 1996) defined the reduced diffusion 

coefficient, and we modified for SW liquids 

D∗ =
D

 rmax
2                    (3.10) 

There are various universal relations for different dimensionless physical 

parameters proposed for simple metals on the basis of corresponding state theory using 

characteristics parameters of different ionic potentials (Prakash et al., 2004).              

The Dzugutov scaling law (Dzugutov, 1996) modified by Yokoyama 

(Yokoyama, 1998: Yokoyama et al., 2002) can be given as  

D∗ = a ekB/SE                  (3.11) 

 Where ‘a’ is a constant (a = 0.049), SE is the excess entropy per atom expressed 

in units of kB. Results of SE for liquid metals can be represented in the form following 

equation: 

SE = log
D

0.049  rmax
2                 (3.12) 

 

3.2.4. EQUATION OF STATE FOR SQUARE WELL LIQUIDS  

The structure factor in long wavelength limit, S(0), which is an important 

parameter to evaluate various properties of liquid state (Iwamatsu, 1990) was derived 

through equation of state in random phase approximation for SW fluids (Gopala Rao 

and Joarder, 1976) 
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S(0) is related to isothermal compressibility, βT as (Kalidoss and Ravi, 2002) 

TB β Tk ρS(0)                    (3.19) 
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where  is called packing fraction i.e. volume occupied by the atoms divided by total 

volume and is given by .
6

πρσ
 η

3

 kB is the Boltzman constant, T is the working 

temperature, ε is the SW depth and λ is the SW breadth. 

 

3.3. RESULTS AND DISCUSSION 

 The surface, thermo-physical and thermodynamic properties of all the 

considered liquid metals were given in this Chapter. The Wertheim’s (Wertheim, 1963) 

solutions of PY hard sphere fluid were perturbed with SW potential and solved 

numerically for liquid metals (Gopala Rao and Murthy, 1975) using temperature, T, ρ, 

and three parameters of SW potential.  
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TABLE 3.1. Theoretical and experimental values of Debye temperature, θD and Surface 

tension γST of liquid metals 

Metals Temp 

 (K) 

DComputed 

       (K) 

DLiterature 

     (K) 

STComputed 

    (Nm-1) 

STExperimental 

     (Nm-1) 

Na 

K 

Cs 

Mg 

Al 

In 

Pb 

Ag 

Cu 

Au 

378 

343 

303 

953 

943 

433 

613 

1273 

1423 

1423 

167.34 

97.37 

40.17 

286.51 

311.53 

107.48 

129.12 

152.77 

357.51 

123.38 

97.20 

59.20 

- 

- 

294.00 

- 

81.00 

164.10 

244.40 

121.60 

0.176 

0.096 

0.082 

0.418 

0.801 

0.380 

0.211 

1.026 

1.030 

1.200 

0.200, 0.197 

0.110, 0.112 

0.069, 0.070 

0.557, 0.583 

0.867, 1.070 

0.561 

0.457, 0.462 

0.925, 0.910 

1.310, 1.320 

1.145, 1.138 

 

Lal and Singh (Lal and Singh, 1993) proposed a relationship between Debye 

temperatures, D with self-diffusion coefficient for metallic glasses. Since it has been 

established that metallic glasses may be considered as super cooled liquids (Li et al., 

2003; Mishra et al., 2002) hence this relationship was tested for all the considered liquid 

metals using square well model of diffusion. θD is an important parameter to inform the 

bonding and structural deformation of metals. Computed values for D are summarized 

in Table 3.1 and compared with recently calculated and published values by Singh and 
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Ali (Singh and Ali, 2013). The agreement can be considered satisfactory, for the reasons 

mentioned already. 

The surface tension is related with self-diffusion coefficients of liquids. Since 

self-diffusion coefficients of liquids were determined using microscopic structural 

functions along with SW potential and hence computed ST is also related microscopic 

structure of liquids. 

Computed values of ST with their experimental values (Lu and Jiang, 2005) 

were also presented in Table 3.1 and satisfactory agreement was found between them. 

 The surface entropy of liquid metals through analytical expression for the 

temperature derivative of the SW model of D under linear trajectory principle was given. 

The temperature coefficient of the surface tension for pure liquid metals were derived 

by other workers (Iada and Guttrie, 1993) which depends on critical temperature and 

the temperature coefficient of density of liquid metals. It is mentioned that the critical 

temperature for many liquid metals is still unknown (Iada and Guttrie, 1993). Present 

model calculation also involves temperature coefficient of atomic density of liquid 

metals but there is no use of any critical temperature in our model calculation.  

  Since, temperature coefficient of density of liquid metals should have 

negative value hence a negative surface entropy were observed for all liquid metals. In 

some of binary liquid alloys, positive temperature coefficient of surface tension was 

reported this is due to having very positive excess free energy (Joud et al., 1973). 

  The computed results on the temperature coefficient of surface tension 

along with their experimental results (Lee et al., 2004) are presented in Table 3.2. 
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Table 3.2. Theoretical and experimental values of Surface tension (γ), Surface entropy, 

(SV= - dγ/dT) isothermal compressibility, βT(10-11 m2 N-1) of liquid metals. 

  

From Table 3.2, one can be observed that there is a good agreement between theoretical 

and experimental results (Yokoyama and Tsuchiya, 2002), which shows the one more 

applicability of the analytical derivation of temperature derivative of D. The agreement 

between present computations with experimental results of ηv, for liquid metals 

(Yokoyama and Tsuchiya, 2002; Brandes, 1983) was found to be satisfactory.  

The resulting correlation between D and ST finds successful application for the 

estimation of ST. Debye temperatures of liquid metals were calculated using diffusion 

data obtained through square well model. 

Metals Temp 

(K) 

 SV= - dγ/dT (mNm-1K-1) 

      theort.           expt. 

βT(10-11 m2 N-1) 

theort.         expt. 

Sodium 

Potassium 

Caesium 

Magnesium 

Aluminium 

Indium 

Lead 

Silver 

Copper 

Gold 

378 

343 

303 

953 

943 

433 

613 

1273 

1423 

1423 

0.083 

0.057 

0.044 

0.096 

0.119 

0.075 

0.275 

0.230 

0.250 

0.270 

0.10 

0.08 

0.06 

0.15 

0.15 

- 

0.28 

0.17 

0.28 

- 

19.99 

40.47 

67.15 

6.14 

5.91 

15.34 

12.44 

2.54 

2.00 

1.99 

19.0 

38.2 

68.8 

4.0 

2.42 

- 

- 

2.2 

1.5 

1.3 
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The structure factor in long wavelength limit, S(0), is related to isothermal 

compressibility of liquid metals. Table 3.2 shows the computed results for T using 

equation of state of SW potential. There is a fair agreement between the computed value 

and the experimental values (Blairs, 2007; Singh et al., 2007; Ganesh and Wisdom, 

2006) these shows the success of the SW perturbation theory. 

 SE for liquid metals was calculated by employing the SW model of diffusion in 

Dzugutov scaling law. The computed values are in accordance with (Hoyt et al., 2000) 

which is shown in Fig. 3.1.  

 

 The computed values of SE for all liquids are in order of three, a similar trend 

was observed by other researchers for nine liquids (Glazov and Aivazov, 1980). The 

excess entropy measurements of most of the liquid metals are yet to be determined 

experimentally, and therefore, the computed results of SE for liquid In, Au and Ag could 

not be compared with experimental values.  
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Table 3.3. The Collision frequency (Г), the Scaled diffusion (D*) and Excess entropy (-

SE /kB) of liquid metals. 

 

 

 From Table 3.3, it can be seen that the difference between theoretical and 

experimental values for entropy lies in the range 0.01 to 0.96. But the overall agreement 

is quite good except in case of Pb. Such discrepancy was also observed by Yokoyama. 

Metals Temp 

(K) 

(1012 s-1) D*x10-3       -SE /kB 

theort.      expt. 

Sodium 

Potassium 

Caesium 

Magnesium 

Aluminium 

Indium 

Lead 

Silver 

Copper 

Gold 

378 

343 

303 

953 

943 

433 

613 

1273 

1423 

1423 

26.74 

18.06 

7.16 

37.69 

44.43 

10.99 

9.66 

16.083 

21.931 

12.979 

1.36 

1.14 

1.17 

1.45 

1.42 

1.98 

2.48 

1.24 

2.33 

1.39 

3.58        3.46 

3.77        3.47 

3.73        3.57 

3.52        3.38 

3.54        3.55 

3.21          - 

2.98        3.94 

3.67           - 

3.05         3.44 

3.56           - 
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4. PARTIAL AND TOTAL STRUCTURAL 

CHARACTERISTICS OF LIQUID BINARY ALLOYS 

4.1. INTRODUCTION 

Alloys are industrial or commercial materials, which are grown from molten state. 

Liquid alloys have short-range order and their properties are much more difficult to 

understand than those of crystalline phases. The mixing behavior and dynamics in binary 

liquids are still not well understood. These complexities can be explained theoretically 

through correlation functions in disordered systems. Therefore, the studies of the 

properties of binary liquid alloys demands extensive theoretical investigations (Koirala 

et al., 2014).  

It has been proved (Zernike and Prins, 1927) in one dimensional model that 

certain distances receive special weight in the formation of interface and this was carried 

on to three dimensional cases as in liquids. The impossibility of interpenetration of atoms 

and the existence of inter-atomic binding imply that certain arrangements of any given 

atom with respect to its neighbors are more probable than others. These investing 

introduced the idea of distribution function, which if known would facilitate the 

prediction X-ray pattern to be expressed for the any given substance.  

X-ray diffraction measurements have been made on a large number of liquids 

including solutions and liquid metals. The results for liquid metals and alloys are 

summarized in reviews by Dubinin (Dubinin et al., 2014), Shimoji and Itami (Shimoji 

and Itami, 1986), Singh and Somer (Singh and Somer, 1997) and Wang et al. (Wang et 

al., 2009). 
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The structural, thermodynamic, transport and surface properties of binary liquid 

alloys have been extensively studied by various workers and is of long interest and many 

theoreticians have long been attempting to understand the properties of liquid alloys on 

the basis of the interactions between atoms or molecules (Flory, 1942; Harrision, 1966; 

Lebowitz, 1964; Faber, 1972; Shimoji, 1977; Bhatia et al., 1973; Alonso and March, 

1982; Singh et al., 1990; Singh and Somer, 1992; Novakovic, 2010; Gopala Rao and 

Venakatesh, 1989; Dahlborg et al., 2013; Jakse and Pasturel, 2015; Jakse and Pasturel, 

2016). The thermodynamic excess functions, static structure factors are well known 

experimentally, however, theoretical interpretation and evaluation need improvement 

(Echendua et al., 2010).  

Studies of X – ray and neutron scattering from liquid metals and alloys give 

information about the atomic distribution, which is obtained by Fourier analysis of the 

experimentally observed scattering intensity. The pioneering work on X – ray diffraction 

was carried out by Gingrich (Gingrich, 1952), Gingrich et. al. (Gingrich and Henderson, 

1952) and others (Orton et al., 1960; Enderby and North, 1968).  

In a binary alloy the scattering function depends upon, in general, three 

independent partial structure factors and two scattering functions. Keating (Keating, 

1963) suggested that in principle three partial structure factors (PSFs) S11(k), S22(k) and 

S12(k) are required to specify the structure of liquid binary alloys. It is difficult to obtain 

these partial structure factors experimentally. Of course isotope enrichment offers a 

method of obtaining another set of experimental data but complete enrichment is rather 

difficult. 

In present work, the Ashcroft and Langreth (AL) type partial structure factors 

(Ashcroft and Langreth, 1967) are calculated through a perturbation model using square 
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well attractive tail as a perturbation over Lebowitz solution (Lebowitz, 1964) of statistical 

mechanical model of Percus-Yevick equation (Percus and Yevick, 1957) for hard sphere 

mixtures. The PSFs can be used in the evaluation of the total structure factor (TSF), 

number of nearest neighbors, thermodynamic properties, electrical resistivity, diffusion 

coefficients and many other properties. The hard sphere reference system with square 

well attractive part is the simplest one, possessing the basic characteristics of a real fluids. 

The success of square well model in the calculation of concentration dependent various 

properties of liquid Al-Cu and Ag-Cu binary alloys because they are size effect alloys in 

which the pair wise potential plays a significant role and multi-particle interactions do 

not play a vital role. 

In this chapter a detailed discussion of the structural properties of Al-Cu and Ag-

Cu alloys is presented. Many authors have been reported concentration and temperature 

dependent structural, transport and thermodynamic properties of liquid Al-Cu and Ag-Cu 

alloys using different theoretical techniques, computational simulations and experimental 

methods with specific instrumentation arrangement: for liquid Al-Cu alloys (Wang et al., 

2009; Zhang et al., 2010; Brillo et al., 2008; Cheng et al., 2009: Brillo et al., 2006; 

Dahlborg et al., 2013; Dahlborg et al., 2007; Xiong et al., 2015; Zhang et al., 2009; Murdy 

et al., 2008; Eskin et al.,2005; Schmitz et al., 2014); for liquid Ag-Cu alloys (Lukens and 

Wagner, 1975; Novakovic et al., 2005; Brillo et al., 2004; Itami et al., 2000; Jha et al., 

2014; Siwiec et al., 2013). Despite of a lot of experimental and theoretical effort devoted 

to the study of liquid alloys, the microscopic structural functions and their relation with 

thermo-physical and thermodynamic properties of the liquids are still not well 

understood. Interest to liquid metals and liquid alloys is motivated by their many 

http://www.sciencedirect.com/science/article/pii/S0921509305006234
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physical-chemical properties (Gopala Rao and Venkatesh, 1989; Murdy et al., 2008; 

Schmitz et al., 2014; Huang et al., 2011; Canales et al., 1998). 

Copper has been the most common alloying element almost since the beginning 

of the aluminum industry and copper is added as the major alloying component in many 

of the alloys developed. Liquid Al-Cu alloys are studied extensively as it plays an 

important role in lightweight casting, in lead-free soldering (Schmitz et al., 2014) due to 

the presence of low temperature eutectic compositions. They have low melting point and 

are chemically inert substrates hence easy-to-handle experimentally. The Ag-Cu system 

is also interesting for a number of technical and industrial applications in joining 

processes. Such applications are brazing, soldering and welding. Moreover Ag-Cu alloys 

are also used in high temperature bonding applications. Pure silver is soft and ductile at 

room temperature. However, it can be hardened by alloying it with other element. Copper 

is the favorite hardener and is normally employed in the production of sterling silver (Jha 

et al., 2014). 

The structural description at the atomic scale of liquid metals and alloys usually 

employs the radial distribution function (RDF) which is obtained through Fourier 

transform of structure factors (SFs) in binary alloys. Thus we present three PSFs in both 

the alloys; TSFs were obtained through these three PSFs and two scattering factors. 

 

4.2. THEORY 

For a systems containing more than one kind of atoms, the intensity of the X-ray 

scattering can be written as 





O

O

222coh dr (kr)j ρ] - (r) [ρ r 4π f  f    
N

I
              (4.1) 
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Where jO(r) is the Bessel function of the zeroth order. Further  
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where Ci is the atomic percent of ith atom in the alloy, fi and fj are the scattering factors of 

ith and jth-type atoms respectively, ρij(r) is the number of j-type atoms per unit volume at 

the distance r from an i-type atom and n is the number of atoms. 
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Considering C1ρ12(r) = C2ρ21(r), the total structure factor for binary system can be 

written as 
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As mentioned earlier we use hard sphere reference system as it dominates in 

deciding the structural aspects of liquids but we note that this reference system lacks 

realistic properties and hence the hard sphere solution of PercusYevick’s equation 

obtained by Lebowitz is perturbed with square well attractive tail under Mean Spherical 

Model Approximation (MSMA) to obtain the direct correlation function (DCF) as 

 

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ij              (4.10) 

where Cij
0(r) stands for the Hard Sphere solution of Percus - Yevick’s equation, σij, λij 

and εij are the hard sphere diameter, Potential energy breadth and depth respectively of 

the Square well potential of ithspecies. The mixed parameters are determined through the 

use of Lorentz-Berthelot rules (Gopala Rao and Das, 1987). Thus, the mixed parameters 

are given by 
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                (4.11) 

The radial distribution function, gij(r) is related to the correlation function, hij(r) 

as given equation  

1    (r)g      (r)h ijij                   (4.12)  

Further, hij(r) is related to the DCF through the generalized OZ equation for a 

system containing more than one species can be written as 

rd  )r'(h   )r'r( C ρ    (r)C      (r)h
_

j1

__

2 1,     1

i11ijij   
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                          (4.13) 
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where 1 is the bulk density of 1th species. Fourier transforming the OZ equation and 

using convolution theorem hij(k) can be obtained as  

(k)h   (k)C ρ    (k)C      (k)h j1

2 1,     1

i11ijij 


                   (4.14) 

For a binary system with 

i = 1,   j = 1  

(k)h  (k)C  ρ      (k)h  (k)C  ρ      (k)C      (k)h 12122111111111                     (4.15) 

i =1,    j = 2  
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i = 2,   j = 1 

(k)h  (k)C  ρ      (k)h  (k)C  ρ      (k)C      (k)h 12222112112121                          (4.17) 

i = 2,   j = 2 

(k)h  (k)C  ρ      (k)h  (k)C  ρ      (k)C      (k)h 22222212112222                          (4.18) 

These equations on solving for hij(k) give rise to 
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-12

1211112222 [B(k)]  ] (k)C  ρ       } (k)C  ρ   -  1 {   (k)C [      (k)h              (4.20) 

          
-1

122112 [B(k)]   (k)C       (k)h      (k)h                            (4.21) 

where B(k) is given by 

(k)]Cρρ  -  (k)C (k)Cρρ    (k)Cρ  -  (k)Cρ  -  [1  B(k) 2

1221221121222111 
         (4.22) 

Further, we have the result connecting the partial structure factor Sij(k) and hij(k) 

as 
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(k)][h)ρ(ρ(k)δ(k)S ij
1/2

jiijij                  (4.23) 

where ij is the kronecker delta and is defined as 










j    ifor              0   

 j    ifor               1   
      δ ij                (4.24) 

The partial structure factors S11(k), S22(k) and S12(k) were solved by taking the 

Fourier transformation of hij(k) given by (Gopala Rao and Satpathy, 1990)  

 1
222

2
122111111 (k)]}Cρ(k)/[1Cρρ-(k)Cρ-1=(k)S                          (4.25) 

(k)]Cρ  -  [1  /  (k)S  (k)]Cρ  -  [1  (k)S 2221111122               (4.26) 

(k)]Cρ  -  [1 /  (k)S (k)C )ρ(ρ  (k)S 2221112

1/2

2112                (4.27) 

Thus the evaluation of partial structure factors depend on the computation of Cij(k) 

the direct correlation function as obtained by them can be written as 

i

3

iiij σr       ;              ]r  d  r  b    [a    (r)C                           (4.28) 

λ r         ;                                           a      (r)C 112    (4.29) 

    12

432

1 σ r  λ  ;  r] / }λ)(r d  λ)(r d λ 4 λ)(r {b  [a                           (4.30) 

12σ r        ;                                           0                (4.31) 

 Here 

2 / )σ(σ      λ 12                    (4.32) 

6 / σ ρ    π   η 3

iii                    (4.33) 

21 η    η      η                               (4.34) 

21 σ / σ      α                    (4.35) 


42

21

3

21

21

2

2

2

2

3

11

η)(1   }α)(1 η)(1 η3η    )η(1    )η2η(1           

)]η(1 αη[1 α)(1 3η    )η4η(4 )ηαη(    a





 

          (4.36) 
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
42

21

33

21

21

2

1

2

2

3

12

3

η)(1 α} α)(1  η)(1 η3η  -α )η(1  )2ηη-(1            

)]η(1 αη[1 α)(1 3η  )η4η(4 )ηαη(   a α




          (4.37) 

]4 / g  α α)(1 η   g [η 6      σb      β 2

12

2

2

2

111111                (4.38) 

]4α / g α)(1 η   g [η 6      σb      β 32

12

2

1

2

222222               (4.39) 

2

3

22

3

11

3

11 γα      2 / ]a η α    a [η       dσ      γ               (4.40) 

12222

2

1112 g  ]g η   α / g [η  α)(1  3      bσ                           (4.41) 

2

211 η)(1  ] 2 / 1)(α 3η    2) / η[(1      g               (4.42) 

2η)(1  α] 2 / 1)(α 13η  -  2) / η[(1      22g               (4.43) 

2

2112 η)(1  ] α)(1 2 / )η(η  α) - (1 3    2) / η[(1      g               (4.44) 

and finally obtaining the total structure factor  

(k)S
(k)fC  (k)fC

(k)(k)ff
)C(C=S(k) ij2

22

2

11

ji
2

1i

2

1j

2/1

ji



 

            (4.45) 

Where fj(k) and fj(k) are the atomic scattering factors taken from literature 

(Venkatesh et al., 2003) and Ci and Cj are the atomic fractions of the ith and jth species 

respectively. 

Thus for the binary alloy, the total structure factor can be written as 

12

22

2

1122

2

221221

1/2

2111

2

11 ]fCf[C(k)]S fC (k)Sff)C2(C-(k)SfC [  S(k)    

                                                                                                                       (4.46) 

The partial structure factors are then Fourier transform to get the partial radial 

distribution functions, gij(r) as 
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dr (kr)sin k  ]δ-(k)[S
)ρρ(2π

1
      1-(r)g ij

0
ij2/1

ji

2ij 


              (4.47) 

Here δij is the kronecker delta and is given in Eqn. (4.24). 

The partial radial distribution functions are used to calculate the coordination 

number as 

.dr r  (r)g ρ  π4    Z
minr

0

2

ijijij                  (4.48) 

 

4.3. RESULTS AND DISCUSSION 

 The TSFs characterizes the structure of binary alloys were evaluated at five 

different concentrations of Cu in Al-Cu alloys and at six different concentrations of Cu 

in Ag-Cu alloys. Those concentrations were chosen in both these alloys because the 

experimental results were available. A necessary condition in the application of Lebowitz 

solution is σ22>σ11. Here σ11 corresponds to the diameter of Cu and σ22correspond to the 

diameter of Al in Al-Cu melts 

 

4.3.1. Concentration dependent Structural characteristics in Al-Cu Alloys  

4.3.1.1. Partial and Total Structure factors in Al-Cu alloys: 

The hybrid potential parameters σij, ij and λij were obtained by Lorentz-Berthelot 

rule using SW parameters of pure components (Venkatesh and Mishra, 2005; Mishra and 

Venkatesh, 2008). The input parameters used in the present calculations are listed in 

Table 4.1. 
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Table 4.1. Input parameters of liquid Al-Cu alloys with σii as the diameter, ii/kB as the 

depth, λii as the breath of the square well potential and ρn as the number density 

 σii (Å) εii/kB λii          ρn 

Cu 

Al 

2.35 

2.43 

300 

160  

1.68 

1.30 

0.07408 

0.05235 

 

In the present calculations the concentrations are expressed in terms of atomic 

fraction of Cu i.e., C1. The peak positions and peak heights of the concentration dependent 

PSFs and TSFs, S(k) of the liquid Al-Cu alloys are presented in Table 4.2, which give the 

detailed information regarding the principal peak and structural characteristics of the 

binary melts at different compositions. The first peak positions of S(k) are shifted from 

2.7Å-1 to 2.8Å-1 with increasing atomic percent of Cu from 10% to 40%. Roa and 

Bandyopadhayay also observed in their work on Mg-Zn melt that the maximum shift 

towards the larger k value with increase in the concentration of Zn in the melt. The 

amplitude of the first peak increases with increase in the atomic percent of Cu except in 

17% Cu in Al-Cu alloys which is the eutectic composition of that alloy. The increase in 

the height of the peaks with increase in Cu concentration suggests that formation of bonds 

happen in the melt and that Cu atoms forms Cu-Cu cluster in the Al bulk melts. Similar 

trend were observed for Ag-Sn (Gopala Rao and Satpathy, 1990), Cu-Bi (Gopala Rao and 

Satpathy, 1990) and in case of Ag-In (Venkatesh et al., 2003). At the same time some of 

the original Cu-Cu bonds are destroyed and some new Al-Cu bonds have been formed. 

The increase in heights of the peaks with increase in atomic percent of Cu from 10% to 

40% suggests the amount of forming bonds increases. Similar trend was observed for the 
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same alloy at 17% and 33% Cu (Brillo et al., 2006) and in Fe-Al alloy (Roik et al., 2014). 

But at the eutectic composition of the melt i.e, 17% Cu there is no increase in peak heights 

which suggests that the amount of destroyed bonds also increases in the melt.  

 

Table 4.2. Theoretical and experimental values of first peak positions, k and peak heights 

S(k) of Al-Cu alloys at different compositions of Cu. 

% Cu in 

Al-Cu 

Temp 

  K  

k11(Å
-1) S11(k) k22(Å

-1)  S22(k) k12(Å
-1)  S12(k) k(Å-1)  S(k) 

 10 

 17 

 25 

 33 

 40 

  973 

1023 

  973 

1023 

1023 

2.7 

2.8 

2.8 

2.8 

2.8 

1.11 

1.20 

1.36 

1.51 

1.69 

 2.7 

 2.8 

 2.8 

 2.8 

 2.8 

2.18 

2.11 

2.21 

2.17 

2.16 

 2.7 

 2.8 

 2.8 

 2.8 

 2.8 

0.36 

0.46 

0.66 

0.78 

0.91 

2.7 

2.8 

2.8 

2.8 

2.8 

2.12 

2.09 

2.29 

2.38 

2.53 

 

The partial Cu-Cu atomic distribution i.e, S11(k) in Table 4.2 differs significantly 

from the structure factor of liquid Cu (Taylor et al., 2001), indicating the disappearance 

of Cu-like structure upon alloying. However the partial structure factor related to the Al-

Al distribution i.e, S22(k) in Table 4.2 resembles the structure of pure Aluminium (the 

first peak positions and peak heights of  pure Al do not differ much) (Wertheim, 1963). 

Further TSFs along with their experimental data illustrated in Fig. 4.1 throughout 

the k-space. TSFs become constant around one in high k region. 
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A discrepancy in peak height was observed with increase in atomic percent of Cu. 

This may be due to the fact that the melting point of Cu is 1353K while the working 

temperatures are 973K and 1023K. Hence one can presumed that the noble metal Cu may 

exist in the alloy as an amorphous material at the working temperatures which are much 

lower than Cu melting point. PSFs are also presented in Figs. 4.2 to 4.4 in entire 

momentum space. 
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As seen from Figs. 4.2 and 4.3, the peak heights of S11(k) and S22(k) increases 

with increasing atomic percent of Cu and Al respectively. This tendency was also 

exhibited in Ag-Sn alloy (Rao and Satpathy, 1990), and in Ag-In alloys (Venkatesh et al., 

2003). 
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The peak height of S12(k) increases from 0.36 to 0.91 as the atomic percent of Cu 

increases from 10 to 40. As seen from Table 4.2, the peak height of S12(k) is lower than 

other partial structure factors (S11(k) and S22(k)) at all compositions which may be due to 

the segregation of Cu in Al-Cu alloys.  

 

Dahlborg et al., observed a bump (pre peak) centered at k=1.5 Å-1 in their elastic 

neutron scattering experiment at 10%, 17.1% and 25% Cu for Al-Cu melts (Dahlborg et 

al., 2013) however, with quasi elastic intensity measurement performed by (Dahlborg et 

al., 2007) at all composition of Al-Cu melts at 973K and1173 K a bump can be seen only 

for the 25% Cu. The present model does not show such pre-peaks or almost negligible 

prepeaks.  
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4.3.1.2. Partial and Total radial distribution functions in Al-Cu alloys: 

Partial and total pair correlation functions were obtained by the Fourier transform 

of partial and total structure factors. The computed values of radial distribution function 

g(r), of liquid Al-Cu alloys at different atomic percent of Cu were presented in Fig. 4.5 

along with the available experimental values. The agreement between experiments (Wang 

et al., 2009; Brillo et al., 2008) and the theory at all concentrations are good especially in 

light of peculiar nature of Al-Cu alloy. There is a discrepancy in peak height between 

theory and experiment at 40% of Cu which may be due to the existence of some Cu cluster 

at the working temperature 1023K as it has been mentioned that the melting temperature 

of Cu is 1353K. However, the peak position at this concentration does not change. The 

first peak of g(r) for all compositions is located around 2.6Å and height decreases with 

increasing the atomic percent of Cu in Al-Cu alloys. The computed results of the radial 

distribution functions agree well with the experiments (Wang et al., 2009; Brillo et al., 

2008) for all compositions, especially both the locations and amplitudes of their peaks, 

providing strong support for accuracy liquid structures using SW model.  
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 The partial radial distribution functions (PRDFs) are shown in Table 4.3. As seen 

from Table 4.3 as the atomic percent of Cu in Al-Cu alloys increases the amplitude of the 

first peak of the PRDFs increases and the peak positions are almost invariant with 

compositions. The peak positions are located at around 2.6 Å. From the PRDFs we 

obtained the nearest neighbor distances between Cu-Cu, Al-Al and Al-Cu which are given 

in Table 4.3. It can be seen from Table 4.3 that the separation between Al-Al atomic pairs 

are the longest, so it is assumed that the higher proportion of Al atoms in a cluster the 

larger that cluster must be. This condition favors compound forming behavior between 

Al and Cu as in case of experimental work on Al-Cu alloy (Brillo et al., 2006). 
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Table 4.3. Theoretical and experimental values of first peak positions, r and peak heights 

g(r) of Al-Cu alloys at different compositions of Cu. 

% Cu in 

 Al-Cu 

Temp 

K  

r11(Å)  g11(r) r22(Å)   g22 (r) r12(Å)    g12(r) rmax(Å)  g(r) 

 10 

 17 

 25 

 33 

 40 

973 

1023 

973 

1023 

1023 

2.64 

2.63 

2.63 

2.62 

2.61 

1.99 

2.11 

2.33 

2.31 

2.38 

2.69 

2.69 

2.69 

2.69 

2.68 

2.46 

2.48 

2.53 

2.53 

2.55 

2.63 

2.63 

2.63 

2.62 

2.61 

2.36 

2.39 

2.45 

2.48 

2.51 

2.67 

2.66 

2.65 

2.64 

2.62 

2.24 

2.19 

2.18 

2.18 

2.21 

 

 

4.3.1.3. Partial and Total Coordination number in Al-Cu alloys: 

The partial and total coordination numbers of the Al-Cu alloy at different atomic 

percent of Cu were calculated at 1373 K because experimental results were only available 

at this temperature. The computed values were shown in Table 4.4. As seen from Table 

4.4, the total coordination number increases from 11.16 to 13.32 with increasing 

composition of Cu. The coordination number of pure liquid Al is 11.5 (Kita et al., 1994) 

and we find a total coordination number at 90% Al is 11.16, which favors our model 

calculation for this microscopic parameter as with increasing Al% binary mixture shifting 

towards one component system. In fact the distance between Al-Al atoms is around 2.69Å 

while that between Cu-Cu is 2.63Å which is nearly corresponds to diameter of Al and Cu 

respectively. The existence of constant inter-atomic separation may be due to segregation 

within atomic dimensions i.e., clusters may exist (Gopala Rao and Satpathy., 1990; 

Gopala Rao and Sathpathy, 1982). Xiong et al. (Xiong et al., 2015) found in their work 
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on liquid Al75Cu25 using X-ray diffraction and electrostatic levitation measurements 

together with the ab initio molecular dynamic simulation in the temperature range from 

800 to 1600 K that a linear increase in total coordination number with increasing 

concentration of Cu. The same trend is also observed in present calculations. Cu 

coordination number, Z11 increases from 0.87 to 3.72. This increase in coordination 

number may be due to the existence of Cu in amorphous form in the alloy as mention 

above at present working temperatures or Cu-clustering may increase with increasing Cu 

composition. However, the coordination number 6 is common in copper in crystalline 

state but in the present computations the partial coordination numbers as a function of 

composition shows that there is a good miscibility of Cu in Al-Cu alloy at lower atomic 

percent of Cu at 1373K.  

 

Table 4.4. Partial and total coordination number of Al-Cu alloys at different compositions 

of Cu at 1373K. 

% Cu in 

Al-Cu 

Z11 

 

Z22 Z12 

 

Total coordination 

number, Z 

10 

17 

25 

33 

40 

0.87 

1.58 

2.50 

3.06 

3.72 

8.04 

7.57 

6.87 

6.30 

5.62 

2.25 

2.84 

3.41 

3.80 

3.98 

11.16 

11.99 

12.78 

13.06 

13.32 

 

With increase in composition of Cu, coordination number of Al, Z22, decreases 

from 8.04 to 5.62 as shown in Table 4.5. It means that binary mixture shifting towards 
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Cu at lower compositions of Al. Pure Al has face centred cubic (fcc) structure with 

coordination number 12 in the solid state. The total coordination number, Z of Al-Cu 

alloy at 10 atomic percent of Cu is 11.16 and it increases with increase in composition of 

Cu. The computed values of coordination numbers compared with the available 

experimental values are also shown in Fig. 4.6.  

 

  

 4.3.2. Concentration dependent structural Characteristics in Ag-Cu alloy 

4.3.2.1. Partial and Total Structure factor in Ag-Cu alloys: 

The Ag-Cu alloy is also of great theoretical interest because it resembles a model 

glass forming with Lennard-Jones potential function (Vardeman and Gezelter, 2001). The 

SW input parameters σij, ij and λij for Ag-Cu alloys are listed in Table 4.5. Here 1 stands 

for Cu and 2 for Ag and so σ11 corresponds to the diameter of Cu and σ22 correspond to 

the diameter of Ag. 
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Table 4.5. Input parameters of liquid Ag-Cu alloys with σ as the diameter, /kB as the 

depth and λ as the breath of the square well potential 

% Cu in 

Ag-Cu 

Temp 

(K) 

σii 

(Å) 

σjj 

(Å) 

ii/kB jj/kB λii λjj 

16.5 

28 

37 

50 

71 

85 

1173 

1138 

1078 

1123 

1193 

1273 

2.39 

2.39 

2.39 

2.38 

2.36 

2.35 

2.63 

2.63 

2.63 

2.62 

2.61 

2.60 

300 

300 

300 

300 

300 

300 

500 

500 

500 

500 

500 

500 

1.68 

1.68 

1.68 

1.68 

1.68 

1.68 

1.75 

1.75 

1.75 

1.75 

1.75 

1.75 

 

In the present calculations the concentrations are expressed in terms of atomic 

fraction of Cu i.e., C1. The concentration dependent principal peak positions and intensity 

of PSFs and TSFs are presented in Table 4.6. As seen from Table 4.6, the peak heights 

and positions of the TSFs is almost constant i.e., this alloy does not show any unusual 

features with composition and temperature. Lukens and Wagner also observed similar 

trend in their work on liquid Ag-Cu alloys using X-ray diffraction (Lukens and Wagner, 

1975). In Ag-Cu alloys, position of first peak of S(k) is shifting from 2.7 Å-1 to 2.9 Å-1 as 

the concentration of Cu increases from 16.5% to 85% and the amplitude of the first peak 

decreases from 16.5% Cu to 37% Cu after that increases up to 85% Cu. Thus, the 

positions of the first maxima of TSFs lie between the principal peak positions of liquid 

Ag and Cu which are 2.6 Å-1 and 3.0 Å-1 respectively as mentioned in Chapter 2. 
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Table 4.6. Partial and total structure factors with first peak positions, k and peak heights 

S(k) of Ag-Cu alloys at different compositions of Cu. 

 

 The increase in the height of the peaks with increase in atomic percent of Cu 

from 37% to 85% suggests the amount of forming bonds increases and those Cu atoms 

forms Cu-Cu cluster in the Ag-Cu melts. Similar trend was observed for the same alloy 

at different composition of Cu (Lukens and Wagner, 1974). The increase in heights of the 

peaks with increase in atomic percent of Cu from 37% to 85% and the shifting of the peak 

position from 2.7 to 2.9 Å suggests that the TSFs is shifting towards liquid Cu structure 

factor. 

TSFs in entire momentum space along with their experimental values (Lukens 

and Wagner, 1975) were illustrated in Fig. 4.7. 

% Cu in 

Ag-Cu 

Temp 

  (K) 

k(Å-1)   S11(k) k(Å-1) S22 (k) k(Å-1)  S12(k) k(Å-1)   S(k) 

 16.5 

 28 

 37 

 50 

 71 

85 

1173 

1138 

1078 

1123 

1193 

1273 

2.8 

2.8 

2.8 

2.8 

2.9 

2.9 

1.25 

1.45 

1.60 

1.83 

2.22 

2.53 

 2.7 

 2.7 

 2.7 

 2.8 

 2.8 

 2.8 

2.53 

2.33 

2.15 

1.92 

1.56 

1.29 

 2.7 

 2.7 

 2.8 

 2.8 

 2.8 

 2.9 

0.64 

0.75 

0.84 

0.93 

0.82 

0.69 

2.7 

2.7 

2.7 

2.8 

2.8 

2.9 

2.76 

2.70 

2.60 

2.70 

2.60 

2.75 
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  We present the concentration dependent partial structure factor related to Cu-Cu 

atomic distribution i.e, S11(k), Ag-Ag atomic distribution i.e, S22(k) and Ag-Cu atomic 

distribution i.e, S12(k) in liquid Ag-Cu alloys at different concentrations ranging from 



Chapter-4 

 

 

 
  78 

 

  

16.5 to 85 atomic percent of Cu in Figs. 4.8 to 4.10. It is observed that the peak positions 

and peak heights of S11(k) increases with increase in the concentration of Cu and it will 

come towards the pure Cu as mention in Chapter 2.  

 

 One can see from Fig. 4.8 that the curvature of S11(k) i.e. the peak height 

increases with increasing concentration of Cu in lower k region. At low concentration of 

Cu, the tendency for complex formation of Ag in Ag-Cu is maximum which indicates 

low curvature in Cu-Cu correlation. As seen from Fig. 4.9 that the S22(k) curvature 

increases with increasing concentration of Ag and with increase in the concentration of 

Ag i.e, at 85 atomic percent of  Cu only less curvature is seen as shown in Fig. 4.9. 
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 It can be seen from Fig. 4.9 that the S22(k) peak height decreases with increasing 

concentration of Cu. This decrease in curvature height in low k region beyond 50 atomic 

percent of Cu shows the complex formation tendency between Ag and Cu.  
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As shown in Fig. 4.10, there is only small peak at lower k region in S12(k). Similar 

structures were obtained for liquid Ag-Sn alloys (Gopala Rao and Satpathy, 1990) and 

Ag-In alloys (Venkatesh et al., 2003). The peak height of S12(k) increases from 16.5 to 

50 atomic percent of Cu and again decreases at higher atomic percent of Cu. This may be 

due to the segregation tendency of Cu atom in Ag-Cu melts. Such segregation tendency 

of Cu in binary melts has been discussed above and also explained by the computation of 

concentration fluctuation in the long wave length limit and chemical short range order 

parameter in Chapter 5. 

 

4.3.2.2. Partial and Total radial distribution functions in Ag-Cu alloys: 

The Fourier transform of the PSFs and TSFs give partial and total radial 

distribution functions in binary melts. The PRDFs, gij(r) and total radial distribution 
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function, g(r) along with nearest neighbor distance between Cu-Cu (r11), Ag-Ag (r22) and 

Ag-Cu (r12) are shown in Table 4.7. The peak positions of the partial radial distribution 

functions g11(r) and g22(r) are practically identical with those observed in pure Cu and Ag 

respectively which was also shown by Lukens and Wagner in their experiment on Ag-Cu 

alloys using X-ray diffraction (Lukens and Wagner, 1975). The inter-atomic distance 

(peak position of g(r)), rmax decreases from 2.77Å to 2.67Å with increase in concentration 

of Cu except 28% which is the eutectic compositions of the alloys. This may be the reason 

of Cu-Cu cluster formation in Ag-Cu melts. Ag-Ag separation is increasing with 

increasing Cu concentration shows that the shifting of g22(r) towards pure Ag radial 

distribution function.  The position of the first maxima in g(r) of Ag-Cu alloys at different 

compositions of Cu are also lie in between that of the g(r) of pure Ag and Cu (i.e., in 

between 2.5 Å to 2.8 Å). 

 

 Table 4.7. Partial and total radial distribution function with first peak positions, r and 

peak heights g(r) of Ag-Cu alloys at different compositions of Cu. 

% Cu in 

Ag-Cu 

Temp 

K 

r11(Å)  g11(r) r22(Å)  g22(r) r12(Å)   g12(r) rmax(Å)   g(r) 

16.5 

28 

37 

50 

71 

85 

1173 

1138 

1078 

1123 

1193 

1273 

2.54 

2.67 

2.54 

2.67 

2.65 

2.64 

3.25 

3.54 

3.27 

3.45 

3.03 

2.89 

2.78 

2.86 

2.78 

2.76 

2.73 

2.72 

3.40 

3.74 

3.44 

3.76 

4.16 

5.12 

2.66 

2.70 

2.66 

2.69 

2.67 

2.66 

3.34 

3.13 

3.36 

3.12 

3.02 

2.98 

2.77 

2.83 

2.75 

2.72 

2.69 

2.67 

3.21 

3.23 

3.02 

3.13 

2.96 

2.86 
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The reduced distribution functions of Ag-Cu alloys are presented in Fig. 4.11 with 

their corresponding experimental values (Lukens and Wagner, 1975). It is obvious that 

the agreement between our computed values and the experimental values is satisfactory, 

which strengthened our present model calculations.  
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 4.3.2.3. Partial and total coordination number of Ag-Cu alloys: 

  The coordination number (partial and total) was obtained by integrating the 

partial and total radial distribution functions between two minima respectively. The 

partial coordination number related to Ag-Ag, Cu-Cu and Ag-Cu i.e, Z11, Z22 and Z12 

respectively are given in Table 4.8, the total coordination number, Z at different 

concentrations of Cu along with their corresponding experimental values are also listed 

ion Table 4.8. There is a good agreement between the computed values with the available 

experimental data (Lukens and Wagner, 1975).  

  

 Table 4.8. Partial and total coordination number of Ag-Cu alloys at different 

compositions of Cu. 

% Cu in 

AgCu 

Temp 

K 

Z11 

 

Z22 Z12 

 

Total coordination 

number, Z 

theort.         expt. 

16.5 

28 

37 

50 

71 

85 

1173 

1138 

1078 

1123 

1193 

1273 

1.53 

1.86 

3.58 

5.30 

8.08 

10.07 

9.25 

8.78 

7.23 

6.34 

4.12 

2.43 

3.01 

3.65 

3.99 

4.32 

4.14 

3.43 

11.63         11.90 

     12.26          12.25 

12.11         13.05 

12.16         13.00 

     12.34          12.75 

 12.35         12.35 

 

  The coordination number of Cu-Cu varies from 1.53 to 8.33 when the atomic 

percent of Cu increases from 16.5 to 85%, while the coordination number of Ag-Ag 
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decreases from 9.25 to 2.43. These variations support our calculation for separation 

between Ag-Ag and Cu-Cu in atomic dimension as above. 
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5. BHATIA - THORNTON FLUCTUATIONS AND 

ASSOCIATED PROPERTIES OF LIQUID ALLOYS 

5.1. INTRODUCTION  

The knowledge of the structural and thermodynamic properties is essential for 

understanding the nature of ordering in liquid alloys (Odusote, 2008). Liquid alloys are 

disordered materials which have short range order and it is more difficult to understand 

their complexities. Therefore, it requires extensive theoretical investigation to understand 

the complexities of liquid binary alloys (Koirala et al., 2014). Different theoretical models 

have been proposed to describe the concentration dependence of thermodynamic properties 

of liquid binary systems (Tribula et al., 2015).The well-known Bhatia-Thornton (BT) 

(Bhatia and Thornton, 1970) partial structure factors namely the number – number 

correlation function SNN(k), the concentration – concentration correlation function SCC(k), 

and the number-concentration correlation functions SNC(k) were determined in liquid Al-Cu 

and Ag-Cu alloys at various atomic percent of Cu using square well model of PSFs which 

are presented in Chapter 4. These functions in the binary mixture occur because of changes 

in number density and concentration of the constituent elements and characterize the 

different correlation between local density (N) and concentration (C) in it. BT correlation 

functions are linearly interrelated with Faber-Ziman and Ashcroft-Langreth partial structure 

factors (Venkatesh et al., 2003) and are of considerable importance to analyze the nature of 

interactions, particularly if the region of interest is of the order of atomic dimensions. Total 

structure factor of binary liquid can also be obtained using BT PSFs. Bhatia-Thornton 

mentioned in their paper that these number and concentration dependent fluctuation in 
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binary liquids decides various properties of liquids. The property of these fluctuations at 

long wavelength limit i.e., at k→0 is directly related to various thermodynamic properties. 

In long wavelength limit these PSFs are referred as SNN(0), SCC(0) and SNC(0) respectively 

(Bhatia and Thornton, 1970) and can be calculated directly from the thermodynamic 

properties of the alloys. 

Mathematical representation of SNN(k), SCC(k) and SNC(k) as (Bhatia and Thornton, 

1970). 

 (k)N(k)N
N

1
 (k)S *

NN

            (5.1) 

 (k)C(k)CN (k)S *
CC

            (5.2) 

 (k)C(k)NRe (k)S *
NC

            (5.3) 

*represents the complex conjugate. 

These number-concentration fluctuations have proved to be of great significance as 

they provide topological and chemical short range order in the system.  

The Fourier transformations of SNN(k) and SCC(k) give radial number fluctuation, 

4πr2ρNN(r) and radial concentration fluctuations, 4πr2ρCC(r) respectively, which describe the 

global or the topological short-range order and the Warren-Cowly short-range order 

parameters (Singh and Somer, 1997; Venkatesh et al., 2003).  

The concentration-concentration fluctuation in the long wavelength limit SCC(0),is 

an important parameter to understand the structure and the binding of atoms at microscopic 

level. It is related to theordering effects in binary liquid alloys (Tribula et al., 2015). 

The SCC(0) is an important parameter for the study of the thermodynamic properties 

(Trybula et al., 2015; Alblas and Vander lutg, 1982; Dahlborg et al., 2013; Ivanov and 
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Berezutski, 1996; Odusote, 2008), the glass formation tendency (Singh et al., 1991) and 

various transport properties (Novakovic et al., 2005; Cheng et al., 2009; Jakse and Pasturel, 

2015; Singh and Somer, 2006) of the liquid alloys. 

However, these PSFs in the long wavelength limit as k→0 can be given as 

(0)SδTβk
V

N
 (0)S

CC
2

TBNN
              (5.4) 

NP,T,

2

2

BCC
dC

Gd
TNk(0)S
















              (5.5) 

(0)S δ(0)S
CC

'
NC

                (5.6) 

where βT is the isothermal compressibility, G is the free energy, P is the pressure, and δ’ is 

the dilation factor defined as 

)v(v
V

N

c)v(1cv

vv
 δ

21
21

21' 



              (5.7) 

where v1 and v2 are the partial molar volume per atom of the two species. 

For k→, i.e. for completely uncorrelated system 

SNN(k)→1,SCC(k)→CACB and SNC(k)→0 

            In this chapter, a detailed analysis of the BT correlation functions using square well 

(SW) model approach (Gopala Rao and Venkatesh, 1989; Venkatesh et al., 2003) for liquid 

Al-Cu alloys and Ag-Cu alloys at different atomic percent of Cu have been determined. 

The thermodynamically important concentration-concentration fluctuations, SCC(0) have 

also been theoretically evaluated unlike other workers who have computed this property for 

alloys through equations fitted with experimentally evaluated thermodynamic parameters 

and calculated back the same property or their derived properties (Singh and Somer, 1992; 
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Awe and Olawole, 2012). The microscopic function, the chemical short range order 

parameters (CSRO) α', which can be perceived from the SCC(0) gives information regarding 

the ordering and segregating in liquid alloys at atomic scale (Odusote, 2008). Further 

isothermal compressibility as a function of Cu concentration has been computed from the 

Kirkood-Buff formula (Venkatesh et al., 2003; Mishra and Venkatesh, 2008). 

 The concentration-concentration correlation function in the long wavelength limit, 

SCC(0), have been evaluated through model proposed by Venkatesh and Mishra (Venkatesh 

and Mishra, 2005; Mishra and venkatesh, 2008).  

 

5.2. THEORY 

The BT partial structure factors were calculated using AL type partial structure factors of 

Al-Cu and Ag-Cu liquid alloys. 

The BT correlation functions in binary alloys are linearly related to the partial 

structure factors Sij(k) (Gopala Rao and Satpathy, 1990; Venkatesh et al., 2003) as follows 

(k)]S )C(C 2(k)SC  (k)S C (k)S
12

1/2
21221111NN

           (5.8) 

(k)]S )C(C 2-(k)SC  (k)S [C CC (k)S
12

1/2
2122111221CC

           (5.9) 

(k)]S )C(C )C-(C-(k)SCC - (k)S CC (k)S
12

1/2
211222211121NC

                   (5.10) 

where C1 and C2 are the atomic fractions of the component 1 and 2 respectively. 

The concentration fluctuation, SCC(0),which is an important parameter to understand 

the structure and the binding of atoms at the microscopic level, is related to ordering effects 

in binary liquid alloys (Singh, 1987; Singh, 1993). Further SCC(0) can be calculated through 

the computed PSFs in the long wavelength limits. 



Chapter-5 

 

  
  89 

 

  

(0)]S 1/2)C(C 2-(0)SC  (0)S [C CC (0)S
122122111221CC

         (5.11) 

The computed partial structure factors presented in Chapter 4 by Eqns. (4.25) to 

(4.27) of the considered alloys have been derived in the limit of k → 0. Thus, S11(0), S22(0) 

and S12(0) are calculated in terms of direct correlation functions in the long wavelength 

limit i.e. C11(0), C22(0) and C12(0) as 

  
(0)Cρ1

(0)]Cρρ(0)Cρ[1
)0(S

-1

222

2
12211111

11 











         (5.12) 

  
(0)Cρ1

(0)(0)]SCρ[1
(0)S

222

11111
22




           (5.13) 

  
(0)Cρ1

(0)(0)SC)ρ(ρ
(0)S

222

1112

1/2

21

12


   `         (5.14) 

Where  
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(5.17) 

Various parameters incorporated in Eqns. (5.12) to (5.17) have their usual notations, 

which are presented in Chapter 4 in detail. 
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Chemical short range order parameter, α' can be evaluated theoretically from the 

knowledge of SCC(0). An interesting relation between α' and SCC(0) for the first neighbor 

shell is given by 

1CC

1

1CC

id
CCCC

S  (0)S Z

S
        

S  (0)S Z

(0)S   (0)S
    α









         (5.18) 

Here  CC(0)S 21

id

CC  and S1 is the deviation of the SCC(0) from its ideal value, Z is  the 

total coordination number. 

 The concentration dependent isothermal compressibility βT has been calculated 

through the Kirkwood-Buff’s equation (Mishra and Venkatesh, 2008), which is given by 

1- 
12

1/2
21212222211111TB

(0)]C )ρ(ρCC 2-(0)Cρc  (0)C ρc 1[Tβρk        (5.19) 

 

5.3. RESULTS AND DISCUSSION 

The computations for the alloys were performed at different concentrations using 

potential parameters of the pure components. Thus the significance of the work is the 

evaluation of the thermodynamic and structural properties from the potential energy 

parameters of pure components. 

5.3.1. Al-Cu Alloys 

The potential parameters of the pure components for the evaluation of partial 

structure factors have shown in Table 4.1 in Chapter 4. The thermodynamically important 

correlation functions SNN(k), SCC(k) and SNC(k) are given in Figs. 5.1 to 5.3.  

It can be seen from Fig. 5.1 that the peak position of SNN(k) at different 

concentration of Cu lies in between 2.70 Å-1 and 2.80 Å-1. SNN(k) varies in a similar manner 
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to the total structure factor S(k) and that is also similar in other cases as well (Venkatesh et 

al., 2003; Gopala Rao and Satpathy, 1990; Gopala Rao and Das Gupta; 1985). The peak 

maximum occurs at the same position as in the case of S(k) and the peak value increases as 

the atomic percent of Cu increases. The value of SNN(k) tends to one in higher k region. It 

may be noted that at all concentrations SNN(k) shows two conspicuous first and second 

peaks thus showing a strong number-number correlation in the momentum space (Mishra 

and Venkatesh, 2008).  

 

The SCC(k) oscillates about the product of their atomic percent i.e. C1C2. There is a 

slight maximum around 2Å-1 at all compositions and this maximum increases with 

increasing concentration of Cu whereas become constant in higher k-region at all Cu% in 

Al-Cu melts. Thus the significant oscillation of SCC(k) was only observed in low k side 
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only. This increase in curvature of concentration fluctuation with increase in Cu% clearly 

shows a segregating behavior of the constituents of alloys. 

 

 

The SNC(k) shown ion Fig. 5.3 oscillates around zero. There is a slight minimum at 

or near the peak point of S(k). The similar behavior was observed in Ag-Sn alloy (Gopala 

Rao and Satpathy, 1990), Ag-In alloy (Venkatesh et al., 2003) and Al-Si alloy (Mishra and 

Venkatesh, 2008). This minimum increases with increase in the atomic percent of Cu. At 

around 4Å-1 there is a slight maximum, which also increases with increase in atomic 

percent of Cu. In low k region, it may be noted that SNN(k) and SNC(k) varies inversely in 

magnitude and latter correlation function tends to zero as k→. 
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The computed values of SCC(0) as a function of atomic fraction of Cu for liquid Al-

Cu alloys along with the ideal values, SCC
id(0) are given in Table  5.1. The values of the 

coordination number of Al-Cu at different compositions were taken from Chapter 4. It may 

be observed from Table 5.1 that there is a slight positive deviation of SCC(0) from its 

corresponding ideal values at all compositions taken under investigation. 

The deviation of SCC(0) from its ideal value is an important factor for the 

description of the nature of atomic interactions in the mixture.  SCC(0)<SCC
id(0) shows the 

presence of chemical ordering while SCC(0)>SCC
id(0) shows segregation in the melts 

(Singh, 1987; Singh, 1993). 
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Table 5.1. The concentration-concentration fluctuation at the long wavelength limit SCC(0) 

and its ideal value, SCC
id (0), Co-ordination number, Z and Chemical short range order 

parameter, α' of Al-Cu alloys at different compositions of Cu. 

% of Cu 

in Al-Cu alloys 

SCC(0) 

 

Sid
CC(0) 

 

Co-ordination 

number, Z 

α' 

10 

17 

25 

33 

40 

0.0991 

0.1576 

0.2201 

0.2698 

0.3004 

0.0900 

0.1411 

0.1875 

0.2211 

0.2400 

11.16 

11.99 

12.78 

13.06 

13.32 

0.00797 

0.00881 

0.01236 

0.01402 

0.01533 

 

The chemical short-range order parameter, α' at different atomic percent of Cu was 

given in the same table. This ordering parameter, α' can used to quantify the ordering or 

segregation effects in the melts. For liquid binary alloy, α' is foundto be within the range of 

-1 to +1. Negative value means ordering in the melts and positive value of indicates the 

segregation nature (Singh and Somer, 1997). 

 For more clear understanding the nature of alloys in entire range of concentrations, 

SCC
id(0), SCC(0) vs concentration of Cu and α'vs concentration of Cu were presented in Fig. 

5.4 and Fig. 5.5 respectively. 
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The negative deviation of SCC(0) from the ideal value informs the complex 

formation and the positive deviation of SCC(0) from the ideal value shows segregation in 

the alloy. The computed values of SCC(0) show a positive deviation from its ideal values at 

all concentrations, which means there is the segregation tendency in Al-Cu alloys. Further 

the computed values of chemical short range order parameter, α' is also given in Table 5.1 

as well as in Fig. 5.5. The values of α' at different atomic percent of Cu has positive values 

ranges from 0.008 to 0.015 indicating segregation of the constituents atoms. 
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The partial structure factors in the long wavelength limit S11(0), S22(0), S12(0) were 

employed to obtained the concentration dependent isothermal compressibility, βT in the 

melts and these  values are presented in Table 5.2.  

 

Table 5.2. S11(0), S22(0) and S12(0) and isothermal compressibility, βT (10-11m2 N-1) of Al-

Cu alloys at different compositions of Cu. 

 

 

 

 

 

 

 

% of Cu 

in Al-Cu alloys 

S11(0) 

 

S22(0) 

 

S22(0) 

 

βT×10-11 

(m2 N-1) 

10 

17 

25 

33 

40 

0.984 

0.964 

0.919 

0.859 

0.792 

0.128 

0.194 

0.289 

0.392 

0.488 

-0.284 

-0.377 

-0.477 

-0.548 

 -0.594 

6.53 

6.06 

5.81 

4.63 

4.16 
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The computed values of βT at different compositions of Cu have been computed by 

Eqn. (5.13) and the values are found to decrease with increasing atomic percent of Cu. The 

computed values of isothermal compressibility of pure liquid Al and Cu are 5.91             

(10-11 m2 N-1) and 2.00 (10-11 m2 N-1) respectively, which are given in Chapter 3. The 

compressibility of Al-Cu alloys was found to decreasewith increase in concentration of Cu 

as expected. This model calculation gives good result for the calculation of thermo physical 

properties of liquid binary alloys. 

 

5.3.2. Ag-Cu Alloys 

The potential parameters used for the calculations of correlation functions in Ag-Cu 

alloys are given in Table 4.5 of Chapter 4. The thermodynamically important BT 

correlation functions SNN(k), SCC(k) and SNC(k) for Ag-Cu alloys at different atomic 

percent of Cu are given in Figs. 5.6 to5.8.  
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It can be seen from Fig. 5.6 that the SNN(k) of Ag-Cu alloys at different atomic 

percent of Cu shows a great first peak in low k-region and peak position shifts from 2.7Å-1 

to 3.0Å-1 and the peak become weaker and broader at higher k-region. Thus the oscillation 

of the SNN(k) similar to that of S(k) that is also similar in other cases as well (Venkatesh et 

al., 2003; Gopala Rao and Satpathy, 1990; Gopala Rao and Das Gupta; 1985). The 

presence of strong second peak at all compositions is due to strong number-number 

correlation in the melts. 

The computed values of SCC(k) are shown in Fig. 5.7. It was observed that SCC(k) 

oscillates about the product of their atomic percent i.e. C1C2. 

 

 It can be observed from Fig. 5.7 that there is a small peak at low concentrations of 

Cu i.e.at 16.5% and 28% Cu in Ag-Cu alloys near 0.2Å-1. At higher concentrations of Cu, 
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i.e., from 37% Cu to 85%, there is a maximum at 2.1Å-1 and this maximum in SCC(k) graph 

decreases as the atomic percent of Cu increases. This concentration fluctuations showthe 

segregating tendency of the constituents of the alloys.  

It can be observed from Fig. 5.7 that the SCC(k) is only short-ranged correlation in 

this alloy. The cross correlation function, SNC(k) of Ag-Cu alloys is also shown in Fig. 5. 8.  

The computed values of the SNC(k) shown in Fig. 5.8 oscillate around zero. There is 

a slight maximum at or near the peak point of S(k) i.e., around 2.7Å-1. This maximum 

increases as the atomic percent of Cu is increases. It can be seen that there is small second 

peak at higher concentration of Cu.  

 

The computed values of SCC(0) at different atomic percent of Cu in liquid Ag-Cu 

alloys are given in Table 5.3 and are also shown in Fig. 5.9 along with their ideal values. 

The coordination number of Ag-Cu at different compositions was taken from Chapter 4. 
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This coordination number were employed in the calculation of α' through Eqn. 5.18. It can 

be seen from Table 5.3 that the values of α' for Ag-Cu alloys at all compositions show 

positive values which indicates segregating tendency in the alloys. 

 

Table 5.3. The concentration-concentration fluctuation at the long wavelength limit, SCC(0) 

and its ideal value, 𝑆𝐶𝐶
𝑖𝑑 (0), Co-ordination number, Z and Chemical short range order 

parameter, α' of Ag-Cu alloys at different compositions of Cu. 

% of Cu in Ag-Cu alloys SCC(0) Sid
CC(0) Z α' 

16.5 

28 

37 

50 

71 

85 

0.1383 

0.2029 

0.2352 

0.2531 

0.2127 

0.1319 

0.1378 

0.2016 

0.2331 

0.2500 

0.2059 

0.1275 

11.63 

12.26 

12.11 

12.16 

12.34 

12.35 

0.00031 

0.00052 

0.00070 

0.00101 

0.00259 

0.00271 

 

It can be seen from the Table 5.3 that the computed values of SCC(0) is greater than 

the corresponding ideal values i.e., SCC(0)>SCC
id(0) which shows segregation in the melts. 

This tendency is also supported by the computed CSRO (α') parameter which is given in 

Fig. 5.10 (Pasturel and Jakse, 2015). 

It can be observed from Fig. 5.9 that the deviation of SCC(0) from SCC
id(0) increases 

with increase in atomic percent of Cu up to 71 atomic percent and then it decreases. 
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The computed value of SCC(0) has slightly higher value than that of the ideal value 

at all compositions. Therefore, the alloy is of a weakly interacting nature and the positive 

value of SCC(0) from its ideal value which is shown in Fig. 5.9 also confirms the 

segregation in the melts. The positive value of α' also supports the segregating nature. 
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 The isothermal compressibility, βT at different compositions of the melts has been 

obtained from the well-known Kirkwood-Buff’s equation using long wavelength limit of 

PSFs. The computed values of S11(0), S22(0),S12(0) and βT are shown in Table 5.4. βT values 

are found to decrease with increase in atomic percent of Cu. This shows that as the 

concentration of Cu increases, the void space between the particles decrease or the 

existence of compact nature of the alloys is indicated. 
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Table 5.4. S11(0), S22(0) and S12(0) and  isothermal compressibility, βT (10-11m2 N-1) of Ag-

Cu alloys at different compositions of Cu at 1373K. 

% Cu in 

Ag-Cu 

S11(0) 

 

S22(0) S12(0) 

 

βT×10-11 

(m2 N-1) 

16.50 

21.65 

28.00 

37.00 

39.76 

50.00 

63.43 

71.00 

85.00 

86.38 

97.39 

0.8962 

0.8603 

0.8134 

0.7417 

0.7184 

0.6223 

0.4862 

0.4123 

0.2383 

0.2189 

0.0562 

0.12657 

0.1638 

0.2132 

0.2876 

0.3116 

0.4111 

0.5479 

0.6415 

0.8172 

0.8334 

0.9681 

-0.3148 

-0.3570 

-0.3999 

-0.4472 

-0.4589 

-0.4921 

-0.5022 

-0.4985 

-0.4221 

-0.4074 

-0.1959 

1.447 

1.459 

1.463 

1.453 

1.447 

1.466 

1.447 

1.578 

1.471 

1.447 

1.206 

 

Further, Ag being a soft metal is segregated from Cu and as the concentration of Cu 

increases the compressibility decreases which it should as pure Ag is soft and is used to 

harden by alloying with Cu.The compressibility of pure Ag and Cu are 2.5 (10-11 m2 N-1) 

and 2.0 (10-11 m2 N-1) respectively, the computed results for alloys throughout the 

concentrations is less than 2. From Table 5.4 one can see that compressibility is decreases 

at higher composition of Cu. Hence the magnitudes of compressibility are definitely of 

right order.   
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6. TRANSPORT, SURFACE AND SCALING 

PROPERTIES IN LIQUID BINARY ALLOYS. 

6.1. INTRODUCTION  

 In recent years considerable efforts have been made to determine the 

temperature and concentration dependent atomic transport properties (diffusion 

coefficient and viscosity) in liquid binary alloys (Novakovic, et al.,2005; Vardeman and 

Gezelter, 2001; Brillo et al., 2008; Zhang, et al., 2010; Cheng et al., 2009; Singh and 

Somer, 1997; Dahlborg et al, 2013; Venkatesh et al, 2003; Mishra and Venkatesh, 

2008; Echendua et al., 2010; Wang et al., 2009; Pasturel and Jakse, 2015; Wang et al., 

2015; Cao et al., 2016). The concentration dependent self, intrinsic and mutual 

diffusion coefficients were determined in Al-Cu and Ag-Cu melts over a wide 

composition range. The knowledge on the basic laws of mass, momentum and energy 

transport in materials is the subject of interest and an important topic for scientists and 

engineers. A detail understanding of the momentum transport (viscous flow), energy 

transport (heat conduction, convection and radiation), mass transport (diffusion), 

electron transport (conductivity) has become one of the biggest challenge in the field of 

science and technology, and are the interesting subject to investigate. The transport 

properties like diffusion coefficients are also among the basic parameters for materials 

design from the melts. The dynamical properties like self-diffusion coefficients of a 

liquid binary system can be calculated by several methods (Hansen and McDonald, 

1986; Shimoji and Itami, 1986; Nath and Joarder, 2005; Venkatesh and Mishra, 2005; 

Brillo et al., 2008; Jakse and Pasturel 2016). The diffusion coefficient D, in a binary 
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mixture A-B mixture is defined by Fick’s law which correlates the flow of the 

component A (per unit area), JA and its concentration gradient CA is given by 

AABA C D       J          (6.1) 

Another transport coefficient, i.e. the shear viscosity coefficient  of a fluid is a 

proportionality constant between the shearing force FS and the velocity gradient V. 

Thus if the fluid motion is in the x – direction then it is written as 

)
V 

V 
(  η        F

y

x
S




         (6.2) 

Further, , the coefficient of thermal conduction, which is also proportionality 

constant between thermal flux q and temperature gradient  T is given by 

T    χ         q          (6.3) 

and the electrical conductivity, (reciprocal of resistivity) e is related to the electrical 

current density Je and the electric field E (i.e. the potential gradient -e) is given by 

eeee φσ          Eσ        J         (6.4) 

The simultaneous occurrence of two or more phenomenon results in cross 

phenomenon caused by interference. For example we have thermoelectric effect  Q'

produced by placing metal junctions at different temperatures. Thus, the thermoelectric 

power  Q' is defined by 

T 

φ 
          Q' e




         (6.5) 

Another example of interference phenomenon in condensed phases is the so 

called Soret effect caused by diffusion coupled with heat conduction (thermal   

diffusion). Here the concentration gradient is formed as a result of temperature gradient. 
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These cross effects can be described by Onsager relations (Peng et al., 2015; Jakse and 

Pasturel, 2015; Zhang et al., 2010). 

In the present chapter an investigation on mass transport i.e. diffusion 

coefficient is considered in detail. It may be noted that the transport coefficients of 

dense classical fluids is extremely complex. The transport properties, together with 

structural and thermodynamic properties, provide important basis for theories of liquid 

state. At this juncture, it may be pointed out that the structural calculations of liquids 

using model potentials generate a set of potential parameters, which are useful for the 

evaluation of transport properties like diffusion coefficient, shear viscosity, bulk 

viscosity etc. Many theories, which are related to the simple translational movements of 

the species in liquids, giving reasonable agreement with experiment, have been studied 

to describe diffusion of simple liquids (Rice and Gray, 1963; Gopala Rao and Das 

Gupta, 1985; Shimoji and Itami, 1986; Venkatesh and Mishra, 2005; Chen et al., 2014; 

Dubinin et al., 2014; Jakse and Pasturel, 2016). 

The composition dependent self-diffusion coefficients, Di in binary liquid alloys 

were determined by incorporating the partial and total correlation functions in the force 

auto correlation function (Venkatesh et al., 2003; Gopala Rao and Das Gupta, 1985; 

Gopala Rao and Satpathy, 1990) and function was solved by using Helfand’s 

prescription extended by Davis and Polyvos (Davis and Polyvos, 1967). The inter or 

mutual diffusion coefficients Dm, in binary liquid alloys were determined by 

incorporating the thermodynamic correction factor through SCC(0) (Cheng et al., 2009; 

Pasturel and Jakse, 2015) in Darkens relation. 

New sets of equations were formulated in the evaluation of the temperature 

derivative of diffusion coefficients and these equations were applied in the computation 

of the activation energy of diffusion of both the alloys considering like others (Wang et 
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al., 2015; Peng et al., 2015; Cheng et al., 2009; Wax et al., 2000) that the self-diffusion 

obeyed the Arrhenius law.    

RT

Q
  

0 e DD


          (6.6) 

where R is the gas constant (R=8.314 JK-1mol-1), ‘Q’ is the activation energy for 

diffusion corresponding to the height of the energy barrier required in jumping and D0 

is the temperature independent pre-exponential factor whose detailed expression is 

referred to the literature (Glasstone et al., 1951). 

Further we evaluate the concentration dependent surface tension γ, excess 

scaling entropy SE and activation energy of diffusion Q of liquid Al-Cu and Ag-Cu 

alloys using their diffusion data and temperature derivative of diffusion coefficient. 

The theory by Enskog (Thiele, 1963) considers binary collisions only and 

ignores the attractive forces between the particles. This theory involves the derivation 

of the transport properties of hard spheres and it works above the critical temperatures 

when the potential depth is small. Molecular dynamical calculations for rigid sphere 

transport coefficients were calculated by Alder, Gass and Wainwright (Alder et al., 

1970). Enskog theory is extended by Thorne (Bajaras et al., 1973) to binary hard sphere 

mixtures. Tham and Gubbins (Tham and Gubbins, 1971) have worked with multi-

component theory. For liquids it is important to mention that the square well model is 

preferable for it takes into account the attractive forces between molecules. Davis with 

his co-workers (Davis and Polyvos, 1967; Davis et al., 1961) developed the theory for 

obtaining the transport properties by solving modified Boltzmann’s integro-differential 

equation 

dψ  ud  db    wb)ff    f(f       
r 

f 
  u      

 t

f 
221

'
2

2u b

2π

0ψ

'
1

1

1
1

1 








  



  (6.7) 
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where f is the time dependent distribution function, b is an impact parameter, , the 

angle in polar coordinates defined relative to a fixed axis, w is the relative velocity at 

large separation. Further f = f (r, u) and f = f (r, u) where u and u are the velocities 

before and after collision. The subscript 1 and 2 on f specify whether it is the position 

and momentum of molecule 1 or 2 that are referred to while the primed quantities are 

evaluated with velocities after collision.  

 One of the most important and widely used approaches is to relate the 

movement of particles in the fluid to the Brownian motion. The best known theory is 

due to Kirkwood (Kirkwood, 1946) and is similar to the distribution function approach 

to the equilibrium theory. The basic idea used is the introduction of time interval chosen 

to isolate a fundamental dynamical event, which is independent of period event and this 

procedure is known as “coarse graining”. 

 To describe the classical non-equilibrium process in dense fluids by extending 

the Brownian motion concepts (Lado, 1971), the coefficient of friction  in the Einstein 

formula of diffusion coefficient D is given by 

ξ

T k
        D B          (6.8) 

 The friction coefficient  as expressed by Kirkwood in terms of time integral of 

force autocorrelation function is given by 

]s)(tF  .  (t) F  S d [ Tk 
 3

1
           ξ

τ

0

B 


      (6.9) 

where  (t) F


and s)(tF 


are the molecular forces on a particle at time t and (t + s) 

respectively. 
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 Ross (Ross, 1956) originally introduced the linear trajectory approximation 

using perturbation theory and Fokker Plank equation. Helfand (Helfand, 1961) 

evaluated the friction coefficient and Rice and Allnat (Rice and Gray, 1963) evaluated 

the soft potential contribution to the kinetic equations. The linear trajectory 

approximation states that for the purpose of calculating the time integral of certain auto 

correlation functions, one can replace the actual trajectories of interacting molecules 

with linear trajectories. In this chapter, we give only the important points of Helfand 

(Helfand, 1961) and of Davis and Polyvos (Polyvos and Davis, 1957) as the method is 

very well known. 

 The static structural and atomic dynamics in Al-Cu and Ag-Cu have been 

investigated experimentally by cold neutron scattering (Dahlborg et al., 2013), X-ray 

diffractometer (Murdy et al., 2008, Lukens and Wagner, 1975). The surface tension of 

both the alloys has been investigated experimentally using electromagnetic levitation 

(Schmitz et al., 2009; Brillo et al., 2014). Therefore, it is interesting to formulate a new 

way to investigate how the static structural behavior could influence the dynamical, 

surface and transport properties like self and mutual diffusion coefficients, surface 

tension and viscosity as a function of concentration of one component in binary alloys. 

The knowledge of diffusion coefficients plays an important role in design of 

metallurgical and solidification process such as in casting industry (Dalgic and 

Colakogullari, 2006), nucleation, crystallization and glass-formation (Zhang and 

Griesche, 2009; Shimoji and Itami, 1986). The self-diffusion describes the motion of a 

tagged particle at long times, inter-diffusion or mutual diffusion originates from 

collective concentration fluctuations among different species (Hansen and McDonald, 

1986). 
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6.2. THEORY  

6.2.1. EVALUATION OF DIFFUSION COEFFICIENTS IN ALLOYS  

The mutual or inter-diffusion coefficient in binary melts were determined by 

calculating self-diffusivity of the constituting atoms by incorporating thermodynamic 

factor in Darken’s relation as determined by other workers for various alloys with 

different approaches (Peng et al., 2015; Jakes and Pasturel, 2015; Zhang et al., 2010). 

In binary system the intrinsic diffusion coefficient, Did (Novakovic et al., 2004; 

Jakes and Pasturel, 2015; Awe and Olawole, 2012; Singh and Somer, 1997; Singh and 

Somer, 1992), which is referred as Onsager coefficient (Peng et al., 2015; Jakes and 

Pasturel, 2015; Zhang et al., 2010) can be derived from the self-diffusion coefficient 

through the Darken’s thermodynamic equation for the diffusion (Cheng and Lu, 2009) 

 
ijjiid DC DCD                    (6.10) 

The mutual or inter-diffusion coefficients in binary liquids can be related to self-

diffusion coefficients Di and Dj as (Hansen and McDonald, 1986; Cheng and Lu, 2009; 

Zang et al., 2010) 

S  )DC DC(D ijjim                            (6.11)
 

Where, S is the manning factor (Cheng et al., 2009) which measures the 

departure of the Darkens law due to cross correlation contribution to intrinsic diffusion 

coefficient. In a crystalline substance S is referred to as manning factor (Manning, 

1961). In the case all the cross correlation contribution are negligible (S=1), since 

Darkens relation is recovered if S=1. Thus mutual diffusion coefficient can be defined 

as 

  )DC DC(D ijjim                  (6.12)
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Thermodynamic driving factor,  is related to second derivative of Gibb’s free 

energy of mixing and therefore the concentration-concentration correlation in long 

wavelength limit (Novakovic et al., 2004; Jakes and Pasturel, 2015; Awe and Olawole, 

2012; Singh and Sommer, 1997; Singh and Sommer, 1992) as 

ji

2

B

id
CC

CC

id
CC

CC

G

Tk

(0)S

(0)S

(0)S
 




                 (6.13) 

where G is the Gibbs free energy, kB is the Boltzmann constant, and SCC(0) is the long 

wavelength limit of the concentration-concentration structure factor in the Bhatia- 

Thornton formalism (Bhatia and Thornton,1970). 

The Onsager coefficient can be estimated from Darken’s equation, which is 

linearly related to self-diffusivity of constituting elements. The self-diffusivity Di in 

binary melts can be determined from well-known Einstein’s equation, 
i

B
i

ξ

Tk
D  , 

where i is the friction coefficient of the ith species in a binary mixture and can be given 

as 

SH
i

S
i

H
ii ξ    ξ     ξ       ξ                  (6.14) 

 Here, i
H, i

S and i
SH are the friction coefficients due to hard sphere, soft and 

soft-hard part respectively (Gopala Rao and Satpathy, 1990; Gopala Rao and 

Venkatesh, 1989). The friction coefficients arise due to hard and soft part of the force 

under SW interaction were solved under linear trajectory principle (Helfand, 1961).  

Thus the interparticle pair potential Uij(r) for model potential is assumed to be 

separable into two parts (Gopala Rao and Das, 1987; Mishra and Venkatesh, 2008) i.e. 

as a pair potential for hard spheres and the other for the attractive part (soft part). 

 (r)  U  (r)     U    (r)U S
ij

H
ijij                   (6.15) 
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where Uij
H(r) is the contribution from the hard spheres and Uij

S(r) from the soft part. 

These are represented as 

             
r   ;            

r   ;            
       (r)U

ij

ijH
ij

 0













             (6.16) 

and 

           
σr    ;           (r)U

σr
             (r)U

ijij

ijS
ij

     ;                       0












              

(6.17) 

Similarly, the force can also be divided into two parts. 

(a) FH’ the hard sphere contribution 

(b) FS’ the soft potential contribution 

Thus, 





2

1j

1/2
Bijjijij

2
ij

H
i T)kμ  π(2ρ )(σg  σ  

3

8
       ξ                (6.18) 

The contribution from the soft part is given by (Shimoji and Itami, 1986; Rao 

and Satpathy, 1982; Polyvos and Davis, 1967) 

.(k)dkh (k)Uk
 )  π(2

1
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μ  π2
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             (6.19) 

while i
SH, the cross contribution (Polyvos and Davis,1967) is given by 

dk (k)   U)]σk  sin(    )σk  cos( σ[k                                 

]
Tk π

μ 2
[  )(σg  

3
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
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           (6.20) 

Here j is the number density of the jth species hij(k) and Uij(k) are the Fourier 

transforms of the total correlation function hij(r) and the soft part of the potential Uij
S(r) 

respectively. Further ij is the reduced mass and is given by 
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ji

ji

ij
m     m

m m
       μ


                   (6.21) 

The quantities hij(k) and Uij(k) are given by 

1/2  -

jiijijij )ρ (ρ  ]δ    (k)[S        (k)h                  (6.22) 

and 

 

)]sin(kσ      )cos(kσkσ                       

)kσsin(A      )kσcos(A kσ [A 
k

ε  π4
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ijijij

ijijijijijij3

ijS

ij




            (6.23) 

Here ij is the Kronecker delta function already defined in Chapter 2. ij, ij and 

Aij are the cross correlation due to hard core diameter, depth and breadth of the square 

well potential. The mixed parameters are discussed in Chapter 4. The partial structure 

factors which were already discussed in Chapter 4 for Al-Cu and Ag-Cu alloys are used 

in the evaluation of the friction coefficients. 

Therefore the self-diffusion coefficient Di can be written as  

SH

i

S

i

H

i

B
i

ξξξ

Tk
D


                   (6.24) 

Thus Dm can be rewritten through Eqns.(6.11) to (6.13) as 

(0)S

(0)S
 DD  

CC

id
CC

idm                   (6.25) 

where (0)Sid

CC is ideal value of SCC(0), given by ji

id

CC C C   (0)S   (Zhang and Griesche, 

2010; Cheng and Lu, 2009; Odusote, 2008). 

 

6.2.2. EVALUATION OF SURFACE TENSION IN LIQUID BINARY ALLOYS 

Prasad et al. considered the existence of layer structure near the surface of 

binary liquid alloys in their statistical mechanical formalism (Prasad et al., 1998; Prasad 
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et al., 1991). They also pointed out that the surface of binary liquid alloys is in 

thermodynamically equilibrium with the bulk and surface properties are influenced by 

thermodynamic properties of the bulk.  

Detailed studies of the surface properties of condensed matter help in 

understanding their metallurgical processing. The surface tension,  for series of liquid 

metals has been studied by statistical mechanical approach under zeroth order 

approximation and given in Chapter 3. It is further extended for binary alloys. In 

present work,  in binary melts has been computed by using mutual diffusion 

coefficient values at different concentrations. 

The Surface tension with respect to bulk concentration of Cu in liquid binary 

Al-Cu and Ag-Cu alloys is defined as in pure metals (Chapter 3) and can be given as 

.
D σ 2π

Tk

μ

Tk
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
                (6.26) 

Where μ is the reduced mass, which is shown in Eqn. (6.21). 

 

6.2.3.  EVALUATION OF ACTIVATION ENERGY OF DIFFUSION IN 

LIQUID BINARY ALLOYS 

The activation energy of diffusion, Q in binary alloys were obtained through 

temperature derivative of diffusion coefficients, which can be given as 

 
dT

dξ

ξ

1

T

1
  

dT

lnD d i

i

i                   (6.27) 

 Hence to evaluate the above quantity we must evaluate the temperature 

derivative of the friction coefficients of the ith constituent. Thus  
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 The rest of the symbols have their usual connotation which is given in details 

in Chapter 4 thus no need to repeat here. 

 

6.2.4. SCALING PROPERTIES IN LIQUID BINARY ALLOYS 

The dimensionless diffusion coefficient in a binary liquid alloys in terms of self 

diffusion coefficients of the constituting atoms can be given as (Hoyt et al., 2000) 
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χ

D

χ

D
   D























                             (6.36)

 

χi and χj are the scaling factors (Hoyt et al., 2000) which are modified for real 

liquids under the SW interaction in present computation. The hard sphere diameter σ 

and gij(σ) in the original equation given by many authors (Hoyt et al., 2000; Samanta et 

al., 2004; Pasturel and Jakse, 2015 ) are replaced by the first peak position of partial 

pair correlation functions and their corresponding values respectively, which are 

computed under the SW interaction. 
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In Eqns. (6.37) and (6.38),  rii
max is the first peak position of the corresponding 

PRDFs, gij(rmax) and mi and mj are the atomic masses, these generalized scaling 

parameters are the collision rate in a mono-atomic hard sphere liquids of diameter  and 

mass, m given by the Enskog theory i.e., Г = 4𝜎2𝜌𝑔()√𝜋𝑘𝐵𝑇/𝑚 , used by Dzugutov 

in his original scaling law (Dzugutov, 1996) and so D*=D/Г2. 

Within this approach the reduced diffusion coefficients given by Eqn. (6.36) is 

proportional to the exp(S2), here S2 is excess entropy which can be approximated by 

two body contribution (Dzugutov, 1996; Hoyt et al., 2000). The normalized diffusion 

coefficient, D* as a function of two body excess entropy SE as presented by Yokoyama 

and coworker (Yokoyama, 1998; Yokoyama and Tsuchiya, 2002 ) for binary alloys can 

be written as (Dzugutov, 1996; Hoyt et al., 2000)

 

E/SBk
e a   

*
D                    (6.39) 
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6.3. RESULTS AND DISCUSSION 

6.3.1. Al-Cu ALLOYS 

6.3.1.1. Friction coefficients and Diffusion coefficients of Al-Cu alloys 

Various friction coefficients (ξH, ξS and ξSH) in Al-Cu melts as a function of 

composition at 1373 K were computed through Eqns. (6.18) to (6.20) and are given in 

Table 6.1. 

Table 6.1. Concentration dependent friction coefficients of Al-Cu alloys at 1373K. 

% Cu in Al-

Cu alloys 

ξH 10-3(Kg/s) 

Al           Cu 

ξS 10-3(Kg/s) 

Al           Cu 

ξSH 10-3(Kg/s) 

Al         Cu 

10 

17 

25 

33 

40 

6.74       7.79 

7.34       8.45 

8.07       9.41 

8.71      10.25 

9.37      11.16 

1.49         1.91 

1.24         1.68 

1.75         1.37 

1.88         2.57 

2.01         2.76 

1.07        1.79 

0.93        1.71 

1.38        2.37 

1.56        2.70 

1.73        3.07 

 

The friction coefficients of this liquid alloys were calculated by using PSFs, 

PRDFs and SW parameters at 1373K. This temperature was chosen for the study of 

dynamic properties because experimental results were available at this temperature 

only. Further, correlation functions were also computed at 1373K in order to obtain self 

and mutual diffusion coefficient in Al-Cu alloys at 1373K.  

It can be observed from Table 6.1 that at all compositions the hard sphere part 

dominates. ξH is more than 50% in all cases as ξH depends on hard sphere repulsive part 

of the SW potential which dominates in structural functions also. Even though Cu is a 

noble metal and melts at higher temperature than Aland ξH(Cu) is more than ξH(Al). 

This may be due to the formation of Cu cluster in the melts. Also ξS and ξSH of Cu is 
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more than that of Al. this may be due to segregation and formation of small clusters of 

Cu atoms (Venkatesh et al., 2003). 

The concentration dependent self-diffusion coefficients and mutual diffusion 

coefficients of the melts have been calculated by using computed friction coefficients at 

1373K and the results are shown in Table 6.2. The self-diffusion coefficients of Cu 

were compared with experimental values (Dahlborg et al., 2013) as given in Table 6.2. 

A satisfactory agreement is found between the computed and experimental results. The 

self-diffusion coefficient of Al i.e, DAl has a larger value than DCu at all compositions 

and both decreases with increase in Cu concentration while the ratio DCu/DAl remains 

constant (0.8) at all compositions. The Dm of liquid Al-Cu alloys was computed at the 

different atomic percent of Cu using Did and  values. It can be seen, from Table 6.2 

that Dm is also decreasing with increase in Cu concentration. To best of our knowledge 

there are no experimental data for DAl and Dm parameters to compare our theoretical 

values at these working compositions. 

 

Table 6.2. Theoretical and experimental values of concentration dependent self and 

mutual diffusion coefficients of liquid Al-Cu alloys at 1373K.  

% Cu in 

AlCu 

DCu 10-9(m2/s) 

theort.   expt. 

DAl 10-9 

(m2/s) 

Dm 10-9 

(m2/s) 

DCu/DAl 

10 

17 

25 

33 

40 

15.47    16.02 

15.00    13.80 

13.39   12.52 

       12.21       - 

       11.16       - 

19.39 

18.12 

16.90 

15.60 

14.45 

14.06 

13.90 

12.15 

10.92 

9.97 

0.8 

0.8 

0.8 

0.8 

0.8 
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The decrease in diffusivity with increase in Cu content is also observed 

experimentally (Dahlborg et al., 2013). The Dm/Did value is less than one at all 

compositions, which indicates the phase separation over the whole concentration range 

(Novakovic et al., 2005). This decrease in self and mutual diffusion coefficient with 

increasing concentration of Cu may be due to segregation of Al and Cu cluster. The 

SCC(0) data presented in Chapter 5 also support this findings. 

Further the temperature dependent friction coefficients and diffusion 

coefficients were also determined at 18.7% of Cu in Al-Cu melts to verify the model 

calculation with available mutual diffusion coefficient values at different temperatures 

(Zhang et al., 2009). The computed values of friction coefficients at different 

temperatures are presented in Table 6.3. 

 

Table 6.3. Temperature dependent friction coefficients of Al-Cu alloys at 18.7% Cu. 

Temp 

(K) 

ξH 10-3(Kg/s) 

Al           Cu 

ξS 10-3(Kg/s) 

Al           Cu 

ξSH 10-3(Kg/s) 

Al         Cu 

1177 

1075 

870 

6.38       7.37 

6.11       7.04 

5.53       6.33 

1.71         2.34 

1.81         2.51 

2.09         2.95 

1.24        2.06 

1.30        2.16 

1.45        2.39 

 

The values temperature dependent friction coefficients at 18.7% Cu were used 

for the calculation of self and mutual diffusion coefficients of the melts and are listed in 

Table 6.4. Since, the experimental data for the temperature dependent Dm is available 

(Zhang et al., 2009) at 18.7% Cu in melts thus the temperature dependent friction 

coefficients and diffusion coefficients were determined and these results are shown in 

Table 6.4.  
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Table 6.4. Theoretical and experimental values of temperature dependent self and 

mutual diffusion coefficients of Al-Cu at 18.7% Cu in Al-Cu alloys.  

Temp 

  K 

DCu 10-9(m2/s) 

 

DAl 10-9(m2/s) Dm 10-9(m2/s) 

theort.  expt 

DCu/DAl 

870 

1075 

1177 

10.28 

12.67 

13.79 

13.42 

16.06 

17.41 

8.8     7.5 

11.4       11.0 

12.6        14.5 

0.8 

0.8 

0.8 

 

As can be seen from Table 6.4, both Di and Dm values increases with increase in 

temperature from 870K to 1177K. The computed values of Dm were compared with the 

available experimental results (Zhang et al., 2009). There is a satisfactory agreement 

between the computed and experimental results. The computed values of DAl, DCu, Dm 

and Did are also presented in Fig.6.1. 
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In a binary mixture the self-diffusion coefficient of heavier component generally 

increases with increasing concentration of lighter one (Ali et al., 2001; Van den Berg 

and Hoheisel, 1990). The results presented in Figs. 6.1 and 6.2. For self and mutual 

diffusion of Al, Cu and Al-Cu at different atomic percent of Cu support this finding. 

 

 

6.3.1.2. Surface tension and Activation energy of Al-Cu alloys 

The computed values of diffusion data were successfully employed to determine 

surface tension in these alloys. The computed values of the concentrated dependent 

surface tension for liquid Al-Cu alloys along with their experimental data (Schmitz et 

al., 2009) are present in Table 6.5.   
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Table 6.5. Surface tension, γAl-Cu (N m-1) of Al-Cu alloys at different compositions of 

Cu at 1373K. 

% Cu in AlCu γAl-Cu (N m-1) 

theort.   expt. 

10 

17 

25 

33 

40 

0.61      0.81 

0.62       0.86 

0.70         - 

0.78       - 

0.86       0.97 

 

The surface tension of Al-Cu alloys increases with increase in Cu concentration, 

the similar trend was obtained by Schmitz et al. in their experiment on liquid Al-Cu 

alloys (Schmitz et al., 2009). The surface tension of pure liquid Al and Cu were found 

to be 0.8 and 1.03 Nm-1 respectively which have been shown in Chapter 3. Hence 

obtained surface tension for liquid binary alloys through SW model gives satisfactory 

results. The surface tension is related with self-diffusion coefficients of liquids. Since 

self-diffusion coefficients of liquids are determined using microscopic structural 

functions along with SW potential and hence computed ST is also related to 

microscopic structure of liquids. 

The Di in binary melts obey Arrhenius law as can be seen from Eqn. (6.6), 

which is also reported by other authors (Venkatesh and Mishra,2005; Dahlborg et al., 

2013; Cheng et al., 2009; Wang et al., 2009). It was pointed out that Al-Cu alloy shows 

a non-Arrhenius behavior at high concentration of Cu (Ali and Samanta, 2001). 

Concentration dependent activation energy of diffusion is obtained in liquid Al-Cu 
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alloys through temperature derivative of self-diffusion coefficient (Eqns. 6.27 to 6.33). 

In this analytical temperature differentiation of diffusion coefficient the pre exponential, 

D0 is taken as independent of temperature. The activation energy for diffusion in liquid 

Al-Cu alloys are in the range 19.3 to 21.6 KJmol-1 which are quite close to the values 

obtained by others at some of the composition (Dahlborg et al., 2013; Cheng et al., 

2009; Wang et al., 2009). 

 

6.3.2. Ag-Cu ALLOYS 

6.3.2.1 Friction coefficients and Diffusion coefficients of Ag-Cu alloys 

The friction coefficients of Ag-Cu melts at various concentrations of Cu were 

calculated by using PSFs, PRDFs and SW values at corresponding concentrations at 

1373K. The computed values of various friction coefficients (ξH, ξS and ξSH) of Ag-Cu 

alloys are listed in Table 6.6. The self-diffusion coefficients and mutual diffusion 

coefficients of the melts have been calculated at 1373K since the experimental values of 

surface tension is available at this for some compositions of Ag-Cu alloys. 

It can be observed from Table 6.6 that ξH is contributing more than ξS and ξSH in 

this alloy at all compositions. In this alloy both the constituents atoms are noble metal, 

the melting point of Ag being 1235.08K is slightly lower than that of Cu (1353K) but 

surprisingly ξH(Ag) is more than ξH(Cu), this may be due to the existence of Ag in 

amorphous form (where packing will not be compact) or due to the segregation of the 

constituents. Further, ξS and ξSH of Ag is more than that of Cu 
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Table 6.6. The computed values of the friction coefficients in Ag-Cu alloys at 1373K. 

% Cu in 

Ag-Cu 

alloys 

ξH 10-3 

(Kg/s) 

Ag           Cu 

ξS 10-3 

(Kg/s) 

Ag           Cu 

ξSH 10-3 

(Kg/s) 

Ag         Cu 

16.50 

21.65 

28.00 

37.00 

39.76 

50.00 

63.43 

71.00 

85.00 

86.38 

97.39 

20.11 

20.21 

20.34 

20.53 

20.59 

19.02 

17.42 

15.36 

15.29 

15.27 

15.50 

17.09 

17.21 

17.36 

17.59 

17.66 

17.70 

18.47 

19.34 

19.98 

20.00 

20.30 

12.70 

12.65 

12.59 

12.50 

12.47 

13.98 

15.13 

17.64 

17.32 

17.33 

17.43 

1.72 

1.67 

1.61 

1.53 

1.50 

1.40 

1.32 

1.09 

0.64 

0.62 

0.46 

9.99 

9.93 

9.85 

9.74 

9.70 

 

8.64 

7.46 

6.60 

6.04 

5.99 

5.85 

6.66 

6.64 

6.62 

6.59 

6.58 

6.44 

6.47 

6.74 

6.67 

6.66 

6.53 

 

The composition dependent self and mutual diffusion coefficients of the alloy are 

given in Table 6.7. Unfortunately we could not find the experimental value of diffusion 

coefficients for Ag-Cu alloy for comparing our results. 

The self-diffusion coefficient of Cu i.e, DCu has a larger value than DAg at all 

compositions. DCu decreases from 7.44x10-9(m2/s) to 6.93x10-9(m2/s) with increase in 

Cu concentrations while DAg increases from 4.43x10-9(m2/s) to 4.95x10-9(m2/s) as the 

atomic percent of Cu increases in the melts. 
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Table 6.7. Theoretical and experimental values of concentration dependent self and 

mutual diffusion coefficients of liquid Ag-Cu alloys at 1373K. 

% Cu in 

AgCu 

DCu 10-9 

   (m2/s) 

 

DAg 10-9 

(m2/s) 

Dm 10-9 

(m2/s) 

 

DCu/DAg 

16.50 

21.65 

28.00 

37.00 

39.76 

50.00 

63.43 

71.00 

85.00 

86.38 

97.39 

7.44 

7.42 

7.39 

7.37 

7.36 

7.31 

7.21 

6.97 

6.95 

6.94 

6.93 

4.43 

4.43 

4.43 

4.43 

4.44 

4.55 

4.73 

4.78 

4.89 

4.90 

4.95 

6.92 

6.75 

6.53 

6.25 

6.16 

5.89 

5.58 

5.27 

5.05 

5.03 

4.97 

1.7 

1.7 

1.7 

1.7 

1.7 

1.6 

1.5 

1.5 

1.4 

1.4 

1.4 

 

As can be seen from Table 6.7, Dm is also decreasing with increase in Cu 

concentrations. This decrease in self diffusion coefficients of Cu and mutual diffusion 

coefficient with increasing concentration of Cu may be due to formation Cu-Cu clusters 

in this melts which leads to segregation. The important microscopic function CSRO 

parameter calculated in Chapter 5 also supports segregating nature in this alloy at all 

compositions. To our knowledge there is no experimental work on self and mutual 

diffusion coefficients for this alloy. With these self-diffusion coefficients intrinsic 
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diffusion coefficients (Onsager coefficient) of the alloys were calculated through  

 Did = CiDj + CjDi. The thermodynamic contribution was incorporated with intrinsic 

diffusion coefficients for calculating the mutual diffusion coefficients of the melts as 

presented by many workers (Novakovic, et al.,2005; Vardeman and Gezelter, 2001; 

Brillo et al., 2008; Zhang, et al., 2010; Cheng et al., 2009; Singh and Somer, 1997; 

Dahlborg et al, 2013; Wang et al., 2009). The results on self, mutual and intrinsic 

diffusion coefficients are also given in Fig. 6.3. 

 

6.3.2.2. Surface tension and Activation energy of Ag-Cu alloys 

The surface tension of Ag-Cu melts was computed at various atomic percent of 

Cu through the diffusion data which is shown in Table 6.7.  The diffusion data were 

successfully employed to determine surface tension values and the results were given in 

Table 6.8 along with their experimental data (Novakovic et al., 2005).   
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Table 6.8. Surface tension, γAg-Cu(N m-1)of Ag-Cu alloys at different compositions of 

Cu at 1373K. 

% Cu in AgCu γAg-Cu 

(mN m-1) 

          theort.                 expt 

16.50 

21.65 

28.00 

37.00 

39.76 

50.00 

63.43 

71.00 

85.00 

86.38 

97.39 

796.5 

841.5 

845.4 

882.8 

895.4 

930.3 

997.4 

981.9 

1114.6 

1123.2 

1163.7 

- 

906.0 

- 

- 

937.0 

- 

995.0 

- 

- 

1132.0 

1262.0 

 

The surface tension of liquid Ag-Cu melts was found to increase with increase 

in atomic percent of Cu. The same trend was observed by Novakovic et al. using the 

pinned-sessile drop method (Novakovic et al., 2005). It can be seen from find from 

Table 6.7 that there is a satisfactory agreement between theory and experimental 

results. 

The computed value of concentration dependent activation energy for diffusion 

through Eqns. (6.27) to (6.35) in Ag-Cu alloys was obtained in the range 17.6 to 19.7 
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KJ mol-1. To the best of our knowledge we do not find activation energy calculation for 

liquid Ag-Cu either experimentally or theoretically. 

 

6.3.3. SCALING PROPERTIES IN LIQUID BINARY ALLOYS 

A quantitative structure-dynamic relationship was explored with the SW potential 

by considering Dzugutov’s scaling law, which correlates the reduced diffusion 

coefficients of a liquid with its excess entropy. Dzugutov approximated the excess 

entropy under two body approximation (Dzugutov, 1996), which was extended and 

examined by many researchers with different model calculations (Hoyt et al., 2000; 

Samanta et al., 2004; Pasturel and Jakse, 2015) for binary alloys, which is also 

examined under the SW interaction in present study. Thus, the excess entropy can be 

defined as  

S2 = −2
ij

∑ CiCj
2
i,j=1 ∫ {gij(r) ln[gij(r)] − [gij(r) − 1]}

∞

0
r2dr            (6.40) 


ij
 is the number densities of the components in the alloys which were determined 

from those of the pure components assuming ideal law of mixing to hold (Gopala Rao 

and Das Gupta, 1985). 

0

11

0

11

0

221

0
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0

11111 ρ)ρ(ρC/ ρρCρ                  (6.41) 

0

11

0

11

0

221

0

22

0

11122 ρ)ρ(ρC/ ρ)ρC(1ρ                  (6.42) 

221112ρ                    (6.43) 

Yokoyama and co-worker (Yokoyama, 1998; Yokoyama and Tsuchiya, 2002) 

presented S2 as SE, which can be given in terms of partial molar entropy and thus the 

Eqn. (6.40) can be written as (Pasturel and Jakse 2015); 

j

Ej

i

EiE ScSc   S                   (6.44) 
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Here SE
i  is the partial molar entropy of ith component in binary mixture. SE

i  can 

be obtained through self-diffusion coefficients of the constituents under Dzugutov 

scaling law as 

i

i
B

i
E

χ 0.049

D
log   /kS                    (6.45)

 

j

j

B
j
E

0.049χ

D
log   /kS                   (6.46)

 

Where χi and χj are the scaling factor (Samanta et al., 2004; Hoyt et al., 2000; 

Pasturel and Jaske, 2015) presented in Eqns. (6.37) and (6.38).  

The composition dependent χi and χj were obtained through Eqns. (6.37) and 

(6.38) and the values were employed in Eqns. (6.45) and (6.46) to obtain partial molar 

entropies in binary alloys. The excess entropies in both the alloys were calculated at 

different compositions of Cu through Eqn. (6.44).  

 

Table 6.9. Scaling factors, D*, partial and total excess entropy of liquid Al-Cu alloys at 

different compositions of Cu at 1373K. 

% Cu in 

Al-Cu 

χCu 

(10-6m2/s) 

χAl 

(10-6m2/s) 

D*x10-3 -SE
Cu/kB -SE

Al/kB -SE/kB 

10 

17 

25 

33 

40 

0.33 

0.57 

0.94 

1.29 

1.61 

2.81 

2.86 

2.96 

2.84 

2.72 

8.35 

8.07 

7.18 

6.57 

5.91 

0.059 

0.621 

1.236 

1.642 

1.957 

1.959 

2.046 

2.148 

2.189 

2.221 

1.769 

1.804 

1.920 

2.009 

2.115 
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The computed values of SE as a function of Composition as well as SE
Cu and SE

Al 

calculated at 1373K are given in Table 6.9. The scaling factor (χCu and χAl), the 

dimensionless diffusion coefficients, D*of liquid Al-Cu alloys at different compositions 

of Cu at 1373K are also given in Table 6.9  

The partial excess entropies correlate to Chemical Short Range Order (CSRO) 

parameter, α' (Paturel and Jakse, 2015) which has been mentioned in Chapter 5. It can 

be seen from Table 6.9 that the both the partial and total excess entropies (SE
Cu, SE

Al 

and SE) are found to increase with increase in Cu concentration at the same time α' also 

increase with increasing Cu concentration. Further, the obtained values of excess 

entropy (in kB unit) of liquid Al-Cu alloys were plotted against dimensionless diffusion 

coefficients and presented in Fig. 6.4. 

 

Fig. 6.4. D* versus SE for liquid Al-Cu alloys; the dashed line is Dzugutov’s law. 

It can be seen from Fig. 6.4 that there is a linear relationship between reduced 

diffusion coefficients and excess entropy at different compositions of Cu in Al-Cu 
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alloys. The computed result was compared with the Dzugutov’s hypothesis and it is 

found that the computed results are compatible with Dzugutov’s law (Dzugutov, 1996) 

and close to that found by Pasturel and Jakse (Pasturel and Jakse, 2015) on their work 

on Al-Ni alloys. The obtained partial excess entropies for constituting atoms in binary 

liquid alloys, described by their two body contribution, are valuable structural 

indicators and able to measure the evaluation of local structuring as a function of 

composition (Paturel and Jakse, 2015). 

The partial and total excess entropies as a function of compositions in Ag-Cu 

alloys were computed at 1373K and the results are given in Table 6.10. The scaling 

factor (χCu and χAg) and the dimensionless diffusion coefficients, D*as a function of 

atomic percent Cu are given in Table 6.10.  

 

Table 6.10. Scaling factors, D*, partial and total excess entropy of liquid Ag-Cu alloys 

at different compositions of Cu at 1373K. 

%Cu in 

Ag-Cu 

χCu 

(10-6 m2/s) 

χAg 

(10-6 m2/s) 

D*x10-3 -SE
Cu/kB -SE

Ag/kB -SE/kB 

16.5 

28.0 

37.0 

50.0 

71.0 

85.0 

0.66 

1.11 

1.45 

1.91 

2.45 

2.79 

2.51 

2.34 

2.15 

1.83 

1.15 

0.64 

2.39 

2.69 

2.87 

3.10 

3.11 

2.95 

1.463 

1.992 

2.264 

2.536 

2.847 

2.979 

3.324 

3.253 

3.171 

2.982 

2.471 

1.853 

3.021 

2.899 

2.835 

2.759 

2.757 

2.810 
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It can be seen from Table 6.10 that in Ag-Cu alloys, the partial excess entropy 

of Cu i.e., -SE
Cu increases, while the partial excess entropy of Ag i.e., -SE

Ag decreases 

with increase in atomic percent of Cu in the melts. Total excess entropy, SE of the melts 

decreases with increasing atomic percent of Cu up to 71% and then slightly increases at 

85% Cu. The same trend is also observed in Al-Ni melts (Pasturel and Jakse, 2015).  

The obtained values of excess entropy (in kB unit) for Ag-Cu alloys were plotted 

against dimensionless diffusion coefficients and presented in Fig. 6.5. 

 

Fig. 6.5. D* versus SE for liquid Ag-Cu alloys; the dashed line is Dzugutov’s law. 

The plot of dimensionless diffusion coefficients versus excess entropy as a 

function of composition of Cu in Ag-Cu alloys was shown in Fig. 6.5. A linear relation 

was found for Ag-Cu alloys which fulfill the scaling law hypothesis. A good correlation 

between excess entropy and dimensionless diffusion coefficients was obtained as 

demonstrated from the comparison with Dzugutov’s law (Dzugutov, 1996). 
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7. CONCLUSIONS 

The structure factor is shown to play a major role in obtaining both equilibrium 

and non-equilibrium properties of liquids. Thus, various microscopic structural 

functions and derived associated properties of liquid metals and binary liquid alloys 

have been theoretically investigated and discussed in this thesis.   

We give a detailed survey of literature which includes the integral equations 

proposed as Born – Green – Yvon (BGY), hyper-netted chain (HNC), and the Percus – 

Yevick (PY) which relate the potential function with the radial distribution function. In 

addition we give equations connecting radial distribution function (RDF) and 

thermodynamic quantities like compressibility, surface properties etc. Hence an 

understanding of liquid is possible if the distribution function is clearly perceived. The 

various correlation functions and the OZ equation are presented in diagram form for 

more clear understanding to viewers.  

The applicability of square well potential as a perturbation over the result of the 

hard sphere solution of PY integral equation obtained by Wertheim and Thiele 

(Wertheim, 1963; Thiele, 1963) has been discussed in introduction of the thesis. We use 

the mean spherical model approximation (MSMA) to obtain the direct correlation 

function (DCF) outside the core. We emphasize that square well potential gives 

analytical expressions in which numerical computations are used and hence even other 

potentials, if attempted to solve structure and associated properties we feel that 

analytical expressions are more appropriate and hence the applicability of square well 

potential to be more superior than the rest especially for liquid metals and alloys. 
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The theory connecting scattering intensities and the structure factor is given. 

Finally the transport properties related to surface properties and the connected equations 

have been briefly given. 

The Square well model was applied to a sample of liquid metals to compute the 

microscopic structural functions like structure factor, radial distribution function, 

coordination number. Transport properties eg. diffusion coefficients and shear viscosity 

of liquid metals were also presented. The computed results were found in good 

agreement with experimental values for most of the liquids. The discrepancy in some 

cases was discussed in the result and discussion section of the concerned chapters.  

The transport properties of liquids together with structural and thermodynamic 

information provide an important base for theories of the liquid state especially when 

applied with success by computing the derived properties and comparing them with the 

available literature values. 

Thus diffusion coefficient data were employed to determine the Debye 

temperature, surface tension and surface entropy in all the considered liquid metals. 

Further, newly developed scaling law for diffusion given by Dzugutov (Dzugutov, 

1996) was extended and examined for the SW liquids as in order to confidently label 

the universal scaling law, the hypothesis must be tested with different form of the inter 

atomic potential. This study demonstrates that the Dgututov’s scaling law is valid for 

SW liquid metals under MSMA. 

We have shown how the detailed partial structure of alloys can be obtained from 

Lebowitz solution of hard sphere mixtures (Lebowitz, 1964) with a square well 

perturbing tail. These computed partial structure factors are incorporated in the 

calculations of totals structure factors of Al – Cu and Ag – Cu alloys at different atomic 

percent of Cu. The SW model has been treated under MSMA to compute the total and 
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partial direct correlation functions in the attractive and repulsive regions of the 

interacting potential in both alloys (Al-Cu and Ag-Cu) at different atomic fraction of 

Cu. Thus the different partial DCFs Cij(r) are Fourier transformed to obtain Cij(k), from 

which the partial structure factors are computed. 

It is important to point out that in the present calculations no experimental data 

of the alloys is used to generate the partial and total structure factors. The potential 

parameters were those obtained for pure metals fitted with the peak positions of the 

structure factors of pure constituents. With these potential parameters (the partial and 

total) structure factors were evaluated, and then Fourier transformed to get the partial 

and total radial distribution functions. In all the cases it is gratifying to note that the 

computed theoretical structure factors are found to be in excellent agreement with the 

experimental values. We also obtained total and partial coordination numbers from 

partial and total pair correlation functions respectively. 

This indicates that the alloys structure factors can be computed completely using 

theoretical methods without taking any experimental values of the alloys.  

At this juncture it is important to note that with one total structure factor it is not 

possible to calculate the three partial structure factors. Of course it is possible to do 

different experiments with different isotopic substitution. Hence the present detailed 

model calculations are of immense help and important. 

The Bhatia - Thornton fluctuations (Bhatia and Thornton, 1970) namely the 

number - number, concentration - concentration, and number - concentration correlation 

functions have been shown to be related to the partial structure factors linearly and 

hence these thermodynamically important quantities are also computed from the partial 

structure factors at various compositions of alloys in the entire momentum space with 

special emphasis on the values at long wave limit from which we evaluate the chemical 
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short range order parameter (CSRO) to comprehend the segregating and compound 

formation tendencies in binary melts.  

Thermodynamically concentration-concentration correlation function in the long 

wavelength limit SCC(0) has been evaluated and discussed in chapter 5. This function 

helps to understand the complexities of binary liquid alloys and various thermodynamic 

functions as well. 

Further isothermal compressibility has been calculated as a function of Cu 

composition in Al - Cu and Ag - Cu alloys by incorporating long wavelength of 

structure factor in Kirkwood-Buff’s equation. 

 The self and mutual diffusion coefficients along with Onsager’s coefficient, Did 

were calculated by incorporating thermodynamic factor due to SCC(0) in Darken’s 

equation. The theoretically calculated partial and total structure factors were employed 

to derive the self and mutual diffusion coefficients in Al - Cu and Ag - Cu alloys at 

different compositions of Cu. For this we use the Helfand’s linear trajectory principle 

generalized by Davis and Polyvos (Davis and Polyvos, 1967) for a binary mixture. The 

self - diffusion coefficient of ith constituent in a binary system is calculated through the 

Einstein’s equation given by  

i

B

i
ξ

Tk
D                       (7.1) 

The friction coefficient of the ith constituent ξi is a contribution from three parts given 

by  

SH

i

S

i

H

ii ξ    ξ     ξ       ξ                     (7.2) 

Here, i
H, i

S and i
SH are respectively the hard sphere, soft and cross coefficient 

of the friction constants respectively. The equations connected with these have been 

applied to evaluate the total friction constant for the alloys. It is found that the hard 
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sphere contribution to friction constant, as expected, is predominant. However, it is 

found in both the alloys the soft part is also considerable. 

Further in both the alloys, it is found that the ratio of the self-diffusion 

coefficients of the constituents for all concentrations is constant. This implies that both 

the alloys form regular solutions. 

New equations have been formulated for the temperature dependence of 

diffusion coefficient for binary mixture. These equations are extended to Al-Cu and Ag-

Cu alloys at different concentrations of Cu for evaluating the activation energy of 

diffusion. The computed value of activation energy of diffusion obeys Arrhenius law 

are in good agreement with available literature values. 

Recently developed Dzugutov’s scaling law for diffusion (Dzugutov, 1996) 

has been examined by using square well form of inter particle interaction for pure liquid 

metals and binary liquid alloys as well. The excess entropy, SE per atom in liquid metal 

is defined as (Dzugutov, 1996; Yokayama, 1998) 

SE = −2
ij
∑ CiCj
2
i,j=1 ∫ {gij(r) ln[gij(r)] − [gij(r) − 1]}

∞

0
r2dr            (7.3) 

and thus the modified scaling diffusion coefficient for SW interaction is given as 

D*=D/Гr2
max. Further, the concept is extended for SW binary liquids in terms of scaling 

factor obtained through correlation functions of the considered binary liquid alloys. 

i

B

i
ξ

Tk
D                       (7.4) 

The Dzugutov’s universal scaling law is an important function among many 

scaling laws, which links the dynamic behavior of a liquid particle with microscopic 

correlation functions. This new piece of work opens the path for formulation of new 

scaling law for different transport properties in liquids with SW potential.    
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Thus, in all the calculations of structural, transport and thermodynamic 

properties the potential parameters of the pure constituents only have been used and no 

experimental data of the alloys have been employed. 

Thus, in this thesis we present  

(1) TSFs and g(r) of liquid metals (Na, K. Cs, Mg, Al, In, Pb, Ag, Cu and Au) were 

determined. The computed structural parameters were employed to derive transport, 

thrmophysical and surface properties in the considered liquid metals.  

(2) Partial and total structure factors, partial and total radial distribution functions 

and coordination numbers in Al - Cu and Ag - Cu alloys at different concentrations of 

Cu. 

(3) Bhatia – Thornton correlation functions in the entire momentum space with 

special emphasis on the values at long wave limit i.e. SCC(0),  chemical short range 

order parameter and compressibility of the same alloys at different concentrations. 

(4) The self and mutual diffusion coefficients have been calculated for the 

constituents of the same alloys through the use of Helfand linear trajectory principle at 

various concentrations. Extension of equations for the computation of activation energy 

in binary mixtures has been given.  

(5) The universal scaling law was tested with the SW interaction in one component 

liquid metals to binary liquid alloys. 

It may be concluded that models of liquid state must be judged according to 

the success with which they account for the kinetic and equilibrium properties of 

liquids. 

 

 

 



Conclusions 

 

  
  140 

 

  

Future immediate work and improvement that can be done on these studies: 

(1) The calculated and computed structural and transport properties can be used for 

calculating various other properties of monatomic and binary liquids such as electrical 

conductivity, thermal conductivity, thermal radiation, bulk viscosity etc.  

(2) The activity coefficient of pure constituent in a binary mixture can be calculated 

theoretically without using any experimental data from concentration – concentration 

fluctuation in the long wave limit i.e. through SCC(0) and free energy calculations. 

(3)  Pressure derivative of diffusion coefficients can be formulated, which can be 

employed to determine the Grüneisen parameters in liquid metal and alloys. This 

thermophysical property can be used to calculate various mechanical and 

thermodynamic properties of liquids. 

(4) The scaling viscosity can be formulated for the SW model of liquids. 

 We finally believe that the structure factor is the most important and unifying 

property in deriving static, dynamic, elastic, equilibrium and non-equilibrium properties 

of liquids. 
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a b s t r a c t

In the present paper surface tension, Debye temperature, coordination numbers along with microscopic
correlations of ten liquid metals are determined using square-well model of correlation functions.
Wertheim’s solution of the fundamental statistical mechanical equation given by Percus and Yevick for
hard spheres is invoked with a square well attractive part as a perturbation tail to get exact solution
of the direct correlation function, C(k) in momentum space and the analytical expressions are obtained
for structure factor, S(k). These expressions are then used to predict static structure factors for ten liquid
metals, leading to fair agreement with experimental data. Radial distribution function g(r) is obtained by
Fourier analysis of computed S(k), from which the coordination numbers and the nearest neighbor dis-
tances of liquid metals are evaluated. Computed coordination numbers and surface properties of liquid
metals using such a simple technique are in good agreement with experimental results.

� 2015 Published by Elsevier B.V.

1. Introduction

The auto correlation function, S(k) (where k ¼ 4p
k sin h) and its

Fourier component g(r), pair correlation function (PCF) are impor-
tant quantities characterizing the structure of a liquid.
Experimentally these quantities have been determined using neu-
tron or X-rays scattering intensities. PCF is obtained by Fourier
analysis of experimental S(k), which is a laborious and costly pro-
cedure. The analysis of results on structure and thermodynamic
properties of liquid metals and alloys enable us to understand their
structural ordering and complexities [1–4]. Hence, a detailed
knowledge of the S(k) or g(r) is essential for a quantitative under-
standing of the structure of liquids and is also sufficient to deter-
mine numerous other equilibrium and transport properties [4–7].

The subject of statistical mechanics has been successfully
applied in various fields including the prediction of the micro-
scopic function, S(k) of liquid metals [8–10]. Wertheim [11] and
Thiele [12] (WT) solved Percus–Yevick’s (PY) equation for hard
sphere fluids to obtain the hard sphere direct correlation function
Chs(r). Liquid metals static structure factors behave like hard sphere
fluids and calculations of thermo-physical and thermodynamic
properties with this reference system have been found to be rea-
sonable in many cases [13]. However, we believe with other

researchers that hard sphere reference system lacks realistic prop-
erties because thermodynamics and the relation between thermo-
dynamics with S(k) or g(r) are different for hard sphere and real
fluids [14]. Hence, it is important to include attraction between
the particles in deriving structure factors of liquids. It must be
mentioned that the hard sphere repulsive forces act up to a
short-range and primarily determine the structure peak of a liquid
and the relatively long-range uniform attractive part of the poten-
tial brings atoms in short-range order. Further, it is pointed out
that the success of any theoretical model depends on its experi-
mental confirmation [15,16]. Thus in the present work the
square-well (SW) attractive tail has been perturbed over a hard
sphere reference system to evaluate the direct correlation function
C(k) in momentum space, in deriving the structure factors of liquid
metals. The analytical solution of the SW model with the mean
spherical model approximation was introduced by Rao et al. [17–
19]. The model is applied to a number of liquid metals to obtain
microscopic structural characteristics with their application in
the determination of various properties of the considered systems.
Present work has been devoted to study the structure, thermody-
namic and surface properties of liquid metals within Mean
Spherical Model Approximation (MSMA) ranging from alkali met-
als to more complex metals of the periodic table.

The SW potential includes both repulsive and attractive parts
and is easy to solve numerically and hence it is most suitable for
different theoretical techniques, such as integral equations or
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perturbation theories. The SW potential has been successfully
applied for metallic liquids [17–20], colloidal particles [21,22],
hetro-chain molecules [23,24] and complex systems [25,26].

Here we consider that the multi-particle interactions are due to
the sum of pair wise interactions.

The study of coordination number, Debye temperature and sur-
face tension of melts is of fundamental importance and the better
understanding of these properties is helpful in material processing
technology. The coordination number of liquid metals is deter-
mined from their g(r) curves using square well parameters.
Several authors have reported that the surface properties of liquids
are largely dependent on their bulk microstructural characteristics
and their transport properties.

In the present paper self diffusion coefficients data of several
liquid metals were employed to determine their surface tension,
which is recently published by many authors with different
approaches [27,28]. Lu et al. [27] reported that surface tension,
cST values are not well known experimentally even for many sim-
ple metals.

2. Theoretical formalism

2.1. Evaluation of static structure factor and coordination number

The SW is an extension of the hard sphere potential that retains
hard sphere repulsive properties but also allows the particles to
attract one another and the interaction energy U(r) between the
two square well particles separated by a distance r is given by

bUðrÞ ¼
1; r < r
�e; r < r < kr
0; r > kr

8><
>: ð1Þ

where r is the hard core diameter, r (k � 1) and e (<0) are the
breadth and depth of the potential well, b ¼ 1=kBT:

An important model system is the MSMA, first proposed by
Lebowitz and Percus [29], which expressed g(r) and the direct cor-
relation function C(r) as

gðrÞ ¼ 0; r < r
CðrÞ ¼ �UðrÞ=kBT; r > r

�
ð2Þ

We write the Ornstein–Zernike direct correlation function (DCF)
of a square well fluid in momentum space under MSMA as

CðkÞ ¼ ChsðkÞ þ CswðkÞ: ð3Þ

With

q ChSðkÞ ¼ �½24g=ðxÞ6�½aðxÞ3fsinðxrÞ � x cosðxÞg
þ bðxÞ2f2x sinðxÞ � ðx2 � 2Þ cos x� 2g
þ cfð4x3 � 24xÞ sinðxÞ
� ðx4 � 12x2 þ 24Þ cos x� 24g�: ð4Þ

q CSWðkÞ ¼ ½24ge=kBT�ðxÞ3½sinðkxÞ � kx cosðkxÞ þ x cosðxÞ � sinðxÞ�:
ð5Þ

where x = kr, q is the number density and the other terms that
enter in Eq. (4) are given by following expressions [30].

a ¼ ð1þ 2gÞ2

ð1� gÞ4
ð6Þ

b ¼ �6gð1þ g=2Þ2

ð1� gÞ4
ð7Þ

c ¼ ga
2

ð8Þ

where g is the packing fraction i.e. volume occupied by the atoms
divided by total volume and is given by

g ¼ pqr3

6
: ð9Þ

The S(k) of one component liquid can be given in terms of C(k) as

SðkÞ ¼ ½1� q CðkÞ��1
: ð10Þ

Experimentally obtained g(r) provides limited information about
the short range order of liquids but the nearest-neighbor coordina-
tion number w can be obtained by integrating the g(r) function
between the first two minimum i.e. the left edge of the first peak
to the first minimum on the right hand side of the first peak, rmin.
w characterizes several types of short-range order present in the
liquids [2].

The Fourier inversion of S(k) gives the radial distribution func-
tion, g(r).

gðrÞ ¼ 1þ 1
2p2q

Z 1

0
k2½SðkÞ � 1� sinðkrnmÞ

krnm
dk: ð11Þ

The microstructure of liquids can also be characterized by w, which
is obtained by integration over the whole area between the begin-
ning and first minimum values of radial distance.

w ¼ 4pq
Z rmin

0
gðrÞr2dr: ð12Þ

Here rmin is the first minimum of the radial distribution function.
Further self diffusion coefficients for the liquid metals exam-

ined using the well known Einstein’s formula D ¼ kBT
nHþnSþnHS

: Here

nH, nS and nHS are the friction coefficients due to hard, soft and
hard-soft part of the potential function respectively and are
obtained in line with Ref. [20] under Helfand’s linear trajectory
principle, using a SW tail as a soft perturbation over hard sphere
reference system, and can be given as follows

Table 1
Input parameters of liquid metals with r as the diameter, e/kB as the depth, k as the
breath of the square well potential and q as the number density.

Metals Temperature (K) r (nm) e/kB (K) k q (1025 m�3)

Sodium 378 0.330 111.60 1.65 2430
Potassium 343 0.411 96.14 1.65 1276
Cesium 303 0.481 109.5 1.70 0813
Magnesium 953 0.275 127.82 1.43 3900
Aluminum 943 0.245 160.00 1.30 6459
Indium 433 0.283 173.76 1.70 3686
Lead 613 0.297 70.00 1.4 3099
Silver 1273 0.260 500.00 1.75 5159
Copper 1423 0.225 300.00 1.68 7408
Gold 1373 0.260 600.00 1.73 5271

Table 2
Theoretical and experimental values of first positions (k) and peak heights S(k); first
peak positions (r) and peak heights g(r) of liquid metals.

Metals First peak of S(k) First peak position g(r)

Theoretical Experimental Theoretical Experimental

k (nm�1) S(k) k (nm�1) S(k) r (nm) g(r) r (nm) g(r)

Na 20.0 2.7 20.0 2.7 0.36 3.24 0.37 2.42
K 16.0 2.6 16.0 2.6 0.45 2.80 0.46 2.35
Cs 14.0 2.5 14.0 2.7 0.50 3.61 0.51 2.58
Mg 25.0 2.5 24.0 2.5 0.29 2.84 0.31 2.46
Al 27.0 2.4 27.0 2.4 0.27 2.47 0.28 2.83
In 23.0 2.4 23.0 2.5 0.30 2.64 0.31 2.66
Pb 23.0 2.5 23.0 2.5 0.32 2.34 0.32 2.98
Ag 26.0 2.3 26.0 2.5 0.28 2.98 0.28 2.58
Cu 30.0 2.4 30.0 2.7 0.25 2.35 0.25 2.75
Au 26.0 2.4 26.0 2.5 0.28 2.68 0.28 2.77
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nH ¼
8
3
qr2ðpmkBTÞ1=2gHSðrÞ ð13Þ

nS ¼ �
1
3

q
4p2

pm
kBT

� �1=2 Z 1

0

1
q

k3USWðkÞ½SðkÞ � 1�dk: ð14Þ

nHS ¼ �
1
3
qgHSðrÞ m

pkBT

� �1=2

�
Z 1

0
½kr cosðkrÞ

� sinðkrÞ�USWðkÞdk: ð15Þ

Here USW(k) is the Fourier transform of the SW potential

USWðkÞ ¼ 4pe
k3 ½Akr cosðAkrÞ � sinðAkrÞ � kr cosðkrÞ þ sinðkrÞ�

ð16Þ

2.2. Relation of self diffusion coefficient in bulk liquid metals to surface
properties and Debye temperature

Detailed studies of the surface properties of condensed matter
help in understanding their metallurgical processing.

The surface tension of elemental liquids can be given by statis-
tical mechanical approach under zeroth order approximation as
[31]

cST ¼
pq2

8

Z 1

0

dUðrÞ
dr

gðrÞr4dr: ð17Þ

Born and Green [32] derived the coefficient of viscosity of liquid
metals using statistical mechanical approach as

gV ¼
2pq2

15
m

kBT

� �1=2 Z 1

0

dUðrÞ
dr

gðrÞr4dr: ð18Þ

Here m is the atomic mass of the liquid metals. Eqs. (17) and
(18) were derived on a strong scientific basis for hard sphere model
but it is not easy to get the numerical solution of the integral equa-
tions. As we know that the statistical mechanics also provides var-
ious useful relationships between structure and thermodynamic
properties of liquids.

A striking result can be obtained by using Eqs. (17) and (18)
with the well-known Stokes–Einstein relation, gV ¼ kBT=ð2p aDÞ;
here a, the nearest neighbor distance, can be taken as first peak
position of g(r) for real liquids [33] as

cST ¼
ðkBTÞ3=2

m1=2

15
32paD

: ð19Þ

Since, D can be evaluated from well-known Einstein’s relation
using the SW long range interaction and hence the surface tension
of liquid metals is obtained through Eq. (19).

Fig. 1. S(k) against k for liquid metals, ( ) present calculated results; (sss)
experimental results.

Fig. 2a. g(r) against r for liquid metals, ( ) present calculated results; (sss)
experimental results.
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Recently Singh and Ali [34] presented the Debye temperature,
hD, for a number of liquid metals, which is an important character-
istic of melts. This is well-known fact that metallic glasses show
some features of liquid metals [2,35] and hence computed diffu-
sion coefficients were verified by calculating hD, using the equation
obtained by Lal and Singh [36]

hD ¼
96Dh
kBa2 : ð20Þ

Here h is Planck’s constant, kB is Boltzmann’s constant, a is the
nearest-neighbor distance in g(r) and D is the self diffusion coeffi-
cient of liquid metals.

3. Results and discussion

Wertheim’s solution [11] of PY hard sphere fluid perturbed with
the SW potential within MSMA was solved numerically using tem-
perature, T, atomic density, q, and the SW parameters as input
data. Using the molar volumes of liquid metals as given by Singh
and Sommer [37] number densities were calculated. The input
parameters of liquid metals are listed in Table 1.

The peak positions and peak heights of the computed S(k) and
g(r) for all the considered liquid metals are presented in Table 2
together with their experimental values, which give detailed infor-
mation regarding the principal peak and structural characteristics
of the metals. From Table 2, it is seen that the agreement between
our computed S(k) and the experimental results [38] around the
first peak appears to be very good. But in the case of Cs, Ag and
Cu the peak heights from the calculation are slightly lower than
that from the experiment but the peak positions are same. It is
pointed out that the principal peak dominates in evaluating trans-
port properties of real liquids. A similar trend is observed by Rao
and Murthy [17–19] while calculating S(k) for four liquid metals
using the SW model under the random phase approximation. The
difference in peak heights for these three metals may be due to
existence of some small atomic cluster in these liquids which is
not signifying by this model. However, other properties obtained
with the same parameter are in fair agreement with the experi-
mental values.

The calculated results for S(k) of these metals at their respective
temperatures together with their experimental values in entire
momentum space are depicted in Fig. 1. The agreement between
our computed results and the experimental results [38] is good
throughout the k regions. We find from Fig. 1 that structure factors
of all the considered metals become constant around one in high k
region. It shows the presence of short range order in liquid materi-
als. Further, it may be noted that the simulation result with differ-
ent approaches [1,7,16] for the peak height and position of S(k) of
number of liquid metals did not agree well with experiment.
However, ab initio molecular dynamic simulation for the study of
the structure and dynamic properties of liquids has been widely
considered by the research community [39].

The peak positions and peak heights of the g(r), computed from
Eq. (11), for all the considered metals with their experimental val-
ues are listed in Table 2 and are also presented in Fig. 2(a) and
Fig. 2(b). The ratio of the positions of the first and second peaks
of the calculated and the experimental g(r) for all the liquids taken

Fig. 2b. g(r) against r for liquid metals, ( ) present calculated results; (sss)
experimental results.

Table 3
First minimum position of computed g(r); theoretical and experimental values of first
coordination number (w) of liquid metals.

Metals First minimum position of g(r) wComputed wExperimental

Na 0.49 10.5 10.4
K 0.62 10.8 10.5
Cs 0.70 11.4 –
Mg 0.42 10.2 10.9
Al 0.39 11.2 11.5
In 0.43 11.4 11.6
Pb 0.45 10.5 10.9
Ag 0.38 10.6 11.3
Cu 0.34 10.7 11.3
Au 0.37 10.3 10.9

Average = 10.76 11.03

Table 4
Friction coefficients of liquid metals due to hard sphere nH, square well nS and hard
sphere- square well interaction nHS.

Metals nH � 10�13 (kg/s) nS � 10�13 (kg/s) nHS � 10�13 (kg/s)

Na 7.41 1.56 1.94
K 7.55 1.12 1.58
Cs 7.56 1.50 1.89
Mg 11.78 1.36 1.19
Al 11.98 1.76 1.07
In 18.14 4.39 5.38
Pb 25.59 2.04 1.75
Ag 42.28 8.25 12.56
Cu 31.96 2.78 4.53
Au 62.19 11.05 18.65
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under investigation is about 0.51 and 0.53 respectively. This sug-
gests that our model calculation of g(r) gives the structural proper-
ties of real liquids fairly well.

The deviation of g(r) from unity is a measure of the local order
around the reference atoms. There are few maxima and minima in
the g(r) which rapidly damped around unity, where the first max-
imum corresponds to the position of the nearest neighbors around
an origin atom.

The nearest-neighbor distance, a, and the first coordination
numbers (w) were obtained by using Eq. (12), for liquid metals
and the computed values are presented with their corresponding
experimental results [40] in Table 3. In all cases the first peak
and first minimum of computed g(r) lie between r to kr. The com-
puted values of w lie between 10.3 and 11.4 and that of the exper-
imental values lie between 10.4 and 11.6. It is worth to mention
here that the variation in values of w even for simple liquids
depends on the theoretical approach of the computation [40].
Detailed study of the first cell coordination number in liquid and
crystalline form of the metals helps to understand the local struc-
ture in two phases [2].

Table 3 illustrates that the computed values of w are in good
agreement with the experimental data. The computed average w
of the ten liquid metals is 10.76 and is closed to the experimental
average w of the considered metals which is 11.03. This shows that
the theoretical and computational method presented in this work
is suitable for the determination of coordination number of liquid
metals. Computed values of friction coefficients nH, nS and nHS are
presented in Table 4. nH is dominating in all cases however nS

and nHS also contribute significantly in the case of all the consid-
ered liquid metals. All the three components of friction coefficients
has lower values for Cu compared to those of Ag and Au however
working temperature of Cu is higher than these two liquid metals.
This may be due to the existence of some amorphous characteris-
tics in liquid Cu at 1423 K.

The diffusivity in liquid metals has been evaluated under LT prin-
ciple as mentioned in Ref. [20] using well known Einstein equation
for coefficient of diffusion [41]. Computed results are compared
with available experimental results [33] and presented in Table 5.

Lal and Singh [39] proposed a relationship between Debye tem-
peratures, hD with self diffusion coefficient for metallic glasses.
Since it has been established that metallic glasses may be consid-
ered as super cooled liquids [2,35] hence this relationship is tested
for all the considered liquid metals using square well model of dif-
fusion. hD is an important parameter concerning the bonding and
structural deformation of metals. Computed values for hD are sum-
marized in Table 5 and compared with recently calculated and
published values by Singh et.al [34]. The agreement can be consid-
ered satisfactory, for the reasons mentioned already.

The surface tension is related with self-diffusion coefficients of
liquids. Since, self diffusion coefficients of liquids are determined
using microscopic structural functions along with SW potential,
and hence computed cST are also related to the microscopic struc-
ture of liquids.

Computed values of cST with their experimental values taken
from Ref. [27] are also presented in Table 5 and we find satisfactory
agreement between them.

4. Conclusions

In the present work, we present results of a microstructural
study of ten liquid metals. The SW potential is analytically solved
and successfully applied for computing static structure factor,
coordination number and thermodynamic properties of the consid-
ered liquids which are important information for metallurgical
industry. Our results indicate that the SW model leads to a good
agreement between computed and experimental results of struc-
ture factors and derived associated properties and hence increase
our confidence in present model. This model calculation provides
an option to use the SW potential in the framework of the MSMA
to derive the various thermo-physical and thermodynamic proper-
ties of liquid metals without using any adjusting parameter.

Coordination number calculated with number density and
square well parameters are important findings to understand
phase change at the microscopic level.

Perturbation theory with hard sphere reference system is a
good first approximation for the study of static and dynamic prop-
erties of liquid metals. The correlation between D and cST finds suc-
cessful application for the estimation of cST. Debye temperatures of
liquid metals are calculated using diffusion data obtained through
square well model.
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A universal scaling law relating the dimensionless diffusion coefficient with excess entropy of a liquid [M.
Dzugutov, Nature (London), 381 (1996), 137] is tested for liquid noble metals due to their fundamental impor-
tance both in society and industry. The square well form of interatomic potential is used to study liquid noble
metals because it possesses the basic nature of real liquids. The radial distribution function (RDF), g(r) and self
diffusion coefficient, D of liquid noble metals were derived using statistical mechanical square well (SW)
model under random phase approximation, which was proposed by Rao and Murthy [R. V. Gopala Rao and
A. K. Murthy, Physics Letters A, 51 (1975), 3]. g(r) and D data of liquid noble metals were employed to compute
excess entropy, SE using scaling law, surface entropy, SV through temperature derivative ofD under linear trajec-
tory principle and microscopic reducing parameter; Enskog collision frequency, Γ. Further new equations have
been derived from equation of state (EOS) for the SW potential and verified them to compute structure factor
in the long wavelength limit. The results obtained were compared with available experimental results and we
find there is fair agreement between theoretical and experimental values. Present study shows the applicability
of the Dzugutov scaling law for square well liquids.

© 2016 Published by Elsevier B.V.
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1. Introduction

The study of transport coefficients such as diffusion and viscosity of
liquid metals and alloys is important for metallurgical, industrial and
biophysical processes [1,2]. Statisticalmechanics provides numerical re-
lations between structures, dynamic and thermodynamic properties of
liquid metals and alloys [3]. In recent years different scaling laws relat-
ing the equilibrium thermodynamic properties, excess entropy with di-
mensionless transport coefficients have been reported bymany authors
[2,4–6]. The Dzugutov universal scaling law [4] is very important func-
tion among many scaling laws, which links the dynamic behavior of a
liquid particle with pair correlation function, g(r), microscopic reducing
parameter Γ and excess entropy. Dzugutov in his original work approx-
imated the excess entropy per particle by two body approximations,
which is denoted as S2 and defined by

S2 ¼ −2πρ
Z ∞

0
g rð Þ ln g rð Þ½ �− g rð Þ−1½ �f gr2dr: ð1Þ

Here ρ is the number density. Yokoyama has modified Dzugutov's
two body approximation by the term SE [7]. The SE per atom in liquid
metals is the difference between the total thermodynamic entropy
and that of the equivalent ideal gas.

In last two decades a considerable efforts have been made using
molecular dynamics simulation to verify the Dzugutov universal scaling
law by other researchers with embedded atom method (EAM) or
Stillinger-Weber scheme or Tersoff potential or glue potential or
second-moment approximation of tight-binding scheme for several liq-
uid metals and alloys [1,2,5–9], by Dzugutov himself with Lennard-
Jones and hard sphere potential functions. Recently, Ma et al. tested
the scaling law in colloidal monolayers using optical microscopy and
particle tracking techniques [3].

Three non-radioactive members of group-11 of the periodic table:
copper, silver and gold have held great importance in societies through-
out history, both symbolically and practically. They have been chosen as
currency for so long because they are durable and they do not readily
react with many other materials and therefore designated as noble
metals. Noble metals are generally not oxidizing in air, malleable,
ductile, good conductors and they have anti-corrosion properties. Ex-
tensive computer simulations with different interatomic potentials
[10–21] and experimental studies [22–25] on the structure, transport,
thermophysical and thermodynamic properties of liquid noble metals
have been reported by many researchers.

The square well (SW) fluid is basic one possessing all characteristics
of real liquid and the SW potential has been successfully applied for
studying of various liquids for long time [26–34]. The authors have re-
cently shown that the thermophysical and surface properties of liquid
metals can be computed through diffusion data, which was derived by
square well model [35]. Study of thermophysical and thermodynamic
properties of liquids and their relation with microscopic structure

Journal of Non-Crystalline Solids 444 (2016) 11–15

⁎ Corresponding author.
E-mail address: rkmishramzu@yahoo.com (R.K. Mishra).

http://dx.doi.org/10.1016/j.jnoncrysol.2016.04.016
0022-3093/© 2016 Published by Elsevier B.V.

Contents lists available at ScienceDirect

Journal of Non-Crystalline Solids

j ourna l homepage: www.e lsev ie r .com/ locate / jnoncryso l



functions are of long interest [36–40]. Surface tension, γ and its tem-
perature derivatives, SV of condensed matter are important and
informative parameters for understanding thematerial processing tech-
nology [36,40–42].

We agree with other workers that the Dzugutov's hypothesis for di-
mensionless quantities must be tested with different form of inter
atomic interactions [1]. Thus in this paper we report microscopic func-
tion g(r) through Fourier transform of the auto correlation function,
S(k) and Brownian diffusion using the SW formalism as given in Refs.
[10] and [31] and test the universal scaling law by estimating the excess
entropy of liquid noble metals as function of reduced diffusion. Techno-
logically important surface properties like γ and its temperature deriv-

ative i.e. surface entropy, SV ðSV ¼ − dγ
dTÞ are studied through D and its

temperature derivatives. Computed g(r) were employed to obtain Γ.
This paper may be considered as an extension of the previous contribu-
tions [31,35].The calculations on shear viscosity, ηV for noble liquids is
limited in the literature, which is calculated by using D with the
Stokes-Einstein relation under the slipping boundary condition [8],
which is an important dynamic properties to decide cooling rate of a
liquid.

Further, new equations have been derived through equation of state
of the SW potential [43] and employed them to compute long wave-
length limit of S(k) i.e. S(0) in liquid Cu, Ag and Au. S(0) can be related
with various thermophysical and thermodynamic properties of liquids
[11].

2. Theory

We used mean spherical model approximation (MSMA) for the de-
termination of S(k), the direct correction function (DCF) under MSMA
with three parameters SW is

C rð Þ ¼
Chs rð Þ ; 0 b r ≤ σ
−β U rð Þ ; σ ≤ r ≤ λσ
0 ; r N λσ

8<
: ð2Þ

Here β=1/kBT and U(r), the pair interaction potential, can be given
as

U rð Þ ¼
∞ ; r ≤ σ
−ε ; σ b r ≤λσ
0 ; r N λσ

8<
: ð3Þ

where ε and σ (λ− 1) are the depth and width of the potential well. In
case of atomic liquids DCF in momentum space for SW model can be

given as

C kð Þ ¼ Chs kð Þ þ CSW kð Þ: ð4Þ

Here Chs(k) stands for hard sphere DCF, obtained by Wertheim [44]
from Percus-Yevick's equation for hard sphere mixtures and CSW(k)
due to SW tail in momentum space [10].

The Fourier transform of the attractive part of SW potential is [31]

U kð Þ ¼ 4 π ε

k3
sin kλσð Þ− sin kσð Þ−kλσ cos kλσð Þ þ kσ cos kσð Þ½ �:

ð5Þ

The analytical expression for S(k) for SW model with hard sphere
reference system under random phase approximation (RPA) is given by

S kð Þ ¼ 1
1−ρChs kð Þ þ βρU kð Þ : ð6Þ

Here ρ is the number density of atoms.
The Fourier inversion of S(k) gives the radial distribution function,

g(r)

g rð Þ ¼ 1þ 1
2π2ρ

Z∞
0

k2 S kð Þ−1½ � sin krnmð Þ
krnm

dk: ð7Þ

Evaluation of thermodynamic properties of liquids through micro-
scopic structural functions S(k) and g(r) is of fundamental importance
for their better understanding [1,35]. In order to test the Dzugutov scal-
ing law for diffusion for noblemetals, we compute the collision frequen-
cy and excess entropy with SWmodel under RPA. Rosenfeld [5] defines
the reduced transport coefficients in terms of reducing by macroscopic
parameters, density and temperature, however, microscopic reducing
parameters like hard sphere collision frequency, Γ and inter atomic dis-
tance σ (hard sphere diameter) according to Enskog theory [45] were
chosen for deriving normalized diffusion. This concept was also extend-
ed by Li et al. for defining the reduced viscosity [2]. Further, reduced
transport coefficients were scaled by exponential of excess entropy
with different values of pre-exponential factors [1–7].

As we have already mentioned that SW liquids posses all character-
istics of real liquids. Thus we define the Γ for SW liquids in terms of g(r)
from Eq. (7)

Γ ¼ 4r2maxg rmaxð Þρ πkBT
m

� �1=2

: ð8Þ

Here, rmax and g(rmax) are first peak position and value of pair corre-
lation function respectively,m is the mass of diffusing species in atomic
unit, ρ is the number density of atoms and other symbols have their
usual meanings. Dzugutov [4] defined the reduced diffusion coefficient,
and we modified for SW liquids

D� ¼ D
Γr2max

: ð9Þ

Table 2
Theoretical and experimental values of first peak positions (rmax) and peak heights g(rmax), first minimum positions (rmin) and peak heights g(rmin) and collision frequency, τ (1012s−1) of
liquid metals.

Metals Temperature (K) First peak position First minimum position Γ (1012 s−1)

Theort. Expt. Theort. Expt.

rmax (nm) g(rmax) rmax (nm) g(rmax) rmin (nm) g(rmin) rmin (nm) g(rmin)

Au 1423 0.28 2.68 0.28 2.78 0.37 0.62 0.39 0.60 12.979
Ag 1273 0.28 2.98 0.28 2.58 0.37 0.62 0.41 0.60 16.083
Cu 1423 0.25 2.35 0.25 2.75 0.38 0.70 0.35 0.56 21.931

Table 1
Input parameters of liquidmetals (Au, Ag, Cu) with σ as the diameter, ε/kB as the depth, λ
as the breath of the square well potential and ρ as the number density.

Metals Temperature (K) σ (nm) ε/kB (K) λ (nm) ρ (1025m−3)

Gold 1423 0.260 600 1.73 5271
Silver 1273 0.260 500 1.75 5159
Copper 1423 0.225 300 1.68 7408
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There are various universal relations for different dimensionless
physical parameters proposed for simple metals on the basis of corre-
sponding state theory using characteristics parameters of different
ionic potentials [46].

The Dzugutov scaling law [4] modified by Yokoyama [7,8] can be
given as

D� ¼ a eSE=kB ð10Þ

where a is a constant taken fromDzugutov scaling law [2,4]. SE is the ex-
cess entropy per atom. Results of SE for liquid noble metals can be rep-
resented as

SE=kB ¼ log
D

0:049Γr2max
: ð11Þ

Since D is evaluated from the well known Einstein's formula of self
diffusion coefficient,D ¼ kBT

ξ , here ξ is the friction coefficient experiences

by the atoms of same kind. We feel that the pair wise interaction would
have significant role in the determination of D and hence ξ of liquid
noble metals has been computed on the basis of Helfand-Rice-
Nachtrieb approach [47] using square well model. Methods have been
fully explained [31] previously and they are not to be repeated here.

The surface tension, γ for series of liquid metals has been studied
[35] however its temperature derivative is obtained by temperature co-
efficient of D [35]

γ ¼ 15
32 π

kB
m

� �1=2

T1=2 � ξ
σ
: ð12Þ

dD/dT has been given previously [31] so will not be repeated here.

d γ
dT

¼ γ
1
T
−

1
σ
dσ
dT

þ 1
ξ
dξ
dT

� �
ð13Þ

d ξ
dT

¼ dξH

dT
þ dξS

dT
þ dξSH

dT
ð14Þ

The surface entropy of pure liquid at constant volume is defined as
[36]

SV ¼ −
dγ
dT

: ð15Þ

The shear viscosity coefficient, ηV is obtained under the SW model
with the Stokes-Einstein relation

ηV ¼ kBT
2 πr maxD

: ð16Þ

In the last section of thismanuscriptwe derive the structure factor in
long wavelength limit, S(0),which is an important parameter to evalu-
ate various properties of liquid state [48], through equation of state in
random phase approximation for SW fluids [43]

PV
RT

¼ 1þ ηþ η2

1−ηð Þ3
−

4ε λ λ3−1
� �
kBT

ð17Þ

V
RT

þ P
RT

dV
dP

� �
T
¼ d

dP
1þ ηþ η2
� 	� 1

1−ηð Þ3
− 1þ ηþ η2
� 	

� −3ð Þ
1−ηð Þ4

−1ð Þ dη
dP

−
4ε λ λ3−1

� �
kBT

dη
dP

ð18Þ

here;
dη
dP

¼ πσ3

6
dρ
dP

¼ πσ3

6
ρβ1 ¼ ηβ1 βT ¼ −

1
V
dV
dP

ð19Þ

V
RT

¼ βT
4η2 þ 4ηþ 1

η 1−ηð Þ4
−

8 ε
kBT

λ3−1
� � 
(

ð20Þ

S(0) is related to isothermal compressibility, βT as [49]

S 0ð Þ ¼ ρ kBT βT ð21Þ

S 0ð Þ ¼ 1

2ηþ 1ð Þ2
1−ηð Þ4

−
8 ε η
kBT

λ3−1
� �" # ð22Þ

Fig. 2. The scaled diffusion coefficient, D⁎ vs the excess entropy, SE of liquid metals. The
dashed line is the relationship found in original work of Dzugutov.

Fig. 1. g(r) against r for liquidmetals, (_____) present calculated results; (o o o) experimental
values.
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where η is called packing fraction i.e. volume occupied by the atoms di-

vided by total volume and is given by η ¼ πρσ3

6 :

3. Result

The Wertheim's [44] solutions of PY hard sphere fluid were
perturbed with SW potential and solved numerically for liquid metals
[10] using temperature, T, ρ, and three parameters of SW potential.
The input parameters of noblemetals are listed in Table 1. The peak po-
sitions and height of the radial distribution function computed by Fou-
rier transformation of structure factor are given in Table 2. The
calculated values of g(r), are depicted in Fig. 1 along with the corre-
sponding experimental values [22].

SE for liquid Cu, Ag and Au are calculated by employing the SW
model of diffusion in Dzugutov scaling law. The computed values are
in accordance with [1] which is shown in Fig. 2. ηV is also obtained
through Eq. (16) and the calculated values are listed in Table 3 along
with their corresponding experimental values. We have also derived
the surface entropy of liquid metals through analytical expression for
the temperature derivative of the SWmodel ofD under linear trajectory
principle [42]. These results are presented in Table 4 alongwith their ex-
perimental results [42].

The surface tension,γ is relatedwith self-diffusion coefficients of liq-
uids. Computed values of γwith their experimental values [42] are also
presented in Table 4.

4. Discussion

It is found that the theoretical values of g(r) obtained from
Eqs. (5)–(7) agree well with experimental values [22].The main peak
positions for liquid noble metals coincide with the experimental values
although the heights of the respective first peaks in all cases are some-
what underestimated especially for liquid Ag and Cu. We find that a
similar disparity is also presented with density function theory simula-
tion under Kohn-Sham and ab-initio molecular dynamicsmethods [19–
21] for liquid Cu. Thismay be due to existence of some form of cluster in
Ag and Cu at their respective working temperatures under SW interac-
tion. It isworth tomention here thatwe find a good agreement between
computed and experimental values [22] of RDF for positions andmagni-
tudes of subsequent peaks in all three liquids at their respectiveworking
temperatures. Recently, Mendelev et al. proposed in his publication on
liquid Cu [50] that the EAMpotential gives only low temperature crystal
properties.

Experimental and theoretical values of number of liquid metals
(including Cu) with scattering phenomena have been reported [8] and
we find that the results from SW model are in fair agreement with ex-
perimental values. However, EAM method is less accurate for liquid
state properties [1,50]. The computed values of SE for all liquids are in
order of three, a similar trend was observed by other researchers for
nine liquids [8]. The excess entropymeasurements of most of the liquid
noble metals are yet to be determined experimentally, and therefore,
we are unable to compare our computed results of SE for liquid Au and
Ag with experimental values.

Wefind satisfactory agreement between theoretical and experimen-
tal values of surface tension, γ for liquid Cu and liquid Ag. Experimental
values at working temperature for Ag and Cu were extracted from Ref.
[42]. The surface entropy for liquid metals are calculated and we find a
good agreement between theoretical and experimental results, which
shows the onemore applicability of the analytical derivation of temper-
ature derivative ofD as derived earlier [31].Wefinda fair agreement be-
tween present computations with experimental results of ηV, for liquid
noble metals [51,8].

The structure factor in long wavelength limit, S(0), is related to iso-
thermal compressibility of liquid metals. Table 4 shows our computed
results for βT using equation of state of SW potential. There is a fair
agreement between the computed value and the experimental values
[11,12,19], these shows the success of the SW perturbation theory.

5. Conclusions

The present work is concluded with the following remarks:

(1) We have computed SE for liquid noble metals using g(r) and D
data of the SW model. ηV, γ and SV were determined in terms of
D. The present computed values were compared with their cor-
responding experimental results and we find the agreement is
satisfactory.

(2) The computed g(r) data were discussed with other available
works as well as with experimental results. The RDF plays a
major role in obtaining both equilibrium and non-equilibrium
properties of liquids.

(3) New method for the determination of S(0) through equation of
state of SW potential is presented. S(0) data were employed to
compute isothermal compressibility of noble metals.

(4) Thermodynamic perturbation of SW potential over hard sphere
reference system is an excellent model for the study of static
and dynamic properties of liquid metals.
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Abstract 

 

1 

 

ABSTRACT 

The study on structural, dynamical and surface properties of liquid metals and 

alloys helps in various metallurgical processes and also their study in solid state. The study 

of liquid state is considered to be very complicated due to irregular structure of liquids. 

Theoretical development on the structural and associated properties (dynamic, transport, 

surface, thermodynamics) of liquids become a big challenge in present time for complete 

understanding of liquid state. Metals have been extensively studied in the liquid phase by 

using classical and quantum statistical mechanics to understand their microscopic as well as 

macroscopic properties under equilibrium and non-equilibrium conditions. 

In present study, the structure of liquids is described by means of the correlation 

function called the structure factor, which is shown to play an important role to obtain both 

equilibrium and non-equilibrium properties. The theoretical methods, computational results 

and their discussion on various structural aspects and their derived associated properties of 

liquid metals and binary liquid mixtures especially considering Al-Cu and Ag-Cu alloys 

have been presented. The computed structural functions were successfully employed in the 

same system for computing diffusion coefficients, surface tension, surface entropy, shear 

viscosity. Further, recently developed universal scaling law, which correlates diffusion 

coefficient with excess entropy in real fluids, was tested for the considered systems with 

square well potential. The scaling law study can predict correctly the diffusivity of pure 

fluids as well as binary fluid mixtures over a wide range of densities. 

The first chapter deals with a detailed survey of literature which includes the 

integral equations of Born – Green – Yvon (BGY), hyper-netted chain (HNC), and the 
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Percus – Yevick (PY) which relate the potential function with the radial distribution 

function. In addition we give equations connecting radial distribution function (RDF) and 

thermodynamic quantities like compressibility, surface properties etc. The various 

correlation functions and the Ornstein-Zernike (OZ) equation are presented in diagram 

form for more clear understanding to viewers.  

We give the square well potential and the result of the hard sphere solution of PY 

integral equation obtained by Wertheim and Thiele. The mean spherical model 

approximation (MSMA) was used to obtain the direct correlation function (DCF) outside 

the core. 

The theory connecting scattering intensities and the structure factor is given. Finally 

the transport properties related to surface properties and the connected equations have been 

briefly given. 

In Chapter-2 the Square well model was applied to a sample of liquid metals to 

compute the microscopic structural functions like structure factor, radial distribution 

function, coordination number. Transport properties eg. diffusion coefficients and shear 

viscosity of liquid metals were also presented. The computed results were found in good 

agreement with experimental values for most of the liquids. 

In Chapter-3 the transport properties of liquids together with structural and 

thermodynamic information provide an important base for theories of the liquid state 

especially when applied with success by computing the derived properties and comparing 

them with the available literature values. 

Thus diffusion coefficient data were employed to determine the Debye temperature, 

surface tension and surface entropy in all the considered liquid metals. Further, newly 
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developed scaling law for diffusion given by Dzugutov was tested for the SW interaction as 

in order to confidently label the universal scaling law, the hypothesis must be tested with 

different form of the inter-atomic potential. This study demonstrates that the Dgututov 

scaling law is valid for SW liquid metals. 

Further, structure factor in the long wavelength limit of liquid metals was 

established through equation of state of the square well potential. The computed data of 

long wavelength limit of structure factor were employed to determine the isothermal 

compressibility of liquid metals. 

In Chapter-4 we have shown how the detailed partial structure of alloys can be 

obtained from Lebowitz solution of hard sphere mixtures with a square well perturbing tail. 

These computed concentration dependent partial structure factors are incorporated in the 

calculations of totals structure factors of Al – Cu and Ag – Cu alloys at different atomic 

percent of Cu. We used mean spherical model to compute the total and partial direct 

correlation functions in the attractive and repulsive regions of the interacting potential in 

both alloys (Al-Cu and Ag-Cu) at different compositions. Thus the different partial DCFs 

Cij(r) are Fourier transformed to obtain Cij(k), from which the partial structure factors are 

computed. 

It is important to point out that in the present calculations no experimental data of 

the alloys is used to generate the partial and total structure factors. The potential parameters 

were those obtained for pure metals fitted with the peak positions of the structure factors of 

pure constituents. With these potential parameters (the partial and total) structure factors 

were evaluated, and then Fourier transformed to get the partial and total radial distribution 



Abstract 

 

4 

 

functions. We also obtained total and partial coordination numbers from partial and total 

pair correlation functions respectively. 

At this juncture it is important to note that with one total structure factor it is not 

possible to calculate the three partial structure factors. Of course it is possible to do 

different experiments with different isotopic substitution. Hence the present detailed model 

calculations are of immense help and important. 

In Chapter-5 the Bhatia - Thornton fluctuations namely the number - number, 

concentration - concentration, and number - concentration correlation functions have been 

shown to be related to the partial structure factors linearly and hence these 

thermodynamically important quantities are also computed from the partial structure factors 

at various compositions of alloys in the entire momentum space with special emphasis on 

the values at long wave limit from which we evaluate the chemical short range order 

parameter to comprehend the segregating and compound formation tendencies in binary 

melts.  

Further using Kirkwood-Buff’s equation, isothermal compressibility has been 

calculated as a function of composition in Al - Cu and Ag - Cu alloys. 

 In Chapter–6 the self and mutual diffusion coefficients along with Onsager’s 

coefficient, Did were calculated by incorporating thermodynamic factor due to 

concentration-concentration correlation in the long wavelength, SCC(0) in Darken’s 

equation. The theoretically calculated partial and total structure factors were employed to 

derive the self and mutual diffusion coefficients in Al - Cu and Ag - Cu alloys at different 

compositions of Cu. For this we use the Helfand’s linear trajectory principle generalized by 

Davis and Polyvos for a binary mixture.  
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New equations have been formulated for the temperature dependence of diffusion 

coefficient for binary mixtures. These equations are extended to Al-Cu and Ag-Cu alloys at 

different concentrations of Cu to determine the activation energy for diffusion under 

Arrhenius law and the results are in good agreement with available literature values. 

It is worth to mention here that in all the calculations of structural, transport and 

thermodynamic properties the potential parameters of the pure constituents have been used 

and no experimental data of the alloys have been employed. 

Thus, in this Thesis  

(1) TSFs and g(r) of liquid metals (Na, K. Cs, Mg, Al, In, Pb, Ag, Cu and Au) were 

determined. The computed structural parameters were employed to derive transport, thermo 

physical and surface properties in the considered liquid metals.  

(2) Partial and total structure factors, partial and total radial distribution functions and 

coordination numbers in Al - Cu and Ag - Cu alloys at different concentrations of Cu. 

(3) Bhatia – Thornton correlation functions in the entire momentum space with special 

emphasis on the values at long wave limit i.e. SCC(0),  chemical short range order parameter 

and compressibility of the same alloys at different concentrations. 

(4) The self and mutual diffusion coefficients have been calculated for the constituents 

of the same alloys through the use of Helfand linear trajectory principle at various 

concentrations. Extension of equations for the computation of activation energy in binary 

mixtures has been given.  

(5) The universal scaling law was tested with the SW interaction in one component 

liquid metals to binary liquid alloys. 
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