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PREFACE

The present thesis entitled “A Study on Almost Grayan Manifolds” is an outcome of the

research work carried out by the author under the supervision of Dr. Jay Prakash Singh, As-

sistant Professor, Department of Mathematics and Computer Science, Mizoram University.

This thesis consists of six chapters and each chapter is subdivided into a number of

sections. The first chapter is devoted to the general introduction which includes the basic

definitions, literature review, some mathematical tools used for solving the problems.

In the second chapter, we studied an Einstein manifold admitting a Ricci quarter sym-

metric metric connection in Sasakian manifolds and we also obtained some interesting re-

sults. We have discussed and obtained an equivalent relation between the locally symmetric,

conharmonically symmetric and m-projectively symmetric manifolds. We also examined

and obtained equivalency relation between the locally bi-symmetric, conharmonically bi-

symmetric and m-projectively bi-symmetric manifolds. Here, we showed that a generalized

conharmonically 2-recurrent Einstein manifold admitting a Ricci quarter symmetric metric

connection is conharmonically flat and a generalized conharmonically 2-recurrent Einstein

manifold admitting a Ricci quarter symmetric metric connection is m-projectively flat.

The third chapter deals with the study of curvature tensor W1. Here, we concentrated on

weakly W1 symmetric manifolds and W1 flat weakly Ricci-symmetric manifolds. We also

examined and investigated the nature of the scalar curvature of a (WW1S)n. Here, we have

proved that the Ricci tensor S in a Riemannian manifold (Mn, g) (n > 2) is codazzi type

and the Ricci tensor S in (WW1S)n has an eigenvalue −r corresponding to the eigenvector

ρ̂. We also proved that in a W1 flat (WRS)n, (n > 2) with µ(X) 6= 0, the vector field ρ

defined by g(X, ρ) = H(X) is not a proper concircular vector field and W1 flat (WRS)n

(n > 2) is a quasi Einstein manifold.

The fourth chapter deals with φ-symmetric and φ-recurrent curvature tensor in LP -

Sasakian manifolds. We proved that φ-symmetric LP -Sasakian manifold is an Einstein

manifold. It is shown that the scalar curvature r is constant if and only if a 3-dimensional
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LP -Sasakian manifold is locally φ-symmetric. We constructed an example of 3-dimensional

φ-Ricci symmetric LP -Sasakian manifolds. In this chapter, we also studied and discussed

m-projective φ-recurrent LP -Sasakian manifolds. We showed that m-projective φ-recurrent

LP -Sasakian manifold is an η-Einstein manifold.

We explored some properties of K-contact quasi Einstein manifolds in the fifth chapter.

We have obtained some conditions on K-contact manifold which satisfy semi-symmetric,

Ricci symmetric and Ricci-recurrent. We also studied Ricci Solitons inK-contact quasi Ein-

stein manifolds. Here, we have proved that in K-contact manifold admitting Ricci solitons

g(X,φY ) = 0. We also showed that a Ricci soliton in K-contact quasi Einstein manifold

could not be steady.

The last chapter is summary and conclusion.

Throughout the preparation of the manuscript, we have gone through several text books

and research papers which are cited in the bibliography. Towards the end of the thesis, the

references of the mentioned papers are listed with the surnames of the authors and the year

of publication of their works, which are decoded in chronological order in the Bibliography.
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Chapter 1

Introduction

1.1 Differentiable Manifold

A locally Euclidean space is a topological spaceMn such that each point has a neighborhood

homeomorphic to an open subset of the Euclidean space Rn. If φ is a homeomorphism of

a connected open set U ⊂ Mn onto an open subset of Rn, then U is called a coordinate

neighborhood; φ is called a coordinate map; the functions xi = ti ◦ φ, where ti denotes

the ith canonical coordinate function on Rn are called the coordinate functions and the pair

(U, φ) is called a coordinate system or a (local) chart. An atlas A of class C∞ on a locally

Euclidean space Mn is a collection of coordinate systems (Uα, φα, α ∈ A) satisfying the

following two properties

(1) ∪α∈AUα = Mn.

(2) φα ◦ φ−1β is C∞ for all α, β ∈ A.

A differentiable structure (or maximal atlas) C on a locally Euclidean space Mn is an atlas

A = (Uα, φβ) : α ∈ A of class C∞, satisfying the above two properties (1) and (2) and

moreover the condition.

(3) The collection C is maximal with respect to (2); that is, if (U, φ) is a coordinate system

such that φ ◦ φ−1α and φα ◦ φ−1 are C∞, then (U, φ) ∈ C .
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A topological manifold of dimension n is a Hausdorff, second countable, locally Euclidean

space of dimension n. A differentiable manifold of class C∞ of dimension n (or simply

differentiable manifold of dimension n or C∞ manifold or n manifold) is a pair of (Mn,C )

consisting of a topological manifoldMn of dimension n, together with a differentiable struc-

ture C of class C∞ on Mn.

Let Mn and Nm be differentiable manifolds of respective dimensions n and m. A map

Φ : Mn → Nm is said to be C∞ provided for every coordinate system (U, φ) on Mn and

(V, ψ) on Nn, the composite map ψ ◦ Φ ◦ φ−1 is C∞.

1.2 Tangent Vector

A vector at a point has a direction and a magnitude. If a point moves along a regular curve

then its velocity can be interpreted as a certain vector which is tangent to the curve at that

point. Again, if a point moves across a 2-dimensional surface then its velocity is interpreted

as a certain vector tangent to the given surface.

A tangent vector at a point p in a manifold Mn is a derivation at p. Let Mn be a differ-

entiable manifold and p a point on Mn. Consider the set of all real-valued C∞ functions,

each defined on some neighborhood of p is denoted by C (p). If f, g ∈ C (p), then f + g and

f.g are defined on the intersection of the neighborhood where f is defined and the neighbor-

hood where g is defined; λf is defined on the neighborhood where f is defined. If for each

f ∈ C (p), there corresponds a real number v(f) satisfying

(1) v(λf + µg) = λv(f) + µv(g),

(2) v(fg) = v(f)g(p) + f(p)v(g),

where λ, µ ∈ R; f, g ∈ C (p). Then the map v : C (p)→ R is called a tangent vector of Mn

at p.

2



1.3 Tangent Space

For tangent vectors v, v′ of Mn at p and for λ ∈ R, we define the sum v + v′ and the scalar

multiple λv by

(i) (v + v′)(f) = v(f) + v′(f),

(ii) (λv)(f) = λ(v(f)), f ∈ C (p).

Then (v + v′) and λv are also tangent vectors of Mn at p. Hence, defining the sum and

the scalar multiple of tangent vectors at p in this manner, the set of all tangent vectors at

p becomes a vector space over R. This vector space is denoted as Tp(Mn) and call it the

tangent vector space or tangent space of Mn at p.

Let (x1, x2, ..., xn) be a local coordinate system on U and at a point p of U . Let

(
∂

∂xi
)pf =

∂f

∂xi
(p), (i = 1, ..., n).

Then ∂
∂xi

is a tangent vector at p. If Mn is a manifold of dimension n, then the tangent

space Tp(Mn) is also of dimension n. The basis of Tp with respect to coordinate system

(x1, x2, .....xn) is ( ∂
∂xi

), i = 1, 2, .....n.

Let T ′
p be the dual space of Tp whose basis with respect to the basis ( ∂

∂xi
) is (dx1, dx2, ......dxn).

We observe that the elements of Tp are the contravariant vectors and elements of T ′
p are the

covariant vectors with respect to the basis of Tp.

1.4 Vector Field

A vector field X on an open subset U of Rn is a function that assigns to each point p in

U a tangent vector Xp in Tp(Rn). Since Tp(Rn) has basis ∂
∂xi
|p, the vector Xp is a linear

combination

Xp =
∑

ai(p)
∂

∂xi
|p, p ∈ U, ai(p) ∈ R.

3



Omitting p, we may write X =
∑
ai∂/∂xi, where ai are functions on U . We can say that

the vector field X in C∞ on U if the coefficient functions ai are all C∞ on U .

A vector field X on Mn is a linear mapping X : C∞(Mn) → C∞(Mn) such that the

map f → Xf satisfies

X(f + g) = Xf +Xg, (1.4.1)

X(af) = aXf, (1.4.2)

X(fg) = (Xf)g + f(Xg), (1.4.3)

for all f, g ∈ C∞(Mn), a ∈ Rn which implies that X is also derivation of the algebraic

C∞(Mn). Thus a vector field X is defined as a derivation of the functions C∞(Mn) satis-

fying (1.4.1) - (1.4.3). Thus to each point p ∈ Mn such a derivation assigns a linear map

Xp : C∞(Mn) → R defined by X(p)f = (Xf)(p) for each f ∈ C∞(Mn) and hence the

map p ∈ Xp assigns a field of tangent vectors.

1.5 Lie Bracket

If X, Y are C∞ vector fields, then we define a C∞ vector field called the Lie bracket (or

Poisson Bracket) of X and Y on the intersection of their domain by

[X, Y ] = XY − Y X.

The Lie bracket satisfying the following properties:

[X, Y ](f + g) = [X, Y ]f + [X, Y ]g, (1.5.1)

[X, Y ](fg) = f [X, Y ]g + g[X, Y ]f, (1.5.2)

4



[fX, gY ] = fg[X, Y ] + f(Xg)Y − g(Y f)X, (1.5.3)

[X, Y ] = −[Y,X], (anticommutativity/skew symmetric) (1.5.4)

[X, aY + bZ] = a[X, Y ] + b[X,Z], (bilinear) (1.5.5)

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0, (Jacobi identity) (1.5.6)

where f, g ∈ C and X, Y, Z ∈ C∞ and a, b are scalars.

1.6 Lie Derivative

Let X be a C∞ vector field on an open set A. Lie derivative via. X is a type preserving

linear mapping

LX : T rs → T rs ,

such that

LXf = Xf, f ∈ F (1.6.1)

LXY = [X, Y ], (1.6.2)

(LXu)(Y ) = X(u(Y ))− u([X, Y ]), u is 1− form (1.6.3)

LXa = 0, a ∈ R (1.6.4)

5



(LXP )(u1, ..., ur, X1, ..., Xs) = X(P (u1, ..., ur, X1, ..., Xs))

−P (LXu1, ..., ur, X1, ..., Xs)...

−P (u1, ..., ur, [X,X1], X2, ..., Xs)...

−P (u1, ..., Xs−1, [X,Xs]), P ∈ T rs . (1.6.5)

(LXP )(u1, ..., ur, X1, ..., Xs) = X(P (u1, ..., ur, X1, ..., Xs))

−P (LXu1, ..., ur, X1, ..., Xs)...

−P (u1, ..., ur, [X,X1], X2, ..., Xs)...

−P (u1, ..., us−1, [X,Xs]), P ∈ T rs . (1.6.6)

1.7 Covariant Derivative

A linear affine connection on Mn is a function

∇ : Tp(M
n)× Tp(Mn)→ Tp(M

n)

such that

∇fX+gYZ = f(∇XZ) + g(∇YZ), (1.7.1)

∇Xf = Xf, (1.7.2)

∇X(fY + gZ) = f(∇XY ) + g(∇XZ) + (Xf)Y + (Xg)Z, (1.7.3)

for an arbitrary vector fieldsX, Y, Z and smooth functions f, g ∈Mn. ∇X is called covariant

derivative operator and∇XY is called covariant derivative of Y with respect to X .

The covariant derivative of a 1-form u is given by

(∇Xu)(Y ) = X(u(Y ))− u(∇XY ). (1.7.4)

6



1.8 Exterior Derivative

Let Vp be the set of all C∞ p-forms on an open set A. Then the mapping

d : Vp → Vp+1

such that

(df)(λ) = λf, λ ∈ V 1, f ∈ F (1.8.1)

(dA)(λ1, ..., λp+1) =
∑
1≤j

(−)j+1λj
(
A(λ1, ..., λj, ..., λp+1)

)
+

∑
i≤j

(−)j+iA
(
[(λi, λj], λ1, ..., λi, ..., λj, ..., λp+1)

)
(1.8.2)

for arbitrary C∞ fields λs ∈ V 1, where A ∈ Vp.

and

(dA)(λ1, ..., λp+1) = λ1 (A(λ2, ..., λp+1))

− λ2 (A(λ1, X3, ...λp+1))

+ X3 (A(λ1, λ2, λ4, ..., λp+1)) ...

− A([λ1, λ2], λ3, ..., λp+1)

+ A([λ1, λ3], λ2, λ4, ..., λp+1)

− A([λ2, λ3], λ1, λ4, ..., λp+1) + ... (1.8.3)

for arbitrary C∞ vector fields X ′s ∈ V 1 and A ∈ Vp, is called the exterior derivative.

1.9 Connection

A connection ∇ is a type preserving mapping ∇ : Tp ∗ T rs → T rs that assigns to each

pair of C∞-vector fields (X,P ), X ∈ Tp, P ∈ T rs , a C∞ vector field ∇XP such that if

7



X, Y, Z ∈ Tp, A ∈ T rp are C∞ field and f is a C∞ function, then

∇Xf = Xf, (1.9.1)

∇Xa = 0, a ∈ R (1.9.2)

(a) ∇X(Y + Z) = ∇XY +∇XZ,

(b) ∇X(fY ) = (Xf)Y + f∇XY, (1.9.3)

(a) ∇X+YZ = ∇XZ +∇YZ,

(b) ∇fXZ = f∇XZ, (1.9.4)

(∇Xλ)(Y ) = X(λ(Y ))− λ(∇XY ), (1.9.5)

and

(∇XP )(λ1, ..., λr, X1, ..., Xs) = X(P (λ1, ..., λr, X1, ..., Xs))

− P (∇Xλ1, ..., λr, X1, ..., Xs)...

− P (λ1..., λr, X1, ...,∇XXs). (1.9.6)

1.10 Riemannian Manifold

Let us consider an n-dimensional C∞ with the tangent space Tp at p ∈ Mn. A real valued,

bilinear symmetric, non-singular positive definite function g on the ordered pair X, Y of

tangent vectors T(p) at each point p such that

(1) g(X, Y ) is a real number,

(2) g is symmetric⇒ g(X, Y ) = g(Y,X),

(3) g is non-singular i.e., g(X, Y ) = 0, for all Y 6= 0⇒ X = 0,

8



(4) g is positive definite i.e., g(X,X) > 0, for all tangent vector X ∈ C∞ and g(X,X) =

0 if and only if X = 0,

and

(5) g(aX + bY, Z) = ag(X,Z) + bg(Y, Z); a, b ∈ R,

then g is said to be Riemannian metric tensor or fundamental tensor of type (0,2).

Then, the manifold Mn with a Riemannian metric g is called a Riemannian manifold and

its geometry is called a Riemannian geometry denoted by (Mn, g) or (M, g) or simply byM .

1.11 Riemannian Connection

Let (Mn, g) is an n-dimensional manifold and ∇ is an affine connection on Mn. Then the

affine connection∇ on Mn is said to be Riemannian connection (or Levi-Civita connection)

if it satisfies:

(1) ∇ is symmetric or torsion free i.e.,

∇XY −∇YX = [X, Y ], (1.11.1)

and

(2) ∇ is a metric compatible or metric connection i.e.,

(∇Xg)(Y, Z) = 0. (1.11.2)

Thus a Riemannian connection on a Riemannian manifold is a linear connection which

is torsion free and metric competible.

9



1.12 Quarter Symmetric Metric Connection

A linear connection∇ on an n-dimensional Riemannian manifold (Mn, g) is called a quarter

symmetric connection if its torsion tensor T of the connection∇

T (X, Y ) = ∇XY −∇YX − [X, Y ], (1.12.1)

satisfies

T (X, Y ) = η(Y )φX − η(X)φY, (1.12.2)

where η is 1-form and φ is a (1, 1) tensor field.

In particular, if φ(X) = X , then the quarter symmetric connection reduces to a semi-

symmetric connection. Thus the notion of quarter symmetric connection generalizes the

notion of semi symmetric connection.

Moreover, if a quarter symmetric connection∇ satisfies the condition

(∇Xg)(Y, Z) = 0,

for all X, Y, Z ∈ Tp(Mn), where Tp(Mn) is the Lie algebra of vector fields of the manifold

Mn, then ∇ is said to be a quarter-symmetric metric connection, otherwise it is said to be a

quarter symmetric non-metric connection.

1.13 Torsion Tensor

The mapping T : χ(Mn)⊗ χ(Mn)→ χ(Mn) given by

T (X, Y )
def
= ∇XY −∇YX − [X, Y ]. (1.13.1)

Then the vector field T (X, Y ) ∈ χ(Mn) is called a torsion tensor field of the connection ∇

for all X, Y ∈ χMn.

Torsion tensor is also a vector valued, skew-symmetry, bilinear function T of the type
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(1, 2) tensor. Torsion tensor is said to be symmetric or torsion free, if the torsion tensor of a

connection∇ = 0 .

1.14 Curvature Tensor

The curvature tensor K of type (1, 3) with respect to the Riemannian connection ∇ is given

by

K(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, (1.14.1)

for all X, Y, Z ∈ Tp(Mn).

Let ′K be the associative curvature tensor of the type (0, 4) of the curvature tensor K.

Then

′K(X, Y, Z, U) = g(K(X, Y, Z)U), (1.14.2)

′K is called the Riemannian-Christoffel curvature tensor of first kind.

The associative curvature tensor ′K satisfied the following properties:

′K is skew-symmetric in first two slot

i.e., ′K(X, Y, Z, U) = − ′K(Y,X,Z, U). (1.14.3)

′K is skew-symmetric in last two slot

i.e., ′K(X, Y, Z, U) = − ′K(X, Y, U, Z). (1.14.4)

′K is symmetric in two pair of slot

i.e., ′K(X, Y, Z, U) = ′K(Z,U,X, Y ). (1.14.5)

′K satisfies Bianchi’s first identities

i.e., ′K(X, Y, Z, U) + ′K(Y, Z,X, U) + ′K(Z,X, Y, U) = 0. (1.14.6)
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and ′K satisfies Bianchi’s second identities

i.e., (∇X
′K)(Y, Z, U, V ) + (∇Y

′K)(Z,X,U, V ) + (∇Z
′K)(X, Y, U, V ) = 0.(1.14.7)

1.15 Ricci-Tensor

Let Mn be a Riemannian manifold with a Riemannian connection ∇. Then the Ricci tensor

field S is the covariant tensor field of degree 2 defined as Ric(Y, Z) = S(Y, Z) = Trace of

the linear map X → K(X, Y )Z for all X, Y, Z ∈ Tp(Mn).

If {e1, ..., en} is an orthonormal basis of the tangent space Tp, p ∈ Mn and K is the

Riemannian curvature tensor of the Riemannian manifold (Mn, g), then

S(X, Y ) =
n∑
i=1

g(K(ei, X)Y, ei), (1.15.1)

=
n∑
i=1

′K(ei, X, Y, ei), (1.15.2)

=
n∑
i=1

′K(X, ei, ei, Y ),

=
n∑
i=1

g(K(X, ei)ei, Y ),

where ′K is the Riemannian curvature tensor of the manifold of type (0, 4).

Ricci tensor is also symmetric

i.e., S(X, Y ) = S(Y,X). (1.15.3)

The linear map L of the type (1, 1) defined by

g(LX, Y )
def
= S(X, Y ) (1.15.4)
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is called a Ricci-map. It is self-adjoint,

i.e., g(LX, Y ) = g(X,LY ). (1.15.5)

The scalar r defined by

r
def
= (C1

1K), (1.15.6)

is called the scalar curvature of Mn at the point p.

A Riemannian manifold Mn is said to be Einstein manifold, if

S(X, Y ) =
r

n
g(X, Y ). (1.15.7)

A Riemannian manifold Mn is said to be η-Einstein manifold, if

S(X, Y ) = ag(X, Y ) + bη(X)η(Y ), (1.15.8)

where a and b are smooth functions.

A Riemannian manifold Mn is said to be flat if

K(X, Y )Z = 0. (1.15.9)

1.16 Certain Curvature Tensors

(A) Conharmonic curvature tensor:

The conharmonic curvature tensor ′C is defined as (Ishii, 1957)

′C(X, Y, Z, U) = ′K(X, Y, Z, U)− 1

n− 2

{
S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)
}
. (1.16.1)
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It satisfies the following properties:

(a) ′C(X, Y, Z, U) = −′C(Y,X,Z, U),

(b) ′C(X, Y, Z, U) = ′C(X, Y, U, Z),

(c) ′C(X, Y, Z, U) = ′C(Z,U,X, Y ),

(d) ′C(X, Y, Z, U) + ′C(Y, Z,X, U) + ′C(Z,X, Y, U) = 0,

where

′C(X, Y, Z, U) = g(C(X, Y, Z), U).

(B) Concircular curvature tensor:

The concircular curvature tensor ′V of type (0, 4), is given by (Yano, 1940)

′V (X, Y, Z, U) = ′K(X, Y, Z, U)− r

n(n− 1)

{
g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)
}
. (1.16.2)

It satisfies the following algebraic properties:

(a) ′V (X, Y, Z, U) = −′V (Y,X,Z, U),

(b) ′V (X, Y, Z, U) = −′V (X, Y, U, Z),

(c) ′V (X, Y, Z, U) = ′V (Z,U,X, Y ),

(d) ′V (X, Y, Z, U) + ′V (Y, Z,X, U) + ′V (Z,X, Y, U) = 0,

where

′V (X, Y, Z, U) = g(V (X, Y, Z), U).
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(C) Projective curvature tensor:

The projective curvature tensor ′P of the type (0, 4), is defined by (Yano and Bochner, 1953)

′P (X, Y, Z, U) = ′K(X, Y, Z, U)− 1

n− 1

{
S(Y, Z)g(X,U)

− S(X,Z)g(Y, U)
}
. (1.16.3)

The projective curvature tensor ′P satisfies

(a)′P (X, Y, Z, U) = −′P (Y,X,Z, U),

(b)C1
1P = C1

2P = C1
3P = 0,

(c)′P (X, Y, Z, U) + ′P (Y, Z,X, U) + ′P (Z,X, Y, U) = 0,

where

′P (X, Y, Z, U) = g(P (X, Y, Z), U).

(D) m-projective curvature tensor:

Pokhariyal and Mishra defined m-projective curvature tensor ′W ∗ of the type (0, 4) by

(Pokhariyal and Mishra, 1971)

′W ∗(X, Y, Z, U) = ′K(X, Y, Z, U)− 1

2(n− 1)

{
g(X,U)S(Y, Z)− g(Y, U)S(X,Z)

+ S(X,U)g(Y, Z)− S(Y, U)g(X,Z)
}
. (1.16.4)

It satisfies the following algebraic properties:

(a) ′W ∗(X, Y, Z, U) = ′W ∗(Z,U,X, Y ),

(b) ′W ∗(X, Y, Z, U) = − ′W ∗(Y,X, U, Z),

(c) ′W ∗(X, Y, Z, U) = − ′W ∗(X, Y, U, Z),

(d) ′W ∗(X, Y, Z, U) + ′W ∗(Y, Z,X, U) + ′W ∗(Z,X, Y, U) = 0,
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where

′W ∗(X, Y, Z, U) = g(W ∗(X, Y, Z), U).

(E) W1 curvature tensor:

Pokhariyal and Mishra also definedW1 curvature tensor ′W1 of the type (0, 4) by (Pokhariyal

and Mishra, 1971)

′W1(X, Y, Z, U) = ′K(X, Y, Z, U) +
1

(n− 1)

{
g(X,U)S(Y, Z)− g(Y, U)S(X,Z)

}
.

(1.16.5)

It satisfies the following properties:

(a) ′W1(X, Y, Z, U) = ′W1(Z,U,X, Y ),

(b) ′W1(X, Y, Z, U) = − ′W1(Y,X, U, Z),

(c) ′W1(X, Y, Z, U) = − ′W1(X, Y, U, Z),

(d) ′W1(X, Y, Z, U) + ′W1(Y, Z,X, U) + ′W1(Z,X, Y, U) = 0,

where

′W1(X, Y, Z, U) = g(W1(X, Y, Z), U).

1.17 Almost Contact Metric Manifold

If Mn (=2m+1) be an odd-dimensional differentiable manifold and φ, ξ, η be a tensor field of

type (1,1), a vector field, a 1-form on Mn satisfying for arbitrary vectors X, Y, Z, ...

φ2X = −X + η(X)ξ, (1.17.1)

η(ξ) = 1, (1.17.2)
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φ(ξ) = 0, (1.17.3)

η(φX) = 0, (1.17.4)

and

rank(φ) = n− 1, (1.17.5)

is called an almost contact manifold (Sasaki, 1965) and the structure (φ, η, ξ) is called an

almost contact structure (Hatakeyama et al., 1963; Sasaki and Hatakeyama (1960, 1961)).

An almost contact manifold Mn on which a Riemannian metric tensor g satisfying

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.17.6)

and

g(X, ξ) = η(X), (1.17.7)

is called an almost contact metric manifold (or an almost grayan manifold) and the structure

(φ, ξ, η, g) is called an almost contact metric structure (Sasaki, 1960).

The fundamental 2-form ′F of an almost contact metric manifold Mn is defined by

′F (X, Y ) = g(φX, Y ). (1.17.8)

From the equations (1.17.6) and (1.17.8), we have

′F (X, Y ) = −′F (Y,X). (1.17.9)

If in an almost contact metric manifold

2′F (X, Y ) = (∇Xη)(Y )− (∇Y η)(X), (1.17.10)

then Mn is called an almost Sasakian manifold.

An almost Sasakian manifold Mn is said to be K-contact Riemannian manifold, if ξ is
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killing vector(Okumura, 1962; Miyazawa and Yamaguchi, 1966) i.e.

(∇Xη)(Y ) + (∇Y η)(X) = 0. (1.17.11)

If on a K-contact Riemannian manifold

(∇Xφ)(Y ) = η(Y )X − g(X, Y )ξ, (1.17.12)

hold, then the manifold is known as a Sasakian manifold (Sasaki, (1965, 1967); Mishra,

1984).

In a Sasakian manifold

′F (X, Y ) = (∇Xφ)(Y ), (1.17.13)

and

∇Xξ = −φX, (1.17.14)

also holds.

1.18 Almost Para-Contact Metric Manifold

Let Mn be an n-dimensional C∞-manifold. If there exist in Mn a tensor field φ of the type

(1, 1), consisting of a vector field ξ and a 1-form η in Mn satisfying

φ2X = X − η(X)ξ, (1.18.1)

φ(ξ) = 0, η(ξ) = 1, (1.18.2)

then Mn is called an almost Para-contact manifold.

Let g be a Riemannian metric satisfying

η(X) = g(X, ξ), η(φX) = 0, (1.18.3)

18



g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.18.4)

then the structure (φ, ξ, η, g) satisfying (1.17.1) - (1.17.4) is called an almost Para-contact

Riemannian structure. The manifold with such structure is called an almost Para-contact

Riemannian manifold (Sato and Matsumoto, 1976).

If we defined F ′(X, Y ) = g(φX, Y ), then the following relations are satisfied

F ′(X, Y ) = F ′(Y,X), (1.18.5)

and

F ′(φX, φY ) = F ′(X, Y ). (1.18.6)

If in Mn the relation

(∇Xη)(Y )− (∇Y η)(X) = 0, (1.18.7)

dη(X, Y ) = 0, i.e., η is closed. (1.18.8)

(∇XF
′)(Y, Z) = −g(X,Z)η(Y )− g(X, Y )η(Z)

+ 2 η(X)η(Y )η(Z), (1.18.9)

(∇Xη)(Y ) + (∇Xη)(X) = 2 F ′(X, Y ), (1.18.10)

and

∇Xξ = φX, (1.18.11)

holds.
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1.19 Para-Sasakian Manifold

An n-dimensional differentiable manifold Mn is said to be Para-Sasakian or briefly P -

Sasakian manifold if it admits a (1, 1) tensor field φ, a contravariant vector field ξ, a covariant

vector field η and a Riemannian metric g, which satisfy (Matsumoto, 1977; Miyazawa, 1979)

φ2(X) = X − η(X)ξ, (1.19.1)

φξ = 0, (1.19.2)

g(φX, φY ) = g(X, Y )− η(X)η(Y ), (1.19.3)

g(X, ξ) = η(X), (1.19.4)

(∇Xφ)(Y ) = −g(X, Y )ξ − η(Y )X + 2η(X)η(Y )ξ, (1.19.5)

∇Xξ = φX, (1.19.6)

(a) η(ξ) = 1, (b) η(φX) = 0, (1.19.7)

rank(φ) = (n− 1), (1.19.8)

(∇Xη)(Y ) = g(φX, Y ) = g(φY,X), (1.19.9)

for any vector fields X, Y , where∇ denotes covariant differentiation with respect to g.
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1.20 Lorentzian Para-Contact Metric Manifold

Let Mn be an n-dimensional differentiable manifold endowed with a tensor field φ of the

type (1, 1), a vector field ξ, a 1-form η and a Lorentzian metric g satisfying

φ2X = X + η(X)ξ, (1.20.1)

η(ξ) = −1, (1.20.2)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (1.20.3)

g(X, ξ) = η(X), (1.20.4)

for an arbitrary vector fields X and Y , then Mn is called a Lorentzian Para (or LP )-contact

manifold and the structure (φ, ξ, η, g) is called the Lorentzian Para-contact structure (Mat-

sumoto, 1989).

Let Mn be a Lorentzian Para-contact manifold with stucture (φ, ξ, η, g). Then it satisfy-

ing

(a) φ(ξ) = 0, (b) η(φX) = 0, (c) rank(φ) = n− 1. (1.20.5)

A Lorentzian Para-contact manifold is called a Lorentzian Para-Sasakian manifold if (Mat-

sumoto and Mihai, 1988)

∇Xξ = φX, (1.20.6)

(∇Xφ)(Y ) = g(X, Y )ξ + η(Y )X + 2 η(X)η(Y )ξ, (1.20.7)
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where∇ denotes the covariant differentiation with respect to g.

Let us put F ′(X, Y ) = g(φX, Y ). Then the tensor field F ′ is symmetric.

i.e., F ′(X, Y ) = F ′(Y,X), (1.20.8)

and

F ′(X, Y ) = (∇Xη)(Y ). (1.20.9)

Also, in an LP -Sasakian manifold the following relation holds

′K(X, Y, Z, ξ) = g(Y, Z)η(X)− g(X,Z)η(Y ), (1.20.10)

and

S(X, ξ) = (n− 1)η(X). (1.20.11)

1.21 Recurrent Manifold

Let Mn be an n-dimensional smooth Riemannian manifold and Tp(M
n) denotes the set

of differentiable vector fields on Mn. Let X, Y ∈ Tp(M
n); ∇XY denotes the covariant

derivative of Y with respect to X and K be the Riemannian curvature tensor of type (1, 3).

A Riemannian manifold Mn is said be recurrent (Kobayashi and Nomizu, 1963) if

(∇UK)(X, Y, Z) = α(U)K(X, Y, Z), (1.21.1)

where X, Y, Z ∈ Tp(Mn) and α is a non-zero 1-form known as recurrence parameter. If the

1-form α is zero in (1.21.1), then the manifold reduces to symmetric manifold (Singh and

Khan, 1999).

A Riemannian manifold (Mn, g) is said to be semi-symmetric if it satisfies the relation
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(Szabo, 1982)

(K(X, Y ).K)(U, V )W = 0, (1.21.2)

whereK(X, Y ) is considered as the tensor algebra at each point of the manifold i.e.,K(X, Y )

is curvature transformation or curvature operator.

A Riemannian manifold (Mn, g) is said to be Ricci-recurrent if it satisfies the relation

(∇XS)(Y, Z) = A(X)S(Y, Z), (1.21.3)

for all X, Y, Z ∈ Tp(M
n), where ∇ denotes the Riemannian connection (or Levi-Civita

connection) and A is a 1-form on Mn. If the 1-form A vanishes identically on Mn, then a

Ricci-recurrent manifold becomes a Ricci-symmetric manifold.

A Riemannian manifold (Mn, g) is called a generalized recurrent manifold (De and

Guha, 1991) if its curvature tensor K satisfies the following condition:

(∇XK)(Y, Z)U = A(X)K(Y, Z)U +B(X)
[
g(Z,U)Y − g(Y, U)Z

]
, (1.21.4)

where A and B are 1-form, B is non-zero and these are defined by

A(X) = g(X, ρ1), B(X) = g(X, ρ2), (1.21.5)

ρ1 and ρ2 are vector fields associated with 1-forms A and B, respectively.

A Riemannian manifold (Mn, g) is said to be φ-recurrent if there exists non-zero 1-form

A such that

φ2((∇WK)(Y, Z)U) = A(W )K(Y, Z)U, (1.21.6)

for arbitrary vector fields Y, Z, U,W .

A Riemannian manifold (Mn, g) is called generalized φ-recurrent if its curvature tensor
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K satisfies

φ2((∇WK)(Y, Z)U) = A(W )K(Y, Z)U

+ B(W )[g(Z,U)Y − g(Y, U)Z], (1.21.7)

where A and B are 1-forms and B is non-zero.

1.22 Ricci Solitons

During 1982, Hamilton made the fundamental observation that Ricci flow is an excellent tool

for simplifying the structure of the manifold. It is the process which deforms the metric of a

Riemannian manifold analogous to the diffusion of heat there by smooting out the regularity

in the metric. It is given by (Hamilton, 1982)

∂g

∂t
= −2Ric(g),

where g is Riemannian metric, Ric(g) is the Ricci curvature tensor, t is time.

A Ricci soliton (g, V, λ) is a generalization of an Einstein metric and is defined on a Rieman-

nian manifold (Mn, g) by (Hamilton, 1988)

LV g + 2S + 2λg = 0, (1.22.1)

where L is Lie-derivative, V is a complete vector field on Mn, λ is constant and S is Ricci

tensor. The Ricci soliton is said to be shrinking, steady or expanding according as λ is

negative, zero and positive respectively. Long-existing solutions, that is, solutions which

exist on an infinite time interval are the self-similar solutions, which in Ricci flow are called

Ricci soliton.

If the vector field V is the gradient of a potential function −f , then g is called a gradient

Ricci soliton and (1.22.1) assumes the form

∇∇f = S + λg. (1.22.2)
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A Ricci Soliton on a compact manifold is a gradient Ricci Soliton. A Ricci soliton on a com-

pact manifold has constant curvature in dimension 2 (Hamilton, 1988) and also in dimension

3 (Ivey, 1993).

1.23 Some Mathematical Tools

The notion of a differentiable manifold is necessary for extending the methods of differential

calculus to spaces more general than Rn. Differentiable manifold was defined on the basis of

differential calculus, topology and real analysis. With the help of differentiable manifold, we

can study curves and surfaces in n-dimensional Euclidean space. Riemannian manifold is a

part of differentiable manifold which we study by index free notation and tensor notation.

The fundamental theorem of Riemannian Geometry, Lie algebra, Ricci Identity, Jacobi Iden-

tity, Bianchi first Identity, Bianchi second Identity, Contraction method, Koszul’s formula

and Levi-Civita connection are used in our study.

(i) Contraction:

The linear mapping

Ch
k : T rs → T r−1s−1 ; (i ≤ h ≤ r) , (i ≤ k ≤ s)

such that

Ch
k (λ1 ⊗ λ2 ⊗ ...⊗ λr ⊗ α1 ⊗ ...αs) = αk(λ1 ⊗ ..⊗ λh−1 ⊗ λh+1...

⊗λr ⊗ α1 ⊗ α2 ⊗ ..αk−1 ⊗ λk + 1⊗ αs),

where λ1, λ2...λr ∈ TpM
n and α1, α2...αs ∈ ¯TpMn and ⊗ denote tensor product, is

called contraction with respect to hth contravariant and kth covariant places.

(ii) Ricci identity:

For a tensor field K of type (0, 1) on a Riemannian manifold (Mn, g), then

(∇X∇YK)(Z)− (∇Y∇XK)(Z)− (∇[X,Y ]K)Z = −K(R(X, Y )Z).
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(iii) Jacobi identity:

If X, Y, Z are vector fields, then

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

(iv) Bianchi’s First identity:

For a tensor field K of type (0, 1) on a Riemannian manifold (Mn, g), then

K(X, Y, Z) +K(Y, Z,X) +K(Z,X, Y ) = 0,

where X, Y, Z are vector fields.

(v) Bianchi’s Second identity:

For a Riemannian connection∇, we have

(∇XK)(Y, Z,W ) + (∇YK)(Z,X,W ) + (∇ZK)(Y, Y,W ) = 0,

where K is a curvature tensor.

(vi) Koszul’s Formula:

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z,X)− Zg(X, Y ) + g([X, Y ], Z)− g([Y, Z], X) +

g([Z,X], Y )

for all X, Y, Z ∈ χ(Mn).

(vii) Inner product:

If (U, ui) is a local coordinate system on Mn, then the tensor field g can be expressed

as

g = gijdu
i ⊗ duj

on U , where gij = gji is a smooth function on U . Then g provides a bilinear function

on TpM and hence g gives rise to an inner product on TpMn for every point p ∈ Mn.

If

X = X i ∂

∂ui
, Y = Y j ∂

∂uj
,
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then we write

g(X, Y ) = g

(
X i ∂

∂ui
, Y j ∂

∂uj

)
= X iY jg

(
∂

∂ui
,
∂

∂uj

)
= gijX

iY j,

where gij = g
(
∂
∂ui
, ∂
∂uj

)
, i, j = 1, 2, ..., n.

(viii) Fundamental Theorem of Riemannian Geometry:

Every Riemannian manifold (Mn, g) of dimension n admits a unique torsion free con-

nection.

1.24 Review of Literature

Some global properties of contact structure was studied by Gray (1959). Hatakeyama (1960)

introduced the idea of an almost contact manifold structure. Sasaki (1960) studied differen-

tiable manifolds with certain structures which are closely related to almost contact structure.

Some remarks on spaces with certain contact structure were given by Okumura (1962). In

1963, Tashiro showed that an almost Grayan structure is introduced on a hyper-surface of

an almost complex manifold. Hatakeyama (1963), Hatakeyama et al. (1963), Sasaki (1960,

1965, 1967, 1968), Sasaki and Hatakeyama (1960, 1961) defined and deeply studied some

properties of an almost contact manifold. In the meantime, Sasaki (1960), Hatakeyama

et al. (1963) defined an almost contact metric manifold or an almost Grayan manifold.

In 1971, Tanno classified connected almost contact metric manifolds whose automorphism

group possesses the maximum dimension. In 1980, Sinha and Yadava also defined a struc-

ture connection in a Riemannian manifold and studied its properties in an almost contact

metric manifold.

A semi-symmetric metric connection was defined in an almost contact manifold by Shar-

fuddin and Hussain (1976). A semi-symmetric metric connections on a Riemannian mani-
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fold have been studied by Amur and Pujar (1978), Bihn (1990), Jun et al. (2005), Barmen

and De (2013), Chaubey and Ojha (2012), Singh and Pandey (2008), Singh et al. (2012,

2013) and many other geometers. De and Sengupta (2001) investigated the curvature tensor

of an almost contact metric manifold admitting a type of semi-symmetric metric connection

and studied the curvature properties of conformal curvature tensor and projective curvature

tensor. This was also studied by many geometers like Hatakeyama (1963), Hatakeyama et

al. (1963), Sato (1976), Sasaki and Hatakeyama (1961), Oubina (1985). Agashe and Chafle

(1992) introduced a semi symmetric non-metric connection on a Riemannian manifold and

this was further studied by De and Kamilya (1995), Pandey and Ojha (2001), Prasad and

Kumar (2002), Chaturvedi and Pandey (2008), Chaubey (2011), Singh (2014a) and others.

The idea of semi-symmetric linear connection on a differentiable manifold was intro-

duced by Friedman and Schouten (1924). Hayden (1932) defined a metric connection with

torsion on a Riemannian manifold. Yano (1970) studied some curvature and derivational

conditions for semi-symmetric connections in Riemannian manifolds. As a generalization

of this, Golab (1975) introduced and studied the notion of quarter-symmetric connection on

a differentiable manifold. A linear connection∇ on an n-dimensional Riemannian manifold

(Mn, g) is called a quarter symmetric connection if its torsion tensor T satisfies

T (X, Y ) = ∇XY −∇YX − [X, Y ] = η(Y )φX − η(X)φY

where η is a 1-form and φ is a (1, 1) tensor field.

In particular, if φX = X and φY = Y , then the connection∇ is called a semi-symmetric

metric connection according to Yano (1970). Thus the notion of the quarter-symmetric con-

nection generalizes the notion of the semi-symmetric connection. Further, if ∇ satisfies

(∇Xg)(Y, Z) = 0 for all X, Y, Z ∈ χ(Mn), where χ(Mn) is the Lie algebra of vector

fields on Mn, then ∇ is said to be a quarter symmetric metric connection, otherwise it is

a quarter symmetric non-metric connection. Further this was developed by Yano and Imai

(1982), Rastogi (1978, 1987), Mishra and Pandey (1980), Mukhopadhyay et al. (1991) ,
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Biswas and De (1997), Nivas and Verma (2005), Sengupta and Biswas (2003), Singh and

Pandey (2007) and many other geometers. De and Sengupta (2000) proved the existence of

a quarter-symmetric metric connection on a Riemannian manifold and studied some proper-

ties of a quarter-symmetric metric connection on a Sasakian manifold. Sular et al. (2008)

investigated the curvature tensor and the Ricci tensor of a Kenmotsu manifold with respect to

the quarter-symmetric metric connection. Prakash and Narain defined and studied quarter-

symmetric non-metric connection on an LP -Sasakian manifolds and proved its existence

in 2011. They also found some properties of the curvature tensor and the Ricci tensor of

quarter-symmetric non-metric connection. Prakash and Pandey (2013) studied a quarter-

symmetric non-metric connection in a Kenmotsu manifold. Recently, in 2013, Singh studied

weakly symmetric, weakly Ricci symmetric, generalized recurrent LP -Sasakian manifolds

admitting a quarter symmetric non-metric connections. Yadav and Dhruwanarain also stud-

ied a quarter symmetric non-metric connection in a P -Sasakian manifold in 2014. Singh

(2014c) studied some properties of LP -Sasakian manifolds admitting a quarter symmetric

non-metric connections. Singh and Singh (2014) also studied quarter symmetric non-metric

connection on LP -Sasakian manifolds. In 2015, Singh and Devi (2015) studied and exam-

ined a type of quarter symmetric non-metric connection in an LP -Sasakian manifold. In the

same year 2015, Singh et al. studied some curvature properties of LP -Sasakian manifolds

and obtained some interesting results.

In 1989, Tamassy and Binh introduced the notion of weakly symmetric Riemannian

manifolds. Binh (1993) also studied weakly symmetric Riemannian spaces. De et al.

(2000) studied on weakly symmetric and weakly Ricci-symmetric K-contact manifolds. In

2005, De and Ghosh also studied some global properties of weakly Ricci-symmetric man-

ifolds. Shaikh et al. (2007) introduced a type of non-flat Riemannian called weakly W2-

symmetric manifolds and studied their geometric properties. In 2007, Jana and Shaikh stud-

ied quasi-conformally flat weakly Ricci symmetric manifolds. Jaiswal and Ojha (2010) stud-

ied weakly Pseudo-projectively symmetric manifolds and Pseudo-projectively flat weakly

29



Ricci-symmetric manifolds. Shaikh and Hui (2010) also studied quasi-conformally flat al-

most pseudo Ricci-symmetric manifolds. Chaubey (2012) studied weakly m-projectively

symmetric and m-projectively flat weakly Ricci-symmetric manifolds and gives some ex-

ample for that. Singh (2017) studied m-projectively flat almost pseudo Ricci symmetric

manifolds.

Pokhariyal and Mishra (1971) introduced new curvature tensor called m-projective cur-

vature tensor in a Riemannian manifold and studied its properties. Ojha (1975) studied a

note on the m-projective curvature tensor. Later, Pokhariyal (1982) studied some properties

of this curvature tensor in a Sasakian manifold. Ojha (1986), Chaubey (2012), Singh (2009,

2012, 2015b, 2016) and many other geometers studied this curvature tensor in different man-

ifolds.

In 1950, Walker introduced the idea of recurrent manifolds. Dubey (1979) introduced

the notion of generalized recurrent manifold and then such a manifold was studied by De

and Guha (1991). De et al. (1994) defined the generalized recurrent Riemannian manifold

and generalized Ricci-recurrent Riemannian manifold. Khan (2004) introduced the notion

of generalized recurrent Sasakian manifolds to generalize the notion of recurrency. Gen-

eralized recurrent and generalized Ricci recurrent manifolds have been studied by several

authors such as Ozgur (2007), Arslan et al. (2009), Mallick et al. (2013) and many others.

Devi and Singh (2015) also studied a type of m-projective curvature tensor on Kenmotsu

manifolds.

In 2009, Jaiswal and Ojha studied on generalized φ recurrent LP -Sasakian manifolds.

Shukla and Shukla (2009) studied φ-Ricci symmetric Kenmotsu manifolds. Prasad (2009)

studied certain classes of almost contact Riemannian manifolds. The notion of general-

ized φ-recurrency to Sasakian manifolds and Lorentzian α-Sasakian manifolds are respec-

tively studied by Patil et al. (2009) and Prakasha and Yildiz (2010). Venkatesha and Bage-

wadi (2010) studied the pseudo-projective φ-recurrent Kenmotsu manifold and showed the

pseudo-projective φ-recurrent Kenmotsu manifold is an Einstein manifold and also a space
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of constant curvature. By extending the notion of generalized φ-recurrency, Shaikh and

Hui (2011), introduced the notion of extended generalized φ-recurrent manifolds. Prakasha

(2013) considered the extended generalized φ-recurrent in Sasakian manifold. Further Shaikh

et al. (2013) studied this notion for LP -Sasakian manifolds. Singh (2014b) studied general-

ized recurrent and generalized concircularly recurrent P -Sasakian manifolds. Prasad (2000)

introduced the notion of semi-generalized recurrent manifold and obtained some interesting

results. Jaiswal and Ojha (2009) studied generalized φ-recurrent and generalized concir-

cular φ-recurrent LP -Sasakian manifolds. In 2013, Debnath and Bhattacharya also stud-

ied the generalized φ-recurrent trans-Sasakian manifolds. Singh (2016) studied generalized

Sasakian space forms with m-projective curvature tensor. In 2018, Singh and Lalmalsawma

studied and examined generalized pseudo projectively recurrent manifolds.

Takahashi (1977) introduced the notion of φ-symmetric Sasakian manifold and obtained

some interesting properties. De and Kamilya (1994) studied the generalized concircular re-

current manifolds. The notion of Lorentzian Para Sasakian manifold was introduced by Mat-

sumoto (1989). Mihai and Rosca (1992) also introduced the same notion independently and

they obtained several results on this manifold. Lorentzian Para-Sasakian manifolds had also

been studied by Matsumoto and Mihai (1988), Mihai et al. (1999a, 1999b), De et al. (1999),

Shaikh and De (2000), Shaikh and Biswas (2004), Venkatesha and Bagewadi (2008), Perk-

tas and Tripathi (2010), Taleshian and Asghari (2010), Venkatesha et al. (2011), and Singh

(2013, 2015) obtained some results on Lorentzian Para-Sasakian manifolds.

Miyazawa and Yamaguchi (1966) studied and proved some theorems on K-contact met-

ric manifolds and Sasakian manifolds. Mishra (1982) studied on K-contact Riemannian

and Sasakian manifolds and also studied some of the consequences and application of these.

Tripathi and Dwivedi (2008) studied projective curvature tensor in K-contact and Sasakian

manifolds and they proved that

(i) if a K-contact manifold is quasi-projectively flat then it is Einstein and

(ii) a K-contact manifold is ξ-projectively flat if and only if it is Einstein Sasakian.
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In 2000, Chaki and Maity introduced the notion of quasi Einstein manifold. The study

of quasi Einstein manifolds was continued by several authors such as Chaki (2001), Guha

(2003), Ghosh et al. (2006), Ozgur and Sular (2008), De and De (2008), Ozgur (2008) and

many others. Quasi Einstein manifolds have been generalized by several authors in different

ways such as super quasi Einstein manifolds by Chaki (2004), generalized quasi-Einstein

manifolds by De and Ghosh (2004), N(k)-quasi Einstein manifolds by Tripathi and Kim

(2007), nearly quasi-Einstein manifolds by De and Gazi (2008) and others. De and Ghosh

(2004) gives some example of a quasi Eintein manifold (QE)n and also proved that the

existence of (QE)n manifolds. De and Ghosh (2004) also studied a type of Riemannian

manifold called generalized quasi Einstein manifolds. De and Mallick (2011) studied and

proved the existence of a generalized quasi Einstein manifold by non-trivial examples. Re-

cently, Shaikh, Kim and Hui (2011) studied Lorentzian quasi Einstein manifolds. De et al.

(2014) studied some geometric properties of generalized quasi Einstein manifolds and con-

structed two non-trivial examples for proving the existence of a generalized quasi Einstein

manifold. De and Mallick (2016) studied and discussed generalized quasi Einstein manifolds

with space matter tensor and some properties related to it.

In 1982, Hamilton introduced the concept of Ricci flow geometric evolution equation

in which one starts with a smooth n-dimensional Riemannian manifold. Nagaraja and Pre-

malatha (2012) studied Ricci solitons in Kenmotsu manifolds. They also studied quasi con-

formal, conharmonic and projective curvature tensors in a Kenmotsu manifold admitting

Ricci solitons and proved the conditions for the Ricci solitons to be shrinking, steady and

expanding. Ashok et al. (2013) studied Ricci solitons in α-Sasakian manifolds and showed

that it is a shrinking or expanding soliton and the manifold is Einstein with killing vector

field. Adigond and Bagewadi (2017) studied Ricci solitons in Para-Kenmotsu manifolds

when the weyl-conformal curvature tensor satisfied some geometric properties like flatness,

semi-symmetry, pseudo-symmetry, Ricci pseudo-symmetry and Einstein semi-symmetry.
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1.25 Applications

Differential Geometry has wide scope of functioning. Recurrent Geometry is a mathematical

discipline that uses the techniques of differentiable manifold, differential calculus and inte-

gral calculus as well as linear algebra and multilinear algebra to study problems in geometry.

Riemannian Geometry is a special geometry associated with differentiable manifolds and

has many applications to several branches of mathematics. The theory of plane and space,

curves and surfaces in the 3-dimensional Euclidean space formed the basis for development

of differential geometry during the 18th century and the 19th century.

Since the late 19th century, differential geometry has grown into a field concerned more

generally with the geometric structures on differentiable manifolds. Differential geometry is

closely related to differential topology and the geometric aspects of the theory of differential

equations. The differential geometry of surfaces captures many of the key ideas and tech-

niques endemic to this field.

The importance of Differential Geometry may be seen from Einstein’s general theory

of relativity. According to the theory, the Universe is a smooth manifold equipped with

pseudo-Riemannian metric, which describes the curvature space-time, which is essential for

the positioning of the satellites into orbit around the earth. It is also indispensable in the

study of gravitational Lansing and black holes.

The Differentiable manifolds and their geometry are very useful in studying different

areas of mathematics including Lie group theory, local and global differential geometry, ho-

mogeneous spaces, electromagnetism, probability theory, differential equations, algebraic

geometry, classical mechanics, relativity theory and the theory of elementary particles of

physics. It is also useful in studying computer graphics and computer aided designs, digital

signal processing and econometrics.

Differential Geometry has many applications in Chemistry, Biophysics, Structural Ge-

ology, Engineering and Physics. In Engineering, it can be applied to solve problems in
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digital signal processing. In Economics, Differential Geometry has applications to the field

of Econometrics. Nowadays, it is very useful in Bioinformatics as well.

∼∼∼∼∼ >>> ∼∼∼∼∼
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Chapter 2

Quarter Symmetric Metric Connection

in Sasakian Manifolds

In this chapter, we studied an Einstein manifold admitting a Ricci quarter symmetric metric

connection in Sasakian manifolds and obtained some geometrical properties.

2.1 Introduction

Let (Mn, g) be a Riemannian manifold of dimension n and let∇ be the Levi-Civita connec-

tion of (Mn, g). A Riemannian manifold is called locally symmetric if ∇K = 0 , where K

is the Riemannian curvature tensor of (Mn, g) and U is a vector field.

A linear connection∇ in a Riemannian manifold Mn is said to be Ricci quarter symmet-

ric connection if the torsion tensor T satisfies (1.12.2)(Mishra and Pandey, 1980), where η is

a 1-form and L is the (1, 1) Ricci tensor defined in (1.15.4), S is the Ricci tensor of Mn and

X, Y are vector fields.

A linear connection∇ is called a metric connection if it satisfies (1.11.2).

If D is the Riemannian connection of the manifold (Mn, g). Then the Ricci quarter

1Science and Technology Journals, 3(1), 63-67(2015).
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symmetric metric connection∇ is given by (Mishra and Pandey, 1980)

∇XY = DXLY + η(Y )LX − S(X, Y )ρ, (2.1.1)

where η(X) = g(X, ρ).

This chapter is organized as follows:

After the introduction, section 2.2 explains preliminaries and the relation between curvature

tensors of a Ricci quarter symmetric metric connection∇ and Riemannian connection D. In

section 2.3, we obtained an equivalent relation between the locally symmetric, conharmoni-

cally symmetric andm-projectively symmetric manifolds. In section 2.4, we have studied an

equivalency relation between the locally bi-symmetric, conharmonically bi-symmetric and

m-projectively bi-symmetric manifolds. In section 2.5, we have shown that a generalized

conharmonically 2-recurrent Einstein manifold admitting a Ricci quarter symmetric metric

connection is conharmonically flat and a generalized conharmonically 2-recurrent Einstein

manifold admitting a Ricci quarter symmetric metric connection is m-projectively flat.

In section 2.6, we obtained an equivalent relation between the locally symmetric, con-

harmonically symmetric and concircularly symmetric manifolds. Finally, we have shown

that a generalized concircularly 2-recurrent Einstein manifold equipped with Ricci quarter

symmetric metric connection is concircularly flat.

2.2 Preliminaries

Let K and K be the curvature tensors of the connection ∇ and D respectively. Then it can

be shown that (Mishra and Pandey, 1980)

K(X, Y )Z = K(X, Y )Z −M(Y, Z)LX +M(X,Z)LY

− S(Y, Z)QX + S(X,Z)QY

+ η(Z)[(DXL)Y − (DYL)X]

− [(DXS)(Y, Z)− (DY S)(X,Z)]ρ, (2.2.1)
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where M is a tensor field of type (0,2) defined by

M(X, Y ) = g(QX, Y ) = (DXη)Y − η(Y )η(LX)

+
1

2
η(ρ)S(X, Y ), (2.2.2)

and Q is a tensor field of type (1, 1) defined by

QX = DXρ− η(LX)ρ+
1

2
η(ρ)LX. (2.2.3)

Here, we shall consider Mn to be an Einstein manifold given in (1.15.7) where r is the scalar

curvature of the manifold.

Considering (2.2.1),(1.15.7) and (1.15.4), we get

K(X, Y )Z = K(X, Y )Z − r

n

{
M(Y, Z)X −M(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
}
. (2.2.4)

Contracting (2.2.4) with respect to X , we get

S(Y, Z) =
r

n

[
g(Y, Z)− {(n− 2)M(Y, Z) +m g(Y, Z)}

]
, (2.2.5)

where S is the Ricci tensor of ∇ and m is the trace of Mn. Now, putting Y = Z = ei,

where {ei ; i = 1, 2, 3, ..., n} is an orthonormal basis of the tangent space at any point, we

get by taking the sum for 1 ≤ i ≤ n in the relation (2.2.5)

r =
r

n

{
n− 2(n− 1)m

}
, (2.2.6)

where r is the scalar curvature of∇.
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2.3 Conharmonic and m-Projective Curvature Tensors of

∇

The conharmonic curvature tensors (Ishii, 1957) andm-projective curvature tensors (Pokhariyal

and Mishra, 1971) on a Riemannian manifold are defined in equation (1.16.1) and (1.16.4)

respectively.

Let ′C
∗

be the conharmonic curvature tensor of the connection ∇. Then from (1.16.1),

we have

′C
∗
(X, Y, Z, U) = ′K(X, Y, Z, U)

− 1

n− 2

{
g(Y, Z)S(X,U)− S(X,Z)g(Y, U)

+ S(Y, Z)g(X,U)− g(X,Z)S(Y, U)
}
. (2.3.1)

Using (2.2.4) and (2.2.5) in (2.3.1), we obtain

′C
∗
(X, Y, Z, U) = ′K(X, Y, Z, U)

+
2r(m− 1)

n(n− 2)

{
g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)
}
. (2.3.2)

From the above, we get

′C
∗
(X, Y )Z = K(X, Y )Z

+
2r(m− 1)

n(n− 2)

{
g(Y, Z)X − g(X,Z)Y

}
. (2.3.3)

Again, let ′W
∗

be the m-projective curvature tensor of the connection∇.

Then from (1.16.4), we have

′W
∗
(X, Y, Z, U) = ′K(X, Y, Z, U)− 1

2(n− 1)

{
g(Y, Z)Ric(X,U)

− g(Y, U)S(X,Z) + g(X,U)S(Y, Z)

− g(X,Z)Ric(Y, U)
}
. (2.3.4)
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Applying (2.2.5), (2.2.6) in (2.3.4), we have

′W
∗
(X, Y, Z, U) = K(X, Y, Z, U)

+
r(r −m− 1)

n(n− 1)

{
g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

}
. (2.3.5)

From which we get

′W
∗
(X, Y )Z = K(X, Y )Z

+
r(r −m− 1)

n(n− 1)

{
g(Y, Z)X − g(X,Z)Y

}
. (2.3.6)

Taking covariant derivative of (2.3.3) and (2.3.6) respectively, we get

(DU
′C
∗
)(X, Y )Z = (DUK)(X, Y )Z, (2.3.7)

and

(DU
′W
∗
)(X, Y )Z = (DUK)(X, Y )Z. (2.3.8)

Hence we can state the following:

Theorem 2.3.1 In an Einstein manifold (Mn, g) equipped with Ricci quarter symmetric met-

ric connection, the following conditions are equivalent

a) Mn is locally symmetric.

b) Mn is conharmonically symmetric.

c) Mn is m-projectively symmetric.

2.4 Conharmonic bi-Symmetric andm-Projective bi-Symmetric

Manifolds

Definition 2.4.1 An Einstein manifold is said to be bi-symmetric if it satisfies

(DVDUK)(X, Y )Z = 0. (2.4.1)
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Definition 2.4.2 An Einstein manifold is said to be conharmonic bi-symmetric if it satisfies

(DVDUC)(X, Y )Z = 0. (2.4.2)

Definition 2.4.3 An Einstein manifold is said to be m-projective bi-symmetric if it satisfies

(DVDUW
∗)(X, Y )Z = 0. (2.4.3)

Taking the covariant differentiation on both sides of (2.3.7) and (2.3.8), we obtain

(DVDUC(X, Y )Z = (DVDUK)(X, Y )Z, (2.4.4)

and

(DVDUW
∗
)(X, Y )Z = (DVDUK)(X, Y )Z. (2.4.5)

Thus we can state:

Theorem 2.4.1 In an Einstein manifold (Mn, g) equipped with Ricci quarter symmetric met-

ric connection, the following conditions are equivalent

a) Mn is bi-symmetric.

b) Mn is conharmonically bi-symmetric.

c) Mn is m-projectively bi-symmetric.

2.5 Generalized 2-Recurrent Riemannian Manifolds

A non-flat Riemannian manifold of dimension n is called generalized 2-recurrent Rieman-

nian manifold (De and Pathak, 2003) when the Riemannian curvature tensor K satisfies the

condition

(DVDUK)(X, Y )Z = A(V )(DUK)(X, Y )Z

+ B(U, V )K(X, Y )Z, (2.5.1)
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where A is a 1-form, B is a non-zero (0, 2) tensor. The tensor B is defined by

B(X, Y ) = g(X,QlY ), (2.5.2)

where Ql is a linear transformation from the tangent space at

(p ∈ Mn) : Tp(M
n)→ Tp(M

n).

When the conharmonic curvature tensor satisfy the condition:

(DVDUC
∗
)(X, Y )Z = A(V )(DUC

∗
)(X, Y )Z

+ B(U, V )C
∗
(X, Y )Z, (2.5.3)

then the manifold is called generalized conharmonically 2-recurrent manifold.

And when the m-projective curvature tensor satisfy the condition

(DVDUW
∗
)(X, Y )Z = A(V )(DUW

∗
)(X, Y )Z

+ B(U, V )W
∗
(X, Y )Z, (2.5.4)

then the manifold is called generalized m-projectively 2-recurrent manifold, where A, B are

stated earlier.

Using Bianchi’s second identity given in (1.14.7), we find from (2.3.7) that

(DUC)(X, Y )Z + (DYC)(U,X)Z + (DXC)(Y, U)Z)

= 0. (2.5.5)

Again from (2.5.5), we find that

(DVDUC)(X, Y )Z + (DVDYC)(U,X)Z

+ (DVDXC(Y, U)Z) = 0. (2.5.6)
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In consequence of (2.5.3) and (2.5.5), the equation (2.5.6) yields

B(U, V )C(X, Y )Z + B(Y, V )C(U,X)Z

+ B(X, V )C(Y, U)Z = 0. (2.5.7)

Now, contracting (2.5.7), we get

B(C(X, Y )Z, V ) = 0. (2.5.8)

From (2.3.2), we get

′C(X, Y, Z,W ) = −′C(X, Y,W,Z)

= −′C(Y,X,Z,W )

= −′C(Z,W,X, Y ). (2.5.9)

Now, putting U = QlV and using (2.5.2), the expression (2.5.7) takes the form

g(QlV,QlV )C(X, Y )Z + g(X,QlV )C
∗
(Y,QlV )Z

+ g(Y,QlV )C(QlV,X)Z = 0. (2.5.10)

Using (2.5.8) and (2.5.9) in (2.5.10), we have

g(QlV,QlV )C(X, Y )Z = 0. (2.5.11)

From which we obtain

C(X, Y )Z = 0. (2.5.12)

Thus we can state:

Theorem 2.5.1 A generalized conharmonically 2-recurrent Einstein manifold equipped with

Ricci quarter symmetric metric connection is conharmonically flat.

42



Next, we assume that the manifold be generalized m-projectively 2-recurrent. Then it fol-

lows from (2.3.8) and Bianchi’s second identity given in (1.14.7) that

(DUW
∗
)(X, Y )Z + (DYW

∗
)(U,X)Z

+ (DXW
∗
)(Y, U)Z = 0. (2.5.13)

After covariant differentiation of (2.5.13) that

(DVDUW
∗
)(X, Y )Z + (DVDYW

∗
)(U,X)Z

+ (DVDXW
∗
)(Y, U)Z = 0. (2.5.14)

Using (2.5.4) and (2.5.13) in (2.5.14), we get

B(U, V )W
∗
(X, Y )Z + B(Y, V )W

∗
(U,X)Z

+ B(X, V )W
∗
(Y, U)Z = 0. (2.5.15)

Contracting (2.5.15), we get

B(W
∗
(X, Y )Z, V ) = 0. (2.5.16)

From (2.3.4), we get

W
∗
(X, Y, Z,W ) = −W ∗

(X, Y,W,Z)

= −W ∗
(Y,X,Z,W )

= −W ∗
(Z,W,X, Y ). (2.5.17)

Now, putting U = QlV and using (2.5.2), the expression (2.5.17) takes the form

g(QlV,QlV )W
∗
(X, Y )Z + g(X,QlV )W

∗
(Y,QlV )Z

+ g(Y,QlV )W
∗
(QlV,X)Z = 0. (2.5.18)
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Using (2.5.16) and (2.5.17) in (2.5.18), we get

g(QlV,QlV )W
∗
(X, Y )Z = 0. (2.5.19)

From which we obtain

W
∗
(X, Y )Z = 0. (2.5.20)

Hence we can state that:

Theorem 2.5.2 An Einstein manifold equipped with a Ricci quarter symmetric metric con-

nection is a generalized m-projectively 2-recurrent if and only if it is an m-projectively flat.

2.6 Conharmonic and Concircular Tensors of∇

The concircular curvature tensors on Riemannian manifold is defined in equation (1.16.2).

Let ′V denote the concircular curvature tensor of the connection∇. Then,

′V (X, Y, Z, U) = ′K(X, Y, Z, U)

− r

n(n− 1)

{
g(Y, Z)g(X,U)

− g(X,Z)g(Y, U)
}
. (2.6.1)

Applying (2.2.4), (2.2.5) in (2.6.1), we have

′V (X, Y, Z, U) = ′K(X, Y, Z, U)

− r(2r + n− 2nm+ 2m)

n2(n− 1)

{
g(Y, Z)g(X,U)− g(X,Z)g(Y, U)

}
.

(2.6.2)

From (2.6.2), we have

V (X, Y )Z = K(X, Y )Z

− r(2r + n− 2nm+ 2m)

n2(n− 1)

{
g(Y, Z)X − g(X,Z)Y

}
. (2.6.3)
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Taking covariant derivative of (2.6.3), we obtain

(DUV (X, Y )Z = (DUK)(X, Y )Z. (2.6.4)

Thus from (2.3.7) and (2.6.4), we can state the following:

Theorem 2.6.1 In an Einstein manifold (Mn, g) equipped with Ricci quarter symmetric met-

ric connection, then the following conditions are equivalent

a) Mn is locally symmetric.

b) Mn is conharmonically symmetric.

c) Mn is concircularly symmetric.

An Einstein manifold will be called conharmonic and concircular bi-symmetric manifold if

it satisfies

(DVDUV )(X, Y )Z = 0. (2.6.5)

Taking the covariant differentiation on both sides of (2.6.5) and we get

(DVDUV )(X, Y )Z = (DVDUK)(X, Y )Z. (2.6.6)

Hence from (2.4.4) and (2.6.6), we conclude the following:

Theorem 2.6.2 In an Einstein manifold (Mn, g) equipped with Ricci quarter symmetric met-

ric connection, the following conditions are equivalent

a) Mn is bi-symmetric.

b) Mn is conharmonically bi-symmetric.

c) Mn is concircularly bi-symmetric.

A non-flat Riemannian manifold of dimension n is called generalized 2-recurrent Rieman-

nian manifold (De and Pathak, 2003) when the concircular curvature tensor V satisfies the
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condition

(DUDWV )(X, Y )Z = A(U)(DWV )(X, Y )Z

+ B(W,U)V (X, Y )Z, (2.6.7)

where A and B are stated earlier. Assume that the manifold be generalized concircularly

2-recurrent. Then, it follows from (2.6.3) and Bianchi’s identity given in (1.14.7) that

(DWV )(X, Y )Z + (DY V )(W,X)Z

+ (DXV )(Y,W )Z = 0. (2.6.8)

After covariant differentiation, we have

(DUDWV )(X, Y )Z + (DUDY V )(W,X)Z

+ (DUDXV )(Y,W )Z = 0. (2.6.9)

Using (2.6.7) and (2.6.8) in (2.6.9), we get

B(W,U)V (X, Y )Z + B(Y, U)V (W,X)Z

+ B(X,U)V (Y,W )Z = 0. (2.6.10)

Contracting (2.6.10), we have

B(V (X, Y )Z,U) = 0. (2.6.11)

From (2.6.1), we have

′V (X, Y, Z,W ) = −′V (X, Y,W,Z)

= −′V (Y,X,Z,W )

= −′V (Z,W,X, Y ). (2.6.12)
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Now, putting W = QlU and using (2.5.2) and the expression (2.6.12) takes the form

g(QlU,QlU)V (X, Y )Z + g(X,QlU)V (Y,QlU)Z

+ g(Y,QlU)V (QlU,X)Z = 0. (2.6.13)

Using (2.6.11) and (2.6.12) in (2.6.13), we have

g(QlU,QlU)V (X, Y )Z = 0. (2.6.14)

From which it follows that

V (X, Y )Z = 0. (2.6.15)

Hence we can state:

Theorem 2.6.3 A generalized concircular 2-recurrent Einstein manifold equipped with Ricci

quarter symmetric metric connection is concircularly flat.

∼∼∼∼∼ >>> ∼∼∼∼∼
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Chapter 3

W1 Flat Weakly Ricci-Symmetric

Manifolds

In this chapter, we have studied curvatute tensor W1. We concentrated on weakly W1 sym-

metric manifolds and W1 flat weakly Ricci-symmetric manifolds and obtained some inter-

esting results.

3.1 Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g), where (n ≥ 2), is said to be weakly

symmetric manifold if its curvature tensor K of type (0, 4) satisfies the relation

(∇XK)(Y, Z, U, V ) = A(X)K(Y, Z, U, V ) +B(Y )K(X,Z, U, V )

+ C(Z)K(Y,X, U, V ) +D(U)K(Y, Z,X, V )

+ E(V )K(Y, Z, U,X), (3.1.1)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where A,B,C,D,E are 1-form (not similtane-

ously zero) and are called the associated 1-forms of the manifold. ∇ denotes the operator

of covariant differentiation with respect to the Riemannian metric g and an n-dimensional
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manifold of this kind is denoted by (WS)n.

Tamassy and Binh (1988) studied weakly symmetric Sasakian manifolds and also proved

that such a manifold does not always exist. De and Bandyopadhyay (1999) established the

existence of (WS)n with an example and also proved that in (WS)n, the associated 1-forms

B = C and D = E. So the condition (3.1.1) of (WS)n reduces to

(∇XK)(Y, Z, U, V ) = A(X)K(Y, Z, U, V ) +B(Y )K(X,Z, U, V )

+ B(Z)K(Y,X, U, V ) +D(U)K(Y, Z,X, V )

+ D(V )K(Y, Z, U,X). (3.1.2)

Some authors like De and Bandyopadhyay (2000), Shaikh and Baishya (2005) studied and

extended this notion for conformal curvature tensor and quasi conformal curvature tensor

respectively. In 2008, Malek and Samawaki also studied weakly symmetric Riemannian

manifolds.

The curvature tensor W1 is defined in (1.16.5) (Pokhariyal and Mishra, 1971),

where K is curvature tensor and S is Ricci-tensor.

A non-flatW1 Riemannian manifold (Mn, g), (n > 2) is said to be weaklyW1 symmetric

manifold if the W1 curvature tensor of type (0, 4) satisfies the following condition:

(∇XW1)(Y, Z, U, V ) = A(X)W1(Y, Z, U, V ) +B(Y )W1(X,Z, U, V )

+ C(Z)W1(Y,X, U, V ) +D(U)W1(Y, Z,X, V )

+ E(V )W1(Y, Z, U,X), (3.1.3)

for all vector fields X, Y, Z, U, V ∈ χ(Mn), where A,B,C,D,E are already defined as

before and an n-dimensional manifold is denoted as (WW1S)n. If B = C, D = E and
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hence the above equation can be reduced to the form

(∇XW1)(Y, Z, U, V ) = A(X)W1(Y, Z, U, V ) +B(Y )W1(X,Z, U, V )

+ B(Z)W1(Y,X, U, V ) +D(U)W1(Y, Z,X, V )

+ D(V )W1(Y, Z, U,X), (3.1.4)

for arbitrary vector fields X, Y, Z, U, V ∈ χ(Mn) and A,B,D are non-vanishing 1-forms.

This chapter is structured as follows:

Section 3.2 is concerned with preliminaries ofW1 curvature tensor and (WW1S)n. In section

3.3, we study and investigate the nature of the scalar curvature of a (WW1S)n. We proved

that if in a (WW1S)n the Ricci tensor S is of Codazzi type or constant scalar curvature, then

−r is an eigenvalue corresponding to the eigenvector ξ defined by g(X, ξ) = λ(X), for all

X .

The last Section devoted to the study of W1 flat (WW1S)n proved that W1 flat (WRS)n

(n > 2) is a quasi Einstein manifold.

3.2 Preliminaries

In this section, we obtained some formulas which will be required for the study of (WW1S)n.

Let us consider {ei}, i = 1, 2, 3, ..., n be an orthonormal basis of the tangent at any point of

the manifold. Then from equation (1.16.5), we have

n∑
i=1

W1(ei, Y, Z, ei) = 2S(Y, Z), (3.2.1)

and

r =
n∑
i=1

S(X, Y ) =
n∑
i=1

g(Lei, ei),
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where L is the Ricci operator which is given in (1.15.4).

n∑
i=1

W1(X, Y, ei, ei) = 0 =
n∑
i=1

W1(ei, ei, Z, U), (3.2.2)

Proposition 3.2.1 In a Riemannian manifold (Mn, g) (n > 2), the W1 curvature tensor

satisfies the relations:

(i) W1(X, Y, Z, U) +W1(Y, Z,X, U) +W1(Z,X, Y, U) = 0,

(ii) W1(X, Y, U, Z) +W1(Y, Z, U,X) +W1(Z,X,U,X) = 0. (3.2.3)

Proposition 3.2.2 The defining condition of (WW1S)n can always be expressed in the form

of equation (3.1.4)

Proof: Using (3.1.3), interchanging Y and Z, we get

(∇XW1)(Z, Y, U, V ) = A(X)W1(Z, Y, U, V ) +B(Z)W1(X, Y, U, V )

+ C(Y )W1(Z,X,U, V ) +D(U)W1(Z, Y,X, V )

+ E(V )W1(Z, Y, U,X). (3.2.4)

Adding equation (3.1.3) and equation (3.2.4) and then using skew-symmetric property given

in (1.14.4) of W1, we get

{B(Y )− C(Y )}W1(X,Z, U, V ) + {B(Z)− C(Z)}W1(X, Y, U, V ) = 0,

which can be written as

µ(Y )W1(X,Z, U, V ) + µ(Z)W1(X, Y, U, V ) = 0, (3.2.5)

where µ(X) = B(X)− C(X), for all X ∈ χ(Mn).

Now we choose a particular vector fields ρ such that µ(ρ) 6= 0. Putting Y = Z = ρ in

equation (3.2.5), we have

µ(ρ)W1(X, ρ, U, V ) + µ(ρ)W1(X, ρ, U, V ) = 0,
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which implies that

W1(X, ρ, U, V ) = 0.

Again, putting Z = ρ in (3.2.5), we get

W1(X, Y, U, V ) = 0,

for all X, Y, U, V ∈ χ(Mn), which is contradicts because in our assumption the manifold is

not W1 flat. Hence we will have µ(X) = 0, for all X ∈ χ(Mn) and B = C. In the same

manner, by interchanging U and V in the equation (3.1.3) and proceeding as above, we have

the relation D = E. Thus all the associated 1-forms A,B,C,D and E coincide, because

B = C and D = E. Therefore equation (3.1.3) can be written as equation (3.1.4).

3.3 The Nature of the Scalar Curvature of (WW1S)n

Let L be the symmetric endomorphism of the tangent (bundle) space at any point of the

manifold corresponding to the Ricci tensor S given in (1.15.4), for all X, Y ∈ χ(Mn).

Theorem 3.3.1 The Ricci tensor S in a Riemannian manifold (Mn, g), (n > 2) is Codazzi

type if and only if the relation (3.3.3) holds.

Proof: From (1.16.5), it follows by virtue of Bianchi’s identity given in (1.14.7) that

(∇XW1)(Y, Z, U, V ) + (∇YW1)(Z,X,U, V ) + (∇ZW1)(X, Y, U, V )

= (∇XR)(Y, Z, U, V ) + (∇YR)(Z,X,U, V ) + (∇ZR)(X, Y, U, V )

+
1

(n− 1)

[
{(∇XS)(Z,U)− (∇ZS)(X,U)} g(Y, V )

+ {(∇Y S)(X,U)− (∇XS)(Y, U)} g(Z, V )

+ {(∇ZS)(Y, U)− (∇Y S)(Z,U)} g(X, V )
]
,
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which is equivalent to

(∇XW1)(Y, Z, U, V ) + (∇YW1)(Z,X,U, V ) + (∇ZW1)(X, Y, U, V )

=
1

(n− 1)

[
{(∇XS)(Z,U)− (∇ZS)(X,U)} g(Y, V )

+ {(∇Y S)(X,U)− (∇XS)(Y, U)} g(Z, V )

+ {(∇ZS)(Y, U)− (∇Y S)(Z,U)} g(X, V )
]
. (3.3.1)

If the Ricci tensor is of Codazzi type (Ferus, 1981), i.e.

(∇XS)(Z,U) = (∇ZS)(X,U), (3.3.2)

then using (3.3.2) in (3.3.1), we get

(∇XW1)(Y, Z, U, V ) + (∇YW1)(Z,X,U, V ) + (∇ZW1)(X, Y, U, V ) = 0. (3.3.3)

Conversely suppose that in a Riemannian manifold (3.3.3) holds, then (3.3.1) becomes

1

(n− 1)

[
{(∇XS)(Z,U)− (∇XS)(Z,U)}g(Y, V ) + {(∇Y S)(X,U)

−(∇XS)(Y, U)}g(Z, V ) + {(∇ZS)(Y, U)− (∇Y S)(Z,U)}g(X, V )
]

= 0. (3.3.4)

Putting Y = V = ei in equation (3.3.4) and then taking summation over i, 1 ≤ i ≤ n, we

get

(n− 2)
[
(∇XS)(Z,U)− (∇ZS)(X,U)

]
= 0,

which implies that

(∇XS)(Z,U)− (∇ZS)(X,U) = 0, (3.3.5)

i.e.,

(∇XS)(Z,U) = (∇ZS)(X,U).
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Then the above equation (3.3.5) shows that the Ricci tensor is of Codazzi type given in

(3.3.2).

Now, we suppose that the Ricci tensor is of Codazzi type, so using equation (3.1.4),

(3.2.3) and (3.3.1), we have

{A(X)− 2B(X)}W1(Y, Z, U, V ) + {A(Y )− 2B(Y )}W1(Z,X,U, V )

+ {A(Z)− 2B(Z)}W1(X, Y, U, V ) = 0,

which is equivalent to

ν(X)W1(Y, Z, U, V ) + ν(Y )W1(Z,X,U, V ) + ν(Z)W1(X, Y, U, V ) = 0, (3.3.6)

where ν(X) = A(X)− 2B(X) for all X ∈ χ(Mn).

Setting Y = V = ei in (3.3.6) and then taking summation over i, 1 ≤ i ≤ n and then using

(3.2.1), we get

2
[
ν(X)S(Z,U) + ν(Z)S(X,U)

]
+ ν(W1(Z,X,U)) = 0. (3.3.7)

Again, putting X = U = ei in (3.3.7) and taking summation over i, 1 ≤ i ≤ n and then

using (3.2.2), we get

ν(LZ) = −rν(Z), (3.3.8)

which gives

S(Z, ξ) = −rg(Z, ξ). (3.3.9)

Hence from the above, we can state:

Theorem 3.3.2 If in a (WW1S)n the Ricci tensor is of Codazzi type, −r is an eigenvalue of

the Ricci tensor S corresponding to the eigenvector ξ defined by (1.17.7) for all X .
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Now, again setting Y = V = ei in equation (3.1.4) and then taking summation over i,

1 ≤ 1 ≤ n, we have

2 (∇XS) (Z,U) = 2
[
A(X)S(Z,U) +B(Z)S(X,U) +D(U)S(Z,X)

]
+ {B(W1(X,Z)U) +D(W1(Z,U)X)}. (3.3.10)

Let ρ1, ρ2, ρ3 be the vector fields associated to the 1-forms A,B and D respectively.

Therefore

i.e. A(X) = g(X, ρ1), B(X) = g(X, ρ2), D(X) = g(X, ρ3).

Putting Z = U = ei in equation (3.3.10) and then taking summation over i, 1 ≤ 1 ≤ n, we

get

S(X, ρ2) + S(X, ρ3) = −rg(X, ρ1). (3.3.11)

From equation (3.3.11),we have

S(X, ρ̂) = −rg(X, ρ1), (3.3.12)

where ρ̂ = ρ2 + ρ3 and g(X, ρ) = T (X) = B(X) +D(X).

From equation (3.3.12), it is clear that −r is an eigenvalue of S corresponding to the

eigenvector ρ̂.

Thus we can state:

Theorem 3.3.3 The Ricci tensor S in (WW1S)n has eigenvalue −r corresponding to the

eigenvector ρ̂.

If the scalar curvature r of (WW1S)n is zero, then equation (3.3.11) will be S(X, ρ̂) = 0

and hence using (1.16.5), we obtain

W1(X, Y, ρ̂, U) = R(X, Y, ρ̂, U). (3.3.13)

Also, if equation (3.3.13) holds in (WW1S)n, then by virtue of (3.3.12) it follows from
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(1.16.5) that r = 0 for T (X) 6= 0 for all X ∈ χ(Mn).

Thus we have the following corollary

Corollary 3.3.1 If the scalar curvature of a (WW1S)n vanishes, then we have the relation

W1(X, Y, ρ̂, U) = R(X, Y, µ̂, U).

3.4 W1 Flat Weakly Ricci-Symmetric Manifolds

A non-flat Riemannian manifold (Mn, g), (n > 2) is called weakly Ricci symmetric if its

Ricci tensor of type (0, 2) is not identically zero and satisfies the condition

(∇XK)(Y, Z) = A(X)K(Y, Z) +B(Y )K(X,Z) +D(Z)K(Y,X), (3.4.1)

where A,B,D are 1-form and ∇ is the operator of covariant differentiation with respect to

g. Such an n-dimensional manifold is denoted by (WRS)n.

Proposition 3.4.1 In a (WRS)n with ρ(X) 6= 0, the scalar curvature cannot be zero and the

Ricci tensor will be of the form S(X, Y ) = rH(X)H(Y ), where the vector field ρ associated

with the 1-form H is a unit vector field.

proof: From the above equation (3.4.1)

(∇XS)(Y, Z)− (∇XS)(Z, Y ) = {B(Y )−D(Y )}S(X,Z)

+ {D(Z)−B(Z)}S(X, Y ).

(3.4.2)

Since S is symmetric, then (3.4.2) will be

{B(Y )−D(Y )}S(X,Z) = {B(Z)−D(Z)}S(X, Y ). (3.4.3)
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Let µ(X) = B(X)−D(X) for any vector field X . Then equation (3.4.3) can be written as

µ(Y )S(X,Z) = µ(Z)S(X, Y ). (3.4.4)

Now, Let {ei}, i = 1, 2, ..., n, be an orthonormal basis of the tangent space at any point of

the manifold. Setting X = Z = ei in (3.4.4) and then taking summation over i, 1 ≤ i ≤ n,

we get

µ(Y )S(ei, ei) = µ(ei)S(ei, Y ),

which implies that

rµ(Y ) = µ(LY ), (3.4.5)

where µ(X) = g(X, ξ) given in (1.17.7) for any vector field X and r is the scalar curvature.

From equation (3.4.4), we have

µ(δ)S(X,Z) = µ(Z)S(X, δ) = µ(Z)µ(LY ). (3.4.6)

Using (3.4.5) and (3.4.6), we have

S(X,Z) = r
µ(X)µ(Z)

µ(δ)
,

S(X,Z) = rH(X)H(Z), (3.4.7)

where H(X) = µ(X)√
µ(δ)

and g(X, ρ) = H(X), ρ is a unit vector field. Now, from (3.4.7), if

r = 0, then S(X,Z) = 0 which is contradicts or inadmissible by the definition of (WRS)n.

So, r 6= 0.

Proposition 3.4.2 In a (WRS)n with µ(X) 6= 0, r is an eigenvalue of the Ricci tensor

corresponding to the eigenvector δ.
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Proof: From equation (3.4.5), we have

rg(Y, δ) = S(Y, δ),

that means r is an eigenvalue of the Ricci tensor corresponding to the eigenvector δ.

Theorem 3.4.1 In a W1 flat (WRS)n, (n > 2) with µ(X) 6= 0, the vector field ρ defined by

g(X, ρ) = H(X) is not a proper concircular vector field.

Proof: Differentiating (1.16.5) covariantly with respect to U , we have

(∇UW1)(X, Y )Z = (∇UR)(X, Y )Z

+
1

(n− 1)

{
(∇US)(Y, Z)X − (∇US)(X,Z)Y

}
.

(3.4.8)

Now, contracting (3.4.8) with respect to U , we get

(div W1)(X, Y )Z = (div R)(X, Y )Z

+
1

(n− 1)

{
(∇XS)(Y, Z)− (∇Y S)(X,Z)

}
.

(3.4.9)

We know that a Riemannian manifold

(div R)(X, Y )Z = (∇XS)(Y, Z)− (∇Y S)(X,Z). (3.4.10)

Using equation (3.4.10), (3.4.9) will be

(div W1)(X, Y )Z = {(∇XS)(Y, Z)− (∇Y S)(X,Z)}

+
1

(n− 1)

{
(∇XS)(Y, Z)− (∇Y S)(X,Z)

}
.

(3.4.11)

58



Since the manifold W1 is flat i.e. (div W1) = 0 and hence equation (3.4.11) gives

(div W1)(X, Y )Z = {(∇XS)(Y, Z)− (∇Y S)(X,Z)}

+
1

(n− 1)

{
(∇XS)(Y, Z)− (∇Y S)(X,Z)

}
= 0.

(3.4.12)

Now, (3.4.7) implies

(∇Y S)(X,Z) = dr(Y )H(X)H(Z)

+ r{(∇YH)(X)H(Z) + (∇YH)(Z)H(X)}.

(3.4.13)

In view of (3.4.13), (3.4.12) becomes

dr(X)H(Y )H(Z)− dr(Y )H(X)H(Z) + r[(∇XH)(Y )H(Z)

+(∇XH)(Z)H(Y )− (∇YH)(X)H(Z)− (∇YH)(Z)H(X)] = 0.

(3.4.14)

Putting Y = Z = ei in the above equation and then taking summation over i, 1 ≤ i ≤ n, we

obtain

dr(X)− dr(ρ)H(X)− r{(∇ρH)(X) +H(X)
n∑
i=1

(∇eiH)(ei)} = 0,

which is equivalent to

dr(ρ)H(X) + r{(∇ρH)(X) +H(X)
n∑
i=1

(∇eiH)(ei)} = dr(X).

(3.4.15)

Now, putting Y = Z = ρ in (3.4.14), we get

r(∇ρH)(X) = dr(X)− dr(ρ)H(X). (3.4.16)
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By virtue of (3.4.16), (3.4.15) reduces to the form

dr(ρ)H(X)dr(X)− dr(ρ)H(X) + rH(X)
n∑
i=1

(∇eiH)(ei) = dr(X),

which gives

rH(X)
n∑
i=1

(∇eiH)(ei) = 0. (3.4.17)

Again, putting X = ρ in equation (3.4.17), we have

r
n∑
i=1

(∇eiH)(ei) = 0. (3.4.18)

From equation (3.4.17) and (3.4.18), we have

(∇eiH)(ei) = 0. (3.4.19)

which shows that the vector field ρ defined by g(X, ρ) = H(X) is not a proper concircular

vector field when a W1 flat (WRS)n, (n > 2) with µ(X) 6= 0.

Theorem 3.4.2 A W1 flat (WRS)n, (n > 2) a quasi Einstein manifold.

Proof: Let us consider a W1 flat (WRS)n manifold, then equation (1.16.5) gives

R(X, Y, Z, U) = − 1

(n− 1)

{
S(Y, Z)g(X,U)− S(X,Z)g(Y, U)

}
.

(3.4.20)

Using (3.4.7) in (3.4.20), we have

R(X, Y, Z, U) =
r

(n− 1)

{
H(X)H(Z)g(Y, U)−H(Y )H(Z)g(X,U)

}
.

(3.4.21)

Substituting X = U = ei in (3.4.21) and then taking summation over i, 1 ≤ i ≤ n, we

obtain

S(Y, Z) =
r

(n− 1)
g(Y, Z) +

nr

1− n
H(Y )H(Z), (3.4.22)
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which implies that

S(Y, Z) = ag(Y, Z) + bH(Y )H(Z), (3.4.23)

where a = r
(n−1) and b = rn

(1−n) ,

which shows that the manifold is quasi Einstein.

Hence the proof is complete.

∼∼∼∼∼ >>> ∼∼∼∼∼
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Chapter 4

φ-Recurrent and Generalized Recurrent

Curvature Tensor in LP -Sasakian

Manifolds

This Chapter deals with the study of φ-symmetric LP -Sasakian manifolds and φ-Ricci sym-

metric LP -Sasakian manifolds. Here, we show that φ-symmetric LP -Sasakian manifold and

φ-Ricci symmetric LP -Sasakian manifold is an Einstein manifold. We also constructed an

example of 3-dimensional φ-Ricci symmetric LP -Sasakian manifolds.

In this chapter, we also study m-projective φ-recurrent LP -Sasakian manifolds. Here we

show that m-projective φ-recurrent LP -Sasakian manifold is an η-Einstein manifold.

4.1 Introduction

In 1989, K. Matsumoto introduced the notion of Lorentzian para-contact manifolds. The

properties of Lorentzian para contact manifolds and their different classes, viz. Lorentzian

Para-Sasakian (LP -Sasakian) studied by several authors. Also K. Matsumoto (1989), Taleshian

and Asghari (2011) studied an LP -Sasakian manifolds. φ-Ricci symmetric Kenmotsu mani-

folds and φ-symmetric Para-Sasakian manifolds are also studied by A. A. Shukla and M. K.
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Shukla (2009). This chapter is clarified as follows:

After introduction, Section 4.2 is equipped with some prerequisites about Lorentzian Para-

Sasakian manifolds. In section 4.3, we examined φ-symmetric LP -Sasakian manifolds. In

section 4.4, 3-dimensional locally φ-symmetric LP -Sasakian manifolds are studied. In sec-

tion 4.5, we study φ-Ricci symmetric LP -Sasakian manifolds. 3-dimensional φ-Ricci sym-

metric LP -Sasakian manifolds have studied in section 4.6. In the next section, we have

constructed an example of 3-dimensional LP -Sasakian manifold which supports the results

obtained in section 4.5 and section 4.6.

In the last section, we studied m-projective φ-recurrent LP -Sasakian manifolds (Mn, g)

and proved some interesting results.

4.2 Preliminaries

A differential manifold of dimension n is called Lorentzian Para-Sasakian (LP -Sasakian)

manifold (Matsumoto (1989), Mihai and Rosca (1992)) if it admits a (1, 1) tensor field φ, a

unit time like contravariant vector field ξ, a 1-form η and a Lorentzian metric g satisfying the

equation (1.20.1) - (1.20.6) and

(∇Xφ)(Y ) = g(X, Y )ξ + η(Y )X + 2ηX)ηY )ξ, (4.2.1)

where X, Y and ∇ are defined earlier.

Again, if we put

Ω(X, Y ) = g(X,φY ), (4.2.2)

for any vector fields X, Y , then, the tensor field Ω(X, Y ) is a symmetric (0, 2) tensor field.

Since the vector field η is closed in an LP -Sasakian manifold, we have

(∇Xη)(Y ) = Ω(X, Y ), Ω(X, ξ) = 0, (4.2.3)
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for any vector fields X, Y .

Let Mn be an n-dimensional LP -Sasakian manifold with structure (φ, ξ, η, g). Then the

following relations hold (Matsumoto and Mihai, 1988) equation (1.20.10), (1.20.11) and

K(X, Y )ξ = η(Y )X − η(X)Y, (4.2.4)

K(ξ,X)Y = g(X, Y )ξ − η(Y )X, (4.2.5)

K(X, ξ)ξ = −X − η(X)ξ, (4.2.6)

Qξ = (n− 1)ξ, (4.2.7)

S(φX, φY ) = S(X, Y ) + (n− 1)η(X)η(Y ), (4.2.8)

(∇WK)(X, Y )ξ = Ω(Y,W )X − Ω(X,W )Y −K(X, Y )φW, (4.2.9)

(∇WK)(X, ξ)Y = Ω(W,Z)X − Ω(X,Z)φW −K(X,φW )Z, (4.2.10)

for any vector fields X, Y, Z, where K is the curvature tensor and S is the Ricci tensor of the

manifold.

4.3 φ-Symmetric LP -Sasakian Manifolds

Definition 4.3.1 An LP -Sasakian manifoldMnis said to be locally φ-symmetric if (Venkate-

sha and Bagewadi, 2006)

φ2((∇WK)(X, Y )Z) = 0, (4.3.1)

for all vector fields X, Y, Z,W orthogonal to ξ.
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Definition 4.3.2 An LP -Sasakian manifold Mnis said to be φ-symmetric if (Venkatesha and

Bagewadi, 2006)

φ2((∇WK)(X, Y )Z) = 0, (4.3.2)

for arbitrary vector fields X, Y, Z,W on Mn.

Theorem 4.3.1 A φ-symmetric LP -Sasakian manifold is an Einstein manifold.

Let us assume that the manifold is φ-symmetric. Then using (4.3.2) and (1.20.1), we have

(∇WK)(X, Y )Z + η((∇WK)(X, Y )Z)ξ = 0. (4.3.3)

Taking inner product of (4.3.3) with U , we get

g((∇WK)(X, Y )Z,U) + η((∇WK)(X, Y )Z)g(ξ, U) = 0. (4.3.4)

Let {ei}, i = 1, 2, 3, ..., n be an orthogonal basis of the tangent space at any point of the

manifold. Then by putting X = U = ei in (4.3.4) and taking summation over i, 1 ≤ i ≤ n,

we get

(∇WS)(Y, Z) +
n∑
i=1

η((∇WK)(ei, Y )Z)g(ξ, ei). (4.3.5)

Replacing Z by ξ in (4.3.5), we have

(∇WS)(Y, ξ) +
n∑
i=1

η((∇WK)(ei, Y )ξ)η(ei). (4.3.6)

The second term of (4.3.6), takes the form

η((∇WK)(ei, Y )ξ) = g((∇WK)(ei, Y )ξ, ξ)

= g(∇WK(ei, Y )ξ, ξ) + g(K(∇W ei, Y )ξ, ξ)

− g(K(ei,∇WY )ξ, ξ)− g(K(ei, Y )∇W ξ, ξ).

(4.3.7)
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Since {ei} is an orthonormal basis,∇W ei = 0 at p. Also using (1.20.10), we have

g(K(ei,∇WY )ξ, ξ) = 0. (4.3.8)

Putting (4.3.8) in (4.3.7), we have

η((∇WK)(ei, Y )ξ) = g((∇WK)(ei, Y )ξ, ξ)

= g(∇WK(ei, Y )ξ, ξ)− g(K(ei, Y )∇W ξ, ξ).

(4.3.9)

Now, since g(K(ei, Y )ξ, ξ) = −g(K(ξ, ξ)Y, ei) = 0, we have

g(∇WK(ei, Y )ξ, ξ) + g(K(ei, Y )ξ,∇W ξ) = 0.

(4.3.10)

Putting (4.3.10) in (4.3.9), we get

g((∇WK)(ei, Y )ξ, ξ) = −g(K(ei, Y )ξ,∇W ξ)− g(K(ei, Y )∇W ξ, ξ).

Using (1.20.6) in the above equation, we get

g(∇WK)(ei, Y )ξ, ξ) = −g(K(ei, Y )ξ, φW )− g(K(ei, Y )φW, ξ). (4.3.11)

Using (4.2.3), (1.20.10) and (4.3.11), we obtain

g((∇WK(ei, Y )ξ, ξ) = −g(K(ei, Y )ξ, φW )− g(K(ei, Y )φW, ξ),

which implies that

g((∇WK(ei, Y )ξ, ξ) = 0. (4.3.12)
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The equations (4.3.12) and (4.3.6) imply that

(∇WS)(Y, ξ) = 0, (4.3.13)

which gives

∇W (S(Y, ξ))− S(∇WY, ξ)− S(Y,∇W ξ) = 0. (4.3.14)

Using (1.20.6) and (1.20.10) in (4.3.14), we get

(n− 1)(∇Wη(Y ))− (n− 1)η(∇WY )− S(Y, φW ) = 0.

Replacing Y by φY in the above, we get

(n− 1)(∇Wη(φY ))− (n− 1)η(∇WφY )− S(φY, φW ) = 0,

which implies that

S(φY, φW ) = −(n− 1)((∇Wφ)Y ).

Then,

S(φY, φW ) = −(n− 1)g((∇Wφ)Y, ξ). (4.3.15)

In view of (4.2.1) and (4.2.7), the equation (4.3.15) yields

S(Y,W ) = (n− 1)g(Y,W ),

⇒ S(Y,W ) = λg(Y,W ),

where λ = (n− 1) and λ is constant,

which proves the theorem.
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4.4 3-Dimensional Locally φ-SymmetricLP -Sasakian Man-

ifolds

In a 3-dimensional Riemannian manifold, we have

K(X, Y )Z = g(Y, Z)QX − g(X,Z)QY + S(Y, Z)X − S(X,Z)Y

− r

2

[
g(Y, Z)X − g(X,Z)Y

]
, (4.4.1)

where Q is the Ricci operator i.e., g(QX, Y ) = S(X, Y ) and r is the scalar curvature of the

manifold. Replacing Z by ξ in (4.4.1) and using (1.20.10), (4.2.6) (for n = 3), we have

η(Y )QX − η(X)QY =
(r + 10)

2

[
η(Y )X − η(X)Y

]
. (4.4.2)

Replacing Y by ξ in (4.4.2) and using (1.20.11) (for n = 3), we get

QX =
1

2

[
(r + 10)X + (r + 6)η(X)ξ

]
, (4.4.3)

and

S(X, Y ) =
1

2

[
(r + 10)g(X, Y ) + (r + 6)η(X)η(Y )

]
. (4.4.4)

Using (4.4.4) and (4.4.3) in (4.4.1), we get the curvature tensor of 3-dimensionalLP -Sasakian

manifold as

K(X, Y )Z =
(r + 20)

2

[
g(Y, Z)X − g(X,Z)Y

]
− (r + 6)

2

[
g(Y, Z)η(X)ξ

+ g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y
]
. (4.4.5)

Theorem 4.4.1 The necessary and sufficient condition of a 3-dimensional LP -Sasakian

manifold to be locally φ-symmetric if the scalar curvature r is constant.
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The curvature tensor of 3-dimensional LP -Sasakian manifold is of the form

K(X, Y )Z =
(r + 20)

2

[
g(Y, Z)X − g(X,Z)Y

]
− (r + 6)

2

[
g(Y, Z)η(X)ξ

+ g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y
]
.

Taking covariant differentiation of (4.4.5) with respect to W , we get

(∇WK)(X, Y )Z =
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y

]
− dr(W )

2

[
g(Y, Z)η(X)ξ

+ g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y
]

− (r + 6)

2

[
g(Y, Z)(∇Wη)(X)ξ + g(X,Z)(∇Wη)(Y )ξ

− (∇Wη)(Y )η(Z)X − η(Y )(∇Wη)(Zη)

+ (∇Wη)(X)η(Z)Y + η(X)(∇Wη)(Z)Y
]
. (4.4.6)

Now, applying both sides of (4.4.6) and using (1.20.1) and (1.20.5), we obtain

φ2(∇WK)(X, Y )Z =
dr(W )

2

[
g(Y, Z)X + g(Y, Z)η(X)ξ − g(X,Z)Y

− g(X,Z)η(Y )ξ − η(X)η(Z)Y − η(X)η(Y )η(Z)ξ

+ η(Y )η(Z)X + η(Y )η(Z)η(X)ξ
]

− (r + 6)

2

[
g(Y, Z)η(X)(∇W ξ) + g(X,Z)η(Y )(∇W ξ)

− (∇Wη)(Y )η(Z)X − (∇Wη)(Y )η(Z)η(X)ξ

− η(Y )(∇Wη)(Z)X − η(Y )(∇Wη)(Z)η(X)ξ

+ (∇Wη)(X)η(Z)Y + (∇Wη)(X)η(Z)η(Y )ξ

+ η(X)(∇Wη)(Z)Y + η(X)η(Y )(∇Wη)(Z)ξ
]
. (4.4.7)

Now, taking X, Y, Z orthogonal to ξ, the equation (4.4.7) gives

φ2(∇WK)(X, Y )Z =
dr(W )

2

[
g(Y, Z)X − g(X,Z)Y

]
. (4.4.8)

This proof follows from (4.4.8).
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4.5 φ-Ricci Symmetric LP -Sasakian Manifolds

Definition 4.5.1 An LP -Sasakian manifold Mn is said to be φ-Ricci symmetric if the Ricci

operator satisfies

φ2((∇XQ)(Y )) = 0,

for all vector fields X and Y on Mn and S(X, Y ) = g(QX, Y ).

If X and Y are orthogonal to ξ, then the manifold is said to be locally φ-Ricci symmetric

(Shukla and Shukla, 2009).

Theorem 4.5.1 The neccessary and sufficient condition of an n-dimensional LP -Sasakian

manifold is to be φ-Ricci symmetric if the manifold is an Einstein manifold.

Let us assume that the manifold is φ-Ricci symmetric. Then we have

φ2(∇XQ)(Y ) = 0, (4.5.1)

Using (1.20.1) in above, we get

(∇XQ)(Y ) + η((∇XQ)(Y ))ξ = 0. (4.5.2)

Taking inner product of (4.5.2) with Z, we have

g((∇XQ)(Y ), Z) + η((∇XQ)(Y ))η(Z) = 0, (4.5.3)

which on simplifying gives

g(∇XQ(Y ), Z)− S(∇XY, Z) + η((∇XQ)(Y ))η(Z) = 0. (4.5.4)

Replacing Y by ξ in (4.5.4), we get

g(∇XQ(ξ), Z)− S(∇XXξ,Z) + η((∇XQ)(ξ))η(Z) = 0. (4.5.5)
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By using (1.20.6), (1.20.11) and (4.2.7) in (4.5.5), we obtain

(n− 1)g(φX,Z)− S(φX,Z) + η((∇XQ)(ξ))η(Z) = 0. (4.5.6)

Replacing Z by φZ in (4.5.6), we have

S(φX, φZ) = (n− 1)g(φX, φZ). (4.5.7)

Using (1.20.6) and (4.2.8) in the above, we obtain

S(X,Z) = (n− 1)g(X,Z), (4.5.8)

which implies that

g(QX,Z) = λg(X,Z),

where S(X, Y ) = g(QX, Y ) and λ is a constant.

Hence QX = λX .

Therefore, we have

φ2((∇YQ)(X)) = 0.

This completes the proof.

4.6 3-Dimensional φ-Ricci Symmetric LP -Sasakian Mani-

folds

Theorem 4.6.1 The LP -Sasakian manifold is φ-Ricci symmetric if the scalar curvature r of

a 3-dimensional LP -Sasakian manifold is equal to −6.
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The curvature tensor of a 3-dimensional LP -Sasakian manifold is of the form

K(X, Y )Z =
(r + 20)

2

[
g(Y, Z)X − g(X,Z)Y

]
− (r + 6)

2

[
g(Y, Z)η(X)ξ

+ g(X,Z)η(Y )ξ − η(Y )η(Z)X + η(X)η(Z)Y
]
.

From the above, we obtain the Ricci tensor

S(X, Y ) =
(r + 10)

2
g(X, Y ) +

(r + 6)

2
η(X)η(Y ),

which implies that

QX =
(r + 10)

2
X +

(r + 6)

2
η(X)ξ.

Taking covariant differentiation of the above equation with respect to W , we get

(∇WQ)X =
1

2

[
dr(W )X + dr(W )η(X)ξ + (r + 6)g(X,φX)ξ

+ (r + 6)η(X)∇W ξ
]
. (4.6.1)

Now, applying φ2 on both sides of (4.6.1) and using (1.20.1), we have

φ2((∇WQ)(X)) =
1

2

[
dr(W )X + dr(W )η(X)ξ

+ (r + 6)η(X)φ2(∇W ξ)
]
. (4.6.2)

The proof follows from (4.6.2).

Taking X orthogonal to ξ in (4.6.2), we obtain

φ2((∇WQ)(X)) =
1

2
dr(W ). (4.6.3)

In view of (4.6.3), we have the following

Corollary 4.6.1 A 3-dimensional LP -Sasakian manifold is locally φ-Ricci symetric if and

only if scalar curvature r is constant.
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4.7 Example of 3-Dimensional φ-Ricci SymmetricLP -Sasakian

Manifolds

In this section, we construct an example of φ-Ricci symmetric LP -Sasakian manifold which

supports Theorem 4.6.1.

Consider 3-dimensional manifold M = {(x, y, z) : (x, y, z) ε R3}, where (x, y, z) are the

standard coordinates in R3 (Shaikh and De, 2000). The vector fields

e1 = ex
∂

∂y
, e2 = ex(

∂

∂y
+

∂

∂z
), e3 =

∂

∂x
,

which are linearly independent at each point of M . Let g be the Lorentzian metric defined

by

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0,

g(e1, e1) = g(e2, e2) = 1, g(e3, e3) = −1.

Let η be the 1-form defined by η(Z) = g(Z, e3) for any ZεM . Let φ be the (1, 1) tensor field

defined by φe1 = −e1, φe2 = −e2, φe3 = 0.

Then using the linearity of φ and g, we have

φ(e3) = −1, φ2X = X + η(X)e3,

g(φX, φY ) = g(X, Y ) + η(X)η(Y ),

for any vector fields Y1, Y2 on M . Thus for e′3 = ξ, (φ, ξ, η, g) defines a Lorentzian Para-

contact structure on M .

Let ∇ be the Levi-Civita connection with respect to Lorentzian metric g and K be the

curvature tensor of g. Then we have

[e1, e2] = 0, [e1, e3] = −e1, [e2, e3] = −e2.
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Taking e′3 = ξ and using Koszul formula for the Lorentzian metric g, we can easily cal-

culate

∇e1e3 = −e1, ∇e1e2 = 0, ∇e1e1 = −e3,

∇e2e3 = −e2, ∇e2e2 = −e3, ∇e2e1 = 0,

∇e3e3 = 0, ∇e3e2 = 0, ∇e3e1 = 0.

From the above it can be easily seen that (φ, ξ, η, g) is an LP -Sasakian structure on M .

Consequently M3(φ, ξ, η, g) is a 3-dimensional LP -Sasakian manifold.

Using the above relations, it can be easily seen that

R(e1, e2)e3 = 0, R(e2, e3)e3 = −e2, R(e1, e3)e3 = −e1,

R(e1, e2)e2 = −e1, R(e2, e3)e2 = −e3, R(e1, e3)e2 = 0,

R(e1, e2)e1 = −e2, R(e2, e3)e1 = 0, R(e1, e3)e1 = −e3.

The definition of Ricci tensor in 3-dimensional manifold gives

S(X, Y ) =
3∑
i=1

g(R(ei, X)Y, ei). (4.7.1)

Using the components of the curvature tensor in (4.7.1), we get the following:

S(e1, e1) = −2, S(e2, e2) = −2, S(e3, e3) = −2,

S(e1, e2) = 0, S(e1, e3) = 0, S(e2, e3) = 0,

and the scalar curvature

r = −6.
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From the above relation, we have the scalar curvature r of the manifold is equal to−6 and the

Ricci tensor S(X, Y ) = 2g(X, Y ). Hence QX = 2X which implies that φ2((∇WQ)(X)) =

0. Thus we observe that the scalar curvature of the manifold is −6 and it is φ-Ricci sym-

metric. So this example supports Theorem 4.6.1 and also agrees with Theorem 4.5.1, for

3-dimensional case.

4.8 m-Projective φ-Recurrent LP -Sasakian Manifolds

Definition 4.8.1 An LP -Sasakian manifold Mn is said to be m-projective φ-recurrent man-

ifold if there exists a non-zero 1- form A such that

φ2((∇UW
∗)(X, Y )Z) = A(W )W ∗(X, Y )Z, (4.8.1)

for arbitrary vector fields X, Y, Z, U , where W ∗ is an m-projective curvature tensor given

by

W ∗(X, Y )Z = K(X, Y )Z − 1

2(n− 1)

[
S(Y, Z)X − S(X,Z)Y + g(Y, Z)QX − g(X,Z)QY

]
,

(4.8.2)

where K is the curvature tensor and S is the Ricci tensor.

Let us consider an m-projective φ-recurrent LP -Sasakian manifold. Then by virtue of

(1.20.4) and (1.20.11), we have

(∇UW
∗)(X, Y )Z + η((∇UW

∗)(X, Y )Z)ξ = A(U)W ∗(X, Y )Z, (4.8.3)

from which it follow that

g((∇UW
∗)(X, Y )Z, V ) + η((∇UW

∗)(X, Y )Z)ξ = A(U)W ∗(X, Y )Z, (4.8.4)

Let {ei}, i = 1, 2, ..., n, be an orthonormal basis of the tangent space at any point of

the manifold. Then, putting X = V = ei in equation (4.8.4) and taking summation over i,
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1 ≤ i ≤ n, we obtain

∇US(Y, Z)

2
=

1

2(n− 1)

{
S(Y, Z)(nA(U)− 1)− g(Y, Z)(rA(U)− r)

}
.

(4.8.5)

Now, substituting Z by ξ in (4.8.5) and using (1.20.4) and (1.20.11), we get

(∇US)(Y, ξ) =
η(Y )

(n− 1)

[
A(U)(n2 − n− r)− (n− 1− r)

]
. (4.8.6)

Now, we have the relation

(∇US)(Y, ξ) = ∇US(Y, ξ)− S(∇UY, ξ)− S(Y,∇Uξ),

and using equation (4.2.1), (4.2.4) and (4.2.8) in (4.8.6), we have

(∇US)(Y, ξ) = (n− 1)g(U, φY )− S(Y, φU). (4.8.7)

Using (4.8.6) in (4.8.7), we get

η(Y )

(n− 1)

[
A(U)(n2 − n− r)− (n− 1− r)

]
= (n− 1)g(U, φY )− S(Y, φU).

(4.8.8)

Substituting Y by φY in (4.8.8) and using (1.20.3), (1.20.6), (1.20.10) and (4.2.3), we get

S(Y, U) = (n− 1)g(U, Y ) + 2(n− 1)η(U)η(Y ). (4.8.9)

From the above equation, we can state

Theorem 4.8.1 Anm-projective φ-recurrentLP -Sasakian manifold (Mn, g) is an η-Einstein

manifold.

Now, from equation (4.8.3), we have

(∇UW
∗)(X, Y )Z = A(U)W ∗(X, Y )Z − η((∇UW

∗)(X, Y )Z)ξ. (4.8.10)
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Using (4.8.2) in the above equation (4.8.10), we obtain

A(U)η(R(X, Y )Z) =
A(U)

2(n− 1)

[
S(Y, Z)η(X)− S(X,Z)η(Y ))

+ g(Y, Z)η(QX)− g(X,Z)η(QY )
]
. (4.8.11)

From the above equation and using Bianchi’s identity, we get

A(U)η(R(X, Y )Z) + A(X)η(R(Y, U)Z) + A(Y )η(R(U,X)Z)

=
A(U)

2(n− 1)

[
S(Y, Z)η(X)− S(X,Z)η(Y ) + g(Y, Z)η(QX)− g(X,Z)η(QY )

]
+

A(X)

2(n− 1)

[
S(U,Z)η(Y )− S(Y, Z)η(U) + g(U,Z)η(QY )− g(Y, Z)η(QU)

]
+

A(Y )

2(n− 1)

[
S(X,Z)η(U)− S(U,Z)η(X) + g(X,Z)η(QU)− g(U,Z)η(QX)

]
,

(4.8.12)

using (4.2.9) in (4.8.12), we obtain

A(U){η(X)g(Y, Z)− η(Y )g(X,Z)}+ A(X){η(Y )g(U,Z)− η(U)g(Y, Z)}

+A(Y ){η(U)g(X,Z)− η(X)g(U,Z)} =
A(U)

2(n− 1)

[
S(Y, Z)η(X)− S(X,Z)η(Y )

+g(Y, Z)η(QX)− g(X,Z)η(QY )
]

+
A(X)

2(n− 1)

[
S(U,Z)η(Y )− S(Y, Z)η(U)

+g(U,Z)η(QY )− g(Y, Z)η(QU)
]

+
A(Y )

2(n− 1)

[
S(X,Z)η(U)− S(U,Z)η(X)

+g(X,Z)η(QU)− g(U,Z)η(QX)
]
.

(4.8.13)

Substituting Y = Z = ei in (4.8.13) and taking summation over i, 1 ≤ i ≤ n, we get

{A(X)η(U)− A(U)η(X)}{−
(
n2 − 2n+ 1

)
+ r} = A(QX)η(U)− A(QU)η(X),

(4.8.14)
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for all vector fields X,U .

Replacing X by ξ in (4.8.14) and we obtain

A(U) = −η(ρ)η(U)−
{A(Qξ)η(U) + A(QU)

(n2 − 2n+ 1) + r

}
,

(4.8.15)

for all vector fields U , where A(ξ) = g(ξ, ρ) = η(ρ), ρ is the vector field associated to the

1-form A.

i.e., g(X, ρ) = A(X).

From (4.8.14) and (4.8.15), we have the following statement:

Theorem 4.8.2 The vector field ρ associated to the 1-form A and the characteristic vector

field ξ are opposite to each other in an m-projective φ-recurrent LP -Sasakian manifold

(Mn, g) which is given by (4.8.15)

∼∼∼∼∼ >>> ∼∼∼∼∼
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Chapter 5

On a Quasi Einstein K-Contact

Manifolds

This chapter deals with the study of some properties of K-contact quasi Einstein mani-

folds. We obtain some conditions which satisfies semi-symmetric, Ricci symmetric and

Ricci-recurrent. We also study and obtain some results on Ricci Solitons in K-contact quasi

Einstein manifolds.

5.1 Introduction

A Riemannian or a semi-Riemannian manifold (Mn, g), where n ≥ 2, is said to be an Ein-

stein manifold (Avik et al., 2014) if it satisfies (1.15.7) holds on Mn, where S is Ricci tensor

and r is scalar curvature of (Mn, g). According to Besse (1987), (1.15.7) is called the Ein-

stein metric condition. Einstein manifolds play an important role in Riemannian Geometry

as well as in general theory of relativity.

A non-flat Riemannian manifold (Mn, g)(n > 2) is defined to be a quasi Einstein man-

ifold if its Ricci tensor S of type (0, 2) is not identically zero and satisfies (De and Ghosh,
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2004)

S(X, Y ) = ag(X, Y ) + bA(X)A(Y ), (5.1.1)

where a, b are scalars, b 6= 0 and A is a non-zero 1-form such that

g(X,U) = A(X), (5.1.2)

for all vector field X and U being a unit vector field. In this case, a, b are associated scalars.

A is associated 1-form and a unit vector U is the generator of the manifold. If b = 0, then the

manifold reduces to an Einstein manifold. An n-dimensional manifold of a quasi Einstein

manifold is denoted by the symbol (QE)n.

An emerging branch of modern mathematics is the geometry of contact manifold. The

notion of contact geometry has evolved from the mathematical formalism of classical me-

chanics (Geiges, 2001). A contact manifold is a smooth n (= 2m + 1)-dimensional C∞

manifold Mn equipped with a global 1-form η called a contact form of Mn such that

η ∧ (dη)n 6= 0,

everywhere on Mn. In particular, η∧ (dη)n 6= 0 is a volume element on Mn so that a contact

manifold is orientable.

The two important classes of contact manifolds are K-contact manifolds and Sasakian

manifolds (Blair, 1976). K-contact manifolds have been studied by several authors such as

De and Biswas (2005), De and De (2017), De and Mandal (2016) and many others.

Let Mn be an n (= 2m + 1)-dimensional contact metric manifold with contact metric

stucture (φ, ξ, η, g) consisting of a (1, 1)-tensor field φ, an associated vector field ξ, a 1-form

η and associated Riemannian metric g satisfies equation (1.17.1) - (1.17.7) (Blair (1976),

Sasaki (1965)) where X, Y are smooth vector fields on Mn. In addition, we have

(φX, Y ) = −g(X,φY ). (5.1.3)
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If the characteristic vector field ξ is a killing vector field, then the contact metric structure on

Mn is called a K-contact metric structure and the manifold Mn is called a K-contact metric

manifold or K-contact Riemannian manifold or simply a K-contact manifold.

A vector field X on a Riemannian manifold Mn is called a killing vector field if and only if

LXg = 0,

where L denotes the operator of Lie differentiation.

This chapter is arranged as follows:

Section 5.2 is equipped with some prerequisites about K-contact manifolds. In section 5.3,

we have proved that a conformally flatK-contact quasi Einstein manifold is of quasi-constant

curvature. We study semi-symmetric K-contact quasi Einstein manifold which satisfies the

condition K(ξ,X)ξ=0 in section 5.4.

Section 5.5 is devoted to study of Ricci semi-symmetric property. It also proved that

Ricci semi-symmetric K-contact quasi Einstein manifold is an Einstein manifold. In section

5.6, we considered Ricci-recurrent K-contact quasi Eistein manifolds. In section 5.7, we

have proved that K-contact Einstein manifold satisfying the curvature condition C.S = 0.

In the last section, we study Ricci solitons in K-contact quasi Einstein manifolds and show

that it could not be steady.

5.2 Preliminaries

From the above, in an n (= 2m+1)-dimensionalK-contact manifold the following relations

hold (Blair (1976), Sasaki (1965), Mandal (2016)):

g(K(ξ,X)Y, ξ) = η(K(ξ,X)Y ) = g(X, Y )− η(X)η(Y ), (5.2.1)

K(ξ,X)ξ = −X + η(X)ξ, (5.2.2)
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S(X, ξ) = (n− 1)η(X), (5.2.3)

(∇Xφ)Y = K(ξ,X)Y, (5.2.4)

and equation (1.17.14) for all any vector fields X and Y .

Now, using (5.1.1) and putting Y = ξ, we get

S(X, ξ) = (a+ b)η(X). (5.2.5)

From (5.2.5), we have

g(QX, ξ) = (a+ b)g(X, ξ),

which implies that

QX = (a+ b)X, (5.2.6)

putting X = ξ in (5.2.6), we have

Qξ = (a+ b)ξ. (5.2.7)

Again, putting X = Y = ξ in (5.1.1), we have

S(ξ, ξ) = ag(ξ, ξ) + bA(ξ)A(ξ),

which implies that

(n− 1) = a+ b, (5.2.8)

and contracting (5.1.1) over X and Y , we get

r = na+ b, (5.2.9)

where r denotes the scalar curvature of the manifold Mn.
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5.3 Conformally Flat K-Contact Quasi Einstein Manifolds

Definition 5.3.1 Let Mn be an n-dimentional contact metric manifold with contact metric

structure (φ, ξ, η, g). Then, the Weyl conformally curvature tensor C is defined by (De and

Biswas, 2006)

C(X, Y )Z = K(X, Y )Z − 1

n− 2

[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]

+
r

(n− 1)(n− 2)

[
g(Y, Z)X − g(X,Z)Y

]
, (5.3.1)

for X, Y, Z ∈ T (Mn), where K is Riemannian curvature tensor, r is a scalar curvature

and Q is the Ricci-operator of Mn.

For conformally flat manifold (De and Biswas, 2006), we have the relation

C(X, Y )Z = 0.

Then, using the above equation in (5.3.1), we get

K(X, Y )Z =
1

(n− 2)

[
S(Y, Z)X − S(X,Z)Y

+ g(Y, Z)QX − g(X,Z)QY
]

− r

(n− 1)(n− 2)

[
g(Y, Z)X − g(X,Z)Y

]
. (5.3.2)

Taking the inner product with W in (5.3.2), we have

K̂(X, Y, Z,W ) =
1

(n− 2)

[
S(Y, Z)g(X,W )− S(X,Z)g(Y,W )

+ g(Y, Z)S(X,W )− g(X,Z)S(Y,W )
]

− r

(n− 1)(n− 2)

[
g(Y, Z)g(X,W )− g(X,Z)g(Y,W )

]
.

(5.3.3)
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Putting the value of (5.1.1) in the above equation, we get

K̂(X, Y, Z,W ) =
[ 2a

(n− 2)
− r

(n− 1)(n− 2)

][
g(Y, Z)g(X,W )

− g(X,Z)g(Y,W )
]
− b
[
η(Y )η(Z)g(X,W )

− η(X)η(Z)g(Y,W ) + η(X)η(W )g(Y, Z)

− η(Y )η(W )g(X,Z)
]
. (5.3.4)

Therefore, it is a quasi constant curvature.

From the above equation, we can state:

Theorem 5.3.1 Conformally flatK-contact quasi Einstein manifold is of quasi constant cur-

vature.

5.4 Semi-Symmetric K-Contact Quasi Einstein Manifolds

Definition 5.4.1 A K-contact quasi Einstein manifold is said to be semi-symmetric if it sat-

isfies the condition (Tripathi and Kim, 2007):

K(X, Y ).K = 0, (5.4.1)

where K(X, Y ) acts on K as a derivation and X, Y are vector fields.

From (5.4.1), we have equation (1.21.2).

Also we have

K(X, Y )K(Z,U)V − K(K(X, Y )Z,U)V −K(Z,K(X, Y )U)V

− K(Z,U)K(X, Y )V = 0. (5.4.2)

Putting X = Z = V = ξ in the above equation and using (5.2.2), we get

2K(Y, U)ξ − η(U)Y + 2Uη(Y ) +K(ξ, U)Y − g(U, Y )ξ = 0, (5.4.3)
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putting Y = ξ in (5.4.3), we obtain

2K(ξ, U)ξ − η(U)ξ + 2Uη(ξ) +K(ξ, U)ξ − g(U, ξ)ξ = 0,

which implies that

K(ξ, U)ξ = 0. (5.4.4)

From the above result, we can state:

Theorem 5.4.1 In a semi-symmetric K-contact quasi Einstein manifold K(ξ,X)ξ = 0.

5.5 K-Contact Quasi Einstein Manifold Satisfying Ricci Semi-

Symmetric

Definition 5.5.1 A K-contact quasi Einstein manifold is said to be Ricci-semi symmetric if

it satisfies the condition (Tripathi and Kim, 2007):

K(X, Y ).S = 0, (5.5.1)

where K(X, Y ) acts on K as a derivation and X, Y are vector fields.

Then from (5.5.1)

(K(X, Y ).S)(Z,W ) = 0, (5.5.2)

it follows that

S(K(X, Y )Z,W ) + S(Z,K(X, Y )W ) = 0. (5.5.3)

Putting X = W = ξ in (5.5.3), we have

S(K(ξ, Y )Z, ξ) + S(Z,K(ξ, Y )ξ) = 0,
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and using (5.2.2) and (5.2.1), we get

S(Z, Y ) = (a+ b)g(Z, Y ), (5.5.4)

which gives the following theorem;

Theorem 5.5.1 Ricci semi-symmetric K-contact quasi Einstein manifold is Einstein mani-

fold.

5.6 Ricci-Recurrent K-Contact Quasi Einstein Manifolds

Definition 5.6.1 A non-flat Riemannian manifold Mn is called a Ricci-recurrent K-contact

quasi Einstein manifolds if its Ricci tensor S satisfies equation (1.21.3), where ∇ is Levi-

Civita connection of the Riemannian metric g and A is a 1-form and X, Y are vector fields

on Mn.

We have the relation

(∇XS)(Y, Z) = XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ). (5.6.1)

Using (1.21.3) and (5.6.1), we get

A(X)S(Y, Z) = XS(Y, Z)− S(∇XY, Z)− S(Y,∇XZ). (5.6.2)

Setting Y = Z = ξ in the (5.6.2), we get

A(X)S(ξ, ξ) = XS(ξ, ξ)− 2S(∇Xξ, ξ). (5.6.3)

Using (5.2.3) in (5.6.3), we have

(n− 1)A(X) = (n− 1)X, (5.6.4)

where X is a vector field.

A Ricci-recurrentK-contact quasi Einstein manifold is Ricci-symmetricK-contact quasi
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Einstein if and only if the 1-form A is zero. Thus we have the following theorem:

Theorem 5.6.1 If Mn is a Ricci-recurrent K-contact quasi Einstein manifold, then (n −

1)A(X) = X(n− 1) where X is a vector field.

5.7 K-Contact Quasi Einstein Manifolds

Let us consider a K-contact quasi Einstein manifold (De and Mandal, 2016).

Using (5.1.1) and (5.2.6) in (5.3.1), we get

C(X, Y )Z = K(X, Y )Z −
(

2(a+ b)(n− 1)− r
(n− 1)(n− 2)

)[
g(Y, Z)X − g(X,Z)Y

]
. (5.7.1)

Putting Z = U in (5.7.1), we have

C(X, Y )U = K(X, Y )U −
(

2(a+ b)(n− 1)− r
(n− 1)(n− 2)

)[
g(Y, U)X − g(X,U)Y

]
.

Taking the inner product with V , we have

g(C(X, Y )U, V ) = g(K(X, Y )U, V )

−
(

2(a+ b)(n− 1)− r
(n− 1)(n− 2)

)[
g(Y, Z)g(X, V )− g(X,Z)g(Y, V )

]
.

(5.7.2)

Interchanging U and V , we get

g(C(X, Y )V, U) = g(K(X, Y )V, U)

−
(

2(a+ b)(n− 1)− r
(n− 1)(n− 2)

)
[g(Y, Z)g(X, V )− g(X,Z)g(Y, U)] .

(5.7.3)

Adding (5.7.2) and (5.7.3), we obtain

g(C(X, Y )U, V ) + g(C(X, Y )V, U) = 0. (5.7.4)
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Now, we have the relation

(C(X, Y ).S)(U, V ) = −S(C(X, Y )U, V )− S(U,C(X, Y )V ). (5.7.5)

Using (5.1.1) in (5.7.5), we get

(C(X, Y ).S)(U, V ) = 0. (5.7.6)

Theorem 5.7.1 In K-contact quasi Einstein manifold the Weyl curvature tensor satisfies the

condition C(X, Y ).S = 0.

5.8 Ricci Solitons in K-Contact Quasi Einstein Manifolds

A Ricci soliton (g, V, λ) is a generalization of an Einstein metric and is defined on a Rie-

mannian manifold (Mn, g) is given by equation (1.22.1) (Hamilton (1988), Ashoka et al.

(2013)), where L, V , λ and S are already defined as earlier. The Ricci soliton is said to

be shrinking, steady or expanding according as λ is negative, zero and positive respectively.

Long-existing solutions, that is, solutions which exist on an infinite time interval are the self-

similar solutions, which in Ricci flow are called Ricci soliton.

If the vector field V is the gradient of a potential function −f , then g is called a gradient

Ricci soliton and (1.22.1) assumes the form of equation (1.22.2).

Then, the above equation (1.22.2) can be written as

∇YDf = QY + λY, (5.8.1)

where D is gradient operator of g and Y denotes an arbitrary vector field on Mn. Using this,

we derive

K(X, Y )Df = (∇XQ)Y + (∇YQ)X. (5.8.2)
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Taking inner product with ξ and putting X = ξ, we have

g(K(ξ, Y )Df, ξ) = g((∇ξQ)Y, ξ) + g((∇YQ)ξ, ξ). (5.8.3)

Using (1.17.14) and (5.2.6), we get

Df = (ξf)ξ, (5.8.4)

and

Y (ξf)ξ + (ξf)[−φY ] = QY + λY. (5.8.5)

Again, taking the inner product in (5.8.5) with X and using (5.8.4) in (5.8.1), we get

Y (ξf)g(X, ξ)− (ξf)g(X,φY ) = g(QY,X) + λg(X, Y ),

which is equivalent to

Y (ξf)η(X)− (ξf)g(X,φY ) = S(X, Y ) + λg(X, Y ). (5.8.6)

Now, from (1.22.1) and putting V = ξ, we get

Lξg + 2S + 2λg = 0,

which gives

S + λg = 0. (5.8.7)

Using (5.8.7) in (5.8.6), we have

Y (ξf)ξfη(X) = (ξf)g(X,φY ). (5.8.8)

Again, putting X = ξ in the above equation, we get

Y (ξf) = 0. (5.8.9)
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Here, we have Y (ξf) = 0, that is, ξf is constant or ξf = c.

By virtue of the equation (5.8.9), the equation (5.8.8) reduces to

(ξf)g(X,φY ) = 0. (5.8.10)

From the above relation, we can state:

Theorem 5.8.1 In K-contact manifold admitting Ricci solitons g(X,φY ) = 0.

Now, using (5.8.8) in (5.8.5), we obtain

−(ξf)φξ = QY + λY,

which implies that

−(ξf)φξ = aY + bη(Y )ξ + λY, (5.8.11)

since, QX = aX + bη(Y )ξ.

Putting Y = ξ in the above equation, we get

λ = −(a+ b). (5.8.12)

As we know that the Ricci soliton is steady if

λ = 0,

i.e., (a+ b) = 0.

From (5.2.8), we have n = 1, which is not possible. Therefore, Ricci soliton cannot be

steady.

Thus we have the following result:

Theorem 5.8.2 Ricci soliton in K-contact quasi Einstein manifold cannot be steady.

∼∼∼∼∼ >>> ∼∼∼∼∼
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Chapter 6

Summary and Conclusion

Chapter 1 contains the general introduction which includes some basic definitions of

differentiable manifolds, tangent vector, tangent space, vector field, Lie-bracket, Lie deriva-

tive, covariant derivative, exterior derivative, connection, Riemannian manifold, Riemannian

connection, quarter symmetric metric connection, torsion tensor, curvature tensors on Rie-

mannian manifold, Ricci tensor, certain curvature tensors. An almost contact metric mani-

fold, almost para-contact metric manifold, para-Sasakian manifold, Lorentzian para-contact

metric manifold, recurrent manifold and Ricci solitons are also defined. Some mathematical

tools used for solving problems, applications and the literature review are also included in

this chapter.

In chapter 2, we studied an Einstein manifold admitting a Ricci quarter symmetric met-

ric connection in Riemannian manifolds and obtained some geometrical properties. We

have discussed and obtained an equivalent relation between the locally symmetric, con-

harmonically symmetric and m-projectively symmetric manifolds. We also examined an

equivalency relation between the locally bi-symmetric, conharmonically bi-symmetric and

m-projectively bi-symmetric manifolds. Here, we showed that a generalized conharmoni-

cally 2-recurrent Einstein manifold admitting a Ricci quarter symmetric metric connection

is conharmonically flat and a generalized conharmonically 2-recurrent Einstein manifold ad-
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mitting a Ricci quarter symmetric metric connection is m-projectively flat. We also obtained

an equivalent relation between the locally symmetric, conharmonically symmetric and con-

circularly symmetric manifolds. Finally, we have shown that a generalized concircularly

2-recurrent Einstein manifold equipped with Ricci quarter symmetric metric connection is

concircularly flat.

Chapter 3 deals with the study of weakly W1 symmetric manifolds. We examined and

investigated the nature of the scalar curvature of (WW1S)n. Here, we have proved that

the Ricci tensor S in a Riemannian manifold (Mn, g), (n > 2) is codazzi type and the

Ricci tensor S in (WW1S)n has an eigenvalue −r corresponding to the eigenvector ρ̂. We

also proved that if in a (WW1S)n the Ricci tensor is of Codazzi type, −r is an eigen-

value of the Ricci tensor S corresponding to the eigen vector ξ defined by g(X, ξ) = ν(X)

for all X . W1 flat weakly Ricci-symmetric manifolds are also discussed in this chapter.

We also examined and proved that if the scalar curvature of a (WW1S)n vanishes, then

W1(X, Y, ρ̂, U) = K(X, Y, µ̂, U). We also proved that in a W1 flat (WRS)n, (n > 2) with

µ(X) 6= 0, the vector field ρ defined by g(X, ρ) = H(X) is not a proper concircular vector

field and W1 flat (WRS)n, (n > 2) is a quasi Einstein manifold.

In chapter 4, we have discussed φ-recurrent and generalized recurrent curvature tensor

in LP -Sasakian manifolds and showed some interesting results. Here, we proved that φ-

symmetric LP -Sasakian manifold is an Einstein manifold. We also studied 3-dimensional

locally φ-symmetric LP -Sasakian manifolds. It is shown that if the scalar curvature r is con-

stant, then the necessary and sufficient condition of a 3-dimensional LP -Sasakian manifold

to be locally φ-symmetric. We obtained if the manifold is an Einstein manifold, then the

necessary and sufficient condition of an n-dimensional manifold is to be φ-Ricci symmet-

ric. We also proved that if the scalar curvature r of a 3-dimensional LP -Sasakian manifold

is equal to -6, then we can say that the manifold is φ-Ricci symmetric. We constructed an

example of 3-dimensional φ-Ricci symmetric LP -Sasakian manifolds. In this chapter, we

also studied and discussed m-projective φ-recurrent LP -Sasakian manifolds. We showed
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that m-projective φ-recurrent LP -Sasakian manifold is an η-Einstein manifold.

In the fifth chapter, we explored some properties of K-contact quasi Einstein manifolds.

We discussed conformally flat K-contact quasi Einstein manifolds. Here,it is proved that

conformally flat K-contact quasi Einstein manifold is of quasi constant curvature. We ob-

tained in a semi-symmetric K-contact quasi Einstein manifold K(ξ,X)ξ = 0 and Ricci

semi-symmetric K-contact quasi Einstein manifold is Einstein manifold. We also studied

and obtained inK-contact manifold admitting Ricci solitons g(X,φY ) = 0. We also showed

that Ricci soliton in K-contact quasi Einstein manifold cannot be steady.

Finally, we conclude that the whole work of this thesis gives the properties and geomet-

rical structure of Sasakian manifolds equipped with Ricci quarter symmetric metric connec-

tion, W1 flat weakly Ricci-symmetric manifolds, φ-symmetric and m-projective φ-recurrent

LP -Sasakian manifolds and K-contact manifolds.

∼∼∼∼∼ >>> ∼∼∼∼∼
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INTRODUCTION

The	 idea	 of	 metric	 connection	 with	 torsion	 tensor	 in	 a	

idea	 of	 semi-symmetric	 connection.	 Pandey	 and	 Mishra	

connection	given	by	the	last	two	authors	[4]	in	an	Einstein	

Let	(M
n
,	g n	and	

let	D	 M
n
,	g

manifold	is	called	locally	symmetric	if	D
U
R R	is	

M
n
,	g)	and	U	is	a	vector	

preliminaries	 and	 about	 the	 relation	 between	 curvature	

	

D

conharmonically	symmetric	and	M-projectively	symmetric	

between	 the	 locally	 bi-symmetric,	 conharmonically	 bi-
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symmetric	 and	 M-projectively	 bi-symmetric.	 In	 section	

5,	 we	 have	 shown	 that	 a	 generalized	 conharmonically	

relation	 between	 the	 locally	 symmetric,	 conharmonically	

symmetric	 and	 concircularly	 symmetric	 manifold.	 Finally,	

A	 linear	 connection	 	 M
n
	 is	

tensor	S	

	 (1)

where,	 is	 a	 1-form	 and	 L	

M
n	
	and	X,	Y	

A	linear	connection 	is	called	a	metric	connection	if

	

If	 D	 	

(M
n
,	g
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is	given	by	[4]

	 (4)

where,	 (X g( ).

PRELIMINARIES

Let	 	and	R	be	the	curvature	tensors	of	 the	connections	

and	D	respectively,	then	it	can	be	shown	that	[4]

	 (X,	Y)	Z	 R( (Y,	Z)	LX	 M(X,	Z)	LY

(Y,	Z)	QX	 Ric(X,	Z)	QY

																																											 	 	 (5)

where,	M	

		 (6)

		 (7)

n	
to	be	an	Einstein	manifold	i.e.

		 (8)

where	r	is	the	scalar	curvature	of	the	manifold.

	

		 (9)

Contracting	(9)	with	respect	to	X,	we	get

	 (10)

where,	 	 and	m	is	the	trace	of	

.	Now,	putting	Y	 Z	 e
i
,	where	{e

i
;	i	 ,	 ,	 ,	 ...,	n}	is	an	

orthonormal	basis	of	the	tangent	space	at	any	point,	we	get	

by	taking	the	sum	for	1	 	i	 	n	in	the	relation	(10)

	 	 (11)

where,	 	is	the	scalar	curvature	of

CURVATURE	TENSORS	OF	

The	 conharmonic	 curvature	 tensors	 and	 M-projective	

respectively	by

	

	

and

	

	

where

.	 (14)

Let 	 be	 the	 conharmonic	 curvature	 tensor	 of	 the	

connection

	

	

			 (15)

Using	(9)	and	(10)	in	(15),	we	obtain

	

				

(16)

		 (17)

Again,	let	 	be	the	M-projective	curvature	tensor	of	the	

connection
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	.		
(18)

Applying	(9),	(10)	in	(18),	we	have

	

	
(19)

From	which	we	get

and

Theorem	 1:	 In	 an	 Einstein	manifold	 (M
n

a.	 M
n
	is	locally	symmetric.	

b.	 M
n
	is	conharmonically	symmetric.

c.	 M
n
	is	M-projectively	symmetric.

	

An	 Einstein	 manifold	 is	 said	 to	 be	 conharmonic	 and	

and

	

	

and

Thus	we	can	state	that:

Theorem	 2:	 In	 an	 Einstein	manifold	 (M
n

a.	 M
n	
is	bi-symmetric.

b.	 M
n	
is	conharmonically	bi-symmetric.

c.	 M
n	
is	M-projectively	bi-symmetric.

RIEMANNIAN	MANIFOLDS

n	 is	 called	

R	

where,	A	is	a	1-form,	B	

tensor	B	

B(X,	Y) g(X,	QlY	),	

where	 Ql	 is	 a	 linear	 transformation	 from	 the	 tangent	

space	at

n
):	T

p
(M

n
)	

p
(M

n
).

When	 the	 conharmonic	 and	 M-projective	 curvature	

tensor	satisfy	the	conditions

( )(X,	Y	)Z	 A(V	)( 	)(X,	Y	)Z	 B(U,	V	) (X,	Y	)Z	

and

		 A	(V)	(D
U

)	(X,	Y)	Z B	(U,	V) 	(X,	Y)	Z,											

then	 the	 manifold	 is	 respectively	 called	 generalized	

B	are	stated	

earlier.

(D
U

)(X,	Y)Z	 D
Y

)	(U,	X)	Z	 D
X

)	(Y,	U)	Z .	

(D
V
	D

U
)(X,	Y)Z	 D

V
	D

Y
)	(U,	X)	Z	 D

V
	D

X
	)(Y,	U)	Z .	

B	(U,	V)	 	(X,	Y)	Z	 B(Y,	V)	 	(U,	X)	Z B(X, V)  (Y, U) Z = 0.  
 

B	( 	(X,	Y)	Z,	V)	=

(D
V
D

U
R)

(D
V
D
U
C)
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From (16), we get
(X,	Y,	Z,	W 	(X,	Y,	W,	Z)

	(Y,	X,	Z,	W)

		(Z,	W,	X,	Y).	

Now,	putting	U	 QlV	

takes	the	form

g	(QlV,QlV	)	 		(X,	Y	)Z	 g(X,QlY	) 	(X,QlY	)Z

g(Y,QlV	) 	(QlV,	X)	Z	 .		

g(QlV,QlV	) 	(X,	Y	)Z	 .		

From	which	we	obtain

	(X,	Y)Z	 .z	

Thus	we	can	state

Theorem	3:	

Bianchi’s	second	identity	that

(D
U

)(X,	Y)Z	 D
Y

)	(U,	X)	Z D
X

)	(Y,	U)	Z	 .	

	 	 (40)

After	covariant	differentiation	of	(40)	that

(D
V
	D

U
)(X,	Y)Z	 D

V
	D

Y
)	(U,	X)	Z

D
V
	D

X
)	(Y,	U)	Z	 .	 (41)

B	(U,	V) 	(X,	Y)	Z	 B(Y,	V) 	(U,	X)	Z

B(X,	V) 	(Y,	U)	Z	 .		

B	( 	(X,	Y)	Z,	V) .	

From	(18),	we	get

(X,	Y,	Z,	W (X,	Y,	W,	Z)

(Y,	X,	Z,	W)

	(Z,	W,	X,	Y).		 (44)

Now,	putting	U	 QlV	

takes	the	form

g	(QlV,QlV	) 	(X,	Y	)Z	 g(X,QlV	) 	(Y,QlV	)Z

g(Y,QlV	) 	(QlV,	X)	Z	 .		 (45)

g	(QlV,QlV	) 	(X,	Y	)Z	 .	 (46)

From	which	we	obtain

	(X,	Y)Z	 .			 (47)

Theorem	4:	

CONHARMONIC	AND	CONCIRCULAR	
TENSORS	OF	

(X,	Y,	Z,	U (X,	Y,	Z,	U)

	{g(Y,	Z)	g(X,	U) (X,	Z)	g(Y,	U)},		 (48)

where,

(X,	Y,	Z,	U g	(V	(X,	Y)	Z,	U)	 (49)

Let	 denote	 the	 concircular	 curvature	 tensor	 of	 the	

connection .	Then,

(X,	Y,	Z,	U (X,	Y,	Z,	U)

	 {g(Y,	Z)	g(X,	U) (X,	Z)	g(Y,	U)}.	 (50)

Applying	(9),	(10)	in	(50),	we	have

	(X,	Y,	Z,	U (X,	Y,	Z,	U)

	 {g(Y,	Z)g(X,U) (X,Z)g(Y,U)}.	 (51)

From	(51),	we	have

	 (X,	Y)	Z	 R(X,	Y)	Z

	{g(Y,	Z) (X,	Z)Y	}.	

(D
U
	)(X,	Y)Z	 D

U
R)	(X,	Y)	Z.	

Theorem	 5:	 In	 an	 Einstein	manifold	 (M
n

a.	 M
n
	is	locally	symmetric.

b.	 M
n	
is	conharmonically	symmetric.

c.	 M
n
	is	concircularly	symmetric.
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An	 Einstein	 manifold	 will	 be	 called	 concircular	 bi-

(D
V
	D

U
V)(X,	Y)Z	 .	 (54)

Taking	the	covariant	differentiation	on	both	sides	of	(54)	

and	we	get

(D
V
	D

U
V)(X,	Y)Z	 D

V
	D

U
R)	(X,	Y)	Z.		 (55)

Theorem	 6:	 In	 an	 Einstein	manifold	 (M
n

a.	 M
n	
is	bi-symmetric.

b.	 M
n
	is	conharmonically	bi-symmetric.

c.	 M
n
	is	concircularly	bi-symmetric.

n	is	called	

[6]	 when	 the	 concircular	 curvature	 tensor	 V	

condition

U W W

		 (56)

where,	 A	 and	 B	 are	 stated	 earlier.	 Assume	 that	 the	

(D
W

	)(X,	Y)Z	 D
Y
	 	)(W,	X)	Z	 D

X
	)(Y,	W)	Z	 .	(57)

After	covariant	differentiation,	we	have

(D
U
D
W

)(X,	Y)Z	 D
U
D
Y
	 	)(W,	X)	Z D

U
D
X
	)(Y,	W)	Z	 .							

	 (58)

Using	(56)	and	(57)	in	(58),	we	get

B(W,U) 	(X,	Y	)Z	 B(Y,U) 	(W,X)Z B(X,U) 	(Y,W)Z	 .								

	 (59)

Contracting	(59),	we	have

B	( 	(X,	Y)	Z,	U .	 (60)

From	(50),	we	have

	(X,	Y,	Z,	W 	(X,	Y,	W,	Z)

	(Y,	X,	Z,	W)

	(Z,	W,	X,	Y).	 (61)

Now,	putting	W	 QlU	

(61)	takes	the	form

g	(QlU,QlU) 	(X,	Y	)Z	 g(X,QlU) 	(Y,QlU)Z

g(Y,QlU) 	(QlU,	X)	Z	 .	

g	(QlU,QlU) 	(X,	Y	)Z	 .	

From	which	it	follows	that

	 	(X,	Y)	Z	 .	 	(64)

Theorem	 7:	
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